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between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely
bounded homogeneous structures.
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1 Introduction

1.1 Constraint Satisfaction Problems

The Constraint Satisfaction Problem, or CSP for short, over a relational structure A is
the computational problem of deciding whether a given finite relational structure B in the
signature of A can be homomorphically mapped into A. The structure A is known as the
template or constraint language of the CSP, and the CSP of the particular structure A is
denoted by CSP(A). A host of interesting computational problems can be modelled using
CSPs by choosing an appropriate template. For example, if A is the structure with domain
{0,1} and all binary relations on the set {0, 1}, then CSP(A) is precisely the 2-SAT problem,
and if A is the complete graph on three vertices, then CSP(A) is the 3-colouring problem.
Note that the template A which defines the problem can also be infinite — only the input
structure B is required to be finite in order to obtain a computational problem. Many
well-known computational problems can be modelled, and can in fact only be modelled, using
an infinite template. One example is the CSP of the order of the rational numbers (Q; <),
which is equivalent to the problem of deciding whether a given finite directed graph is acyclic.
The size of the signature of the template A, or in other words the number of its relations,
is however generally required to be finite: otherwise, the encoding of its relational symbols
might influence the computational complexity of CSP(A), so that this complexity is not
well-defined as per the structure A itself. To emphasize the importance of this requirement,
we shall henceforth only call relational structures in a finite signature CSP templates.

The general aim in the study of CSPs is to understand the structural reasons for the
hardness or the tractability of such problems. This has been successfully achieved for CSPs
of structures over a finite domain. As it turns out, every finite template either has, in a
certain precise sense, as little symmetry as the 3-colouring problem above, in which case its
CSP is NP-complete; or it has more symmetry and its CSP is polynomial-time solvable, just
like the 2-SAT problem. This dichotomy result was conjectured by Feder and Vardi [19, 20],
and proved, almost 25 years later, independently by Bulatov [18] and Zhuk [28].

1.2 A dichotomy conjecture and local identities

The algebraic approach behind these proofs does not require the template to be finite, but also
works under the assumption of w-categoricity. And although every computational decision
problem is polynomial-time Turing-equivalent to the CSP of some infinite template [9], for a
large and natural class of w-categorical templates, which considerably expands the class of
finite templates, a similar conjecture as for finite-domain CSPs has been formulated.

» Conjecture 1 (see [3, 5, 17]). Let A be a CSP template which is a first-order reduct of a
countable finitely bounded homogeneous structure. Then one of the following holds.

A satisfies some non-trivial set of hi identities locally, i.e., on every finite subset of its

domain, and CSP(A) is in P.

There exists a finite subset of its domain on which A satisfies no non-trivial set of hl

identities, and CSP(A) is NP-complete.
The conjectured P/NP-complete dichotomy has been demonstrated for numerous subclasses:
for example for all CSPs in the class MMSNP [11], as well as for the CSPs of the first-order
reducts of (Q;<) [10], of any countable homogeneous graph [12] (including the random
graph [15]), and of the random poset [24].

It is thus the local h1 identities which are believed to be the “right” measure of symmetry
of a template A — according to the conjecture, they determine tractability or hardness of its
CSP. The distinction between local and global h1l identities is, of course, void in the case
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of a finite template A, and the above-stated dichotomy is true by the theorem of Bulatov
and Zhuk and results from [5]. One of the main challenges towards proving Conjecture 1 is

to determine whether this distinction could be void as well for structures within its range.

The satisfaction of non-trivial hl identities in A is characterised by the non-existence of
particular maps called minion homomorphisms from the polymorphism clone Pol(A) of A to
the projection clone &2. The mentioned distinction between local and global hl identities is
then mirrored by the distinction between those maps that are uniformly continuous and those
that are not. Hence, the question whether non-trivial local hl identities imply non-trivial
global hl identities in a relational structure A raises the following question.

» Question 2. Does the existence of a minion homomorphism from Pol(A) to &2 imply the
existence of a uniformly continuous minion homomorphism from Pol(A) to & ¢

2 Results

Among all finite structures, it is known that CSP templates (i.e., those structures with finite
signature) have considerably better algebraic properties than other structures [2, 1]. We
refine a model-theoretic trick due to Hrushovski [23] to encode w-categorical structures with
an infinite signature into w-categorical CSP templates whilst preserving certain properties of
the original, showing that a similar phenomenon does not seem to appear within the class of
w-categorical structures. Using this method, we produce w-categorical CSP templates with
various “untame” properties of both algebraic and complexity-theoretic nature.

2.1 Local versus global identities

Recently, in [13, 14], an example of an w-categorical structure answering Question 2 in the
negative was given; however, this structure had an infinite language and therefore this result
had a priori no consequence for the study of CSPs. Using our encoding, we provide a negative
answer within the realm of CSP templates.

» Theorem 3. There is an w-categorical CSP template U with slow orbit growth such that
there exists a minion homomorphism from Pol(U) to &, but no uniformly continuous one.

We also encode a counterexample from [17] for clone homomorphisms, which are mappings
preserving arbitrary (not only hl) identities, into a finite language. Clone homomorphisms
appear in the original (and equivalent [3, 4]) formulation of Conjecture 1 from [17] (also
see [6, 7).

» Theorem 4. There exists an w-categorical CSP template U with a clone homomorphism
from Pol(U) to & that is not uniformly continuous.

