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Abstract
The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and
Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as
they showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with
bounded error, the language Leq = {ambm : m ∈ N} in expected polynomial time and the language
Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected exponential time.

We further demonstrate the power of 2QCFA by showing that they can recognize the word
problems of many groups. In particular 2QCFA, with a single qubit and algebraic number transition
amplitudes, can recognize, with bounded error, the word problem of any finitely generated virtually
abelian group in expected polynomial time, as well as the word problems of a large class of linear
groups in expected exponential time. This latter class (properly) includes all groups with context-free
word problem. We also exhibit results for 2QCFA with any constant number of qubits.

As a corollary, we obtain a direct improvement on the original Ambainis and Watrous result by
showing that Leq can be recognized by a 2QCFA with better parameters. As a further corollary, we
show that 2QCFA can recognize certain non-context-free languages in expected polynomial time.

In a companion paper, we prove matching lower bounds, thereby showing that the class of
languages recognizable with bounded error by a 2QCFA in expected subexponential time is properly
contained in the class of languages recognizable with bounded error by a 2QCFA in expected
exponential time.
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1 Introduction

The theory of quantum computation has made amazing strides in the last several decades.
Landmark results, like Shor’s polynomial time quantum algorithm for integer factorization [31],
Grover’s algorithm for unstructured search [14], and the linear system solver of Harrow,
Hassidim, and Lloyd [15], have provided remarkable examples of natural problems for
which quantum computers seem to have an advantage over their classical counterparts.
These theoretical breakthroughs have provided strong motivation to construct quantum
computers. However, while significant advancements have been made, the experimental
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139:2 The Power of a Single Qubit

quantum computers that exist today are still quite limited, and are certainly not capable of
implementing, on a large scale, algorithms designed for general quantum Turing machines.
This naturally motivates the study of more restricted models of quantum computation.

In this paper, our goal is to understand the computational power of a small number of
qubits, especially the power of a single qubit. To that end, we study two-way finite automata
with quantum and classical states (2QCFA), introduced by Ambainis and Watrous [1].
Informally, a 2QCFA is a two-way deterministic finite automaton (2DFA) that has been
augmented with a quantum register of constant size, i.e., a constant number of qubits. The
quantum part of the machine is extremely limited; however, the model is surprisingly powerful.
In particular, Ambainis and Watrous [1] showed that a 2QCFA, using only one qubit, can
recognize, with bounded error, the language Leq = {ambm : m ∈ N} in expected polynomial
time and the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected exponential
time. This clearly demonstrated that 2QCFA are more powerful than 2DFA, which recognize
precisely the regular languages [26]. Moreover, as it is known that two-way probabilistic
finite automata (2PFA) can recognize Leq with bounded error in exponential time [11], but
not in subexponential time [13], and cannot recognize Lpal with bounded error in any time
bound [10], this result also demonstrated the superiority of 2QCFA over 2PFA.

We investigate the ability of 2QCFA to recognize the word problem of a group. Informally,
the word problem for a group G involves determining if the product of a finite sequence
of group elements g1, . . . , gk ∈ G is equal to the identity element of G. Word problems for
various classes of groups have a rich and well-studied history in computational complexity
theory, as there are many striking relationships between certain algebraic properties of a group
G and the computational complexity of its word problem WG. For example, WG ∈ REG⇔ G

is finite [3], WG ∈ CFL⇔WG ∈ DCFL⇔ G is a finitely generated virtually free group [23],
and WG ∈ NP ⇔ G is a finitely generated subgroup of a finitely presented group with
polynomial Dehn function [5].

For a quantum model, such as the 2QCFA, word problems are a particularly natural class
of languages to study. There are several results [6, 37, 36] which show that certain (generally
significantly more powerful) QFA variants can recognize the word problems of particular
classes of groups (see the excellent survey [2] for a full discussion of the many QFA variants).
Moreover, there are also results concerning the ability of QFA to recognize certain languages
that are extremely closely related to word problems; in fact, the languages Leq and Lpal
considered by Ambainis and Watrous [1] are each closely related to a word problem.

Fundamentally, the laws of quantum mechanics sharply constrain the manner in which
the state of the quantum register of a 2QCFA may evolve, thereby forcing the computation
of a 2QCFA to have a certain algebraic structure. Similarly, the algebraic properties of a
particular group G impose a corresponding algebraic structure on its word problem WG. For
certain classes of groups, the algebraic structure of WG is extremely compatible with the
algebraic structure of the computation of a 2QCFA; for other classes of groups, these two
algebraic structures are in extreme opposition.

In this paper, we show that there is a broad class of groups for which these algebraic
structures are quite compatible, which enables us to produce 2QCFA that recognize these
word problems. As a corollary, we show that Leq can be recognized by a 2QCFA with better
parameters than in the original Ambainis and Watrous result [1].

In a separate paper [27], we establish matching lower bounds on the running time of a
2QCFA (and, more generally, a quantum Turing machine that uses sublogarithmic space)
that recognizes these word problems, thereby demonstrating the optimality of these results;
this allows us to prove that the class of languages recognizable with bounded error by 2QCFA
in expected subexponential time is properly contained in the class of languages recognizable
with bounded error by 2QCFA in expected exponential time.
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1.1 Statement of the Main Results
We begin by formally defining the word problem of a group; for more extensive background,
see, for instance, [21]. Let F (S) denote the free group on the set S. For sets S and R,
where R ⊆ F (S), let 〈RF (S)〉 denote the normal closure of R in F (S); we say that a group
G has presentation 〈S|R〉 if G ∼= F (S)/〈RF (S)〉, in which case we write G = 〈S|R〉. For a
set S, we define the set of formal inverses S−1, such that for each s ∈ S, there is a unique
corresponding s−1 ∈ S−1, and S ∩ S−1 = ∅.

I Definition 1. Suppose G = 〈S|R〉, where S is finite. Let Σ = S t S−1, let Σ∗ denote
the free monoid over Σ, let φ : Σ∗ → G denote the natural monoid homomorphism that
takes each string in Σ∗ to the element of G that it represents, and let 1G denote the identity
element of G. The word problem of G with respect to the presentation 〈S|R〉 is the language
WG=〈S|R〉 = {w ∈ Σ∗ : φ(w) = 1G} consisting of all strings that represent 1G.

Note that if G = 〈S|R〉, then S (or more precisely the image of S in G under φ) is a
generating set for G. We say that G is finitely generated if it has a generating set S that
is finite. If G also has presentation 〈S′|R′〉, where S′ is also finite, then for any complexity
class C closed under inverse homomorphism, WG=〈S|R〉 ∈ C ⇔WG=〈S′|R′〉 ∈ C [16]. As each
complexity class C considered in this paper is closed under inverse homomorphism, we will use
WG to denote the word problem of a finitely generated group G, and we will write WG ∈ C
if WG=〈S|R〉 ∈ C for some (equivalently, every) presentation 〈S|R〉 of G with S finite.

We show that, for many groups G, the corresponding word problem WG is recognized
by a 2QCFA with “good” parameters. In order to state these results, we must make use of
some terminology and notation concerning 2QCFA and various classes of groups whose word
problems are of complexity theoretic interest. We define the 2QCFA model in Section 2. For
other definitions and additional background, we refer the reader to the full version of this
paper [28]. We use R>0 to denote the positive real numbers.

I Definition 2. For T : N → N, ε ∈ R>0, d ∈ N, and A ⊆ C, let the complexity class
coR2QCFA(T, ε, d,A) consist of all languages L ⊆ Σ∗ for which there is a 2QCFA M ,
which has d quantum basis states and transition amplitudes in A, such that, ∀w ∈ Σ∗, the
following holds: M runs in expected time O(T (|w|)), Pr[M accepts w]+Pr[M rejects w] = 1,
w ∈ L⇒ Pr[M accepts w] = 1, and w 6∈ L⇒ Pr[M rejects w] ≥ 1− ε.

