
Near-Optimal Algorithm for Constructing Greedy
Consensus Tree
Hongxun Wu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
wuhx18@mails.tsinghua.edu.cn

Abstract
In biology, phylogenetic trees are important tools for describing evolutionary relations, but various
data sources may result in conflicting phylogenetic trees. To summarize these conflicting phylogenetic
trees, consensus tree methods take k conflicting phylogenetic trees (each with n leaves) as input and
output a single phylogenetic tree as consensus.

Among the consensus tree methods, a widely used method is the greedy consensus tree. The
previous fastest algorithms for constructing a greedy consensus tree have time complexity Õ(kn1.5)
[Gawrychowski, Landau, Sung, Weimann 2018] and Õ(k2n) [Sung 2019] respectively. In this paper,
we improve the running time to Õ(kn). Since k input trees have Θ(kn) nodes in total, our algorithm
is optimal up to polylogarithmic factors.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases phylogenetic trees, greedy consensus trees, splay tree

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.105

Category Track A: Algorithms, Complexity and Games

Acknowledgements We want to thank anonymous reviewers for many helpful comments.

1 Introduction

The problem of constructing consensus trees arises from bioinformatics. In biology, phylogen-
etic trees describe the biological evolutionary relations between species. But the phylogenetic
trees from different biological data may conflict with each other. As mentioned in [22],
even from the same data set, when certain resampling techniques are used, we could still
get many different phylogenetic trees. This problem has long been studied, to name a few
[1, 14, 28, 17, 13, 12, 18, 5].

Motivated by this, consensus tree methods were proposed [1] to summarize these phylo-
genetic trees into a single phylogenetic tree, which is viewed as the consensus of these
phylogenetic trees and is called the consensus tree. Since then, many different consensus
tree methods were proposed. As mentioned in [22], the majority rule consensus tree [28],
the loose consensus tree [8], and the greedy consensus tree [9] are the most frequently used
consensus trees.

As discussed in [11], while increasing the number of phylogenetic trees in the input, the
greedy consensus tree converges faster than majority rule consensus tree and R∗ consensus
tree. Although the greedy consensus tree is not a consistent estimator, the region of parameter
space in which greedy consensus tree fails is relatively small, hence greedy consensus tree
offers more robustness [11]. The greedy consensus tree method is implemented in many
software packages, such as PHYLIP [15], PAUP* [40], MrBayes [32], RAxML [37], and also
widely used in numerous works in biology [6, 7, 11, 24, 26, 27, 30, 31, 33, 34, 36, 38].

For most consensus tree methods, optimal or near-optimal algorithms for construction have
been found. One exception is the greedy consensus tree (See Table 1). For greedy consensus
tree construction, the naïve algorithm takes Õ(kn3) time [9]. Then it was improved to O(kn2)
time by [22]. Recently there are Õ(kn1.5) [16] and Õ(k2n) [39] algorithms proposed for it.

EA
T

C
S

© Hongxun Wu;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 105; pp. 105:1–105:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wuhx18@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2020.105
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

105:2 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

Table 1 Running time of construction algorithms for different consensus tree methods.

Consensus tree method Running time Reference
Adam’s consensus tree O(kn log n) [19]
Strict consensus tree O(kn) [10]
Loose consensus tree O(kn) [22]

Frequency difference consensus tree O(kn log2 n) [16]
Majority-rule consensus tree O(kn log k), Randomized O(kn) [4, 22]

Majority-rule (+) consensus tree O(kn) [21]
Local consensus tree O(kn3) [25, 20]

R∗ consensus tree O(n2 logk+2 n) [23]
Greedy consensus tree O(kn1.5), O(k2n) [16, 39]

In this paper, we present a near-optimal Õ(kn) time algorithm for greedy consensus tree
construction.

I Theorem 1. Greedy consensus tree of k phylogenetic trees for n species can be constructed
in Õ(kn) time.

High Level Idea

The previous Õ(kn1.5) algorithm [16] builds the consensus tree by dynamically adding nodes
to it. To find out the position to add a new node, they need to support least common ancestor
query on the consensus tree. Since the consensus tree is dynamically changing, answering such
queries is time-consuming and becomes the bottleneck of this previous algorithm. Motivated
by it, we came up with an alternative approach that only requires least common ancestor
query on the phylogenetic trees in the input. Since these are static trees, such queries can be
efficiently answered. This leads to our improved algorithm.

2 Preliminaries

2.1 Phylogenetic Tree
Phylogenetic trees represent the evolution of species. Different leaves of a phylogenetic tree
represent different species. From biological data, we can infer that some of these species
share common ancestors. These common ancestors are represented by the nonleaf nodes,
also called inner nodes. Each inner node represents the common ancestor of all leaves in its
subtree.

Formally, a tree with n leaves is leaf-labeled if and only if its n leaves have distinct labels
from 1 to n. A phylogenetic tree T is a rooted, unordered, leaf-labeled tree in which every
inner node has at least two children. If there is a directed path from node u to node v, u is a
descendant of v, and v is an ancestor of u. Thus node u is a descendant of itself. If u 6= v

and v is a descendant of u, v is a proper descendant of u, and u is a proper ancestor of v.
The subtree tree of an inner node u is the subtree rooted at u and formed by all its

descendants. In the rest of the paper, whenever we say a subtree, we always refer to the
subtree of an inner node.