2.2 Dissected weak near-unanimity identities

Our proof of the fact that the template U from Theorem 3 satisfies non-trivial hl identities
locally is constructive: we exhibit a concrete set of such identities which we call dissected weak
near-unanimity. Moreover, we obtain quite general conditions on the symmetry of a structure
which force our identities to be satisfied locally. It follows that the original infinite-language
structure from [13, 14] satisfies them; this contrasts the indirect proof in [13, 14] which does
not provide any concrete set of hl identities.
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» Theorem 5. Let U be a homogeneous structure. Let F be a finite subset of its domain,
and let k > 1. Suppose that:

(i) Only relations of arity smaller than k hold for tuples of elements in F.
(ii) There is an embedding from U? into U.

Then U satisfies (n, k) dissected weak near-unanimity identities on F for all n > k.

Dissected weak near-unanimity identities can be viewed as a generalization of weak
near-unanimity identities. It follows from [26] and [5] that if U is a finite relational structure
satisfying non-trivial hl identities, then U satisfies weak near-unanimity identities. The
satisfaction of dissected weak near-unanimity identities has been proven for a large number
of structures within the range of Conjecture 1 in [4, 3]; since they now reappeared in the
rather different context of Theorem 3, the following question emerges naturally.

» Question 6. Let U be an w-categorical structure with slow orbit growth which satisfies
non-trivial hi identities locally. Does U satisfy dissected weak near-unanimity identities
locally?

2.3 w-categorical CSP monsters

The complexity of CSP(A) is, for every w-categorical CSP template A, determined by Pol(A)
viewed as a topological clone: if there exists a topological clone isomorphism Pol(A) — Pol(B)
and A and B are w-categorical, then CSP(A) and CSP(B) are equivalent under log-space
reductions [16]. In other words, the local (not necessarily hl) identities satisfied in Pol(A)
encode the complexity of CSP(A). Conjecture 1 even postulates that for every template A
within its scope, membership of CSP(A) in P only depends on the local hl identities of A.
The latter is equivalent to the statement that polynomial-time tractability is characterised
by the global satisfaction of the single identity as(z,y,z,z,y,2) = B8s(y, z, z,x, z,y) [4, 7].

Using our encoding, we prove that global identities do not characterise membership in
P — or, in fact, in any other non-trivial class of languages containing AC® — for the class of
homogeneous CSP templates.

» Theorem 7. Let C be any class of languages that contains AC? and that does not inter-
sect every Turing degree. Then there is no countable set © of identities such that for all
homogeneous CSP templates membership in C is equivalent to the satisfaction of ©.

The proof of Theorem 7 relies on encoding arbitrary languages as CSPs of homogeneous
templates. These templates are obtained by applying our encoding to structures which have
only empty relations, but a complicated infinite signature. On the way, we obtain a new
proof of a result by Bodirsky and Grohe [9].

» Theorem 8. Let C be a complexity class such that there exist CONPC—complete problems.
Then there exists a homogeneous CSP template that satisfies non-trivial hi identities and
whose CSP is CONPC—complete. Moreover, if P # CONP, then there exists a CSP template
with these algebraic properties whose CSP has CONP-intermediate complexity.

In particular, Theorem 8 gives complete problems for classes such as II¥ for every n > 1,
PspPACE, EXPTIME, or even every fast-growing time complexity class F, where a > 2 is an
ordinal (such as the classes TOWER or ACKERMANN, see [27]).
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3 Outline

The most important definitions, in particular those of notions which appear in the introduction
and the results, are given in Section 4. A complete exposition of all notions, as well as most
proofs are left to the appendix due to space restrictions; we also refer to the long version of
this extended abstract which is available on arXiv [22]. Our variant of Hrushovski’s encoding
and its most important properties are presented in Section 5. Dissected weak near-unanimity
identities, as well as the proof of Theorem 3, are the contents of Section 6. In Section 7,
we sketch the proofs of Theorem 7 and of the first statement of Theorem 8. Due to space
restrictions, we cannot address the proofs of Theorems 4 and of the second statement of
Theorem 8 at all — they can be found in the long version.

4 Preliminaries

If A is a relational structure in a finite signature, called a CSP template, then CSP(A) is
the set of all finite structures B in the same signature with the property that there exists a
homomorphism from B into A. This set can be viewed as a computational problem where we
are given a finite structure B in that signature, and we have to decide whether B € CSP(A).

We will tacitly assume that all relational structures, as well as their signatures, are at
most countably infinite.

4.1 Polymorphisms, identities, and clone and minion homomorphisms

A polymorphism of a relational structure A is a homomorphism from some finite power A"
of the structure into A. The set of all polymorphisms of A is called the polymorphism clone
of A and is denoted by Pol(A).

An identity is a formal expression s(z1,...,2,) = t(y1,- .., Ym) where s and ¢ are abstract
terms of function symbols, and x1,..., %y, y1,...,ym are the variables that appear in these
terms. The identity is of height 1, and called h1 identity, if the terms s and ¢ contain precisely
one function symbol, i.e., no nesting of function symbols is allowed, and no term may be just
a variable.

A set © of identities is satisfied in A if the function symbols of © can be assigned functions
in Pol(A) in such a way that all identities of © become true for all possible values of their
variables in A. If F is a finite subset of the domain of A, then © is satisfied locally on F if
the above situation holds where only values within F' are considered for the variables.

