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Abstract
A marked free monoid morphism is a morphism for which the image of each generator starts
with a different letter, and immersions are the analogous maps in free groups. We show that the
(simultaneous) PCP is decidable for immersions of free groups, and provide an algorithm to compute
bases for the sets, called equalisers, on which the immersions take the same values. We also answer
a question of Stallings about the rank of the equaliser.

Analogous results are proven for marked morphisms of free monoids.
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1 Introduction

In this paper we prove results about the classical Post Correspondence Problem (PCPFM),
which we state in terms of equalisers of free monoid morphisms, and the analogue problem
PCPFG for free groups ([5], [19]), and we describe the solutions to PCPFM and PCPFG
for certain classes of morphisms. While the classical PCPFM is famously undecidable for
arbitrary maps of free monoids [21] (see also the survey [12] and the recent result of Neary
[20]), PCPFG for free groups is an important open question [8, Problem 5.1.4]. Additionally,
for both free monoids and free groups there are only few results describing algebraically the
solutions to classes of instances known to have decidable PCPFM or PCPFG. Our results
apply to marked morphisms in the monoid case, and to their counterparts in free groups,
called immersions. Marked morphisms are the key tool used in resolving the PCPFM for the
free monoid of rank two [9], and therefore understanding the solutions to the PCPFG for
immersions is an important step towards resolving the PCPFG for the free group of rank two.
The density of marked morphisms and immersions among all the free monoid or group maps
is strictly positive (Section 10), so our results concern a significant proportion of instances.

An instance of the PCPFM is a tuple I = (Σ,∆, g, h), where Σ,∆ are finite alphabets,
Σ∗,∆∗ are the respective free monoids, and g, h : Σ∗ → ∆∗ are morphisms. The equaliser of
g, h is Eq(g, h) = {x ∈ Σ∗ | g(x) = h(x)}. The PCPFM is the decision problem:
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120:2 PCP and Equalisers for Certain Morphisms

PCPFMPCPFMPCPFM: Given I = (Σ,∆, g, h), is the equaliser Eq(g, h) trivial?

Analogously, an instance of the PCPFG is a four-tuple I = (Σ,∆, g, h) with g, h : F (Σ)→
F (∆) morphisms between the free groups F (Σ) and F (∆), and PCPFG is the decision
problem pertaining to the similarly defined Eq(g, h) in free groups.

Beyond PCPFM, in this paper we also consider the Algorithmic Equaliser Problem, denoted
AEPFM (or AEPFG in the group case), which for an instance I = (Σ,∆, g, h) with g, h free
monoid morphisms (or free group morphisms for AEPFG), says:

AEPFMAEPFMAEPFM: Given I = (Σ,∆, g, h), output
(a) a finite basis for Eq(g, h), or
(b) a finite automaton recognising the set Eq(g, h).

If a finite basis or finite automaton for Eq(g, h) does not exist then Part (a) or (b),
respectively, of the problem is insoluble. Note that (a) and (b) are connected: for free groups
these two problems are in fact the same when Eq(g, h) is finitely generated, while for free
monoids (a) implies (b). Part (a) of the AEPFM is known to be soluble when |Σ| = 2 and
one of g or h is non-periodic, and insoluble otherwise [13] [12, Corollary 6].

Sets of morphisms. We are particularly interested in sets S of morphisms (not just two
morphisms f , g) and their equalisers Eq(S) =

⋂
g,h∈S Eq(g, h), and we prove structural

results for arbitrary sets and algorithmic results for finite sets. Our results resolve the
simultaneous PCPFG and PCPFM for immersions and marked morphisms; these problems
take as input a finite set S of maps and ask the same questions about equalisers as in
the classical setting. Analogously, one could further define the “simultaneous AEPFG and
AEPFM”. However, the simultaneous AEPFG is equivalent to the AEPFG, and Part (b) of
the simultaneous AEPFM is equivalent to Part (b) of the AEPFM, as follows. As bases of
intersections of finitely generated subgroups of free groups are computable (and as Parts
(a) and (b) of the AEPFG are equivalent), if the AEPFG is soluble for a class C of maps
then there exists an algorithm with input a finite set S of morphisms from F (Σ) to F (∆),
S ⊆ C, and output a basis for Eq(S). Similarly, automata accepting intersections of regular
languages are computable, and so if Part (b) of the AEPFM is soluble for a class C of maps
then there exists an algorithm with input a finite set S of morphisms from Σ∗ to ∆∗, S ⊆ C,
and output a finite automaton whose language is Eq(S) =

⋂
g,h∈S Eq(g, h).

Main results. A set of words s ⊆ ∆∗ is marked if any two distinct u, v ∈ s start with a
different letter of ∆, which implies |s| 6 |∆|. A free monoid morphism f : Σ∗ → ∆∗ is marked
if the set f(Σ) is marked. An immersion of free groups is a morphism f : F (Σ) → F (∆)
where the set f(Σ ∪ Σ−1) is marked (see Section 3 for equivalent formulations). Halava,
Hirvensalo and de Wolf [11] showed that PCPFM is decidable for marked morphisms; inspired
by their methods we were able to obtain stronger results (Theorem A) for this kind of map,
as well as expand to the world of free groups (Theorem C), where we employ “finite state
automata”-like objects called Stallings graphs.

I Theorem A. If S is a set of marked morphisms from Σ∗ to ∆∗, then there exists a finite
alphabet ΣS and a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S). Moreover,
for S finite, there exists an algorithm with input S and output the marked morphism ψS.

I Corollary B. The simultaneous PCPFM is decidable for marked morphisms of free monoids.
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I Theorem C. If S is a set of immersions from F (Σ) to F (∆), then there exists a finite
alphabet ΣS and an immersion ψS : F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S). Moreover,
when S is finite, there exists an algorithm with input S and output the immersion ψS.

I Corollary D. The simultaneous PCPFG is decidable for immersions of free groups.

The Equaliser Conjecture. Our work was partially motivated by Stallings’ Equaliser Con-
jecture for free groups, which dates from 1984 [22, Problems P1 & 5] (also [7, Problem 6]
[24, Conjecture 8.3] [1, Problem F31]). Here rk(H) stands for the rank, or minimum number
of generators, of a subgroup H:

I Conjecture 1 (The Equalizer Conjecture, 1984). If g, h : F (Σ) → F (∆) are injective
morphisms then rk(Eq(g, h)) 6 |Σ|.