Cluster and Signature

For inner node v in phylogenetic tree T , we define L(v) to be the set of species within its
subtree. Namely, L(v) = {x ∈ [n] : There is a leaf labeled x in the subtree of v}. The set
L(v) is called a cluster.

H. Wu 105:3

Based on L(v), we define the signature of phylogenetic tree T to be the set of all clusters
in it. Namely, sign(T) = {L(v) : v is an inner node in T}.

I Observation 2. The signature of a phylogenetic tree completely captures its structure.
Namely, given sign(T), the phylogenetic tree T is uniquely determined.

More specifically, suppose the cluster c1 ∈ sign(T) corresponds to node u on T . Namely,
c1 = L(u). Let par(u) denote the parent of u on T . L(par(u)) is the smallest cluster
c2 ∈ sign(T) such that c1 ⊂ c2. This determines the parent of each node.

Consistency

But not every set S of clusters can be the signature of a phylogenetic tree. S is a valid
signature if and only if it is a laminar family. In this case, we say S is consistent. Namely, S

is consistent if and only if for every pair of distinct clusters c1, c2 ∈ S, one of the following
holds:

c1 ∩ c2 = ∅
c1 ⊂ c2
c1 ⊃ c2

We say a cluster c is consistent with S if and only if S ∪ {c} is consistent.

2.2 Greedy Consensus Tree
Recall that the greedy consensus tree method takes k phylogenetic trees T1, T2, · · · , Tk as
inputs. These k trees are over the same set of n species. Its objective is to output a single
phylogenetic tree to be the consensus tree.

Definition

As its name suggests, a greedy consensus tree is defined as the output of a simple greedy
algorithm. Let F be the set of all clusters that have appeared in T1, T2, · · · , Tk. The frequency
f(c) of a cluster c is the number of times c appears in F .

Let S denote the signature of the current consensus tree. Initially, the consensus tree
only contains a root and n leaves. Thus S = {{1, 2, . . . , n}, {1}, {2}, . . . , {n}}. Each time we
pick the cluster with the highest frequency in F and add it to S if they are consistent. From
the tree point of view, we are adding a new inner node to the consensus tree. For the details,
see Algorithm 1.

Algorithm 1 Greedy consensus tree.

1: Initially signature S ← {{1, 2, . . . , n}, {1}, {2}, . . . , {n}}
2: F ← sign(T1) ∪ sign(T2) ∪ · · · ∪ sign(Tk)
3: For all clusters c ∈ F , count its frequency f(c)← |{i|c ∈ sign(Ti)}|
4: while F 6= ∅ do
5: Pick c0 ← arg maxc∈F f(c) with the highest frequency (ties are broken arbitrarily)
6: if c0 is consistent with S then S ← S ∪ {c0}
7: F ← F\{c0}
8: S is the signature of a greedy consensus tree

Since at Line 5, Algorithm 1, ties are broken arbitrarily, the output of the algorithm may
not be unique. There may be more than one greedy consensus tree for a fixed input.

ICALP 2020

105:4 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

Running Time

Algorithm 1 is a naïve algorithm for constructing greedy consensus trees. Here we discuss
this algorithm and its complexity in more detail. It essentially contains two phases:
1. Count the frequency f(c) of clusters and sort them. (Line 1 ∼ 3 of Algorithm 1)
2. Repeatedly run the greedy procedure. (Line 4 ∼ 7 of Algorithm 1)

The first phase is easy to be handled in Õ(kn) time. Suppose |F| = m. Namely, there
are m distinct clusters. For each of them, we assign a unique number in [m] to it as its
identifier. For each u ∈ Ti, let id(u) ∈ [m] be the identifier of L(u). Then, for u ∈ Ti and
v ∈ Tj , id(u) = id(v) if and only if L(u) = L(v).

In [16], they showed that these identifiers can be computed in O(kn log2 n) time. To be
self-contained, we state it in Lemma 4 and present a short proof here. We first need a data
structure for dynamic set equality.

I Lemma 3 (Lemma 1, [16]). There is a deterministic dynamic set equality structure that
supports:

Create(s): Create a new empty set s.
Add(s, x): Add an element x to set s. (create a new set s ∪ {x} without destroying s)
ID(s): Return the identifier of set s which is a positive integer smaller than the number
of sets we have created. Two sets have the same identifier if and only if they are equal.

Let n denote the size of all sets created. Each operation takes Õ(1) time.

Proof. We apply the dynamic string equality structure in [29]. It supports the following
operations in Õ(1) time: (1) create a new string with a single character, (2) test if two strings
are equal, (3) split a string into two new strings without destroying it, (4) concatenate two
strings to form a new string without destroying them, (5) given i, return the i-th character
in a string. Modifying a character of a string can be reduced to O(1) split, create, and
concatenate operations. Comparing the lexicographical order of two strings can be reduced
to O(log n) split and equality testing operations using binary search. Thus they all take
Õ(1) time.