A set of identities is called trivial if it is satisfied in the projection clone & consisting of
the projection operations on the set {0,1}. Otherwise, the set is called non-trivial. We say
that A satisfies non-trivial identities locally if on every finite subset of its domain it locally
satisfies some non-trivial set of identities. We shall use similar terminology for hl identities.

A map &: Pol(A) — Pol(B) is called a clone homomorphism if it preserves arities, maps
the i-th n-ary projection in Pol(A) to the i-th n-ary projection in Pol(B) for all 1 < i < n, and
satisfies £(f o (g1,.--,9n)) = E(f) 0 (£(g1),---,&(gn)) for all n,m > 1, all n-ary f € Pol(A),
and all m-ary ¢1,...,9n, € Pol(A). This is the case if and only if the map £ preserves
identities, i.e., whenever some functions in Pol(A) witness the satisfaction of some identity in
Pol(A), then their images under £ witness the satisfaction of the same identity in Pol(B).

A map &: Pol(A) — Pol(B) is called a minion homomorphism if it preserves arities and
composition with projections; the latter meaning that for all n,m > 1, all n-ary f € Pol(A),
and all m-ary projections p1, ..., p, € Pol(A), we have £(fo(p1,...,pn)) =E&(f)o(p,...,ph),
where p} is the m-ary projection in Pol(B) onto the same variable as p;, for all 1 < i < n.
This is the case if and only if the map £ preserves hl identities in the sense above.

131:5
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The existence of clone and minion homomorphisms Pol(A) — £ is connected to the
satisfaction of non-trivial identities in a relational structure A. Namely, there exists a clone
homomorphism Pol(A) — & if and only if every set of identities satisfied in A is trivial; and
there exists a minion homomorphism Pol(A) — 27 if and only if every set of hl identities
satisfied in A is trivial.

Similarly, the local satisfaction of identities and hl identities can be characterised via
uniformly continuous clone and minion homomorphisms, respectively [16, 21, 5]. However,
the reader will not need any knowledge of topology and can only keep in mind that the
topology reflects the local/global distinction.

4.2 Homogeneity, boundedness, reducts, w-categoricity, orbit growth

Let C be a class of finite structures in a common relational signature which is closed under

isomorphisms. We define the following properties the class C might have.

Hereditary property (HP): if A € C and if B is a substructure of A, then B € C;

Amalgamation property (AP): if A,B,C € C and if f1: A — B and fo: A — C are embed-
dings, then there exist D € C and embeddings g;: B — D and go: C — D such that
g10o f1=g20 f2

Strong amalgamation property (SAP): C satisfies AP and in addition g; and go can be
chosen to have disjoint ranges, except for the common values enforced by above equation.

A relational structure C is homogeneous if every isomorphism between finite induced sub-

structures extends to an automorphism of the entire structure C. In that case, C is uniquely

determined, up to isomorphism, by its age, i.e., the class of its finite induced substructures

up to isomorphism. This is a consequence of the following theorem.

» Theorem 9 (Fraissé's Theorem, see [23]). Let o be a relational signature and let C be a
class of finite o-structures which is closed under isomorphisms and satisfies HP and AP.
Then there exists a o-structure A such that A is countable, homogeneous, and the age of A
equals C. Furthermore A is unique up to isomorphism.

The structure A above is called the Fraissé limit of C, and the class C a Fraissé class.

A class C of finite structures in the same finite signature is finitely bounded if it is given
by a finite set F of forbidden finite substructures, i.e., C consists precisely of those finite
structures in its signature which do not embed any member of F. A class C of finite structures
in the same signature is homomorphically bounded by a (possibly infinite) set F of finite
structures if it is defined by forbidding the structures in F homomorphically, i.e., C consists
precisely of those finite structures in its signature which do not contain a homomorphic image
of any member of F as a substructure. A structure A is finitely bounded (homomorphically
bounded) if its age is.

A first-order reduct of a relational structure C is a relational structure A on the same
domain which is first-order definable without parameters in C. Every first-order reduct A
of a finitely bounded homogeneous structure is w-categorical, i.e., the automorphism group
Aut(A) has finitely many orbits in its componentwise action on A™, for all finite n > 1. In
fact, if A is such a first-order reduct, then the number of orbits in the action of Aut(A) on
A™ grows exponentially in n; in general, we say that w-categorical structures where this
number grows less than double exponentially in n have slow orbit growth.

For a relational structure A in signature o = (R;);er, and J C I, we call the structure
(A; (R%);es) in signature p := (R;);e the p-reduct of A; conversely A is called an ezpansion of
any of its reducts, and a first-order expansion of a reduct if all of its relations have a first-order
definition in the reduct. We say that a structure is homogenizable if it has a homogeneous
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first-order expansion. All w-categorical structures are homogenizable. A homogenizable
structure A has no algebraicity if the age of any, or equivalently some, homogeneous first-order
expansion of A has SAP.

A formula is primitive positive, in short pp, if it contains only existential quantifiers,
conjunctions, equalities, and relational symbols. If A is a relational structure, then a relation
is pp-definable in A if it can be defined by a pp-formula in A. A structure A pp-interprets
B if a structure isomorphic to B can be constructed from A by pp-defining a subset S of
some finite power of its domain, then pp-defining an equivalence relation ~ on .S, and then
pp-defining relations on the equivalence classes of ~.

