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Abstract
Logical characterisation of a behavioural equivalence relation precisely specifies the set of formulae
that are preserved and reflected by the relation. Such characterisations have been studied extensively
for exact semantics on discrete models such as bisimulations for labelled transition systems and
Kripke structures, but to a much lesser extent for approximate relations, in particular in the context of
hybrid systems. We present what is to our knowledge the first characterisation result for approximate
notions of hybrid refinement and hybrid conformance involving tolerance thresholds in both time
and value. Since the notion of conformance in this setting is approximate, any characterisation
will unavoidably involve a notion of relaxation, denoting how the specification formulae should
be relaxed in order to hold for the implementation. We also show that an existing relaxation
scheme on Metric Temporal Logic used for preservation results in this setting is not tight enough for
providing a characterisation of neither hybrid conformance nor refinement. The characterisation
result, while interesting in its own right, paves the way to more applied research, as our notion of
hybrid conformance underlies a formal model-based technique for the verification of cyber-physical
systems.
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1 Introduction

Cyber-physical systems integrate discrete aspects of computation, with continuous aspects
of physical phenomena, and asynchronous aspects of communication protocols. To test
cyber-physical systems against their discrete abstractions (also called discrete-event systems),
several notions of conformance have been proposed [13, 28, 31]; we refer to the tutorial volume
edited by Broy et al. [8] for an overview. Logical characterisations of conformance [21, 3]
are of particular importance in this context, because they precisely specify the set of logical
formulae that are preserved and reflected under conformance (we refer to [4] for an accessible
introduction). Such logical characterisations provide a rigorous basis for design trajectories
that involves subsequent conformance test at different layers of abstraction. Moreover, logical
characterisations are stepping stones towards devising the notion of characterising formulae,
which have been used in tools and algorithms for checking conformance [4, 10].

In the context of hybrid systems, i.e., abstractions of CPSs integrating both discrete
and continuous aspects, some notions of conformance have been proposed in the recent
literature [2, 1, 11, 16] (see [22] for an overview). However, not much is known about logical
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characterisation of such notions; to our knowledge, the closest known results to a logical
characterisation of hybrid conformance are the logical preservation results [16, 1] and the
characterisation of metric bisimulation [12] and stochastic bisimulation for systems with
rewards [17] (see the related work section for an in-depth discussion). This paper aims
at bridging this gap and comes up with, to the best of our knowledge, the first logical
characterisation of approximate conformance for hybrid systems [2, 1] in terms of Metric
Temporal Logic [23, 5].

To this end, we study the hybrid conformance notion due to Abbas, Mittelmann and
Fainekos [2, 1], as well as its its associated preorder which we call hybrid refinement (for both
notions, we also study their extensions to non-deterministic hybrid-systems). We provide
logical characterisations for each of theses notions in terms of Metric Temporal Logic (MTL)
and suitable notions of relaxation. We also show that the notions of relaxation proposed in
the preservation result by Abbas, Mittelmann and Fainekos [1] is insufficiently precise to lead
to a logical characterisation. We formulate our results in a general semantic domain, called
generalised timed traces, which encompasses both discretised hybrid systems (as studied
by Abbas, Mittelmann, and Fainekos [1]) and their continuous variants that have not been
given a logical characterisation so far, to the best of our knowledge. Moreover, we study a
generalisation of these results for both bounded and unbounded nondeterministic systems.

The contributions of this paper have both theoretical and practical motivation and
relevance. The theoretical motivation for logical characterisation is that it not only provides
an idea about the logic that is preserved under conformance (subject to relaxation) such
as – in our case – MTL, but also it specifies precise bounds on the relaxation required for
such formulae to hold. The practical motivation is that firstly, it provides designers with
a precisely specified set of properties that carry over from specification to implementation
(while preservations results only provide a rough approximation of such properties) and
moreover, logical characterisation sets the scene for developing algorithms for finding distin-
guishing formulae, and hence, provide an alternative means for checking hybrid conformance.
Logical characterisations have also proven to be a versatile auxiliary tool in e.g. developing
congruence formats for operational semantics [7], as well as providing approximations of
hybrid systems [26].

The rest of this paper is organised as follows. In Section 2, we review the related work
and position our contributions with respect to the state of the art. In Section 3, we define
some preliminary notions, including our semantic domain, the notions of hybrid refinement
and conformance [1] and Metric Temporal Logic [6]. Subsequently in Section 4, we define
appropriate notions of relaxations to characterise these notions using Metric Temporal Logic.
We compare our results to the past preservation results in Section 5, where we show that
the existing relaxation scheme for Metric Temporal Logic are too lax to serve for a logical
characterisation of hybrid refinement and conformance. Namely, we prove there is a class of
non-conforming implementations that do satisfy all relaxed MTL formulae satisfied by the
specification. In Section 6, we conclude the paper, and present the directions of our ongoing
research in this domain.

2 Related work

Logical characterisations of conformance relations allow for identifying conforming systems by
means of the logical formulae satisfied by them. They also facilitate the converse operation,
important from a practical perspective, namely, distinguishing non-conforming systems with
a formula that forms a succinct counterexample.
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Characterisations using modal logic have been studied extensively in the setting of exact
behavioural semantics on discrete models such as labelled transition systems [21, 30]. In this
context, characterisations use direct comparison i.e. inclusion of sets of formulae satisfied by
systems in question; distinguishing formulae are those belonging to a set difference of such
sets. Our work differs from this line of work in that it deals with approximate behavioural
semantics and hence, cannot use standard inclusion check between sets of satisfied formulae.

To our knowledge, the first notion of characterisation for approximate behavioural
semantics has been offered in the context of Metric Transition Systems [12] for linear and
branching distances based on Metric Bisimulation [20, 19].

On a general level, our semantic model and conformance relation are different from
those in [12, 20] in that they involve separate time and value dimensions, both of which
can be subject to perturbations. Our choices for the semantic model and the notion of
conformance are motivated by the practical applications of hybrid conformance [2, 1] in
testing cyber-physical systems, e.g., in the automotive- [29] and healthcare domain [27].
Moreover, from a technical perspective, we base our characterisation on a logic with a
qualitative (binary) satisfaction relation, but with quantities embedded in its syntax, namely,
the Metric Temporal Logic (MTL). However, our approach can be easily translated to a
quantitative setting of [12], by defining an evaluation of a formulae as the least degree of
relaxation after applying which the formula is satisfied by a system. Also in this case, the
choice of Metric Temporal Logic [23, 5] (and its concrete instantiation with signal values for
propositions: Signal Temporal Logic [24]) is motivated by its wide-spread use in the hybrid
systems literature and in practice [1, 18, 15].