This conjecture has its roots in “fixed subgroups” Fix(φ) of free group endomorphisms
φ : F (Σ)→ F (Σ) (if Σ = ∆ then Fix(φ) = Eq(φ, id)), where Bestvina and Handel proved
that rk(Fix(φ)) 6 |Σ| for φ an automorphism [3], and Imrich and Turner extended this bound
to all endomorphisms [14]. Bergman further extended this bound to all sets of endomorphisms
[2]. Like Bergman’s result, our first corollary of Theorem C considers sets of immersions,
which are injective, and answers Conjecture 1 for immersions.

I Corollary E. If S is a set of immersions from F (Σ) to F (∆) then rk(Eq(S)) 6 |Σ|.

In free monoids, equalisers of injections are free [12, Corollary 4] but they are not
necessarily regular languages (and hence not necessarily finitely generated) [12, Example 6].
In order to understand equalisers Eq(S) of sets of maps we need to understand intersections
in free monoids. Recall that the intersection A∗∩B∗ of two finitely generated free submonoids
of a free monoid Σ∗ is free [23] and one can find a regular expression that represents a basis
of A∗ ∩ B∗ [4]. However, the intersection is not necessarily finitely generated [17]. The
following result is surprising because we have finite generation, even for the intersection
Eq(S) =

⋂
g,h∈S Eq(g, h).

I Corollary F. If S is a set of marked morphisms from Σ∗ to ∆∗ then Eq(S) is a free monoid
with rk(Eq(S)) 6 |Σ|.

The Algorithmic Equaliser Problem. The AEPFG is insoluble in general, as equalisers in
free groups are not necessarily finitely generated [24, Section 3], and is an open problem of
Stallings’ if both maps are injective [22, Problems P3 & 5]. Our next corollary of Theorem
C resolves this open problem for immersions.

I Corollary G. The AEPFG is soluble for immersions of free groups.

The AEPFM is insoluble in general, primarily as equalisers are not necessarily regular
languages [10, Example 4.6]. Even for maps whose equalisers form regular languages, the
problem remains insoluble [18]. Another corollary of Theorem A is the following.

I Corollary H. The AEPFM is soluble for marked morphisms of free monoids.

Outline of the article. In Section 2 we prove Theorem A and its corollaries about free
monoids. The remainder of the paper focuses on free groups, where the central result is
Theorem 18, which is Theorem C for |S| = 2. In Section 3 we reformulate immersions in
terms of Stallings’ graphs, and in Section 4 define the “reduction” I ′ = (Σ′,∆′, g′, h′) of an
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120:4 PCP and Equalisers for Certain Morphisms

instance I = (Σ,∆, g, h) of the AEPFG for immersions. Repeatedly computing reductions is
the key process in our algorithm. In Section 5 we prove the process of reduction decreases the
“prefix complexity” of an instance (so the word “reduction” makes sense), and in Section 6 we
prove Theorem 18, mentioned above. In Section 7 we prove Theorem C and its corollaries. In
Section 9 we give a complexity analysis for both our free monoid and free group algorithms,
and in Section 10 we show that the density of marked morphisms and immersions among all
the free monoid or group maps is strictly positive.

2 Marked morphisms in free monoids

In this section we prove Theorem A and its corollaries. We use the following immediate fact.

I Lemma 2. Marked morphisms of free monoids are injective.

Proof. Let f : Σ∗ → ∆∗ be marked and let x 6= y be nontrivial. One can write x = zax′ and
y = zby′, where a, b ∈ Σ are the first letter where x and y differ. As f is marked, f(a) 6= f(b),
hence f(x) = f(z)f(a)f(x′) 6= f(z)f(b)f(y′) = f(y), so f is injective. J

We may assume Σ ⊆ ∆, as |Σ| 6 |∆| holds whenever f : Σ∗ → ∆∗ is marked.
Consider morphisms g : Σ∗1 → ∆∗ and h : Σ∗2 → ∆∗. The set of non-empty words over an

alphabet Σ is denoted Σ+. For a ∈ ∆, a pair (u, v) ∈ Σ+
1 ×Σ+

2 is an a-block if (i) g(u) = h(v)
starts with a, and (ii) u and v are minimal, that is, the length |g(u)| = |h(v)| is minimal
among all such pairs. If the pair (g, h) has blocks ai = (ui, vi), 1 6 i 6 m, then let Σ′
be the alphabet consisting of these blocks and define g′ : (Σ′)∗ 7→ Σ∗1 by g′(ai) = ui and
h′ : (Σ′)∗ 7→ Σ∗2 by h′(ai) = vi. These maps are computable and, by an identical logic
to [11, Section 2], are seen to be marked. Then gg′ = hh′, and we let k = gg′ = hh′ (so
k : (Σ′)∗ → ∆∗). Since k is the composition of marked morphisms, it is itself marked. We
therefore have the following.

I Lemma 3. If g : Σ∗1 → ∆∗ and h : Σ∗2 → ∆∗ are marked morphisms then the corresponding
maps g′ : Σ′∗ → Σ∗1, h′ : Σ′∗ → Σ∗2 and k : Σ′∗ → ∆∗, k = gg′ = hh′, are marked and are
computable.

The reduction of an instance I = (Σ,∆, g, h) of the marked PCPFM, as defined in [11],
is the instance I ′ := (Σ′,∆, g′, h′) where Σ′ is defined as above, and where g′ and h′ are as
above, but with codomain ∆ (which we may do as Σ ⊆ ∆). We additionally assume that
Σ′ ⊆ Σ; we can do this as |Σ′| 6 |Σ| by Lemma 3.

The following relies on [11, Lemma 1], which we strengthen by replacing the notion of
“equivalence” with that of “strong equivalence”: Two instances I1 and I2 of the PCPFM are
strongly equivalent if their equalisers are isomorphic, which we write as Eq(I1) ∼= Eq(I2).

I Lemma 4. Let I ′ = (Σ′,∆′, g′, h′) be the reduction of I = (Σ,∆, g, h) where g and h are
marked. Then I and I ′ are strongly equivalent, and g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)).

Proof. Firstly, note that g′(Eq(I ′)) 6 Eq(I) [11, Lemma 1, paragraph 2]. From [11, Lemma
1, paragraph 1] it follows that g′(Eq(I ′)) > Eq(I), so g′(Eq(I ′)) = Eq(I) . As g′ is injective,
the map g′|Eq(I′) is an isomorphism. Hence, I and I ′ are strongly equivalent, and, by
symmetry for the h′ map, g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)) as required. J

We can now improve the existing result on the marked PCPFM. We store a morphism
f : Σ∗ → ∆∗ as a list (f(a))a∈Σ.
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I Theorem 5. If I = (Σ,∆, g, h) is an instance of the marked PCPFM then there exists
an alphabet Σg,h and a marked morphism ψg,h : Σ∗g,h → Σ∗ such that Image(ψg,h) = Eq(I).
Moreover, there exists an algorithm with input I and output the marked morphism ψg,h.

