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Abstract
This article is a study of descriptive complexity of subsets of represented spaces. Two competing
measures of descriptive complexity are available. The first one is topological and measures how
complex it is to obtain a set from open sets using boolean operations. The second one measures how
complex it is to test membership in the set, and we call it symbolic complexity because it measures
the complexity of the symbolic representation of the set. While topological and symbolic complexity
are equivalent on countably-based spaces, they differ on more general spaces. Our investigation is
aimed at explaining this difference and highly suggests that it is related to the well-known mismatch
between topological and sequential aspects of topological spaces.
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1 Introduction

This article fits in the line of research extending descriptive set theory, mainly developed on
Polish spaces, to other classes of topological spaces relevant to theoretical computer science,
such as domains [21], quasi-Polish spaces [2], and represented spaces [13, 4, 1]. We pursue
our investigation of descriptive set theory on represented spaces, started in [1].

Theoretical computer science, logic and descriptive set theory closely interact, providing
different ways of describing properties, by programs, formulas or boolean operation from
basic properties, all intimately related. For instance, a property of real numbers that is
decidable in the limit must belong to the class ˜∆0

2, and every ˜∆0
2-property is decidable in

the limit relative to some oracle.
This correspondence works very well on Polish spaces and more generally countably-based

topological spaces. However, little is known for other topological spaces whose points can be
represented and processed by a program, and it has been shown in [1] that the correspondence
fails, even on natural spaces such as the space of polynomials with real coefficients: there is
a property which can be decided with 2 mind-changes, but which is not a difference of two
open sets, and is in no level below ˜∆0

2.
We introduce symbolic descriptive complexity, which captures the algorithmic complexity

of a set, and compare it to topological descriptive complexity. Our general goal is to
understand when and why these two measures of complexity differ, and what topological
properties of the underlying space cause this disagreement. Our results suggest that the
mismatch between the two measures of complexity reflects the discordance between the
sequential and the topological aspects of the space, so that symbolic complexity may be
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interpreted as a measure of sequential complexity rather than topological complexity, in the
same way as many topological notions have a sequential counterpart (sequential continuity,
sequential compactness, sequential closure, etc.).

More precisely, we show that among Hausdorff spaces, the spaces that are not Fréchet-
Urysohn exhibit a disagreement between symbolic and topological complexity at the lowest
level above the open sets, namely the differences of open sets. This result extends a similar
result obtained in [1] for the subclass of coPolish spaces.

We focus on the space of open sets of a Polish space, and relate the disagreement between
symbolic and topological complexity to the compactness properties of the Polish space, by
dividing Polish spaces into 4 classes, ranging from the locally compact to the non σ-compact
spaces, and giving a detailed analysis of descriptive complexity of sets in each case.

Along the way, we develop several tools and techniques that are needed to prove our
results and are interesting on their own right. In particular we argue that the classical notion
of hardness, which makes sense on countably-based spaces, is too restrictive on other spaces
and we solve the problem by introducing the weaker notion of hard* set.

We finally observe that the discordance between topological and sequential aspects is
already at the core of the theory of admissibly represented topological spaces. These spaces,
also characterized as the T0 quotients of countably-based spaces, are all sequential and
form a subclass of topological spaces which behave particularly well from a categorical
perspective: for instance, contrary to general topological spaces, they form a cartesian closed
category. More concretely, in this category, the space constructions such as product space
or subspaces do not coincide with the ones in the category of topological spaces, but with
their sequentializations. Our separation results between symbolic and topological complexity
heavily rely on the disagreement between sequential and topological space constructions.

1.1 Summary of the main results
We give a quick overview of the main results, stated informally.

In a represented space X = (X, δX), we introduce the symbolic complexity of a set A ⊆ X.
If Γ is a descriptive complexity class, such as ˜Σ0

n or ˜Dn (difference of n open sets), then we
define the corresponding symbolic complexity class [Γ] as follows:

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

In a topological space with an admissible representation, one usually has Γ(X) ⊆ [Γ](X)
and our goal is to understand when and why the other inclusion does not hold, i.e. when and
why the topological and symbolic measures of complexity differ. It is know from [2] that
they coincide when X is a countably-based space.

We first observe that the classical notion of hardness, which is very useful to identify the
complexity of a set, is closely related to symbolic rather than topological complexity. We
introduce a weaker version, called hard* set and prove:

I Theorem (Theorem 3.2). For a Borel subset A of an analytic space X,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

A topological subspace of a sequential space is not always sequential, so the subspace
constructions differ in the categories of topological and sequential spaces. This difference
implies a difference between symbolic and topological complexity.
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The sequential spaces whose subspaces are sequential are called the Fréchet-Urysohn
spaces. The class ˜D2 consists of differences of two open sets.

I Theorem (Theorem 4.1). If X is admissibly represented, Hausdorff and not Fréchet-
Urysohn, then

[˜D2](X) * ˜D2(X).

The assumption that the space is Hausdorff is needed. Indeed, spaces of open sets behave
better at low complexity levels.

I Theorem (Theorem 5.1). If X is admissibly represented then

[˜Dn](O(X)) = ˜Dn(O(X)).

However, the proof is not constructive and we show that the corresponding effective
classes disagree. The class D2 consists of differences of two effective open sets. Let N1 be
the space of functions N→ N having at most 1 non-zero value.

I Theorem (Theorem 5.3). One has [D2](O(N1)) * D2(O(N1)).

Finally, we give a rather detailed study of descriptive complexity on the spaces O(X)
when X is Polish. More precisely, we connect the relationship between symbolic and
topological complexity classes to the compactness properties of X. Some of the proofs heavily
rely on the fact that the product topology is not sequential in general, so product space
constructions differ in the categories of topological and sequential spaces.

In particular, symbolic and topological complexity differ at higher levels when X is Polish
and not locally compact.