We encode each set s into a binary string. The i-th bit of the string is 1 if and only if
i ∈ s. For empty set, we create a new string with n zeros in beginning. To add an element x

to s, we only need to modify the x-th bit in the string which take Õ(1) time.
To maintain the identifier of each set s, we maintain a global balanced binary search tree

of the strings of all sets in their lexicographical order. When a new set is created, we add its
string to this balanced binary search tree, and attach a new identifier to it. Since comparing
lexicographical order takes Õ(1) time, maintaining this binary search tree and finding the
identifier of a set also takes Õ(1) time. J

I Lemma 4 (Theorem 3, [16]). The identifier id(u) can be found for every node u of
phylogenetic trees T1, T2, · · · , Tk in Õ(kn) time.

Proof. We process each tree Ti bottom-up. For each inner node u, we obtain L(u) and its
identifier in the dynamic set equality structure by the following procedure:
1. Let v be the children of u with the largest subtree. If v is a leaf, we let s be the singleton
{label(v)}. Otherwise, let s = L(v) in dynamic set equality structure.

2. We traverse the subtrees of all other children of u and add the leaves we visited into s.
Now s equals L(u)

3. id(u)← ID(s).

H. Wu 105:5

Since each time a node is visited at Step 2, the subtree it belongs to is doubled. Each
node can be visited at most O(log n) times throughout the procedure. Thus this procedure
takes Õ(kn) time in total. J

After we get the identifiers id(u), counting the frequency of identifiers and sorting within
Õ(kn) time are straight-forward.

The bottleneck of the naïve algorithm is the second phase. To test whether the signature
S of the consensus tree is consistent with c0, the naïve algorithm enumerates all clusters in
S. There can be at most O(n) clusters in S since each of them corresponds to a node in the
consensus tree.

For every cluster in S testing whether it is consistent with c0 takes O(n) time. There are
O(n) clusters in S. Thus for each c0, it takes at most O(n2) time. There are O(kn) clusters
in F (since each of them corresponds to at least one node in T1, T2, . . . , Tk).

So in total, the naïve algorithm takes O(kn3) time. We will present our algorithm for the
second phase in Section 3 and show how to make it efficient in Section 4.

2.3 Data Structures

Our algorithm relies on some classical data structure techniques introduced here.

DFS Sequence

Let T be a rooted tree. The Euler tour of T starts from its root, passing by each edge exactly
twice (from opposite directions), and return to the root. We define E(T) to be the Euler
tour of T in which we only keep the first occurrence of each node. Or equivalently, E(T)
is the sequence produced by the following depth-first search: Initially let the sequence be
empty. When we perform a depth-first search on T , each time we visit a node for the first
time, we add it to the end of our sequence. In the end, this sequence equals E(T).

I Observation 5. Suppose v is a node on T . All nodes within the subtree of v form a
continuous interval in E(T).

For the subtree of v on T , we denote its corresponding interval by [lT (v), rT (v)]. Here
lT (v) is the position of v in E(T), and rT (v) is the position of the last node that belongs to
the subtree of v in E(T).

Top Tree

A dynamic forest is a set of trees over disjoint sets of nodes that supports dynamic edge
connection and deletion. Top tree [3] is a useful data structure for maintaining information
in a dynamic forest. k-th ancestor of node u is the ancestor which is higher than u by k

edges. When k = 1, it is the parent of u.

I Lemma 6 ([3]). Top tree supports the following operations in Õ(1) time:
1. connect(u, v) : Add an edge connecting nodes u and v that belong to different trees.
2. delete(u, v) : Delete the edge connecting nodes u and v.
3. lca(u, v) : Return the least common ancestor of u and v.
4. ancestor(u, k) : Return the k-th ancestor of u.

ICALP 2020

105:6 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

Splay tree

Splay tree [35] is a classical binary search tree maintaining a dynamic sequence. Each element
in the sequence has two attributes, its key and value. The elements in a dynamic sequence are
arranged in the increasing order of their keys. While keys specify the order of the elements,
values are the information related to our queries.

I Lemma 7. Let K be an ordered set, and let G = (S, +) be a semigroup. Splay tree
maintains n nodes each with its key and value, supporting the following operations:
1. Insert(k, v) : Insert a new node with key k ∈ K and value v ∈ S.
2. Delete(k) : Delete the elements with key k ∈ K.
3. Split(k) : Return two splay trees T1, T2. T1 contains all nodes whose keys are smaller

than k, and T2 contains all other nodes. The original splay tree is destroyed after the
operation.

4. Size() : Return the number of nodes in the splay tree.
5. Merge(T1, T2) : Merge two splay trees T1, T2 where all nodes in T1 have smaller keys

than those in T2.
6. Sum(k1, k2) : Suppose the values of nodes with keys k ∈ [k1, k2] are v1, v2, . . . , vt in the

order of increasing keys. Then it returns v1 + v2 + · · ·+ vt.

Suppose the + operation of semigroup G takes Õ(1) time. Then each operation here takes
Õ(1) time.

