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Preface

The papers in this volume were accepted for presentation at the 35th Computational
Complexity Conference (CCC 2020), held between July 28–31, 2020 in a virtual online format.
CCC 2020 was originally scheduled to be held in Saarbrücken, Germany, but due to the
public health measures related to Covid-19 in place worldwide, the online format was used
instead. The conference is organized by the Computational Complexity Foundation (CCF) in
cooperation with the ACM Special Interest Group on Algorithms and Computation Theory
(SIGACT) and the European Association for Theoretical Computer Science (EATCS).

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 101 submissions, the program committee selected 38 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation and especially its president Venkatesan Guruswami, and secretary Ashwin Nayak
for their advice and assistance; Amir Shpilka for sharing his knowledge as prior PC chair for
CCC; the Local Arrangements Committee chair Markus Bläser; Shachar Lovett and Thomas
Vidick for their invited talks; and Michael Wagner for coordinating the production of these
proceedings.

Shubhangi Saraf
Program Committee Chair, on behalf of the Program Committee
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Near-Optimal Erasure List-Decodable Codes
Avraham Ben-Aroya
The Blavatnik School of Computer Science, Tel-Aviv University, Israel

Dean Doron
Department of Computer Science, Stanford University, CA, US
ddoron@stanford.edu

Amnon Ta-Shma
The Blavatnik School of Computer Science, Tel-Aviv University, Israel
amnon@tau.ac.il

Abstract
A code C ⊆ {0, 1}n̄ is (s, L) erasure list-decodable if for every word w, after erasing any s symbols
of w, the remaining n̄ − s symbols have at most L possible completions into a codeword of C.
Non-explicitly, there exist binary ((1− τ)n̄, L) erasure list-decodable codes with rate approaching τ
and tiny list-size L = O(log 1

τ
). Achieving either of these parameters explicitly is a natural open

problem (see, e.g., [26, 24, 25]). While partial progress on the problem has been achieved, no prior
nontrivial explicit construction achieved rate better than Ω(τ2) or list-size smaller than Ω(1/τ).
Furthermore, Guruswami showed no linear code can have list-size smaller than Ω(1/τ) [24]. We
construct an explicit binary ((1 − τ)n̄, L) erasure list-decodable code having rate τ1+γ (for any
constant γ > 0 and small τ) and list-size poly(log 1

τ
), answering simultaneously both questions, and

exhibiting an explicit non-linear code that provably beats the best possible linear code.
The binary erasure list-decoding problem is equivalent to the construction of explicit, low-error,

strong dispersers outputting one bit with minimal entropy-loss and seed-length. For error ε, no prior
explicit construction achieved seed-length better than 2 log( 1

ε
) or entropy-loss smaller than 2 log( 1

ε
),

which are the best possible parameters for extractors. We explicitly construct an ε-error one-bit
strong disperser with near-optimal seed-length (1 + γ) log( 1

ε
) and entropy-loss O(log log 1

ε
).

The main ingredient in our construction is a new (and almost-optimal) unbalanced two-source
extractor. The extractor extracts one bit with constant error from two independent sources, where one
source has length n and tiny min-entropy O(log logn) and the other source has length O(logn) and
arbitrarily small constant min-entropy rate. When instantiated as a balanced two-source extractor,
it improves upon Raz’s extractor [39] in the constant error regime. The construction incorporates
recent components and ideas from extractor theory with a delicate and novel analysis needed in
order to solve dependency and error issues that prevented previous papers (such as [27, 9, 13]) from
achieving the above results.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Error-correcting codes; Theory of computation → Pseudoran-
domness and derandomization

Keywords and phrases Dispersers, Erasure codes, List decoding, Ramsey graphs, Two-source
extractors

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.1

Funding Research supported by the Israel science Foundation grant no. 952/18 and by Len Blavatnik
and the Blavatnik Family foundation.

1 Introduction

Extractors and dispersers are important derandomization tools with numerous applications
(see, e.g., [40, 43]). Both extractors and dispersers are hash functions C : {0, 1}n×{0, 1}d →
{0, 1}m that take an input string x ∈ {0, 1}n and an auxiliary seed y ∈ {0, 1}d, and output an
element C(x, y) in a smaller universe {0, 1}m where m� n. Both extractors and dispersers
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1:2 Near-Optimal Erasure List-Decodable Codes

are meant to hash any input distribution X that has some crude uniformity to a nearly
uniform distribution. Also, the measure of crude uniformity is the same for both objects:
We say a distribution X is a k-source if it has k min-entropy, i.e., the probability of each
x ∼ X is at most 2−k.

Extractors and dispersers differ in the way they measure the proximity of the output
distribution to the uniform distribution: Extractors use the total-variation distance, whereas
dispersers use support-size distance (that is, they count the number of elements not in
the image of the hash function). Extractors are stronger objects, and, roughly speaking,
extractors are needed to derandomize two-sided error algorithms whereas dispersers suffice
for one-sided error derandomization.

More formally, a function C : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) extractor if
for any k-source X the output distribution (Ud, C(X,Ud)), containing the seed y along with
output C(x, y), is ε-close to the uniform distribution over {0, 1}d × {0, 1}m. We say C is a
strong (k, ε) disperser if for any k-source X, the support of (Ud, C(X,Ud)) covers at least
(1− ε)2d+m elements from {0, 1}d × {0, 1}m.

There are two natural parameters measuring the quality of extractors and dispersers:
1. Seed length. Both extractors and dispersers use an auxiliary uniform independent

source to extract the entropy from the weak source X. The length d of the auxiliary
source is called the seed-length. We would like the seed-length to be as small as possible.

2. Entropy loss. There are k + d bits of entropy in the system: k bits coming from the
k-source X, and d bits from the independent uniform seed. The entropy-loss is k −m,
i.e., the difference between the entropy in the input system (including the seed) and the
output system (of length d+m).

As noted, strong dispersers are weaker objects than strong extractors. The interest in
dispersers stems from the fact that their parameters can outperform those of extractors.
For extractors, [37] showed that every strong extractor requires seed-length d ≥ 2 log( 1

ε ) +
log(n − k) − O(1) and has an unavoidable entropy-loss of k −m ≥ 2 log( 1

ε ) − O(1). Non-
explicitly there exist strong extractors with seed-length d ≤ 2 log( 1

ε ) + log(n − k) + O(1)
and entropy-loss k −m ≤ 2 log( 1

ε ) + O(1). For strong dispersers, [37] showed that every
strong disperser requires seed-length d ≥ log( 1

ε ) + log(n− k)−O(1) and has an unavoidable
entropy-loss k −m ≥ log log( 1

ε )−O(1). Again, non-explicitly, there exist strong dispersers
with seed-length d ≤ log( 1

ε ) + log(n− k) +O(1) and entropy-loss k −m ≤ log log( 1
ε ) +O(1)

[37, 33].
For strong dispersers, even the case of outputting just one bit in a way that outperforms

extractor constructions has been widely open. Indeed, Gradwohl et al. [22] noticed that such
strong dispersers imply good Ramsey graphs, another problem that withstood many attempts
for many years, until the recent breakthrough result of Chattopadhyay and Zuckerman [9].

In this paper we go in the reverse direction of that taken in [22]. By using the recent
machinery of non-malleable extractors and their connection to two-source extractors [9,
7, 15, 28, 29], we construct near-optimal unbalanced two-source extractors (which imply
near-optimal unbalanced bipartite Ramsey graphs). We use these extractors to obtain explicit
strong dispersers that output a single bit, with near-optimal seed-length and near-optimal
entropy-loss.

I Theorem 1 (see also Theorem 40). For every constant 0 < γ < 1 and ε = n−Ωγ(1) there
exists an explicit strong (k, ε) disperser Disp : {0, 1}n×{0, 1}d → {0, 1} with d = (1+γ) log( 1

ε )
and k = Oγ(log log 1

ε ).
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We remark that the dependence of the seed-length on the error is (1+γ) log( 1
ε ) < 2 log( 1

ε ),
and the entropy-loss is O(log log 1

ε ) < 2 log( 1
ε ) and both these bounds are optimal for

dispersers up to small factors and are impossible for extractors. Most previous disperser
constructions have not obtained parameters better than the extractors lower bounds, and
we are only aware of one exception: Meka et al. [33], extending the techniques in [22], gave
a strong disperser with optimal entropy-loss. However, their construction works only for
extremely high min-entropy k = n−Θ(1) and has suboptimal seed-length.1

1.1 Erasure List-Decodable Codes
We now turn our attention to binary list-decodable codes in the erasures model. A code C is
a set C ⊆ Fn2 . We call elements in Fn2 words and elements in C codewords. Two interesting
parameters of a code are its redundancy and its noise-resiliency. The redundancy is measured
by the rate of the code, log |C|

n . The noise-resiliency is measured according to the model
of noise.

In the errors model: A code C is (τn, L) list-decodable if for every word w ∈ Fn2 there exist
at most L codewords in the Hamming ball of radius τn around w.

In the erasures model: A code C is (τn, L) erasure list-decodable if for every z ∈ F(1−τ)n
2

and every set T ⊆ [n] of size (1 − τ)n, the number of codewords that have z in the
coordinates indexed by T is at most L.

If C is (τn, L) list-decodable we can recover from τn errors in the following sense: Given
a word w ∈ Fn2 that was obtained by corrupting at most τn entries of some codeword c, one
can (perhaps non-efficiently) produce a small set of size L that necessarily contains c.

Similarly, if C is (τn, L) erasure list-decodable we can recover from τn erasures in the
following sense: Given a word w ∈ {0, 1, ?}n that was obtained by replacing at most τn
entries of some codeword c with the erasure sign ’?’, one can (perhaps non-efficiently) produce
a small set of size L that necessarily contains c.

A strong (k, ε) extractor with one output bit is roughly equivalent to a binary ( 1−ε
2 2d,

L = 2k) list-decodable code [42]. In the same spirit, Guruswami [25] observed that strong
dispersers with one output bit can be used to construct erasure list-decodable codes. In
this paper we complement his argument with the converse statement, showing that erasure
list-decodable codes are essentially equivalent to strong dispersers with one output bit.
Specifically, Disp : {0, 1}n×{0, 1}d → {0, 1} is a strong (k, ε) disperser if and only if the code
C : {0, 1}n → {0, 1}2

d

defined by C(x)i = Disp(x, i) is ((1− 2ε)2d, 2k) erasure list-decodable
(see Lemma 44).

As we can see, for both extractors and dispersers, the seed-length corresponds to the
rate of the code, n

2d , whereas the entropy-loss corresponds to the list-size of the code. Thus,
the gap between the seed-lengths of dispersers (which is log( 1

ε )) and extractors (which is
2 log( 1

ε )) translates to a difference between rate ε in the erasures model compared with rate
ε2 in the errors model. Similarly, the gap between the entropy-loss of dispersers (which
is log log( 1

ε )) and extractors (which is 2 log( 1
ε )) translates to a difference between list-size

log( 1
ε ) in the erasures model compared with list-size poly( 1

ε ) in the errors model. Formally:
Non-explicitly there exist binary codes having rate Ω(ε2) that are ( 1−ε

2 · n,poly( 1
ε ))

list-decodable and these parameters are tight.
Non-explicitly there exist binary codes having rate Ω(ε) that are ((1 − ε)n,O(log 1

ε ))
erasure list-decodable, and up to a constant multiplicative factor in the list-size these
parameters are tight [24].

1 Specifically, they support min-entropy k = n− c with seed-length O(2c log(1/ε)).
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1:4 Near-Optimal Erasure List-Decodable Codes

Thus, erasure list-decodable codes can have quadratically better rate and exponentially
smaller list-size than list-decodable codes. In fact, Guruswami proved that any linear erasure
list-decodable codes must have L = Ω(1/ε) [24], and so the exponential improvement (or any
better than polynomial improvement) is necessarily only possible for non-linear constructions.

The state of affairs for explicit binary erasure list-decodable codes is similar to that
of explicit dispersers. That is, only a few explicit binary erasure list-decodable codes are
known to have rate below Ω(ε2) or list-size below Ω(1/ε). Guruswami and Indyk [26] gave
a probabilistic polynomial-time algorithm that outputs with high probability an erasure
list-decodable code of rate Ω

(
ε2

log(1/ε)

)
and optimal list-size (their construction can be

explicitly derandomized when ε is constant). The natural open problem of obtaining erasure
list-decodable codes having rate better than ε2 was explicitly mentioned several times, e.g.,
in [26, 25]. More concretely, in [23, Open Question 10.2], Guruswami posed the open problem
of constructing efficient erasure list-decodable codes of rate ε2−a.

Incorporating the above discussion with Theorem 1, we get the best explicit construction
to date:

I Theorem 2 (see also Theorem 46). For every constant 0 < γ < 1 and ε = n−Ωγ(1) there
exists an explicit ((1− ε)n̄, L = logOγ(1) 1

ε ) erasure list-decodable code C : {0, 1}n → {0, 1}n̄

of rate ε1+γ .

Thus, Theorem 2 solves Guruswami’s problem for the interesting regime of polynomially
small ε. We stress that the codes we present are explicit in the sense that they have explicit
encoding, but we do not know whether the codes we construct admit efficient erasure
list-decoding algorithms. We also mention that the list-size poly(log 1

ε ) achieved by our code
is exponentially smaller than the best possible list-size by any linear code.

1.2 Two-Source Extractors
A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1} is an ((n1, k1), (n2, k2), ε) two-source extractor
if for any two independent sources X and Y , where X is an (n1, k1) source and Y is an
(n2, k2) source, the output distribution 2Ext(X,Y ) is ε-close to uniform.

Often, the two-source extractor terminology is more expressive than the extractor notation,
as we explain now. Suppose Ext : {0, 1}k × {0, 1}d → {0, 1} is a strong (k, ε) extractor. Fix
an (n, k) source X, and let εi be the distance of the distribution Ext(X, i) from uniform. By
the extractor definition we know that E[εi] ≤ ε. However, the extractor definition does not
distinguish between the case where the ε error occurs because all seeds y ∈ Supp(Y ) have
the same error ε, and the case where ε fraction of the seeds have constant error and the rest
have none. The situation is different with two-source extractors. Roughly speaking, in an
((n, k), (d, d′), ε) two-source extractor, there are at most 2d′−d bad “seeds” y with distance
εy ≥ ε. Thus, the two-source extractor notation allows separating the fraction of bad seeds
from the quality of good seeds.

We would like to explicitly construct a strong (k, ε) disperser Disp : {0, 1}n × {0, 1}d →
{0, 1}m with parameters better than those of (k, ε) extractors. Thus, on the one hand, for
almost every seed y, Disp(X, y) covers almost all of {0, 1}m, and, on the other hand, Disp is
not a strong extractor, so for almost every seed y, Disp(X, y) is far from uniform. How can
this happen?

The situation becomes clearer if we look at strong dispersers with only one additional
output bit, i.e., when m = 1. As Disp(X, y) is distributed over one bit, for almost every
seed y, Supp(Disp(X, y)) = {0, 1}. Yet, it is possible (even necessary, since Disp is not an
extractor) that for many seeds y, Disp(X, y) is ε0 away from uniform for some constant
ε0 � ε > 0., e.g., when Disp(X, y) has much more weight on 0 than on 1.
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One clean way of capturing this is by using the two-source extractor terminology. We
are looking for a two-source extractor 2Ext where almost all seeds (except for ε fraction)
are “good” in the sense that y is good if 2Ext(X, y) covers both 0 and 1. Roughly speaking,
this amounts to an explicit construction of an ((n, k), (d, d′), ε0) two-source extractor having
ε = 2d′−d and any non-trivial error ε0 < 1. Two-source extractors with arbitrary ε0 < 1 are
also called bipartite Ramsey graphs (see Claim 49).

Explicitly constructing two-source extractors (and Ramsey graphs) is a long standing
and important challenge. A long line of research (e.g., [10, 39, 8, 5, 6]) culminated in
((n, k), (n, k), ε0) two-source extractors supporting poly-log min-entropy [14, 9, 32]. This was
later improved to k = O(logn log logn

log log logn ) [7, 15, 28, 29]. However, using the latter two-source
extractors gives dispersers with suboptimal entropy-loss and long seed, or, equivalently,
erasure list-decodable codes with large list-size and low rate.

Another natural two-source extractor is Raz’s two-source extractor [39]. Raz’s function
is an ((n, k), (d = O(log n

ε ), d′), εRaz) two-source extractor that has an unbalanced entropy
requirement; the first source is long and very weak (k can be as small as, roughly, log log n

εRaz
),

the second source is short and somewhat dense with d′ ≥ δd, for any constant δ > 1
2 . The

fact that k can be very small corresponds to a disperser with small entropy-loss, which
is good for us. Moreover, d is small, which is again what we want because the length of
the corresponding erasure list-decodable code is 2d. The error εRaz of Raz’s extractor is
exponentially-small in min {k, d′} which is much better than the mere non-trivial error that
we need. However, the second source must be relatively dense, satisfying d′

d ≥
1
2 . This

implies that the error ε of the disperser is given by 2−d+d′ and as a consequence d ≥ 2 log( 1
ε ).

In this paper we show how to explicitly construct the necessary two-source extractor. We
show:

I Theorem 3 (see also Theorem 27). For every two constants δ, ε0 > 0 and every k ≥
Ωδ,ε0(log logn) there exists an explicit ((n, k), (d, δd), ε0) two-source extractor 2Ext : {0, 1}n×
{0, 1}d → {0, 1} with d = Oδ,ε0(logn) .

Theorem 3 is interesting on its own right. The entropy requirement in both sources is
optimal up to constant factors, as both sources have entropy which is logarithmic in the
length of the other source. This property is also true for Raz’s extractor. On the negative
side, Theorem 3 has a large error ε0, whereas Raz’s extractor has a very small error. On
the positive side, Raz’s extractor works only when d′ = δd > 0.5d whereas Theorem 3 works
with d′ = δd for any δ > 0, and it is this feature that gives a disperser construction with
parameters better than those possible for extractors. Having Theorem 3 immediately gives
the strong one output bit disperser and the non-linear near-optimal erasure list-decodable
code discussed above.

We also obtain a variant of Theorem 3 that gives a new construction of balanced two-source
extractors.

I Theorem 4. For every two constants δ, ε0 > 0 and every k ≥ Ωδ,ε0(logn) there exists an
explicit ((n, k), (n, δn), ε0) two-source extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1}.

We see that one source has a minimal entropy requirement of O(logn) while the other has
arbitrarily small constant entropy rate. Again, this improves upon [39] in terms of entropy
requirement but is worse in terms of error. Theorem 4 is also incomparable to [29] as there,
both sources require min-entropy at least O(logn log logn

log log logn ).
Both Theorem 3 and Theorem 4 follow directly from Theorem 27.
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1:6 Near-Optimal Erasure List-Decodable Codes

1.3 The Two-Source Extractor Construction

We now give an informal presentation of the two-source extractor construction. We try to
keep the discussion intuitive, and for that we omit (or ignore) some technical details. We
also assume some familiarity with the field, sometimes using notions that will be formally
presented in Section 2.

The input to the ((n, k), (d, δd), ε0) two-source extractor is an (n, k) source X and a
(d, δd) source Y , for some 0 < δ < 1

2 . At a high level, we do the following:
1. Increase the entropy rate of Y from δ to, say, 0.7. For that, we use a constant-error

condenser. We cannot do it deterministically (because the condenser needs a uniformly
random seed) and we still want to keep X fresh. Therefore, we apply the condenser on Y
and every possible seed, letting the output of this procedure be a table Y ′ in which each
row corresponds to an application with a different seed. The table Y ′ has the guarantee
that most of the rows of Y ′ are close to having entropy rate 0.7.

2. Next, we would like to transform the dense rows of Y ′ to uniformly random strings. For
that, we use Raz’s extractor with the first source X and the rows of Y ′ as (independent)
seeds. Call the resulting table Y ′′ and note that it is a function of both X and Y . Also
note that although it is now guaranteed that a constant fraction of the rows of Y ′′ are
uniform (Raz’s extractor works with entropy rate above half), it is not guaranteed (and
also not true) that the rows of Y ′′ are independent of each other.

3. Now we wish to break the dependence between the rows of Y ′′ so that (ideally) every
t of them are uniform and independent (think of t as being poly-logarithmic in the
number of rows of Y ′′). For that, we use a correlation-breaker that outputs one bit. The
correlation-breaker requires two independent sources, which we do not have. Instead,
we apply it on Y and Y ′′. Call the output table Y ′′′. We shall prove that with high
probability, Y ′′′ has many good rows and every t good rows of Y ′′′ are very close to being
uniform and independent.

4. Finally, we apply a resilient function f on the bits of Y ′′′. The output of our construction
is the function’s output f(Y ′′′).
The property that we want from f is that it is nearly balanced and that its output cannot
be heavily influenced by any small set of bad bits (the bad rows of Y ′′′). We need these
properties to hold not only when the “good” bits are perfectly uniform and independent,
but also under weaker conditions (e.g., that the good players are t-wise independent).

Thus, the coarse structure of our construction is essentially the same as many previous
two-source extractor constructions. Namely, we use the two-sources to get a non-oblivious
bit-fixing source and then apply a resilient function. There are two known approaches how
to implement the first step of getting a non-oblivious bit-fixing source from two independent
sources. The first approach was developed by Li [27] and uses alternating extraction (or
equivalently, correlation breakers).2 The second approach, used by Chattopadhyay and
Zuckerman [9], uses a non-malleable extractor combined with a sampler. The second
approach is more modular, while the first is more flexible.

2 In [27] Li uses three independent sources in his construction. However, Chattopadhyay and Zuckerman
[9] remark that their two source extractors could also have been obtained using Li’s approach, once a
low-depth, highly resilient function is constructed (as is done in [9]). Thus, we view Li’s construction as
a reduction from two independent sources to a non-oblivious bit-fixing source.
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We now elaborate more on how Li obtained the above reduction and compare it with
our work. The input to Li’s protocol are samples from two independent (n, k = polylogn)
sources X and Y . The protocol works by applying an extractor E1 to Y , where we enumerate
over every possible seed of E1 and build a table. Then, each such row is fed as a seed to an
extractor E2, applied on the source X. Li then proceeds to use alternating extraction to get
a non-oblivious bit fixing source. (Eventually, he also uses the lightest-bin protocol to obtain
a three-source extractor.)

Li’s reduction and our construction are very similar, except that:
In step (1) we replace E1 with a constant degree condenser, and as a result,
In step (2) the role of E2 in our construction is played by a two-source extractor (of Raz).
This is necessary because the output of the condenser is only guaranteed to have high
min-entropy. Finally,
In step (3) a correlation breaker replaces alternating extraction.

While the change seems small it is essential, and the reason why the problem waited its
solution for so long. Next, we elaborate on why we use condensers instead of the extractor
E1 and which condensers should be used.

First, we notice that the two-source extractor we are set to construct is different than
that of [27] and [9]. [27, 9] construct balanced two-source extractors, where each of the two
sources is weak (an in particular might have densities well below linear) whereas we are set
to construct a highly non-balanced extractor where one of the sources (the small one) has
linear density.

The key observation of the paper is that in such a situation (where the density of one
source is linear) the condenser of step (1) has a huge advantage over the extractor E1 since
the condenser might have constant seed length (hence a constant number of rows in the
table) independent of the row length, and therefore also independent of n, which is totally
impossible with extractors. The fact that such explicit condensers exist is a beautiful result
of [16]. The analysis (done in Section 4.3) critically uses this fact (that the number of
output rows of the condenser is a constant) in a delicate way to prove the correctness of the
construction.

We also mention that our construction shares steps that are similar to Cohen’s construc-
tion [12] of three-source extractors. The vital difference is that in [12], a third source is used
to achieve complete independence between the rows of a table and then a simple parity can
be applied, even if only one row is close to uniform. Here, we only use two sources.

To conclude this part, we discuss the dependence problem (to be explained soon), and
what aspects of our solution to this problem differ from previous solutions:

First, there is the issue of lack of independence between the source Y and the seed
Y ′′ in item (3) of the construction. To overcome this, we show a conditioning under
which Y ′′ is still good, Y is independent of Y ′′ and even after the conditioning the
two sources have enough min-entropy. In recent years, such conditioning methods were
very successful in constructing an abundance of primitives (e.g., correlation breakers,
independence-preserving mergers and non-malleable extractors, etc.).
Next, there is a delicate issue with the errors. The error εcond of the condenser is high
(think of it as a constant). In a naive analysis we would argue that each t good rows
are ε′ > εcond close to uniform, and therefore the whole table Y ′′′ is Atε′-close to a table
where the good rows are perfectly t-wise independent, where A is the number of rows in
the table Y ′′′. However, such an approach is doomed to fail, as necessarily Aεcond > 1.
Our solution for this problem is the heart of the argument. We observe that some of the
errors in the construction depend on A, the number of rows in the table, while others
depend on the row length. In the construction we make sure that A is small (think of it
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1:8 Near-Optimal Erasure List-Decodable Codes

as a fixed constant) while the row length is unbounded (and, e.g., grows to infinity as n
grows to infinity). Thus, we have a natural separation between large errors that depend
on the number of rows A, and small errors that depend on the row length. A similar
distinction between large and small errors appears in [27].
The condenser of step (1) and the resilient function of step (4) incur large errors. Raz’s
extractor (step (2)) and the correlation breaker with advice (step (3)) incur small errors
that are exponentially-small in the row length. We show that with some constant
probability we succeed in step (1), and that once we have succeeded, the errors δ in steps
(2) and (3) are so small that Atδ is still small, hence Y ′′′ is close to a table with t-wise
independent good players, and so the resilient function in step (4) works (and incurs
another constant error). Thus, while the failure probability is high, when we succeed we
are exponentially-close to uniform.
Notice that the fact that A is a constant (independent of the row length) is crucial for the
argument to work, and this is why we resort to using condensers rather than extractors
as in previous solutions.
Finally, the argument used in the last bullet raises a difficulty regarding the set of good
rows. Specifically, in [9], the set of good rows is a function of one of the sources. In our
analysis the set of good rows is not just a function of the sources X and Y , but also
depends on the specific sample y ∼ Y .

Indeed, as we said before, this strategy leads to better unbalanced two-source constructions,
and consequently to constructions of near-optimal erasure list-decodable codes (with high
rate and small list-size), and one output-bit strong dispersers (with almost optimal seed
length and entropy requirement) overcoming barriers that stood open for many years without
seeing any progress.

1.4 Non-Strong Dispersers

Strong dispersers are the focal point of this paper. One may wonder why we insist on the
strongness property, and whether the problem becomes easier when the strongness property
is dropped.

The answer to the first question is that the strongness property is essential. The
equivalence between erasure list-decodable codes and dispersers requires the dispersers to
be strong (see Lemma 44, and also notice the correspondence between code coordinates
and seeds). Similarly, the connection to Ramsey graphs also requires the disperser to
be strong, as already observed by Gradwohl et al. [22]. [22] constructed dispersers that
are strong in almost all of the seed, but not strong in some part of the seed, and this
drawback is severe enough that none of the applications go through.
The answer to the second question is that it is easier to construct non-strong dispersers
with good parameters. In the paper we prove that it is possible to output more bits from
the source at the expense of being strong in only most of the bits (we are non-strong in
only O(1) bits of the seed). We prove:
I Theorem 5. For every constant 0 < γ < 1 and ε = n−Ωγ(1) there exists an explicit (k, ε)
disperser Disp : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + γ) log( 1

ε ), k ≥ Ωγ(log log 1
ε )

and m = d+ Ωγ(k). The disperser is strong in d−Oγ(1) bits of the seed.
We sketch a proof of the above theorem in Section 5.2.
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1.5 Organization

The rest of the paper is organized as follows. Section 2 covers the preliminaries and notations
we use. Section 3 describes the constant degree condenser that is used in step (1). Following
the above discussion, it is important for us that A, the number of rows in the table, and
equivalently the seed-length of the condenser, is a constant independent of the row length. In
that section we show one can combine existing constructions of somewhere-random condensers
and mergers to achieve that. Next, in Section 4, we describe and analyze the new unbalanced
two-source extractor. In Section 5 we use the new two-source extractor to obtain near-optimal
strong seeded dispersers, erasure list-decodable codes and unbalanced Ramsey graphs. We
conclude with a few open problems in Section 6.

2 Preliminaries

Throughout the paper we use the convention that lowercase variables are the logarithm (in
base 2) of their corresponding uppercase variables, e.g., n = logN , d = logD. We denote
by [A] the set {1, . . . , A}. The density of a set B ⊆ A is ρ(B) = |B|

|A| . We say a function
f : A→ B is explicit if there exists a deterministic polynomial algorithm that runs in time
poly(log |A|) and computes f .

2.1 Random Variables and Min-Entropy

The statistical distance between two distributions X and Y on the same domain Ω is defined
as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say X is ε-close to Y
and denote it by X ≈ε Y . We denote by Un the random variable distributed uniformly over
{0, 1}n. We say a random variable is flat if it is uniform over its support.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the
random variable distributed over Ω2 obtained by choosing x according to X and computing
f(x). For a set A ⊆ Ω1, f(A) = {f(x) | x ∈ A}. For every f : Ω1 → Ω2 and two random
variables X and Y distributed over Ω1, it holds that |f(X)− f(Y )| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log 1
Pr[X = x] .

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. When n is clear from the context we sometimes omit it and simply say that X is
a k-source. Every k-source X can be expressed as a convex combination of flat distributions
each with min-entropy at least k.

I Definition 6 (average conditional min-entropy). Let X,Y be two random variables. The
average conditional min-entropy of X given Y is

H̃∞(X|Y ) = − log
(
Ey∼Y

[
2−H∞(X|Y=y)

])
.

We will use the following simple claim about average conditional min-entropy:

B Claim 7. For any random variables X,Y , H̃∞(X|Y ) ≥ H∞(X)− log |Supp(Y )|.
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2.2 Condensers
I Definition 8 (condenser). A function C : {0, 1}n × {0, 1}d → {0, 1}m is an (n, k) →εcond

(m, k′) condenser, if for every (n, k) source X, C(X,Ud) is εcond-close to an (m, k′) source.
If k = δn and k′ = δ′m we say C is a δ →εcond δ

′ condenser.

I Lemma 9. Suppose C : {0, 1}n×{0, 1}d → {0, 1}m is an (n, k)→εcond (m, k′+d) condenser.
Let X be an (n, k) source. Let εi be the minimal distance of C(X, i) to an (m, k′) source.
Then, Ei∈{0,1}d [εi] ≤ εcond.

Proof. Fix an (n, k) source X. For i ∈ {0, 1}d, let Hi ⊆ {0, 1}m be the set of “heavy”
elements of C(X, i),

Hi =
{
w ∈ {0, 1}m : Pr

x∈X
[C(x, i) = w] ≥ 2−k

′
}
.