I Theorem (Theorem 6.5).
There exists A ∈ [˜Dω](O(N1)) which is ˜∆0

3-complete*.
There exists A ∈ [˜Σ0

k](O(N×N1)) which is ˜Σ0
k+1-complete*, for each k ≥ 2.

There exists A ∈ [˜Σ0
2](O(N )) which is not Borel.

The paper is organized as follows. In Section 2, after giving the needed background
on represented spaces, we introduce symbolic complexity and provide simple tools for its
study. In Section 3 we introduce and study the notion of hard* set, used to capture the
topological complexity of sets. In Section 4 we prove that Hausdorff spaces that are not
Fréchet-Urysohn exhibit a disagreement between symbolic and topological complexity at the
lowest level. In Section 5, we study spaces of open sets. In particular, in Section 6 we focus
on open subsets of Polish spaces and locate symbolic complexity classes depending on the
compactness properties of the Polish space.

We sometimes include the proof in the body of the article, and sometimes only give the
intuition. Complete proofs can be found in [9].

2 Symbolic complexity

2.1 Represented spaces
The Baire space is N = NN, whose elements are either viewed as functions or infinite
sequences. To finite sequence of natural numbers σ ∈ N∗, we associate the cylinder [σ] which
is the set of elements of N extending σ. The Baire space is then endowed with the topology
generated by the cylinders. Every subset of N is endowed with the subspace topology.

ICALP 2020
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A represented space is a pair X = (X, δX) where X is a set and δX :⊆ N → X is a
partial surjective function called a representation. If δX(p) = x, then p is a name of x.
If X,Y are represented spaces then a function F :⊆ N → N is a realizer of f : X → Y
if f ◦ δX = δY ◦ F . f is computable if it has a computable realizer. We write X ∼= Y if
there exists a bijection between X and Y which is computable in both directions.

A representation δ of a topological space (X, τ) is admissible if τ is the final topology
of δ and every partial continuous function f :⊆ N → X has a continuous realizer, which is a
continuous function F :⊆ N → N satisfying f = δ ◦ F .

If X,Y are admissibly represented spaces, then a function f : X → Y is continuous if
and only if it has a continuous realizer. In particular, f is continuous if and only if it is
computable relative to some oracle.

The topological spaces having an admissible representation are exactly the T0-spaces that
are quotients of countably-based spaces, and are also called QCB0-spaces. These spaces form
a cartesian closed category, with very natural representations for products and function spaces.
They enjoy the following remarkable but overlooked properties, as proved by Schröder [16]:
if X is a QCB0-space, then

X is sequential, separable and has a countable network, i.e. a countable family of subsets
such that every open set is a union of them,
X is first-countable if and only if X is countably-based,
X is hereditarily Lindelöf,
When identifying the space of open sets O(X) with the function space SX where S is the
Sierpinski space, the topology on O(X) is the Scott topology.

As far as topology is concerned, admissibly represented spaces and QCB0-spaces are the
same. However, computability can only be expressed in terms of representations, so we will
refer to admissibly represented spaces rather than QCB0-spaces.

Countably-based T0-spaces have a particular representation, called standard representa-
tion, which is admissible. Once a countable basis indexed by N has been chosen, say (Bi)i∈N,
a name of x is any sequence p ∈ N such that {i ∈ N : ∃n, p(n) = i+ 1} = {i ∈ N : x ∈ Bi},
so that x is described by enumerating its basic neighbourhoods in any order.

2.2 Symbolic complexity
Let Γ be a descriptive complexity class, i.e. a family Γ = {Γ(X)} where X ranges over
topological spaces and Γ(X) is a collection of subsets of X. The simplest class is ˜Σ0

1 =
{˜Σ0

1(X)} where ˜Σ0
1(X) is the collection of open subsets of X. The class ˜Σ0

n is inductively
defined as the class of countable unions of differences of ˜Σ0

n−1-sets. The class ˜Dn is inductively
defined as follows: ˜D1 = ˜Σ0

1 and ˜Dn+1 consists of sets U \ A where U ∈ ˜Σ0
1 and A ∈ ˜Dn.

For any class Γ, the class Γ̌ consists of the complements of sets in Γ.
Let X = (X, δX) be a represented space, which is also a topological space by taking the

final topology of δX: U ⊆ X is open iff δ−1
X (U) is open in dom(δX).

IDefinition 2.1. Let X = (X, δX) be a represented space. We define the symbolic complexity
class [Γ](X) as follows: for A ⊆ X,

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

By definition of the final topology of δX, one always has [˜Σ0
1](X) = ˜Σ0

1(X). A descriptive
complexity class Γ is often closed under continuous preimages, and in that case one has Γ(X) ⊆
[Γ](X) because δX is continuous. Moreover, for such classes Γ, it is not hard to see that the
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symbolic complexity class [Γ] does not depend on the choice of the admissible representation,
hence Γ(X) is intrinsic to X as a topological space. However, effective complexity classes are
sensitive to the choice of an admissible representation (but not to the choice of a computably
admissible one, which we do not discuss here).

Our general goal is to understand symbolic complexity classes, relate them to topological
complexity classes and understand for which X and which Γ we have [Γ](X) = Γ(X).

An important result due to de Brecht [2] is that symbolic and topological complexity
coincide when X is a countably-based T0-space with its standard representation.

I Theorem 2.2 ([2]). Let X be a countably-based T0-space with its standard representation,
and let α, β < ω1. One has

[˜Dα(˜Σ0
β)](X) = ˜Dα(˜Σ0

β)(X).

It was improved in [1] by observing that the equality is uniform and effective, so it also
holds for the effective complexity classes Dm(Σ0

n), m,n ∈ N.

2.3 Tools
We give a simple way of locating a symbolic complexity class. A network in a topological
space X is a family F of subsets of X such that every open set is a union of elements of F [5].
Every admissibly represented space has a countable network, given by the images of cylinders
under the admissible representation.