Prabhakar, Vladimerou, Viswanathan, and Dullerud [26] provide a characterisation
theorem for approximate simulation [19]; the characterisation serves as an auxiliary tool for
developing approximations of hybrid systems with polynomial flows. In terms of semantic
domain and relation under consideration, their characterisation result is strongly related
to [12]. One technical feature which makes that paper somewhat closer in style to ours
than [12] is the use of a relaxation operator (called a shrink of a formula in [26]).

Desharnais, Gupta, Jagadeesan and Panangaden [14] provide an approximate charac-
terisation of probabilistic bisimulation for labelled Markov processes. They do so using
a quantitative extension of Hennessy-Milner logic. This work has led to several follow-
up applications, e.g., to a logical characterisation of differential privacy by Castiglioni,
Chatzikokolakis, and Palamidessi [9]. Gburek and Baier [17] have recently investigated
characterisation of bisimulation for stochastic systems with actions and rewards with two
probabilistic logics: a very expressive APCTL∗, and simpler APCTL◦, that can provide
succinct distinguishing formulae. Unlike their approach [17], our work is set in the context
of standard hybrid systems.

The results that appear closest to ours in terms of underlying models, and conformance
relations that allow for disturbances in both time and space values, are logical preservation
results for hybrid conformance [1] and Skorokhod conformance [16]. Both papers define
syntactical transformations on temporal logics yielding more relaxed formulae; they differ
on the conformance relations and temporal logics investigated. We improve upon them by
providing different relaxation schemes that are proven to be tight, i.e., are precisely sufficient
for a characterisation. Moreover, we generalise their results to semantic models that can
encompass both discrete and continuous behaviour and non-determinism. Our framework of
generalised timed traces subsumes both discrete timed state sequences (TSSs) and continuous
trajectories, e.g., allowing for a comparison of behaviours of different types (such as sampled
discretised behaviour against continuous trajectories).

ICALP 2020
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Figure 1 Examples of (a) continuous and (b) discretised GTTs.

3 Preliminaries

In this section, we define some preliminaries regarding our semantic domain, Metric Temporal
Logic and notions of hybrid conformance and refinement.

Generalised timed traces and hybrid systems. In order for our theory to remain as general
as possible, we define generalised timed traces, a notion that generalises both discrete semantic
models, such as timed state sequences (TSSs) [1], and continuous-time trajectories [16]. A
generalised timed trace is essentially a mapping from a discrete or continuous time domain
to a set of values within some metric space.

I Definition 1. Let (Y, dY) be a metric space. A Y-valued generalised timed trace is a
function µ : T → Y such that T ⊆ R≥0 is the time domain, and in addition 0 ∈ T is the
least element in T . The set of all Y-valued generalised timed traces is denoted by GTT (Y).

Observe that a timed state sequence (TSS) is simply a generalised timed trace with T
being a finite subset of R≥0; moreover, in case T is an interval within R≥0, we obtain a
standard continuous-time trajectory. We could generalise the domain of µ to any totally-
ordered metric space, but we dispense with this generalisation here for the sake of simplicity.
Likewise, the assumption that 0 is the least element of the time domain could be also
dispensed with.

I Example 2. Consider trajectories µ1 and µ2 depicted in Figure 1.(a), where µ1 represents
the specification of a system and µ2 its implementation. The mappings from the subset of
reals in the domain of each trajectory to the value of x at the corresponding point form
real-valued GTTs.

Consider the discretisation of these two trajectories where we sample the trajectories
with a period T and we record whether the value of x at the sampling point is higher than α
(denoted by p .= x > α) or at most α (denoted by ¬p .= x ≤ α). The corresponding mappings
from {0, T, 2T, 3T, 4T} to P = {p,¬p} are discretised GTTs depicted in Figure 1.(b) are
P -valued GTTs.

A hybrid system, defined below, is a mapping from initial conditions and inputs to sets
of generalised (output) traces. We use the notation P(S) and P

FIN
(S) denote, respectively,

a powerset of S, and the powerset of S restricted to the finite subsets.

I Definition 3. Given sets C and I of initial conditions and input space, the set of Y-
valued hybrid systems, denoted by H(C, I,Y) is the set of all functions of the type C ×
I → P(GTT(Y)). In addition, we distinguish the following two classes of hybrid systems:
the class of finitely branching hybrid systems is defined as HFIN (C, I,Y) := {H : C ×
I → PFIN (GTT(Y))}; similarly, the class of deterministic hybrid systems is defined as
HDET (C, I,Y) := {H : C × I → P(GTT (Y)) | ∀c∈C,i∈I |H(c, i)| = 1}.
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Note that we intentionally left the nature of the initial conditions and input space implicit,
as they play no role in the development of this paper. In reality, input conditions are typically
constraints on input signals and the input space is typically a generalised timed trace with
the same domain as the generalised timed trace for output. Also note that we focus mainly
on finitely branching hybrid systems. When the parameters I, C,Y are not relevant or are
clear from the context, we leave them out and refer to the set of hybrid systems with fixed
parameters as H.

3.1 Metric Temporal Logic
Metric Temporal Logic (MTL) [23, 5] is an extension of Linear Temporal Logic [25] with
intervals; the introduction of intervals allows for reasoning about the real-time behaviour of
dynamic systems once the propositions of the logic are interpreted over real-valued signals
[24] (this interpretation of MTL is also called Signal Temporal Logic, or STL in the literature).
MTL serves as an intuitive formalism for reasoning about hybrid systems [24, 1, 18, 15].

We work with the following language MTL+ of MTL formulas in the negation-normal
form

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ

where p ranges over a collection of atomic propositions AP , and I ranges over intervals,
UI denotes the until operator and RI denotes the release operator (both annotated with
interval I).

For the purpose of relaxation, we shall also use the slightly extended language MTL+
ext

that in addition includes p+(ε) and p−(ε) constructs. Intuitively, they denote, respectively,
the expansion- and contraction of the domain of validity of proposition p by ε.

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ | p+(ε) | p−(ε) (ε ∈ R≥0)

I Example 4. To illustrate the intuitive meaning of p+(ε) and p−(ε) consider the predicate
p := x > α in Example 2. p+(ε) relaxes p into x > α− ε; in other words p+(ε) allows for an
error margin of ε when checking p, while p−(ε) shrinks p into x > α+ ε. The latter is helpful
for defining the relaxation of negated propositions.

In order to provide the formal semantics for MTL+, we need two auxiliary definitions of
δ-expansion and δ-contraction. Below, we assume the context of some metric space (Y, dY),
and S ranges over subsets of Y.