Proof. We explain the algorithm, and note at the end that the output is a marked morphism
ψg,h : F (Σg,h)→ F (Σ) with the required properties, and so the result follows.

Begin by making reductions I0, I1, I2, . . ., starting with I0 = I = (Σ,∆, g, h), the input
instance. Then by [11, Section 5, paragraph 1] we will obtain an instance Ij = (Σj ,∆, gj , hj)
such that one of the following will occur:
1. |Σj | = 1.
2. |gj(a)| = 1 = |hj(a)| for all a ∈ Σj .
3. There exists some i < j with Ii = Ij (sequence starts cycling).
Keeping in mind the fact that reductions preserve equalisers (Lemma 4), we obtain in each
case a subset Σg,h (possibly empty) which forms a basis for Eq(Ij): For Case (1), writing
Σj = {a}, the result holds as if g(ai) = h(ai) then g(a)i = h(a)i and so g(a) = h(a) as roots
are unique in a free monoid. For Case (2), suppose gj(x) = hj(x). Then gj and hj agree on
the first letter of x ∈ Σ∗j because the image of each letter has length one, and inductively we
see that they agree on every letter of x. Hence, a subset Σg,h of Σj forms a basis for Eq(Ij).

For Case (3), suppose there is a sequence of reductions beginning and ending at Ij :

Ij → Ij+1 → · · · → Ij+(i−1) → Ij+i = Ij

and write r := j + i. By Lemma 4, Eq(Ij) = gj+1gj+2 . . . gr(Eq(Ir)) = Eq(Ir); thus
gr := gj+1gj+2 . . . gr restricts to an automorphism of Eq(Ij), so gr|Eq(Ij) ∈ Aut(Eq(Ij)). The
automorphism gr is necessarily length-preserving (|gr(w)| = |w| for all w ∈ Eq(Ij)). Consider
x ∈ Eq(Ij) = Eq(Ir). Then gr maps the letters occurring in xr to letters and so gj(= gr) and
hj(= hr) map the letters occuring in x to letters, and it follows that every letter occuring in
x is a solution to Ir = Ij . Hence, a subset Σg,h of Σj forms a basis for Eq(Ij) as required.

Therefore, in all three cases a subset Σg,h of Σj forms a basis for Eq(Ij), and since
Σj is computable, this basis is as well. In order to prove the theorem, it is sufficient
to prove that there is a computable immersion ψg,h : Σ∗g,h → Σ∗. Consider the map
g̃ = g1g2 · · · gj : Σ∗j → Σ∗ (and the analogous h̃). Now, each gi is marked, by Lemma
3, and so g̃ is the composition of marked morphisms and hence is marked itself. Define
ψg,h := g̃|Σ∗

g,h
. This map is computable from g̃, and as Σg,h ⊆ Σj , the map ψg,h is marked. As

Image(ψg,h) = g1g2 . . . gj(Eq(Ij)) = Eq(I), by Lemma 4 and the above, the result follows. J

Theorem 5 together with Lemma 6 give the non-algorithmic part of Theorem A. A
subsemigroup M of a free monoid Σ∗ is marked if it is the image of a marked morphism.

I Lemma 6. If {Mj}j∈J is a set of marked subsemigroups of Σ∗ then the intersection⋂
j∈JMj is marked.

Proof. Firstly, suppose x, y ∈Mj for some j ∈ J . Then there exist two words x0 . . . xl and
y0 . . . yk, with xi, yi ∈ Σ, such that φ(x0 . . . xl) = x and φ(y0 . . . yk) = y, where φ is a marked
morphism. If x and y have a nontrivial common prefix, then because φ is marked we get
x0 = y0, and φ(x0) is a prefix of both x and y, and in particular φ(x0) ∈Mj . By continuing
this argument, if z is a maximal common prefix of x and y, then z ∈Mj .

Now, suppose x, y ∈
⋂
j∈JMj , and suppose they both begin with some letter a ∈ Σ∪Σ−1.

By the above, their maximal common prefix za is contained in each Mj and so is contained
in
⋂
j∈JMj . Therefore, za is a prefix of every element of

⋂
j∈JMj beginning with an a. It

follows that
⋂
j∈JMj is immersed, as required. J
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120:6 PCP and Equalisers for Certain Morphisms

We now prove the algorithmic part of Theorem A (this is independent of Lemma 6).

I Lemma 7. There exists an algorithm with input a finite set of marked morphisms S from
Σ∗ to ∆∗ and output a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S).

Proof. We use induction on |S|. By Theorem 5, the result holds if |S| = 2. Suppose the result
holds for all sets of n marked morphisms, n > 2, and let S be a set of n+1 marked morphisms.
Take elements g, h ∈ S, and write Sg = S \{g}. By hypothesis, we can algorithmically obtain
marked morphisms ψSg

: Σ∗Sg
→ Σ∗ and ψg,h : Σ∗g,h → Σ∗ such that Image(ψSg

) = Eq(Sg)
and Image(ψg,h) = Eq(g, h).

By Lemma 3, there exists a (computable) marked morphism ψS : Σ∗S → Σ∗ such
that Image(ψS) = Image(ψSg ) ∩ Image(ψg,h) (the map ψS corresponds to the map k in
Lemma 3, and ΣS to Σ′). Then, as required: Image(ψS) = Image(ψSg

) ∩ Image(ψg,h) =
Eq(Sg) ∩ Eq(g, h) = Eq(S). J

We now prove Theorem A, which states that the equaliser is the image of a marked map.

Proof of Theorem A. By applying Lemma 6 to Theorem 5, there exists an alphabet ΣS

and a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S), while by Lemma 7 if
S is finite then such a marked morphism can be algorithmically found. J

We now prove Corollary F, which says that Eq(S) is free of rank 6 |Σ|.

Proof of Corollary F. Consider the marked morphism ψS : Σ∗S → Σ∗ given by Theorem A.
By Lemma 2, ψS is injective so Image(ψS) is free. As ψS is marked the map ΣS → Σ taking
each a ∈ ΣS to the initial letter of ψS(a) is an injection, so |ΣS | 6 |Σ| as required. J

We now prove a strong form of the AEPFM for marked morphisms.