The focus on the transition amplitudes of a 2QCFA warrants a bit of additional justifica-
tion, as while it is standard to limit the transition amplitudes of a Turing machine in this way,
it is common for finite automata to be defined without any such limitation. For many finite
automata models, applying such a constraint would be superfluous; for example, the class of
languages recognized with bounded error and in expected time 2no(1) by a 2PFA with no
restriction at all on its transition amplitudes is precisely the regular languages [9]. However,
the power of the 2QCFA model is quite sensitive to the choice of transition amplitudes. A
2QCFA with non-computable transition amplitudes can recognize undecidable languages,
with bounded error and in expected polynomial time [29]; whereas, 2QCFA with transition
amplitudes restricted to the algebraic numbers Q can only recognize languages in P ∩ L2,
even if permitted unbounded error and exponential time [34]. In particular, the algebraic
numbers are arguably the “standard” choice for the permitted transition amplitudes of a
quantum Turing machine (QTM). It is desirable for the definition of 2QCFA to be consistent
with that of QTMs as such consistency makes it more likely that techniques developed for
2QCFA could be applied to QTMs. Therefore, Q is the the natural choice for the permit-
ted transition amplitudes of a 2QCFA, though we do also consider the impact of allowing
transition amplitudes in the slightly broader class C̃ = Q ∪ {eπir : r ∈ (Q ∩ R)}.

ICALP 2020



139:4 The Power of a Single Qubit

We begin with a simple motivating example. For a finite alphabet Σ, a symbol σ ∈ Σ,
and a word w ∈ Σ∗, let #(w, σ) denote the number of appearances of σ in w. Then the
word problem for the group Z (the integers, where the group operation is addition) is the
language WZ = {w ∈ {a, b}∗ : #(w, a) = #(w, b)}. This language is closely related to
the language Leq = {ambm : m ∈ N}; in particular, Leq = (a∗b∗) ∩WZ. More generally,
the word problem for the group Zk (the direct product of k copies of Z) is the language
WZk = {w ∈ {a1, b1, . . . , ak, bk}∗ : #(w, ai) = #(w, bi),∀i}.

Ambainis and Watrous [1] showed that Leq ∈ coR2QCFA(n4, ε, 2, C̃), ∀ε ∈ R>0. We note
that the same method would easily imply the same result for WZ, and could be further
adapted to produce a similar result forWZk . Our first main theorem generalizes and improves
upon these results in several ways. Let Π̂1 denote the collections of all finitely generated
virtually abelian groups (i.e., all groups that have a finite-index subgroup isomorphic to Zk,
for some k ∈ N, where Z0 is the trivial group); we will explain this choice of notation shortly.

I Theorem 3. ∃C ∈ R>0 such that ∀G ∈ Π̂1,∀ε ∈ R>0, WG ∈ coR2QCFA(n3, ε, 2, C̃) ∩
coR2QCFA(nC , ε, 2,Q).

By the above observation that Leq = (a∗b∗) ∩WZ, the following corollary is immediate.

I Corollary 4. ∃C ∈ R>0,∀ε ∈ R>0, Leq ∈ coR2QCFA(n3, ε, 2, C̃) ∩ coR2QCFA(nC , ε, 2,Q).

The above corollary improves upon the result of Ambainis and Watrous [1] in two distinct
senses. Firstly, using the same set of permissible transition amplitudes, our result has a
better expected running time. Secondly, our result shows that Leq can be recognized by a
2QCFA with transition amplitudes in Q, which still runs in expected polynomial time.

Let CFL denote the context-free languages (languages recognized by non-deterministic
pushdown automata), OCL denote the one-counter languages (languages recognized by non-
deterministic pushdown automata with single-symbol stack alphabet) and poly−CFL (resp.
poly−OCL) denote the intersection of finitely many context-free (resp. one-counter) languages.
As WG ∈ poly−OCL⇔ G ∈ Π̂1 [17], the following corollary is also immediate.

I Corollary 5. ∃C ∈ R>0,∀WG ∈ poly−OCL,∀ε ∈ R>0, WG ∈ coR2QCFA(n3, ε, 2, C̃)∩
coR2QCFA(nC , ε, 2,Q).

Moreover, asWG ∈ poly−OCL∩CFL⇔ G is a finitely generated virtually cyclic group [17],
the above corollary exhibits a wide class of non-context-free languages that are recognizable
by a 2QCFA in polynomial time: the word problem of any group that is virtually Zk, k ≥ 2.

Next, let Fk denote the free group of rank k, for k ∈ N; in particular, F0 is the trivial
group, F1 is the group Z, and, for any k ≥ 2, Fk is non-abelian. Notice that WF2 is closely
related to the language Lpal. Ambainis and Watrous [1] showed that, ∀ε ∈ R>0, ∃D ∈ R≥1,
such that Lpal ∈ coR2QCFA(Dn, ε, 2,Q), and the same method would show the same result
for WF2 . We show that the same result holds for any group built from free groups, using
certain operations. Let Π̂2 denote the collection of all finitely generated groups that are
virtually a subgroup of a direct product of finitely many finite-rank free groups.

I Theorem 6. ∀G ∈ Π̂2,∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, 2,Q).

AsWG ∈ CFL⇔ G is a finitely generated virtually free group [23], we obtain the following.

I Corollary 7. ∀WG ∈ CFL,∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, 2,Q).

Consider the homomorphism π : F2 × F2 → Z, where π takes each free generator of each
copy of F2 to a single generator of Z; then K = kerπ is finitely generated, but not finitely
presented [32]. All groups G for which WG ∈ CFL∪ poly−OCL are finitely presented [16]. As
K ∈ Π̂2, we have the following corollary.
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I Corollary 8. There is a finitely generated group K, which is not finitely presented (hence,
WK 6∈ CFL∪poly−OCL), where ∀ε ∈ R>0,∃D ∈ R≥1, such thatWK ∈ coR2QCFA(Dn, ε, 2,Q).

I Remark 9. It is known that, if G ∈ Π̂2, thenWG ∈ poly−CFL [7]. Moreover, it is conjectured
that Π̂2 is precisely the class of groups whose word problem is in poly−CFL [7] (cf. [8]).

We next consider a broader class of groups. Let Z(H) denote the center of a group H,
let U(d,Q) denote the group of d × d unitary matrices with entries in Q, let PU(d,Q) =
U(d,Q)/Z(U(d,Q)), and let (PU(d,Q))k denote the direct product of k copies of PU(d,Q).

I Theorem 10. If G is a finitely generated group that is virtually a subgroup of (PU(d,Q))k,
for some d, k ∈ N≥1, then ∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, d,Q).

In order to state our final main result, as well as to provide appropriate context for the
results listed above, we define the classes of groups Σj and Πj , for j ∈ N, inductively. First
Σ0 = Π0 = {Z, {1}} (i.e., both classes consist of the two groups Z and the trivial group
{1}). We use × to denote the direct product and ∗ to denote the free product. For j > 1,
we define Πj = {H1 × · · · ×Ht : t ∈ N≥1, H1, . . . ,Ht ∈ Σj−1} and Σj = {H1 ∗ · · · ∗Ht : t ∈
N≥1, H1, . . . ,Ht ∈ Πj−1}. These groups comprise an important subclass of a particularly
important class of groups: the right-angled Artin groups. Note that every G ∈

⋃
j(Πj ∪ Σj)

is finitely generated. Also note that the Πj and Σj form a hierarchy in the obvious way. We
further define Π̂j (resp. Σ̂j) as the set of all finitely generated groups that are virtually a
subgroup of some group in Πj (resp. Σj), which also form a hierarchy in the obvious way.

In particular, Π̂1 (resp. Π̂2) is precisely the class of groups for which Theorem 3 (resp.
Theorem 6) demonstrates the existence of a 2QCFA that recognizes the corresponding
word problem with bounded error in expected polynomial (resp. exponential) time. We
next consider the class Π̂3. While the relationship of this class to the class of groups to
which Theorem 10 applies is unclear to us, we can show that the word problem of any
group in this class can be recognized by a 2QCFA with negative one-sided unbounded
error. Let coN2QCFA(T, d,A) be defined as in Definition 2, except we now only require that
Pr[N rejects w] > 0,∀w 6∈ L.