E(S, δ) := {x ∈ Y | ∃y ∈ S : dY(x, y) ≤ δ} (δ-expansion)
C(S, δ) := Y \ E(Y \ S, δ) (δ-contraction)

Note that our definitions slightly differ from [1]. In particular, for any y0 ∈ Y, and the
set Bε(y0) = {y ∈ Y |, dY(y, y0) > ε} (complement of an ε-ball of point y0), we have
E(Bε(y0), ε) = {y0} (rather than ∅ which the expansion of [1] would yield).

We also remark that the semantics of MTL+
ext is provided in the context of an interpretation

function O : AP → P(Y). This is a standard approach, similar to e.g. [1], but also to
Signal Temporal Logic [24]. Note that the nature of the interpretation function restricts the
expressive power of the logic, as the propositions are interpreted over the domain of values
only (excluding time domain), which precludes expressing more powerful properties such as
signal tracking (which is possible in Freeze LTL [16]).

ICALP 2020
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I Definition 5. Let µ : T → Y be a generalised timed trace, t ∈ R, and O : AP → P(Y) be
an interpretation mapping for atomic propositions. The semantics of MTL+

ext formulas is
defined as follows:
(µ, t) |= T (µ, t) 6|= F
(µ, t) |= p iff t ∈ T and µ(t) ∈ O(p)
(µ, t) |= ¬p iff t ∈ T and µ(t) /∈ O(p)
(µ, t) |= p+(ε) iff t ∈ T and µ(t) ∈ E(O(p), ε)
(µ, t) |= p−(ε) iff t ∈ T and µ(t) /∈ C(O(p), ε)
(µ, t) |= φ ∧ ψ iff (µ, t) |= φ and (µ, t) |= ψ

(µ, t) |= φ ∨ ψ iff (µ, t) |= φ or (µ, t) |= ψ

(µ, t) |= φUI ψ iff ∃t′ ∈ T . t′ − t ∈ I. (µ, t′) |= ψ

∧∀t′′ ∈ T . t′′ ∈ [t, t′) =⇒ ((µ, t′′) |= φ ∨ (t′′ − t ∈ I ∧ (µ, t′′) |= ψ))
(µ, t) |= ψRI φ iff ∀t′ ∈ T . (t′ − t ∈ I ∧ (µ, t′) 6|= φ) =⇒ (∃t1 ∈ T . t1 ∈ [t, t′) ∧ (µ, t1) |= ψ)

We say that a generalised timed trace µ : T → Y satisfies an MTL+ formula φ, notation
µ |= φ iff (µ, 0) |= φ. The satisfaction relation is lifted to hybrid systems in the standard
manner, i.e., H(c, i) |= φ ⇐⇒ ∀µ ∈ H(c, i). µ |= φ.

In the remainder of this paper, we use the common shorthand notation for eventually
and always, defined as: ♦Iφ := TUI φ �Iφ := FRI φ.

We remark that the semantics of the until operator slightly differs from the standard one
used e.g. for MTL over discrete-time models. There, one simply requires the safety formula
φ to hold in every time point before the “ultimate” formula ψ holds. In order to cater for
dense-time domains where there may be no “earliest” time point satisfying ψ, we require
that in all the preceding time points either φ, or ψ holds. A similar kind of semantics can be
found in [16].

We also remark that the semantics of until operator makes it possible for the “ultimate”
formula ψ to hold before the current state (time point); this is because we allow formulae to
be annotated with arbitrary intervals, in particular those with negative endpoints.

Furthermore, note that the semantics allows for certain “ambiguous” cases where neither
a formula nor its negation (which can be syntactically obtained by an appropriate trans-
formation) is satisfied by a given state. This happens in case of (negated) propositions, and
tuples of the form (µ, t), where t does not belong to the time domain T . For instance, in
case of a generalised timed trace µ : {0, 1, 2, 3} → R corresponding to a small sampling of
a real-valued signal, and proposition pos such that O(pos) = R>0 we have (µ,

√
2) 6|= pos,

and (µ,
√

2) 6|= ¬ pos, regardless of the actual values of µ for the sampling points in the time
domain.

However, if all occurrences of propositions in a formula are guarded by an until or release
operator, the satisfaction status of a formula is never ambiguous – this is because semantics
of those operators refer only to time points within the time domain. Throughout the rest of
the paper, we work with propositions that are guarded with until or release and hence, in
our context, the ambiguity is never an issue in the context of our theory.

3.2 Hybrid Conformance
Next, we provide the definition of hybrid conformance, due to Abbas and Fainekos [2, 1],
in the context of our generalised semantic domain. Intuitively, hybrid conformance allows
for conforming signal to differ up to τ in time and up to ε in the value. In addition to the
“standard” hybrid conformance, which is a symmetric relation on traces, we also define its
one-directional variant which we call hybrid refinement.
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I Definition 6. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. A
trace µ1 is a (τ, ε)-refinement of µ2, notation µ1 vτ,ε µ2, iff:

∀t1 ∈ dom(µ1). ∃t2 ∈ dom(µ2). |t2 − t1| ≤ τ ∧ dY(µ2(t2), µ1(t1)) ≤ ε

In the above definition, µ2 can match any value in µ1 within a sufficiently small time
interval, but can potentially contain some other signal values that cannot be matched by µ1.
We know at least that the “behaviour”of µ1 in terms of signal values does not go beyond
those of µ2 (up to the (τ, ε)-window).

By requiring two traces to be mutually conforming, we obtain the standard notion of
hybrid conformance [2, 1] for individual traces:

I Definition 7. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. µ1
and µ2 are (τ, ε)-close, denoted by µ1 ∼τ,ε µ2, whenever µ1 vτ,ε µ2 and µ2 vτ,ε µ1.

When the precise value of τ and ε is not relevant, we refer to (τ, ε)-refinement, and
(τ, ε)-closeness, as respectively, hybrid refinement, and hybrid conformance. The two notions
can be lifted to hybrid systems in the following manner:

I Definition 8.
1. A system H1 is a (τ, ε)-refinement of H2, notation H1 vτ,ε H2, if for all c ∈ C and i ∈ I,

it holds that:

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 vτ,ε µ2

2. Two hybrid systems H1, H2 are (τ, ε)-close, denoted by H1 ∼τ,ε H2, if and only if for all
c ∈ C and i ∈ I, it holds that

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 ∼τ,ε µ2

∀µ2 ∈ H2(c, i). ∃µ1 ∈ H1(c, i). µ1 ∼τ,ε µ2

4 Logical Characterisation of Hybrid Refinement and Hybrid
Conformance

4.1 Logical Characterisation via Relaxation
Logical characterisation of a relation provides means to uniquely identify classes of related
systems by sets of formulae in a certain logic. In case of non-exact relations involving some
tolerance thresholds for disturbances, such as hybrid conformance or refinement, one cannot
directly compare sets of formulae satisfied by systems in question.