I Corollary 8. There exists an algorithm with input a finite set S of marked morphisms from
Σ∗ to ∆∗ and output a basis for Eq(S).

Proof. To algorithmically obtain a basis for Eq (S), first use the algorithm of Theorem A to
obtain the marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S). Then, recalling
that we store ψS as a list (ψS(a))a∈Σ, the required basis is the set of elements in this list, so
the set {ψS(a)}a∈Σ. J

Corollary H, the AEPFM for marked morphisms, follows from Corollary 8 by taking
|S| = 2, while Corollary B, the simultaneous PCPFM, also follows as Eq (S) is trivial if and
only if its basis is empty.

3 Immersions of free groups

We denote the free group with finite generating set Σ by F (Σ), and view it as the set of all
freely reduced words over Σ±1 = Σ ∪ Σ−1, that is, words not containing xx−1 as subwords,
x ∈ Σ±1, together with the operations of concatenation and free reduction (that is, the
removal of any xx−1 that might occur when concatenating two words).

We now begin our study of immersions of free groups, as defined in the introduction. We
first state the characterising lemma, then explain the terms involved before giving the proof.

I Lemma 9. Let g : F (Σ)→ F (∆) be a free group morphism. The following are equivalent.
1. The map g is an immersion of free groups.
2. Every word in the language L(Γg, vg) is freely reduced.
3. For all x, y ∈ Σ∪Σ−1 such that xy 6= 1, the length identity |g(xy)| = |g(x)|+ |g(y)| holds.
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Characterisation (3) is the established definition of Kapovich [15]. Characterisation (2) is
the one we shall work with in this article. It uses “Stallings graphs”, which are essentially
finite state automata that recognise the elements of finitely generated subgroups of free
groups. We define these now, and refer the reader to [16] for background on Stallings graphs.

The (unfolded) Stallings graph Γg of the free group morphism g is the directed graph
formed by taking a bouquet with |Σ| petals attached at a central vertex we call vg, where
each petal consists of a path labeled by g(x) ∈ (∆ ∪∆−1)∗; the elements of ∆−1 occur as
edges traversed backwards and we denote by e−1 the edge e in opposite direction, and by
EΓ±1

g the sets of edges in both directions. A path q = (e1, . . . , en), ei ∈ EΓ±1
g edges, is

reduced if it has no backtracking, that is, e−1
i 6= ei+1 for all 1 6 i < n. We denote by ι(p) the

initial vertex of a path p and τ(p) for the terminal vertex, and call a reduced path p with
ι(p) = u = τ(p) a closed reduced circuit.

We shall view Γg as a finite state automaton (Γg, vg) with start and accept states both
equal to vg. Then the extended language accepted by (Γg, vg) is the set of words labelling
reduced closed circuits at vg in Γg:

L(Γg, vg) = {label(p) | p is a reduced path with ι(p) = u = τ(p)}.

Immersions are precisely those maps g such that every element of L(Γg, vg) is freely reduced;
this corresponds to the automaton (Γg, vg) and the “reversed” automaton (Γg, vg)−1, where
edge directions are reversed, both being deterministic (map g in Figure 1 is not an immersion;
although the automaton (Γg, vg) is deterministic, (Γg, vg)−1 is not). For such maps, L(Γg, vg)
is precisely the image of the map g [16, Proposition 3.8].

Proof of Lemma 9. (1) ⇔ (2). Every element of L(Γg, vg) is freely reduced if and only if
the graph Γg, with base vertex vg, is such that for all e1, e2 ∈ (EΓg)±1 such that both edes
start at vg or both edges end at vg, then e1 and e2 have different labels (so γg(e1) 6= γg(e2)).
This condition on labels is equivalent to g(Σ ∪ Σ−1) being marked, as required.

(1) ⇔ (3). Condition (3) is equivalent to the condition that for all x, y ∈ Σ ∪ Σ−1 such
that xy 6= 1, free cancellation does not happen between g(x) and g(y), which in turn is
equivalent to the condition that for all such x, y the elements g(x−1) and g(y) start with
different letters of ∆ ∪∆−1. This is equivalent to g(Σ ∪Σ−1) being marked, as required. J

I Example 10. Let g : F (a, b)→ F (x, y) be the map defined by g(a) = x−2y and g(b) = y2x.
Then the graph Γg, where the double arrow represents x and the single arrow y, is depicted
in Figure 1. The map g is not an immersion since there are two edges labeled x entering vg
(violating Characterisation (2)). Similarly, g(a) and g(b−1) both start with x−1 (violating
Characterisation (1)) and |g(ba)| = 4 < 6 = |g(a)|+ |g(b)| (violating Characterisation (3)).

Using Characterisation (2), we see that immersions are injective [16, Proposition 3.8]:

I Lemma 11. If g : F (Σ)→ F (∆) is an immersion then it is injective.

4 The reduction of an instance in free groups

By an immersed instance of the PCPFG we mean an instance I = (Σ,∆, g, h) where both g
and h are immersions. In this section we define the “reduction” of an immersed instance of
the PCPFG, which is similar to the reduction in the free monoid case.

Let Γ be a directed, labeled graph and u ∈ V Γ a vertex of Γ. The core graph of Γ at u,
written Coreu(Γ), is the maximal subgraph of Γ containing u but no vertices of degree 1,
except possibly u itself. Note that L(Coreu(Γ), u) = L(Γ, u). For Γ1, Γ2 directed, labeled
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120:8 PCP and Equalisers for Certain Morphisms

Γg =
vg

g(a) g(b)

Figure 1 The graph Γg for the map g : F (a, b) → F (x, y) defined by g(a) = x−2y, g(b) = y2x−1.

graphs, the product graph of Γ1 and Γ2, denoted Γ1 ⊗ Γ2, is the subgraph of Γ1 × Γ2 with
vertex set V Γ1 × V Γ2 and edge set {(e1, e2) | ei ∈ EΓ±1

i , label(e1) = label(e2)}. One may
think of the standard construction of an automaton recognising the intersection of two regular
languages, each given by a finite state automaton Γi with start state si, where the core of
Γ1 ⊗ Γ2 at (s1, s2) is the automaton recognising this intersection.

Core graph of a pair of morphisms. Let g : F (Σ1) → F (∆), h : F (Σ2) → F (∆) be
morphisms. The core graph of the pair (g, h), denoted Core(g, h), is the core graph of Γg⊗Γh
at the vertex vg,h = (vg, vh), so Core(g, h) = Corevg,h

(Γg ⊗ Γh). We shall refer to vg,h as
the central vertex of Core(g, h). Note that Core(g, h) represents the intersection of the two
images [16, Lemma 9.3], in the sense that

L(Core(g, h), vg,h) = Image(g) ∩ Image(h).