The distance of C(X, i) from a k′-source is

εi = Pr
x∈X

[C(x, i) ∈ Hi]− 2−k
′
|Hi|,

by redistributing the mass of the heavy elements. Let H =
⋃
i∈{0,1}d Hi. Then,

For every w ∈ H, Prx∈X,i∈{0,1}d [C(x, i) = w] ≥ 2−d2−k′ = 2−(k′+d), and,
it holds that

εcond = Pr
x∈X,i∈{0,1}d

[C(x, i) ∈ H]− |H|2−(k′+d)

=
∑

i∈{0,1}d
2−d Pr

x
[C(x, i) ∈ H]− |H|2−(k′+d)

≥
∑

i∈{0,1}d
2−d Pr

x
[C(x, i) ∈ Hi]− 2−(k′+d)

∑
i∈{0,1}d

|Hi|

=
∑

i∈{0,1}d
2−d

(
Pr
x

[C(x, i) ∈ Hi]− 2−k
′
|Hi|

)
=

∑
i∈{0,1}d

2−dεi = Ei∈{0,1}d [εi]. J

2.3 Two-Source Extractors
I Definition 10 (two-source extractor). A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is
an ((n1, k1), (n2, k2), ε) two-source extractor if for every two independent sources X1 and X2
where X1 is an (n1, k1) source and X2 is an (n2, k2) source, it holds that 2Ext(X1, X2) ≈ε Um.
We say that 2Ext is strong if

(2Ext(X1, X2), X1) ≈ε (Um, X1)

and

(2Ext(X1, X2), X2) ≈ε (Um, X2).
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In our construction, we will use the following two-source extractor:

I Theorem 11 ([39]). For every constant δRaz >
1
2 there exist constants c1 = c1(δRaz), c2 =

c2(δRaz) > 1 such that for every n1, k1, n2, k2 satisfying
k1 ≥ c1 logn2,
k2 ≥ c2 logn1,

there exists an explicit strong ((n1, k1), (n2, k2 = δRazn2), εRaz) two-source extractor

Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m

with m = Ω(min {k1, k2}) and εRaz = 2−Ω(m), where the constants hiding in the asymptotic
notation may depend on δRaz.

B Claim 12. Suppose 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong ((n1, k1), (n2, k2), ε)
two-source extractor. Let X be an (n, k1) source. Call an element y ∈ {0, 1}n2 bad if
|2Ext(X, y)− Um| > ε, and let BY denote the set of all bad elements. Then, |BY | < 2k2 .

Proof. Assume towards contradiction that |BY | ≥ 2k2 and let Y be the uniform distribution
over the set BY . Then, H∞(Y ) ≥ k2 and so (2Ext(X,Y ), Y ) ≈ε (Um, Y ) which implies that

1
|BY |

∑
y∈BY

|2Ext(X, y)− Um| ≤ ε.

However, |2Ext(X, y)− Um| > ε for every y ∈ BY , in contradiction. J

2.4 Mergers
A merger takes as input a list of possibly correlated random variables along with a short
uniform seed and outputs one random variable which is close to having high min-entropy,
provided at least one of the input variables has high min-entropy. Formally:

I Definition 13 (somewhere-random source). A source X = X1 ◦ . . . ◦XA is an (n, k, (α, β))
somewhere-random (s.r.) source if there is a random variable I ∈ {0, . . . , A} such that for
every i ∈ [A], (Xi|I = i) is α-close to an (n, k) source and Pr[I = 0] ≤ β. The variable I is
called the indicator of source. If α = β = 0 we say X is a (n, k) s.r. source.

I Definition 14 (merger). A function B : ({0, 1}n)D×{0, 1}t → {0, 1}m is a (k, k′, ε) merger,
if for every (n, k) s.r. source X = X1 ◦ . . .◦XA, the output M(X,Ut) is ε-close to a k′-source.

There are explicit constructions of good mergers. Dvir and Wigderson [17] constructed the
curve merger and proved that it works with t = O(log n

ε ). This was further improved in [16]
who proved that t = O(log D

ε ) suffices. Notice that now t only depends on the number of
sources D and the requested error ε, but not on the source length n, and this remarkable
property will be crucial for us. Formally,

I Theorem 15 ([17, 16]). There exists a constant cDKSS ≥ 1 such that the following holds.
Fix β, δ, ε > 0. There exists an explicit function B : ({0, 1}n)D × {0, 1}t → {0, 1}n that is a
(k = δn, k′ = (1− β)δn, ε) merger, with t = cDKSS · 1

β log D
ε .

2.5 Correlation Breakers with Advice
A correlation-breaker with advice is a function CBA : {0, 1}n×{0, 1}`× [A]→ {0, 1}m where
we think of the first input as a weak source, the second as an independent short seed and the
last as an advice string. Roughly speaking, applying CBA on t possibly correlated seeds with
t distinct advice strings results in independent random variables. For example, CBA(X,Y, α)
is (nearly) independent of CBA(X,Y, α′) for any α 6= α′. Formally,
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I Definition 16. A function CBA : {0, 1}n × {0, 1}` × [A] → {0, 1}m is a (t, k, εCBA)
correlation-breaker with advice if the following holds. If Y is a distribution over {0, 1}n,
Z = (Z1, . . . , Zt) is a distribution on ({0, 1}`)t, H is a random variable and δ > 0 satisfy:

Y and Z are independent, conditioned on H,
H̃∞(Y |H) ≥ k + log(1/εCBA),
(Z1,H) ≈δ (U`,H), and,
α1, . . . , αt ∈ [A] are distinct strings.

Then,(
CBA(Y,Z1, α1), (CBA(Y,Zi, αi))ti=2 ,H

)
≈δ+2εCBA

(
Um, (CBA(Y,Zi, αi))ti=2 ,H

)
.

We use the following result:

I Theorem 17 ([13, Theorem 4.12]). There exists a constant cCBA ≥ 1 such that the following
holds. Let n, a be integers and εCBA > 0. Then, there exists an explicit (t, kCBA, εCBA)
correlation-breaker with advice

CBA : {0, 1}n × {0, 1}` × [A]→ {0, 1}

with ` = cCBA · at · log n
εCBA

and kCBA ≥ `.

In our setting, the number of rows A is a constant independent of n. For this reason we
work with a “basic” correlation-breaker, where there is no attempt to optimize the dependence
of ` on a. This gives a seed-length which is optimal up to constant multiplicative factors.

We also need the following lemma.

I Lemma 18. Let X1, . . . , Xt be random variables over {0, 1}m. Further suppose that for
any i ∈ [t],(

Xi, {Xj}j 6=i
)
≈ε
(
Um, {Xj}j 6=i

)
.

Then, (X1, . . . , Xt) ≈tε Utm.

2.6 Limited Independence and Non-Oblivious Bit-Fixing Sources
I Definition 19. A distribution X over {0, 1}A is called (t, γ)-wise independent if the
restriction of X to every t coordinates is γ-close to Ut. A source X over {0, 1}A is called a
(q, t, γ) non-oblivious bit-fixing source if there exists a subset Q ⊆ A of size at most q such
that the joint distribution of the bits in A \Q is (t, γ)-wise independent. The bits in Q are
allowed to arbitrarily depend on the bits in A \Q. If γ = 0 we often say that X is a (q, t)
non-oblivious bit-fixing source.

I Lemma 20 ([3]). A (t, γ)-wise distribution over A bits is (Atγ)-close to some t-wise
independent distribution.

I Definition 21. Let f : {0, 1}A → {0, 1}, D a distribution over {0, 1}A and Q ⊆ A. Let
IQ,D(f) denote the probability that f is undetermined when the variables outside Q are
sampled from D. We define Iq,t,γ(f) to be the maximum of IQ,D(f) over all Q ⊆ A of size q
and all D that is a (t, γ)-wise independent distribution. We say that f is (t, γ)-independent
(q, ε)-resilient if Iq,t,γ(f) ≤ ε.
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I Theorem 22 ([9, 32]). For every 0 < γ < 1 there exists a constant cγ ≥ 1 such that for
all A > 0 there exists an explicit function f : {0, 1}A → {0, 1} with the following property:

For every t ≥ cγ log4A,
f is almost balanced: For any t-wise independent distribution D on {0, 1}A,

Pr
x∼D

[f(x) = 1] = 1/2±A−1/cγ , and,

f is resilient: Iq,t,γ(f) ≤ cγ · q
A1−γ .

3 Constant Degree Condensers

In this section we prove:

I Theorem 23. For every constant 0 < δ1 < δ2 = 0.7, every s ≥ s0(δ1) and every integer n1
and εcond ≥ 2−Ω(n1) there exists an explicit δ1 →εcond δ2 condenser C : {0, 1}n1 × {0, 1}d →
{0, 1}n2 with n2 = ( 2

3 )sn1 and d = 4cDKSS

(
s+ log 1

εcond

)
, where cDKSS is the constant from

Theorem 15. Note that d is independent of n1.

Note that, in particular, for every δ1 > 0 there exists an explicit δ1 →εcond δ2 = 0.7
condenser C : {0, 1}n1 × {0, 1}d → {0, 1}n2 with n2 = Ω(n1) and d = O(log 1

εcond
). However,

we will need the more precise version that appears in Theorem 23.
The proof goes through somewhere-random condensers, so let us first discuss the similar-

ities and differences between condensers and somewhere-random condensers. We begin with
the necessary definitions:

I Definition 24 (s.r. condenser). A function C : {0, 1}n → ({0, 1}m)A is an (n, k)→ε (m, k′)
s.r. condenser if for every (n, k) source X it holds that C(X) = C(X, 1) ◦ . . . ◦ C(X,A) is
ε-close to a k′ s.r. source. If k = δn and k′ = δm we say C is δ →ε δ

′ s.r. condenser.

We may take a condenser C : {0, 1}n × {0, 1}d → {0, 1}m and expand it to a table with
the outputs of all possible seeds, i.e., define S : {0, 1}n → ({0, 1}m)D, with D = 2d, where
S(x)i = C(x, i). The condenser property guarantees that for every k-source X, most rows in
the table are close to having k′ min-entropy. In contrast, a s.r. condenser is a weaker object,
because it only guarantees that one row has k′ entropy (or more precisely that we are in a
convex combination of such cases).

The major question we consider now is the dependence of the degree (2d for condensers
and A for s.r. condensers) on n,m, k, k′ and ε. We focus on the case where m = Ω(n),
k = δn, k′ = δ′m and δ < δ′ are constants. A priori, we could have expected the degree
to depend on n and ε, as is indeed the case when m might be arbitrarily small. However,
remarkably, things are drastically different when m = Ω(n). In this case both condensers and
s.r. condensers may be of degree that is independent of n and this will be crucial for us. If
we consider the dependence on the error, then s.r. condensers may have exponentially-small
error and constant D, whereas the degree of a condenser is at least d ≥ log( 1

ε ). Remarkably,
all of that can be explicitly achieved, as we now explain.

The basic building block we use is the following beautiful result of Zuckerman, which is
based on additive combinatorics:

I Theorem 25 ([45, Theorem 8.3]). For every constant 0 < c < 1 there exists a constant
α = α(c) such that for every constant δ ≤ c and integer n there exists an explicit function
C : {0, 1}n → ({0, 1}

2
3n)2 that is a δ →ε (1 + α)δ s.r. condenser with ε = 2−Ω(αδn).
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Somewhere-random condensers can be easily composed. Specifically, Barak et al. [5]
showed that if C1 : {0, 1}n1 → ({0, 1}n2)`1 is a δ1 →ε1 δ2 s.r. condenser and C2 : {0, 1}n2 →
({0, 1}n3)`2 a δ2 →ε2 δ3 s.r. condenser then C2 ◦ C1 : {0, 1}n1 → ({0, 1}n3)`1·`2 defined by
C2 ◦ C1(x)(i1,i2) = C2(C1(x)i1)i2 is a δ1 →ε1+ε2 δ3 s.r. condenser.

Composing the s.r condenser of Theorem 25 with itself s times we get an explicit function
C : {0, 1}n → ({0, 1}m)D with D = 2s and m = ( 2

3 )sn that is a δ →ε δ
′ s.r. condenser with

ε =
∑s
i=1 2−Ω((1+α)iδ( 2

3 )in) = 2−Ω(m) and δ′ ≥ (1 + α(δ′))sδ. Therefore:

I Lemma 26. For every constants 0 < δ1 < δ2 < 1 there exists a constant s = s(δ1, δ2) and
an explicit function C : {0, 1}n1 → ({0, 1}n2)D that is a δ1 →ε δ2 s.r. condenser with D = 2s,
n2 = ( 2

3 )sn1 and ε = 2−Ω(n2). Note that D is independent of n and ε.

Right now, if X is a k-source, the table C(X) has D rows, and, roughly speaking, the
guarantee is that one of these rows has density δ′. We want to change this to get a condenser,
i.e., we are willing to invest a short seed (that is independent of n) and we want to get
one output which is close to uniform. (Alternatively, we can write the condenser as a table
with one row per seed, the number of rows is independent of n and most rows are close to
uniform.) This is exactly what a merger does and applying the merger of Theorem 15 with
β = 1

4 on the s.r. condenser of Lemma 26 (with δ2 close to 1) gives Theorem 23.

4 The Unbalanced Two-Source Extractor Construction

The main result of this section is the following two-source extractor.

I Theorem 27. For every integer n and two constants δ0, ε0 > 0 there exists a constant c
such that for d ≥ c logn and k ≥ c log d there exists an explicit ((n, k), (d, δ0d), ε0) two-source
extractor 2Ext : {0, 1}n × {0, 1}d → {0, 1}.

The extractor in the above theorem has constant error, and works when:
1. Each source’s entropy is in the order of the logarithm of the length of the other source.
2. The shorter source, of length d, has an arbitrarily small constant density δ0.

We think of n and d = d(n) as growing parameters while ε0 and δ0 are constants. We
use asymptotic notations (such as Ω(·)) to hide constants that are independent of n and d
(but may depend on ε0 and δ0).

4.1 The Construction
Recall that ε0 is the target error of the extractor 2Ext. The input to 2Ext is a pair (x, y)
where x is drawn from an (n, k) source X, and y is drawn from an independent (d, δ0d)
source Y . Our problem is that the y comes from a δ0d-source for some δ0 < 1

2 . To overcome
this, we do the following:

We apply the condenser of Theorem 23 on y to get a table y′ that is 1-wise 0.7-dense.
Notice that the output of this step is a table rather than a single output.
We apply Raz’s extractor (Theorem 11) on the table and the input x from the other
source to convert the table y′ to another table y′′ that is 1-wise uniform.
We apply the t correlation-breaker with advice of Theorem 17 on y, using the table y′′ as
the seed, to get a table y′′′ that is t-wise uniform.
Finally, we apply the resilient function f of Theorem 22 on the table y′′′ to collapse the
many rows of the table to a single, close to uniform, output.
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Formally, these steps work as follows:

Condense the short source: We are given δ0 < 1
2 . Set δ

′ = 0.69 and δ2 = 0.7.
By Theorem 23 there exists a constant s0 = s0(δ0) such that for every s ≥ s0 there exists
an explicit

C : {0, 1}d × {0, 1}a → {0, 1}d
′

that is a δ0 →εcond δ2 = 0.7 condenser with a = 4cDKSS(s+ log 1
εcond

) and d′ = ( 2
3 )sd.

We set

γ = 1
25cDKSS

,

and this also fixes cγ as in Theorem 22. Notice that γ and cγ are fixed constants
independent of all other parameters in our system.
Now, choose εcond so that(

1
εcond

)log(3/2)
≥ 4

δ0
212cγc

4
DKSS log4 1

εcond
, (1)

and also so that εcond ≤ ξ(ε0, δ0), where

ξ(ε0, δ0) = min
{

2−s0 ,
(ε0

8

)2
,
(ε0

5

)cγ
,

(
ε0

5cγ

)1/γ
}
. (2)

Given εcond, we set s = log 1
εcond
≥ s0, giving a = 8cDKSS log 1

εcond
. Note that the degree of

the condenser, A = 2a, satisfies
√
εcondA = 2−

1
2 log 1

εcond
+a = 2−

a
24cDKSS

+a = A1−2γ .

Observe that s ≥ s0 and that d′ = Ω(d). Also, notice that (δ2−δ′)d′ = d′/100 ≥ a = logA
for large enough d. Thus, C is a (d, δd)→εcond (d′, log(A) + δ′d′) condenser.
Define an A× d′ table Y ′ where

Y ′i = C(Y, i) ∈ {0, 1}d
′

for i = 1, . . . , A.
1-wise uniformity: Let c1, c2 be the constants from Theorem 11 for δRaz = 0.6.

Notice that δRazd
′ = Ω(d′) = Ω(d). Therefore, for a constant c large enough, d ≥ c logn

is large enough so that δRazd
′ ≥ c2 logn. We can, in particular, choose c such that in

addition c ≥ c1. Recalling that k ≥ c log d, we have k ≥ c1 log d′. By Theorem 11, there
exists an explicit function

Raz : {0, 1}n × {0, 1}d
′
→ {0, 1}d

′′

that is a strong ((n, k), (d′, δRazd
′), εRaz = 2−Ω(d′′)) two-source extractor with d′′ =

Ω(min {k, δRazd
′}) = Ω(k).3 Define an A× d′′ table Y ′′ where

Y ′′i = Raz(X,Y ′i )

for i = 1, . . . , A.

3 Although k ≥ c log d we can always assume w.l.o.g. that k = c log d and so k ≤ δRazd
′ = Ω(d).
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t-wise uniformity: Let kCBA = δ0d
8 and εCBA = 1

d . Set

t = δ0
4

(
3
2

)s
.

Notice that for a large enough constant c we have d′′ = Ω(k) = Ω(c log d) ≥ cCBAat log d
εCBA

,
where the latter is the seed-length required by the correlation-breaker from Theorem 17.
Also, kCBA = δ0d

8 ≥ d
′′ for large enough d, as d′′ = Ω(k) = Ω(log d). Hence, by Theorem

17 there exists an explicit function

CBA : {0, 1}d × {0, 1}d
′′
→ {0, 1}

that is a (t, kCBA, εCBA) correlation-breaker with advice.
Define an A× 1 table Y ′′′ where

Y ′′′i = CBA(Y, Y ′′i , i)

for i = 1, . . . , A.
Keep in mind that the entropy in Y suffices for CBA since H∞(Y ) = 8kCBA.

Collapse: Take f : {0, 1}A → {0, 1} to be the (q = A1−2γ , t, εf = cγA
−γ) resilient function

of Theorem 22 and output f(y′′′1 , . . . , y
′′′
A ).

4.2 Two Subtleties
As mentioned in the introduction, there are several delicate issues in the analysis:
1. Circular dependence: Y ′′ depends on both X and Y , and is used as a seed in the

application of the correlation-breaker with advice on Y .
2. We need Y ′′′ to be close to a perfect t-wise independent table, while the correlation-breaker

with advice only guarantees that every t good rows are close to uniform. To bridge the
gap we need the error to be at least polynomially-small in the number of rows, but some
of the steps incur a large constant error.

To overcome the first issue we show a conditioning under which Y ′′ is still good, Y is
independent of Y ′′ and even after the conditioning the two sources have enough min-entropy.

To overcome the second issue we distinguish between large errors that depend on the
number of rows A, and small errors that depend on the row length (see Section 1.3 in the
introduction). In particular, the errors are of three types:

The probability p1 that a value we condition upon is bad. This error is incurred by the
condenser and is high (think of it as being a constant).
We show that when we condition on a good value, every t good rows in Y ′′′ are p2-close
to uniform. We then claim that Y ′′′ as a table is Atp2-close to a table where the good
rows are truly t-wise independent (where A is the number of rows in the table Y ′′′). The
error p2 is incurred by Raz’s extractor and by the correlation-breaker, and can be made
very small if we deal with a source X having enough min-entropy. We make p2 small
enough so that Atp2 is also small.
A third error p3 is incurred by the resilient function f . This error is large, say, a constant,
and we are fine with that.

Note that we cannot just accumulate all errors as Atp1 is way larger than 1. Instead, we
argue that with a constant probability 1− p1, we get extremely close to perfect behavior,
and then we get such a small error p2 so that Atp2 is also small.
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4.3 The Analysis
Proof of Theorem 27. Fix an (n, k) source X and an independent (d, δd) source Y . We
decompose the proof into three parts:

In the first part we prove that very often (except for a small constant probability) the
table Y ′′ contains many rows that are marginally close to uniform.
Next, we prove that every set of t rows {i, j1, . . . , jt−1} in Y ′′′ are product in the sense
that if i is a good row (intuitively meaning that Y ′′i is close to uniform) and j1, . . . , jt−1
are t−1 other rows, then in Y ′′′, Y ′′′i is close to uniform and independent of Y ′′′j1

, . . . , Y ′′′jt−1
.

This part involves applying a correlation-breaker with advice on Y and Y ′′. In order to
ensure that Y and Y ′′ are independent, we condition on the values of Y ′ in the t rows
{i, j1, . . . , jt−1}.
Together, except for a small constant probability, there are many good rows, and every t
rows of Y ′′′ are product, hence the table Y ′′′ is close to a (q, t) non-oblivious bit-fixing
source, where every good row is a good bit in the bit-fixing source. Hence, f(Y ′′′) is close
to uniform.

Part 1: Often, many rows in Y ′ are good
Let εi be the minimal distance of C(Y, i) from a δ′d′-source. According to Lemma 9,

Ei∈[A][εi] ≤ εcond.

I Definition 28. We say z ∈ {0, 1}d
′
is good if Raz(X, z) is εRaz-close to uniform. Let

GZ be the set of all good z-s, and BZ the rest. We say i ∈ [A] is good for y ∈ {0, 1}d if
C(y, i) ∈ GZ and bad otherwise. We define a random variable Bi, where the sample space is
Y , and Bi(y) = 1 if i is bad for y and 0 otherwise.

By Claim 12, |BZ| ≤ 2δRazd
′ . Therefore, in expectation, the number of bad rows for y is

small:

B Claim 29. Ey∈Y
[∑

i∈[A]Bi(y)
]
≤ 2εcondA.

Proof. Fix an i ∈ [A]. We have that C(Y, i) is εi-close to some δ′d′ = 0.69d′-source R. Hence:

Ey[Bi(y)] = Pr
y∈Y

[C(y, i) ∈ BZ] ≤ εi + Pr
r∈R

[r ∈ BZ] ≤ εi + |BZ|2δ′d′ = εi + 2−0.09d′ .

Thus, for d large enough,

Ey
[ ∑
i∈[A]

Bi(y)
]

=
∑
i∈[A]

Ey[Bi(y)] ≤
∑
i∈[A]

(
εi + 2−0.09d′

)
≤ εcondA+ 2−0.09d′A ≤ 2εcondA.C

I Definition 30. We say y ∈ Supp(Y ) has many bad rows if
∑
i∈[A]Bi(y) ≥ √εcondA.

Denote p1,1 = ε0
4 .

B Claim 31. Pry∈Y [y has many bad rows] ≤ p1,1.

Proof. By Markov,

Pr
y∈Y

[∑
i

Bi(y) ≥
√
εcondA

]
≤

E
[∑

iBi(y)
]

√
εcondA

≤ 2εcondA√
εcondA

= 2
√
εcond ≤

ε0

4 ,

where the last inequality follows from the fact that εcond ≤ ( ε0
8 )2. C

CCC 2020



1:18 Near-Optimal Erasure List-Decodable Codes

Part 2: The good rows are t-wise independent
We introduce some notations to simplify the expressions in the proof. For y0 ∈ {0, 1}d

and k ∈ [A], let Y ′′′k (y0) denote (Y ′′′k |Y = y0). Also, for a set S ⊆ [A], define Y ′′′S (y0) ={
Y ′′′j (y0)

}
j∈S . Denote p2 = εRaz + 2εCBA.

I Definition 32. Let y0 ∈ {0, 1}d (not necessarily in the support of Y ). Let i ∈ [A] and
S ⊆ [A] \ {i} of cardinality t− 1. We say y0 violates the product rule for (i, S) if Bi(y0) = 0
and

(Y ′′′i (y0), Y ′′′S (y0)) 6≈p2 U1 × Y ′′′S (y0).

I Definition 33. Let y0 ∈ {0, 1}d (not necessarily in the support of Y ). Let i ∈ [A] and
S ⊆ [A] \ {i} of cardinality t − 1. We say y0 violates the product rule with distinguisher
∆ : {0, 1}t → {0, 1} for (i, S) if Bi(y0) = 0 and∣∣∣Pr[∆ (Y ′′′i (y0), Y ′′′S (y0)) = 1]− Pr[∆(U1, Y

′′′
S (y0)) = 1]

∣∣∣ > p2.

Observe that if y0 violates the product rule then there exists some ∆ such that y0 violates
the product rule with distinguisher ∆.

I Lemma 34. For every i and S as above, the number of y ∈ {0, 1}d that violate the product
rule for (i, S) is at most 2δ0d/2+2t .4

Proof. Suppose the lemma is false for some (i, S). Then, by the pigeonhole principle there
exists some ∆ such that the number of elements y ∈ {0, 1}d that violate the product rule
for (i, S) with distinguisher ∆ is at least 2δ0d/2. Let BY denote the set of these elements.
Identify BY with the uniform distribution over the set BY .

Let BY ′i = C(BY, i), BY ′′i = Raz(X,BY ′i ) and BY ′′′i = CBA(BY,BY ′′i , i). For a subset
T ⊆ [A] Let BY ′T denote the sub-table of BY ′ corresponding to the rows of T , and similarly
BY ′′T and BY ′′′T . Since for every y ∈ BY , we have that

∆ (BY ′′′i (y), BY ′′′S (y)) 6≈p2 ∆(U1, BY
′′′
S (y)),

this holds also on average, that is

∆ (BY ′′′i , BY ′′′S ) 6≈p2 ∆(U1, BY
′′′
S ).

Thus, it follows that

BY ′′′S∪{i} 6≈p2 U1 ×BY ′′′S . (3)

On the other hand, when we condition on the values of H = BY ′S∪{i}, the conditions
for the correlation-breaker with advice hold:

BY and BY ′′S∪{i} are independent given H = BY ′S∪{i}, since H is a function of BY alone,
and given that H = BY ′S∪{i} = h for some h, BY ′′S∪{i} is a function of X alone.

4 We could have used an alternative argument that avoids the 22t factor here by a minor deterioration in
the error of the CBA. However, since the t we use is constant the 22t factor is negligible.
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It holds that

H̃∞(BY |H) ≥ H∞(BY )− log(|Supp(H)|)

= H∞(BY )− td′ ≥ δ0d

2 − td
′ ≥ δ0d

4 ,

because
td′

d
= t ·

(
2
3

)s
= δ0

4 .

Now, since kCBA = δ0d
8 and εCBA = 1

d we also have for d large enough,

H̃∞(BY |H) ≥ δ0d

4 ≥ kCBA + log 1
εCBA

.

Bi(y) = 0, hence BY ′i ∈ GZ and BY ′′i = Raz(X,BY ′i ) is εRaz-close to uniform.

Thus, by the correlation-breaker with advice property,(
CBA(BY,BY ′′i , i),

{
CBA(BY,BY ′′j , j)

}
j∈S

)
≈εRaz+2εCBA

(
U1,
{

CBA(BY,BY ′′j , j)
}
j∈S

)
,

or, equivalently,

(BY ′′′i , BY ′′′S ) ≈p2 U1 ×BY ′′′S ,

in contradiction to Equation (3). J

I Definition 35. Say y ∈ {0, 1}d violates the product rule if it violates it for some i ∈ [A]
and S ⊆ [A] \ {i} of cardinality t− 1.

As H∞(Y ) ≥ δ0d, the probability y ∈ Y violates the product rule for a specific (i, S) is
at most 2δ0d/2+2t−δ0d = 22t−δ0d/2. Let p1,2 = ε0

10 . Then, by the union bound, for d large
enough:

I Corollary 36. Pry∈Y [y violates the product rule] ≤ 22t−δ0d/2 ·At ≤ p1,2.

Part 3: Completing the proof
I Definition 37. We say y is bad if it has many bad rows or if it violates the product rule.
If y is not bad we say it is good.

Let p1 = p1,1 + p1,2. Clearly, by Claim 31 and Corollary 36, Pry∈Y [y is bad] ≤ p1 =( 1
4 + 1

10
)
ε0.

B Claim 38. Fix any good y ∈ Y . Then, Y ′′′(y) is a (q, t, tp2) non-oblivious bit-fixing source,
for q = √εcondA.

Proof. Let Q(y) ⊆ [A] be the set of bad rows for y. As y does not have many bad rows,
|Q(y)| =

∑
i∈[A]Bi(y) ≤ √εcondA = q.

Now, fix any set S ⊆ [A] \Q(y) of cardinality t. Let i ∈ S. As S ⊆ [A] \Q(y) and i ∈ S
we have i 6∈ Q(y) and therefore Bi(y) = 0. Also, y does not violate the product rule, hence,(

Y ′′′i (y), Y ′′′S\{i}(y)
)
≈p2 U1 × Y ′′′S\{i}(y).

As this is true for any i ∈ S, by Lemma 18,

Y ′′′S (y) ≈tp2 Ut.

Thus, Y ′′′(y) is a (q, t, tp2) non-oblivious bit-fixing source. C
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In particular, by Lemma 20, for every good y, Y ′′′(y) is tAtp2-close to a (q, t) non-oblivious
bit-fixing source. By the choices we have made above q = √εcondA ≤ A1−2γ . Equation (1)
implies that

t = δ0
4

(
1

εcond

)log(3/2)
≥ cγ log4A.

Using the resiliency of f from Theorem 22 (and the fact that it is almost balanced), the
output when y is good is p3-close to uniform for p3 = tAtp2 + εf +A−1/cγ , where the first
term is due to the distance from a t-wise distribution, the second is due to the resiliency and
the third is due to the bias of f (see, e.g., Lemma 2.11 in [9]). To that we also have to add
the probability p1 that y is not good. To finish the proof we notice that:

It holds that

εf ≤ cγ
q

A1−γ ≤ cγ
A1−2γ

A1−γ = cγA
−γ ≤ cγ2−γ log 1

εcond ≤ ε0

5 ,

because εcond ≤ ( ε0
5cγ )1/γ .

Also,

A−1/cγ ≤ 2−
1
cγ

log 1
εcond = εcond

1/cγ ≤ ε0

5 ,

because εcond ≤ ( ε0
5 )cγ .

Finally, tp2 = t(εRaz + 2εCBA), εRaz = 2−Ω(k) = d−Ω(1), εCBA = 1
d . Thus, tp2 ≤ 4td−Ω(1).