Our approach to characterisation involves the notion of relaxation of logical formulae,
that has been used in the context of hybrid systems [1, 16, 26]. It involves a syntactical
transformation of a formula to a weaker one, which is supposed to be also satisfied by at
least one trace of a conforming system.

For the purpose of logical characterisation, we introduce the following relation.

I Definition 9. We say that a system potentially exhibits property φ, notation H(c, i) |=∃ φ,
whenever there exists µ ∈ H(c, i) such that µ |= φ.

The relation |=∃ can be seen as a variant of satisfaction relation for nondeterministic
systems that has existential, rather than universal interpretation, the latter being the
traditional interpretation in LTL literature. This alternative view on satisfaction is similar

ICALP 2020
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to one that is used in the context of Hennessy-Milner logic and its variations for behavioural
models [21, 30], where a logical formula represents a (potentially) observable behaviour of a
system. This approach is more suitable for the purpose of logical chracterisation.

Assume a logic (a collection of formulae) L and a notion of relaxation rlx : L → L. Our
notion of characterisation can now be defined as follows

I Definition 10. A logic L and a notion of relaxation rlx : L → L characterise a relation
R ⊆ H×H if and only if, for any two systems H and H ′ we have:

H RH ′ ⇐⇒ ∀φ ∈ L. H |=∃ φ =⇒ H ′ |=∃ rlx(φ)

The implication from left to right is called preservation; in our context, there already
exist some preservation results in the literature [1, 16]; the implication from right to left
(called reflection) has not been studied for hybrid conformance and MTL to the best of our
knowledge.

We remark that for certain classes of “well-behaved” relations, the implication under the
existential interpretation in definition 10, namely H |=∃ φ =⇒ H ′ |=∃ rlx(φ), is equivalent
to a dual one under the more common universal interpretation, i.e. H ′ |= φ =⇒ H |= rlx(φ).
Regarding the two relations considered in our work, only hybrid conformance has this property
on all systems, while hybrid refinement does not. This is because the underlying relation on
individual traces is not symmetric, and moreover allows the presence of considerably different
values on the side of the “larger” trace (as long as it also matches all the required values on
other timepoints within the relevant time interval).

In this section, we define two novel (and in our view, very natural) relaxation operators
on MTL which, as we subsequently show, precisely serve this purpose.

4.2 Characterisation of hybrid refinement
Relaxation operator rlx v

τ,ε. We shall now introduce the first relaxation operator on MTL,
which (as we subsequently prove) gives rise to the characterisation of hybrid refinement.
Syntactically, it has a very simple structure: the actual relaxation is performed on the level
of propositions only.

I Definition 11. Let τ, ε ≥ 0. The relaxation operator rlx vτ,ε : MTL+ → MTL+
ext is defined

as follows:

rlx vτ,ε(T) = T , rlx vτ,ε(F) = F
rlx vτ,ε(p) = ♦[−τ,τ ] p

+(ε) , rlx vτ,ε(¬p) = ♦[−τ,τ ] p
−(ε)

rlx vτ,ε(φ1 ∧ φ2) = rlx vτ,ε(φ1) ∧ rlx vτ,ε(φ2)
rlx vτ,ε(φ1 ∨ φ2) = rlx vτ,ε(φ1) ∨ rlx vτ,ε(φ2)
rlx vτ,ε(φUI ψ) = rlx vτ,ε(φ)UI rlx vτ,ε(ψ)
rlx vτ,ε(φRI ψ) = rlx vτ,ε(φ)RI rlx vτ,ε(ψ)

Note that each relaxation of a formula different than T and F is guarded by either release
or until formulae, and hence its satisfaction status is always unambiguous.

4.2.1 Characterisation of traces
We proceed to show that the introduced relaxation operator can be used to characterise the
(τ, ε)-refinement, starting with the individual timed traces. Note that since the results below
concern arbitrary generalised timed traces, they apply also to the setting with two traces of
different kind, e.g., a discrete TSS against a continuous trajectory.
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4.2.1.1 Preservation modulo relaxation

We start by proving that the satisfaction of MTL+ formulae is preserved by the refinement
relation vτ,ε on timed traces modulo rlx vτ,ε relaxation.

I Proposition 12. Let µ1 : T1 → Y, µ2 : T2 → Y be two Y-valued generalised timed traces,
and φ be an MTL formula. If µ1 vτ,ε µ2, then, for any t ∈ R:

(µ1, t) |= φ =⇒ (µ2, t) |= rlx vτ,ε(φ)

Proof. The proof proceeds by structural induction on the formula φ.

φ = p: since (µ1, t) |= p, we have t ∈ T1 and µ1(t) ∈ O(p). Furthermore, since µ1 vτ,ε µ2,
we know that there is some t′ such that |t′− t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε. We have thus
µ2(t′) ∈ O(p+(ε)), and hence (µ2, t

′) |= p+(ε). Moreover, since |t′ − t| ≤ τ , we obtain
(µ2, t) |= ♦[−τ,τ ] p

+(ε) = rlx vτ,ε(p).
φ = ¬p: since (µ1, t) |= ¬p, we have t ∈ T1 and µ1(t) /∈ O(p). Furthermore, since
µ1 vτ,ε µ2, we know that there is some t′ such that |t′ − t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε.
From the latter and µ1(t) ∈ Y\O(p), we obtain µ2(t′) ∈ E(Y\O(p), ε), which is equivalent
to µ2(t′) /∈ C(O(p), ε). Hence (µ2, t) |= ♦[−τ,τ ] p

−(ε) = rlx vτ,ε(¬p)
φ = φUI ψ: since (µ1, t) |= φUI ψ, there is some t1 ∈ T1 such that t1−t ∈ I and (µ1, t1) |=
ψ, and moreover for any t0 ∈ [t, t1) we have (µ1, t0) |= φ ∨ (µ1, t0) |= ψ. By applying the
inductive hypothesis, we obtain that (µ2, t1) |= rlx vτ,ε(ψ), and for any t0 ∈ [t, t1) we have
(µ2, t0) |= rlx vτ,ε(φ) or (µ2, t0) |= rlx vτ,ε(ψ). We thus have (µ2, t) |= rlx vτ,ε(φ)UI rlx vτ,ε(ψ),
and from the definition of relaxation we immediately obtain (µ2, t) |= rlx vτ,ε(φUI ψ).
φ = φRI ψ: take any t′ ∈ T2 such that t′ − t ∈ I and (µ2, t

′) 6|= rlx vτ,ε(ψ). From the
inductive hypothesis, we have (µ1, t

′) 6|= ψ, and since (µ1, t) |= φRI ψ, we know that
there is some t1 ∈ T1 such that t1 ∈ [t, t′), and (µ1, t1) |= φ. By applying the inductive
hypothesis again, we obtain (µ2, t1) |= rlx vτ,ε(φ). From the statements obtained above we
can now infer that (µ2, t) |= rlx vτ,ε(φRI ψ). J

4.2.1.2 Existence of distinguishing formula

We shall now prove that the converse of the preceding theorem holds as well: whenever a
timed trace is not a (τ, ε)-refinement of another, we can always find an MTL formula that
witnesses this, that is, preservation modulo rlx vτ,ε relaxation operator does not hold.