Specifically, it has the following two applications:
Let S be the set of integers, and let + be addition. We can answer the summation of a
continuous subsequence in Õ(1) time.
Let S be the set of nodes in a static tree, and let a + b be the least common ancestor of a

and b. We can answer the least common ancestor of a continuous subsequence in Õ(1)
time.

Proof. The original paper [35] for splay tree showed how to handle insert, delete, split, and
merge operations when nodes only have keys but no values.

Here at each node, in addition to its key, we also maintain its value and the summation
of all values in its subtree. (Here summation refers to the operation of the semigroup)
This summation can be calculated from the summation of its children by a + operation.
Whenever the children of a node in splay tree changes, we update its summation. Since for
each operation, we only change the children of O(log n) nodes. Update the summation for
them takes O(log n) many + operations only.

To evaluate Sum(k1, k2), we first split the splay tree into three trees T1, T2, T3 using two
splits. T1 contains all nodes with keys smaller than k1. T2 contains all elements with keys in
[k1, k2]. T3 contains all other elements. Then we return the summation maintained at the
root of T2, and merge them back.

For Size() query, we can let the value of each node be one and reduce it to the value
summation query.

For the applications, since LCA operation is associative, (S, +) is a semigroup. The LCA
of two nodes can be answered in Õ(1) time [2]. Thus each operation takes only Õ(1) time,
and we can answer the least common ancestor of a continuous subsequence by Sum(k1, k2).

Similarly, we can answer the summation of a continuous subsequence in Õ(1) time by
Sum(k1, k2). J

H. Wu 105:7

3 Algorithm

In the naïve algorithm, checking whether a cluster c0 is consistent with signature S takes
O(n2) time. To speed it up, the first step is to find a characterization of consistency that
utilizes the tree structure. Here we start with the characterization from the previous Õ(kn1.5)
algorithm [16]. Then we develop it into an improved algorithm.

From this section, we will be using the following notations. T denotes the phylogenetic
tree corresponding to signature S, namely our consensus tree. LCAT (c0) is the least common
ancestor of all species in cluster c0 on consensus tree T , while LCAi(c0) is that on the input
phylogenetic tree Ti. subtree(v) denotes the set of all nodes (both inner nodes and leaves)
within the subtree of v.

3.1 Characterization of consistency
In this subsection, the proof of Lemma 8 and 9 are already known from [16], but for clarity,
we formally state and prove them here.

To utilize the tree structure, we will focus on consensus tree T instead of its signature S.
The cluster c0 is consistent with S if and only if for all nodes u ∈ T , L(u) is consistent with
c0. First, we begin with a lemma that says only those nodes within the subtree of LCAT (c0)
matters.

I Lemma 8 ([16]). For node u ∈ T outside the subtree of LCAT (c0), L(u) is always
consistent with c0.

Proof. For simplicity, we use lca to denote LCAT (c0) here. By the definition of lca, we know
c0 ⊆ L(lca). u 6∈ subtree(lca) implies that L(u) 6⊂ L(lca). Since signature S is consistent,
there are two possibilities, either L(lca) ⊂ L(u) or L(lca) ∩ L(u) = ∅.

L(lca) ⊂ L(u) : Then c0 ⊆ L(lca) ⊂ L(u).
L(lca) ∩ L(u) = ∅ : Then c0 ∩ L(u) ⊆ L(lca) ∩ L(u) = ∅.

In both cases, L(u) is consistent with c0. J

Then we focus on nodes within the subtree of LCAT (c0), more specifically, the children
of LCAT (c0). Following is the characterization.

I Lemma 9 ([16]). Cluster c0 is consistent with the signature S of T if and only if every
child w of LCAT (c0) satisfies one of the following:

L(w) ⊂ c0
L(w) ∩ c0 = ∅

Equivalently, S ∪ {c0} is consistent if and only if∑
child w of LCAT (c0)

L(w)⊂c0

|L(w)| = |c0|

Proof. For simplicity, we use lca to denote LCAT (c0) here. By Lemma 8, we only have to
consider every node u within the subtree of lca. If c0 = L(lca), c0 is consistent with S (since
S ∪ {c0} = S), and all children w satisfies L(w) ⊂ c0. Now we assume c0 6= L(lca) which
implies c0 ⊂ L(lca).

We first prove that this condition is sufficient. For inner node u within the subtree of lca,
if u = lca, we know c0 ⊂ L(u) which means they are consistent. Otherwise, u must belong
to the subtree of a child of lca. Let us call this child w0.

ICALP 2020

105:8 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

By the condition of this lemma, either L(w0) ∩ c0 = ∅ or L(w0) ⊂ c0. If L(w0) ∩ c0 = ∅,
since L(u) ⊆ L(w0), we know L(u) ∩ c0 = ∅. Otherwise L(u) ⊆ L(w0) ⊂ c0. In either case,
L(u) is consistent with c0.

Then we prove the necessity. For every child w of lca, since L(w) has to be consistent
with c0, either one of two conditions in this lemma holds, or c0 ⊂ L(w). If c0 ⊂ L(w), then w

is either lca or a proper ancestor of lca, which contradicts the fact that w is a child of lca. J

3.2 Our Algorithm
Algorithm

We begin with a corollary of the characterization to replace LCAT (c0).