I Proposition 2.3. Let X be admissibly represented. Assume that X has a countable network
of sets in ˜Σ0

i+1(X). For all n ∈ N, one has

[˜Σ0
n](X) ⊆ ˜Σ0

n+i(X).

Proof. Let Y be the topological space with underlying set X and whose topology is generated
by the countable network of X. Y is countably-based and inherits the T0-property of X,
let δY be its standard representation. Therefore, one has [˜Σ0

n](Y) = ˜Σ0
n(Y) by Theorem 2.2.

By definition of a network, every open subset of X is an open subset of Y. In other
words, id : Y→ X is continuous hence continuously realizable, which implies that [˜Σ0

n](X) ⊆
[˜Σ0

n](Y). Conversely, every open subset of Y belongs to ˜Σ0
i+1(X) which implies, by induction

on n, that ˜Σ0
n(Y) ⊆ ˜Σ0

n+i(X).
Putting everything together, we obtain [˜Σ0

n](X) ⊆ [˜Σ0
n](Y) = ˜Σ0

n(Y) ⊆ ˜Σ0
n+i(X). J

We take the following notion from [19]. An admissibly represented space is quasi-zero-
dimensional if it is the sequentialization of a zero-dimensional space, i.e. if its open sets
are the sequentially open sets of a space having a basis of clopen sets. For instance, the
spaces 2N and NN are not zero-dimensional, as proved by Schröder [18], but they are
quasi-zero-dimensional.

I Corollary 2.4. Let X be quasi-zero-dimensional, for instance X = 2N or NN . One has

[˜Σ0
n](X) ⊆ ˜Σ0

n+1(X).

Proof. The images of cylinders under the representation are closed subsets of X (Proposition 7
in [19]). J

A common technique to prove a separation result in a space Y is to prove it in a simpler
space X and then transfer the result to Y by including X into Y.

ICALP 2020
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I Proposition 2.5. Let Γ,Γ′ be complexity classes that are closed under continuous (resp. com-
putable) preimages.

Let X be a continuous (resp. computable) retract of Y. If [Γ](Y) ⊆ Γ′(Y), then [Γ](X) ⊆
Γ′(X).

Proof. Let r : Y → X and s : X → Y be continuous (resp. computable) functions such
that r ◦ s = idX. Let A ∈ [Γ](X) and B = r−1(A). As r is continuous hence continuously
realizable (resp. computable), one has B ∈ [Γ](Y) so B ∈ Γ(Y). As s is continuous
(resp. computable) and A = s−1(B), we conclude that A ∈ Γ′(X). J

If Y = (Y, δY) is a represented space and X ⊆ Y , then X := (X, δX) is a represented space
by taking δX as the restriction of δY to δ−1

Y (X). Observe that as a topological space, X is
not always a topological subspace of Y, but the sequentialization of the topological subspace
[17].

I Proposition 2.6. Let Γ be closed under finite intersections and continuous (resp. comput-
able) preimages, and Γ′ be closed under continuous (resp. computable) preimages. Let X ∈
Γ(Y). If [Γ](Y) ⊆ Γ′(Y), then [Γ](X) ⊆ Γ′(X).

Proof. The representation δX of X is the restriction of δY to δ−1
Y (X).

Let A ∈ [Γ](X). One has A ∈ [Γ](Y). Indeed, δ−1
Y (A) = δ−1

X (A) = S ∩ dom(δX)
for some S ∈ Γ(N ), and dom(δX) = δ−1

Y (X) = T ∩ dom(δY) for some T ∈ Γ(N ). By
assumption, U := S ∩ T ∈ Γ(N ) so δ−1

Y (A) = U ∩ dom(δY) and A ∈ [Γ](Y).
Threfore, A ∈ Γ′(Y) so by continuity (resp. computability) of the identity from X to Y,

we conclude that A ∈ Γ′(X). J

3 Hardness

An important tool to pinpoint the descriptive complexity of a set is provided by the notions
of hardness and completeness. If Γ is a descriptive complexity class, then in any topological
space X, one can define a set A ⊆ X to be Γ-hard if for each C ∈ Γ(N ), there is a continuous
reduction from C to A, i.e. a continuous function f : N → X such that C = f−1(A). Note
that the reduction always starts from N . It contrasts with the generalizations of Wadge
reducibility between subsets of a topological or represented spaces investigated in [14, 15].

As is well known in descriptive set theory on Polish (and even quasi-Polish) spaces, the
hardness of a set is closely related to its complexity: Wadge’s Lemma implies that for any
class Γ 6= Γ̌ of Borel sets and any Borel subset A of a Polish space X,

A is Γ-hard ⇐⇒ A /∈ Γ̌(X).

However, outside countably-based spaces it turns out that the hardness of a set is related to
its symbolic rather than topological complexity, which usually differ as we will see shortly.

Therefore, we need another notion of hardness which reflects the topological complexity
of a set.

I Definition 3.1. Let (X, τ) be a topological space and Γ a descriptive complexity class.
We say that A ⊆ X is Γ-hard* if for every countably-based topology τ ′ ⊆ τ , A is Γ-hard
in (X, τ ′). A set is Γ-complete* if it belongs to Γ(X) and is Γ-hard*.

Note that when (X, τ) is countably-based, these notions coincide with the standard notions
of hardness and completeness.
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Now we can state the main result of this section, making clear that hardness is related
to symbolic complexity, while hardness* is related to topological complexity. Say that a
topological space is analytic if it is a continuous image of N .

I Theorem 3.2. Let Γ = ˜Dα(˜Σ0
β) where α, β are countable ordinals. For an analytic

admissibly represented space X and A ⊆ X Borel,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

For β = 1, the assumptions that the space is analytic and that A is Borel can be dropped.
The proof assumes ˜Σ1

1-determinacy.