I Proposition 13. Let µ1 : T1 → Y and µ2 : T2 → Y be two Y-valued timed traces. If
µ1 6vτ,ε µ2, then there is a formula φ ∈ MTL+ such that φ distinguishes µ1 from µ2 modulo
relaxation rlx vτ,ε, that is µ1 |= φ ∧ µ2 6|= rlx vτ,ε(φ)

Proof. Suppose that there is some t1 ∈ T1 for which there is no t2 ∈ T2 such that |t2 − t1| ≤
τ and |µ2(t2) − µ1(t1)| ≤ ε. Consider an MTL formula φ = ♦[t1,t1]p, where O(p) =
{µ1(t1)}. Obviously, we have µ1 |= φ, however, the relaxed version of the formula rlx vτ,ε(φ) =
♦[t1,t1]♦[−τ,τ ]p

+(ε) cannot be satisfied by µ2. J

4.2.2 Characterisation of hybrid systems
4.2.2.1 Finitely branching systems

Propositions 12 and 13 provide the characterisation of relation vτ,ε by MTL+ through the
relaxation rlx vτ,ε on individual traces. Based on those results, for hybrid systems that are
finitely branching (i.e. have bounded non-determinism, see definition 3), the characterisation
result for hybrid refinement can be obtained in a straightforward manner.
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I Theorem 14. The logic MTL+, together with the relaxation operator rlx vτ,ε, characterise
the conformance relation vτ,ε on finitely branching hybrid systems. That is, for arbitrary
finitely branching hybrid systems H and H ′, the following statements hold:

H vτ,ε H ′ ⇐⇒ (∀φ ∈ MTL+. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ)

Proof.
(preservation): Take any two hybrid systems H1, H2 such that H1 vτ,ε H2. Take any c ∈
C, i ∈ I. Suppose w.l.o.g. that H1(c, i) |=∃ φ; we need to show that H2(c, i) |=∃ rlx vτ,ε(φ).
From H1(c, i) |=∃ φ we know that there is a µ1 ∈ H1(c, i) such that µ1 |= φ. Moreover,
since H1 vτ,ε H2, there is some µ2 ∈ H2(c, i) such that µ1 vτ,ε µ2. From Proposition 12
we thus obtain µ2 |= rlx vτ,ε(φ), and hence H2(c, i) |=∃ rlx vτ,ε(φ).
(reflection/distinguishing formula): Suppose that H1 6vτ,ε H2. Then for certain c ∈ C, i ∈
I there is some µ1 ∈ H1(c, i) such that for all µj2 ∈ H2(c, i) we have µ1 6vτ,ε µj2. From
Proposition 13 we know that for each such µj2 ∈ H2(c, i) there is a distinguishing formula
φj such that µ1 |= φj and µj2 6|= rlx vτ,ε(φj). Consider a formula Φ =

∧
j:µj2∈H2(c,i) φj . Since

H2(c, i) is a finite set, Φ is a well-formed MTL+formula. We now have H1(c, i) |=∃ Φ,
but since obviously for any j, µj2 6|= rlx vτ,ε(Φ), we also have H2(c, i) 6|=∃ rlx vτ,ε(Φ). Hence Φ
distinguishes H1(c, i) from H2(c, i). J

4.2.2.2 Systems with unbounded non-determinism

In order to provide characterisation for hybrid refinement on systems with infinite branching,
one needs to endow the logic MTL+ with infinite conjunctions and disjunction; the syntax of
such logic, denoted with MTL+

∞, is given below (Ind ranges over arbitrary sets of indices).

φ ::= T | F | p | ¬p |
∧
i∈Ind

φi |
∨
i∈Ind

φi | φUI φ | φRI φ

I Theorem 15. The logic MTL+
∞, together with the relaxation operator rlx vτ,ε, characterise

the conformance relation vτ,ε on arbitrary hybrid systems.

Proof. The proof is nearly the same as the one of Theorem 14, except that while proving the
reflection property, the set of distinguishing formulae for individual traces may be infinite.
However, a disjunction over such a set is now a well-formed MTL+

∞ formula, hence the
construction is valid. J

4.3 Characterisation of hybrid conformance
4.3.1 Relaxation operator rlx ∼

τ,ε

While the relaxation operator rlx vτ,ε introduced in the previous section allows one to preserve
– up to the relevant (τ ,ε)-window – properties of (signal values at) individual timepoints, it
falls short of preserving properties of entire intervals. Therefore, in order to characterise
the standard, symmetric notion of (τ, ε)-closeness, or hybrid conformance, one needs a finer
notion of relaxation.

In what follows, we shall use the following notation: for an interval I, by I<a,b> we denote
the modified interval: I<a,b> := {x ∈ R | ∃xa, xb ∈ I : xa + a ≤ x ∧ x ≤ xb + b}.

Below, we define a relaxation operator rlx ∼τ,ε where:
for propositions not in the scope of a temporal operator, the relaxation is done similarly
as in the rlx vτ,ε operator
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for temporal operators, the interval endpoints are modified (i.e. “shrinked” to relax the
temporal obligations accordingly)
for propositions guarded by a temporal operator, only ε-relaxation of a signal value is
perfomed (the relaxation of timeline has already been handled through interval relaxation)

I Definition 16. Let τ, ε ≥ 0. The relaxation operator rlx ∼τ,ε : MTL+ → MTL+
ext is defined

as follows:
rlx ∼
τ,ε(T) = T , rlx ∼

τ,ε(F) = F
rlx ∼
τ,ε(p) = ♦[−τ,τ ]p

+(ε) , rlx ∼
τ,ε(¬p) = ♦[−τ,τ ]p

−(ε)
rlx ∼
τ,ε(φ1 ∧ φ2) = rlx ∼

τ,ε(φ1) ∧ rlx ∼
τ,ε(φ2)

rlx ∼
τ,ε(φ1 ∨ φ2) = rlx ∼

τ,ε(φ1) ∨ rlx ∼
τ,ε(φ2)

rlx ∼
τ,ε(φUI ψ) =

{
♦[τ,τ ]