I Corollary 10. c0 is consistent with the signature S of T if and only if, there exists a node
u0 ∈ T , such that c0 ⊆ L(u0), and every child w of u0 satisfies one of the following:

L(w) ⊆ c0
L(w) ∩ c0 = ∅

Equivalently, S ∪ {c0} is consistent if and only if ∃u0 ∈ T such that∑
child w of u0

L(w)⊆c0

|L(w)| = |c0|

Proof. For necessity, let u0 = LCAT (c).
For sufficiency, if u0 = LCAT (c0), it follows from Lemma 9. If u0 6= LCAT (c0), since

c0 ⊆ L(u0), there must be a child w0 of u0 such that c0 ⊆ L(w0). Otherwise, LCAT (c0)
should have been u0. On the other hand, because L(w0) ∩ c0 6= ∅, L(w0) ⊆ c0. Thus
c0 = L(w0). Namely, if u0 6= LCAT (c0), it must be the parent of w0 = LCAT (c0), and
c0 = L(w0). c0 is then consistent with S since L(w0) ∈ S. J

We have the following lemma to help us find such u0.

I Lemma 11. Suppose x is an arbitrary leaf of T such that x ∈ c0. Let u0 be the lowest
ancestor of x that L(u0) * c0. c0 is consistent with the signature S of T if and only if u0
satisfies the conditions in Corollary 10.

Besides, let p be the path from the root to u0. If c0 is consistent with signature S, for
each proper ancestors u of u0, L(u) * c0, and for each proper descendant u of u0 on path p,
L(u) ⊆ c0.

Proof. If c0 is consistent with S, by Corollary 10, there is a node u0 ∈ T satisfying the
conditions. Then by c0 ⊆ L(u0), we know x is in the subtree of u0. In other words, u0 is on
path p.

For each proper ancestor u of u0, c0 ⊆ L(u0) ⊂ L(u). Thus L(u) * c0. Suppose the child
of u0 on path p is w0. Since leaf x ∈ c0 ∩ L(w0), we know L(w0) ⊆ c0 from the conditions in
Corollary 10. For all proper descendants u of u0 on path p, L(u) ⊆ L(w0) ⊆ c0. Thus u0 is
the lowest ancestor of x that L(u0) * c0. J

By Lemma 11, we can perform a binary search on path p to find the lowest ancestor u0
of x that L(u0) * c0. We will show how to check whether L(u) * c0 for an arbitrary node
u ∈ T efficiently in Section 4.

Finally, we discuss how T should change when we add c0.

H. Wu 105:9

I Lemma 12. Suppose S is consistent with c0 and c0 6∈ S. When adding c0 to S and adding
the new node (corresponding to c0) to T , the u0 in Lemma 11 should be the parent of the new
node on T . The children of the new node should be all children w of u0 such that L(w) ⊂ c0.

Proof. Since the leaf x ∈ c0 (in Lemma 11), all inner nodes u with c0 ⊂ L(u) are on path p,
the path from the root to x. Thus by Lemma 11, L(u0) is the smallest set in S that contains
c0. Then the first claim follows from Observation 2. For those children w of u0 such that
L(w) ⊂ c0, c0 becomes the smaller set containing them. Thus they must change their parent.
For other nodes u, such that L(u) ⊂ c0, by the conditions of Corollary 10, u must be within
the subtree of a child of u0. Then that child is a smaller set containing it. Thus their parents
stay unchanged. J

Algorithm 2 Our algorithm to check consistency and update T .

1: Pick an arbitrary species in c0, and x← the corresponding leaf of T
2: Binary search the path from root to x.
3: u0 ← the lowest node u on the path that L(u) * c0

4: sum←
∑

child w of u0,L(w)⊆c0

|L(w)|

5: if sum = |c0| then
6: c0 is consistent with S, and we add it to consensus.
7: We add a new node w′ (corresponding to c0) to T
8: for child w of u0 do
9: if L(w) ⊂ c0 then
10: Move w to be a child of w′

11: Let w′ be a child of u0

Details of our algorithm are presented in Algorithm 2.

I Lemma 13. sum = |c0| at Line 5, Algorithm 2 if and only if c0 is consistent with S.

Proof. If c0 is consistent with S, by Lemma 11 we must find such a node u0. On the other
hand, if c0 is not consistent with S, by Corollary 10, there is no such u0. 1 J

To test whether L(u) ⊆ c0 at Line 3, we need the following lemma. Recall LCAi(c) is
the least common ancestor on tree Ti for cluster c.

I Lemma 14. Suppose c0 = L(v) where v is a node in Ti. For a node u in T , L(u) ⊆ c0 if
and only if LCAi(L(u)) is in the subtree of v.