I Theorem 11. If G ∈ Π̂3, then WG ∈ coN2QCFA(n, 2, C̃).

I Remark 12. Z ∗ Z2 ∈ Σ2 ⊆ Π̂3. It is conjectured [7, 18] that WZ∗Z2 6∈ poly−CFL ∪ coCFL.
Lastly, we consider 2QCFA with no restrictions on their transition amplitudes, as well as

the measure-once one-way quantum finite automaton (MO-1QFA) defined by Moore and
Crutchfield [22]. Let coN1QFA denote the class of languages recognizable with negative
one-sided unbounded error by a MO-1QFA (with any constant number of states).

I Theorem 13. If G is a finitely generated group that is virtually a subgroup of (PU(d))k,
for some d, k ∈ N≥1, then WG ∈ coN2QCFA(n, d,C) ∩ coN1QFA.

Let D denote the class of groups to which the preceding theorem applies (which includes
all groups to which all earlier theorems apply). Let S denote the stochastic languages
(the class of languages recognizable by PFA with strict cut-points). By [6, Theorem 3.6],
coN1QFA ⊆ coS, which implies the following corollary.

I Corollary 14. If G ∈ D, then WG ∈ coS.

I Remark 15. For many G ∈ D, the fact that WG ∈ coS was already known: WFk ∈ coS,
∀k [6], which implies (by standard arguments from computational group theory, see for
instance [23]) that ∀G ∈ Π̂2, WG ∈ coS. However, for G ∈ D \ Π̂2, this result appears to
be new.

ICALP 2020



139:6 The Power of a Single Qubit

2 Quantum Computation and the 2QCFA

In this section, we briefly recall the fundamentals of quantum computation and the definition
of 2QCFA. For further background on quantum computation, see, for instance, [24, 35].

A natural way of understanding quantum computation is as a generalization of probabilistic
computation. One may consider a probabilistic system defined over some finite set of states
C = {c1, . . . , ck}, where the state of that system, at any particular point in time, is given
by a probability distribution over C. Such a probability distribution may be described by a
vector v = (vc1 , . . . , vck), where vc ∈ R≥0 denotes the probability that the system is in state
c ∈ C, and

∑
c vc = 1, i.e., v is simply an element of Rk≥0 with L1-norm 1.

Similarly, consider some finite set of quantum basis states Q = {q1, . . . , qk}, which
correspond to an orthonormal basis |q1〉 , . . . , |qk〉 of Ck (here and throughout the paper we
use the standard bra-ket notation). The state of a quantum system over Q, at any particular
time, is given by some superposition |ψ〉 =

∑
q αq |q〉 of the basis states, where each αq ∈ C

and
∑
q|αq|2 = 1; i.e., a superposition |ψ〉 is simply an element of Ck with L2-norm 1.

Let U(k) denote the group of k×k unitary matrices. Given a quantum system currently in
the superposition |ψ〉, one may apply a transformation t ∈ U(k) to the system, after which the
system is in the superposition t |ψ〉. One may also perform a projective measurement in the
computational basis, which is specified by some partition B = {B0, . . . , Bl} of Q. Measuring
a system that is in the superposition |ψ〉 =

∑
q αq |q〉 with respect to B gives the result

Br ∈ B with probability pr :=
∑
q∈Br |αq|

2; additionally, if the result of the measurement
is Br, then the state of the system collapses to the superposition 1√

pr

∑
q∈Br αq |q〉. We

emphasize that measuring a quantum system changes the state of that system.
We now define a 2QCFA, essentially following the original definition in [1]. Infor-

mally, a 2QCFA is a two-way deterministic finite automaton that has been augmented
with a finite size quantum register. Formally, a 2QCFA M is given by an 8-tuple, M =
{Q,C,Σ, δ, qstart, cstart, cacc, crej}, where Q (resp. C) is the finite set of quantum (resp. clas-
sical) states, Σ is a finite alphabet, δ is the transition function, qstart ∈ Q (resp. cstart ∈ C)
is the quantum (resp. classical) start state, and cacc, crej ∈ C, where cacc 6= crej , are the
accepting and rejecting states. The quantum register of M is given by the quantum system
with basis states Q. We define the tape alphabet Γ := Σ t {#L,#R} where the two distinct
symbols #L,#R 6∈ Σ will be used to denote, respectively, a left and right end-marker.

Each step of the computation of the 2QCFA M involves either performing a unitary
transformation or a projective measurement on its quantum register, updating the classical
state, and moving the tape head. This behavior is encoded in the transition function δ.
For each (c, γ) ∈ (C \ {cacc, crej})× Γ, δ(c, γ) specifies the behavior of M when it is in the
classical state c and the tape head currently points to a tape alphabet symbol γ. There are
two forms that δ(c, γ) may take, depending on whether it encodes a unitary transformation
or a projective measurement. In the first case, δ(c, γ) is a triple (t, c′, h) where t ∈ U(|Q|) is a
unitary transformation to be performed on the quantum register, c′ ∈ C is the new classical
state, and h ∈ {−1, 0, 1} specifies whether the tape head is to move left, stay put, or move
right, respectively. In the second case, δ(c, γ) is a pair (B, f), where B is a partition of Q
specifying a projective measurement, and f : B → C × {−1, 0, 1} specifies the mapping from
the result of that measurement to the evolution of the classical part of the machine, where,
if the result of the measurement is Br, and f(Br) = (c′, h), then c′ ∈ C is the new classical
state and h ∈ {−1, 0, 1} specifies the movement of the tape head.

The computation of M on an input w ∈ Σ∗ is then defined as follows. If w has length n,
then the tape will be of size n + 2 and contain the string #Lw#R. Initially, the classical
state is cstart, the quantum register is in the superposition |qstart〉, and the tape head points
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to the leftmost tape cell. At each step of the computation, if the classical state is currently c
and the tape head is pointing to symbol γ, the machine behaves as specified by δ(c, γ). If,
at some point in the computation, M enters the state cacc (resp. crej) then it immediately
halts and accepts (resp. rejects) the input w. As quantum measurement is a probabilistic
process, the computation of M is probabilistic. For any w ∈ Σ∗, we write Pr[M accepts w]
(resp. Pr[M rejects w]) for the probability that M will accept (resp. reject) the input w.

Let T = {t ∈ U(|Q|) : ∃(c, γ) ∈ ((C \ {cacc, crej})× Γ) such that δ(c, γ) = (t, ·, ·)} denote
the set of all unitary transformations that M may perform. The transition amplitudes of M
are the set of numbers A that appear as entries of some t ∈ T .

3 Distinguishing Families of Representations

The landmark result of Lipton and Zalcstein [20] showed that, if G is a finitely generated
linear group over a field of characteristic zero, then WG ∈ L. The key idea behind their
logspace algorithm was to make use of a carefully chosen representation of the group G in
order to recognize WG (see, for instance, [19] or the full version of our paper [28] for the
notation and terminology from representation theory used in this section). Our 2QCFA
algorithm will operate in a similar manner; however, the constraints of quantum mechanics
will require us to make many modifications to their approach.

A (unitary) representation of a (topological) group G is a continuous homomorphism
ρ : G→ U(H), where H is a Hilbert space, and U(H) is the group of unitary operators on
H. The Gel’fand-Raikov theorem states that the elements of any locally compact group G
are separated by its unitary representations; i.e., ∀g ∈ G with g 6= 1G, there is some H and
some ρ : G→ U(H) such that ρ(g) 6= ρ(1G). For certain groups, stronger statements can be
made; in particular, one calls a group maximally almost periodic if the previous condition
still holds when H is restricted to be finite-dimensional.