5 The encoding

We present the encoding of an arbitrary homogenizable structure with no algebraicity into a
CSP template, which will be the basis of our results. The construction is originally due to
Hrushovski [23, Section 7.4]; it was designed to capture properties of the first-order theory and
consequently the automorphism group of the original structure. We refine his construction
in order to also compare the polymorphism clones of the original structure and its encoded
counterpart, and to control the complexity of the CSPs of the produced templates.

5.1 Encoding and Decoding

Let ¥ be a finite alphabet, and let 22 denote the set of all finite words over ¥ of length at
least two. We are going to encode structures with a signature of the form p = (Ry)wew,
where W C ¥22 and where the arity of each symbol R,, equals the length |w| of the word
w. For the rest of this section we fix ¥ and p. Our goal is to encode any homogenizable
p-structure A with no algebraicity into a structure E A (where E stands for E. Hrushovski)
in a finite signature 6 which is disjoint from p and only depends on .

Note that by renaming its signature, and possibly artificially inflating the arity of its
relations (by adding dummy variables), any arbitrary structure with countably many relations
can be given a signature of the above form without changing, for example, its polymorphism
clone. However, the encoding will depend on these modifications, and their effect on the

algebraic and combinatorial properties of the encoding is beyond the scope of this article.

The original encoding [23, Section 7.4] roughly corresponds to the case where |X| = 1, and
our generalization allows us to avoid such modifications for the structures we wish to encode,
making in particular our complexity-theoretic results possible.

» Definition 10. Let 0 denote the signature {P,1,7,S}U{H; | s € X}, where P, ¢, T are
unary relation symbols, Hs is a binary relation symbol for each s € ¥, and S is a 4-ary
relation symbol. For every signature o disjoint from 0, define ot to be the union o U 6.

The encoding of a p-structure A will roughly be obtained as follows: first, one takes a
homogeneous first-order expansion B in some signature o; from its age K, one defines a class
K™ of finite structures in signature o*; and the encoding is the f-reduct of the Fraissé limit
of KT. In order to define the class KT, we need the following definitions.

» Definition 11. Let o be a signature disjoint from 0, let A be a o™ -structure, and let

w € X222, A tuple (ay,.. 3 Q| C1y - - -5 Cly|) Of elements of A is a valid w-code in A if the
following hold:
(a) Ay ... 7a\w| € PA;

(b) HE (ciycj) for all1 <i,j < |w| such that j =i+ 1 (mod |w|);
(c) *(c1) and TA(CM);
(d) S%(as,aj,ciyci) for all 1 <i,j < |w| with i # j.
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R D = E §
E
p—structures //—\ 0 structures DEA=A
—structures

Figure 1 Sources and destinations of the operators related to the encoding and decoding.

» Definition 12. Let o be a signature disjoint from 6, and let A be a o™ -structure. Then A
1s called separated if

(i) HA only relates pairs within A\ P* for all s € ¥;

(i) *,7* are contained in A\ P*;

(iii) If (a, b,c,d) € S*, then c,d € A\ P* and ¢ # d.

It follows from (iii) above that in a separated structure a valid w-code can only exist if
|w| > 2; this is the reason for the exclusion of unary relation symbols from p.

» Definition 13. Let A be a p-structure and let B be a homogeneous first-order expansion of

A with signature o and age K. Define K+ to be the class of all finite 0T -structures C with

the following properties:

(1) The o-reduct of the restriction of C to P® is an element of K;

(2) C is separated and for every R € o the relation R® only relates tuples which lie entirely
within PC;

(3) If Ry € p and (ax, ..., |, C1;- - -, Cw|) s a valid w-code in C, then (ay,...,a),|) € RE.

» Lemma 14. Let A be a p-structure and let B be a homogeneous first-order expansion of A
with age K. If K has the HP and the SAP, then K+ has the HP and the SAP as well.

By Lemma 14, if A has no algebraicity!, and B is a homogeneous first-order expansion of
A with age K, then KT has a Fraissé limit, allowing us to define our encoding as follows.

» Definition 15. Let A be a p-structure with no algebraicity and let B be a homogeneous
first-order expansion of A with age K. We define By A, the encoding blow up of A, to be
the Fraissé limit of K+. Moreover, we define R C to be the 0-reduct of any structure C with
signature containing 0. The Hrushovski-encoding E A is defined by E A := R BA.

» Remark 16. All w-categorical structures have a homogeneous first-order expansion. This
expansion is not unique, but the encoding E A of A does not depend on it.

! Contrary to a claim in [23], AP of K is not a sufficient assumption for AP of K in Lemma 14.



P. Gillibert, J. Jonusas, M. Kompatscher, A. Mottet, and M. Pinsker

A
/PE A 7\ Rooio1 EA \
r

as Cs
H?“’T

a4 Cq

SEA HF A

as c3 HE
HE“T

az C2
HEA

0
ayp €1 EA

Figure 2 The encoding E A of a structure A.

It might be of help to the reader if we note that the operators used in the encoding of a
structure, i.e., Bg and R, bear arrows from left to right; the operators used in the decoding
of a structure, defined below, bear arrows in the opposite direction. Table 1 contains an
informal summary of all operators, and Figure 1 describes on which classes of structures
they operate.