3.1 Hausdorff-Kuratowski Theorem
On Polish and even quasi-Polish spaces, there is no ˜∆0

n-complete set because of the Hausdorff-
Kuratowski Theorem. Other spaces may admit ˜∆0

n-complete* sets, and we show that this
possibility is again tightly related to the validity of the Hausdorff-Kuratowski Theorem
for ˜∆0

n-sets.

I Definition 3.3. A topological space X has the Hausdorff-Kuratowski property at
level ˜∆0

n if

˜∆0
n(X) =

⋃
α<ω1

˜Dα(˜Σ0
n−1)(X).

I Theorem 3.4. Let X be an analytic topological space.
For each n ≥ 2, X has the Hausdorff-Kuratowski property at level ˜∆0

n if and only if X
has no ˜∆0

n-complete* set.
For n = 2, the analyticity assumption can be droppped.

Proof. If the HK property is satisfied, then there is no ˜∆0
n-complete* set. Indeed, such a

set A would be in ˜Dα(˜Σ0
n−1) for some α < ω1 and some countably-based topology, and ˜∆0

n-
hard for that topology, which would imply that ˜∆0

n(N ) ⊆ ˜Dα(˜Σ0
n−1)(N ), which is known to

be false (the difference hierarchies do not collapse on N ).
Conversely, if the HK property does not hold, then there exists A ∈ ˜∆0

n(X) such
that A /∈ ˜Dα(˜Σ0

n−1) for any α < ω1. If X is analytic or n = 2, then A is ˇ˜Dα(˜Σ0
n−1)-hard*

for each α < ω1 by Theorem 3.2. As a result, A is ˜∆0
n-hard*, hence ˜∆0

n-complete*. J

We now give a criterion for the validity of the Hausdorff-Kuratowski property at a given
level.

I Theorem 3.5. Let (X, τ) be a topological space. If there exists a Polish topology τ ′ such
that τ ⊆ τ ′ ⊆ ˜Σ0

n(τ), then (X, τ) has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ n+ 1.

Proof. The proof follows the line of the argument in [10], reducing the case of ˜∆0
n to ˜∆0

2
by enriching the topology. However, some care is needed because we have to deal with two
topologies.

B Claim 3.6. For any k ≤ n and any countable family F ⊆ ˜Σ0
k(X, τ), there exists a Polish

topology τ ′′ ⊆ ˜Σ0
n(X, τ) containing F .

ICALP 2020
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Proof of the Claim. We prove it by induction on k. For k = 1, the result is immediate
by taking τ ′′ = τ ′, as F is already contained in τ ′. Assume the result for k < n and
let F ⊆ ˜Σ0

k+1(X, τ). There exists a countable family G ⊆ ˜Σ0
k(X, τ) such that each element

of F is a countable union of differences of elements of G. By induction, there is a Polish
topology τ ′′ ⊆ ˜Σ0

n(X, τ) containing G. Let τ ′′′ be generated by τ ′′ and the complements of
the elements of G. As the latter sets are closed in τ ′′ which is Polish, τ ′′′ is Polish. Moreover,
those sets belong to ˜Π0

k(X, τ) ⊆ ˜Σ0
n(X, τ), so τ ′′′ ⊆ ˜Σ0

n(X, τ). Finally, each element of F is
open in τ ′′′, and the claim is proved. C

We now prove the theorem. Let A ∈ ˜∆0
n+1(X, τ). There exists a countable family F ⊆

˜Σ0
n(X, τ) such that A and its complement are countable unions of differences of elements

of F . Applying the claim, there exists a Polish topology τ ′′ ⊆ ˜Σ0
n(X, τ) containing F .

Therefore, A ∈ ˜∆0
2(X, τ ′′) so applying the Hausdorff-Kuratowski theorem for Polish spaces,

one has A ∈ ˜Dα(X, τ ′′) for some α < ω1. We conclude by observing that τ ′′ ⊆ ˜Σ0
n(X, τ). J

We give two simple applications of this result.
The space R[X] of polynomials with real coefficients is an example of a coPolish space

which is not countably-based [3]. A polynomial is represented by giving an upper bound on
its degree as well as standard names of its coefficients. On R[X], hence on R[X]N, there is a
set in [Dω] which is ˜∆0

2-complete* (Theorem 5.8 in [1]). Theorem 3.5 implies that there is
no ˜∆0

k-complete* set for k ≥ 3.

I Corollary 3.7. The space R[X]N has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ 3, therefore that space has no ˜∆0
k-complete* set for k ≥ 3.

Proof. For each n, d ∈ N, the set Cn,d := {(Pi)i∈N : deg(Pi) ≤ d} is closed. Enriching the
topology on R[X]N with these sets results in a Polish topology contained in ˜Σ0

2(R[X]N) (the
space becomes homeomorphic to RN). J

We will see later that on O(N1), hence on O(N × N1), there is a set in [Dω] which
is ˜∆0

3-complete* (Theorem 6.5). Theorem 3.5 implies that there is no ˜∆0
k-complete* set

for k ≥ 4.

I Corollary 3.8. The space O(N×N1) has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ 4, therefore that space has no ˜∆0
k-complete* set for k ≥ 4.

Proof. We add the following sets to the topology: for each (n, f) ∈ N × N1, the closed
set Cn,f := {U : (n, f) /∈ U}; for each (n, p) ∈ N2, the ˜Π0

2-set Pn,p := {U : {n} × [0p] ⊆ U},
where [0p] is the set of functions f ∈ N1 such that f(i) = 0 for all i < p. We now show that
the resulting topological space is homeomorphic to a closed subset of the Baire space, which
implies that it is Polish.

We encode U ∈ O(N × N1) into two sequences gn, hn of elements of N , which we can
encode into a single element of N . We use a one-to-one enumeration (fi)i∈N of the elements
of N1, where f0 is the null function.