Proof. If L(u) ⊆ c0 = L(v), every leaf in L(u) is a descendant of v. So LCATi
(L(u)) is in

the subtree of v. (note when c0 = L(u), it is still true since LCAi(L(u)) = v)
Conversely, if LCAi(L(u)) is a descendant of v, since leaves in L(u) are in the subtree of

LCAi(L(u)) on Ti, they are also in the subtree of L(v). Thus L(u) ⊆ L(v) = c0. J

Thus the subset queries at Line 11 of Algorithm 2 are turned into LCA queries on
phylogenetic tree Ti. Also for the summation query at Line 4, L(w) ⊆ c0 if and only if
LCAi(L(w)) is in the subtree of v.

Since Ti is a fixed static tree, finding LCAi(L(w)) is tractable in polylogarithmic time.
Details are presented in the next section.

1 Note if c0 is not consistent with S, u0 may not equal to LCAT (c). In this case, we have to refer back
to Corollary 10 instead of Lemma 9.

ICALP 2020

105:10 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

4 Efficiency

In this section, we will show that our algorithm can be implemented efficiently. There are
two kinds of queries in Algorithm 2:
1. lca(u, i): Given u ∈ T , return LCAi(L(u)) on tree Ti. (At Line 3, to see whether

L(u) ⊆ c0, by Lemma 14, we need to find out LCAi(L(u)))
2. sum(u, v, i): Given u ∈ T and v ∈ Ti, evaluate the summation∑

child w of u
LCAi(L(w)) ∈ subtree(v) on Ti

|L(w)|

(By Lemma 14, it equals the summation sum at Line 4)

After checking consistency, in Line 7 ∼ 11, Algorithm 2, the consensus tree is dynamically
updated. The following update operation is needed:
1. add(u, v, i): Given u ∈ T and v ∈ Ti, add a new node w′ to be a child of u. For all

children w of u such that LCAi(L(w)) is in the subtree of v, move them to be the children
of the new node w′.

4.1 Data Structures

Recall E(T) is the Euler tour of T where we only keep the first occurrence of each node. For
node v ∈ Ti, the subtree of L(v) corresponds to a continuous interval [lTi(v), rTi(v)] in E(Ti).
Let li(v) and ri(v) be the shorthands for lTi

(v) and rTi
(v).

The data structures we use have three components:
1. For each phylogenetic tree Ti, we maintain a top tree T ′i . Thus by Lemma 6, we can

answer the least common ancestor of two nodes in Õ(1) time.
2. For the consensus tree T , we maintain its structure with a top tree T ′. By Lemma 6,

we can answer k-th ancestor query in Õ(1) time. This is for the binary search at Line 3,
Algorithm 2.

3. For each node u ∈ T , we use k splay trees S1, . . . , Sk to maintain all its children w. The
key of child w in the i-th tree is li(LCAi(L(w))), the position of LCAi(L(w)) in E(Ti).
We maintain the following two values for each child w:
|L(w)| : The corresponding operation is integer additions.
LCAi(L(w)) : The corresponding operation is the least common ancestor of two nodes
on Ti.

Thus the splay trees support the following two kinds of queries:
Sum_Size(k1, k2) : return the summation of the first value of each w whose key is in
range [k1, k2].
Sum_LCA(k1, k2) : return the LCA of the second value of each w whose key is in
range [k1, k2].

Here the splay trees can be replaced with any balanced search trees with merge and split
operations.

For each node u ∈ T , we compute LCAi(L(u)) for all i once we add u to our consensus
tree and store these k numbers at node u. Namely, we compute them during the updates,
not the queries.

H. Wu 105:11

4.2 Handle Update
Recall add(u, v, i) requires us to do the following:

add a new node w′ to be a child of u on the consensus tree T
move some children of u to be children of w′

Let the set of all children of u be C and those children need to move be W . par(u)
denotes the parent of u.

Here we use the following idea from [16]:
If |W | ≤ |C|/2, we add a new node w′ to be a child of u. Then we move nodes in W to
be the children of w′ one by one.
If |W | > |C|/2, instead of moving nodes in W , we move nodes in C\W . We disconnect u

from par(u) and connect w′ with par(u). Namely, replace u with w′. Then we make u a
child of w′. For all children of u in C\W , we move them to be the children of w′.

In this way, we need to move at most min{|W |, |C|−|W |} nodes. The details are presented
in Algorithm 3.

Algorithm 3 Handle update add(u, v, i).

1: C ← the set of all children of u

2: W ← {w ∈ C|LCAi(L(w)) ∈ subtree(v) on Ti}
3: if |W | ≤ |C|/2 then
4: Add a new node w′ to be a child of u on Top tree T ′
5: for w ∈W do
6: Cut the edge between w and u on T ′ and connect w with w′

7: Remove w from the splay trees at u. Insert w into splay trees at w′

8: for i ∈ k do
9: Compute LCAi(L(w′))← Sum_LCA(1, n) by query the splay tree Si at node w′

10: else
11: Add a new node w′ to replace u, and make u a child of w′ on Top tree T ′
12: for w ∈ C −W do
13: Cut the edge between w and u on T ′ and connect w with w′

14: Remove w from the splay trees at u. Insert w into splay trees at w′

15: for i ∈ k do
16: LCAi(L(w)) gets the answer we stored at node u before
17: Compute LCAi(L(u))← Sum_LCA(1, n) by query the splay tree Si at node u

I Lemma 15. Each node is moved at most O(log n) times.