Table 1 The meaning of the operators.

Operator | Name

B:

Description

The first step in an encoding, extends the domain and defines
relations for the signature 6 via a homogeneous expansion B of

encoding blow up

the input.
f-reduct Returns the #-reduct of a structure.
encoding Combines Bg and R to obtain a #-structure from a p-structure.

decoding blow up

The first step in decoding a #-structure, it converts valid codes
into corresponding relations in p.

o o e =

relativised reduct

Restricts a structure to the set named by P and forgets relations
not in p.

D decoding Combines ﬁ and % to obtain the p-structure A from the
encoded 6-structure E A.
C canonical code Defines in a canonical way a finite #-structure from a finite

p-structure in which every relation which holds in the input is
witnessed by a valid code.

Like the encoding of a structure, the decoding of a structure is a composition of two steps;
first a decoding blow up, and then a relativised reduct.

» Definition 17. Let C be a -structure. Then the decoding blow up §(C of C is the
expansion of C in signature p*, where for any symbol R,, € p the relation REC is defined
to consist of those tuples (a1, ...,ap,|) for which there exist c1, ..., c|,| such that the tuple
(a,.. -5 Clw|) is a valid w-code in C.

For a structure D in a signature containing p*, the relativised reduct E]D) of D is defined
to be the p-reduct of D restricted to PP.

Finally, we set DC := C, the decoding of C, for any 0-structure C.

.,CL|w‘,Cl,..
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The following proposition states that the operator D indeed decodes E A. It also allows
us to identify A and D E A, an assumption we shall thenceforth make.

» Proposition 18. Let A be a homogenizable p-structure with no algebraicity. Then A
and DEA are isomorphic. Moreover, for any 0-structure D, the structure DD has a
pp-interpretation in D.

5.2 The relationship between A and E A

We derive the following main properties of the encoding E A of a p-structure A:
E A is w-categorical if and only if A is, and has slow orbit growth if and only if A does
(Proposition 19);
There exists a uniformly continuous clone homomorphism £ from Pol(E A) into Pol(A);
conversely, if A is w-categorical, then injective polymorphisms of A essentially extend to
polymorphisms of E A (Proposition 20).

We start by investigating the relationship of the orbits of Aut(A) with those of Aut(E A),
showing that w-categoricity and slow orbit growth are preserved by the encoding.

» Proposition 19. Let A be a homogenizable p-structure with no algebraicity.

1. A is w-categorical if and only if E A is.

2. Let A be w-categorical. Forn > 1, write f(n) and g(n) for the number of orbits of n-tuples
under the action of Aut(A) and Aut(E A), respectively. Then f(n) < g(n) < 261%In" f(n)
for allm > 1. In particular, A has slow orbit growth if and only if E A does.

We now turn to the polymorphism clones of A and EA. An immediate consequence
of Proposition 18 is that polymorphisms of E A can be restricted to polymorphisms of A.
Conversely, one can prove that assuming w-categoricity of A, for every injective f € Pol(A)
there exists an embedding u of A such that uf can be extended to a polymorphism of E A.

» Proposition 20. Let A be a structure with no algebraicity, and let B be a homogeneous

first-order expansion of A. Then the following hold:

(1) For every f € Pol(EA), the restriction f|pes of f to PE* is a polymorphism of A. The
map [ — flpes is a uniformly continuous clone homomorphism Pol(E A) — Pol(A).

(2) If A is w-categorical, then for every injective f € Pol(A) there exists an embedding
u: —B>]EA — ﬁBA such that uf extends to a polymorphism of EA.

(3) If A i_s)w—categorical, then for all k > 1, B* embeds into B if and only if (ﬁg A)F embeds
into By A.

Propositions 19 and 20 are the fundamental results upon which the following sections
rely. They allow us to relate Pol(E A) and Pol(A) and to transfer the exotic behaviour of
the latter (for a well-chosen A with infinite signature) into the former.

5.3 Homomorphisms and the encoding

We now examine the relationship between the finite structures that homomorphically map
into a structure A with those that homomorphically map into its encoding E A (which is
precisely CSP(E A)). This will be particularly relevant in Section 7 where we investigate the
complexity of CSPs of structures encoded with our encoding.
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» Proposition 21. There exists a log-space computable function C — CC from the set of
finite p-structures to the set of finite 0-structures satisfying the following properties:
For every finite p-structure C, we have DCC = C.
If C is a finite p-structure, and D is a 0-structure, then there exists a homomorphism
from C to DD if and only if there exists a homomorphism from CC to D.

The properties from Proposition 21 are enough to give a concrete description of CSP(E A)
when A is homomorphically bounded.

» Proposition 22. Let A be a homogenizable p-structure with no algebraicity which is
homomorphically bounded by a set G of finite p-structures. Let X be a 0-structure. Then the
following are equivalent.

(1) There exists an embedding of X into EA;

(2) There exists a homomorphism from X to E A;

(3) X is separated and for all G € G there exists no homomorphism from CG to X.

Note that being separated can be characterised by not containing the homomorphic
image of any element of a finite set S of finite §-structures. As an immediate consequence of
Proposition 22 we therefore obtain the following corollary.

» Corollary 23. Let A be a homogenizable p-structure with no algebraicity which is homo-
morphically bounded by a set G of finite p-structures. Then E A is homomorphically bounded
by {CG|GegG}lusS.