Given U , we define its code (gn, hn)n∈N as follows:
gn(i) = 1 if (n, fi) ∈ U and gn(i) = 0 if (n, fi) /∈ U .
hn(0) = 0 if (n, f0) /∈ U , and hn(0) = p + 1 if (n, f0) ∈ U and p is minimal such
that {n} × [0p] ⊆ U .

It is not hard to see that the function sending U to (gn, hn)n∈N is one-to-one and continuous
for the enriched topology, as well as its inverse, and that the subset of N consisting of the
codes of elements of O(N×N1) is closed. As a result, the enriched topological space is Polish.

Moreover, the enriched topology is contained in ˜Σ0
3(O(N×N1)). J
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4 Fréchet-Urysohn property

In [1] we have given a characterization of the coPolish spaces on which the symbolic complexity
differs from the topological complexity at the level ˜D2: they are exactly the spaces that are
not Fréchet-Urysohn.

We can extend part of the argument from coPolish spaces to Hausdorff admissibly
represented spaces. We will see later (Theorem 5.1) that the assumption that the space is
Hausdorff cannot be dropped.

I Theorem 4.1. Let X be admissibly represented and Hausdorff. If X is not Fréchet-Urysohn,
then

[˜D2](X) * ˜D2(X).

We use the Arens’ space S2, which is the inductive limit of

XN = {0} ∪
{

1
n

: n ∈ N
}
∪
{

1
n

+ 1
k
Xn : n ≤ N, k ∈ N

}
.

As in [1], one has [˜D2](S2) * ˜D2(S2) and a witness is the set A = {0} ∪ { 1
n + 1

kX
n : n, k ∈

N}. Therefore, Theorem 4.1 is an immediate corollary of the next result together with
Proposition 2.6.

I Proposition 4.2. Let X be admissibly represented and Hausdorff. X is not Fréchet-Urysohn
if and only if X contains a closed copy of S2.

I Remark 4.3 (Historical remark about Proposition 4.2). Franklin [7] proved that when X

is a Hausdorff sequential space, X is Fréchet-Urysohn if and only if it does not contain a
set which, endowed with the sequentialization of the subspace topology, is homeomorphic
to S2 (Proposition 7.3 in [7]). It implies that if X is a Hausdorff admissibly represented
space, then X is not Fréchet-Urysohn if and only if X does not contain S2 as a represented
subspace.

In [22] and [11] it is proved that when X is a Hausdorff sequential space having a point-
countable k-network, X is not Fréchet-Urysohn if and only if it does not contain a closed
set homeomorphic to S2 (Theorem 2.12 in [11]). Observe that the subspace topology on
a closed subset of a sequential space is always sequential, so there is no need to take the
sequentialization of the subspace topology as in Franklin’s result. This result implies ours,
because admissibly represented spaces are sequential and the images of cylinders under the
representation give a countable k-network. However we provide a proof in our setting for
self-containedness.

The result was also recently proved in [3] for the subclass of coPolish spaces (Proposition 66
in [3], where S2 is called Smin).

5 Spaces of open sets

As already mentioned, the assumption that the space is Hausdorff is important in Theorem
4.1, because some spaces admitting a rich poset structure behave more smoothly. This
phenomenon has been already exploited in many ways in the realm of domain theory. We
show that even in the absence of a countable basis, some positive results are still valid.
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I Theorem 5.1. Let X be admissibly represented. For every n ≥ 2,

[˜Dn](O(X)) = ˜Dn(O(X)).

We will see that this equality cannot be extended to level ω: if X is Polish and not locally
compact, then [˜Dω](O(X)) contains a ˜∆0

3-complete* set (Theorem 6.5).

Informal proof. The strategy is inspired from the one developed in [8] and [20] where a
similar result is proved in the context of numbered sets and algebraic domains. We show
that the result can be proved in the context of represented spaces, and without assuming a
countable basis.

We first isolate a property of Scott open sets: say that a set A ⊆ O(X) is approximable if
for every directed set ∆ ⊆ O(X) such that sup ∆ ∈ A, ∆ intersects A. A set is Scott open,
i.e. in ˜Σ0

1(O(X)) if and only if it is upwards closed and approximable.
We prove the following generalization. A set A is in ˜Dn(O(X)) if and only if both A

and Ac are approximable and has no n+ 1-chain, i.e. no sequence U0 ⊆ U1 ⊆ . . . ⊆ Un such
that Ui ∈ A iff i is even (it indeed generalizes the case of open sets for n = 1).

The last step is to prove that:
A subset of O(X) that is not approximable is necessarily ˜Π0

2-hard,
A subset of O(X) having an n+ 1-chain is necessarily ˇ˜Dn-hard.

Therefore, if A ∈ [˜Σ0
2](O(X)) then A is approximable, and if moreover A ∈ [˜Dn](O(X)),

then A has no n+ 1-chain.
Putting everything together implies that [˜Dn](O(X)) ⊆ ˜Dn(O(X)). J

A consequence of the preceding development is a characterization of the class [˜∆0
2] in

certain cases.

I Proposition 5.2. Let X be countably-based. The class [˜∆0
2](O(X)) is precisely the class

of approximable and co-approximable sets.

Proof. We know from the proof of Theorem 5.1 that if A ∈ [˜∆0
2](O(X)) then both A and Ac

are approximable.
Conversely, assume that A ⊆ O(X) and its complement are approximable. Observe that

if Ui is a growing sequence of open sets with union U , then 1A(Ui) converges to 1A(U)
as i → ∞, as both A and Ac are approximable. Let (Bi)i∈N be a countable basis of X,
closed under finite intersections and unions. Let E = {i ∈ N : Bi ∈ A}. From a name of an
open set U ∈ O(X), one can continuously derive a sequence (in)n∈N such that Bin ⊆ Bin+1

and
⋃
nBin = U . Therefore, whether U ∈ A can be tested with finitely mind changes, by

testing whether in ∈ E. J

5.1 Effectiveness
The proof of Theorem 5.1 is not effective. We show that there is no effective argument by
proving that [D2](O(X)) * D2(O(X)) for some particular X.