The core idea of our approach to recognizing the word problem WG of a particular group
G is to construct what we have chosen to call a distinguishing family of representations
(DFR) for G, which is a refinement of the above notion. Informally, a DFR is a collection
of a small number of unitary representations of G, all of which are over a Hilbert space of
small dimension, such that, for any g ∈ G other than 1G, there is some representation ρ in
the collection for which ρ(g) is “far from” ρ(1G), relative to the “size” of g. The following
definition formalizes this, by introducing parameters to quantify the above fuzzy notions.
In this definition, and in the remainder of the paper, let U(d) denote the group of d × d
unitary matrices, let M(d,A) denote the set of d × d matrices with entries in some set A,
let U(d,A) = U(d) ∩M(d,A), and let G6=1 = G \ {1G}. For a group G = 〈S|R〉, let l(g)
denote the length of any g ∈ G relative to the generating set S (i.e., l(g) is the minimum
value of m for which ∃g1, . . . , gm ∈ S ∪S−1 such that g = φ(g1 · · · gm)). For a representation
ρ : G→ U(d), let χρ : G→ C denote the character of ρ (i.e., χρ(g) = Tr(ρ(g))).

I Definition 16. Consider a group G = 〈S|R〉, with S finite. For k ∈ N≥1, d ∈ N≥2,
τ : R>0 → R>0 a monotone non-increasing function, and A ⊆ C, we define a [k, d, τ,A]-
distinguishing family of representations (DFR) for G to be a set F = {ρ1, . . . , ρk} where the
following conditions hold.
(a) ∀j ∈ {1, . . . , k}, ρj : G→ U(d) is a representation of G.
(b) ∀g ∈ G6=1, ∃j ∈ {1, . . . , k} such that |χρj (g)| ≤ d− τ(l(g)).
(c) ∀σ ∈ S ∪ S−1,∀j ∈ {1, . . . , k}, ∃Y1, . . . , Yt ∈ U(d,A), such that ρj(σ) =

∏
i Yi.
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Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR for G = 〈S|R〉. We write Id = 1U(d) ∈ U(d)
for the d× d identity matrix, ker(ρj) = {g ∈ G : ρj(g) = Id} for the kernel of ρj , Z(U(d)) =
{eirId : r ∈ R} for the center of U(d), and Pker(ρj) = {g ∈ G : ρj(g) = Z(U(d))} for the
quasikernel of ρj . Clearly, 1G ∈ Pker(ρj),∀j, but, as ρj is not assumed to be P-faithful or
even faithful, there may be g ∈ G6=1 for which, for certain j, we have g ∈ Pker(ρj). However,
due to the fact that g ∈ Pker(ρj) exactly when |χρj (g)| = d, the second defining property
of a DFR guarantees not only that

⋂
j Pker(ρj) = {1G}, but, much more strongly, that

all g ∈ G6=1 are “far from” being in
⋂
j Pker(ρj). That is to say, ∀g ∈ G6=1,∃j such that

|χρj (g)| is at distance at least τ(l(g)) from having value d. The following proposition is then
immediate, but we explicitly state it as it is the central notion in our quantum approach to
the word problem.

I Proposition 17. Suppose G = 〈S|R〉 has a [k, d, τ,A]-DFR F = {ρ1, . . . , ρk}. Then,
∀g ∈ G, g = 1G ⇔ ∀j, |χρj (g)| = d and g ∈ G6=1 ⇔ ∃j such that |χρj (g)| ≤ d− τ(l(g)).

Note that, in the preceding proposition, ρ1 ⊕ · · · ⊕ ρk : G→ U(kd) is simply a faithful
representation of G, decomposed into subrepresentations in a convenient way. Next, we
establish some terminology that will better allow us to describe particular types of DFR.

I Definition 18. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR for a group G.
(a) If A = Q (equivalently, if ρj(G) ⊆ U(d,Q),∀j), we say F is an algebraic DFR.
(b) If ρj(g) is a diagonal matrix ∀j,∀g, then we say F is a diagonal DFR.
(c) If H is a finite-index overgroup of G, we say that H virtually has a [k, d, τ,A]-DFR.

When F is an algebraic DFR, we will often only write [k, d, τ ] to denote its parameters.
Note that only abelian groups have diagonal DFRs, and any DFR of an abelian group can
be converted to a diagonal DFR; we define diagonal DFRs for convenience.

Using a [k, d, τ,A]-DFR for a group G, it will be possible to construct a 2QCFA that
recognizes the word problem WH of any finite-index overgroup H of G, where the parameters
of the DFR will strongly impact the parameters of the resulting 2QCFA. In particular, in
Section 4, we produce a 2QCFA with d quantum states and transition amplitudes in A that
recognizes WH , with expected running time approximately O(τ(n)−1). The goal is then to
show that a wide collection of groups virtually have DFRs with good parameters.

3.1 Diophantine Approximation
Our constructions of DFRs rely crucially on certain results concerning Diophantine approx-
imation. Most fundamentally, the Diophantine approximation question asks how well a
particular real number α can be approximated by rational numbers. Of course, as Q is
dense in R, one can choose p

q ∈ Q so as to make the quantity |α− p
q | arbitrarily small; for

this reason, one considers p
q to be a “good” approximation to α only when |α− p

q | is small
compared to a suitable function of q. One then considers α to be poorly approximated by
rationals if, for some “small” constant d ∈ R≥2, ∃C ∈ R>0 such that, ∀(p, q) ∈ Z× Z6=0, we
have |α− p

q | ≥ C|q|
−d, where the smallness of d determines just how poorly approximable

α is. For α ∈ R, let ‖α‖ = minm∈Z|α −m| denote the distance between α and its nearest
integer. Notice that

∣∣∣α− p
q

∣∣∣ ≥ C|q|−d, ∀(p, q) ∈ Z× Z6=0 ⇔ ‖qα‖ ≥ C|q|−(d−1), ∀q ∈ Z6=0.
Of particular relevance to us is the following result, due to Schmidt [30], that real irrational
algebraic numbers are poorly approximated by rationals.

I Proposition 19 ([30]). ∀α1, . . . , αk ∈ (R∩Q) where 1, α1, . . . , αk are linearly independent
over Q, ∀ε ∈ R>0, ∃C ∈ R>0 such that ∀q ∈ Z6=0, ∃j such that ‖qαj‖ ≥ C|q|−( 1

k+ε).
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We also require the following result concerning the Diophantine properties of linear forms
in logarithms of algebraic numbers, due to Baker [4].

I Proposition 20 ([4]). Let L = {β ∈ C 6=0 : eβ ∈ Q}. ∀β1, . . . , βk ∈ L that are linearly
independent over Q, ∃C ∈ R>0 such that, ∀(q1, . . . , qk) ∈ Zk with qmax := maxj |qj | > 0, we
have |q1β1 + · · ·+ qkβk| ≥ (eqmax)−C .

Gamburd, Jakobson, and Sarnak [12] established a particular result concerning the
Diophantine properties of SU(2,Q). The following lemma generalizes their result to U(d,Q);
a proof of this lemma appears in the full version [28].

I Lemma 21. Consider a group G = 〈S|R〉, with S finite, and a representation ρ : G →
U(d,Q). Then ∃C ∈ R≥1 such that |χρ(g)| ≤ d− C−l(g), ∀g ∈ (G \ Pker(ρ)).

3.2 Constructions of DFRs
We now show that a wide collection of groups virtually have DFRs with good parameters.
We accomplish this by first constructing DFRs for only a small family of special groups. We
then present several constructions in which a DFR for a group, or more generally a family of
DFRs for a family of groups, is used to produce a DFR for a related group.

We begin with a straightforward lemma expressing a useful character bound. In this
lemma, and throughout this section, we continue to write group operations multiplicatively,
and so, for g ∈ G and h ∈ Z, if h > 0 (resp. h < 0) then gh denotes the element of G
obtained by combining h copies of g (resp. g−1) with the group operation, and if h = 0
then gh = 1G. Let S1 = {eir : r ∈ R} ⊆ C∗ denote the circle group and let T(d) ⊆ U(d)
denote the group of all d × d diagonal matrices where each diagonal entry lies in S1. For
A ⊆ C, let S1(A) = S1 ∩ A and T(d,A) = T(d) ∩M(d,A). Let 1d : G → U(d) denote the
trivial representation of dimension d (i.e., 1d(g) = Id = 1U(d), ∀g ∈ G). For a cyclic group
G = 〈a|RG〉 and for some r ∈ R, define the representation γ̂r : G → S1 ∼= U(1) such that
a 7→ e2πir; furthermore, define the representation γr : G→ T(2) by γr = γ̂r ⊕ 11.