A and t are constants, so for d large enough, tAtp2 ≤ ε0
5 .

Together, the error is at most p1 + p3 ≤ ε0 completing the proof of the theorem. J

5 Strong Seeded Dispersers and Friends

5.1 Strong Seeded Dispersers
I Definition 39 (strong disperser). A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a strong
(k, ε) disperser, if for every (n, k) source X,

|Supp((Y,Disp(X,Y )))| > (1− ε)DM.

We say Disp is (source) linear if for every y ∈ {0, 1}d and every x1, x2 ∈ Fn2 , Disp(x1+x2, y) =
Disp(x1, y) + Disp(x2, y).

We are interested in the important special case where m = 1. In this case, non-explicitly,
a random function is (w.h.p.) a strong (k, ε) disperser with d = logn+log( 1

ε )+O(1) provided
that k ≥ log log( 1

ε ) +O(1) [37, 33]. A matching lower bound, up to additive constant factors,
was given by [37].

Using the translation between strong seeded dispersers and erasure list-decodable codes
which we discuss in Section 5.3, Guruswami and Indyk’s result [26] gives a probabilistic
polynomial time algorithm that outputs with high probability a strong seeded disperser with
seed-length d = 2 log( 1

ε ) + logn+ log log( 1
ε ) and optimal entropy-loss. The construction can

be made deterministic, but with running time exponential in 1/ε. See Table 1 for a summary
of previous results.

Note that as we discuss the one output bit case, the required entropy is essentially the
entropy-loss. From Theorem 27 we can derive a better explicit construction of a strong
disperser with small error.
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Table 1 Parameters of strong (k, ε) one-bit dispersers, up to additive O(1) terms. γ is an
arbitrarily small positive constant.

Required entropy k Seed length d

Lower-bound, non-explicit log log( 1
ε
) log( 1

ε
) + logn [37, 33]

[26] log log( 1
ε
) (2 + γ) log( 1

ε
) + logn Constant ε, or

randomized construction

This work (Theorem 40) O(log log 1
ε
) (1 + γ) log( 1

ε
) poly(1/n) error

I Theorem 40. For every constant 0 < γ < 1 there exists a constant c ≥ 1 such that
for every integer n and ε ≤ n−

c
1−γ there exists an explicit strong (k, ε) disperser Disp :

{0, 1}n × {0, 1}d → {0, 1} where d = (1 + γ) log( 1
ε ) and k = c log d.

Proof. Set ε0 = 1
4 and δ0 = γ

1+γ . Let c be the constant from Theorem 27 for δ0 and ε0
and let 2Ext : [N ]× [D]→ {0, 1} be the ((n, k), (d, k2 = δ0d), ε0) two-source extractor where
d = (1 + γ) log( 1

ε ) and k = c log d. Notice that d ≥ c logn (because ε ≤ n−
c

1+γ ) as required.
Let Disp(x, y) = 2Ext(x, y).

Let X ⊆ [N ] be a set of size K and call a value y ∈ [D] b-bad if Disp(X, y) = {b}. It
follows that the sets of 0-bad y-s and 1-bad y-s are each of size less than K2. Therefore,

|Supp
(
(Ud,Disp(X,Ud))

)
| > 2K2+2(D−2K2) = 2D−2K2 =

(
1− K2

D

)
2D = (1−ε)2D,

because K2
D = 2−(1−δ0)d = 2−

1
1+γ d = 2− log( 1

ε ) = ε. J

5.2 Non-strong dispersers
We now prove Theorem 5 and output more bits from the source at the expense of being
strong in only most of the seed. We construct

Disp : {0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m ,

where we think of d1 and d2 as two parts of the seed. Disp will be strong in the first d1 bits
of the seed. Using the notations of Section 4 we let

Disp(x, y, i) =
(
y,Raz(x,C(y, i))

)
.

We now prove (in sketch) Theorem 5.

Proof. We adopt the notations of Section 4. In those notations, Disp(X,Y, I) = (Y, Y ′′I ).
First note that the length of i ∈ {0, 1}d2 is the logarithm of the number of rows in the table
Y ′′ which is a = O(1). By Claim 31 we know that for nearly every y ∈ {0, 1}d1 we have
many values i ∈ {0, 1}d2 such that Raz(X,C(y, i)) is εRaz-close to uniform. In particular, for
every y that has many good rows, let iy be any such row. Then,

|Supp(Disp(X,Ud1 , Ud2))| ≥
∑

y has many good rows
|Supp(Disp(X, y, iy))|

≥
∑

y has many good rows
(1− εRaz)2d

′′
.

The theorem now follows since d′′ = Ω(k) and εRaz is smaller than 2−Ω(d′′), which implies
that we can truncate the output of Raz such that when Raz(X,C(y, i)) is εRaz-close to uniform
it covers its entire support. J
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Table 2 Parameters of (n̄, N)2 codes, ((1− ε)n̄, L) erasure list-decodable, up to constant multi-
plicative factors. γ is an arbitrarily small positive constant.

Rate R = n/n̄ List size L

Lower-bound, non-explicit ε log( 1
ε
) [24]

[26] ε2

log(1/ε) log( 1
ε
) Constant ε, or

randomized construction

This work (Theorem 46) ε1+γ logO(1)( 1
ε
) poly(1/n) error

5.3 Erasure List-Decodable Codes
An (n̄, n) (binary) code is a mapping C : {0, 1}n → {0, 1}n̄. The code C is linear if C is
linear, and is denoted by [n̄, n] . We identify a code with the image of C. For a linear C this
image is a linear subspace of Fn̄2 of dimension n. A generator matrix for an [n̄, n] code C is
any matrix whose columns form a basis for C. In the erasures noise model, an adversarially
chosen subset of the codeword’s symbols are erased and the positions where erasures have
occurred are known.

I Definition 41 (erasure list-decodable code). A code C ⊆ {0, 1}n̄ is (s, L) erasure list-
decodable if for every r ∈ {0, 1}n̄−s and every set T ⊆ [n̄] of size n̄− s,∣∣{c ∈ C ∣∣ c|T = r

}∣∣ < L,

where c|T denotes the projection of c to the coordinates in T .

The following folklore lemma (see, e.g., [24, Lemma 1]) gives an alternative characterization
of linear erasure list-decodable codes.

I Lemma 42. An [n̄, n]2 linear code C is ((1− ε)n̄, L) erasure list-decodable if and only if
its n̄× n generator matrix G has the property that every εn̄× n sub-matrix of G has rank
greater than n− logL.

Non-explicitly, we have:

I Theorem 43 ([24]). For every n and ε > 0, there exists an (n̄, n) binary code that is
((1− ε)n̄, L)-erasure list-decodable of rate n

n̄ = Ω(ε) and L = O(log(1/ε)).

See Table 2 for a summary of previous results.
Guruswami [25] observed that strong dispersers can be used to construct erasure list-

decodable codes. Here we complement his argument, and note that strong dispersers are
equivalent to erasure list-decodable codes. Given a function Disp : [N ] × [D] → {0, 1}, we
consider the (D,n) code CDisp : {0, 1}n → {0, 1}D defined by CDisp(x)i = Disp(x, i). Note that
the code is linear if and only if Disp is linear.

I Lemma 44 (following [25, Lemma 12]). The function Disp : [N ]× [D]→ {0, 1} is a strong
(k, ε) disperser if and only if CDisp is ((1− 2ε)D,K) erasure list-decodable.

Proof. For one direction, assume Disp is a strong (k, ε) disperser. We wish to prove that
CDisp is ((1− 2ε)D,K) erasure list-decodable. Let T = {t1, . . . , t2εD} ⊆ [D] be an arbitrary
set of size 2εD and r ∈ {0, 1}2εD an arbitrary string. Let XT,r ⊆ {0, 1}n denote the set of
all the messages x for which CDisp(x)|T = r. Then,

|Supp
(
(Ud,Disp(XT,r, Ud))

)
| ≤ |T | · 1 + (D − |T |) · 2 ≤ (1− ε)2D,
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where the first inequality follows by considering seeds in T and seeds in [D] \ T . For a seed
ti ∈ T we have that Disp(XT,r, ti) is fixed, hence each such seed contributes 1 to the support
size. For any other seed y, the support size of Disp(XT,r, y) is at most 2. As Disp is a strong
(k, ε) disperser, we conclude that |XT,r| ≤ K as desired.

For the other direction assume Disp is a not a strong (k, ε) disperser. Then, there exists a
setX ⊆ {0, 1}n such that |X| ≥ K and |Supp

(
(Ud,Disp(X,Ud))

)
| ≤ (1−2ε)2D. Note that for

every y ∈ [D] we have |Supp(Disp(X, y))| ∈ {1, 2}. Therefore, following the above calculation,
there exists a set T ⊆ D of size at least 2εD such that for each y ∈ T , |Supp(Disp(X, y))| = 1.
But this means that for every x ∈ X, CDisp(x)|T is the same (punctured) codeword. It follows
that CDisp is not ((1− 2ε)D,K) erasure list-decodable. J

I Corollary 45. If Disp : {0, 1}n×{0, 1}d → {0, 1} is a strong (k, ε) disperser with seed-length
d = a1 logn+ a2 log( 1

ε ) + a3 (for some a1 ≥ 1, a2 ≥ 1 and a3) then CDisp is a ((1− 2ε)D,K)
erasure list-decodable code of rate 2−a3 · n1−a1 · εa2 .

When ε is much smaller than 1
n the dominant factor is determined by a2. As we mentioned

earlier (and as Guruswami also notes in [25]) previous explicit constructions for binary codes
had a2 ≥ 2 (usually inherited from extractor constructions). Our construction is the first to
get arbitrary close to a2 = 1 and small list-size. Combining Corollary 45 and Theorem 40,
we obtain:

I Theorem 46. For every constant 0 < γ < 1 there exists a constant c ≥ 1 such that for
every integer n and ε ≤ n−

c
1−γ there exists an explicit code C : {0, 1}n → {0, 1}(

1
ε )1+γ

that is(
(1− 2ε)

(
1
ε

)1+γ
,

(
(1 + γ) log 1

ε

)c)

erasure list-decodable of rate nε1+γ .

5.4 Ramsey Graphs
Ramsey theory studies inevitable order that appears in large structures. It was initiated
by Ramsey [38], who showed that any graph over N = 2n vertices must contain a clique or
an independent set of size n/2. A graph over N vertices is called K-Ramsey if it contains
neither a clique nor an independent set of size K. Inaugurating the probabilistic method,
Erdős [18] showed that there are 2n-Ramsey graphs. He also offered a bounty of $100 for an
explicit construction of an O(n)-Ramsey graph.

Erdős’s challenge initiated a line of beautiful constructions of Ramsey graphs [1, 34,
19, 11, 20]. The study of pseudorandomness gave a new perspective on Ramsey graphs.
Specifically, any two-source disperser or extractor gives rise to a bipartite Ramsey graph
(and hence, also to a non-bipartite Ramsey graph [41]). This connection led to to new
constructions of Ramsey graph [10, 35, 2, 39, 8, 4, 21, 5, 6, 14, 9, 32, 15, 28] culminating in
(N,nO(log logn/ log log logn))-Ramsey graphs [7, 29].

In this section we tackle the problem of constructing unbalanced Ramsey graphs.

I Definition 47 (Ramsey graph). A bipartite graph Ram : [N1]× [N2]→ {0, 1} is a (K1,K2)
bipartite Ramsey graph if every K1×K2 induced subgraph of Ram is neither a bipartite clique
nor a bipartite independent set.

While it is possible to interpret some pseudorandom objects as unbalanced Ramsey graphs,
they were less studied explicitly. See Table 3 for a summary of previous results.
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Table 3 Parameters of (K1,K2) Ramsey graphs in the unbalanced case, [N1 = 2n]× [N2]. c is
any large enough constant and γ is an arbitrarily small positive constant.

K1 : N1 K2 : N2

Lower-bound (c− 1) logn : 2n n : nc By [37] and Claim 49

Non-explicit O(c logn) : 2n n : nc Probabilistic method

[39] logO(1) n : 2n N0.5+γ
2 : nO(1) O(1) terms depend on γ

This work (Theorem 27) logO(1) n : 2n Nγ
2 : nO(1) O(1) terms depend on γ

It is easy to see that a two-source extractor with any nontrivial error is, in fact, a bipartite
Ramsey graph, so as a corollary of Theorem 27, we obtain:

I Corollary 48. For every integer N1 and a constant 0 < δ < 1 there exists a constant
c = c(δ) ≥ 1 and an explicit function Ram : [N1] × [N2] → {0, 1} that is a bipartite
(K1,K2 = Nδ

2 ) Ramsey graph, for N2 = logcN1 and K1 = logcN2.

We start with the easy claim that bipartite Ramsey graphs are equivalent to strong
one-bit dispersers.

B Claim 49. If Ram : [N1]× [N2]→ {0, 1} is a (K1,K2) bipartite Ramsey graph then Ram
is a strong (k1, ε ≥ K2

N2
) disperser with seed-length n2 = k2 + log( 1

ε ). Also, if Ram is a strong
(k1, ε = K2

2N2
) disperser then it is a (K1,K2) bipartite Ramsey graph.

Proof. The first claim follows from the proof of Theorem 40.
For the other claim, which was already observed in [22], assume Ram is a (k1, ε = K2

2N2
)

disperser and assume towards contradiction that it is not a (K1,K2 = 2εN2) bipartite Ramsey
graph. Hence, there exist some S ⊆ [N1] and T ⊆ [N2] so that |S| ≥ K1 and |T | ≥ K2 such
that either Ram(S, T ) = {0} or Ram(S, T ) = {1}. Assume w.l.o.g. that Ram(S, T ) = {0}, so
for every t ∈ T , (t, 1) /∈ Supp

(
(Un2 ,Ram(S,Un2))

)
. But then,

|Supp
(
(Un2 ,Ram(S,Un2))

)
| ≤ 2(N2 − |T |) + |T | ≤ (1− ε)2N2,

a contradiction. C

As observed in [22], the quality of the Ramsey graph implied by the above theorem
crucially depends on the seed-length of the given disperser. Specifically, if the seed-length
dependence on the error ε is 2 · log( 1

ε ) then K2 = 2εN2 >
√
N2 and if it is 1 · log( 1

ε ) then K2
can be very small.

We mention a more frugal way of obtaining Ramsey graphs from linear dispersers. The
argument is a straightforward adaptation of an argument of Alon [23, Proposition 10.15].5
The parameters we obtain are identical to the above claim (and [22]), except that one side of
the graph is scaled down (from N to n) as is its entropy (from K to k).

I Theorem 50. Suppose Disp : {0, 1}n × {0, 1}d → {0, 1} is a linear strong (K, ε) disperser.
Let G be the D×n generating matrix of the [D,n]2 linear code CDisp. Then, G is a (2εD, k+1)
bipartite-Ramsey-graph.

5 Alon’s argument is aimed at obtaining balanced Ramsey graphs, while we are more concerned with the
entropy they can handle.
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Proof. Assume Disp is a linear strong (K, ε) disperser. By Lemma 44, CDisp is a ((1−2ε)D,K)
erasure list-decodable code. Assume towards contradiction that G is not a (2εD, k + 1)
bipartite Ramsey graph. Let M ′ be a monochromatic 2εD× k + 1 sub-matrix of G. Assume
that M ′ is the all-ones matrix (a similar argument handles the all-zeros matrix). Denote by
M the 2εD × n sub-matrix of G that is formed by taking the rows of M ′ and all columns of
G. On the one hand, by Lemma 44 and Lemma 42, rank(M) > n− logK = n− k. On the
other hand, as M contains k + 1 columns of rank 1, rank(M) ≤ n− k, a contradiction. J

It is natural to ask whether the other direction also holds, namely whether an adjacency
matrix of a bipartite Ramsey graph is in fact a generating matrix of a linear, erasure
list-decodable code. Stated differently, whether a low-rank matrix must contain large
monochromatic rectangles. That question received much attention, as it is tightly related to
the famous “log-rank conjecture” in communication complexity [30, 36]. Unfortunately, the
acclaimed unconditional upper bound of Lovett [31] still does not give us a meaningful result.

6 Concluding Remarks and Open Problems

The strong disperser we construct in this paper outputs one bit, and for k = O(log log 1
ε ),

has O(log log 1
ε ) entropy-loss, and,

(1 + γ) · log( 1
ε ) dependence of the seed-length on the error.

It is natural to ask to extend the results of the paper to arbitrarily large values of k,
matching (up to multiplicative factors) the non-explicit results.
Our dispersers are inherently non-linear, and therefore we also get non-linear erasure
list-decodable codes. How can we obtain near optimal linear codes?
The erasure list-decodable code we construct is explicit in the sense that the code can be
efficiently encoded. Does it also admit an efficient erasure list-decoding algorithm?
The seed-length of our strong disperser is c logn + log( 1

ε ). Pushing c closer to 1 is an
important open problem. In particular it would imply erasure list-decodable codes of
near-optimal rate even for relatively large ε. Such a disperser with many output bits can
also be used for simulating one-sided error randomized algorithms using weak random
sources with nearly linear overhead [44].
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Abstract
We show that any Algebraic Branching Program (ABP) computing the polynomial

∑n

i=1 x
n
i has

at least Ω(n2) vertices. This improves upon the lower bound of Ω(n logn), which follows from the
classical result of Baur and Strassen [24, 1], and extends the results of Kumar [13], which showed a
quadratic lower bound for homogeneous ABPs computing the same polynomial.

Our proof relies on a notion of depth reduction which is reminiscent of similar statements in
the context of matrix rigidity, and shows that any small enough ABP computing the polynomial∑n

i=1 x
n
i can be depth reduced to essentially a homogeneous ABP of the same size which computes

the polynomial
∑n

i=1 x
n
i + ε(x), for a structured “error polynomial” ε(x). To complete the proof, we

then observe that the lower bound in [13] is robust enough and continues to hold for all polynomials∑n

i=1 x
n
i + ε(x), where ε(x) has the appropriate structure.
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1 Introduction

Proving that there are explicit polynomials which are hard to compute is the template of
many open problems in algebraic complexity theory. Various instances of this problem involve
different definitions of explicitness, hardness and computation.

In the most general form, this is the well known VP vs. VNP question, which asks
whether every “explicit” polynomial has a polynomial-size algebraic circuit. An algebraic
circuit is a very natural (and the most general) algebraic computational model. Informally,
it is a computational device which is given a set of indeterminates {x1, . . . , xn}, and it
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can use additions and multiplications (as well as field scalars) to compute a polynomial
f ∈ F[x1, . . . , xn]. The complexity of the circuit is then measured by the number of operations
the circuit performs.

It is trivial to give an explicit n-variate polynomial which requires circuits of size Ω(n).
It is also not hard to show that a degree-d polynomial requires circuits of size Ω(log d),
since the degree can at most double in each operation. Thus, one trivially obtains a
max{n, log d} = Ω(n+ log d) lower bound for an n-variate degree-d polynomial.

A major result of Baur and Strassen [24, 1] gives an explicit n-variate degree-d polynomial
which requires circuits of size at least Ω(n · log d). On the one hand, this is quite impressive
since when d = poly(n), this gives lower bound which is super-linear in n. Such lower bounds
for explicit functions in the analogous model of boolean circuits are a long-standing and
important open problem in boolean circuit complexity. On the other hand, this lower bound
is barely super-linear, whereas ideally one would hope to prove super-polynomial or even
exponential lower bounds (indeed, it can be proved that “most” polynomials require circuits
of size exponential in n).

Despite decades of work, this lower bound has not been improved, even though it has
been reproved (using different techniques [23, 2]). Most of the works thus deal with restricted
models of algebraic computation. For some, there exist exponential or at least super-
polynomial lower bounds. For other, more powerful models, merely improved polynomial
lower bound. We refer the reader to [21] for a comprehensive survey of lower bounds in
algebraic complexity.

One such restricted model of computation for which we have better lower bounds is algeb-
raic formulas. Formulas are simply circuits whose underlying graph is a tree. Kalorkoti [11]
has shown how to adapt Nechiporuk’s method [16], originally developed for boolean formulas,
to prove an almost quadratic lower bound for an n-variate polynomial. 1 This is also the
best lower bound obtainable using this technique.

1.1 Algebraic Branching Programs
Algebraic Branching Programs (ABPs, for short), defined below, are an intermediate model
between algebraic formulas and algebraic circuits. To within polynomial factors, algebraic
formulas can be simulated by ABPs, and ABPs can be simulated by circuits. It is believed
that each of the reverse transformations requires a super-polynomial blow-up in the size (for
some restricted models of computation, this is a known fact [17, 19, 20, 7, 10]).

Polynomial families which can be efficiently computed by algebraic branching programs
form the complexity class VBP, and the determinant is a complete polynomial for this class
under an appropriate notion of reductions. Thus, the famous Permanent vs. Determinant
problem, unbeknownst to many, is in fact equivalent to showing super-polynomial lower
bound for ABPs. In this paper, we focus on the question of proving lower bounds on the
size of algebraic branching programs for explicit polynomial families. We start by formally
defining an algebraic branching program.

I Definition 1 (Algebraic Branching Programs). An Algebraic Branching Program (ABP) is
a layered graph where each edge is labeled by an affine linear form and the first and the last
layer have one vertex each, called the “start” and the “end” vertex respectively.

1 In his paper, Kalorkoti proves an Ω(n3) lower bound for the n× n determinant, which has n2 variables,
so the lower bound not quadratic in the number of variables. However, it is possible to get the statement
claimed here using a straightforward application of his techniques.
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The polynomial computed by an ABP is equal to the sum of the weights of all paths from
the start vertex to the end vertex in the ABP, where the weight of a path is equal to the
product of the labels of all the edges on it.

The size of an ABP is the number of vertices in it.

While Definition 1 is quite standard, there are some small variants of it in the literature
which we now discuss. These distinctions make no difference as far as super-polynomial
lower bounds are concerned, since it can be easily seen that each variant can be simulated by
the other to within polynomial factors, and thus the issues described here are usually left
unaddressed. However, it seems that we are very far from proving super-polynomial lower
bounds for general algebraic branching programs, and in this paper we focus on proving
polynomial (yet still super-linear) lower bounds. In this setting, those issues do affect the
results.

Layered vs. Unlayered

In Definition 1, we have required the graph to be layered. We also consider in this paper
ABPs whose underlying graphs are unlayered, which we call unlayered ABPs. We are able to
prove super-linear (but weaker) lower bounds for this model as well.

One motivation for considering layered graph as the “standard” model is given by the
following interpretation. From the definition, it can be observed that any polynomial
computable by an ABP with d layers and `i vertices in the i-th layer can be written as the
(only) entry of the 1×1 matrix given by the product M :=

∏d−1
i=1 Mi, where Mi is an `i× `i+1

matrix with affine forms as entries. One natural complexity measure of such a representation
is the total number of non-zero entries in those matrices, which is the number of edges in
the ABP. Another natural measure, which can only be smaller, is the sums of dimensions
of the matrices involved in the product, which is the same as the number of vertices in the
underlying graph.

Branching programs are also prevalent in boolean complexity theory, and in particular in
the context of derandomizing the class RL. In this setting again it only makes sense to talk
about layered graphs.

Unlayered ABPs can also be thought of as (a slight generalization of) skew circuits. These
are circuits in which on every multiplication gate, at least one of the operands is a variable
(or more generally, a linear function).

Edge labels

In Definition 1 we have allowed each edge to be labeled by an arbitrary affine linear form in
the variables. This is again quite standard, perhaps inspired by Nisan’s characterization of the
ABP complexity of a non-commutative polynomial as the rank of an associated coefficients
matrix [17], which requires this freedom. A more restrictive definition would only allow each
edge to be labeled by a linear function in 1 variable. On the other hand, an even more
general definition, which we sometimes adopt, is to allow every edge to be labeled by an
arbitrary polynomial of degree at most ∆. In this case we refer to the model as an ABP
with edge labels of degree at most ∆. Thus, the common case is ∆ = 1, but our results are
meaningful even when ∆ = ω(1). Note that this is quite a powerful model, which is allowed
to use polynomials with super-polynomial standard circuit complexity “for free”.

We will recall some of these distinctions in Subsection 1.3, where we discuss previous
results, some of which apply to several of the variants discussed here.
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1.2 Lower Bounds for Algebraic Branching Programs
Our main result is a quadratic lower bound on the size of any algebraic branching program
computing some explicit polynomial.

I Theorem 2. Let F be a field and n ∈ N such that char(F) - n. Then any algebraic branching
program over F computing the polynomial

∑n
i=1 x

n
i is of size at least Ω(n2).

When the ABP’s edge labels are allowed to be polynomials of degree at most ∆, our lower
bound is Ω(n2/∆).

Note that there also exists an algebraic branching program for
∑n

i=1 x
n
i of size O(n2/∆).

A rough sketch of the construction is as follows. The ABP essentially consists of n parallel
paths from the source vertex to the target vertex, with the ith path computing xn

i . If the
labels on the edges are allowed to have degree ≤ ∆, then each path consists of n/∆ edges,
with all the edges on the ith path being labelled by x∆

i (except possibly the last edge, which
is labelled by xn−∆((n/∆)−1)

i ). This shows that the bound we give here is in fact tight.
In a subsequent version of this paper [5], we use the techniques in the proof of Theorem 2

along with some more ideas to prove an Ω(n2) lower bound on the size of algebraic formulas
computing the elementary symmetric polynomials on n variables. The lower bound essentially
settles the question of formula complexity of elementary symmetric polynomials and is the
first (non-trivial) Ω(n2) lower bound for an n variate polynomial for algebraic formulas;
the prior best bound being a lower bound of Ω(n2/ logn) due to Kalorkoti [11]. In fact, it
was known that the techniques used in [11] cannot directly give a lower bound better than
Ω(n2/ logn) for an n variate polynomial.

For the unlayered case, we prove a weaker (but still superlinear) lower bound.

I Theorem 3. Let F be a field and n ∈ N such that char(F) - n. Then any unlayered algebraic
branching program over F with edge labels of degree at most ∆ computing the polynomial∑n

i=1 x
n
i has at least Ω(n logn/(log logn+ log ∆)) edges.

1.3 Previous Work
The best lower bound known for ABPs prior to this work is a lower bound of Ω(n logn)
on the number of edges for the same polynomial

∑n
i=1 x

n
i . This follows from the classical

lower bound of Ω(n logn) by Baur and Strassen [24, 1] on the number of multiplication gates
in any algebraic circuit computing the polynomial

∑n
i=1 x

n
i and the observation that when

converting an ABP to an algebraic circuit, the number of product gates in the resulting
circuit is at most the number of edges in the ABP. Theorem 2 improves upon this bound
quantitatively, and also qualitatively, since the lower bound is on the number of vertices in
the ABP.

For the case of homogeneous ABPs,2 a quadratic lower bound for the polynomial
∑n

i=1 x
n
i

was shown by Kumar [13], and the proofs in this paper build on the ideas in [13]. In a
nutshell, the result in [13] is equivalent to a lower bound for ABPs computing the polynomial∑n

i=1 x
n
i when the number of layers in the ABP is at most n. In this work, we generalize

this to proving essentially the same lower bound as in [13] for ABPs with an unbounded
number of layers.

2 An ABP is homogeneous if the polynomial computed between the start vertex and any other vertex is a
homogeneous polynomial. This condition is essentially equivalent to assuming that the number of layers
in the ABP is upper bounded by the degree of the output polynomial.
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In general, an ABP computing an n-variate homogeneous polynomial of degree poly(n)
can be homogenized with a polynomial blow-up in size. This is proved in a similar manner
to the standard classical result which shows this statement for algebraic circuits [25]. Thus,
much like the discussion following Definition 1, homogeneity is not an issue when one considers
polynomial vs. super-polynomial sizes, but becomes relevant when proving polynomial lower
bounds. In other contexts in algebraic complexity this distinction is even more sharp. For
example, exponential lower bounds for homogeneous depth-3 circuits are well known and
easy to prove [18], but strong enough exponential lower bounds for non-homogeneous depth-3
circuits would separate VP from VNP [9].

For unlayered ABPs, the situation is more complex. If the edge labels are only functions of
one variable, it is possible to adapt Nechiporuk’s method [16] in order to obtain a lower bound
of Ω̃(n3/2) (for a different polynomial than we consider). This is an argument attributed
to Pudlák and sketched by Karchmer and Wigderson [12] for the boolean model of parity
branching programs, but can be applied to the algebraic setting. However, this argument does
not extend to the case where the edge labels are arbitrary linear or low-degree polynomials
in the n variables. The crux of Nechiporuk’s argument is to partition the variables into
m disjoint sets, to argue (using counting or dimension arguments) that the number of
edges labeled by variables from each set must be somewhat large3, and then to sum the
contributions over all m sets. This is hard to implement in models where a single edge can
have a “global” access to all variables, since it is not clear how to avoid over-counting in
this case.

As mentioned above, the lower bound of Baur-Strassen does hold in the unlayered case,
assuming the edge labels are linear functions in the variables. When we allow edge labels of
degree at most ∆ for some ∆ ≥ 2, their technique does not seem to carry over. Indeed, even
if we equip the circuit with the ability to compute such low-degree polynomials “for free”, a
key step in the Baur-Strassen proof is the claim that if a polynomial f has a circuit of size τ ,
then there is a circuit of size O(τ) which computes all its first order partial derivatives, and
this statement does not seem to hold in this new model.

It is possible to get an Ω(n logn/ log ∆) lower bound for this model, for a different
polynomial, by suitably extending the techniques of Ben-Or [2, 3]. Our lower bounds are
weaker by at most a doubly-logarithmic factor; however, the techniques are completely
different. Ben-Or’s proofs rely as a black-box on strong modern results in algebraic geometry,
whereas our proofs are much more elementary.

Detereminantal Complexity

Another model of computation in algebraic complexity theory, which is related to the
discussions in this paper is the notion of determinantal complexity. Given a polynomial
f ∈ F[x] of degree d, the determinantal complexity of f is defined to be the smallest k for
which there is a k × k matrix M with affine forms in F[x] as entries, such that det(M) = f .

The best lower bound known on the determinantal complexity was hown by Mignnon and
Ressayre [15, 4], where they show an n/2 lower bound for an n variate polynomial family.
Over the field of real numbers, this bound was improved by Yabe [27], to n.

3 This is usually guaranteed by constructing a function or a polynomial with the property that given a
fixed set S in the partition, there are many subfunctions or subpolynomials on the variables of S that
can be obtained by different restrictions of the variables outside of S.
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Mahajan and Vinay [14] showed that the n × n determinant polynomial has an ABP
of size O(n3). Thus, note that a strong enough lower bound on the ABP complexity of a
polynomial can give a lower bound on its determinantal complexity as well. However, since
the lower bound here is only quadratic, nothing non-trivial can be said in this case, even
though the techniques here could potentially be useful.