Write δg : Core(g, h)→ Γg and δh : Core(g, h)→ Γh for the restriction of Core(g, h) to the g
and h components, respectively, so δg(e1, e2) = e1, etc.

Now, let g, h be immersions. The graph Core(g, h) is a bouquet and every element of
L(Core(g, h), vg,h) is freely reduced [16, Lemma 9.2]. We therefore have free group morphisms
g′ : L(Core(g, h), vg,h)→ L(Γg, vg) and h′ : L(Core(g, h), vg,h)→ L(Γh, vh) induced by the
maps δg, δh, where L(Γg, vg) = F (Σ1) and L(Γh, vh) = F (Σ2). These maps are computable
[16, Corollary 9.5]. Let Σ′ be the alphabet whose elements consist of the petals of Core(g, h).
Then Σ′ generates the free group L(Core(g, h), vg,h), so F (Σ′) = L(Core(g, h), vg,h), and we
see that both g′ and h′ are immersions with g′ : F (Σ′)→ F (Σ1), h′ : F (Σ′)→ F (Σ2). The
map gg′ = hh′, which we shall call k (so k : F (Σ′)→ F (∆)) is the composition of immersions
and hence is itself an immersion. We therefore have the following.

I Lemma 12. If g : F (Σ1) → F (∆) and h : F (Σ2) → F (∆) are immersions then the
corresponding maps g′ : F (Σ′)→ F (Σ1), h′ : F (Σ′)→ F (Σ2) and k : F (Σ′)→ F (∆), where
k = gg′ = hh′, are immersions and are computable.

Reduction. The reduction of an immersed instance I = (Σ,∆, g, h) of the PCPFG is the
instance I ′ = (Σ′,∆, g′, h′) where g′ and h′ are as above, but with codomain ∆ (which we
may do as Σ ⊆ ∆). We additionally assume that Σ′ ⊆ Σ; we can do this as |Σ′| 6 |Σ| by
Lemma 12. As I is immersed, I ′ is also immersed by Lemma 12. In the next section we show
that the name “reduction” makes sense, as it reduces the “prefix complexity” of instances.

I Example 13. Consider the maps g, h : F (a, b, c)→ F (x, y, z) given by g(x) = aba2, g(b) =
y−1, g(c) = zxz and h(a) = x, h(b) = yx2y, h(c) = z.
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Then the graph Core(g, h) is a bouquet with two petals labelled xyx2y and zxz, and
Image(g) ∩ Image(h) = 〈xyx2y, zxz〉. Moreover, g(ab−1) = h(ab) = xyx2y and g(z) =
h(zxz) = zxz. Then we can take Σ′ = {a′, b′}, and the maps given by g′(a′) = ab−1, g(b′) = c

and h′(a′) = ab, h′(b′) = cac are the reduction of (g, h).

We now prove that reduction preserves equalisers. Two instances I1 and I2 of the PCPFG
are strongly equivalent if the equalisers are isomorphic, which we write as Eq(I1) ∼= Eq(I2).

I Lemma 14. Let I ′ = (Σ′,∆′, g′, h′) be the reduction of I = (Σ,∆, g, h) where g and h are
immersions. Then I and I ′ are strongly equivalent, and g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)).

Proof. It is sufficient to prove that g′|Eq(I′) is injective and g′(Eq(I ′)) = Eq(I); that
h′(Eq(I ′)) = Eq(I) follows as g′|Eq(I′) = h′|Eq(I′).

As g′ is an immersion it is injective, by Lemma 11. Therefore, g′|Eq(I′) is injective. To
see that Image(g′|Eq(I′)) 6 Eq(I), suppose x′ ∈ Eq(I ′). Writing x = g′(x′) = h′(x′), we have
g(x) = gg′(x′) = hh′(x′) = h(x) and so x = g′(x′) ∈ Eq(I), as required.

To see that Image(g′|Eq(I′)) > Eq(I), suppose x ∈ Eq(I). Then there exists a path
px ∈ Core(g, h), ι(px) = vg,h = τ(px), such that γgδg(px) = g(x) = h(x) = γhδh(px) [16,
Proposition 9.4], where γg : Γg → Γ∆ is the canonical morphism of directed, labeled graphs
from Γg to the bouquet Γ∆ with ∆ petals. Hence, writing x′ for the element of F (Σ′)
corresponding to px ∈ L(Core(g, h), vg,h), we have that gg′(x′) = g(x) = h(x) = hh′(x). As
h and g are injective, by Lemma 11, we have that g′(x′) = x = h′(x′) as required. J

5 Prefix complexity of immersions in free groups

In this section we associate to an instance I of the PCPFG a certain complexity, called the
“prefix complexity”. We prove that the process of reduction does not increase this complexity,
and that for all n ∈ N there are only finitely many instances with complexity 6 n.

Let I = (Σ,∆, g, h) be an immersive instance of the PCPFG. We define, analogously to
[11, Section 4] (see also [9]), the prefix complexity σ(I) as:

σ(I) = |∪a∈Σ±1{x ∈ F (∆) | x is a proper prefix of g(a)}|
+ |∪a∈Σ±1{x ∈ F (∆) | x is a proper prefix of h(a)}| .

In the maps in Example 13, σ(I) = 10 + 6 = 16, and σ(I ′) = 2 + 4 = 6.
The process of reduction does not increase the prefix complexity, and we prove this by

using the fact that, for any a ∈ Σ±1, the proper prefixes of g(a) and h(a) are in bijection
with the proper initial subpaths of the petals of Γg and Γh, respectively.

I Lemma 15. Let I = (Σ,∆, g, h) be an instance of the PCPFG with g and h immersions,
and let I ′ be the reduction of I. Then σ(I ′) 6 σ(I).

Proof. We write Vg Core(g, h) = {(vg, v) ∈ V Core(g, h) | v ∈ Γh} = δ−1
g (vg) for the set of

vertices in the Core(g, h) whose first component is the central vertex vg of Γg, and similarly
for Vh Core(g, h). Note that Vg Core(g, h) ∩ Vh Core(g, h) = {vg,h}.