I Lemma 22. Consider the cyclic group G = 〈a|RG〉. Fix r ∈ R and define γr : G→ T(2)
as above. Suppose that h ∈ Z and ε ∈ R>0 satisfy ‖hr‖ ≥ ε. Then χγr (ah) ≤ 2− 19π2

24 ε2.

Proof. We have χγr (ah) = e2πihr + 1 = 2eπihr cos(πhr). Clearly, ε ≤ 1
2 . Therefore,

|χγr (ah)| = 2|cos(πhr)| ≤ 2 cos(πε) ≤ 2
(

1− (πε)2

2 + (πε)4

24

)
≤ 2− 19π2

24 ε2. J

We first construct DFRs for a very narrow class of special groups: (i) Zm = 〈a|am〉, the
integers modulo m, where the group operation is addition, (ii) Z = 〈a|〉, the integers, where
the group operations is addition, and (iii) F2 = 〈a, b|〉 the (non-abelian) free group of rank 2.

I Lemma 23. Zm = 〈a|am〉 has a diagonal algebraic
[
1, 2, 19π2

24m2

]
-DFR, ∀m ∈ N≥2.

Proof. Fix m ∈ N≥2 and let r = 1
m . Define γr : Zm → T(2) as above, and notice that

γr(Zm) ⊆ T(2,Q). Consider any q ∈ Zm, where q 6≡ 0 mod m. Then q can be expressed
as q = ah, for h ∈ Z, h 6≡ 0 mod m. As ‖hr‖ ≥ 1

m , Lemma 22 implies |χγr(q)| ≤ 2− 19π2

24m2 .
Therefore, {γr} is a diagonal algebraic DFR for Zm, with the desired parameters. J

I Lemma 24. ∀δ ∈ R>0,∃C ∈ R>0, Z = 〈a|〉 has a diagonal [1 + b 2
δ c, 2, Cn

−δ, C̃]-DFR.
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Proof. Let k = 1+b 2
δ c and η = δ

2−
1
k > 0. Fix α1, . . . , αk ∈ (Q∩R) such that 1, α1, . . . , αk are

linearly independent over Q. For each j ∈ {1, . . . , k} define the representation γαj : Z→ T(2)
as above, and notice that γαj (Z) ⊆ T(2, C̃). By Proposition 19, ∃D ∈ R>0, such that
∀q ∈ Z6=0 (i.e., ∀q ∈ Z where q 6= 0 = 1Z), ∃j such that ‖qαj‖ ≥ D|q|−( 1

k+η) = D|q|− δ2 .
Therefore, for any q ∈ Z6=0, if we take j as above, then by Lemma 22 (with r = αj , ε = D|q|− δ2 ,
and h = q) we have |χγαj (q)| ≤ 2 − 19π2

24 D2|q|−δ. Therefore, {γα1 , . . . , γαk} is a diagonal
[1 + b 2

δ c, 2,
19π2

24 D2n−δ, C̃]-DFR for Z. J

I Lemma 25. ∃C1, C2 ∈ R>0 such that Z = 〈a|〉 has a diagonal algebraic [1, 2, C2n
−C1 ]-DFR.

Proof. As in Proposition 20, let L = {β ∈ C 6=0 : eβ ∈ Q} and notice that πi ∈ L. Let R =
{r ∈ ((R \Q) ∩ (0, 1)) : 2πir ∈ L} (e.g., r̂ = 1

2π cos−1 ( 3
5
)
is irrational and has e2πir̂ = 3+4i

5 ,
and so r̂ ∈ R). Fix r ∈ R. By definition, 2πir ∈ L, which immediately implies πir ∈ L. Also
by definition, r 6∈ Q, which implies πir and πi are linearly independent over Q. Therefore,
by Proposition 20, ∃D ∈ R>0 such that ∀(q,m) ∈ Z2 where qmax := max(|q|, |m|) > 0, we
have |qπir −mπi| ≥ (eqmax)−D.

For fixed q ∈ Z6=0 and varying m ∈ Z, |qπir − mπi| attains its minimum when m =
round(qr), the closest integer to qr. Notice that |round(qr)| ≤ |q|, as r ∈ (0, 1) and q ∈ Z.
Therefore, for any q ∈ Z6=0, we have

‖qr‖ = min
m∈Z
|qr −m| = 1

π
min
m∈Z
|qπir −mπi| = 1

π
|qπir − round(qr)πi| ≥ 1

π
|eq|−D.

Define γr : Z → T(2) as above. By Lemma 22, |χγr(q)| ≤ 2 − 19
24 |eq|

−2D. Clearly,
γr(Z) ⊆ T(2,Q). Therefore, {γr} is a diagonal algebraic [1, 2, 19

24e
−2Dn−2D]-DFR for Z. J

I Remark 26. We note that the above constructions of DFRs for Z are quite similar to
the technique used by Ambainis and Watrous [1] to produce a 2QCFA that recognizes Leq
(cf. [6, 25]). In particular, their approach relied on the fact that the number

√
2 ∈ Q is

poorly approximated by rationals; our constructions make use of more general Diophantine
approximation results. This allows us to produce 2QCFA with improved parameters.

I Lemma 27. ∃C ∈ R≥1, such that F2 = 〈a, b|〉 has an algebraic [1, 2, C−n]-DFR.

Proof. First, define the representation π : F2 → SO(3,Q) by

a 7→ 1
5

3 −4 0
4 3 0
0 0 5

 and b 7→ 1
5

5 0 0
0 3 −4
0 4 3

 .

This is the “standard” faithful representation of F2 into SO(3) used in many treat-
ments of the Banach-Tarski paradox. Recall that SU(2) is the double cover of SO(3), i.e.,
SU(2)/Z(SU(2)) ∼= SO(3). Then π induces a homomorphism π̂ : F2 → SU(2)/Z(SU(2)) in
the obvious way, which, by the universal property of the free group, can be lifted to the
representation ρ : F2 → SU(2,Q) given by

a 7→ 1√
5

(
2 + i 0

0 2− i

)
and b 7→ 1√

5

(
2 i

i 2

)
.

As π is faithful, we conclude that ρ(g) 6∈ Z(SU(2)), ∀g ∈ (F2 \ 1F2). Therefore, by
Lemma 21, {ρ} is an algebraic [1, 2, C−n]-DFR for F2. J
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I Remark 28. Note that the proof of the preceding lemma uses, fundamentally, the same
construction used by Ambainis and Watrous [1] to produce a 2QCFA for Lpal (which is
closely related to F2). The algebraic structure of F2 allows a substantially simpler argument.

We now present several constructions of new DFRs from existing DFRs. We emphasize
that all results in the following lemmas are constructive in the sense that, given the supposed
DFR or collection of DFRs, each corresponding proof provides an explicit construction of
the new DFR. Due to space restrictions, all proofs are omitted and may be found in the full
version [28]. We begin by considering conversions of a DFR of a group G to a DFR with
different parameters of the same group G. For C ∈ R>0, let ηC : R>0 → R>0 be given by
ηC(n) = Cn.

I Lemma 29. Suppose F is a [k, d, τ,A]-DFR for a group G = 〈S|R〉, with S finite. The
following statements hold.
(i) G has a [1, kd, τ,A]-DFR.
(ii) If d′ ∈ N and d′ > d, then G has a [k, d′, τ,A]-DFR.
(iii) Suppose G also has presentation 〈S′|R′〉, with S′ finite. Then ∃C ∈ R>0 such that F

is also a [k, d, τ ◦ ηC ,A]-DFR for G = 〈S′|R′〉.
Moreover, if F is a diagonal DFR, then each newly constructed DFR is also diagonal.