1.4 Proof Overview
The first part in the proof of Theorem 2 is an extension of the lower bound proved in [13] for
ABPs with at most n layers. This straightforward but conceptually important adaptation
shows that a similar lower bound holds for any polynomial of the form

n∑
i=1

xn
i + ε(x) ,

where the suggestively named ε(x) should be thought of as an “error term” which is “negligible”
as far as the proof of [13] is concerned. The exact structure we require is that ε(x) is of the
form

∑r
i=1 PiQi +R, where Pi, Qi are polynomials with no constant term and deg(R) ≤ n−1.

The parameter r measures the “size” of the error, which we want to keep small, and the
lower bound holds if, e.g., r ≤ n/10.

To argue about ABPs with d layers, with d > n, we use a notion of depth reduction which
is reminiscent of similar statements in the context of matrix rigidity. We show that unless
the size τ of the ABP is too large to begin with (in which case there is nothing to prove), it
is possible to find a small set of vertices (of size about η = τ/d) whose removal adds a small
error term ε(x) as above with at most η summands, but also reduces the depth of the ABP
by a constant factor. Repeatedly applying this operation O(logn) times eventually gives an
ABP of depth at most n while ensuring that we have not accumulated too much “error”,4 so
that we can apply the lower bound from the previous paragraph.

In the full proof we have to be a bit more careful when arguing about the ABP along the
steps of the proof above. The details are presented in Section 3.

The proof of Theorem 3 follows the same strategy, although the main impediment is that
general undirected graphs can have much more complex structure then layered graphs. One
of the main ingredients in our proof is (a small variant of) a famous lemma of Valiant [26],
which shows that for every graph of depth 2k with m edges, it is possible to find a set of
edges, of size at most m/k, whose removal reduces the depth of the graph to 2k−1. This
lemma helps us identify a small set of vertices which can reduce the depth of the graph by a
constant factor while again accumulating small error terms.

Interestingly, Valiant originally proved this lemma in a different context, where he showed
that linear algebraic circuits of depth O(logn) and size O(n) can be reduced to a special
type of depth-2 circuits (and thus strong lower bounds on such circuits imply super-linear
lower bounds on circuits of depth O(logn)). This lemma can be also used to show that
boolean circuits of depth O(logn) and size O(n) can be converted to depth-3 circuits of size
2o(n), and thus again strong lower bounds on depth-3 circuits will imply super-linear lower
bounds on circuits of depth O(logn). Both of these questions continue to be well known

4 It takes some care in showing that the total number of error terms accumulated is at most n/10 as
opposed to the obvious upper bound of O(n logn). In particular, we observe that the number of error
terms can be upper bounded by a geometric progression with first term roughly τ/n and common ratio
being a constant less than 1.
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open problems in algebraic and boolean complexity, and to the best of our knowledge, our
proof is the first time Valiant’s lemma is successfully used in order to prove circuit lower
bounds for explicit functions or polynomials.

2 Notations and Preliminaries

All logarithms in the paper are base 2.
We use some standard graph theory terminology: If G is a directed graph and (u, v) is an

edge, v is called the head of the edge and u the tail. Our directed graphs are always acyclic
with designated source vertex s and sink vertex t. The depth of a vertex v, denoted depth(v),
is the length (in edges) of a longest path from s to v. The depth of the graph, denoted by
depth(G), is the depth of t.

For any two vertices u and v in an ABP, the polynomial computed between u and v is
the sum of weights of all paths between u and v in the ABP. We denote this by [u, v].

The formal degree of a vertex u in an ABP denoted fdeg(u), is defined inductively as
follows: If s is the start vertex of the ABP, fdeg(s) = 0. If u is a vertex with incoming edges
from u1, . . . , uk, labeled by non-zero polynomials `1, . . . , `k, respectively, then

fdeg(u) = max
i∈[k]
{deg(`i) + fdeg(ui)} .

It follows by induction that for every vertex u, deg([s, u]) ≤ fdeg(u) (however, cancellations
can allow for arbitrary gaps between the two). Also, note that the formal degree of vertices
is monotonically non-decreasing along any path from the source vertex to the sink vertex.
The formal degree of the ABP is the maximal formal degree of any vertex in it.

We sometimes denote by x the vector of variables (x1, . . . , xn), where n is understood
from the context. Similarly we use 0 to denote the n-dimensional vector (0, 0, . . . , 0).

2.1 A Decomposition Lemma
The following lemma gives a decomposition of a (possibly unlayered) ABP in terms of the
intermediate polynomials it computes. Its proof closely resembles that of Lemma 3.5 of [13].
For completeness we prove it here for a slightly more general model.

I Lemma 4 (Kumar [13]). Let B be a (possibly unlayered) algebraic branching program
which computes a degree d polynomial P ∈ F[x1, . . . xn], and has formal degree d. Further,
assume that the edges of B are labelled by arbitrary polynomials of degree at most ∆, where
1 ≤ ∆ ≤ d/2. Set d′ = bd/∆c.

For any i ∈ {1, 2, . . . , d′ − 1}, let Si = {ui,1, ui,2, . . . , ui,m} be the set of all vertices in B
whose formal degree is in the interval [i∆, (i+ 1)∆).

Then, there exist polynomials Qi,1, Qi,2, . . . , Qi,m and Ri, each of degree at most d − 1
such that

P =
m∑

j=1
[s, ui,j ] ·Qi,j +Ri .

Proof. Fix i as above and set Si = {ui,1, ui,2, . . . , ui,m} as above (observe that since each
edge label is of degree at most ∆, Si is non empty). Further suppose, without loss of
generality, that the elements of Si are ordered such that there is no directed path from ui,j

to ui,j′ for j′ > j.
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2:8 A Quadratic Lower Bound for Algebraic Branching Programs

Consider the unlayered ABP B1 obtained from B by erasing all incoming edges to ui,1,
and multiplying all the labels of the outgoing edges from ui,1 by a new variable y1. The
ABP B1 now computes a polynomial of the form

P ′(y1, x1, . . . , xn) = y1 ·Qi,1 +Ri,1

where P = P ′([s, ui,1], x1, . . . , xn). Ri,1 is the polynomial obtained from B1 by setting y1
to zero, or equivalently, removing ui,1 and all its outgoing edges. We continue in the same
manner with ui,2, . . . , ui,m to obtain

P =
m∑

j=1
[s, ui,j ] ·Qi,j +Ri.

Indeed, observe that since there is no path from ui,j to ui,j′ for j′ > j, removing ui,j does not
change [s, ui,j′ ]. The bound on the degrees of Qi,j is immediate from the fact that the formal
degree of the ABP is at most d and fdeg(ui,j) ≥ 1. It remains to argue the deg(Ri) ≤ d− 1.

The polynomial Ri is obtained from B by erasing all the vertices in Si and the edges
touching them. We will show that every path in the corresponding ABP computes a
polynomial of degree at most d − 1. Let s = v1, v2, . . . , vr = t be such a path, which is
also a path in B. Let vk be the minimal vertex in the path whose degree (in B) is at least
(i+ 1)∆ (if no such vk exists, the proposition follows). As vk−1 6∈ Si, the formal degree of
vk−1 is at most i∆− 1. The degree of the polynomial computed by this path is thus at most
i∆− 1 + ∆ +D = (i+ 1)∆− 1 +D, where D is the degree of product of the labels on the
path vk, vk+1, . . . , t. To complete the proof, it remains to be shown that D ≤ d− (i+ 1)∆.

Indeed, if D ≥ d− (i+ 1)∆ + 1 then since the degree of vk is at least (i+ 1)∆, there would
be in B a path of formal degree at least (i+ 1)∆ +D ≥ d+ 1, contradicting the assumption
on B. J

2.2 Variety and its Dimension
One of the important notions we will use in our proofs is that of an affine algebraic variety.
Given a set of polynomials, the algebraic variety defined by these polynomials is defined to
be the set of their common zeros. That is, if S is a set of polynomials on n variables over a
field F, then

V = {a ∈ Fn : ∀f ∈ S, f(a) = 0} .

Given a variety, an important property that is studied is its dimension. Intuitively, it
is an appropriate generalisation of the notion of dimension for linear spaces. We will not
be defining it formally here and refer the interested reader to the book by Cox, Little and
O’Shea [6]. However we state formally the properties, of dimensions of varieties, that we will
be using in our proofs.

I Lemma 5 (Section 2.8 in [22]). Let S be a set of polynomials in n variables over an
algebraically closed field F such that |S| ≤ n. Let V = V(S) be the set of common zeros of
polynomials in S. If V is non-empty, then the dimension of V is at least n− |S|.

I Lemma 6 (Chapter 4 in [6]). Let F be an algebraically closed field, and let V1 ⊆ Fn and
V2 ⊆ Fn be two affine varieties such that V1 ⊆ V2. Then, the dimension of V1 is at most the
dimension of V2.
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3 A Lower Bound for Algebraic Branching Programs

In this section we prove Theorem 2. We start by restating it.

I Theorem 7. Let n ∈ N and let F be a field such that char(F) - n. If A is an algebraic
branching program with edge labels of degree at most ∆ that computes the polynomial

∑n
i=1 x

n
i ,

then the size of A is at least

Ω
(
n2

∆

)
.

For technical reasons, we work with a slightly more general model which we call mul-
tilayered ABPs, which we now define.

I Definition 8 (Multilayered ABP). Let A1, . . . ,Ak be k ABPs with d1, . . . , dk layers and
τ1, . . . , τk vertices, respectively. A multilayered ABP A, denoted by A =

∑k
i=1Ai, is the ABP

obtained by placing A1,A2, . . . ,Ak in parallel and identifying their start and end vertices
respectively. Thus, the polynomial computed by A is

∑k
i=1[Ai], where [Ai] is the polynomial

computed by Ai.
The number of layers of A is d := max {d1, . . . , dk}. The size of A is the number of

vertices in A, and thus equals

|A| := 2 +
∑

i

(τi − 2) .

This model is an intermediate model between (layered) ABPs and unlayered ABPs: given
a multilayered ABP of size τ it is straightforward to construct an unlayered ABP of size
O(τ) which computes the same polynomial.

3.1 A Robust Lower Bound for ABPs of Formal Degree at most n
In this section, we prove a lower bound for the case where the formal degree of every vertex
in the ABP is at most n. In fact, Kumar [13] has already proved a quadratic lower bound
for this case.

I Theorem 9 (Kumar [13]). Let n ∈ N and let F be a field such that char(F) - n. Then
any algebraic branching program of formal degree at most n which computes the polynomial∑n

i=1 x
n
i has at least Ω(n2) vertices.

However, to prove Theorem 7, we need the following more “robust” version of Theorem 9,
which gives a lower bound for a larger class of polynomials. For completeness, we also sketch
an argument for the proof which is a minor variation of the proof of Theorem 9.

I Theorem 10. Let n ∈ N and let F be field such that char(F) - n. Let A1(x), . . . , Ar(x),
B1(x), . . . , Br(x) and R(x) be polynomials such that for every i, Ai(0) = Bi(0) = 0 and R
is a polynomial of degree at most n− 1. Then, any algebraic branching program over F, of
formal degree at most n and edge labels of degree at most ∆ ≤ n/10, which computes the
polynomial

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R

has at least (n/2−r)n
2∆ vertices.
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The proof of the theorem follows from Lemma 4 and the following lemma which is a
slight generalization of Lemma 3.1 in [13]. We include a proof for completeness.

I Lemma 11. Let n ∈ N, and let F be an algebraically closed field such that char(F) - n.
Let {P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br} be a set of polynomials in F[x1, . . . , xn]
such that the set of their common zeros

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br) ⊆ Fn

is non-empty. Finally, suppose R is a polynomial in F[x] of degree at most n− 1, such that
n∑

i=1
xn

i +
r∑

j=1
Aj ·Bj = R+

m∑
i=1

Pi ·Qi.

Then, m ≥ n
2 − r.

Proof. Since V 6= ∅, by Lemma 5, dim(V) ≥ n − 2m − 2r. Thus, the set of zeros with
multiplicity two of

n∑
i=1

xn
i −R =

m∑
i=1

Pi ·Qi −
r∑

j=1
Aj ·Bj ,

has dimension at least n− 2m− 2r. Now if S is the set of common zeros of the set of all first
order partial derivatives of

∑n
i=1 x

n
i −R, V ⊆ S. Thus, by Lemma 6, dim(S) ≥ n− 2m− 2r.

Up to scaling by n (which is non-zero in F, by assumption), the set of all first order partial
derivatives of

∑n
i=1 x

n
i −R is given by{

xn−1
i − 1

n
∂xi

R

}
i∈[n]

.

Thus, the statement of this lemma immediately follows from the following claim.

B Claim 12 (Lemma 3.2 in [13]). Let F be an algebraically closed field, and D a positive
natural number. For every choice of polynomials g1, g2, . . . gn ∈ F[x] of degree at most D− 1,
the dimension of the variety

V(xD
1 − g1, x

D
2 − g2, . . . , x

D
n − gn)

is zero.

Indeed, the above claim shows that 0 = dim(S) ≥ n − 2m − 2r, and so m ≥ n
2 − r. This

completes the proof of Lemma 11. J

We now use Lemma 4 and Lemma 11 to complete the proof of Theorem 10.

Proof of Theorem 10. Let B be an algebraic branching program of formal degree at most
n, edge labels of degree at most ∆ ≤ n/10, and with start vertex s and end vertex t, which
computes

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R.

We may assume without loss of generality that F is algebraically closed, by interpreting B as
an ABP over the algebraic closure of F, if necessary.
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Let n′ = bn/∆c, fix k ∈ {1, 2, . . . , n′ − 1}, and let Vk = {vk,1, vk,2, . . . , vk,m} be the set of
all vertices in B whose formal degree lies in the interval [k∆, (k+ 1)∆). Letting P ′j = [s, vk,j ],
by Lemma 4, there exist polynomials Q′1, Q′2, . . . , Q′m and R′, each of degree at most n− 1
such that

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R =
m∑

j=1
P ′j ·Q′j +R′ .

Let αj , βj be the constant terms in P ′j , Q′j respectively. Then by defining

Pj = P ′j − αj and Qj = Q′j − βj ,

we have that
n∑

i=1
xn

i +
r∑

j=1
Aj ·Bj = R′′ +

m∑
j=1

Pj ·Qj .

Here, R′′ = −R+R′ +
∑m

j=1(αj ·Q′j + βj · P ′j + αjβj). We now have that for every i, the
constant terms of Pi, Qi are zero and deg(R′′) ≤ n− 1. Let

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br).

Then 0 ∈ V, and so V 6= ∅. Thus by Lemma 11, we know that m ≥ n
2 − r.

Finally, for k 6= k′ ∈ {1, 2, . . . , n′ − 1}, Vk ∩ Vk′ = ∅. Thus, the number of vertices in B
must be at least(n

2 − r
)
· (n′ − 1) ≥

(n
2 − r

)
· n2∆ . J

3.2 A lower bound for the general case

The following lemma shows how we can obtain, given an ABP with d layers which computes
a polynomial F , a multilayered ABP, whose number of layers is significantly smaller, which
computes F plus a small “error term”.

I Lemma 13. Let A be an ABP over a field F with d layers, which computes the polynomial
F and has m vertices. Let s and t be the start and end vertices of A respectively, and let
L =

{
u1, u2, . . . , u|L|

}
be the set of vertices in the `-th layer of A. For every i ∈ {1, 2, . . . , |L|},

let αi and βi be the constant terms of [s, ui] and [ui, t] respectively. Furthermore, let Pi and
Qi be polynomials such that [s, ui] = Pi + αi and [ui, t] = Qi + βi.

Then, there is a multilayered ABP A′, with at most max{`, d− `+ 1} layers and size at
most |A| that computes the polynomial

F −
|L|∑
i=1

Pi ·Qi +
|L|∑
i=1

αi · βi.

Proof. Let u1, u2, . . . , u|L| be the vertices in L as described, so that

F = [s, t] =
|L|∑
i=1

[s, ui] · [ui, t] .
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Further, for every i ∈ {1, 2, . . . , |L|}, [s, ui] = Pi +αi and [ui, t] = Qi +βi, where the constant
terms of Pi and Qi are zero (by definition). Having set up this notation, we can thus express
the polynomial F computed by A as

F = [s, t] =
|L|∑
i=1

(Pi + αi) · (Qi + βi) .

On further rearrangement, this gives

F −

 |L|∑
i=1

Pi ·Qi

+

 |L|∑
i=1

αi · βi

 =

 |L|∑
i=1

αi · (Qi + βi)

+

 |L|∑
i=1

(Pi + αi) · βi

 .

This is equivalent to the following expression.

F −

 |L|∑
i=1

Pi ·Qi

+

 |L|∑
i=1

αi · βi

 =

 |L|∑
i=1

αi · [ui, t]

+

 |L|∑
i=1

[s, ui] · βi

 .

Now, observe that the polynomial
∑|L|

i=1[s, ui] · βi is computable by an ABP B with ` + 1
layers, obtained by just keeping the vertices and edges within first ` layers of A and the end
vertex t, deleting all other vertices and edges, and connecting the vertex ui in the `-th layer to
t by an edge of weight βi. Similarly, the polynomial

∑|L|
i=1 αi · [ui, t] is computable by an ABP

C with at most (d− `+ 1) + 1 layers, whose set of vertices is s along the vertices in the layers
`, `+ 1, `+ 2, . . . , d of A. From the definition of B and C, it follows that the multilayered
ABP Ã obtained by taking the sum of B and C has at most max {`+ 1, d− `+ 2} layers.

We are almost done with the proof of the lemma, except for the upper bound on the
number of vertices of the resulting multilayered ABP Ã, and the fact that the upper bound
on the depth is slightly weaker than claimed. Both these issues can be solved simultaneously.

The vertices in L appear in both the ABP B and the ABP C and are counted twice in
the size of Ã. However, every other vertex is counted exactly once. Hence,

|B|+ |C| = |A|+ |L| . (1)

In order to fix this issue, we first observe that the edges between the vertices in the `-th layer
of B and the end vertex t are labeled by β1, β2, . . . , β|L|, all of which are field constants. In
the following claim, we argue that for ABPs with this additional structure, the last layer is
redundant and can be removed.

B Claim 14. LetM be an ABP over F with k + 1 layers and edge labels of degree at most
∆ such that the labels of all the edges between the k-th layer ofM and its end vertex are
scalars in F. Then, there is an ABPM′ with k layers computing the same polynomial asM,
with edge labels of degree at most ∆, such that

|M′| ≤ |M| − |V | ,

where V is the set of vertices in the k-th layer ofM.

An analogous statement, with an identical proof, is true if we assume that all edge labels
between the first and second layer are scalars in F.

We first use Claim 14 to complete the proof of the lemma. As observed above, the edge
labels between the last layer L of B and its end vertex are all constants. Hence, by Claim 14,
there is an ABP B′ which computes the same polynomial as B such that |B′| ≤ |B| − |L|,
and B′ has only ` layers. Similarly, we can obtain an ABP C′ with at most d− `+ 1 layers.
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We consider the multilayered ABP A′ by taking the sum of B′ and C′. Clearly, the
number of layers in A′ is at most max{`, d− `+ 1} and the size is at most

|A′| ≤ |B′|+ |C′| ≤ (|B| − |L|) + (|C| − |L|) ≤ |A| .

Here, the second inequality follows by Claim 14 and the last one follows by Equation 1. To
complete the proof of the lemma, we now prove Claim 14. J

Proof of Claim 14. For the proof of the claim, we focus on the k-th and (k − 1)-st layer of
M. To this end, we first set up some notation. Let {v1, v2, . . . , vr} be the set of vertices in
the k-th layer ofM, {u1, u2, . . . , ur′} be the set of vertices in (k− 1)-st layer ofM, and a, b
denote the start and the end vertices ofM respectively. Then, the polynomial computed by
M, can be decomposed as

[a, b] =
r∑

i=1
[a, vi] · [vi, b] .

Note that (vi, b) is an edge in the ABP. Similarly, the polynomial [a, vi] can be written as

[a, vi] =
r′∑

j=1
[a, uj ] · [uj , vi] .

Combining the two expressions together, we get

[a, b] =
r∑

i=1
[vi, b] ·

 r′∑
j=1

[uj , vi] · [a, uj ]

 ,

which on further rearrangement, gives us

[a, b] =
r′∑

j=1

(
r∑

i=1
[vi, b][uj , vi]

)
· [a, uj ] . (2)

From the hypothesis of the claim, we know that for every i ∈ [r], the edge label [vi, b] is a
field constant, and the edge label [uj , vi] is a polynomial of degree at most ∆. Thus, for
every j ∈ [r′], the expression (

∑r
i=1[ui, b][uj , vi]) is a polynomial of degree at most ∆.

This gives us the following natural construction for the ABPM′ from M. We delete
the vertices v1, v2, . . . , vr in M (and hence, all edges incident to them), and for every
j ∈ {1, 2, . . . , r′}, we connect the vertex uj with the end vertex b using an edge with
label (

∑r
i=1[vi, b][uj , vi]). The upper bound on the size and the number of layers ofM′ is

immediate from the construction, and that it computes the same polynomial asM follows
from Equation 2. C

We now state and prove a simple generalization of Lemma 13 for a multilayered ABP.

I Lemma 15. Let A =
∑m

i=1Ai be a multilayered ABP with d layers over a field F
computing the polynomial F , such that each Ai is an ABP with di layers. Also, let `i,j be
the number of vertices in the j-th layer of Ai (`i,j = 0 if Ai has fewer than j layers), and
` = minj∈(d/3,2d/3) {

∑m
i=1 `i,j}.

Then, there is a multilayered ABP with at most 2d/3 layers and size at most |A| that
computes a polynomial of the form

F −
∑̀
i=1

Pi ·Qi + δ ,

where {P1, . . . , P`, Q1, . . . , Q`} is a set of non-constant polynomials with constant term zero
and δ ∈ F.
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Proof. Let j0 ∈ (d/3, 2d/3) be the natural number which minimizes the quantity
∑m

i=1 `i,j ,
and let S ⊆ [m] be the set of all indices i such that Ai has at least j0 layers. Let A′ =

∑
i∈S Ai

and A′′ =
∑

i/∈S Ai. Thus,

A = A′ +A′′.

Here, A′′ =
∑

i/∈S Ai is a multilayered ABP with at most 2d/3 layers. Moreover, |A| =
|A′|+ |A′′|.

The idea now is to apply Lemma 13 to every ABP in A′. For every i ∈ S, we know that
there exist some polynomials Pi,1, . . . , Pi,`i,j0

, Qi,1, . . . , Qi,`i,j0
with constant terms zero and

a constant δi, such that

Fi −
`i,j0∑
r=0

Pi,rQi,r + δi

can be computed by a multilayered ABP. Let us denote this multilayered ABP by Bi. From
Lemma 13, we know that Bi has at most max{j0, di − j0 + 1} ≤ 2d/3 layers and size at most
|Ai|. Taking a sum over all i ∈ S and re-indexing the summands, we get that there exist
polynomials P1, . . . , P`, Q1, . . . , Q` with constant terms zero and a constant δ such that the
polynomial

∑
i∈S

Fi −
∑̀
r=0

PrQr + δ

is computable by a multilayered ABP B =
∑

i∈S Bi with at most 2d/3 layers and size at
most

∑
i∈S |Ai| ≤ |A′|.

Finally, by combining the multilayered ABPs B and A′′, we get that the polynomial

F −
∑̀
r=0

PrQr + δ

is computable by a multilayered ABP with at most 2d/3 layers and size at most |A|. J

We now use Lemma 15 to prove our main result, which we restate once more.

I Theorem 7. Let n ∈ N and let F be a field such that char(F) - n. If A is an algebraic
branching program with edge labels of degree at most ∆ that computes the polynomial

∑n
i=1 x

n
i ,

then the size of A is at least

Ω
(
n2

∆

)
.

Proof. Let A be a multilayered ABP with d0 layers which computes the polynomial
∑n

i=1 x
n
i .

As before we may assume without loss of generality that the underlying field F is algebraically
closed. Note that if d0 is at most n/∆, then the formal degree of A is at most d0∆ ≤ n.
Thus, by Theorem 10, we know that |A| is at least Ω(n2/∆) and we are done. Also, if
d0 > n2/∆, then again we have our lower bound since each layer of A must have at least one
vertex. Thus, we can assume that n/∆ ≤ d0 ≤ n2/∆.

The proof idea is to iteratively make changes to A till we get a multilayered ABP A′ of
formal degree at most n that computes a polynomial of the type

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R
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where r ≤ n/10 and A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for
every i, Ai(0) = Bi(0) = 0 and R has degree at most n − 1. Once we have this, we can
invoke Theorem 10 and get the required lower bound.

We now explain how to iteratively obtain A′ from A. In one step, we ensure the following.

B Claim 16. Let Ak be a multilayered ABP with edge labels of degree at most ∆, dk ≥ n/∆
layers and size at most τ that computes a polynomial of the form

∑n
i=1 x

n
i +

∑r
j=1Aj ·

Bj +R where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every
j, Aj(0) = Bj(0) = 0 and R has degree at most n− 1.

If τ ≤ 0.001n2/∆, then there exists a multilayered ABP Ak+1 with at most 2dk/3 layers
and size at most τ which computes a polynomial of the form

n∑
i=1

xn
i +

r′∑
j=1

A′j ·B′j +R′ ,

such that r′ ≤ r+0.005 n2

∆·dk
and A′1(x), . . . , A′r′(x), B′1(x), . . . , B′r′(x), R′(x) are polynomials

such that for every i, A′i(0) = B′i(0) = 0 and R′ has degree at most n− 1.

Before moving on to the proof of Claim 16, we first use it to complete the proof of
Theorem 7. Let us set A0 = A. Then, A0 is a multilayered ABP with d0 layers and size at
most τ that computes the polynomial

∑n
i=1 x

n
i .

If τ ≥ 0.001n2/∆, the statement of the theorem follows. Otherwise, we apply Claim 16
iteratively K times, as long as the number of layers is more than n/∆, to eventually get a
multilayered ABP A′ = AK with d′ ≤ n/∆ layers. Let d0, . . . , dK−1, dK denote the number
of layers in each ABP in this sequence, so that dK−1 > n/∆, and dk ≤ 2dk−1/3 for k ∈ [K].
A′ is an ABP with at most n/∆ layers and size at most τ , which by induction, computes a
polynomial of the form

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R ,

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R has degree at most n− 1. Further, the number of error terms, r, is
at most

0.005n2

∆

(
1

dK−1
+ 1
dK−2

+ · · ·+ 1
d0

)
.

Since dk ≤ 2
3 · dk−1, we have that 1

dk−1
≤ 2

3 ·
1

dk
for all k ∈ [K], so that

r ≤ 0.005n2

∆ · 1
1− 2/3 ·

1
dK−1

≤ n

10

as dK−1 ≥ n/∆.
At this point, since the formal degree is at most n, using Theorem 10 we get

τ ≥ |A′| ≥ (n/2− r)n
2∆ = Ω

(
n2

∆

)
. J

To complete the proof of Theorem 7, we now prove Claim 16.
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Proof of Claim 16. Let Ak =
∑m

i=1Ak,i, and for j ∈ [dk], let `i,j be the number of vertices
in layer j of Ak,i. Recall that if the number of layers in Ak,i is strictly less than j, then we
set `i,j = 0. Let ` be the total number of vertices in the middle layers of Ak, defined as

` =
m∑

i=1

 ∑
j∈(dk/3,2dk/3)

`i,j

 .

Since ` ≤ τ ≤ 0.001n2

∆ , by averaging, we know that there is a j0 ∈ (dk/3, 2dk/3), such that

`j0 =
m∑

i=1
`i,j0 ≤

`

dk/3
≤ 0.001n2

∆ · 1
dk/3

≤ 0.005 n2

∆ · dk
.

This condition, together with Lemma 15, tells us that there is a multilayered ABP A′k+1
with at most 2dk/3 layers and size at most τ that computes a polynomial of the form

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R−
`j0∑
i=1

Pi ·Qi + δ ,

where P1, . . . , P`, Q1, . . . , Q` are a set of non-constant polynomials with constant term zero
and δ ∈ F. Since `j0 ≤ 0.005 n2

∆·dk
, the claim follows. C

4 Unlayered Algebraic Branching Programs

In this section, we prove Theorem 3. We begin with the following definition.

I Definition 17. Let A be an unlayered ABP over F. Let s and t denote the start and end
vertices of A, respectively, and let v 6= s, t be a vertex in A. Denote by α ∈ F the constant
term of [s, v] and by β ∈ F the constant term of [v, t].

The cut of A with respect to v, denoted cut(A, v), is the unlayered ABP obtained from A
using the following sequence of operations:
1. Duplicate the vertex v (along with its incoming and outgoing edges). Let v1, v2 denote the

two copies of v.
2. Erase all outgoing edges of v1, and connect v1 to t by a new edge labeled β.
3. Erase all incoming edges of v2, and connect s to v2 by a new edge labeled α.

We now prove some basic properties of the construction in Definition 17.

B Claim 18. Let A be an unlayered ABP over F computing a polynomial F , and let v be a
vertex in A. Denote A′ = cut(A, v). Denote by d the depth of A and by dv the depth of v in
A. Then the following properties hold:
1. A′ has 1 more vertex and 2 more edges than A.
2. The depth of A′ is at most

max {depth(A \ {v}), dv + 1, d− dv + 1} ,

where A \ {v} is the ABP obtained from A by erasing v and all of its adjacent edges.
3. A′ computes a polynomial of the form F − P ·Q− δ where P and Q have no constant

term, and δ ∈ F.



P. Chatterjee, M. Kumar, A. She, and B. L. Volk 2:17

Proof. The first property is immediate from the construction. The second property follows
from the following reasoning: each path in A′ is of exactly one of the following types: (a)
misses both v1 and v2, (b) passes through v1, or (c) passes through v2. In case (a), the path
also appears in the graph of A \ {v}. In case (b), the only edge going out of v1 is to t, and
all other edges in the path appear in A, hence the length is at most dv + 1. In case (c), the
only edge entering v2 is from s, hence similarly the path is of length at most d− dv + 1.

It remains to show the last property. Let P ′ = [s, v] and Q′ = [v, t] (as computed in A).
Denote P ′ = P +α where P has no constant term and α ∈ F and similarly Q′ = Q+ β. One
may write F = P ′ ·Q′ +R = (P + α)(Q+ β) +R where R is the sum over all paths in A
which do not pass through v. In A′, we have that [s, v1] = P ′ and [v2, t] = Q′, and thus A′
computes the polynomial

R+ α ·Q′ + P ′ · β = F − P ·Q+ αβ. C

Our goal is to perform cuts on a strategically chosen set of vertices. In order to select
them, will use the following well known lemma of Valiant [26], simplifying and improving an
earlier result of Erdős, Graham and Szemerédi [8]. For completeness, we also sketch a short
proof.