I Theorem 5.3. One has

[D2](O(N1)) * D2(O(N1)),

and a witness can be taken in ˜D2(O(N1)).

Such a set is a difference of two open sets, but computationally speaking, its name set is
strictly easier to describe than the set itself.
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Informal proof. We prove the separation result for the space N×O(N1) and observe that
this space embeds as a D2-subset of O(N1), to which the result immediately transfers by
Proposition 2.6. The following discussion is rather general, and O(N1) is a possible instance
of X.

In [1] we proved that if X is not countably-based, then for sets in ˜D2(X), one cannot
continuously convert [˜D2]-names into ˜D2-names. Another way of formulating this result is
expressed by the existence of a function f : Y→ ˜D2(X) for some represented space Y, such
that:

f : Y→ [˜D2](X) is continuously realizable,
f : Y→ ˜D2(X) is not continuously realizable.

Equivalently, it means that {(y, x) : x ∈ f(y)} belongs to [˜D2](Y×X) but not ˜D2(Y×X).
If f : Y→ [˜D2](X) is moreover computable and if there is an effective enumeration (yi)i∈N

of the computable elements of Y, then we can consider the following set:

A = {(i, x) ∈ N×X : x ∈ f(yi)}.

One immediately has A ∈ ˜D2(N × X), A ∈ [D2](N × X) and one has to prove that A /∈
D2(N×X), which depends on the details of Y and f .

For X = O(N1), one can make Y and f : Y→ ˜D2(X) very explicit: let Y = N× N and

f(∞, y) = {U ∈ O(N1) : f∞ ∈ U},
f(n,∞) = ∅,
f(n, p) = {U ∈ O(N1) : fn,p /∈ U},

where f∞ is the null function and fn,p ∈ N1 is the only function satisfying fn,p(n) = p+ 1.
One can take the following effective indexing of Y = N × N: if 〈., .〉 : N2 → N is

a computable bijection, and ti is the halting time of Turing machine number i, then
let y〈i,j〉 = (ti, tj). The set A ⊆ N×O(N1) becomes:

A = {(〈i, j〉, U) : f∞ ∈ U and Mi does not halt, or Mi and Mj halt and fti,tj /∈ U}. J

I Corollary 5.4. If N1 embeds as a D2-subset of X, then

[D2](O(X)) * D2(O(X)).

Proof. O(N1) is a computable retract of O(X), so the separation result (Theorem 5.3)
about O(N1) extends to O(X) by Proposition 2.5. J

We consider the so-called sequential fan S(ω) = {0} ∪ { 1
pX

n : n, p ∈ N} ⊆ R[X]. It is
Fréchet-Urysohn but has one point with no countable basis of neighborhoods. The space
N× S(ω) has infinitely many points with no countable basis of neighborhoods.

I Theorem 5.5. Let X = N× S(ω). One has

[D2](X) * D2(X),

and it is witnessed by an open set.

Proof. We follow the same scheme as in the preceding proof. Let

A = {(n, P ) : if Mn halts then deg(P ) > tn}.

First, A is open because it is Σ0
1 relative the halting set.
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We show that A ∈ [D2](X). We are given (n, P ), with an upper bound d on deg(P ). We
run Mn for d steps. If Mn halts before d steps, then we know the value of tn so we can test
whether deg(P ) > tn (i.e. we start rejecting (n, P ) until this test succeeds, in which case
we accept (n, P )). If Mn does not halt before d steps, then we accept (n, P ) and eventually
reject it if Mn halts (indeed, in that case one has deg(P ) ≤ d ≤ tn).

We show that A /∈ D2(X). Observe that for each n, (n, 0) belongs to the closure of A:
if Mn does not halt then (n, 0) ∈ A; if Mn halts then (n, 0) is the limit when p grows
of (n, 1

pX
tn+1) ∈ A.

Assume that A = U \ V where U, V are open subsets of X and U is effectively open. For
each n, as (n, 0) belongs to the closure of A then one must have (n, 0) /∈ V . Therefore, (n, 0) ∈
A ⇐⇒ (n, 0) ∈ U . However, (n, 0) ∈ A iff Mn does not halt, so it cannot be equivalent
to (n, 0) ∈ U which is a c.e. condition. We obtain a contradiction, so A /∈ D2(X). J

Proposition 2.6 immediately implies

I Corollary 5.6. If N× S(ω) computably embeds as a D2-subset of X, then

[D2](X) * D2(X)

with a witness in ˜D2(X).

One easily checks that the spaces R[X], 2NN and NNN are instances of this result:
N× S(ω) ⊆ R[X] by identifying (n, P ) with 1

n +XP ,
N× S(ω) ⊆ 2NN by identifying (n, 0) with {f ∈ N : f(0) = n} and (n, 1

pX
q) with {f ∈

N : f(0) = n and f(q + 1) ≤ p}.

6 Spaces of open subsets of Polish spaces

We now focus on spaces of open subsets of Polish spaces, for which we can establish a rather
precise picture of the relationship between symbolic and topological complexity, depending on
the compactness properties of the space. We show how the behavior of symbolic complexity
classes on O(X) is closely related to the compactness properties of X.

6.1 The 4 classes
The first observation is that when X is locally compact, for instance X = R, O(X) is
countably-based so it behaves very well in terms of descriptive complexity: symbolic and
topological complexity coincide. We split the whole class of Polish spaces into 4 disjoint
classes, ranging from the locally compact spaces to the non σ-compact spaces.