Next, we show that a DFR of G and a DFR of H can be used to produce a DFR of G×H,
the direct product of G and H. In the following, for a group Q, let [q1, q2] = q−1

1 q−1
2 q1q2

denote the commutator of elements q1, q2 ∈ Q. For functions τ, τ ′ : R>0 → R>0, we define
the function τmin

τ,τ ′ : R>0 → R>0 by τmin
τ,τ ′ (n) := min(τ(n), τ ′(n)), ∀n ∈ R>0.

I Lemma 30. Consider groups G = 〈SG|RG〉 and H = 〈SH |RH〉, with SG and SH finite, and
SG ∩SH = ∅. Let Rcom = {[g, h] : g ∈ SG, h ∈ SH}. If G has a [k, d, τ,A]-DFR and H has a
[k′, d′, τ ′,A]-DFR, then G×H = 〈SGtSH |RG∪RH∪Rcom〉 has a [k+k′,max(d, d′), τmin

τ,τ ′ ,A]-
DFR. Moreover, if G and H have diagonal DFRs with the above parameters, then G×H
has a diagonal DFR with the above parameters.

Now, we show that a DFR of a group G can be used to produce a DFR of a finitely
generated subgroup of G, or of a finite-index overgroup of G.

I Lemma 31. Suppose FG is a [k, d, τ,A]-DFR for a group G = 〈SG|RG〉, with SG finite.
The following statements hold.
(i) Suppose H ≤ G, where H = 〈SH |RH〉, with SH finite. Then ∃C ∈ R>0 such that H

has a [k, d, τ ◦ ηC ,A]-DFR. If, moreover, FG is a diagonal DFR, then H will also have
a diagonal DFR with the claimed parameters.

(ii) Suppose G ≤ Q, where Q = 〈SQ|RQ〉, with SQ finite, SG ⊆ SQ, and r := [Q : G] finite.
Then ∃C ∈ R>0 such that Q has a [k, dr, τ ◦ ηC ,A]-DFR.

I Remark 32. By the preceding lemma, any group G that virtually has a DFR also has a
DFR, but with worse parameters. As will be shown, it is possible to recognize WG using a
DFR for a finite-index subgroup of G, thereby avoiding this worsening of parameters.

We now construct DFRs, with good parameters, for a wide class of groups. Recall that any
finitely generated abelian group G admits a unique decomposition G ∼= Zr×Zm1 ×· · ·×Zmt ,
where mi divides mi+1, ∀i ∈ {1, . . . , t − 1}, and each mi ∈ N≥2. Let R(r,m1, . . . ,mt) =
{amii : i ∈ {1, . . . , t}} ∪ {[ai, aj ] : i, j ∈ {1, . . . , r + t}}.

I Lemma 33. Consider the finite (hence finitely generated) abelian group G = Zm1 × · · · ×
Zmt = 〈a1, . . . , at|R(0,m1, . . . ,mt)〉. If t = 0 (i.e., G is the trivial group), then G has a
diagonal algebraic [1, 2, 2]-DFR. Otherwise, G has a diagonal algebraic

[
t, 2, 19π2

24m2
t

]
-DFR.
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Proof. If t = 0, the claim is obvious. Suppose t > 0. By Lemma 23, each factor Zmi = 〈a|ami〉
has a diagonal algebraic

[
1, 2, 19π2

24m2
i

]
-DFR. Notice that m1 ≤ · · · ≤ mt, as each mi divides

mi+1. The existence of the desired DFR follows from Lemma 30. J

I Theorem 34. ∃C1 ∈ R>0 such that, for any finitely generated abelian group G = Zr ×
Zm1 × · · · × Zmt = 〈a1, . . . , ar+t|R(r,m1, . . . ,mt)〉, the following statements hold.
(i) ∃C2 ∈ R>0 such that G has a diagonal algebraic

[
r + t, 2, C2n

−C1
]
-DFR.

(ii) ∀δ ∈ R>0, ∃C3 ∈ R>0, such that G has a diagonal
[
r
(
1 + b 2

δ c
)

+ t, 2, C3n
−δ, C̃

]
-DFR.

Proof. By Lemma 25, ∃D1, D2 ∈ R>0 such that Z has a diagonal algebraic [1, 2, D2n
−D1 ]-

DFR, which we call F . We set C1 = D1. Let H1 = Zr and H2 = Zm1 × · · · × Zmt . If r = 0,
both claims follow trivially from Lemma 33. Suppose r > 0.
(i) Using the DFR F of Z, Lemma 30 implies H1 has a diagonal algebraic [r, 2, D2n

−C1 ]-
DFR H1. If t = 0, then G = H1; therefore, H1 is the desired DFR for G, with C2 = D2,
and we are done. If t > 0, Lemma 33 implies H2 has a diagonal algebraic

[
1, 2, 19π2

24m2
t

]
-

DFR H2. Set C2 = min(D2,
19π2

24m2
t
). By Lemma 30, we conclude G = H1 ×H2 has a

DFR with the claimed parameters.
(ii) By Lemma 24, ∃D ∈ R>0 such that Z has a diagonal

[
1 + b 2

δ c, 2, Dn
−δ, C̃

]
-DFR, F ′.

The remainder of the proof is analogous to that of part (i), using F ′ in place of F . J

As in Section 1.1, Π̂1 denotes the set of all finitely generated virtually abelian groups. For
G ∈ Π̂1, there is a unique r ∈ N such that G is virtually Zr. We have the following corollary.

I Corollary 35. ∃C ∈ R>0 such that, ∀G ∈ Π̂1, the following holds.
(i) ∃D ∈ R>0,∃K ∈ N≥1, such that G virtually has a diagonal algebraic [K, 2, Dn−C ]-DFR.
(ii) ∀δ ∈ R>0, ∃D ∈ R>0,∃K ∈ N≥1, G virtually has a diagonal

[
K, 2, Dn−δ, C̃

]
-DFR.

Next, we consider groups that can be built from finitely generated free groups.

I Lemma 36. ∀r ∈ N, ∃C ∈ R≥1, Fr = 〈a1, . . . , ar|〉 has an algebraic [1, 2, C−n]-DFR.

Proof. As F0 = {1} and F1 = Z, Theorem 34 immediately implies the claim when r ∈ {0, 1}.
Next, consider the case in which r = 2. By Lemma 27, ∃C ∈ R≥1 such that F2 = 〈a1, a2|〉 has
an algebraic [1, 2, C−n]-DFR. Finally, suppose r > 2. By the Nielsen-Schreier theorem, F2 has
a finite-index subgroup isomorphic to Fr; the claim immediately follows from Lemma 31(i). J

I Theorem 37. Suppose G = 〈S|R〉, with S finite, such that G ≤ Fr1 × · · · × Frt , for some
r1, . . . , rt ∈ N. Then ∃C ∈ R≥1 such that G has an algebraic [t, 2, C−n]-DFR.

Proof. By Lemma 36, each Fri has an algebraic [1, 2, C−ni ]-DFR, for some Ci ∈ R≥1.
Lemma 30 implies that Fr1 × · · · ×Frt has an algebraic [t, 2, C−n]-DFR, where C = maxi Ci,
and Lemma 31(i) then implies G has a DFR with the claimed parameters. J

As in Section 1.1, Π̂2 denotes the class of finitely generated groups that are virtually a
subgroup of a direct product of finitely-many finite-rank free groups.

I Corollary 38. ∀G ∈ Π̂2,∃K ∈ N≥1,∃C ∈ R≥1, such that G virtually has an algebraic
[K, 2, C−n]-DFR.