I Lemma 19 (Valiant [26]). Let G be a directed acyclic graph with m edges and depth d ≥
√
n.

Then, there exists a set E′ of at most 4m/ logn edges such that removing E′ from G results
in a graph of depth at most d/2.

Proof. Let d′ ≥ d ≥
√
n be a smallest power of 2 larger than d, so that d′ ≤ 2d. Let k = log d′.

A valid labeling of a directed graph G = (V,E) is a function f : V → {0, . . . , N − 1} such
that whenever (u, v) is an edge, f(u) < f(v). Clearly if G had depth d then there is a valid
labeling with image {0, . . . , N − 1} = {0, . . . , d− 1} by labeling each vertex by its depth.
Conversely, if there is a valid labeling with image {0, . . . , N − 1} then depth(G) ≤ N .

Let f be a valid labeling of G with image {0, . . . , d′ − 1} and for i ∈ [k] let Ei be the set
of edges such that the most significant bit in which the binary encoding of the labels of their
endpoints differ is i. If Ei is removed, we can obtain a valid relabeling of the graph with
image {0, . . . , d′/2− 1} by removing the i-th bit from all labels.

The two smallest sets among the Ei-s have size at most 2m/k ≤ 4m/ logn (since
k = log d′ ≥ logn/2), and removing them gives a valid labeling with image {0, . . . , d′/4− 1},
and therefore a graph with depth at most d′/4 ≤ d/2. J

We need a slight variation of this lemma, in which we do not pick edges whose endpoints
have too small or too large a depth in the graph.

I Lemma 20. Let G be a directed acyclic graph with m edges and depth d ≥
√
n. Then,

there exist a set U of vertices, of size at most 4m/ logn, such for every v ∈ U we have that
d/9 ≤ depth(v) ≤ 8d/9, and removing U (and the edges touching those vertices) results in a
graph of depth at most 3d/4.

Proof. Let E denote the set of edges of G and E′ ⊆ E be the set of edges guaranteed by
Lemma 19. Let E1 ⊆ E′ be the edges in E′ whose heads have depth at most d/9, and E2 be
the edges in E′ whose heads have depth at least 8d/9. Let E′′ = E′ \ (E1 ∪ E2). Clearly,
|E′′| ≤ |E′| ≤ 4m/ logn. Let U be the set of heads of vertices in E′′.

Consider now any path in the graph obtained from G by removing U (and hence in
particular E′′). Given such a path, let e1 be the last edge from E1 in the path which appears
before all edges from E2 (if there exists such an edge), and let e2 the first edge from E2 (if
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any) in the path. We partition the path into three (possibly empty) parts: the first part is
all the edges which appear until e1 (including e1); the second part is all the edges after e1
and before e2; the last part consists of all the edges which appear after e2 (including e2).
Because the head of e1 is a vertex of depth at most d/9, the first part can contribute at most
d/9 edges. The second part includes only edges from E \ E′, and thus its length is at most
d/2. The last part again has depth at most d/9 + 1, as any path leaving a vertex of depth at
least 8d/9 can have at most that many edges (here we add 1 to account for the edge e2 itself,
since the assumption is on the depth of the head of e2). Thus, the total length of the path is
at most

d/9 + d/2 + d/9 + 1 ≤ 3d/4 . J

The set of vertices given by the lemma above will be the vertices according to which we
will cut the ABP. We describe it in the following lemma, and prove some properties of this
operation.

I Lemma 21. Let A be an ABP over a field F of depth d ≥
√
n computing a polynomial F .

Let τ be the number of vertices and m be the number of edges in A. Then, there exist an
unlayered ABP A′, with at most τ + 4m/ logn vertices, at most m+ 8m/ logn edges, and
depth at most 9d/10, computing a polynomial of the form F −

∑r
i=1 PiQi − δ where δ ∈ F is

a field constant, the Pi, Qi’s have no constant term, and r ≤ 4m/ logn.

Proof. Let G be the underlying graph of the ABP A. Let U = {u1, . . . , ur} be the set
of vertices guaranteed by Lemma 20, such that r ≤ 4m/ logn. We perform the following
sequence of cuts on A. Set A0 := A and for i ∈ [r], Ai = cut(Ai−1, ui). Finally A′ = Ar.

The statements of the lemma now follow from the properties of cuts as proved in Claim 18.
The bound on the number of vertices and edges in A′ is immediate. The claim on the
polynomial computed by A′ follows by induction on i.

Finally, by induction on i, we have that the depth of A′ is at most

max{depth(A\U), depth(u1)+1, . . . , depth(ur)+1, d−depth(u1)+1, . . . , d−depth(ur)+1} ,

where A \ U is the ABP obtained by removing all vertices in U .
By the choice of U as in Lemma 20, for every i ∈ [r] we have that d/9 ≤ depth(ui) ≤ 8d/9,

and depth(A \ U) ≤ 3d/4, which implies the required upper bound on the depth of A′
(assuming n, and hence d, are large enough). J

Repeated applications of Lemma 21 give the following statement.

I Corollary 22. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1),
computing an n-variate polynomial F . Further suppose A has depth at least

√
n, and that the

number of edges in A is at most n logn/(1000(log logn+ log ∆)). Let τ denote the number
of vertices in A.

Then, there exists an ABP A′, whose depth is at most n/∆, which computes a polynomial
of the form F −

∑r
i=1 PiQi − δ, such that Pi, Qi are all polynomials without a constant term,

δ ∈ F is a field constant, and r ≤ n/10. The number of vertices in A′ is at most τ + n/10.

Proof. Observe that the depth of A is at most d := n logn. As long as the depth is at least√
n, apply Lemma 21 repeatedly at most k := 7(log logn+ log ∆) times, to obtain an ABP

of depth at most (0.9)k · d ≤ n/∆.
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The upper bound on the number of summands PiQi and the number of vertices after
each application is given as a function of the number of edges, which increases in the process.
Hence, we first provide a crude estimate on the number of edges at each step. For i ∈ [k],
let Ai denote the ABP obtained after the i-th application of Lemma 21, and let mi be the
number of edges in that ABP.

We claim that by induction on i, mi ≤ m0 · (1 + 8/ logn)i. This is true for i = 0 by
definition. For i ≥ 1, since we maintain the invariant that the depth is at least

√
n, it follows

from Lemma 21 that

mi ≤ mi−1 + 8mi−1/ logn = mi−1(1 + 8/ logn) ≤ m0(1 + 8/ logn)i−1 · (1 + 8/ logn) ,

where the last inequality uses the induction hypothesis. Thus, the final ABP has at most

mk ≤ m0(1 + 8/ logn)k ≤ 2m0 = n logn/(500(log logn+ log ∆)) =: M

assuming n is large enough (recall that by assumption we have that log ∆ = o(logn), so that
limn→∞(1 + 8/ logn)o(log n) = 1). It is convenient to now use M as a uniform upper bound
on the number of edges in all stages of this process, so that each step adds at most 4M/ logn
summands and vertices. It now follows that r is at most

4kM
logn ≤

7(log logn+ log ∆) · 4n
500(log logn+ log ∆) ≤ n/10,

and similarly the total number of vertices added throughout the process is at most n/10. J

The lower bound given in Theorem 3 now follows by a simple win-win argument. For
convenience, we restate the theorem.

I Corollary 23. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1),
computing

∑n
i=1 x

n
i . Then A has at least Ω(n logn/(log logn+ log ∆) edges.

Proof. Let τ denote the number of vertices in A. If the number of edges is at least
n logn/(1000(log logn+ log ∆)), then we already have our lower bound. Else, the number of
edges is at most n logn/(1000(log logn+ log ∆)). Now, by Corollary 22, there exists an ABP
A′, with τ + n/10 vertices and depth at most n/∆, computing

∑n
i=1 x

n
i −

∑r
j=1 PiQi − δ,

such that Pj , Qj have no constant term, r ≤ n/10, and δ ∈ F.
It thus follows that A′ has formal degree at most n. By Theorem 10, it has Ω(n2/∆)

vertices, thus τ = Ω(n2/∆), so that the number of edges is also Ω(n2/∆). J

5 Open problems

We conclude with some open problems.
A natural open question here is to prove an improved lower bound for unlayered algebraic
branching programs. In particular, in the absence of an obvious non-trivial upper bound,
it seems reasonable to conjecture that any unlayered ABP computing the polynomial∑n

i=1 x
n
i has size at least Ω(n2−o(1)).

Yet another question which is natural in the context of this work and remains open is
to prove stronger lower bounds for ABPs. As a first step towards this, the question of
proving super-quadratic lower bound for homogeneous algebraic formulas might be more
approachable.
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Abstract
We construct k-CNFs with m variables on which the strong version of PPSZ k-SAT algorithm, which
uses resolution of width bounded by O(

√
log logm), has success probability at most 2−(1−(1+ε)2/k)m

for every ε > 0. Previously such a bound was known only for the weak PPSZ algorithm which
exhaustively searches through small subformulas of the CNF to see if any of them forces the value of
a given variable, and for strong PPSZ the best known previous upper bound was 2−(1−O(log(k)/k))m

(Pudlák et al., ICALP 2017).
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1 Introduction

The PPSZ algorithm for k-SAT by Paturi, Pudlák, Saks, and Zane [7] is simple to state but
famously difficult to analyze. Given a k-CNF formula Φ as input, it first chooses a random
ordering π of its variables x1, . . . , xm. It goes through them one by one, in the order given by
π. For each variable x, it tries to derive the correct value using a certain proof heuristic P .
P takes as input a k-CNF formula Φ and a variable x and returns a value in {0, 1, ?}. P
must be sound, meaning if P (Φ, x) = b ∈ {0, 1} then Φ |= (x = b), i.e., every satisfying
assignment of Φ sets x to b; however, we allow P to be incomplete, i.e., it may answer “?”,
meaning “I don’t know”. If P (Φ, x) = b ∈ {0, 1}, then PPSZ sets x to b; otherwise it sets x to
some b ∈ {0, 1} chosen uniformly at random. In either case, it simplifies Φ to Φ|x 7→b. Once
all variables have been processed, the resulting formula either contains the empty clause �,
and we declare this run of PPSZ a failure; or it does not, in which case PPSZ has found a
satisfying assignment.

If PPSZ has success probability p then we can repeat it 1/p times, obtaining a constant
success probability. As long as P runs in subexponential time, the overall running time of
this Monte Carlo algorithm is dominated by 1/p (which will, most likely, be exponential in n).
Which proof heuristics P should one consider? There are currently just two on the market.
The first one is Pw, which checks whether (x = b) is implied by a set of up to w clauses of Φ.
The second one is Rw, which tries to derive the clause (x = b) by resolution, bounded by
width w. Obviously they both can be implemented in time O∗

((|Φ|
w

))
≤ O∗

((
mk

w

))
, which
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is subexponential as long as w ∈ o
(

m
logm

)
. It is easy to see that Rw·k is at least as strong

as Pw. We also speak of weak PPSZ when it uses Pw and strong PPSZ when it uses Rw
(ignoring the concrete values of w).

Proving positive results, i.e., lower bounds on the success probability, seems remarkably
insensitive to our choice of P . In fact, all lower bounds we currently know work for Pw, for
any w ∈ ω(1):

I Theorem 1 (Paturi, Pudlák, Saks, and Zane [7] and Hertli [6]). On k-CNF formulas with m
variables, the success probability of PPSZ using the heuristic Pw is at least 2−m(1−sk)+o(m),
where limk→∞ ksk = π2

6 , provided that w = w(m) ∈ ω(1).

Originally, Paturi, Pudlák, Saks, and Zane stated their algorithm as using Rw, i.e., width-
bounded resolution; however, it is easy to see that their analysis works for the weaker heuristic
Pw as well, see for example [10] for a formal proof. We do not know any better bound for
PPSZ using Rw, for any w ∈ o(m).

The parameter sk in the theorem is called the savings of the algorithm. Ignoring constant
factors, the theorem shows that the savings of PPSZ are at least Ω(1/k). Other algorithms,
arguably much simpler, such as PPZ [8] and Schöning’s Random Walk [11] have smaller
savings than PPSZ, but also of order Ω(1/k). In general, let σk be the supremum of all σ
such that there is a randomized algorithm for k-SAT running in time O

(
2m(1−σ)). There is

a whole hierarchy of conjectures about how large the savings for k-SAT can be. Here is a
list, sorted from weak to strong.
1. P 6= NP: k-SAT has no polynomial time algorithm.
2. ETH (exponential time hypothesis): σ3 < 1.
3. SETH (strong exponential time hypothesis): limk→∞ σk = 0, i.e., as k grows, the

advantage over brute force shrinks to nil.
4. SSETH (super strong exponential time hypothesis): σk ∈ O(1/k).
We already know (as shown by PPZ, Schöning’s and PPSZ algorithms) that σk ∈ Ω(1/k), so
Point 4 actually conjectures that σk ∈ Θ(1/k). Of course proving an unconditional upper
bound on σk is far out of reach for now. However one could try to prove such upper bounds
on the savings of specific algorithms. This would then shed light on the difficulty of improving
k-SAT algorithms. In this paper we prove close to tight upper bounds on the savings of the
strong PPSZ algorithm showing that its running time is consistent with SSETH, that is the
worst case running time of PPSZ is as predicted by SSETH. This is in contrast to a recent
result of Vyas and Williams [12] who showed that SSETH is false for random k-SAT.

1.1 Previous Results: Hard Instances

The first hard instances for PPSZ were given by the authors together with Chen and Tang [3].
That work constructed k-CNFs based on a random distribution of linear systems and showed
that PPSZ using Rw, that is resolution of bounded width, succeeds with probability at most
2−m(1−O(log2(k)/k)) on these formulas, as long as w ≤ ln(k)n

k (Theorem 1.2 in [3]). Together
with Pudlák [9] we then improved this lower bound to 2−m(1−O(log(k)/k)), which holds as
long as w ≤ n/k (Theorem 6 in [9]). This improvement came mainly from clarifying and
sharpening a union bound in [3]. However based on a completely different construction, it
gave an upper bound of 2−m(1−2(1+ε)/k) for the “weak” heuristic Pw, for some w = nΘ(ε)

(Theorem 5 in [9]). This construction is based on Tseitin formulas defined on large girth
graphs. For Rw, it was left open whether one can obtain the same bound.
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2 Our Results

I Theorem 2 (SSETH Holds for PPSZ). For every k ∈ N, there is a polynomial p and a
sequence (Fm)m∈N of satisfiable k-CNF formulas Fm on m variables, such that for every ε > 0
and w ≤

√
ε · log logm

2 log k − 3, it holds that Pr[ppsz(Fm, Rw) succeeds] ≤ p(m)2−m(1−2(1+ε)/k).

Thus, the super strong exponential time hypothesis is true for Strong PPSZ, provided
that we do not make it too strong, i.e., keep w fairly small. Note that this gives an upper
bound on the savings of PPSZ by 2/k, which is quite close to the currently best lower bound
of (π2/6 + o(1))/k [7].

Our result is incomparable to the previous ones. We feel that the “super strong ETH
bounds” of 2(1 + ε)/k in the exponent make this result much stronger than its predecessors.
However, the doubly-logarithmic upper bound on w is, of course, much more restrictive
than the w ≤ m/k bound of Theorem 6 in [9]. Might it be that super strong ETH fails for
w = m/k? Maybe even for w = log(m)? If we could rule out this possibility, we would have
done so in this paper. However, remember that the lower bound on the success probability
(Paturi, Pudlák, Saks, and Zane [7]) holds for Pω(1), which is arguably the weakest possible
non-trivial proof heuristic. At the moment, there are no better lower bounds for Ro(m),
which is much stronger than Pω(1). Thus, we feel that the parameter w is not as relevant as
the savings.

I Conjecture 3. Super Strong ETH holds for PPSZ using Rw, as long as w = o(m).

To be honest, the only supporting evidence we have for this conjecture is the lack of progress
in analyzing the success probability of PPSZ. If this conjecture is true, the hard instances
proving it might use a very different construction from those in Theorem 2. Thus, we further
conjecture:

I Conjecture 4. Theorem 2 holds for some w = Θ(logm), with the same formulas Fm.

We have a little bit more evidence supporting the second conjecture: our constructions are
based on Tseitin formulas, and our bound on w is related to the girth of a graph H; the
graph H has Θ(logm) vertices and girth Θ(log logm). However, the resolution width of
Tseitin formulas is usually governed by the expansion properties of the underlying graph, not
its girth, and thus we hope that some proof also works for w = Θ(logm).

Recently, Hansen, Kaplan, Zamir, and Zwick [5] published an improved version of PPSZ,
called biased-PPSZ. Roughly stated, the idea of their improvement is that, looking at a
formula F with a unique satisfying assignment α, we can identify a set a set X ⊆ V of
variables on which α is biased, i.e., the number of x ∈ X set to 1 by α deviates from |X|/2
significantly. Thus, setting those variables to 1 with some probability p 6= 1/2 gives a higher
success probability. We have not checked whether the bounds of Theorem 2 also hold for
biased-PPSZ.

2.1 Notation
Given a set of variables X, a partial assignment is a function α : X → {0, 1, ∗}, that is an
assignment of 0-1 values to some of the variables with ∗ intended to mean unset by α. We
denote the set of variables to which α gives a value by var(α) := {x ∈ X : α(x) ∈ {0, 1}}.
For two partial assignments α and β we write α ⊆ β to mean that for every x ∈ var(α), it
holds that β(x) = α(x). Naturally, α ⊂ β means that α ⊆ β and |var(α)| < |var(β)|. Given a

CCC 2020



3:4 Super Strong ETH Is True for PPSZ with Small Resolution Width

variable x and b ∈ {0, 1}, x 7→ b is the partial assignment which sets x to b. The assignment
which sets every variable to 0 is denoted by 0. For Y ⊆ X, we write Y 7→ 0 to denote the
partial assignment which sets all variables in Y to 0. If var(α) ∩ var(β) = ∅, we define α ∪ β
to be the partial assignment which sets all x ∈ var(α) to α(x), all x ∈ var(β) to β(x), and
all other variables to ∗. Finally the restriction of a formula Φ by α is denoted by Φ|α.

2.2 The Formula
Let G = (V,E) be a graph. For every e ∈ E(G) we introduce a variable xe. Given a charge
c : V → {0, 1}, the Tseitin formula on G with charge c is the Boolean formula

Tseitin(G, c) :=
∧

u∈V (G)

 ∑
e∈E(G):u∈e

xe ≡ c(u) mod 2

 (1)

If G has maximum degree k then this can be expressed as a k-CNF formula on m = |E(G)|
variables and |V (G)|2k−1 clauses. Usually in proof complexity, the charge c is chosen so
that Tseitin(G, c) is unsatisfiable. In this paper, all charges will be 0, and Tseitin(G,0) is
obviously satisfiable: set all variables to 0. We will hence drop c from the notation and
simply write Tseitin(G) to denote this formula. The constraint

∑
e∈E(G):u∈e xe ≡ 0 mod 2

is called the Tseitin constraint of vertex u. Given a set B of pairs of edges in G consider the
following formula

Tseitin(G) ∧
∧

{e,f}∈B

(x̄e ∨ x̄f ).

The constraint (x̄e ∨ x̄f ) is called a bridge constraint. It is easy to see that 0 is the unique
satisfying assignment of this formula if and only if every cycle in G contains a bridge in B.
We will consider a particular instantiation of bridges given by graph homomorphisms. A
graph homomorphism from a graph G to a graph H is a function ϕ : V (G) → V (H) such
that {ϕ(u), ϕ(v)} ∈ E(H) whenever {u, v} ∈ E(G). Thus, ϕ also induces a function from
E(G) to E(H); ϕ({u, v}) := {ϕ(u), ϕ(v)}. Given G, H, and a homomorphism ϕ from G to
H, we define a Tseitin formula with bridges on the variable set {xe | e ∈ E(G)}:

TseitinBridge(G,H,ϕ) := Tseitin(G) ∧
∧

e,f∈E(G)
e 6=f,ϕ(e)=ϕ(f)

(x̄e ∨ x̄f ) . (2)

For brevity, we write V = V (G) and E = E(G).

I Observation 5. If girth(G) > |E(H)| then TseitinBridge(G,H,ϕ) is uniquely satisfiable
by 0.

Proof. Let α 6= 0 be a total assignment. Let F := {e ∈ E(G) | α(xe) = 1}. If some vertex u
has degree 1 in (V, F ), then α violates its Tseitin constraint. Otherwise, (V, F ) has a cycle,
which has length at least girth(G). By the pigeonhole principle, this cycle contains two edges
e, f such that ϕ(e) = ϕ(f), and thus α violates their bridge constraint. J

Locally Injective Homomorphisms. A homomorphism ϕ is called locally injective if for
every u ∈ V (G) and any two of its neighbors v1 and v2, it holds that ϕ(v1) 6= ϕ(v2). Note
that ϕ : G → H being locally injective immediately implies that degG(u) ≤ degH(ϕ(u)).
We call ϕ locally bijective if, additionally, degG(u) = degH(ϕ(u)) for all vertices u of G.
Note that a locally bijective homomorphism bijectively maps the neighborhood of u to the
neighborhood of ϕ(u). The graph G is called a covering graph of H or a lift of H.
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a

b

c

d

e

f

1 : a 2 : b

3 : a4 : b

G
H

Example of a homomorphism that is not locally injective. The two neighbors of 1 are both mapped
to b.

a

b c

d

b c

d
a

b c

da

G H

Example of a locally bijective homomorphism. The letters next to the vertices of G are not their
names but rather their images under ϕ.

I Theorem 6. Let G be a graph on n vertices and m edges. Suppose there is a locally
injective graph homomorphism ϕ : G→ H for some graph H with |E(H)| < girth(G). Then
for all ε > 0 and w :=

√
ε·girth(H)

2 − 3, the success probability of PPSZ with heuristic Rw on
Φ := TseitinBridge(G,H,ϕ) is at most

Pr[ppsz(Φ, Rw)] ≤ 2−m+(1+ε)n .

Proof of Theorem 2 using Theorem 6. We first show how to construct Fm for infinitely
many m. Let n0 be some given, sufficiently large even integer. A well-known fact, first
proven by Erdős and Sachs [4], is that there is a k-regular graph G0 on n0 vertices having
girth at least g0 := logn0

log(k−1) . Set n1 :=
⌊

2(g0−1)
k

⌋
or n1 :=

⌊
2(g0−1)

k

⌋
− 1, whichever is even,

and let G1 be a k-regular graph on n1 vertices, such that girth(G1) ≥ g1 := logn1
log(k−1) . This

exists, provided that n0 is sufficiently large. Note that G1 has at most g0 − 1 < girth(G0)
edges.

A result by Angluin and Gardiner [1] states that there is a common lift G of G0 and
G1. That is, G is a covering graph of G0 and of G1. Being a lift of a k-regular graph, G is
k-regular as well. A closer inspection of their proof reveals that n := |V (G)| ≤ 4n0n1.

Let m := kn
2 be the number of edges in G. We set Φm := TseitinBridge(G,G1, ϕ1), where

ϕ1 is the locally bijective homomorphism from G to G1.
It is not difficult to see that lifting cannot decrease the girth, and thus girth(G) ≥

girth(G0) > |E(G1)|. Thus, we can apply Theorem 6 to G, G1, and ϕ1, and conclude
that the success probability of PPSZ on Φm is at most 2−m+(1+ε)n when using heuristic
Rw. A quick calculation shows that g1 ≥ log logm

log k if n0 is sufficiently large, and thus

w ≥
√
ε · log logm

2 log k − 3.
This construction gives us an infinite set M ⊆ N and, for each m ∈ M , a satisfiable

k-CNF formula Fm on m variables for which the claimed hardness result holds. By a
simple tweaking of the construction, we can ensure that M is “reasonably dense”, meaning
that there is some m∗ ∈ M ∩ [m − logm,m] for all sufficiently large m. We then let
Fm∗ be Fm, plus m − m∗ dummy variables. The success probability is then at most
2−m∗(1−2(1+ε)/k) ≤ poly(m)2−m(1−2(1+ε)/k). We leave the details to the reader. J
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3 All You Need to Know About PPSZ: Proof of Theorem 6

We will explain the connection between PPSZ and width-bounded resolution lower bounds.
After this section, the reader can forget everything about PPSZ and think of this paper as
proving a certain resolution width lower bound. If C = (C ′∨x) and D = (D′∨ x̄) are clauses,
then (C ′ ∨D′) is called the resolvent of C and D. It is clear that C ∧D logically implies
C ′ ∨D′. Let Φ be a CNF formula. A resolution derivation from Φ is a sequence of clauses
C1, . . . , Ct such that every Ci is (1) a clause of Φ or (2) the resolvent of two earlier clauses.
The width of the derivation is max1≤i≤t |Ci|. For a clause C, we denote by width(Φ ` C) the
minimum width of a resolution derivation from Φ that contains C. Resolution is complete
for refutations, that is, Φ is unsatisfiable if and only if there is a derivation of the empty
clause, denoted by �, from Φ.

Proof of Theorem 6. Let G,H,ϕ be as in Theorem 6, and let Φ := TseitinBridge(G,H,ϕ).
The only satisfying assignment of Φ is 0. Consider a variant of PPSZ run on Φ such that
whenever it has to pick a random value for a variable, it correctly sets it to 0. Fix a
permutation π. Let Y (π) be the set of variables for which this variant of PPSZ under π could
not derive the value using Rw, and let Z(π) := var(Φ) \ Y (π) be the rest, i.e., all variables
whose value can be derived using Rw once all variables before them in π are set to 0. It is not
difficult to see that the success probability of the actual PPSZ on Φ is exactly Eπ

[
2−|Y (π)|].

Suppose, for the sake of contradiction, that PPSZ using heuristic Rw has success probab-
ility greater than 2−m+(1+ε)n. Then there is some π for which Z(π) ≥ (1 + ε)n. Fix this π
and set Z := Z(π) and Y := Y (π). The set of variables Z corresponds to a set F of edges,
F = {e ∈ E(G) : xe ∈ Z}. Set G′ = (V, F ). Note that G′ has n vertices and at least
(1 + ε)n edges. Setting a variable in Φ to 0 corresponds to simply deleting the corresponding
edge in G, and therefore

Φ|Y 7→0 = TseitinBridge(G′, H, ϕ) .

For a graph G = (V,E) and a set X ⊆ V , define the edge boundary ∂(X) := {e ∈ E :
|e∩X| = 1}. Call G an (a, b)-expander if |∂(X)| ≥ b for all sets X of exactly a vertices. The
next lemma is basically Lemma 17 from [9], adapted for our purposes. We give a proof for
completeness.

I Lemma 7. Let ε > 0 and let G′ be a graph on n vertices with at least (1 + ε)n edges. Let
` ∈ N and h = `/ε. If h < girth(G′) then G′ contains a non-empty subgraph G′′ that has
minimum degree at least 2 and is an (h, `+ 1)-expander,

Proof. Start with G′′ = G′. If G′′ has a vertex of degree 0 or 1, delete it. If G′′ contains a
set X of h vertices with |∂(X)| ≤ `, delete X from G′′, along with all incident edges.

The first type of deletion removes one vertex and at most one edge. The second type
removes exactly h vertices. There are at most ` edges in the boundary of X; since |X| <
girth(G′), the graph G′′[X] is a forest, and thus there are at most h − 1 edges within X.
Thus, removing X removes at most `+ h− 1 < (1 + ε)h edges.

We see that a step that removes a vertices removes fewer than (1 + ε)a edges. Suppose
the process terminates with t vertices deleted. Trivially t ≤ n. Fewer than (1 + ε)n edges
have been deleted, so G′′ is non-empty. J
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Let G′′ be given by Lemma 7 with ` := w+1. We will further restrict Φ so that only edges
of G′′ remain unset. Let F ′′ := E(G) \ E(G′′), Y ′′ := {xe : e ∈ F ′′}, and Φ′′ := Φ|Y ′′ 7→0.
Note that Φ′′ = TseitinBridge(G′′, H, ϕ). Recall that all edges of G′′ are mentioned in Z and
since Y ′′ ⊇ Y and restricting additional variables cannot increase the resolution width, we
conclude that there exists e ∈ E(G′′) such that

width(Φ′′ ` x̄e) ≤ w. (3)

Towards a contradiction, we claim that in fact this resolution width is large for all variables
xe where e ∈ E(G′′). Indeed, we have the following theorem:

I Theorem 8 (Resolution Lower Bound). Let G be a graph of minimum degree 2 that is an
(h, `+ 1)-expander. Suppose there is a locally injective homomorphism ϕ : G→ H into some
graph H. Then

width(TseitinBridge(G,H,ϕ) ` x̄e) > `− 1 , (4)

for all edges e of G, provided that 2h`+ 5h+ ` < girth(H).

Note that G′′ has minimum degree 2 and is a (h, ` + 1)-expander for ` = w + 1 and
h = w+1

ε . Also note that ϕ : V (G′′) → V (H) (or rather, the restriction of ϕ to V (G′′))

is still a locally injective homomorphism. Recall that w =
√

ε·girth(H)
2 − 3 and hence

2h`+ 5h+ ` = 2(w + 1)2/ε+ 5(w + 1)/ε+w + 1 < girth(H), and thus Theorem 8 applies to
G′′. This contradicts (3) and finishes the proof of Theorem 6. J

4 Proof of Theorem 8

Let Φ = TseitinBridge(G,H,ϕ) and let e∗ be an edge of G. We will show that width(Φ `
x̄e∗) > `− 1 for all such edges e∗. In fact, we will prove width(Φ|xe∗ 7→1 ` �) > `− 1, which
is a slightly stronger statement.

We will use the game characterization of resolution width due to Atserias and Dalmau [2].
Given a CNF formula F , the `-bounded Atserias-Dalmau game played by two players, Prover
and Delayer is defined as follows. A position in this game is a partial assignment α setting
up to ` variables. The start position is the empty assignment. At position α, Prover can
either (1) forget some variables, i.e., replace α by some β ⊂ α. Or, (2), if |var(α)| ≤ `− 1,
pick a variable x 6∈ var(α) and query it; Delayer has to respond with a truth value b ∈ {0, 1},
and α is updated to α ∪ (x 7→ b). The game ends if α violates a clause of F , in which case
Prover wins. Delayer wins if she has a strategy to play indefinitely.