Let Xnk = {x ∈ X : x has no compact neighborhood}, which is a closed subset of X.

I Definition 6.1. Let X be a Polish space.
1. X ∈ Class I if Xnk = ∅, i.e. X is locally compact,
2. X ∈ Class II if Xnk 6= ∅ is finite,
3. X ∈ Class III if Xnk 6= ∅ is infinite and X is σ-compact,
4. X ∈ Class IV if X is not σ-compact.
Observe that the union of Classes I, II, III is the class of σ-compact spaces.

I Example 6.2. Let us give one example for each class:
1. R belongs to Class I,
2. N1 = {f ∈ N : f takes at most one positive value} belongs to Class II, with one element

having no compact neighborhood, namely the zero function f0,
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3. N×N1 belongs to Class III, where the elements with no compact neighborhood are the
pairs (n, f0),

4. N belongs to Class IV.

Moreover, the three latter spaces are minimal in their respective classes, i.e. embed into
every space of their classes.

I Proposition 6.3. Let X be Polish.
X /∈ Class I ⇐⇒ X contains a closed copy of N1,
X /∈ Classes I or II ⇐⇒ X contains a ˜D2 copy of N×N1,
X /∈ Classes I, II or III ⇐⇒ X contains a closed copy of N .

Proof. The backwards implications are easy, because if C is a closed subset, or even a ˜D2-
subset of X and x ∈ C has no compact neighborhood in the subspace C, then x has no
compact neighborhood in X.

Assume that X is not locally compact and let x0 ∈ Xnk. We define a double-sequence xi,n
by induction on i. Let B0 be a basic neighborhood of x0. As B0 is not compact, it contains a
sequence x0,n with no converging subsequence. In particular, there exists a neighborhood B1
of x0 such that B1 does not contain any x0,n. Again, B1 is not compact so it contains a
sequence xi,n with no converging subsequence. We continue, making sure that the radius
of Bi converges to 0. One easily checks that the set {x0} ∪ {xi,n : i, n ∈ N} is closed and
homeomorphic to N1, by sending x0 to the zero function, and xi,n to the function f such
that f(i) = n.

Assume that Xnk is infinite. It contains a copyD of N withD ∈ ˜D2(X). Each point x ∈ D
is contained in a neighrbohood Bx such that Bx ∩By = ∅ for x 6= y. Around each point x
of D and inside Bx we can build a closed copy of N1 as in the previous case. Their union is
a copy of N×N1 and belongs to ˜D2(X).

The third statement is a particular case of Hurewicz theorem (Theorem 7.10 in [10]). J

6.2 Classification

We now relate the behavior of symbolic complexity on O(X) to the class of X. We first
locate the symbolic complexity classes.

I Theorem 6.4 (Classification – Positive results). Let X be Polish.
1. If X ∈ Class I, then [˜Σ0

k](O(X)) = ˜Σ0
k(O(X)) for all k,

2. If X ∈ Class II, then [˜Σ0
k](O(X)) = ˜Σ0

k(O(X)) for k ≥ 3,
3. If X ∈ Class III, then [˜Σ0

k](O(X)) ⊆ ˜Σ0
k+2(O(X)) for k ≥ 2.

Informal proof. If X ∈ Class I, i.e. if X is locally compact, then O(X) is countably-based [16],
so symbolic and topological complexity coincide there (Theorem 2.2).

If X ∈ Class II, then up to a finite set, X is countably-based, and we show that this finite
set do not affect the complexity of sets for levels k ≥ 3.

If X ∈ Class III, then X is σ-compact, so its open sets are σ-compact as well. Therefore,
for each open set B, the corresponding set PB = {U ∈ O(X) : B ⊆ U} belongs to ˜Π0

2(O(X)).
The countable family B of finite unions basic open subsets of X induces a countable net-
work (PB)B∈B of O(X) made of ˜Π0

2-sets. Therefore, we can apply Proposition 2.3. J
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We then identify gaps between symbolic and topological complexity.

I Theorem 6.5 (Classification – Negative results). Let X be Polish.
1. If X /∈ Class I, then [˜Dω](O(X)) contains a ˜∆0

3-complete* set,
2. If X /∈ Class II, then [˜Σ0

k](O(X)) contains a ˜Σ0
k+1-complete*-set for k ≥ 2,

3. If X /∈ Class III, then [˜Σ0
2](O(X)) contains a non-Borel set.

We observe that two phenomena are possible. For some spaces, the classes [˜Σ0
k] and ˜Σ0

k

differ for low values of k and then coincide after some rank (if X is in Class II, then they
coincide for k ≥ 3). For other spaces, the classes never coincide (if X is in Class III or IV).

It is open whether ˜Σ0
k(O(X)) ⊆ ˜Σ0

k+1(O(X)) when X belongs to Class III. A similar
study should be done when X is not Polish.

Informal proof. The difference between symbolic and topological complexity is related to the
fact that product spaces usually have two different natural topologies: the product topology
(which is the structure obtained as the cartesian product in the category of topological
spaces), and its sequentialization (obtained from the cartesian product in the category of
QCB0-spaces, or admissibly represented spaces). These two different topologies obviously
induce different topological complexity classes, already at the first level ˜Σ0

1.
For instance, on N × O(N ), the set {(f, U) : f ∈ U} is open but is not Borel for the

product topology.
The proof shows how to exploit the difference between the product topology and its

sequentialization on the space N ×O(X) and turn it into a difference between symbolic and
topological complexity on O(X).

When X = N×N1, one has X ∼= N×X so O(X) ∼= O(X)N. This equality enables one to
iterate: if Ak ∈ [Σ0

k](O(X)) is ˜Σ0
k+1-complete*, then the set

Ak+1 = {(Ui)i∈N ∈ O(X)N : ∃i, Ui /∈ Ak}

belongs to [˜Σ0
k+1](O(X)N) and it ˜Σ0

k+2-complete*. J

The fact that X is Polish is essential in the proofs. A particular property of Polish and
quasi-Polish spaces that is used is the following.