We conclude with a “generic” construction that covers all groups that have algebraic
DFRs. We remark that while this does partially subsume all other results in this section, it
does not do so completely, as the earlier constructions of DFRs, for certain particular groups,
yield better parameters.
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I Theorem 39. Consider a group G = 〈S|R〉, with S finite, where G is not the trivial
group. Suppose G has a faithful representation π : G → U(l,Q). Then π has a (unique,
up to isomorphism) set of irreducible subrepresentations {πj : G→ U(dj ,Q)}mj=1 such that
π ∼= π1⊕· · ·⊕πm. Let dmax = maxj dj . Define the value d as follows: if

⋂
j Pker(πj) = {1G},

let d = dmax, otherwise, let d = dmax + 1. Partition the non-trivial πj into isomorphism
classes (i.e., only consider those πj which are not the trivial representation; πj1 and πj2 belong
to the same isomorphism class if πj1

∼= πj2) and let k denote the number of isomorphism
classes that appear. Then ∃C ∈ R≥1 such that G has an algebraic [k, d, C−n]-DFR.

Proof. Notice that, as G is not the trivial group, d ≥ 2. Assume that the πj are ordered such
that π1, . . . , πk are representatives of the k distinct isomorphism classes of the non-trivial
representations that appear among the πj . For each j ∈ {1, . . . , k}, define the representation
ρj = πj ⊕ 1d−dj : G → U(d,Q). By Lemma 21, ∀j ∈ {1, . . . , k},∃Cj ∈ R≥1 such that,
∀g 6∈ Pker(ρj), |χρj (g)| ≤ d− C−l(g)

j . Set C = maxj Cj .
Next, notice that

⋂
j Pker(ρj) = {1G}. If

⋂
j Pker(πj) = {1G}, then this is obvious.

Suppose
⋂
j Pker(πj) 6= {1G}. Then d = dmax + 1 > dj , ∀j, which implies ρj = πj ⊕ 1tj ,

where tj := d− dj ≥ 1. Therefore, for each j, ρj(G)∩Z(U(d,Q)) = Id, and so, by definition,
Pker(ρj) = ker(ρj). As π is faithful, {1G} =

⋂m
j=1 ker(πj) =

⋂k
j=1 ker(ρj) =

⋂k
j=1 Pker(ρj).

Thus, ∀g ∈ G6=1, ∃j such that g 6∈ Pker(ρj), which implies |χρj (g)| ≤ d − C
−l(g)
j ≤

d− C−l(g). Therefore, {ρ1, . . . , ρk} is an algebraic [k, d, C−n]-DFR for G. J

3.3 Projective DFRs
A DFR F = {ρ1, . . . , ρj} of a group G is a set of unitary representations of G, i.e., group
homomorphisms ρj : G → U(d). We next consider a slight generalization. A projective
unitary representation of G is a group homomorphism ρ : G → PU(d) = U(d)/Z(U(d)).
We may (non-uniquely) lift any such ρ to a function ρ̂ : G → U(d) (i.e., γ ◦ ρ̂ = ρ, where
γ : U(d) → PU(d) is the canonical projection). Note that ρ̂ is not necessarily a group
homomorphism and that certain projective representations ρ cannot be lifted to an ordinary
representation. However, for any two lifts, ρ̂1 and ρ̂2, of ρ, we have |χρ̂1(g)| = |χρ̂2(g)|,
∀g ∈ G. Therefore, the function |χρ(·)| : G→ R given by |χρ(g)| = |χρ̂(g)| is well-defined.

We then define a [k, d, τ,A]-PDFR as a set of projective representations F = {ρ1, . . . , ρj}
that satisfies Definition 16 where “representation” is replaced by “projective representation” in
that definition. As we will observe in the following section, the same process that allows a DFR
for a group G to be used to produce a 2QCFA for the word problemWG, can also be applied to
a PDFR. If a PDFR consists entirely of representations into PU(d,Q) = U(d,Q)/Z(U(d,Q)),
we say it is an algebraic PDFR. The following variant of Theorem 39 follows by a precisely
analogous proof.

I Theorem 40. Suppose the group G = 〈S|R〉, with S finite, has a family F = {ρ1, . . . , ρk} of
projective representations ρj : G→ PU(d,Q), such that

⋂
j ker(ρj) = {1G}. Then ∃C ∈ R≥1

such that F is an algebraic [k, d, C−n]-PDFR for G.

3.4 Unbounded-Error DFRs
If F = {ρ1, . . . , ρk} is a DFR for a group G, then

⋂
j Pker(ρj) = {1G}. However, a crucial

element in the definition of a DFR is the requirement that, much more strongly, all g ∈ G6=1
are “far” from being in

⋂
j Pker(ρj); in particular, if F is a [k, d, τ,A]-DFR, then ∀g ∈ G6=1,∃j

such that |χρj (g)| ≤ d− τ(l(g)). This requirement is essential in order for our construction
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of a 2QCFA, that recognizes WG using a DFR for G, to operate with bounded error. We
next consider a generalization of a DFR, where this requirement is removed, which will then
yield a 2QCFA that recognizes WG with unbounded error.

We say F = {ρ1, . . . , ρk} is an unbounded-error [k, d,A]-DFR for a group G = 〈S|R〉 if
the conditions of Definition 16 hold, where Definition 16(b) is replaced by Definition 16(b)’:
∀g ∈ G6=1, ∃j such that |χρj (g)| < d. This condition is equivalent to

⋂
j Pker(ρj) = {1G}.

Note that, by Lemma 21, any algebraic unbounded-error [k, d]-DFR is also an algebraic
[k, d, C−n]-DFR, for some C ∈ R≥1; furthermore, as noted in the discussion following
Definition 18, only a finitely generated abelian group could have a diagonal unbounded-error
[k, d]-DFR, and all finitely generated abelian groups were shown to have DFRs in Theorem 34.
Therefore, in order to obtain something new, we must consider unbounded-error DFRs that
are neither algebraic nor diagonal. Due to space restrictions, we omit the proof of the
following theorem, which may be found in the full version [28].

I Theorem 41. ∀G ∈ Π̂3,∃k ∈ N such that G virtually has an unbounded-error [k, 2, C̃]-DFR.

4 Recognizing the Word Problem of a Group with a 2QCFA

Consider a group G = 〈S|R〉, with S finite. As before, let Σ = S t S−1, let φ : Σ∗ → G

denote the natural map that takes each string in Σ∗ to the element of G that it represents,
and let WG := WG=〈S|R〉 = {w ∈ Σ∗ : φ(w) = 1G} denote the word problem of G with
respect to the given presentation. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR (or PDFR)
for G. By Proposition 17, if w ∈ WG, then |χρj (φ(w))| = d, ∀j, and if w 6∈ WG, then ∃j
where |χρj (φ(w))| ≤ d− τ(l(φ(w))). Let Gj = {g ∈ G : |χρj (g)| ≤ d− τ(l(g))}. A 2QCFA
can recognize WG by checking if φ(w) ∈

⋃
j Gj = G 6=1. The well-known Hadamard test may

be used to estimate χρj (φ(w)) = Tr(ρj(φ(w))); however, as we wish to produce a 2QCFA
that has as few quantum states as possible, we wish to avoid the use of ancilla, and so we
follow a slightly different approach. We begin by defining several useful 2QCFA subroutines.

I Definition 42. Suppose M is a 2QCFA with d ≥ 2 quantum basis states Q = {q1, . . . , qd},
quantum start state q1 ∈ Q, and alphabet Σ.
(a) Suppose |ψ1〉 =

∑
q αq |q〉 and |ψ2〉 =

∑
q βq |q〉, where αq, βq ∈ Q,∀q ∈ Q. There are

(many) t ∈ U(d,Q) such that t |ψ1〉 = |ψ2〉. Let T|ψ1〉→|ψ2〉 denote an arbitrary such t.
(b) Let π : G → U(d) be a representation of G and let |ψ〉 =

∑
q βq |q〉, where βq ∈ Q,

∀q ∈ Q. Then the unitary round U(π, |ψ〉) is a particular sub-computation of M on w,
defined as follows. The round begins with the quantum register in the superposition |q1〉
and the tape head at the right end of the tape. On reading #R, M performs the unitary
transformation T|q1〉→|ψ〉 to its quantum register, and moves its head to the left. On
reading a symbol σ ∈ Σ, M performs the unitary transformation π(φ(σ)) to the quantum
register and moves its head left. When the tape head first reaches the left end of the tape
(i.e., the first time the symbol #L is read), M performs the identity transformation to
its quantum register, and does not move its head, at which point the round ends. As φ is
a (monoid) homomorphism and π is a (group) homomorphism, we immediately conclude
that, at the end of the round, the quantum register is in the superposition π(φ(w)) |ψ〉.