I Theorem 9 (Atserias and Dalmau [2]). Let F be an unsatisfiable CNF formula. If Delayer
has a winning strategy for the `+1-bounded game then there is no width-` resolution refutation
of F .

To show that width(Φ|xe∗ 7→1 ` �) > `− 1 we define a winning strategy for Delayer for
the `-bounded game that ensures she never loses. Indeed, we will modify the game a bit: it is
now played on Φ instead of Φ|xe∗ 7→1; the starting position is the partial assignment xe∗ 7→ 1;
Prover can never forget xe∗ but is now allowed partial assignments up to size `+ 1. That is,
he can query a new variable provided |var(α)| ≤ `. It is easy to see that if Delayer wins this
modified game, she wins the original one, too. Since Φ = TseitinBridge(G,H,ϕ), we can
easily rephrase the rules of the game in terms of sets of edges instead of partial assignments:
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The Atserias-Dalmau, Graph View. A position of the game is described by two
disjoint set F0, F1 ⊆ E(G). F0 and F1 correspond to the variables of Φ that the
current partial assignment sets to 0 and 1, respectively. The start position is F0 = ∅
and F1 = {e∗}.

In every step, Prover either (1) removes one edge e from F0 or F1 (but never
removes e∗). Or (2) he queries an edge e ∈ E(G) \ (F0 ∪ F1), provided |F0|+ |F1| ≤ `.
Delayer can then decide whether to add e to F0 or F1.

Prover wins if there is a vertex u in G such that all edges incident to u are in F0∪F1
but degF1(u) is odd (then the partial assignment α violates the Tseitin constraint of
u); or if there are two edges e, f ∈ F1 with ϕ(e) = ϕ(f) (then α violates a bridge
constraint).

We will now describe a winning strategy for Delayer. Throughout the game, she maintains
a set F̃1 such that F1 ⊆ F̃1 ⊆ E \ F0. Let V (F̃1) denote the set of vertices incident to at
least one edge of F̃1. She makes sure F̃1 satisfies certain invariants:
1. Every connected component of (V, F̃1) is a path; a path of positive length (i.e., a path

that is not an isolated vertex) is called an F̃1-path.
2. Every F̃1-path contains at least one edge of F1.
3. ϕ is injective on V (F̃1).
4. Each F̃1-path has length at least 2h+ 1, and the first and last h edges of every F̃1-path

are not in F1.
5. Each F̃1-path has length at most 2h`+ 2h+ `.

I Observation 10. If F̃1 satisfies the invariants, then no constraint is violated.

Proof. In fact we show that invariants 1-4 already give the result. First, consider a Tseitin
constraint of a vertex u. Since F̃1 consists of disjoint paths, so does F1. Thus, u is incident
to 0, 1, or 2 edges of F1. If it is incident to 0 or 2 edges of F1, the Tseitin constraint of u
is clearly not falsified. If it is incident to exactly one edge of F1, then it is the endpoint of
some path of F1-edges. By Invariant 4, u is incident to some other edge f ∈ F̃1 \ F1. Thus,
f is neither in F0 nor in F1, and the Tseitin constraint of u is not violated.

Next, consider a bridge constraint (x̄e ∨ x̄f ). By construction we have ϕ(e) = ϕ(f). By
Invariant 3, ϕ is injective on F̃1, and thus e, f cannot both be in F1, and the bridge constraint
is not violated. J

We will use the following property of ϕ.

I Proposition 11. Let G′ be a connected subgraph of G of diameter less than girth(H). Then
ϕ is injective on V (G′), and thus ϕ(G′) is isomorphic to G′.

Proof. For the sake of contradiction, suppose u, v ∈ V (G′) are two vertices with ϕ(u) = ϕ(v).
Let p be a shortest path from u to v in G′. Write p as u = u0, u1, . . . , ut = v. By assumption,
t < girth(H). Under ϕ, the path p is mapped to a reduced walk in H, reduced meaning that
ϕ(ui−1) 6= ϕ(ui+1) for all 1 ≤ i ≤ t− 1. Since ϕ(u) = ϕ(v), this is a closed walk and thus
contains a cycle. The cycle has length at most t < girth(H), a contradiction. J

How to initialize F̃1. Delayer can easily initialize F̃1. Write e∗ = {u∗, v∗}. Since G has
minimum degree 2, Delayer can start a reduced walk from u∗ of length h, and also from v∗

and add this to F̃1. Since 2h+ 1 < girth(H), this is a path; by Proposition 11, ϕ is injective
on its vertices.
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How to handle a Forget Step. Suppose Prover forgets some edge e ∈ F0 ∪ F1. If e ∈ F0,
Delayer leaves F̃1 unchanged. If e ∈ F1, let p be the F̃1-path containing e. If p contains some
other F1-edge besides e, Delayer does not change F̃1; otherwise it simply removes all of p
from F̃1. All invariants stay satisfied.

How to handle a Query from Prover. Suppose Prover queries an edge e. Delayer has now
to choose whether to include e into F0 or F1, and potentially update F̃1

Case 1: e is not in F̃1. Then Delayer adds e to F0 and leaves F̃1 unchanged. All invariants
still hold. This includes the case that e is incident to some vertex on a F̃1-path, but is not
itself inside this path.

Case 2: e is in some F̃1-path p but not among its first or last h edges. Delayer adds e
to F1 and leaves F̃1 unchanged. All invariants still hold.

Case 3: e is among the first or last h edges of some F̃1-path p. Let v1, . . . , vh+1 be the
first h + 1 vertices of p, and let q denote the length-h-path v1, . . . , vh+1. By assumption,
e lies on the path q. Since G is an (h, ` + 1)-expander, there are edges f1, . . . , f`+1, each
incident to exactly one vertex in {v1, . . . , vh}. One of those edges could be {vh, vh+1}, but
without loss of generality, for 1 ≤ i ≤ `, edge fi connects some ai ∈ {v1, . . . , vh} to some
bi outside {v1, . . . , vh+1}. Since G has minimum degree 2 and girth larger than h, we can
find paths p1, . . . , p` such that each pi has length h and starts with ai as its first and bi
as its second vertex. Since 3h < girth(H) ≤ girth(G), the pi are vertex-disjoint. Since
h+ |p| ≤ h+ 2h`+ 2h+ ` < girth(H) ≤ girth(G), the path pi intersects p only in vertex ai.
Thus, C := p ∪ p1 ∪ · · · ∪ p` is a tree, and its diameter is at most h + 2h` + 2h + `. This
figure shows how C could look like:

e
v1

v2

v3

v3 vh

p1
p3

pi
p`

the F̃1-path p

vh+1

f1

f2

f3

fi f`

p2

Call pi blocked by F0 if it contains some edge from F0; at most |F0| of the ` paths are
blocked by F0. Let p′ be an F̃1-path different from p. We say p′ blocks pi if the vertex sets
of ϕ(p′) and ϕ(pi) intersect.

I Proposition 12. Let path p′ in F̃1 be different from p. Then p′ blocks at most one of the
paths p1, . . . , p`.

Proof. Let C = p∪ p1 ∪ · · · ∪ p`. As argued above, this is a tree in G and its diameter is less
than girth(H). By Proposition 11, its image ϕ(C) is a tree in H, isomorphic to C. Suppose,
for the sake of contradiction, that ϕ(p′) intersects ϕ(pi) and ϕ(pj). This scenario would look
like this:
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ϕ(pi) ϕ(pj)

ϕ(p)

ϕ(vh+1)ϕ(v1)

ϕ(p′)

Since ϕ(p′) and ϕ(p) do not share any vertex (by Invariant 3), the subgraph ϕ(p′) ∪ ϕ(pi) ∪
ϕ(pj)∪ϕ(p) contains a cycle. This cycle has size at most |p′|+|pi|+|pj |+|q| ≤ 2h`+2h+`+3h,
a contradiction. J

Call pi blocked by F̃1 if there is some F̃1-path different from p that blocks pi. By
Proposition 12, at most |F1| − 1 paths pi are blocked by F̃1. Thus, a total of at most
|F0|+ |F1| − 1 ≤ `− 1 of the paths pi are blocked by F0 or F̃1. Thus, there exists some path
pi, 1 ≤ i ≤ `, that is not blocked. We now modify p by removing the edges on the path
v1, v2, . . . , ai and adding pi. Let p̂ denote the new version of p and F̂1 the new version of F̃1.
Note that F1 ⊆ F̂1 still holds, since we only modify the set F̃1 \ F1. Obviously, F̂ satisfies
Invariants 1, 2, and 4. Since pi is not blocked by F0, F̂ is disjoint from F0; because pi is not
blocked by F̃1, Invariant 3 still holds. Invariant 5 might be violated: p̂ might be too long.
We will deal with this in a minute.

Note that e is now either outside F̂1, and Delayer can include it into F0; or it is inside p̂,
but then it is not among the first or last h edges of p̂, and Delayer can include it into F1.

It remains to address the possibility that p̂ is too long, violating Invariant 5. If indeed p̂
has more than 2h`+ 2h+ ` edges, then it must somewhere contain 2h+ 1 consecutive edges
that are not in F1 (note that |F1| ≤ `). Let e0, . . . , e2h be these edges. Define F̂1 := F̃1 \{eh}.
That is, we split p̂ into two parts, the first ending in e0, . . . , eh−1, the second starting with
eh+1, . . . , e2h. Note that this satisfies Invariant 4. If one of these paths contains no edge
from F1 at all, we delete it from F̂ . We continue this process until all paths in F̂ have size
at most 2h`+ 2h+ `. The final F̂ satisfies all invariants.

5 Conclusion

We constructed close to tight hard instances for the PPSZ algorithm which uses bounded
width resolution to derive values and showed that the savings can be at most (1+ε)2

k . Several
questions of various levels interest remain open. The first one is to obtain Super Strong ETH
hard instance for resolution of larger width, ideally as close to m/ log(m) as possible. Even
for the weak heuristic, the hard instances from [9] hold for subformulas of size up to mO(1).
The next problem is determining the precise constant in the savings of PPSZ.
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A Existence of Common Lift

I Theorem 13 (Angluin and Gardiner [1]). Let G and H be k-regular graphs. Then there
exists a k-regular graph L that is a common lift of both G and H. Furthermore, |V (L)| ≤
4|V (G)| · |V (H)|.

Proof. Suppose first that both G = (U,E) and H = (V, F ) are bipartite. By Hall’s Theorem,
each has a perfect matching, and in fact, we can partition E and F into k perfect matchings
each: E = E1 ] · · · ] Ek and F = F1 ] · · · ] Fk. The common lift L has vertex set U × V
and edge set

k⋃
i=1

{
{(u, v), (u′, v′)} ∈

(
U × V

2

)
| {u, u′} ∈ Ei, {v, v′} ∈ Fi

}
.

It is not difficult to see that the projections ϕG : (u, v) 7→ u and ϕH(u, v) 7→ v are locally
bijective homomorphisms from L into G and H, respectively.
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If G (or H or both) fails to be bipartite, we first replace it by its 2-lift G2. The vertex
set of G2 is U × {0, 1}, and we form its edge set by creating, for each {u, v} ∈ E, two edges
{(u, 0), (v, 1)} and {(u, 1), (v, 0)}. The graph G2 is bipartite, and projection to the first
coordinate is a locally bijective homomorphism. Finally, observe that the composition of
locally bijective homomorphisms is again a locally bijective homomorphism. Altogether, we
can replace G and H by their respective 2-lifts G2 and H2; these are bipartite graphs, so we
find a common lift L on 4|U | · |V | vertices. J
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Abstract
We initiate a study of the classification of approximation complexity of the eight-vertex model
defined over 4-regular graphs. The eight-vertex model, together with its special case the six-vertex
model, is one of the most extensively studied models in statistical physics, and can be stated as a
problem of counting weighted orientations in graph theory. Our result concerns the approximability
of the partition function on all 4-regular graphs, classified according to the parameters of the model.
Our complexity results conform to the phase transition phenomenon from physics.

We introduce a quantum decomposition of the eight-vertex model and prove a set of closure
properties in various regions of the parameter space. Furthermore, we show that there are extra
closure properties on 4-regular planar graphs. These regions of the parameter space are concordant
with the phase transition threshold. Using these closure properties, we derive polynomial time
approximation algorithms via Markov chain Monte Carlo. We also show that the eight-vertex model
is NP-hard to approximate on the other side of the phase transition threshold.
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1 Introduction

The eight-vertex model is one of the most important vertex models in statistical physics [2].
Given a 4-regular graph G, an even orientation assigns a direction to every edge such that the
number of arrows into (and out of) each vertex is even. In the unweighted case, the problem
is to count the number of even orientations of G, and this is computable in polynomial
time. In general there are weights associated with local configurations, and the problem is to
compute a weighted sum called the partition function. This becomes a challenging problem,
and the complexity picture becomes more intricate [6].
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1 2 3 4 5 6 7 8

Figure 1 Valid configurations of the eight-vertex model.

In physics, the eight-vertex model is defined on a square lattice region where each vertex
of the lattice is connected by an edge to four nearest neighbors, with eight permitted local
configurations (see Figure 1). They are associated with eight possible weights w1, . . . , w8. In
physics, it is typically assumed that the weight is unchanged if all arrows are flipped. In this
case we write w1 = w2 = a, w3 = w4 = b, w5 = w6 = c, and w7 = w8 = d. This is called
arrow reversal symmetry. In this paper, we make this assumption and further assume that
a, b, c, d ≥ 0, as in classical physics. Given a 4-regular graph G, we label four incident edges
of each vertex from 1 to 4. The partition function of the eight-vertex model with parameters
(a, b, c, d) on G is defined as

Z(G) = Z(G; a, b, c, d) =
∑

τ∈Oe(G)

an1+n2bn3+n4cn5+n6dn7+n8 , (1)

where Oe(G) is the set of all even orientations of G, and ni is the number of vertices in type
i in G (1 ≤ i ≤ 8, locally depicted as in Figure 1) under τ ∈ Oe(G). The famous six-vertex
model is the special case d = 0, i.e., only Figure 1-1 to Figure 1-6 are allowed. In this case,
states are Eulerian orientations. Further special cases include the ice (a = b = c), KDP, and
Rys F models. On the square lattice some other important models such as the dimer and
zero-field Ising models can be reduced to it [2]. By any metric, these are among the most
studied models in statistical physics.

As the problem is to compute the partition function Z(G), naturally one should study its
computational complexity. For the exact complexity, a dichotomy has been proved [6]. For
most parameters, the problem is #P-hard. Regarding approximate complexity, to our best
knowledge, there is only one previous result in this regard due to Greenberg and Randall [15].
They showed that on square lattice regions a specific Markov chain is torpidly mixing when
d is large. It means that when sinks and sources have large weights, this particular chain
cannot be used to approximately sample eight-vertex configurations on the square lattice
according to the Gibbs measure.

In this paper we initiate a study toward a classification of the approximate complexity of
Z(G) on 4-regular graphs. Our results conform to the order-disorder phase transitions of the
eight-vertex model in physics. (See the book [2] for more details; the full paper gives a brief
description.)

To state our theorems and proofs, we adopt the following notations, for a, b, c, d ∈ R+.
F≤2 := {(a, b, c, d) | a2 ≤ b2 + c2 + d2, b2 ≤ a2 + c2 + d2, c2 ≤ a2 + b2 + d2, d2 ≤
a2 + b2 + c2};
F> := {(a, b, c, d) | a > b + c + d or b > a + c + d or c > a + b + d or d >

a+ b+ c where at least two of a, b, c, d > 0};
A≤ := {(a, b, c, d) | a+d ≤ b+c}, B≤ := {(a, b, c, d) | b+d ≤ a+c}, C≤ := {(a, b, c, d) | c+
d ≤ a+ b}, C≥ := {(a, b, c, d) | c+ d ≥ a+ b}, C= := {(a, b, c, d) | c+ d = a+ b}.

I Remark 1.1. We have F≤2 ⊂ F>, and A≤
⋂
B≤
⋂
C≤ ⊂ F>. Clearly C= = C≤

⋂
C≥. But

A≤
⋂
B≤
⋂
C≥ 6⊆ F>.
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I Theorem 1.2. There is an FPRAS∗ for Z(a, b, c, d) if (a, b, c, d) ∈ F≤2
⋂
A≤

⋂
B≤
⋂
C≤;

there is no FPRAS for Z(a, b, c, d) if (a, b, c, d) ∈ F> unless RP = NP. In addition, for
planar graphs there is an FPRAS for Z(a, b, c, d) if (a, b, c, d) ∈ F≤2

⋂
A≤

⋂
B≤
⋂
C≥.

I Remark 1.3. The results in Theorem 1.2 are the first classification results for the approximate
complexity of the eight-vertex model on general and planar 4-regular graphs, and they conform
to phase transition in physics. After this work was done [10], the first two authors made
a connection of the approximate complexity of the eight-vertex model to that of counting
perfect matchings on general graphs (#PM) [8], a central open problem in this field. It was
proved in [8] that approximating Z(a, b, c, d) on general 4-regular graphs can be reduced
to approximating #PM if (a, b, c, d) ∈ F≤2 and is at least as hard as approximating #PM
if (a, b, c, d) 6∈ A≤

⋂
B≤
⋂
C≤. The #PM-hardness result was proved by expressing the

eight-vertex model partition function in the Holant framework and utilizing holographic
transformations. At the end of this section we briefly describe the connection to Holant
problems and a major motivation to study the complexity of the eight-vertex model, as part
of the classification program of counting problems, quite apart from historical motivations in
statistical physics.

I Remark 1.4. The relationship of the regions denoted by F≤2 , F>, A≤, B≤, C≤, C≥, and C=
may not be easy to visualize, since they reside in 4-dimensional space. See Figure 2 (where we
normalize d = 1)†. The roles of a, b, c, and d are not symmetric. In particular, d is the weight
of sinks and sources and has a special role (e.g. see [15]). If (a, b, c, d) ∈ A≤

⋂
B≤
⋂
C≤ then

d ≤ a, b, c. Surprisingly, by Theorem 1.2 FPRAS can still exist for planar graphs even when
sinks/sources have large weights.

(a) The four corner regions constitute F>. The non-
corner region depicted is F≤2

⋂
A≤
⋂
B≤
⋂
C≤.

(b) An extra region that admits FPRAS on planar
graphs.

Figure 2 Regions of known complexity in the eight- vertex model.

To get these FPRAS, our most important contribution is a set of closure properties. See
Section 2. We then use these closure properties to show that a Markov chain designed for
the six-vertex model can be adapted to provide our FPRAS. The Markov chain we adapt
is the directed-loop algorithm invented by Rahman and Stillinger [21]. The state space of

∗ Suppose f : Σ∗ → R is a function mapping problem instances to real numbers. A fully polynomial
randomized approximation scheme (FPRAS) [19] for a problem is a randomized algorithm that takes
as input an instance x and ε > 0, running in time polynomial in n (the input length) and ε−1, and
outputs a number Y (a random variable) such that Pr [(1− ε)f(x) ≤ Y ≤ (1 + ε)f(x)] ≥ 3

4 .† Some 3D renderings of the parameter space can be found at https://skfb.ly/6C9LE and https:
//skfb.ly/6C9MS.
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our Markov chain for the eight-vertex model consists of even orientations and near-even
orientations, which is an extension of the space of valid configurations; the transitions of this
algorithm are composed of creating, shifting, and merging of two “defective” edges.

This leads to a Markov chain Monte Carlo approximate counting algorithm by sampling.
To prove that this is an FPRAS, we show that (1) the above Markov chain is rapidly
mixing via a conductance argument [17, 12, 22, 16], (2) the valid configurations take a
non-negligible proportion in the state space, and (3) there is a (not totally obvious) self-
reduction (to reduce the computation of the partition function of a graph to that of a “smaller”
graph) [18]. All three parts depend on the closure properties. Specifically, we show that
when (a, b, c, d) ∈ F≤2 , the conductance of the Markov chain can be polynomially bounded
if the ratio of near-even orientations over even orientations can be polynomially bounded;
when (a, b, c, d) ∈ A≤

⋂
B≤
⋂
C≤, this ratio is indeed polynomially bounded according to

the closure properties. Finally a self-reduction whose success in A≤
⋂
B≤
⋂
C≤ requires an

additional closure property. Therefore, there is an FPRAS in the intersection of F≤2 and
A≤

⋂
B≤
⋂
C≤ which is in the disordered phase.

A 4-ary construction is a 4-regular graph Γ with four “dangling” edges. This defines
a constraint function of arity 4. In Theorem 2.2 we show that the set of 4-ary constraint
functions in A≤

⋂
B≤
⋂
C≤ is closed under 4-ary constructions. This is achieved by inventing

a “quantum decomposition” of even-orientations. To define this, given an even orientation,
a plus pairing groups the four edges around a vertex into two pairs such that both pairs
satisfy “1-in-1-out”; a minus pairing groups the four edges around a vertex into two pairs
such that both pairs independently satisfy either “2-in” or “2-out”. With weights, this leads
to a weighted sum of 3|V | “annotated” circuit partitions. (Details are in Section 2‡.)

We use these tools to derive our FPRAS. Surprisingly, for planar graphs in the eight-vertex
model we can show an additional region where FPRAS exists (also in the disordered phase).
For planar graphs, in Theorem 2.3 we show that the extra regions A≤

⋂
B≤
⋂
C≥
⋂
F> and

A≤
⋂
B≤
⋂
C= also enjoy closure properties. This leads to an FPRAS on planar graphs

when the parameter setting is in the intersection of A≤
⋂
B≤
⋂
C≥
⋂
F> and F≤2 . And

since F≤2 ⊂ F>, combined with the FPRAS on general graphs, we get an FPRAS for
F≤2

⋂
A≤

⋂
B≤ for all planar graphs. Considering the fact that the exact complexity for the

eight-vertex model on planar graphs is not even understood, this is one of the very few cases
where research on approximate complexity has advanced beyond that on exact complexity.

The NP-hardness of approximation in the whole ordered phases is shown by reductions
from the problem of computing the maximum cut on a 3-regular graph. For the eight-vertex
models not included in the six-vertex model (d 6= 0), both the reduction source and the
“gadgets” we employ to prove the hardness are substantially different from those used in the
hardness proof of the six-vertex model [9]. We note that the parameter settings in [15] where
torpid mixing is proved are contained in our NP-hardness region.

In addition to the complexity result, we show that there is a fundamental difference
in the behavior on the two sides separated by the phase transition threshold, in terms of
closure properties. In Theorem 2.2, we show that the set of 4-ary constraint functions lying
in the complement of F> is closed under 4-ary constructions. We prove in this paper that
approximation is hard on F>. It is not known if the eight-vertex model in the full region of
F> admits FPRAS or not.

‡ We use the term “quantum” is emphasize that these are linear combinations, or superpositions, of
objects called annotated circuit partitions. There are similarities to holographic transformations, where
cancellations occur in the analysis. However, currently we do not have any direct link to quantum
computing.
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Aside from statistical physics, perhaps a more direct link of the study of partition
functions of the eight-vertex model and complexity theory is the classification program of
counting problems [4]. The eight-vertex model fits into the wider class of Holant problems.
Holant problems are a broad class of counting problems that are more general and expressive
than counting constraint satisfaction problems [14, 7], for which complexity dichotomies
have been proved [3, 13, 11, 5]. Previous complexity dichotomy theorems have achieved a
complete classification for the exact complexity of Holant problems for any set of symmetric
constraint functions [4]. It turns out that the eight-vertex model is the special case of a Holant
problem. In fact, the eight-vertex model can be expressed precisely as a Holant problem in
the orientation setting with a single arity-4 non-symmetric constraint function that satisfies
a parity condition. Under a suitable holographic transformation, it can be expressed as a
Holant problem in a standard form. The worst case complexity of the eight-vertex model
has been proved in [6]. It is hoped that this set of Holant problems serves as a base case
for a future complete worst case complexity classification of Holant problems. The results
in this paper are instead on the approximate complexity of the eight-vertex model, and
are technically distinct. But a major motivation comes from the classification program on
counting problems.

Previous results in approximate counting are mostly about spin systems. The present
paper, together with [9], is probably the first fruitful attempt in the Holant literature to
make connections to phase transitions. While there is still a gap in the complexity picture
for the six-vertex and eight-vertex models, we believe the framework set in this paper gives
a starting point for studying the approximate complexity of a broader class of counting
problems.

2 Closure Properties

We introduce a “quantum decomposition” for the eight-vertex model, in which every configu-
ration on G is expressed as a “superposition” of 3|V | annotated circuit partitions.

Let v be a vertex of G, and e1, e2, e3, e4 the four labeled edges incident to v. A pairing %
at v is a partition of {e1, e2, e3, e4} into two pairs. There are exactly three distinct pairings
at v (Figure 3) which we denote by three special symbols: , , , respectively. A circuit
partition of G is a partition of the edges of G into edge-disjoint circuits (in such a circuit
vertices may repeat but edges may not). It is in 1-1 correspondence with a family of pairings
ϕ = {%v}v∈V , where %v ∈ { , , } is a pairing at v—once the pairing at each vertex is
fixed, then the two edges paired together at each vertex is also adjacent in the same circuit.

(a) (b) (c)

Figure 3 (Unsigned) pairings at a degree 4 vertex.

A signed pairing %v at v is a pairing with a sign, either plus (+) or minus (−). We denote
a signed pairing by %+ or %− if the pairing is % and the sign is plus or minus, respectively.
An annotated circuit partition of G, or acp for short, is a circuit partition of G together with
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a map V → {+,−} such that along every circuit one encounters an even number of − (a
repeat vertex with − counts twice on the circuit). Thus, it is in 1-1 correspondence with
a family of signed pairings for all v ∈ V , with the restriction that there is an even number
of − along each circuit. Each circuit C in an acp has exactly two directed states – starting
at an arbitrary edge in C with one of the two orientations on this edge, one can uniquely
orient every edge in C such that for every vertex v on C, two edges incident at v paired up
by + have consistent orientations at v (i.e., they form “1-in-1-out” at v), whereas two edges
paired up by − have contrary orientations at v (i.e., they form “2-in” or “2-out” at v). These
two directed states of C are well-defined because cyclically the direction of edges along C
changes an even number of times, precisely at the minus signs. A directed annotated circuit
partition (dacp) is an acp with each circuit in a directed state. If an acp has k circuits, then
it defines 2k dacp’s.

Next we describe an association between even orientations and acp’s as well as dacp’s.
Given an even orientation τ of G, every local configuration of τ at a vertex defines exactly
three signed pairings at this vertex according to Table 1. Note that, given τ and a pairing at
a vertex v, the two pairs have either both consistent or both contrary orientations. Thus the
same sign, + or −, works for both pairs, although this depends on the pairing at v.

Table 1 Map from eight local configurations to signed pairings.

Configurations Weight Sign

a - + +

b + - +

c + + -

d - - -

In this way, every even orientation τ defines 3|V | acp’s, denoted by Φ(τ). See Table 2
and Table 3 for two examples. Moreover, for any acp ϕ ∈ Φ(τ), every circuit in ϕ is in one
of the two well-defined directed states under the orientation τ . Thus each even orientation τ
defines 3|V | dacp’s.

Conversely, for any dacp, if we ignore the signs at all vertices we get a valid even
orientation (because each sign applies to both pairs). If a dacp comes from Φ(τ) then we get
back the even orientation τ . Therefore, the association from even orientations to dacp’s is
1-to-3|V |, non-overlapping, and surjective. For every vertex v with the constraint function
parameters (a, b, c, d), we define a local weight function w that assigns a local weight to the
six signed pairings at v, such that

a=w( −)+w( +)+w( +)
b=w( +)+w( −)+w( +)
c=w( +)+w( +)+w( −)
d=w( −)+w( −)+w( −)

. (2)
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Table 2 An even orientation and its quantum decomposition into acp’s.

τ Φ(τ)

Table 3 Another even orientation and its quantum decomposition into acp’s.

τ Φ(τ)

Note that for any a, b, c, d this is a linear system of rank 4 in six variables, and there is a
solution space of dimension 2 (Lemma 2.5 discusses this freedom). Define the weight w̃(ϕ) of
an annotated circuit partition ϕ, either undirected (acp) or directed (dacp), be the product
of weights at each vertex. Then the weight of an eight-vertex model configuration τ is equal
to
∑
ϕ∈Φ(τ) w̃(ϕ). This is obtained by writing a term in the summation in (1), which is a

product of sums by (2), as a sum of products. Note that a single acp has the same weight
when it becomes directed regardless which directed state the dacp is in.

We will illustrate the above in detail by the examples in Table 2 and Table 3. We assume
the same constraint (a, b, c, d) is applied at u and v. The orientation at one vertex determines
the other in this graph G. There are a total 8 valid configurations, 4 of which are total
reversals of the other 4. Z(G) = 2[a2 + b2 + c2 + d2]. When we expand Z(G) using (2) we
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4:8 Approximability of the Eight-Vertex Model

get a total of 72 terms. These correspond to 72 dacp’s. There are 9 ways to assign a pairing
at u and at v. If we consider the configuration in Table 2, these 9 ways are listed under Φ(τ),
where the local orientation also determines a sign ± at both u and v. These are 9 acp’s
(without direction). (Here we take the view of decomposing an orientation into acp’s rather
than dacp’s to illustrate the idea of quantum decomposition which will be exploited later in
proofs.) For each acp ϕ, the weight w̃(ϕ) is defined (without referring to the dacp, or the
state of orientation on these circuits). Three of the acp’s (in the diagonal positions) define
two distinct circuits while the other six define one circuit each. For each 2-tuple of pairings
(ρu, ρv) that results in two circuits, the only valid annotations assign (+,+) or (−,−) at
(u, v), giving a total of 6 acp’s. And since each has two circuits, there are a total of 24 dacp’s.
For the other six (off-diagonal) 2-tuples of pairings (ρu, ρv) that results in a single circuit,
each has 4 valid annotations, giving a total of 24 acp’s. But these have only one circuit
and thus give 48 dacp’s. To appreciate the “quantum superpostion” of the decomposition,
note that the same acp that has ( +, +) at (u, v) appears in both decompositions for the
distinct configurations in Table 2 and Table 3§.

I Remark 2.1. While a weight function w satisfying (2) is not unique, there are some regions
of (a, b, c, d) that can be specified directly in terms of w by any weight function w satisfying
(2), and the specification is independent of the choice of the weight function. E.g., the region

F> is specified by


w( +)+w( −)+w( −)≥0
w( −)+w( +)+w( −)≥0
w( −)+w( −)+w( +)≥0
w( +)+w( +)+w( +)≥0

. Also A≤ is specified by w( −) ≤ w( +), B≤

by w( −) ≤ w( +), and C≤ by w( −) ≤ w( +). In Lemma 2.5 (stated later), we will
show that a nonnegative weight function w satisfying (2) exists iff (a, b, c, d) ∈ F>.