Proof. No matter we move children in W or C\W , the set C is eventually divided into two
sets C\W and W after the procedure. Since we always move the nodes in the smaller set,
each time we move a node, the size of the set containing it is at least halved. Or equivalently,
the number of its siblings is at least halved. Since initially the root has n children, every
node is in a set of size n. Each node can be moved at most O(log n) times. J

I Lemma 16. All updates add(u, v, i) take Õ(kn) time in total.

Proof. See Algorithm 3.
At Line 2, we need to implicitly find out the set W and get its size. By Observation 5,

the subtree of v forms a continuous interval in E(Ti). Then the size of W is just the number
of nodes with keys within [li(v), ri(v)] in splay tree Si. We can split this part out from Si

into a splay tree S′. The size of S′ is just the size of W .

ICALP 2020

105:12 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

Then at Line 6, 7, 13, 14, each time we move a node, by Lemma 6 and Lemma 7, it takes
Õ(k) time. (The bottleneck is to delete and insert nodes at all k splay trees) By Lemma 15,
each node is moved at most O(log n) times. Since the consensus tree has at most n nodes in
the end, in total this part takes Õ(kn) time.

At Line 9, and 17, we need to query k splay trees for each node inserted to the consensus
tree. By Lemma 7, this takes Õ(k) time for each node inserted. Thus in total, we need Õ(kn)
time. J

4.3 Handle Queries
I Lemma 17. The queries lca(u, i) and sum(u, v, i) can be answered in Õ(1) time.

Proof. For query lca(u, i), we return the LCAi(L(w)) we computed at Line 17, Algorithm 3
when adding u.

For sum(u, v, i), by Observation 5, all children w that LCAi(L(w)) ∈ subtree(v) on Ti

are in a continuous interval of E(Ti), namely [li(v), ri(v)]. To answer sum(u, v, i), we perform
Sum(li(v), ri(v)) on splay tree Si for the second value, namely |L(w)|, and we return the
summation to be the answer. J

4.4 Time complexity
I Theorem 18. Greedy consensus tree of k phylogenetic trees for n species can be constructed
in Õ(kn) time.

Proof. Recall the construction of greedy consensus tree contains two phases:
1. Count the frequency f(c) of clusters and sort them. (Line 1 ∼ 3 of Algorithm 1)
2. Repeatedly run the greedy procedure. (Line 4 ∼ 7 of Algorithm 1)

By Lemma 4, we can get the identifier of each cluster and handle the first phase in Õ(kn)
time.

To handle the second phase, we run our Algorithm 2.
For the binary search at Line 3, by Lemma 6, we can randomly access the path by
k-th ancestor query in Õ(1) time. By Lemma 14 and Lemma 17, we can check whether
L(u) ⊆ c0 in Õ(1) time.
For the summation at Line 4, by Lemma 17, can also be evaluated in Õ(1) time.

Thus for each of the kn clusters, checking consistency takes Õ(1) time. Then it takes
Õ(kn) time in total.

For Line 7 ∼ 11 of Algorithm 2, we run Algorithm 3. By Lemma 3, this part takes Õ(kn)
time in total.

Thus our algorithm takes Õ(kn) time. J

References
1 Edward N Adams III. Consensus techniques and the comparison of taxonomic trees. Systematic

Biology, 21(4):390–397, 1972.
2 Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. On finding lowest common ancestors

in trees. SIAM Journal on computing, 5(1):115–132, 1976.
3 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. Acm Transactions on Algorithms (talg),
1(2):243–264, 2005.

H. Wu 105:13

4 Nina Amenta, Frederick Clarke, and Katherine St John. A linear-time majority tree algorithm.
In International Workshop on Algorithms in Bioinformatics, pages 216–227. Springer, 2003.

5 Amihood Amir and Dmitry Keselman. Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM Journal on Computing, 26(6):1656–1669, 1997.

6 Md Shamsuzzoha Bayzid, Siavash Mirarab, Bastien Boussau, and Tandy Warnow. Weighted
statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. PLoS
One, 10(6):e0129183, 2015.

7 Md Shamsuzzoha Bayzid and Tandy Warnow. Naive binning improves phylogenomic analyses.
Bioinformatics, 29(18):2277–2284, 2013.

8 Kåre Bremer. Combinable component consensus. Cladistics, 6(4):369–372, 1990.
9 David Bryant. A classification of consensus methods for phylogenetics. DIMACS series in

discrete mathematics and theoretical computer science, 61:163–184, 2003.
10 William HE Day. Optimal algorithms for comparing trees with labeled leaves. Journal of

classification, 2(1):7–28, 1985.
11 James H Degnan, Michael DeGiorgio, David Bryant, and Noah A Rosenberg. Properties of

consensus methods for inferring species trees from gene trees. Systematic Biology, 58(1):35–54,
2009.

12 Martin Farach, Teresa M Przytycka, and Mikkel Thorup. Computing the agreement of trees
with bounded degrees. In European Symposium on Algorithms, pages 381–393. Springer, 1995.

13 Martin Farach and Mikkel Thorup. Optimal evolutionary tree comparison by sparse dynamic
programming. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 770–779. IEEE, 1994.