6 Height 1 identities: local without global

Recall that in [13] a negative answer to Question 2 of the introduction was established by
an infinite-language example which is w-categorical and has slow orbit growth. We are now
going to prove that the encoding of that structure, or in fact, of a simplification S thereof,
also provides an example. Since ES is a CSP template, and since both w-categoricity and
slow orbit growth are preserved by the encoding, ES is a witness for the truth of Theorem 3.
While the non-satisfaction of non-trivial global hl identities lifts from S to ES by virtue of
Proposition 20 (1), we do not know in general when this is the case for the local satisfaction
of non-trivial hl identities. Our proof thus relies on specific structural properties of S; we
show that both S and ES locally satisfy dissected weak near-unanimity identities.

6.1 Dissected weak near-unanimity identities

» Definition 24. Let n > k > 1, let g1,...,9, be binary function symbols, and for every
injective function: {1,...,k} = {1,...,n} let fy be a k-ary function symbol. Then the set
of (n,k) dissected weak near-unanimity identities consists of the identities

flll(x7 e T Y, Ty ,.’E) = gd)(l)(‘r7y)
for all injective functions ¢: {1,...,k} = {1,...,n} andi € {1,...,k}.
Note that any polymorphism clone which satisfies identities of the form

flyz,... )= = f(x,...,z,y),

called k-ary weak near-unanimity identities when f is k-ary for some k > 3, must also satisfy
the (n, k) dissected weak near-unanimity identities for all n > k. This can be seen by setting
fy = [ for every 9. Moreover, there exist polymorphism clones which satisfy dissected weak
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near-unanimity identities, but do not satisfy any weak near-unanimity identities: one example
is the polymorphism clone consisting of all injective functions (up to dummy variables) on a
countable set, see [4]. Hence, we can regard dissected weak near-unanimity identities as a
strict weakening of the weak near-unanimity identities.

Further note that, for all parameters m > n > k > 1, the (n, k) dissected weak near-
unanimity identities form a subset of the (m, k) dissected weak near-unanimity identities.
Thus for every fixed k > 1 the family of (n, k) dissected weak near-unanimity identities form an
infinite chain of h1 identities of increasing strength. In the special case k = 2, the satisfaction
of any of the (n,2) dissected weak near-unanimity identities is equivalent to the existence of a
binary commutative polymorphism (as they imply ¢1(z,y) = g2(y,x) = gs(z,y) = 91(y, )).

» Lemma 25. For alln > k > 1 the (n,k) dissected weak near-unanimity identities are
non-trivial.

Proof. Assume to the contrary that there exist projections ¢1,...,9, € & and f, € &
for every injection ¥: {1,...,k} — {1,...,n} that satisfy the (n, k) dissected weak near-
unanimity identities. First, suppose that there are two distinct 1 <4, j < k such that g;, g;
are both the projection onto the second coordinate. Then let i) be an injective function with
¥(1) = i,9(2) = j. It follows from the identities that fy(y,z,...,2z) = fy(z,y,...,x) =y
holds for all values of the variables, which contradicts f, being a projection. Therefore at
most one operation g; equals the projection to its second coordinate. Since n > k, there is
an injective function ¢: {1,...,k} — {1,...,n} such that g, is the first projection for all
i €{l,...,k}. Then f, satisfies the weak near-unanimity identities, which again contradicts
fy being a projection. <

» Lemma 26. Let U be a relational structure and let n > 2. Then there exists an embedding
from U? into U if and only if there exists an embedding from U™ into U.

Proof. If there is an embedding f: U™ — U for some n > 2, then g: U2 — U, defined by
g(z,y) := f(x,y,...,y), is also an embedding. On the other hand, if for some n > 2 there
exist embeddings g: U? — U and h: U® — U, then the composition f(x1,...,2,11) :=

g(h(x1,...,2,),py1) is an embedding from U™ into U. Hence by induction the existence
of an embedding from U? into U implies the existence of an embedding from U" into U for
all n > 2. |

Proof of Theorem 5. For all [ > 2, define X; C F' by

X = JA{(@...,a,b),(a,...,a,b,a),...,(b,a,...,a)},
a,beF

and let X; be the substructure which X; induces in U’

The first step of our proof is to show that if n > k, then there exists an embedding
h: X; — X, such that x is an initial segment of h(x) for all x € Xj. Let us first assume
that k£ > 3. For every tuple x € X; we denote the unique element of F' which occurs more
than once among its entries by s(x). Define h: X, — X, to be the map that extends the
tuple x by n — k many entries with value s(x). In order to prove that h is an embedding let
X1, ..., Xy, € X be such that RY" (X1, .- -, Xm,) holds for some m-ary relation symbol R in the
signature of U. By assumption (i) we have m < k. Thus there exists 1 < j < k such that the
projection of each x; to its j-th coordinate equals s(x;). Therefore (s(x1),...,s(xn)) € RY,
and hence h is a homomorphism. Also its inverse — the projection of n-tuples to the first
k-coordinates — is a homomorphism, and thus h is an embedding. Now assume the remaining
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case where k = 2. Define a map h: Xy — X, by (21, z2) — (21, 22,...,22). To check that
that h is an embedding, by assumption (i), we only need to check that h is an embedding
with respect to unary relations, which however follows from its definition.