(a) (b) (c)

Figure 4 A 4-ary construction in the eight-vertex model.

A 4-ary construction is a 4-regular graph Γ having four “external” edges (Figure 4a),
and a constraint function on each node. It defines a 4-ary constraint function with four
input variables as the partial sum in Z(Γ) with a given assignment on the dangling edges.
If we imagine the graph Γ is shrunken to a single point except the 4 external edges, then
a 4-ary construction can be viewed as a virtual vertex with parameters (a′, b′, c′, d′) in the
eight-vertex model, for some a′, b′, c′, d′ ≥ 0 (satisfying the even orientation rule and arrow
reversal symmetry). A planar 4-ary construction is a 4-regular plane graph with four dangling
edges on the outer face ordered counterclockwise e1, e2, e3, e4.

We say a set of constraint functions S is closed under 4-ary constructions if the constraint
function of any 4-ary construction using functions from S also belongs to S.

§ There is a superficial similarity between the quantum decomposition and skein relations in knot
theory [20]. This remains to be explored further.
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I Theorem 2.2. Constraint function sets F> and A≤
⋂
B≤
⋂
C≤ are closed under 4-ary

constructions.

I Theorem 2.3. Constraint function sets A≤
⋂
B≤
⋂
C≥
⋂
F> and A≤

⋂
B≤
⋂
C= are closed

under 4-ary plane constructions.

A trail & circuit partition (tcp) for a 4-ary construction Γ is a partition of the edges in Γ
into edge-disjoint circuits and exactly two trails (walks with no repeated edges) which end in
the four external edges. An annotated trail & circuit partition (atcp) for Γ is a tcp with a
valid annotation, which assigns an even number of − sign along each circuit. Like circuits,
each trail in an atcp has exactly two directed states. If an atcp ϕ has k circuits (and 2 trails),
then ϕ defines 2k+2 directed annotated trail & circuit partitions (datcp). The weight w̃(ϕ) of
an annotated trail & circuit partition ϕ, either an atcp or datcp, can be similarly defined.
Again set the weight function as in (2).

For each dangling edge ei (1 ≤ i ≤ 4) of Γ, let us describe the state of ei by 0 (or 1) if it
is coming into (respectively going out of) Γ. Denote the constraint function of Γ by f and
consider f(0011). Under the eight-vertex model, if a configuration τ of the 4-ary construction
with constraint function f has a nonzero contribution to f(0011), it has e1, e2 coming in and
e3, e4 going out. The contribution by τ is a weighted sum over a set Φ0011(τ) of datcp. Each
datcp in Φ0011(τ) is captured in exactly one of the following three types, according to how
e1, e2, e3, e4 are connected by the two trails:
(1) { e1−→ 2 e2←−, e3←− 2 e4−→} and on both trails the numbers of minus pairings are odd; or
(2) { e1−→ 2 e4−→, e2−→ 2 e3−→} and on both trails the numbers of minus pairings are even

(Figure 4b); or
(3) { e1−→ 2 e3−→, e2−→ 2 e4−→} and on both trails the numbers of minus pairings are even.
Let Φ0011, −

, Φ0011, +
and Φ0011, +

be the subsets of datcp contributing to f(0011) defined
in case (1), (2) and (3) respectively. The value f(0011) is a weighted sum of contributions
according to w̃ from these three disjoint sets. Defining the weight of a set Φ of datcp
by W (Φ) =

∑
ϕ∈Φ w̃(ϕ) yields f(0011) = W (Φ0011, −

) + W (Φ0011, +
) + W (Φ0011, +

).
Similarly we can define Φ1100, −

,Φ1100, +
and Φ1100, +

, and get f(1100) = W (Φ1100, −
)+

W (Φ1100, +
) +W (Φ1100, +

). Note that there is a bijective weight-preserving map between
Φ0011, −

and Φ1100, −
by reversing the direction of every circuit and trail of a datcp.

Thus, W (Φ0011, −
) = W (Φ1100, −

), W (Φ0011, +
) = W (Φ1100, +

), and W (Φ0011, +
) =

W (Φ1100, +
). Consequently f(0011) = f(1100). Similarly we have f(0110) = f(1001),

f(0101) = f(1010) and f(0000) = f(1111). For any pairing %, and for every 4-bit pattern
b1b2b3b4 ∈ {0, 1}4, we can define Φb1b2b3b4,%+ if (both) paired bi 6= bj , and Φb1b2b3b4,%− if
(both) paired bi = bj . We can prove the following and call the common value W ( −):

W (Φ0011, −
) = W (Φ1100, −

) = W (Φ0000, −
) = W (Φ1111, −

).
We can prove 5 other sets of similar equalities, and call them W ( −),W ( −),W ( +),

W ( +), and W ( +). Consequently, f has parameters


a′=W ( −)+W ( +)+W ( +)
b′=W ( +)+W ( −)+W ( +)
c′=W ( +)+W ( +)+W ( −)
d′=W ( −)+W ( −)+W ( −)

.

Proof Sketch for the closure of A≤
⋂
B≤
⋂
C≤. By definition (a, b, c, d) ∈ A≤

⋂
B≤
⋂
C≤

means that
{
a+d≤b+c
b+d≤a+c
c+d≤a+b

. By the weight function w defined in (2) this is equivalent to{
w( +)≥w( −)
w( +)≥w( −)
w( +)≥w( −)

. Since A≤
⋂
B≤
⋂
C≤ ⊂ F>, by Lemma 2.5 (stated later) we can assume w
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4:10 Approximability of the Eight-Vertex Model

is nonnegative. Therefore, we only need to establish
{
W ( +)≥W ( −)
W ( +)≥W ( −)
W ( +)≥W ( −)

. We prove W ( +) ≥

W ( −). Proof for the other two inequalities is symmetric.
An atcp is a tcp together with a valid annotation. Consider the set Ψ of tcp such that

the two (unannotated) trails connect e1 with e2, and e3 with e4. Denote by χ12 (respectively
χ34) the trail in ψ connecting e1 and e2 (respectively e3 and e4). Each tcp ψ ∈ Ψ may have
many valid annotations.

Since Γ is 4-regular, any vertex inside Γ appears exactly twice counting multiplicity in a
tcp ψ. It appears either as a self-intersection point of a trail or a circuit, or alternatively
in exactly two distinct trails/circuits. So when traversed, in total one encounters an even
number of − among all circuits and the two trails in any valid annotation of ψ, and since
one encounters an even number of − along each circuit, the numbers of − along χ12 and χ34
have the same parity. We say a valid annotation of ψ is positive if there is an even number
of − along χ12 (and χ34), and negative otherwise.

To prove W ( +) ≥W ( −), it suffices to prove that for each tcp ψ ∈ Ψ, the total weight
W+ contributed by the set of positive annotations of ψ is at least the total weight W−
contributed by the set of negative annotations of ψ. We prove this nontrivial statement by
induction on the number N of vertices shared by any two distinct circuits in ψ.

Base case: The base case is N = 0. In the base case, we can deal with self-intersections on
trails and circuits easily, so let us assume that no trail or circuit is self-intersecting. Then
every vertex on any circuit C of ψ is shared by C and exactly one trail, χ12 or χ34. Also,
every vertex on χ12 or χ34 is shared with some circuit or the other trail.

We will account for the product values of w(%v) according to how v is shared. We first
consider shared vertices of a circuit C ∈ ψ with the trails. Let s, t ≥ 0 be the numbers
of vertices C shares with χ12 and χ34, respectively. Let xi (1 ≤ i ≤ s) (if s > 0) and
yj (1 ≤ j ≤ t) (if t > 0) be these shared vertices respectively (for s = 0 or t = 0, the
statements below are vacuously true). For any v, if % is the pairing at v according to ψ, then
let w+(v) = w(%+), and w−(v) = w(%−), both at v. In any valid annotation of ψ (either
positive or negative), one encounters an even number of − on the vertices along C, each of
which is shared with exactly one of χ12 and χ34. Hence the number of − in xi (1 ≤ i ≤ s)
has the same parity as the number of − in yj (1 ≤ j ≤ t). Other than having the same parity,
the annotation for xi (1 ≤ i ≤ s) is independent from the annotation for yj (1 ≤ j ≤ t) for a
valid annotation, and from the annotations on other circuits. Let S+(C) (respectively S−(C))
be the sum of products of w(%v) over v ∈ {xi | 1 ≤ i ≤ s}, summed over valid annotations
such that the number of − in xi (1 ≤ i ≤ s) is even (respectively odd). Similarly let T+(C)
(respectively T−(C)) be the corresponding sums for yj (1 ≤ j ≤ t). We have

S+(C)− S−(C) =
s∏
i=1

(w+(xi)− w−(xi)) ≥ 0,

T+(C)− T−(C) =
t∏

j=1
(w+(yj)− w−(yj)) ≥ 0.

Both differences are nonnegative by the hypothesis.
The product S+(C)T+(C) is the sum over all valid annotations of vertices on C such

that the numbers of − on vertices shared by χ12 and C and by χ34 and C are both even.
Similarly S−(C)T−(C) is the sum over all valid annotations of vertices on C such that the
numbers of − on vertices shared by χ12 and C and by χ34 and C are both odd. We have
S+(C)T+(C) ≥ S−(C)T−(C).
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Next we also account for the vertices shared by χ12 and χ34 in ψ. Let p be this number
and if p > 0 let zk (1 ≤ k ≤ p) be these vertices. Let q be the number of circuits in ψ,
denoted by Cl (1 ≤ l ≤ q) (if q > 0). Then we claim that

W+ −W− =
p∏
k=1

(w+(zk)− w−(zk))
q∏
l=1

(S+(Cl)T+(Cl)− S−(Cl)T−(Cl)) ,

and in particular W+ −W− ≥ 0. To prove this claim we only need to expand the product,
and separately collect terms that have a + sign and a − sign. In a product term in the fully
expanded sum, let p′ be the number of −w−(zk), and q′ be the number of −S−(Cl)T−(Cl).
Then a product term has a + sign (and thus included in W+) iff p′ + q′ ≡ 0 (mod 2).

(a) (b) (c)

Figure 5 Possible ways of deleting a vertex. The vertex (not explicitly shown) at the center of
part (a) is removed in part (b) and (c).

Induction step: Suppose v is a shared vertex between two distinct circuits C1 and C2, and
let {e, f, g, h} be its incident edges in Γ. We may assume the pairing %v in ψ is {e, f} and
{g, h}, and thus e, f are in one circuit, say C1, while g, h are in another circuit C2 (Figure 5a).
Define Γ′ to be the 4-ary construction obtained from Γ by deleting v and merging e with
f , and g with h (Figure 5b). Define Γ′′ to be the 4-ary construction obtained from Γ by
deleting v and merging e with h, and f with g (Figure 5c). Note that in Γ′, we have two
circuits C ′1 and C ′2 (each has one fewer vertex v from C1 and C2), but in Γ′′ the two circuits
are merged into one C∗. Define W ′+ and W ′− (respectively W ′′+ and W ′′−) similarly for Γ′
(respectively Γ′′) with tcp being ψ′ = ψ \ {%v}.

We can decompose W+ −W− according to whether the sign on %v is + or −. Recall that
for any valid annotation of ψ, one encounters an even number of − along C1 and C2. If the
sign on %v is +, the number of − along C1 (and C2) at all vertices other than v in any valid
annotation is always even; if the sign on %v is −, this number (for both C1 and C2) is always
odd. W+ −W− can be decomposed into two parts, corresponding to terms with %v being +
or − respectively. All terms of the first (and second) part have a factor w+(v) (and w−(v)
respectively). And so we can write

W+ −W− = w+(v)[W+ −W−]e + w−(v)[W+ −W−]o, (3)

where [W+ −W−]e and [W+ −W−]o collect terms in W+ −W− in the first and second part
respectively, but without the factor at v. However by considering valid annotations for Γ′ we
also have

W ′+ −W ′− = [W+ −W−]e, (4)

because a valid annotation on both C ′1 and C ′2 is equivalent to a valid annotation on both C1
and C2 with v assigned +. Similarly, by considering valid annotations for Γ′′ we also have

W ′′+ −W ′′− = [W+ −W−]e + [W+ −W−]o, (5)
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4:12 Approximability of the Eight-Vertex Model

because depending on whether %v is assigned + or −, a valid annotation on both C1 and C2
gives either both an even or both an odd number of − on C1 \ {v} and C2 \ {v}, which is
equivalent to an even number of − on the merged circuit C∗. From (3,4,5) we have

W+ −W− = (w+(v)− w−(v))(W ′+ −W ′−) + w−(v)(W ′′+ −W ′′−).

By induction, W ′+ ≥W ′− and W ′′+ ≥W ′′−. Since w+(v) ≥ w−(v) is given by hypothesis, we
get W+ ≥W−. J

The proof of planar closures is similar but more intricate, and uses the Jordan Curve
Theorem.

I Lemma 2.4. Suppose x, x′, y, y′, z, z′ ∈ R satisfy the eight inequalities: X + Y + Z ≥ 0
where X ∈ {x, x′}, Y ∈ {y, y′}, Z ∈ {z, z′}. Then there exist nonnegative x̃, x̃′, ỹ, ỹ′, z̃, z̃′
such that all eight sums X + Y + Z are unchanged when x, x′, y, y′, z, z′ are substituted by
the respective values x̃, x̃′, ỹ, ỹ′, z̃, z̃′.

I Lemma 2.5. The parameter setting (a, b, c, d) belongs to F> iff there exists a nonnegative
weight function w satisfying (2).

I Notation. Fix for each vertex v in a 4-regular graph G a weight function w on signed
pairings (satisfying (2) at v). Let Zv(%) be the weighted sum of the set of all dacp’s having
the signed pairing % at v.

I Corollary 2.6. If at each vertex in a 4-regular graph G we have a nonnegative weight
function w such that w ( +) ≥ w ( −), w ( +) ≥ w ( −), and w ( +) ≥ w ( −), then
Zv ( +) ≥ Zv ( −), Zv ( +) ≥ Zv ( −), and Zv ( +) ≥ Zv ( −) at each vertex v in G.

I Corollary 2.7. If at each vertex in a 4-regular plane graph G we have a nonnegative weight
function w such that w ( +) ≥ w ( −), w ( +) ≥ w ( −), and w ( +) ≤ w ( −), then
Zv ( +) ≥ Zv ( −), Zv ( +) ≥ Zv ( −), and Zv ( +) ≤ Zv ( −) at each vertex v in G.

3 FPRAS

I Theorem 3.1. There is an FPRAS for Z(a, b, c, d) if (a, b, c, d) ∈ F≤2
⋂
A≤

⋂
B≤
⋂
C≤.

I Theorem 3.2. There is an FPRAS for Z(a, b, c, d) on planar graphs if (a, b, c, d) ∈
F≤2

⋂
A≤

⋂
B≤
⋂
C≥.

We prove the FPRAS results using the common approach of approximately counting via
almost uniformly sampling [18, 17, 12, 22, 16] by showing that the directed-loop algorithm, a
Markov chain algorithm designed for the six-vertex model¶, can be adapted for the eight-
vertex model. The state space Ω of our Markov chainMC for the eight-vertex model consists
of the set Ω0 of even orientations (e.g. Figure 6a) and the set of near-even orientations with
exactly two “defective” edges (e.g. Figure 6b and Figure 6c), which is an extension of the
space of valid configurations; the transitions of this algorithm are composed of creating (from
Figure 6a to Figure 6b), shifting (between Figure 6b and Figure 6c), and merging (from
Figure 6b to Figure 6a) of the two defects on edges.

I Notation. Let Z(S) be the weighted sum of states in the set S.

¶ The directed-loop algorithm was invented by Rahman and Stillinger [21] and is widely used for the
six-vertex model (e.g., [24, 1, 23]).



J.-Y. Cai, T. Liu, P. Lu, and J. Yu 4:13

(a) (b) (c)

Figure 6 Examples of the states in the directed-loop algorithm.

Proof of Theorem 3.1. It is easy to show that MC is irreducible and aperiodic, and it
satisfies the detailed balance condition under the Gibbs distribution. By the theory of Markov
chains, we have an almost uniform sampler of Ω0 ∪ Ω2. This sampler is efficient ifMC is
rapidly mixing. According to Lemma 3.5, when (a, b, c, d) ∈ F≤2 ,MC is rapidly mixing if
Z(Ω2)
Z(Ω0) is polynomially bounded via a conductance argument [17, 12, 22, 16] in which the paths
between any two states τ1 and τ2 and the amount of flow each of them takes are decided by
a quantum decomposition of the “symmetric difference” τ1 ⊕ τ2. According to Corollary 3.3
(a corollary of the closure property Theorem 2.2), Z(Ω2)

Z(Ω0) is polynomially bounded. As a
consequence, if all the constraint function comes from F≤2

⋂
A≤

⋂
B≤
⋂
C≤,MC is rapidly

mixing and even orientations take a non-negligible proportion in the state space. Therefore,
we are able to efficiently sample valid eight-vertex configurations according to the Gibbs
measure on Ω0 (almost uniformly).

In order for self-reduction, we need to extend the type of vertices a graph allows in the
eight-vertex model. Previously, a graph can only have degree 4 vertices, on each of which the
constraint function satisfies the even orientation rule and has arrow reversal symmetry. Now,
a graph can also have degree 2 vertices, on each of which the constraint function satisfies
the “1-in-1-out” rule and both valid local configurations have weight 1. Both Lemma 3.5
and Corollary 3.3 still hold with this extension, because such a degree 2 vertex and its two
incident edges just work together as a single edge.

We design the following algorithm to approximately computing Z(G) via sampling with
MC. As we have argued in Section 2, the partition function of the eight-vertex models can be
viewed as the weighted sum of the set of dacp’s (the weight of a dacp and its underlying acp
are the same). Since every constraint function belongs to F>, by Lemma 2.5 for each vertex
v ∈ V we can choose a nonnegative weight function w on signed pairings at v. Thus the ratios
among different signed pairings { , , } × {+,−} showing up at v in weighted dacp’s can
be uniquely determined by the ratios among different local orientations (represented by a, b, c,
and d) showing up at v. According to Corollary 2.6 (another corollary of Theorem 2.2), there
must be a pairing % ∈ { +, +, +} showing up at v with probability at least 1

6 among all
six signed pairings, as long as the partition function is not zero (this can be easily tested
in polynomial time). Therefore, runningMC on G, we can approximate, with a sufficient
1/poly(n) precision, the probability of having % ∈ { +, +, +} at v, denoted by Prv(%).
Denote by Gv,% the graph with v being split into v1 and v2 (both satisfy the “1-in-1-out”
rule) and the edges reconnected according to %. Write the partition function of Gv,% as
Z(Gv,%), we have Prv(%) = w(%)Z(Gv,%)/Z(G) which means Z(G) = w(%)Z(Gv,%)/Prv(%).
To approximate Z(G) it suffices to approximate Z(Gv,%), which can be done by runningMC
on Gv,% and recursing. Repeating this process for |V | steps we decompose the graph G into
the base case, a set of disjoint cycles whose partition function is just 2C where C is the number
of cycles. By this self-reduction, the partition function Z(G) can be approximated. J
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Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1. Given a plane graph G
with the constraint function on every vertex from F≤2

⋂
A≤

⋂
B≤
⋂
C≥, we can still efficiently

sample even orientations according to the Gibbs measure by Lemma 3.5 and Corollary 3.4.
However, in order to make our algorithm work, we need to extend the type of vertices in
the eight-vertex model again, by allowing degree 2 vertices with the constraint functions
satisfiying the “2-in/2-out” rule and both valid local configurations have weight 1. One can
check that Lemma 3.5 still hold even with this extension.

The self-reduction still looks at a vertex v at a time. According to Corollary 2.7, there
must be a pairing % ∈ { +, +, −} showing up at v with probability at least 1

6 among all
six signed pairings, as long as the partition function is not zero. If % is + or +, it can
be handled as in the proof of Theorem 3.1. If % is −, let Gv, −

be the graph still with v
being split into v1 and v2 and the edges reconnected according to −, but this time both
v1 and v2 satisfy the “2-in/2-out” rule. Observe that Corollary 3.4 hold for G

v, −
if and

only if it holds for G′
v, −

where we replace v by a virtual vertex v′ with parameter setting
(a, b, c, d) = (0, 0, 1, 1) (this is equivalent as fixing w( −) = 1 and w on other five signed
pairings being 0, if we require w to be nonnegative). Since (0, 0, 1, 1) ∈ A≤

⋂
B≤
⋂
C≥
⋂
F>.

Theorem 2.3 and consequently Corollary 3.4 still hold for G′
v, −

thus also for G
v, −

.
The base case is similar to that in the proof of Theorem 3.1. This time we decompose

G into a set of disjoint cycles with an even number of degree 2 vertices that satisfy the
“2-in/2-out” rule (by the Jordan Curve Theorem argued in the full version). The partition
function of this cycle graph is just 2C where C is the number of cycles. Again, the partition
function Z(G) can be approximated. J

I Corollary 3.3. Given a 4-regular graph G = (V,E), if the constraint function on every
vertex is from A≤

⋂
B≤
⋂
C≤, then Z(Ω2)

Z(Ω0) ≤
(|E|

2
)
.

(a) A near-even orientation with defects at e
and e′.

(b) A 4-ary construction by cutting open e and
e′.

Figure 7 A 4-ary construction made by cutting open the two edges with defects.

Proof. Let Ω{e,e
′}

2 ⊆ Ω2 be the set of near-even orientations in which e, e′ are the two

defective edges. We have Z(Ω2)
Z(Ω0) =

∑
{e,e′} ∈ (E

2)
Z(Ω{e,e′}

2 )
Z(Ω0) . For any τ ∈ Ω2, each of e and e′

may have both half-edges going out (as in Figure 7a) or coming in, with 4 possibilities. If
we “cut open” e and e′ as shown in Figure 7b, we get a 4-ary construction Γ using degree
4 vertices with constraint functions in A≤

⋂
B≤
⋂
C≤. Denote the constraint function of Γ

by (a′, b′, c′, d′), with the input order being counter-clockwise starting from the upper-left
edge. For this 4-ary construction we observe that near-even orientations in Ω{e,e

′}
2 contribute

a total weight 2(a′ + d′) while even orientations in Ω0 contribute a total weight 2(b′ + c′).
By Theorem 2.2 we know that for the 4-ary construction Γ, a′ + d′ ≤ b′ + c′. Therefore,
Z(Ω{e,e′}

2 )
Z(Ω0) ≤ 1. J



J.-Y. Cai, T. Liu, P. Lu, and J. Yu 4:15

I Corollary 3.4. Given a 4-regular plane graph G = (V,E), if the constraint function on
every vertex is from A≤

⋂
B≤
⋂
C≥
⋂
F>, then Z(Ω2)

Z(Ω0) ≤
(|E|

2
)
.

I Lemma 3.5. Assume Z(Ω0) > 0 and the constraint function on every vertex belongs to
F≤2 . MC is rapidly mixing if Z(Ω2)

Z(Ω0) is polynomially bounded.

4 Hardness

I Theorem 4.1. If (a, b, c, d) ∈ F>, then Z(a, b, c, d) does not have an FPRAS unless
RP=NP.

I Remark 4.2. For any (a, b, c, d) ∈ F>, at least two of a, b, c, and d are nonzero. The case
d = 0 and a, b, c > 0 was proved in [9]. The case d = 0 and one of a, b, c is zero can be proved
by a reduction from computing the partition function of the anti-ferromagnetic Ising model
on 3-regular graphs; we postpone this proof to an expanded version of this paper. In this
section, we prove the theorem when d > 0 and a > b+ c+ d. Since the proof of NP-hardness
for Z(a, b, c, d) is for not necessarily planar graphs, we can permute the parameters a, b, c.
Thus the proof for b > a+ c+ d and c > a+ b+ d is symmetric. The adaption that we make
to prove the case when d > a+ b+ c can be found in the full version.

I Remark 4.3. The construction for the proof when a > b + c + d, or b > a + c + d, or
c > a+ b+ d, is in fact a bipartite graph. This means approximating Z(a, b, c, d) in those
cases is NP-hard even for bipartite graphs.

Proof. Let 3-MAX CUT denote the NP-hard problem of computing the cardinality of a
maximum cut in a 3-regular graph [25]. We reduce 3-MAX CUT to approximating Z(a, b, c, d).
Before proving the theorem we briefly state our idea. Denote an instance of 3-MAX CUT
by G = (V,E). Given V+ ⊆ V and V− = V \ V+, an edge {u, v} ∈ E is in the cut between
V+ and V− if and only if (u ∈ V+, v ∈ V−) or (u ∈ V−, v ∈ V+). The maximum cut problem
favors the partition of V into V+ and V− so that there are as many edges in V+ × V− as
possible. We want to encode this local preference on each edge by a local fragment of a graph
G′ in terms of configurations in the eight-vertex model.

(a) (b) (c)

Figure 8 A four-way connection implementing a single edge in 3-MAX CUT.

First we show how to implement a toy example—a single edge {u, v}—by a construction in
the eight-vertex model. Suppose there are four vertices X,Y,M,M ′ connected as in Figure 8a
shows. The order of the 4 edges at each vertex is aligned to Figure 1 by a rotation so that
the edge marked by “N” corresponds to the north edge in Figure 1. Let us impose the virtual
constraint on X and Y so that the parameter setting on each of them is ǎ > b̌ = č = ď = 0.
(We will show how to implement this virtual constraint in the sense of approximation later.)

CCC 2020
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In other words, the four edges incident on X can only be in two possible configurations,
Figure 1-1 or Figure 1-2. The same is true for Y . We say X (and similarly Y ) is in state
+ if its local configuration is in Figure 1-1 (with the “top” two edges going out and the
“bottom” two edges coming in); it is in state − if its local configuration is in Figure 1-2
(with the “top” two edges coming in and the “bottom” two edges going out). Hence there
are a total of 4 valid configurations given the virtual constraints. When (X,Y ) is in state
(+,−) (or (−,+)), M and M ′ have local configurations both being Figure 1-1 (or both being
Figure 1-2), with weight a (Figure 8b); when (X,Y ) is in state (+,+) (or (−,−)), M and M ′
have local configurations both being Figure 1-7 or Figure 1-8, with weight d < a (Figure 8c).
This models how two adjacent vertices interact in 3-MAX CUT. We will call the connection
pattern described in Figure 8a between the set of 4 dangling edges incident to X and the set
of 4 dangling edges incident to Y (each with two on “top” and two on “bottom”) a four-way
connection.

(a) (b) (c)

Figure 9 A locking device implementing a vertex of degree 3 in 3-MAX CUT.

To model a vertex of degree 3 in a 3-MAX CUT instance, we use the locking device in
Figure 9a. Let us assume we have the virtual constraint that each of I, I ′, J, J ′,K,K ′ can
only be in two local configurations, Figure 1-1 or Figure 1-2. In fact, each locking device has
two states, one shown in Figure 9b with every node in configuration Figure 1-1 (called the +
state) and the other shown in Figure 9c with every node in configuration Figure 1-2 (called
the − state). If we think of the external edges incident to I, J,K to serve as the “top” edges
(with “N” aligned with the “N” at X or Y in Figure 8a), and the edges incident to I ′, J ′,K ′
as the “bottom” edges there, then we simulate the ± state of a degree 3 vertex as follows:
(1) top edges are going out and bottom edges are coming in if the device is in + state, and
top edges are coming in and bottom edges are going out if the device is in − state; and (2)
the top edges on I, J,K are going out or coming in at the same time.

Next we show how to enforce the virtual constraint in Figure 9a that each vertex has two
contrary configurations, in the sense of approximation. The idea is to implement an amplifier
as a 4-ary construction with parameter (â, b̂, ĉ, d̂) such that â� b̂+ ĉ+ d̂ using polynomially
many vertices in the eight-vertex model. We obtain such an amplifier by an iteration of Γ

shown in Figure 10. The parameter setting (a′, b′, c′, d′) of Γ is


a′=Λ(a,b,c,d)
b′=Λ(b,c,d,a)
c′=Λ(c,d,a,b)
d′=Λ(d,a,b,c)

, where

Λ(ξ, x, y, z) = ξ7 + (3x4 + 3y4 + 3z4 + 4x2y2 + 4x2z2 + 4y2z2)ξ3

+ (2x4y2 + 2x4z2 + 2x2y4 + 2y4z2 + 2x2z4 + 2y2z4 + 30x2y2z2)ξ. (6)
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Figure 10 A 4-ary construction that amplify the maximum among a, b, c, d.

This construction uses 7 vertices and is called a 1-amplifier. We obtain (a1, b1, c1, d1) =
(a′, b′, c′, d′) which amplifies the relative weight of configurations in Figure 1-1 or Figure 1-2.
If we plug in the amplifier Γ into each vertex of Γ itself (called a 2-amplifier), we can obtain
(a2, b2, c2, d2) using 72 vertices. Iteratively, we can construct a series of constraint functions

with parameters (ak, bk, ck, dk) (k ≥ 1) such that
{ ak+1=Λ(ak,bk,ck,dk)
bk+1=Λ(bk,ck,dk,ak)
ck+1=Λ(ck,dk,ak,bk)
dk+1=Λ(dk,ak,bk,ck)

, using 7k vertices

for each k (called a k-amplifier). Lemma 4.4 shows that the asymptotic growth rate is
exponential in the number of vertices used.

To reduce the problem 3-MAX CUT to approximating Z(a, b, c, d), let κ > λ ≥ 1 be
two constants that are sufficiently large. For each 3-MAX CUT instance G = (V,E) with
|V | = n and |E| = m, we construct a graph G′ where a device in Figure 9a is created for
each v ∈ V , and a four-way connection is made for every {u, v} ∈ E(G), on the dangling
edges corresponding to {u, v} as in Figure 8a. For each 4-way connection in Figure 8a,
each of the nodes M,M ′ is replaced by a (λ logn)-amplifier to boost the ratio of the
configurations in Figure 1-1 or Figure 1-2 over other configurations. For each device in
Figure 9a, each of the nodes I, I ′, J, J ′,K,K ′ is replaced by a (κ logn)-amplifier to lock in
the configurations Figure 9b or Figure 9c. We can prove that the maximum size s of all
cuts in G can be recovered from an approximate solution to Z(G′; f). In fact, there is a
valid configuration (at the granularity of nodes and edges shown in Figure 9a) of weight
(aκ logn)6n (aλ logn)2s (dλ logn)2(m−s), and the weighted sum of all configurations is smaller
than 1

2 (aκ logn)6n (aλ logn)2(s+1) (dλ logn)2(m−(s+1)). J

I Lemma 4.4. Let (ak, bk, ck, dk) = Λ(k)(a, b, c, d) given by (6). Assuming a0 > b0 + c0 + d0,
a0, d0 > 0, and b0, c0 ≥ 0, there exists some constants α > 0, β > 1 depending only on
a0, b0, c0, d0 such that for all k ≥ 1, ak

bk+ck+dk
≥ αβ2k .
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Abstract
We study the problem of constructing explicit families of matrices which cannot be expressed as a
product of a few sparse matrices. In addition to being a natural mathematical question on its own,
this problem appears in various incarnations in computer science; the most significant being in the
context of lower bounds for algebraic circuits which compute linear transformations, matrix rigidity
and data structure lower bounds.