(
t-rlx ∼

τ,ε(φ) UI<0,−2τ> (♦[0,2τ ]t-rlx ∼
τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ> t-rlx ∼
τ,ε(ψ) if I<0,−2τ> = ∅

rlx ∼
τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼

τ,ε(φ)) RI<τ,−τ> t-rlx ∼
τ,ε(ψ)

where the auxilliary relaxation t-rlx ∼τ,ε for subformulae guarded by a temporal operator is
defined as follows:

t-rlx ∼
τ,ε(T) = T , t-rlx ∼

τ,ε(F) = F
t-rlx ∼

τ,ε(p) = p+(ε) , t-rlx ∼
τ,ε(¬p) = p−(ε)

t-rlx ∼
τ,ε(φ1 ∧ φ2) = t-rlx ∼

τ,ε(φ1) ∧ t-rlx ∼
τ,ε(φ2)

t-rlx ∼
τ,ε(φ1 ∨ φ2) = t-rlx ∼

τ,ε(φ1) ∨ t-rlx ∼
τ,ε(φ2)

t-rlx ∼
τ,ε(φUI ψ) =

{
♦[τ,τ ]

(
t-rlx ∼

τ,ε(φ) UI<0,−2τ> (♦[0,2τ ]t-rlx ∼
τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ> t-rlx ∼
τ,ε(ψ) if I<0,−2τ> = ∅

t-rlx ∼
τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼

τ,ε(φ)) RI<τ,−τ> t-rlx ∼
τ,ε(ψ)

4.3.2 Characterisation of traces

4.3.2.1 Preservation

Before stating the main preservation property, we prove the key lemma which lists certain
properties of the auxilliary relaxation operator t-rlx ∼τ,ε.

I Lemma 17. Suppose µ1 ∼τ,ε µ2. For any φ ∈ MTL+ we have:
1. µ1, t |= φ =⇒ ∃t′ ∈ [t− τ, t+ τ ]. µ2, t

′ |= t-rlx ∼τ,ε(φ)
2. (∀t ∈ I. µ1, t |= φ) =⇒ (∀t ∈ I<τ,−τ>. µ2, t |= t-rlx ∼τ,ε(φ))
3. if in addition φ is of the form χUI ψ or ψRI χ, then µ1, t |= φ =⇒ µ2, t |= t-rlx ∼τ,ε(φ)

Proof. We proceed by structural induction on φ; for technical reasons, it is convenient to
prove all the properties simultaneously. We focus on three key cases: atomic propositions, as
well as the until and release operators.

φ = p:
1. Suppose µ1, t |= p; from the semantics of MTL+ this means that µ1(t) ∈ O(p). Since

µ1 ∼τ,ε µ2, there is some t′ ∈ [t− τ, t+ τ ] such that dY(µ1(t), µ2(t)′) ≤ ε. From this
and µ1(t) ∈ O(p) we obtain µ2(t′) ∈ E(O(p), ε), and hence µ2, t

′ |= p+(ε) = t-rlx ∼τ,ε(p).
2. Suppose that for all t ∈ I we have µ1, t |= p, that is, for all t ∈ I µ1(t) ∈ O(p).

Take any t2 ∈ I<τ,−τ>. Observe that the “matching” timepoint for µ2 and t2 in µ1
must be in the interval I, i.e. there is some t1 ∈ I such that dY(µ1(t1), µ2(t2)) ≤ ε.
Since t1 ∈ I, we have µ1(t1) ∈ O(p), and hence µ2(t2) ∈ E(O(p, ε)), from which
µ2, t2 |= p+(ε) = t-rlx ∼τ,ε(p) follows.
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φ = χUI ψ: we only need to prove the third statement, as it is stronger than the first
two. Moreover, we consider only the more involved case when I<0,−2τ> 6= ∅.
Suppose µ1, t |= χUI ψ. Then there is some tψ ∈ t+ I such that µ1, tψ |= ψ (note that
since I<0,−2τ> 6= ∅, we have tψ − t ≥ 2τ). From µ1 ∼τ,ε µ2 and applying the inductive
hypothesis on statement 1 of Lemma 17 there is some t′ψ ∈ [tψ − τ, tψ + τ ] such that
µ2, t

′
ψ |= t-rlx ∼τ,ε(ψ). This in particular implies that

(*) µ2, tψ − τ |= ♦[0,2τ ]t-rlx ∼τ,ε(ψ).
From µ1, t |= χUI ψ it further follows that for all t′ ∈ [t, tψ) we have µ1, t

′ |= χ. From
applying the inductive hypothesis on statement 2 of Lemma 17 we therefore have
(**) for all t′ ∈ [t+ τ, tψ − τ) we have µ2, t

′ |= t-rlx ∼τ,ε(χ).
That µ2, t |= ♦[τ,τ ]

(
t-rlx ∼τ,ε(χ)UI<0,−2τ> (♦[0,2τ ]t-rlx ∼τ,ε(ψ))

)
= t-rlx ∼τ,ε(χUI ψ) now follows

immediately from (*) and (**).
φ = ψRI χ: similarly as above, we only prove the third statement. Note that whenever
the interval I is strictly shorter than 2τ , we have I<0,−2τ> = ∅, and the relaxation yields
a formula equivalent to T.
Take any t′¬χ ∈ t + I<τ,−τ> such that µ2, t

′
¬χ 6|= t-rlx ∼τ,ε(χ). Consider the interval

I ∩ [t, t′¬χ + τ ]. There must be some t¬χ ∈ [t′¬χ− τ, t′¬χ + τ ] ⊆ t+ I such that µ1, t¬χ 6|= χ.
Indeed, were it not the case, then from the inductive hypothesis (statement 2), we would
have that for all t′ ∈ [t′¬χ, t′¬χ], t′ |= t-rlx ∼τ,ε(χ), contradicting µ2, t

′
¬χ 6|= t-rlx ∼τ,ε(χ).

From µ1, t |= ψRI χ and µ1, t¬χ 6|= χ, one obtains existence of some tψ ∈ [t, t¬χ) such that
µ1, tψ |= ψ. From the inductive hypothesis (1) we know that µ2, tψ |= ♦[−τ,τ ]t-rlx ∼τ,ε(ψ).
We have thus shown that µ2, t |= (♦[−τ,τ ]t-rlx ∼τ,ε(ψ))RI<τ,−τ> t-rlx ∼τ,ε(χ) = t-rlx ∼τ,ε(ψRI χ)

J

The preservation property is given in the proposition below.

I Proposition 18. µ1 ∼τ,ε µ2 =⇒ ∀φ, t. µ1, t |= φ =⇒ µ2, t |= rlx ∼τ,ε(φ)

Proof. Formally, the proof proceeds by structural induction. However, the key cases of
temporal operators are now immediate corollaries of Lemma 17 (point 3); while for the
remaining cases including base the proof is very straightforward. J

4.3.2.2 Reflection

We proceed to show that for non-conforming traces, one can always find a distinguishing
formula, regardless of the “direction” in which the conformance fails. Since ∼τ,ε is symmetric,
this is equivalent to the statement that if µ1 6∼τ,ε µ2, then one can find both a formula
distinguishing µ1 from µ2, and also one that distinguishes µ2 from µ1.