14 James S Farris. On comparing the shapes of taxonomic trees. Systematic Zoology, 22(1):50–54,
1973.

15 J Felsenstein. Phylip version 3.6. Software package, Department of Genome Sciences, University
of Washington, Seattle, USA, 2005.

16 Pawel Gawrychowski, Gad M. Landau, Wing-Kin Sung, and Oren Weimann. A faster
construction of greedy consensus trees. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.63.

17 Jotun Hein, Tao Jiang, Lusheng Wang, and Kaizhong Zhang. On the complexity of comparing
evolutionary trees. In Annual Symposium on Combinatorial Pattern Matching, pages 177–190.
Springer, 1995.

18 Monika Rauch Henzinger, Valerie King, and Tandy Warnow. Constructing a tree from
homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica,
24(1):1–13, 1999.

19 Jesper Jansson, Zhaoxian Li, and Wing-Kin Sung. On finding the adams consensus tree.
Information and Computation, 256:334–347, 2017.

20 Jesper Jansson, Ramesh Rajaby, and Wing-Kin Sung. Minimal phylogenetic supertrees and
local consensus trees. AIMS Medical Science, 5(2):181, 2018.

21 Jesper Jansson, Chuanqi Shen, and Wing-Kin Sung. Algorithms for the majority rule (+)
consensus tree and the frequency difference consensus tree. In International Workshop on
Algorithms in Bioinformatics, pages 141–155. Springer, 2013.

22 Jesper Jansson, Chuanqi Shen, and Wing-Kin Sung. Improved algorithms for constructing
consensus trees. Journal of the ACM (JACM), 63(3):28, 2016.

23 Jesper Jansson, Wing-Kin Sung, Hoa Vu, and Siu-Ming Yiu. Faster algorithms for computing
the r* consensus tree. Algorithmica, 76(4):1224–1244, 2016.

24 Erich D Jarvis, Siavash Mirarab, Andre J Aberer, Bo Li, Peter Houde, Cai Li, Simon YW Ho,
Brant C Faircloth, Benoit Nabholz, Jason T Howard, et al. Whole-genome analyses resolve
early branches in the tree of life of modern birds. Science, 346(6215):1320–1331, 2014.

ICALP 2020

https://doi.org/10.4230/LIPIcs.ICALP.2018.63

105:14 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

25 Sampath Kannan, Tandy Warnow, and Shibu Yooseph. Computing the local consensus of
trees. SIAM Journal on Computing, 27(6):1695–1724, 1998.

26 Liang Liu, Lili Yu, and Scott V Edwards. A maximum pseudo-likelihood approach for
estimating species trees under the coalescent model. BMC evolutionary biology, 10(1):302,
2010.

27 Liang Liu, Lili Yu, Laura Kubatko, Dennis K Pearl, and Scott V Edwards. Coalescent methods
for estimating phylogenetic trees. Molecular Phylogenetics and Evolution, 53(1):320–328, 2009.

28 Timothy Margush and Fred R McMorris. Consensus n-trees. Bulletin of Mathematical Biology,
43(2):239–244, 1981.

29 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences
under equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

30 Siavash Mirarab, Md Shamsuzzoha Bayzid, and Tandy Warnow. Evaluating summary methods
for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic
Biology, 65(3):366–380, 2014.

31 James B Pease, David C Haak, Matthew W Hahn, and Leonie C Moyle. Phylogenomics reveals
three sources of adaptive variation during a rapid radiation. PLoS Biology, 14(2):e1002379,
2016.

32 Fredrik Ronquist and John P Huelsenbeck. Mrbayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics, 19(12):1572–1574, 2003.

33 Leonidas Salichos and Antonis Rokas. Inferring ancient divergences requires genes with strong
phylogenetic signals. Nature, 497(7449):327, 2013.

34 Leonidas Salichos, Alexandros Stamatakis, and Antonis Rokas. Novel information theory-
based measures for quantifying incongruence among phylogenetic trees. Molecular Biology
and Evolution, 31(5):1261–1271, 2014.

35 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985.

36 Jordan V Smith, Edward L Braun, and Rebecca T Kimball. Ratite nonmonophyly: independent
evidence from 40 novel loci. Systematic Biology, 62(1):35–49, 2012.

37 Alexandros Stamatakis. Raxml version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics, 30(9):1312–1313, 2014.

38 Alexandros Stamatakis, Paul Hoover, and Jacques Rougemont. A rapid bootstrap algorithm
for the raxml web servers. Systematic biology, 57(5):758–771, 2008.

39 Wing-Kin Sung. Greedy consensus tree and maximum greedy consensus tree problems. In
International Workshop on Algorithms and Computation, pages 305–316. Springer, 2019.

40 DL Swofford. Paup*, version 4.0. software package, 2003.

	Introduction
	Preliminaries
	Phylogenetic Tree
	Greedy Consensus Tree
	Data Structures

	Algorithm
	Characterization of consistency
	Our Algorithm

	Efficiency
	Data Structures
	Handle Update
	Handle Queries
	Time complexity