Observe that h was defined in such a way that, for each index 1 <4 < k, the i-th projection
of h(x) is equal to z;. By permuting the coordinates of its image in a suitable manner, we
can obtain embeddings hy: X, — X, for every injection ¢: {1,...,k} — {1,...,n} such
that the (4)-th projection of hy(x) is equal to z; for all 1 < i <k.

In order to construct the operations fy, on F, let f: U¥ — U and g: U" — U be
embeddings, which exist by (ii) and Lemma 26. For every injection ¢ : {1,...,k} = {1,...,n}
define the map wuy: f(Xg) = g(X,,) by
a,...,a). (1)

uy(f(a,... ,a,ii)h,a, coa)=g(a,... 7a’w(?)“"
Then uy, is equal to g o hy o f~1. Since hy is an embedding, uy: f(Xg) — uy(f(Xg)) is
an isomorphism between finite substructures of U. By the homogeneity of U, it can be
extended to an automorphism vy of U. Set fy := vy o f and, for all 1 < i < n, define
gi(x,y) :=g(x,...,x,y,x,...,x), where the only y appears at the i-th coordinate of g. It then
follows from (1) that these polymorphisms satisfy the (n, k) dissected weak near-unanimity
identities on F', concluding the proof. <

6.2 Reuvisiting the infinite-language counterexample

We now investigate the simplification S of the infinite-language structure from [13]; S satisfies
the same local and global hl identities as the structure in [13]. Namely, we consider the
superposition as in [13, Construction 6.4], but directly of the CSS structures in the proof
of [13, Lemma 6.3] rather than of their model-complete cores; we are able to do this due to
our constructive, rather than indirect, proof of the local satisfaction of hl identities. The
structure S has the following properties.

» Proposition 27 (Consequence of the results from [13]). There exist w-categorical structures

S and H with slow orbit growth and without algebraicity, as well as a strictly increasing

function a: N — N such that the following hold:

(1) H is a homogeneous expansion of S by pp-definable relations.

(2) Every relation of H has arity k - a(n) for some k,n > 1, and for every n > 1 there exist
only finitely many relations of arity of the form k-a(n). Moreover, if (a1, ..., 0x.am)) € R
for some relation R of H, then {a1,...,ap.qm)} has size at least a(n).

(3) H ¢s homomorphically bounded.

(4) There exists a minion homomorphism from Pol(S) to .

Proof of Theorem 3. Let S,H be as in Proposition 27. We can assume that S has signature
p as in Section 5 since this change does not affect the properties claimed in Proposition 27; see
the remark at the beginning of Section 5.1. Since S has no algebraicity, it has an w-categorical
finite-language encoding U = ES. Moreover, since S has slow orbit growth, so does U by
Proposition 19. There is a minion homomorphism Pol(U) — Pol(S) by Proposition 20 (1)
and a minion homomorphism Pol(S) — £ by Proposition 27, thus we obtain a minion
homomorphism Pol(U) — £ by composition.

It remains to prove that there is no uniformly continuous minion homomorphism from
Pol(U) to £2. We do so by showing that for every finite subset F' of the domain, there exists
k > 1 such that Pol(U) satisfies the (n, k) dissected weak near-unanimity identities on F for all
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n > k. Note that U = ES is a reduct of the blowup ﬁH S, and hence Pol(ﬁH S) C Pol(ES).
It is therefore sufficient to prove that there exists some k > 1 for which BH S satisfies the
(n, k) dissected weak near-unanimity identities on F for all n > k.

In order to prove this statement, we verify that conditions (i) and (ii) of Theorem 5 hold
for By S, F, and a suitable & > 1. Since H is homomorphically bounded, it is well-known
that H? embeds into H. By Proposition 20 (3), there exists an embedding of (ﬁH S)? into
ﬁH S, and thus condition (ii) holds.

It remains to check (i) which states that there exists an upper bound on the arity of
tuples in F' that satisfy some relation from ﬁH S. Denote the signature of H by o. Suppose
that R_B>HS contains a tuple entirely within F for some R € o7, the language of BgS. Since
ot = o U¥, and all relations in § have arity at most 4, we may assume that R € 0. Then
any tuple in R_B>HS must lie entirely within PglHI S and essentially the proof of Proposition 18
shows that this implies that the tuple is an element of R™.

By Proposition 27 (2), R has arity k - a(n) for some n,k > 1 and at least a(n) many of
the values of any tuple in R¥ are distinct. Therefore, a(n) must be smaller than |F|. Since
«a is a strictly increasing function, it follows that only finitely many relations of RP#S have
tuples that lie entirely in F'. Let k > 1 be a strict upper bound on the arity of those relations.
For this choice of k£ we have that (i) of Theorem 5 holds, and thus RB#S satisfies the (n, k)
dissected weak near-unanimity identities on F for all n > k. |

» Remark 28. It follows that the original structure S satisfies dissected weak near-unanimity
identities locally as well, since by Proposition 20 (1), there is a uniformly continuous minion
homomorphism from Pol(ES) to Pol(S). This result is new and no other explicit description
of non-trivial local h1 identities of S was given in [13].

7 ldentities and CSPs with Homogeneous Templates

7.1 Encoding arbitrary languages as CSPs

Let X be a finite alphabet and W C %22, Let py be the signature consisting of one |w|-ary
relation symbol R,, for every word w € W. The trivial structure Ty is the countable
pw-structure whose relations are all empty. For every word w € W, the w-edge structure
F, is the py-structure on the set F, = {1,...,|w|} whose only non-empty relation is
REv ={(1,...,|w|)}.