I Proposition 19. µ1 6∼τ,ε µ2 =⇒ ∃φ. µ1 |= φ ∧ µ2 6|= rlx ∼τ,ε(φ)

Proof. Suppose µ1 6∼τ,ε µ2; we show that there is always a formula that distinguishes µ1
from µ2. We distinguish two cases:

there is some t1 ∈ T1 such that the value µ1(t1) cannot be matched within the (τ, ε)-window
by µ2, that is:

(∗) ∀t′ ∈ T2. |t′ − t1| ≤ τ =⇒ dY(µ2(t′), µ1(t1)) > ε

We use a similar construction as for the relaxation rlx vτ,ε, by defining

ΦDIST := ♦[t1,t1]p

where O(p) = {µ1(t1)}. Then rlx ∼τ,ε(ΦDIST ) = ♦[t1−τ,t1+τ ] p
+(ε). We have µ1 |= ΦDIST ,

but from (*) we clearly have µ2 6|= rlx ∼τ,ε(ΦDIST ).
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there is some t2 ∈ T2 that cannot be matched by µ1, that is: that is:

∀t′ ∈ T1. |t′ − t2| ≤ τ =⇒ dY(µ1(t′), µ2(t2) > ε

we define

ΦDIST := �[t2−τ,t2+τ ]p

where O(p) = {y ∈ Y | dY(y, µ2(t2)) > ε}. Note that p+(ε) = Y \ {µ2(t2)} (at this point
using our definition of expansion operator rather than the one from [1] proves essential).
We have µ1 |= ΦDIST , but on the other hand: rlx ∼τ,ε(ΦDIST ) = (♦[−τ,τ ]F)R[t2,t2] p

+(ε) ≡
�[t2,t2]p

+(ε), and since µ2(t2) /∈ Y \ {µ2(t2)} = p+(ε), we have µ2 6|= rlx ∼τ,ε(ΦDIST ). J

4.3.3 Characterisation of hybrid systems
Characterisation results for hybrid conformance and their proofs share many similarities with
those for hybrid refinement. One fine point worth noting is the proof of reflection property:
when, similarly as in the proof of Theorem 14, we arrive at the case when µ1 6∼τ,ε µj2, we
know from Proposition 19 that for all j there is a formula that distinguishes µ1 from µj2,
regardless of the direction in which the (τ, ε)-matching fails . We therefore have a family
of formulae distinguishing µ1 from µj2 for each j, and hence can construct a distinguishing
formula by taking their conjunction.

In addition, since hybrid conformance is based on a symmetric relation on individual traces,
the characterisation result holds for the standard (universal) interpretation of satisfaction
relation as well.

I Theorem 20. The logic MTL+ [resp. MTL+
∞], together with the relaxation operator rlx ∼τ,ε,

characterise the conformance relation vτ,ε on finitely branching [resp. arbitrary] hybrid
systems. That is, for finitely branching [resp. arbitrary] hybrid systems H and H ′, the
following statements hold:

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ))

Moreover, the characterisation result holds for the universal interpretation of satisfaction
relation as well, that is:

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H ′ |= φ =⇒ H |= rlx vτ,ε(φ))

5 Comparison with an existing relaxation

In this section, we discuss the existing relaxation operator for MTL from the literature due to
Abbas, Mittelmann, and Fainekos [1], which is known to preserve MTL formulae for discrete
samplings (timed-state sequences). We show that their relaxation cannot distinguish between
traces not related by hybrid conformance, and hence is too lax for the purpose of logical
characterisation for either hybrid conformance, or refinement.

5.1 AMF-Relaxation
We recall the relaxation operator from [1], which we call AMF-relaxation (for Abbas,
Mittelmann, and Fainekos). Originally the definition was given on the super-dense time
domain (i.e., a time domain that allows for specifying the ordering of simultaneous events).

ICALP 2020



130:14 Logical Characterisation of Hybrid Conformance

Since the “super-denseness” of the time domain does not have any influence on our study,
we simplify the time domain to a dense time domain (such as non-negative real numbers).
We also adapt the presentation to the generalised timed traces framework.

I Definition 21. Given τ, ε ≥ 0, the relaxation operator []amf
τ,ε : MTL+ → MTL+

ext is defined
as follows:

[T]amf
τ,ε = T , [F]amf

τ,ε = F
[p]amf

τ,ε = p+(ε) , [¬p]amf
τ,ε = p−(ε)

[φ1 ∧ φ2]amf
τ,ε = [φ1]amf

τ,ε ∧ [φ2]amf
τ,ε

[φ1 ∨ φ2]amf
τ,ε = [φ1]amf

τ,ε ∨ [φ2]amf
τ,ε

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )UI<<−2τ,2τ>> (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )RI<<2τ,−2τ>> (♦[0,2τ)[ψ]amf
τ,ε ),

where I<<a,b>> is the relaxation of the bounds of interval I with constants a and b, formally
defined as follows. For a, b ∈ R, let T (a, b) := {[a, b], (a, b], [a, b), (a, b)}; then for any interval
I ∈ T (a, b), I<<c,d>> := (a+ c, b+ d).

Note that the interval relaxation I<<a,b>> differs from I<a,b> in that the former always
yields an open interval, while the latter yields an interval of the same kind as I. For instance
[4, 7]<<−1,1>> = (3, 8), whereas [4, 7]<−1,1> = [3, 8].

It follows from Definition 21 that the relaxation operator []amf
τ,ε applied to until or release

formulae annotated with any interval from T (a, b) produces the same formulae:

I Observation 22. For any I ∈ T (a, b), we have:

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )U(a−2τ,b+2τ) (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )R(a+2τ,b−2τ) (♦[0,2τ)[ψ]amf
τ,ε )

The following preservation result can be found in [1].

I Theorem 23. Let φ ∈ MTL+. Let µ1 : T1 → Y and µ2 : T2 → Y be two discrete GTTs, i.e.
T1, T2 ⊆ PFIN (R≥0). If µ1 ∼τ,ε µ2, then for any t1 ∈ T1 if (µ1, t1) |= φ, then for all t2 ∈ T2
such that |t2 − t1| ≤ τ and |µ2(t2)− µ1(t1)| ≤ ε, we have µ1, t1 |= φ =⇒ µ2, t2 |= [φ]amf

τ,ε .

Observe that the above preservation property is very strong: it holds for any sampling
point in the conforming trace that matches the given point within the (τ, ε)-“window”. This
kind of result comes at a price of having to employ a relaxation operator which yields
considerably weaker formulae, which explains the significant relaxation of intervals in []amf

τ,ε .