(c) For t ∈ U(d), a measurement round M(π, |ψ〉 , t) is a sub-computation of M that begins
with the unitary round U(π, |ψ〉). Then M performs the unitary transformation t, and
does not move its head. After which M performs the quantum measurement specified by
the partition B = {B0, B1} of Q given by B0 = {q2, . . . , qd} and B1 = {q1}, producing
some result r ∈ {0, 1}; then M records r in its classical state, and does not move its
head, at which point the round is over.
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I Lemma 43. Consider a group G = 〈S|R〉, with S finite, and let WG = WG=〈S|R〉. The
following statements hold.
(i) If G has a diagonal [k, d, C1n

−C2 ,A]-DFR (or PDFR), for some C1, C2 ∈ R>0, then
∀ε ∈ R>0, WG ∈ coR2QCFA(ndC2e+2, ε, d,Q ∪ A).

(ii) If G has a [k, d, C−n1 ,A]-DFR (or PDFR), for some C1 ∈ R≥1, then ∀ε ∈ R>0,
∃C2 ∈ R≥1 such that WG ∈ coR2QCFA(Cn2 , ε, d,Q ∪ A).

(iii) If G has an unbounded-error [k, d,A]-DFR (or PDFR), then WG ∈ coN1QFA ∩
coN2QCFA(n, d,Q ∪ A).

Proof Sketch. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR of G. Consider any w ∈ Σ∗.
A 2QCFA M can perform a constant number of measurement rounds (i.e., the number of
rounds only depends on k and d, not on |w|) using any representation ρj such that the
following holds: (1) if φ(w) ∈ Gj ⊆ G6=1, then, with probability Ω(τ(|w|)), the results of
those measurement rounds will allow M to be able to conclude with certainty that w 6∈WG,
(2) if φ(w) = 1G 6∈ Gj , then the results of those measurement rounds will never cause M to
incorrectly conclude that w 6∈WG. After running this procedure approximately τ(n) times,
for each j, the following holds: (1) if φ(w) ∈ G6=1 =

⋃
j Gj , then φ(w) ∈ Gj for at least some

j, and so, with probability Ω(1), M is able to conclude (with certainty) that w 6∈WG, (2) if
φ(w) = 1G, then M will never incorrectly conclude that w 6∈WG. As soon as M performs a
measurement round whose result allows it to conclude that w 6∈WG, M immediately rejects.
In order to correctly accept all w ∈ WG, M will run a procedure between measurement
rounds that will cause it to accept any input w with some small probability, and otherwise
continue; by setting this acceptance probability small enough, we assure that any w 6∈WG is
not (incorrectly) accepted with high probability. A formal proof can be found in the full
version [28]. J

Moreover, if H is a finite-index subgroup of G, a 2QCFA that recognizes WG can be
constructed from a 2QCFA that recognizes WH .

I Lemma 44. Consider a group H = 〈SH |RH〉, with SH finite, and suppose that AH is a
2QCFA that recognizes WH , which operates in the manner of our proof of Lemma 43. Further
suppose G is a group such that H ≤ G and [G : H] is finite. Then G admits a presentation
G = 〈SG|RG〉, with SG finite, such that there is a 2QCFA AG that recognizes WG. Moreover,
AG has the same acceptance criteria, asymptotic expected running time, number of quantum
basis states, and class of transition amplitudes as AH .

Using the above results, and the constructions of DFR from Section 3, the theorems
stated in Section 1.1 concerning the recognizability of word problems by 2QCFA easily follow;
proofs of the above results and of these theorems appear in the full version [28].

5 Discussion

In this paper, we have shown that 2QCFA can recognize the word problems of many groups.
In particular, let Π̂1 (resp. Π̂2) denote the collection of all finitely generated groups that are
virtually abelian (resp. virtually a subgroup of a direct product of finitely-many finite-rank
free groups), and let Q denotes the class of groups for which Theorem 10 applies. Then a
2QCFA, with a single-qubit quantum register and algebraic number transition amplitudes,
can recognize, with one-sided bounded error, the word problem WG of any G ∈ Π̂1 (resp.
G ∈ Π̂2) in expected polynomial (resp. exponential) time. Moreover, if allowed a quantum
register of any constant size, such a 2QCFA may recognize the word problem of any group
G ∈ Q with one-sided bounded error in expected exponential time.
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In a companion paper [27], we establish a lower bound on the running time of any 2QCFA
(with any size quantum register and no restrictions placed on its transition amplitudes) that
recognizes a word problem WG with bounded error (even under the more generous notion of
two-sided bounded error); more strongly, we establish a lower bound on the running time of
any quantum Turing machine that uses sublogarithmic space, though we will not discuss that
here. In particular, we show that, ∀G ∈ Q \ Π̂1, WG cannot be recognized by such a 2QCFA
is expected time 2o(n). Therefore, the algorithm exhibited in this paper for recognizing the
word problem of any group G ∈ Q \ Π̂1 has (essentially) optimal expected running time;
moreover, we have obtained the first provable separation between the classes of languages
recognizable with bounded error by 2QCFA in expected exponential time and in expected
subexponential time. In that same paper, we also show that if a 2QCFA of this most general
type recognizes a word problem WG in expected polynomial time, then G ∈ GvNilp, where
GvNilp denotes the finitely generated virtually nilpotent groups, and Π̂1 ( GvNilp. This
naturally raises the following question.

I Open Problem 1. Is there a group G ∈ (GvNilp \ Π̂1) such that WG can be recognized by a
2QCFA with bounded error in expected polynomial time?

We have shown that the (three-dimensional discrete) Heisenberg group H ∈ (GvNilp \ Π̂1)
is “complete” for this question, in the sense that if WH cannot be recognized with bounded
error by a 2QCFA in expected polynomial time, then no such G can [27].

Let GvSolvLin denote the finitely generated virtually solvable linear groups over a field
of characteristic zero, and note that GvNilp ( GvSolvLin. Furthermore, note that WG ∈ L,
∀G ∈ GvSolvLin [20]. However, every G ∈ GvSolvLin \ Π̂1 does not have a faithful finite-
dimensional unitary representation (see, for instance, [33, Proposition 2.2]) and, therefore,
does not have a DFR (even an unbounded-error DFR); this prevents the techniques of this
paper from producing a 2QCFA that recognizes the corresponding WG.

I Open Problem 2. Is there a finitely generated group G that does not have a faithful
finite-dimensional unitary representation (for example, any G ∈ GvSolvLin \ Π̂1 or any finitely
generated infinite Kazhdan group) such that WG can be recognized with bounded error by a
2QCFA at all (i.e., in any time bound)?

Consider the group Z ∗ Z2 ∈ Σ2 ( Π̂3, and note that Z ∗ Z2 6∈ Π̂2. The complexity of
WZ∗Z2 has been considered by many authors and it is conjectured that WZ∗Z2 6∈ poly−CFL [7]
(cf. [8]) and that WZ∗Z2 6∈ coCFL [18]. By Theorem 11, WZ∗Z2 is recognizable with one-sided
unbounded error by a 2QCFA. We ask the following questions.

I Open Problem 3. Can WZ∗Z2 be recognized by a 2QCFA with bounded error? More
generally, is WZ∗Zr recognizable by a 2QCFA with bounded error, ∀r ∈ N?

I Open Problem 4. Does Z ∗Z2 have an algebraic DFR. More generally, does Z ∗Zr have an
algebraic DFR, ∀r ∈ N? Even more generally, is the class of groups which have algebraic
DFRs closed under free product?
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