The trivial structure Ty is homomorphically bounded by the set of all edge-structures
F,, with w € W. Moreover, Ty has no algebraicity. It is not hard to see that E Ty is
homogeneous. Applying Theorem 5 and a compactness argument, one can see that E Ty
satisfies non-trivial hl identities.

Since Ty is homomorphically bounded, Corollary 23 can be used to give an explicit
description of CSP(E Ty ), which we use to prove the results of this section. We employ
the notion of CONP-many-one reduction first defined in [8]: a language K cONP-many-one
reduces to L if there is a non-deterministic polynomial-time Turing machine M such that
for all words w, we have w € K if and only if each computational path of M, on input
w, produces a word in L. Note that if K has a CONP-many-one reduction to L, then in
particular K is in coNPZL.

» Proposition 29. Let L C %22 and W := %22\ L both be nonempty. Then L has a log-space
many-one reduction to CSP(E Ty ), and CSP(E Ty ) cONP-many-one reduces to L.
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Proof. The function w +— CT,,, for every w € ¥22, is computable in logarithmic space with
respect to |w| by Proposition 21. Also note that there is a homomorphism CF,, — CF,, if
and only if w = u. Moreover, it follows from Proposition 22 that there is a homomorphism
CF, — ETy if and only if w € L. Thus L has a log-space many-one reduction to CSP(Ty).

For the other reduction, let X be a finite #-structure, an instance of CSP(E Ty ). If there
is no homomorphism X — E Ty, by Proposition 22, either X is not separated (which can
be checked in polynomial time), or there is a word w € W not longer than the size of the
domain of X and a homomorphism f: CF,, — X. The reduction does the following: if X
is not separated, we map it to a fixed element of W. Otherwise, we guess a word w not
longer than the size of the domain of X and a function f: CF,, — X. If this function is not
a homomorphism, we map X to a fixed word of L. If f is a homomorphism, we map X to w.
Thus, if X € CSP(E Ty ) then all runs of the reduction output a word of L. Moreover, if
X ¢ CSP(ETyw ), then at least one run outputs word in W. <

We can now prove the first statement of Theorem 8.

Proof of the first statement of Theorem 8. Let L C 22 be a CONP°-complete language,
and let W be its complement. Then L reduces to CSP(ETy/) by Proposition 29, so
CSP(E Ty ) is CONPC-hard. Moreover, it follows from Proposition 29 and the fact that
coNPF is closed under CONP-many-one reductions that CSP(E Tw ) belongs to CcoNPC. <

The second statement of Theorem 8 follows from the following proposition whose proof is
inspired by Ladner’s proof on the existence of NP-intermediate problems [25].

» Proposition 30. Let L C {0,1}22 be a language in CONP \ P. Then there is a unary
language I C {0}22 such that CSP(ET;) is also in CONP\ P, but L is not polynomial-time
reducible to CSP(ETy).

Finally, we are ready to prove Theorem 7. In the following, let £ be the extension of
existential second-order logic allowing countably many second-order quantifiers, followed by
a countable conjunction of first-order formulas. It can be seen that the upward direction of
t.0§’s theorem and the downward Léwenheim-Skolem theorem hold for this logic.

Proof of Theorem 7. We prove the following: there is no countable set © of §-formulas in
L such that the equivalence A = © < CSP(A) € C holds for all homogeneous #-structures A.
This proves the theorem, as the satisfaction of a countable set of identities by polymorphisms
can be expressed in L.

Assume that such a © exists. Let L be a language over ¥ whose Turing-degree is not
intersected by C, and let W = $22\ L. For every n € N, let W N Y=" be the set of words of
length at most n in W. Corollary 23 implies that CSP(E Ty qx<») is finitely bounded, hence
CSP(E Tyyns<n) is in ACY. Therefore, since E Tyynx<n is homogeneous, our assumption
implies that E Tyyan<n = ©. Let U be a non-principal ultrafilter on N, and let X be the
ultraproduct ([T, oy E Tyass<n)/U. Then X |= © by Lo’ theorem and X is homogeneous, as
all the factors in the ultraproduct are homogeneous. By the Lowenheim-Skolem theorem, X
has a countable elementary substructure Y that also satisfies ©. Note that Y is homogeneous
and has the same age as X, as it is an elementary substructure of X.

Finally, we claim that X and E Ty, have the same age. Every finite substructure of E Ty,
embeds into E Tyq5<» for all n € N, by Corollary 23, and therefore into their ultraproduct,
which is X. Conversely, assume that a finite structure C embeds into X. This precisely means
that I := {n € N | C embeds into ETyqx<~} is in Y. Moreover, since U is not principal,
I is infinite. Let w € W. Since [ is infinite there is an n > |w| such that C embeds into
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ETyxn<n. Since w € W N X", Corollary 23 gives that CF,, does not homomorphically
map to C, and that C is separated. Since this holds for all w € W, it follows that C embeds
into E Ty, .

By Theorem 9, the two structures Y and E Ty are isomorphic. By Proposition 29, L and

CSP(E Ty ) have the same Turing-degree, therefore CSP(E Ty ) is not in C, a contradiction.
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