5.2 Laxness of AMF-Relaxation
In this section, we prove that the notion of AMF-relaxation is too lax for the purpose
of logical characterisation of hybrid conformance, i.e. there is a class of non-conforming
implementations which preserve AMF-relaxations of all MTL properties satisfied by their
specifications.

Throughout this section, we assume a simple setting where values range over Booleans,
i.e. Y = B = {true, false}. The associated metric on P(B) is defined as d(b1, b2) = 0 if
b1 = b2, and ∞ otherwise.

Recall that we refer to generalised timed traces with a finite time domain as timed state
sequences, or TSSs.

We first explain the gist of our proof by showing one instance of the above-mentioned
family of non-conforming counter-examples.
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I Example 24. Fix τ > 0 and let T be a value very slightly smaller than τ , i.e. T = τ − δ,
where δ << τ . Consider the discretised GTTs presented in Example 2, which we recall here
for the sake of convenience; µ1 holds value true only at T and 2T and µ2 holds value true
at 3T and false, otherwise. The two TSSs can be depicted as follows (white/black dots
represent states that have value, respectively, true / false):

µ1

0 T 2T 3T 4T
µ2

µ1 and µ2 are not (τ, 0)-close, not even (t, 0)-close for any t < 2T . To observe this
note that for instance µ1(T ) cannot be matched by µ2 within (−T, 3T ) since no state in
µ2 has value false in this interval. On the other hand, as we show next, TSSs µ2 satisfies
the AMF-relaxation of all MTL formulae satisfied by µ1 (relaxed by parameters (τ, 0) and
vice versa. Intuitively, this is because the intervals in the until and release formulae are
respectively expanded and compressed by 2τ , allowing for shifts by 2τ in the states of TSS
without affecting the satisfaction of formulae.

In the remainder of this section, we generalise this example and prove this fact for a
broader, infinite class of pairs of TSSs which are not (t, 0)-equivalent for any t < 2τ .

I Definition 25. For a pair of TSSs µA : TA → B and µB : TB → B, we say that µB
is stretched to the right of µA by less than t, if there is some K ∈ N and functions
chunkA : TA → {1, . . . ,K} and chunkB : TB → {1, . . . ,K} such that the following hold:

chunkA and chunkB are surjective and non-decreasing
all states that map to the same chunk number have the same value, i.e. for all k ∈
{1, . . . ,K} and for all tA ∈ TA, tB ∈ TA such that chunkA(tA) = chunkB(tB) = k, we
have µA(tA) = µB(tB)
for any tA ∈ TA, there is some tB ∈ TB such that

(∗) 0 ≤ tB − tA < t ∧ chunkA(tA) = chunkB(tB)

and conversely, for any tB ∈ TB there is some tA ∈ TA such that (*) holds. We shall call
a pair (µA, tA), (µB , tB) satisfying (*) a pair of t-corresponding states.

Note that in the last condition, the inequality in (*) involves the actual difference between
tB and tA, not its absolute value – we allow µB to be shifted only to the right as compared
to µA. The following example illustrates this definition.

I Example 26. Consider the TSSs in Example 24; the TSS µ2 is stretched to the right
of µ1 by less than 2τ , as witnessed by the following functions chunk1 and chunk2:

chunk1(0) = 1 chunk2(t) = 1 for t ∈ {0, T, 2T}
chunk1(t) = 2 for t ∈ {T, 2T} chunk2(3T ) = 2
chunk1(t) = 3 for t ∈ {3T, 4T} chunk2(4T ) = 3

I Example 27. Considering Example 24 and propositions pt and pf such thatO(pt) = {true}
and O(pf ) = {false}; we have (µ2, 0) |= pt U[3T,3T ] pf , and the 2τ -corresponding state (µ1, 0)
satisfies the relaxed formula [pt U[3T,3T ] pf ]amf

τ,0 . The latter statement can be deduced from that
(µ1, 0) satisfies pt U(3T−2τ,3T+2τ) pf , a simpler formula that logically entails [pt U[3T,3T ] pf ]amf

τ,0 .
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The key proposition below states that for 2τ -corresponding states, the satisfaction of all
formulae in MTL+ is preserved modulo relaxation []amf

τ,0 .

I Proposition 28. Suppose µB is stretched to the right of µA by less than 2τ . Then for any
tA ∈ TA, and any tB ∈ TB satisfying

(∗) 0 ≤ tB − tA < 2τ ∧ chunkA(tA) = chunkB(tB)

we have, for all formulae φ ∈ MTL+: (µA, tA) |= φ =⇒ (µB , tB) |= [φ]amf
τ,0 , and (µB , tB) |=

φ =⇒ (µA, tA) |= [φ]amf
τ,0 .

Proof. The proof by structural induction on φ is rather tedious and technical, and omitted
in this version of the paper. J

6 Conclusions and Future Work

In this paper, we have studied the notion of hybrid conformance from the literature, as well
its associated preorder, called hybrid refinement. We have presented a logical characterisation
of both relations in Metric Temporal Logic. Since the notions of refinement and conformance
allow for some deviations (in time and value), the characterisation is expressed in terms of a
relaxation of the set of formulae satisfied by a system. The relaxation operators corresponding
to the two relations differ considerably – while for hybrid refinement it suffices to perform
relaxation on the level of propositions only, characterising hybrid conformance requires
relaxing bounds of intervals in temporal operators. We note that with hybrid conformance
we obtain stronger characterisation result; it holds in particular under both existential and
universal interpretation of the satisfaction relation.

We have also showed that the existing relaxation scheme proposed by Abbas, Fainekos, and
Mittelmann is too lax to serve for a characterisation, i.e., there is a class of non-conforming
systems that do satisfy all relaxations of the specification properties. Hence, we proposed
a tighter notion of relaxation and showed that it is the appropriate notion to provide a
characterisation of hybrid conformance.

Our preservation and characterisation results for hybrid refinement are formulated us-
ing the existential interpretation of the satisfaction relation, while our results for hybrid
conformance hold both for the existential- and universal interpretation of the satisfaction
relation. This is inherent to our notion of hybrid refinement and cannot be remedied in any
straightforward manner, as far as we could investigate. We envisage that there could be
other definitions of hybrid refinement that are well-behaved in this respect and we would like
to study and propose such notions in the future.

As another line of future research, we would also like to investigate the possibility
of characterising Skorokhod conformance with Freeze Temporal Logic and the notion of
relaxation provided by Deshmukh, Majumdar, and Prabhu [16]. Coming up with the notion
of characteristic formulae is another avenue for our future research, which leads to a new
technique for checking hybrid conformance.
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