I Proposition 6.6. If X and Y are quasi-Polish, then the topologies on the admissiby
represented spaces O(X)N and O(X)×O(Y) are the product topologies.

Proof. As represented spaces, one has O(X)N ∼= O(N×X) and O(X)×O(Y) ∼= O(X tY).
The topologies on the admissibly represented spaces O(N×X) and O(X tY) are the Scott
topologies.

On the other hand, for any topological spaces X,Y , it is easy to see that the compact-open
topology on O(N×X) and O(X t Y ) is the product topology on O(X)N and O(X)×O(Y )
respectively, where O(X) and O(Y ) are endowed with the compact-open topology.

When X and Y are quasi-Polish, so are N×X and XtY, so X, Y, N×X and XtY are
consonant, i.e. the Scott topology and the compact-open topology coincide on their spaces of
open sets [4]. As a result the topology on the represented spaces O(X)N and O(X)×O(Y)
is the product of the topologies on O(X) and O(Y). J
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Open subsets of the Baire space
We now give the complete proof that the class [Σ0

2](O(N )) contains a set that is not Borel
(Theorem 6.5, item 3.).

Proof. We have seen that two represented spaces X and Y naturally induce a third rep-
resented space X×Y. The topology induced by that representation is not in general the
product topology, but its sequentialization.

A simple example is given by X = N and Y = O(N ). The evaluation map N×O(N )→ S
is continuous (and computable), however it is not continuous w.r.t. the product topology,
because N is not locally compact (see [6] for more details on this topic). In other words the
set {(f,O) ∈ N ×O(N ) : f ∈ O} is not open for the product topology (but it is sequentially
open, or open for the topology induced by the representation). It is even worse.

I Proposition 6.7. E = {(f,O) ∈ N ×O(N ) : f ∈ O} is not Borel for the product topology.

Proof. We prove that for every Borel set A, there exists a dense Gδ-set G ⊆ N such that for
every f ∈ G, (f,N \ {f}) ∈ A ⇐⇒ (f,N ) ∈ A. It implies the result as it is obviously false
for the set E. To prove it, we show that the class of sets satisfying this condition contains
the open sets in the product topology and is closed under taking complements and countable
unions, which implies that this class contains the Borel sets.

First, consider a basic open set A = [u] × UK where u is a finite sequence of natural
numbers, K is a compact subset of N and UK = {O ∈ O(N ) : K ⊆ O}. Define G =
[u]c ∪ [u] \K, which is a dense open set. For f ∈ [u]c, no (f,O) belongs to A. For f ∈ [u] \K,
both (f,N \ {f}) and (f,N ) belong to A.

If A satisfies the condition with a dense Gδ-set G, then Ac satisfies the condition with the
same G. If Ai satisfy the condition with dense Gδ-sets Gi then

⋃
iAi satisfies the condition

with G =
⋂
iGi. J

We now use the set E to build a set in [Σ0
2](O(N )) which is not Borel. We show

that N ×prod O(N ), which is the topological space endowed with the product topology, is
a [Σ0

2]-retract of O(N ). We build:
A continuous function s : N ×prod O(N )→ O(N ),
A [Σ0

2]-measurable function r : O(N )→ N ×O(N ),
Such that r ◦ s = id.

First, these ingredients enable us to derive the result. Indeed, let E be the set from Proposition
6.7 and F := r−1(E) ⊆ O(N ). As E is open in N ×O(N ), F is Σ0

2. However F is not Borel,
otherwise E = s−1(F ) would be Borel in N ×prod O(N ).

Let us now build s and r. We identify O(N ) with O(N )×O(N ) and use the fact that
the topology on O(N )×O(N ) coincides with the product topology by Proposition 6.6.

I Lemma 6.8. N is a [Σ0
2]-retract of O(N): there exists r : O(N) → N which is [Σ0

2]-
measurable, s : N → O(N) which is computable, such that r ◦ s = idN .

Proof. Let 〈., .〉 : N2 → N be a computable bijection. Let r(E) = fE be defined by

fE(i) =
{

min{j ∈ N : 〈i, j〉 ∈ E} if that set is non-empty,
0 otherwise.

Let s(f) = {〈i, f(i)〉 : i ∈ N, f(i) ≥ 1}. One easily checks that r and s satisfy the required
conditions. J
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By Lemma 6.8,N is a [Σ0
2]-retract of O(N), which is a computable retract of O(N ), soN is

a [Σ0
2]-retract of O(N ). It is witnessed by two functions r0 : O(N )→ N and s0 : N → O(N )

such that r0 ◦ s0 = idN .
Let us simply pair s0 and r0 with the identity on O(N ): let s(f,O′) = (s0(f), O′)

and r(O,O′) = (r0(O), O′). J

In particular, that set is not a countable union of differences of open sets, as it should be
on Polish or quasi-Polish spaces. More generally, it is not a countable boolean combination
of open sets.

In order to overcome the mismatch between the hierarchy inherited from N via the
representation and the class of Borel sets, one may attempt to change the definition of
Borel sets. In [12] the Borel sets are redefined as the smallest class containing the open sets
and the saturated compact sets, and closed under countable unions and complements. We
observe here that this class is too large in the space O(N ). First, if U ⊆ N is open then
the set {V ∈ O(N ) : U ⊆ V } is compact and saturated in O(N ). From this it is easy to
see that the set built above is Borel in this weaker sense. However this notion of Borel sets
is too loose, because compact saturated sets do not usually have a Borel pre-image. For
instance, the singleton {N} is compact saturated but its pre-image under the representation
is a ˜Π1

1-complete set, hence is not Borel.
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