By construction, each petal of Γg and Γh corresponds to a letter a ∈ Σ±1, and we
shall denote the petal also by a. Write PΓ for the set of reduced paths in a graph Γ.
Similarly to a ∈ PΓg and a ∈ PΓh, we map write a ∈ P Core(g, h) for the petal in Core(g, h)
corresponding to a ∈ (Σ′)±1. From now on, all paths are assumed to be reduced. Define
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G = ∪a∈Σ±1{p ∈ Γg | p is a proper initial subpath of petal a ∈ Γg},
G′ = ∪a∈(Σ′)±1{p ∈ Core(g, h) | p is a proper initial subpath

of a ∈ Core(g, h) s.t. its end vertex τ(p) ∈ Vg Core(g, h)},

and define H and H ′ analogously. Hence, σ(I) = |G|+|H| and analogously σ(I ′) = |G′|+|H ′|.
For a ∈ (Σ′)±1 let q ∈ G′ be a subpath of a ∈ P Core(g, h). Denote by rq the shortest

subpath of a intersecting q at only one point, their common end vertex (that is, τ(q) =
τ(rq) = q ∩ rq), such that ι(rq) ∈ Vh Core(g, h); the paths q and rq can be seen as “facing”
one another on a. As Vg Core(g, h) ∩ Vh Core(g, h) = {vg,h}, and as q is a proper initial
subpath of a, the projection δh(rq) is a non-trivial path in Γh. Note also that ι(δh(rq)) = vh,
as ι(rq) ∈ Vh Core(g, h), hence there exists some b ∈ Σ±1 such that δh(rq) is a proper initial
subpath of the petal b ∈ Γh. Therefore, δh(rq) ∈ H. Let ξH : G′ → H be the map given by
ξH(q) = δh(rq).

We now prove that ξH is injective. Suppose p, q ∈ G′ are such that ξH(p) = ξH(q), and
let rp and rq be the paths obtained from p and q, respectively, such that ξH(p) = δh(rp)
and ξH(q) = δh(rq). Write ep for the terminal edge of rp, and eq for the terminal edge of
rq, and note that these two edges have the same label and direction as δh(ep) = δh(eq).
Now, δg(τ(ep)) = vg = δg(τ(eq)) as τ(rp), τ(rq) ∈ Vg Core(g, h), and as ep and eq have the
same label and direction we have that δg(ep) = δg(eq). Therefore, both δg and δh agree
on ep and eq, and so as Core(g, h) is a subgraph of Γg × Γh we have that ep = eq. As
Core(g, h) is a bouquet, there exists a unique shortest reduced path s such that ι(s) = vg,h
and τ(s) = s ∩ ep = τ(ep). Hence, p = s = q as required.

Thus ξH is injective, and so |G′| 6 |H|. The same will hold for an analogously defined
function ξH fromH ′ toG, so |H ′| 6 |G|. Therefore, σ(I ′) = |G′|+|H ′| 6 |G|+|H| = σ(I). J

For a fixed number n > 1 there are obviously only finitely many words which have 6 n

proper prefixes, and so the following is clear:

I Lemma 16. There exist only finitely many distinct instances I = (Σ,∆, g, h) of the PCPFG
that satisfy σ(I) 6 n.

As the reduction I ′ of an instance I gives σ(I ′) 6 σ(I), and as |Σ′| ⊆ |Σ|, this means
that the process of iteratively computing reductions will eventually cycle.

6 Solving the Algorithmic Equaliser Problem in free groups (AEPFG)

The algorithm for solving the AEPFG for immersions is analogous to the algorithm for
marked free monoid morphisms in Section 2. Our algorithm starts by making reductions
I0, I1, I2, . . ., beginning with I0 = I, the input instance. By Lemma 16, we will obtain an
instance Ij = (Σj ,∆, gj , hj) such that one of the following will occur:
1. |Σj | = 1.
2. σ(Ij) = 0.
3. there exists some i < j with Ii = Ij (sequence starts cycling).
Keeping in mind the fact that reductions preserve equalisers (Lemma 14), we obtain in each
case a subset Σg,h (possibly empty) which forms a basis for Eq(Ij): For Case (1), writing
Σj = {a}, the result holds as if g(ai) = h(ai) then g(a)i = h(a)i and so g(a) = h(a) as roots are
unique in a free group. For Case (2), σ(Ij) = 0 is equivalent to |g(a)| = |h(a)| = 1 for all a ∈ Σ.
Suppose there exists some non-trivial reduced word x = aε1

i1
· · · aεn

in
such that g(x) = h(x).
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Then as g and h are injective, the words g(ai1)ε1 · · · g(ain)εn and h(ai1)ε1 · · ·h(ain)εn are
freely reduced and hence are the same word, and so g(aij ) = h(aij ). The result then follows
for Case (2). Case (3) has a more involved proof.

I Lemma 17. Let I = (Σ,∆, g, h) be an immersive instance of the PCPFG that starts a cycle
(i.e. starting the reduction process with I eventually gives I again). If Eq(I) is non-trivial
then a subset of Σ forms a basis for Eq(I).

Proof. There is a sequence of reductions beginning and ending at I:

I = I0 → I1 → · · · → Ir−1 → Ir = I

where Ii = (Σi,∆, gi, hi). By Lemma 14, Eq(I0) = g1g2 . . . gr(Eq(Ir)) = Eq(Ir) and so
gr = g1g2 . . . gr restricts to an automorphism of Eq(I0), that is, gr|Eq(I0) ∈ Aut(Eq(I0)). For
hr defined analogously, hr|Eq(I0) ∈ Aut(Eq(I0)). Write Eq(Ik)(n) for the set of words in
Eq(Ik) of length precisely n, and Eq(Ik)(6n) for the set of words in Eq(Ik) of length at most
n. Consider some x0 ∈ Eq(I0) and write xr = gr

−1(x0). Then

x0 = g1g2 . . . gr(xr) = gr(xr),
x0 = h1h2 . . . hr(xr) = hr(xr).

By Lemma 12, both gi and hi are immersions for each i, and so by Characterisation (3)
of Lemma 9 we see that |gi(w)| > |w| for all w ∈ F (Σi). Hence, |x0| > |xr|. Therefore,
for all m > 1 the map gr induces a map gr

(m) : Eq(Ir)(m) → Eq(Ir)(6m). Clearly gr
(1)

is a bijection, and so we inductively see that gr(m) has image Eq(Ir)(m). Therefore, the
automorphism gr of Eq(I0) is length-preserving (|gr(w)| = |w| for all w ∈ Eq(I)), and so
maps the letters occurring in xr to letters. Hence, g0(= gr) and h0(= hr) map the letters
occuring in xr to letters, and it follows that every letter occuring in xr is a solution to I0.
Hence, a subset Σg,h of Σr forms a basis for Eq(Ir). J

We now prove the central theorem of this article, which gives an algorithm to describe
Eq(I) as the image of an immersion. Note that not every subgroup of a free group is the
image of an immersion: for example, if |Σ| = n, then no subgroup of F (Σ) of rank > n is the
image of an immersion. We store a morphism f : F (Σ)→ F (∆) as a list (f(a))a∈Σ.

I Theorem 18. There exist an algorithm with input an immersive instance I = (Σ,∆, g, h) of
the PCPFG and output an immersion ψg,h : F (Σg,h)→ F (Σ) such that Image(ψg,h) = Eq(I).

Proof. Start by making reductions I = I0 → I1 → · · · . By Lemma 16 we will obtain an
instance Ij = (Σj ,∆, gj , hj) satisfying one of the Cases (1)–(3) above, and in each case a
subset Σg,h of Σj forms a basis for Eq(Ij). Since Σj is computable, this basis is as well.

In order to prove the theorem, it is sufficient to prove that there is a computable
immersion ψg,h : F (Σg,h)→ F (Σ). Consider the map g̃ = g1g2 · · · gj : F (Σj)→ F (Σ) (and
the analogous h̃). Now, each gi is an immersion, so g̃ is the composition of immersions and
hence is an immersion. Define ψg,h = g̃|F (Σg,h). This map is computable from g̃, and as
Σg,h ⊆ Σj , the map ψg,h is an immersion. As Image(ψg,h) = g1g2 . . . gj(Eq(Ij)) = Eq(I), by
Lemma 14 and the above, the result follows. J

We now prove Corollary G, which solves the AEPFG for immersions of free groups.

Proof of Corollary G. To algorithmically obtain a basis for Eq(I), first obtain the immersion
ψg,h : F (Σg,h) → F (Σ) given by Theorem 18. Then, recalling that we store ψg,h as a list
(ψg,h(a))a∈Σ, the required basis is the set of elements in this list, so the set {ψg,h(a)}a∈Σ. J
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7 Sets of immersions

We now prove Theorem C and its corollaries. We first give a general result, from which
the non-algorithmic part of Theorem C follows quickly. An immersed subgroup H of a free
group F (Σ) is a subgroup which is the image of an immersion. The proof of Lemma 19 is
fundamentally identical to the proof of Lemma 6, via Characterisation 1 of Lemma 9.

I Lemma 19. If {Hj}j∈J is a set of immersed subgroups of F (Σ) then the intersection⋂
j∈J Hj is immersed.

Proof. Firstly, suppose x, y ∈ Hj for some j ∈ J , and let z be their maximal common prefix.
Then z decomposes uniquely as z1z2 · · · znz′n+1 such that each zk ∈ Hj . As Hj is immersed,
and as z is a maximal common prefix of x and y, we have that z ∈ Hj .

Now, suppose x, y ∈
⋂
j∈J Hj , and suppose they both begin with some letter a ∈ Σ∪Σ−1.

By the above, their maximal common prefix za is contained in each Hj and so is contained
in
⋂
j∈J Hj . Therefore, za is a prefix of every element of

⋂
j∈J Hj beginning with an a. It

follows that
⋂
j∈J Hj is immersed, as required. J

The following lemma corresponds to the algorithmic part of Theorem C. Similar to the
above, the proof of the lemma is fundamentally identical to the proof of Lemma 7.

I Lemma 20. There exists an algorithm with input a finite set of immersions S from F (Σ)
to F (∆) and output an immersion ψS : F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S).

Proof. We proceed by inducting on |S|. By Theorem 18, the result holds if |S| = 2.
Suppose the result holds for all sets of n immersions, n > 2, and let S be a set of n + 1
immersions. Take elements g, h ∈ S, and write Sg = S \ {g}. By hypothesis, we can
algorithmically obtain immersions ψSg

: F (ΣSg
)→ F (Σ) and ψg,h : F (Σg,h)→ F (Σ) such

that Image(ψSg ) = Eq(Sg) and Image(ψg,h) = Eq(g, h).
By Lemma 12, there exists a (computable) immersion ψS : F (ΣS) → F (Σ) such that

Image(ψS) = Image(ψSg
)∩ Image(ψg,h) (the map ψS corresponds to the map k in the lemma,

and ΣS to Σ′). Then we have the required equality:

Image(ψS) = Image(ψSg
) ∩ Image(ψg,h)

= Eq(Sg) ∩ Eq(g, h)
= Eq(S). J

We now prove Theorem C, which states that the equaliser is the image of a computable
immersion.

Proof of Theorem C. By Lemma 19, there exists an alphabet ΣS and an immersion ψS :
F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S), while by Lemma 20 if S is finite then such
an immersion can be algorithmically found. J

We now prove Corollary D, which solves the simultaneous PCPFG for immersions.

Proof of Corollary D. First find a basis for Eq(I): obtain the immersion ψg,h : F (Σg,h)→
F (Σ) given by Theorem C. Then, recalling that we store ψg,h as a list (ψg,h(a))a∈Σ, the
required basis is the set of elements in this list, so the set {ψg,h(a)}a∈Σ. Then Eq(S) is
trivial if and only if this basis is empty. J

Finally, we prove Corollary E, which says that Eq(S) is of rank 6 |Σ|.
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Proof of Corollary E. Consider the immersion ψg,h : F (Σg,h)→ F (Σ) given by Theorem C.
As Image(ψg,h) = Eq(S) we have that rk(Eq(S)) 6 |Σg,h|, while as ψg,h is an immersion we
have that |Σg,h| 6 |Σ|, and the result follows. J

8 Algorithm to compute the equaliser

Theorems A and C produce the equaliser of a set S of morphisms as the image of a computable
map ψS . For S = {g, h}, the structure of the algorithm that gives ψS (as a list of elements
representing the images of the generators) is given below. The values for M in step 3
correspond to the number of instances of complexity 6 σ(I), as explained in Section 9.

Algorithm 1 Structure of the algorithm that gives ψS .

1. Input I = (Σ,∆, g, h).
2. Set c =; 0, i := 0, I0 := I

3. Set M := (|∆|+ 1)2|Σ|(σ(I)+1) (monoids) or M := (2|∆|)2|Σ|(σ(I)+1) (groups)
4. i := i+ 1
5. Reduce instance Ii−1 to Ii (as in Sections 2 and 4); store Ii in memory
6. If Ii has source alphabet of size 1 or σ = 0 then:

a. Compute a basis B for Eq(Ii)
b. Print composition(B, i) (see below) and terminate.

7. If Ii is simpler than Ii−1 (smaller source alphabet or σ) then set c = 0 and goto (4)
8. If c > M then there exists a cycle which starts with Ii.

a. Compute a basis B for Eq(Ii)
b. Print composition(B, i) and terminate.

Procedure composition(B, i) computes the composition of a map, stored as a list B,
with the maps obtained in the reduction process, indexed from i downwards.

Algorithm 2 composition(B, i).

1. Set B := gi(B), where gi is loaded from memory
2. i := i− 1
3. If i > 0, goto (1); else, output B.

9 Complexity analysis

The size of an instance I = (Σ,∆, S), S a set of morphisms, is |Σ|+ |∆|+
∑
g∈S

∑
a∈Σ±1 |g(a)|.

The algorithm underlying Theorem A can be run with O(2n) space, where n is the size of the
input instance I, which gives a time bound of O(22n). The space grows exponentially, unlike
in [11], because the algorithm computes instances that must each be stored (as the immersion
ψg,h is their composition; this corresponds to the function composition(B, i), above). To
obtain this space complexity, first suppose |S| = 2 (so consider the function pairs(g, h),
above). There are at most (|∆|+ 1)2|Σ|(σ(I)+1) instances Ij with σ(Ij) 6 σ(I) [11, Proof of
Lemma 3], which is O(2n). Every other procedure requires asymptotically less space, and
hence if |S| = 2 we require O(2n) space. For S = {g1, . . . , gk}, note that we only need to
compute the immersions corresponding to Eq(gi, gi+1) for 1 6 i < k (as these intersect to
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give Eq(S)), and these can all be stored in (k − 1) × O(2n) = O(2n) space. Intersection
corresponds to reduction, and reduction can be done in PSPACE [11, Section 6]. Hence, the
algorithm can be run in O(2n) space.

Similarly, the algorithm underlying Theorem C runs in O(2n) space, where n is the input
size. The main difference to the above is that there are O(2n) instances Ij with σ(Ij) 6 σ(I).
To see this, write m := σ(I) and d := |∆|. If Ij = (Σj ,∆j , gj , hj) is such that σ(Ij) 6 m

then |g(a)| 6 m + 1 for all a ∈ Σ±1
j , as g(a) has at most m proper prefixes, and similarly

|h(a)| 6 m+ 1. There are 2d(2d− 1)m freely reduced words of length m+ 1 in F (Σj), and
so (by using the empty word) we see that there are at most (2d)m+1 freely reduced words
of length at most m+ 1. As each list of 2|Σj | words defines an instance, there are at most
(2d)2|Σj |(m+1) 6 (2d)2|Σ|(m+1) instances that satisfy σ(I) 6 m. This is O(2n) as required.

10 The density of marked morphisms and immersions

Here we show that immersions and marked morphisms are not a negligible (i.e. density zero)
subset of the entire set of free group and free monoid morphisms, respectively, but represent
a strictly positive proportion of those.

Suppose Σ = {a1, . . . , ak}, and k = |Σ| > |∆| = m. A morphism in a free monoid or free
group, φ : Σ∗ → ∆∗ or φ : F (Σ)→ F (∆), is uniquely determined by (φ(a1), . . . , φ(ak)).

We start with the monoid case. There are mn words of length n in ∆∗, and
∑

16i6nm
i ∼

cmn words of length 6 n, where c = m
m−1 and we write an ∼ bn for limn→∞

an

bn
= 1. If αn is

the number of morphisms from Σ∗ to ∆∗ with images of length at most n, then αn ∼ (cmn)k.
Now let βn be the number of marked morphisms from Σ∗ to ∆∗ with images of length at
most n. For a marked morphism φ, each word in the list (φ(a1), . . . , φ(ak)) must start with
a different letter, followed by any word of length 6 n− 1. Since there are

(
m
k

)
k! options for

the first letters, βn ∼
(
m
k

)
k!(cmn−1)k and we get:

I Proposition 21. If αn and βn are the numbers of morphisms and marked morphisms,
respectively, from Σ∗ to ∆∗, with images of length at most n, then the density of the marked
morphisms among all morphisms is a positive constant:

lim
n→∞

βn
αn

= lim
n→∞

(
m
k

)
k!(cmn−1)k

(cmn)k = m!
mk(m− k)! .

In the free group case the counting is similar, but there are more restrictions on the
images of an immersion: first, all images need to be reduced words, and second, not just their
first letters are constrained, but also their last letters. For some φ, let the set of first letters
of (φ(a1), . . . , φ(ak)) be F ⊂ ∆±1, and the set of inverses of the last letters be L ⊂ ∆±1.
Then φ : F (Σ) 7→ F (∆) is an immersion if all letters in F are distinct, all the letters in L
are distinct, which implies |F | = |L| = k, and furthermore F ∩ L = ∅. An image φ(ai) of
length n has the form φ(ai) = αx1x2 . . . xn−2β, where α ∈ F , β−1 ∈ L, xi ∈ ∆±1, and φ(ai)
is reduced, so x1 6= α−1 and xn−2 6= β−1. Counting such words is more delicate than in the
monoid case, but the asymptotics are similar, due to the following result ([6, Proposition 1]).

I Proposition 22. Let A and B be subsets of ∆±1. The number of elements of length n in
F (∆) that do not start with a letter in A and do not end with a letter in B is equal to

fA,B(n) = (2m− |A|)(2m− |B|)(2m− 1)n−1 + xm+ (−1)n(|A||B| − ym)
2m ,

where x = |A ∩B| − |A−1 ∩B|, y = |A ∩B|+ |A−1 ∩B|, and m = |∆|.
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Let A = {α−1} and B = {β−1}; then since the number of possible φ(ai) of length 6 n

is equal to the number of reduced words of length 6 n− 2 starting with a letter different
from α−1 and ending with a letter different from β−1, this number is

∑
16j6n−2 fA,B(j).

Since |A| = |B| = 1, fA,B(j) is asymptotically (2m− 1)j , and the number of possible φ(ai)
is ∼ c1(2m− 1)n−2, where c1 is a constant depending on m. Thus for fixed sets F and L the
number of immersions φ with images in the ball of radius n is ∼ (c1(2m− 1)n−2)k. Since
there are only finitely many choices for sets F and L of first and last letters, respectively,
and the number of k-tuples of elements in F (∆) of length 6 n is ∼ (c2(2m− 1)n)k for some
constant c2, the number of immersions over the total number of maps F (Σ) 7→ F (∆) is
∼ (c1(2m−1)n−2)k

(c2(2m−1)n)k ; so as n 7→ ∞, this ratio is a positive constant depending on k and m.
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