We first show, for every constant d, a deterministic construction in time exp(n1−Ω(1/d)) of a
family {Mn} of n × n matrices which cannot be expressed as a product Mn = A1 · · ·Ad where
the total sparsity of A1, . . . , Ad is less than n1+1/(2d). In other words, any depth-d linear circuit
computing the linear transformation Mn · x has size at least n1+Ω(1/d). This improves upon the
prior best lower bounds for this problem, which are barely super-linear, and were obtained by a long
line of research based on the study of super-concentrators (albeit at the cost of a blow up in the
time required to construct these matrices).

We then outline an approach for proving improved lower bounds through a certain derandomiza-
tion problem, and use this approach to prove asymptotically optimal quadratic lower bounds for
natural special cases, which generalize many of the common matrix decompositions.
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1 Introduction

This work concerns the following (informally stated) very natural problem:

I Open Problem 1. Exhibit an explicit matrix A ∈ Fn×n, such that A cannot be written as
A = BC, where B ∈ Fn×m and C ∈ Fm×n are sparse matrices.

Before bothering ourselves with the precise meaning of the words “explicit” and “sparse”
in the above problem, we discuss the various contexts in which this problem presents itself.
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1.1 Linear circuits and matrix factorization

Algebraic complexity theory studies the complexity of computing polynomials using arithmetic
operations: addition, subtraction, multiplication and division. An algebraic circuit over
a field F is an acyclic directed graph whose vertices of in-degree 0, also called inputs, are
labeled by indetermeinates {x1, . . . , xn} or field elements from F, and every internal node is
labeled with an arithmetic operation. The circuit computes rational functions in the natural
way, and the polynomials (or rational functions) computed by the circuit are those computed
by its vertices of out-degree 0, called the outputs. This framework is general enough to
encompass virtually all the known algorithms for algebraic computational problems. The
size of the circuit is defined to be the number of edges in it. For a more detailed background
on algebraic circuits, see [50].

Perhaps the simplest non-trivial class of polynomials is the class of linear (or affine)
functions. Accordingly, such polynomials can be computed by a very simple class of circuits
called linear circuits: these are algebraic circuits which are only allowed to use addition and
multiplication by a scalar. It is often convenient to consider graphs with labels on the edges
as well: every internal node is an addition gate, and for c ∈ F, an edged labeled c from a
vertex v to a vertex u denotes that the output of v is multiplied by c when feeding into u.
Thus, every node computes a linear combination of its inputs.

It is not hard to show that any arithmetic circuit for computing a set of linear functions can
be converted into a linear circuit with only a constant blow-up in size (see [10], Theorem 13.1;
eliminating division gates requires that the field F in question is large enough. In this paper
we will always make this assumption when needed).

Clearly, every set of n linear functions on n variables (represented by a matrix A ∈ Fn×n)
can be computed by a linear circuit of size O(n2). Using counting arguments (over finite
fields) or dimension arguments (over infinite fields), it can be shown that for a random or
generic matrix this upper bound is fairly tight. Thus, a central open problem in algebraic
complexity theory is to prove any super-linear lower bound for an explicit family of matrices
{An} where An ∈ Fn×n. The standard notion of explicitness in complexity theory is that
there is a deterministic algorithm that outputs the matrix An in poly(n) time, although
more or less stringent definitions can be considered as well.

Despite decades of research and partial results, such lower bounds are not known.2 In order
to gain insight into the general model of computation, research has focused on limited models
of linear circuits, such as monotone circuits, circuits with bounded coefficients, or bounded
depth circuits. We defer a more thorough discussion on previous work to Subsection 1.5, and
proceed to describe bounded depth circuits, which are the focus of this work.

The depth of a circuit is the length (in edges) of a longest path from an input to an
output. Constant depth circuits appear to be a particularly weak model of computation.
However, even this model is surprisingly powerful (see also Subsection 1.2).

The “easiest” non-trivial model is the model of depth-2 linear circuits. A depth 2 linear
circuit computing a linear transformation A ∈ Fn×n consists of a bottom layer of n input
gates, a middle layer of m gates, and a top layer of n output gates. We assume, without
loss of generality, that the circuit is layered, in the sense that every edge goes either from
the bottom to the middle layer, or from the middle to the top layer. Indeed, every edge
going directly from the bottom to the top layer can be replaced by a path of length 2; this
transformation increases the size of the circuit by at most a factor of 2.

2 We remark that super-linear lower bounds for general arithmetic circuits are known, but for polynomials
of high degree [51, 7].
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By letting C ∈ Fm×n be the adjacency matrix of the (labeled) subgraph between the
bottom and the middle layer, and B ∈ Fn×m be the adjacency matrix as the subgraph
between the middle and the top layer, it is clear that A = BC. Thus, a decomposition of A
into the product of two sparse matrices is equivalent to saying that A has a small depth-2
linear circuit. This argument can be generalized, in exactly the same way, to depth-d circuits
and decompositions of the form A = A1 · · ·Ad, for constant d.

Weak super-linear lower bounds are known for constant depth linear circuits. They are
based on the following observation, due to Valiant [53]: for subsets S, T ⊆ [n] of size k, let
AS,T denote the submatrix of A indexed by rows in S and columns in T . If AS,T has rank
k, the minimal vertex cut in the subcircuit restricted to input from S and outputs from T

is of size at least k: indeed, a smaller cut corresponds to a factorization AS,T = PQ for
P ∈ Fk×r and Q ∈ Fr×k for r < k, contradicting the rank assumption. Using Menger’s
theorem, it is now possible to deduce that if A is a matrix such that for every S, T as above
the matrix AS,T is non-singular, then the circuit computing A contains, for every subcircuit
which corresponds to such S, T , at least k vertex disjoint paths from S to T . Such graphs
were named superconcentrators by Valiant, and their minimal size was extensively studied
[53, 41, 42, 14, 43, 6, 45].

Superconcentrators of logarithmic depth and linear size do exist, so while this approach
cannot show lower bounds for circuits of logarithmic depth, it is possible to show that for
constant d, any depth-d superconcentrator has size at least n ·λd(n), where λd(n) is a function
that unfortunately grows very slowly with n. For example, λ2(n) = Θ(log2 n/ log logn),
λ3(n) = Θ(log logn), λ4(n) = λ5(n) = log∗(n), and so on. Such lower bounds apply
for any matrix whose minors of all orders are non-zero, e.g., a Cauchy matrix given by
Ai,j = 1/(xi − yj) for any distinct x1, . . . , xn, y1, . . . , yn. Over finite fields it is possible to
modify the proof and obtain similar lower bounds for matrices defining good error correcting
codes [22].

These lower bounds on the size of superconcentrators are tight: for every d ∈ N, there
exists a super-concentrator of depth d and size O(n · λd(n)). It is thus impossible to improve
the lower bounds only using this technique.

1.2 Matrix rigidity
A demonstration of the surprising power of depth-2 circuits can be seen using the notion
of matrix rigidity, a pseudorandom property of matrices which we now recall. A matrix
A ∈ Fn×n is (r, s) rigid if A cannot be written as a sum A = R+ S where R is a matrix of
rank r, and S is a matrix with at most s non-zero entries. Valiant [54] famously proved that
if A is computed by a linear circuit with bounded fan-in of depth O(logn) and size O(n),
then A is not (εn, n1+δ) rigid for every ε, δ > 0.3 It follows that an explicit construction of
(εn, n1+δ) matrix, for some ε, δ > 0, will imply a super-linear lower bound for linear circuits
of depth O(logn). Pudlák [43] observed that similar rigidity parameters will imply even
stronger lower bounds for constant depth circuits. A random matrix (over infinite fields) is
(r, (n− r)2)-rigid, but the best explicit constructions have rigidity (r, n2/r · log(n/r)) [21, 47],
which is insufficient for proving lower bounds.

Observe that a decomposition A = R + S where rank(R) = εn and S is n1+δ-sparse
corresponds to a depth-2 circuit with a very special structure and with at most 2εn2 + n1+δ

edges (this circuit is not layered, but as we explained above, this does not make a significant

3 In fact, one can obtain slightly better parameters. See, for example, [54] or [16].
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difference). In particular, one way of interpreting Valiant’s result is as a non-trivial depth
reduction from depth O(logn) to depth 2, so that proving any depth-2 Ω(n2) lower bound
for an explicit matrix, will imply a lower bound for depth O(logn).4 This can be seen as the
linear circuit analog of similar strong depth reduction theorems for general algebraic circuits
[3, 29, 52, 24].

However, we would like to argue that proving lower bounds for depth-2 circuits is in fact
necessary for proving rigidity lower bounds, by observing that upper bounds on the depth-2
complexity of A give upper bounds on its rigidity parameters. Indeed, suppose A = BC can
be computed by a depth-2 circuit of size n1+ε. Let m be as before the number of columns of
B (which equals the number of rows of C), and note that we may assume m ≤ n1+ε, as zero
columns of B or zero rows of C can be omitted. For i ∈ [m], let Bi denote the i-th column of
B, and Ci the i-th row of C, so that A =

∑m
i=1BiCi. Fix a constant δ > 0, and say i ∈ [m]

is dense if either Bi or Ci has more than nε/δ non-zero entries; otherwise, i is sparse. Since
B can have at most δn columns with sparsity of more than nε/δ, and similarly for the rows
of C, the number of dense i-s is at most 2δn. It follows that

A =
∑
i dense

BiCi +
∑

i sparse
BiCi.

The first sum is a matrix of rank at most 2δn, and the second is a matrix whose sparsity
is at most m · n2ε/δ2 = n1+3ε/δ2. Thus, proving rigidity lower bounds of the type required
to carry out Valiant’s approach necessarily means proving lower bounds of the form “n1+ε”
on the depth-2 complexity of A (we remark that the argument above is very similar to the
aforementioned result of Pudlák [43]; Pudlák’s argument is stated in a slightly different
language and in greater generality). Since proving rigidity lower bounds is a long-standing
open problem, we view the problem of proving an Ω(n1+ε) lower bound for depth-2 circuits
as an important milestone towards this.

1.3 Data structure lower bounds
The problem of matrix factorization into sparse matrices also appears in the context of
proving lower bounds for data structures. A dynamic data structure with n inputs and q
queries is a pair of algorithms whose purpose is to update and retrieve certain data under
a sequence of operations, while minimizing the memory access. In the group model, it is
given by a pair of algorithms. The update algorithm is represented by a matrix U ∈ Fs×n.
Given x ∈ Fn, thought of as assignment of weights to the n inputs, Ux computes a linear
combination of those weights and stores them in memory. The query algorithm is given
by a matrix Q ∈ Fq×s. Given a query, it computes a linear function of the s memory cells,
and returns the answer. Hence, an “update” operation followed by a “retrieve” operation
computes the linear transformation given by A = QU .

The worst case update time of the database is the maximal number of non-zero elements
in a column of U , and the worst case query time is the maximal number of non-zero elements
in a row of Q. The value s denotes the space required by the data structure. It now directly
follows that a matrix A ∈ Fq×n which cannot be factored as A = QU for a row-sparse Q and
column-sparse U gives a data structure problem with a lower bound on its worst case query

4 We note that this statement makes sense only over large fields, as over fixed finite fields, it is always
possible to prove an upper bound of O(n2/ logn) on the depth-2 complexity of any matrix [27]. This
does not contradict the fact that rigid matrices exist over finite fields – a decomposition to R+ S is a
very special type of depth-2 circuit.
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or update time. It is also possible to define an analogous average case notion. Lower bounds
for this model were proved by [19, 20, 40, 39, 30, 31, 32], but none of these results beats the
lower bounds for depth-2 circuits obtained using superconcentrators.

A related model is that of a static data structures, which is again given by a factorization
A = QP , where now we are interested in trade-offs between the space s of the data structure
and its worst case query time, while not being charged for the total sparsity of P . A recent
work of Dvir, Golovnev and Weinstein [16] showed that proving lower bounds for this model
is related to the problem of matrix rigidity from Subsection 1.2.

Despite the overall similarity, there are several key technical differences between the
linear circuit complexity and the data structure problems. The first and obvious issue is that
worst-case lower bounds on the update or query time do not necessarily imply that Q or
U are dense matrices: the total sparsity of Q and U is related to the average-case update
and query time. The second, more severe issue, is that in many applications the number
of queries q is polynomially larger than n, while the lower bounds on running time are still
measured as functions of the number of inputs n. This makes sense in the data structure
settings, but from a circuit complexity point of view, a set of say n3 linear functions trivially
requires a circuit of size n3, and thus a lower bound of say npolylog(n) is meaningless in
that setting.

This issue also comes up when studying the so-called succinct space setting, where we
require s = n(1 + o(1)). The lower bounds we are aware of for this setting are worst case
lower bounds, and require the number of outputs q to be at least Cn for some C > 1 [23, 16],
so that in the corresponding circuit the number of vertices in the middle layer is required
to be much smaller than the number of outputs, which may be considered quite unnatural.
In particular, we are unaware of any improved lower bounds on the sparsity of matrix
factorization for A ∈ Fn×n when s = n(1 + o(1)) or even s = n which come from the data
structure lower bounds literature.

1.4 Machine learning
We briefly remark that the problem of factorizing a matrix into a product of two or more
sparse matrices is also ubiquitous in machine learning and related areas. Naturally, research
in those areas did not focus on lower bounds but rather on algorithms for finding such
a representation, assuming it exists, sometimes heuristically, and it is usually enough to
approximate the target matrix A. In particular, algorithms have been proposed for the very
related problems of non-negative matrix factorization [33]5 or sparse dictionary learning [36],
and there are also connections to the analysis of deep neural networks [38].

1.5 Previous work
As mentioned in Subsection 1.1, there are no non-trivial known lower bounds for general
linear circuits, and for bounded depth circuits, the best lower bounds follow from the lower
bounds on bounded depth super-concentrators, which are barely super-linear.

Shoup and Smolensky [49] give a lower bound of Ω(dn1+1/d) for depth-d circuits computing
a certain linear transformation given by a matrix A ∈ Rn×n. Unfortunately, the matrices
for which their lower bound holds are not explicit from the complexity theoretic point of

5 It is interesting to observe that for the problem of factorizing matrices into non-negative matrices it is
quite easy to prove almost-optimal lower bounds even for unbounded depth linear circuits, as mentioned
in Subsection 1.5
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5:6 Lower Bounds for Matrix Factorization

view, despite having a very succinct mathematical description (for example, one can take
Ai,j = √pi,j for n2 distinct prime numbers pi,j). For the same matrix, they in fact prove
super-linear lower bounds for circuits of depth up to polylog(n).

Quite informally, the intuition behind their lower bounds is that all small bounded depth
linear circuits can be described as lying in the image of a low-degree polynomial map in
a small number of variables, and thus, if the elements of A are sufficiently “algebraically
rich”, for a certain specific measure, A cannot be computed by such a circuit. This same
philosophy lies behind Raz’s elusive function approach for proving lower bounds for algebraic
circuits [46]. In particular, among other results, Raz uses an argument which can be seen as
a modification of the technique of Shoup and Smolensky (as worked out in [50]) to prove
lower bounds for bounded depth algebraic circuits computing bounded degree polynomials.

One class of linear circuits which has attracted significant attention is the class of circuits
with bounded coefficients. Here, the circuit is only allowed to multiply by scalars with
absolute value of at most some constant. For definiteness, we may assume this constant is 1
(this does not affect the complexity by more than a constant factor). The earliest result for
this model is Morgenstern’s ingenious proof [37] of an Ω(n logn) lower bound on bounded
coefficient circuits computing the discrete Fourier transform matrix (this lower bound is
matched by the upper bound given by the Cooley-Tukey FFT algorithm, which is a bounded
coefficient linear circuit). For depth-d circuits, Pudlák [44] has proved lower bounds of the
form Ω(dn1+1/d) for the same matrix.

Another natural subclass which was considered in earlier works is the class of monotone
linear circuits. These are circuits which are defined over R, and can only use non-negative
scalars. Chazelle [12] observed that it is possible to prove lower bounds in this model, even
against unbounded-depth circuits, for any boolean matrix with no large monochromatic
rectangle. Instantiated with the recent explicit constructions of bipartite Ramsey graphs
[11, 8, 13, 34], this gives an almost optimal n2−o(1) lower bound against such circuits. The
main observation in the proof is that if A does not have monochromatic t× t rectangle, then
since the model is monotone and no cancellations are allowed, every internal node which
computes a linear function supported on at least t variables cannot be connected to more
than t output gates.

For a more detailed survey on these results and some other related results, see the survey
by Lokam [35].

1.6 Our results
In this paper, we prove several results regarding bounded depth linear circuits which we now
discuss.

Lower bounds for depth-d linear circuits

We start by considering general depth-d circuits. We give the first deterministic construction
in time 2o(n) of matrices which require depth-d circuits of size n1+Ω(1/d).

I Theorem 2. Let F be a field. There exists a family of matrices {An}n∈N, which can be
constructed in time exp(n1−Ω(1/d)), such that every depth-d linear circuit computing An, even
over the algebraic closure of F, has size at least n1+Ω(1/d).

If F = Q, the entries of A are integers of bit complexity exp(n1−Ω(1/d)). If F = Fq is a
finite field, the entries of A are elements of an extension E of F of degree exp(n1−Ω(1/d)).
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This theorem is proved in Section 2. We remark again that the previous best lower bounds
against general depth-d linear circuits (for matrices that can be constructed in polynomial
time) are barely super-linear and much weaker than n1+ε. In the recent work of Dvir,
Golovnev and Weinstein [16] it was pointed out that currently there are not even known
constructions of rigid matrices (with parameters that would imply lower bounds) in classes
such as ENP. By arguing directly about circuit size, and not about rigidity, Theorem 2
gives constructions of matrices in a much smaller complexity class, which enjoy the same
bounded-depth complexity lower bounds as would follow from optimal constructions of rigid
matrices using the results of Pudlák [43].

In a related and independent work, Alman and Chen [4] constructed in PNP (i.e., in
polynomial time and using an NP oracle), for infinitely many n’s, an n × n matrix with
rigidity parameters which suffice for proving a lower bound of Ω(n ·2log(n)1/4−ε) on its depth-2
complexity. Compared to their work, our construction lies in an incomparable complexity
class (we do not use an NP oracle at the expense of a longer running time), extends for all
depths d ≥ 2, works for all large enough n, and provides stronger lower bounds. Furthermore,
Alman and Chen use complexity theoretic techniques which are very different from our
algebraic techniques. We refer to [4] for some further discussion on the differences and
similarities.

While the statement in Theorem 2 holds for any d ≥ 2, for d = 2 there is a much simpler
construction of a hard family of matrices in quasi-polynomial time.

I Theorem 3. Let F be any field and c be any positive constant. Then, there is a family
{An}n∈N of n × n matrices which can be constructed in time exp(O(log2c+1 n)) such that
any depth-2 linear circuit computing An even over the algebraic closure of F has size at least
Ω(n logc n).

For every constant c ≥ 2, this theorem already improves upon the current best lower
bound of Ω(n log2 n/ log logn) known for this problem (see [45]). This construction is based
on an exponential time construction of a small hard matrix, and then amplifying its hardness
using a direct sum construction (note, however, that over infinite fields even the fact that a
hard matrix can be constructed in exponential time, while not very hard to prove, is not
completely obvious). For completeness, we describe this simple construction in Subsection 2.7.

Lower bounds for restricted depth-2 linear circuits

Given the importance of the model of depth-2 linear circuits, as explained above, and its
resistance to strong lower bounds, we then move on to consider several natural subclasses
of depth-2 circuits. These classes in particular correspond to almost all common matrix
decompositions. We are able to prove asymptotically optimal Ω(n2) lower bounds for these
restricted models. As mentioned above, such lower bounds for general depth-2 circuits will
imply super-linear lower bounds for logarithmic depth linear circuits, thus resolving a major
open problem.

Symmetric circuits

A symmetric depth-2 circuit (over R) is a circuit of the form BTB for some B ∈ Rm×n
(considered as a graph, the subgraph between the middle and the top layer is the “mirror
image” of the subgraph between the bottom and middle layer). Over C, one should take the
conjugate transpose B∗ instead of BT .
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Symmetric circuits are a natural computational model for computing positive semi-definite
(PSD) matrix. Clearly, every symmetric circuit computes a PSD matrix, and every PSD
matrix has a (non-unique) symmetric circuit. In particular, a Cholesky decomposition of
PSD matrices corresponds to a computation by a symmetric circuit (of a very special form).

We prove asymptotically optimal lower bounds for this model.

I Theorem 4. There exists an explicit family of real n × n PSD matrices {An}n∈N such
that every symmetric circuit computing An (over R or C) has size Ω(n2).

We do not know whether every depth-2 linear circuit for a PSD matrix can be converted
to a symmetric circuit with a small blow-up in size. One way to phrase this question is given
below.

I Question 5. Is there a constant c < 2, such that every PSD matrix A ∈ Rn×n which can
be computed by a linear circuit of size s, can be computed by a symmetric circuit of size
O(sc)?

A positive answer for Question 5 will imply, using Theorem 4, an Ω(n1+ε) lower bound
for depth-2 linear circuits.

Invertible circuits

Invertible circuits are circuits of the form BC, where either B or C are invertible (but not
necessarily both). We stress that invertible circuits can (and do) compute non-invertible
matrices. In particular, if B ∈ Fn×m and C ∈ Fm×n, here we require m = n.

Invertible circuits generalize many of the common matrix decompositions, such as QR
decomposition, eigendecomposition, singular value decomposition6 and LUP decomposition
(in the case where the matrix L is required to be unit lower triangular).7

We prove optimal lower bounds for invertible circuits.

I Theorem 6. Let F be a large enough field. There exists an explicit family of n×n matrices
{An}n∈N over F such that every invertible circuit computing An has size Ω(n2).

If A is an invertible matrix, then clearly every depth-2 circuit with m = n must be an
invertible circuit. However, our technique for proving Theorem 6 crucially requires the hard
matrix A to be non-invertible.

1.7 Proof Overview

Our proofs rely on a few different ideas coming from algebraic complexity theory, coding
theory, arithmetic combinatorics and the theory of derandomization. We now discuss some
of the key aspects.

6 A diagonal matrix can be multiplied with the matrix to its left or to its right, without increasing the
sparsity, to obtain an invertible depth-2 circuit.

7 The sparsity of UP equals the sparsity of U , as P simply permutes the columns of U , so every LUP
decomposition corresponds to the invertible depth-2 circuit given by L(UP ).
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Shoup-Smolensky dimension

For the proof of Theorem 2, we rely on the notion of Shoup-Smolensky dimension as a
measure of complexity of matrices. Shoup-Smolensky dimensions are a family of measures,
parametrized by t ∈ N, of “algebraic richness” of the entries of a matrix (see Definition 8 for
details), which is supposed to capture the intuition that matrices with small circuits should
depend on a few “parameters” and thus should not posses much richness.

Shoup and Smolensky [49] showed that for an appropriate choice of parameters, this
measure is non-trivially small for linear transformations with small linear circuits of depth at
most poly(logn). Informally, as the order t gets larger, this measure becomes useful against
stronger models of computation; however, it also becomes harder to construct matrices which
have a large complexity with respect to this measure (and hence cannot be computed by a
small linear circuit). Shoup and Smolensky do this by constructing hard matrices which do
not have small bit complexity (and hence this construction is not complexity theoretically
explicit) but do have short and succinct mathematical description.

For our proof, we first observe that for bounded depth circuits it suffices to use much
smaller order t than what Shoup and Smolensky used. This observation was also made by
Raz [46] in a similar context, but using the language of elusive functions.

We then use this observation to “derandomize”, in a certain sense, an exponential time
construction of a hard matrix, by giving deterministic constructions of matrices with large
Shoup-Smolensky dimension.

A key ingredient of our proof is a connection between the notion of Sidon Sets in
arithmetic combinatorics and Shoup-Smolensky dimension (see Subsection 2.4 for details).
Our construction is in two steps. In the first step we construct matrices with entries in F[y]
which have a large Shoup-Smolensky dimension over F, and degree of every entry is not
too large. In the next step, we go from these univariate matrices to a matrix with entries
in an appropriate low degree extension of F while still maintaining the Shoup-Smolensky
dimension over F. Our construction of hard matrices over the field of complex numbers is
based on similar ideas but differs in some minor details.

Lower bounds via Polynomial Identity Testing

Our proofs for Theorem 4 and Theorem 6 are based on a derandomization argument.
Connections between derandomization and lower bounds are prevalent in algebraic and
Boolean complexity, but in our current setting they have not been widely studied before.

We say that a set H of n× n matrices is a hitting set for a class C of matrices if for every
non-zero A ∈ C there is H ∈ H such that 〈A,H〉 :=

∑
i,j Ai,jHi,j 6= 0.

Every class C has a hitting set of size n2, namely the indicator matrices of each of the
entries. A hitting set is non-trivial if its size is at most n2 − 1. Observe that a non-trivial
hitting set for C gives an efficient algorithm for finding a matrix M 6∈ C, by finding a non-zero
A such that 〈A,H〉 = 0 for every H ∈ H. Such an A exists and can be found in polynomial
time because the set H imposes at most n2 − 1 homogeneous linear constraints on the
n2 entries of A. This argument is a special case of a more general theorem showing how
efficient algorithms for black box polynomial identity testing give lower bounds for algebraic
circuits [1, 26].

In practice, it is often convenient (although by no means necessary) to consider hitting
sets that contain only rank 1 matrices xyT , since

〈
A,xyT

〉
= xTAy, and thus we find

ourselves in the more familiar territory of polynomial identity testing, trying to construct a
hitting set for the class of polynomials of the form xTAy for A ∈ C. This approach was also
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5:10 Lower Bounds for Matrix Factorization

taken by Forbes and Shpilka [18], who considered this exact problem where C is the class of
low-rank matrices, and remarked that hitting sets for the class of low-rank matrices plus
sparse matrices will give an explicit construction of a rigid matrix.

We carry out this idea for two different classes in the proofs of Theorem 4 and Theorem 6.
However, the following problem remains open.
I Open Problem 7. For some 0 < ε ≤ 1, construct an explicit hitting set of size at most
n2 − 1 for the class of n× n matrices A which can be written as A = BC where B,C have
at most n1+ε non-zero entries.

A solution to Open Problem 7 will imply lower bounds of the form n1+ε for an explicit
matrix. If ε = 1, this will imply lower bounds for logarithmic depth linear circuits.

A useful ingredient in our constructions is the use of maximum distance separable (MDS)
codes (for example, Reed-Solomon codes), as their dual subspace is a small dimensional
subspace which does not contain sparse non-zero vectors. Over the reals, it is also easy to
give such construction based on the well known Descartes’ rule of signs which says that a
sparse univariate real polynomial cannot have too many real roots. We refer the reader
to Subsection 3.1 for details.

2 Lower bounds for constant depth linear circuits

In this section, we prove Theorem 2. We start by describing the notion of Shoup-Smolensky
dimension, but first we set up some notation.

2.1 Notation
We work with matrices whose entries lie in an appropriate extension of a base finite field Fp.
We follow the natural convention that the elements of this extension will be represented as
univariate polynomials of appropriate degree over the base field, and the arithmetic is done
modulo an explicitly given irreducible polynomial.

We use boldface letters (x,y) to denote vectors. The length of the vectors is understood
from the context.

For a matrix M , ‖M‖0 denotes the number of non-zero entries in M .

2.2 Shoup-Smolensky Dimension
A useful concept will be the notion of Shoup-Smolensky dimension of sequences of elements
of an extension E of a field F.
I Definition 8 (Shoup-Smolensky dimension). Let F be a field, and E be an extension field of
F. Let S = (a1, . . . , am) a sequence of elements of E. For t ∈ N, denote by Πt(S) the set of
t-wise products of distinct entries of S that is,

Πt(S) =


t∏

j=1
aij : 1 ≤ i1 < i2 < · · · < it ≤ m

 .

The Shoup-Smolensky dimension of S of order t, denoted by Γt,F(S) is defined to be the
dimension, over F, of the vector space spanned by Πt(S).

We also denote by Σt(S) the number of distinct elements of E that can be obtained by
summing distinct elements of Πt(S).

When M ∈ En×n is a matrix we also regard it as a sequence of m = n2 elements of E
(under some order on the entries) and refer to the Shoup-Smolensky dimension of M .
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2.3 Upper bounding the Shoup-Smolensky dimension for Sparse
Products

The following lemma shows that any matrix computable by a depth-d linear circuit of size at
most s has a somewhat small Shoup-Smolensky dimension.
I Lemma 9. Let F be a field, E an extension of F and A ∈ En×n be a matrix such that
A =

∏d
i=1 Pi for Pi ∈ Eni×mi , where

∑d
i=1 ‖Pi‖0 ≤ s. Then, for every t ≤ n2/4 such that

s ≥ dt it holds that

Γt,F(A) ≤
(
ed(2s/dt)d

)t
.

Proof. Since

Ai,j =
(

d∏
`=1

P`

)
i,j

=
∑

k1,...,kd−1

(P1)i,k1 ·

(
d−1∏
`=2

(P`)k`−1,k`

)
· (Pd)kd−1,j ,

every element in Πt(A) is a sum of monomials of degree dt in the entries of P1, P2, . . . , Pd,
that is,

Γt,F

(
d∏
i=1

Pi

)
≤
(
s+ dt

dt

)
,

with the right hand side being the number of monomials of degree dt in s variables. Using
the inequality

(
n
k

)
≤ (en/k)k,

Γt,F(A) ≤ (e(1 + s/dt))dt ≤
(
ed(2s/dt)d

)t
. J

Over Q, we do not wish to use field extensions (which would give rise to elements with
infinite bit complexity). Thus, we use a similar argument that replaces the measure Γt,F
with Σt (recall Definition 8) for a small tolerable penalty.
I Lemma 10. Let d be a positive integer. Let A ∈ Qn×n be a matrix such that A =

∏d
i=1 Pi

for Pi ∈ Qni×mi , where
∑d
i=1 ‖Pi‖0 ≤ s. Assume that for each i, ni ≤ n2 and mi ≤ n2.

Then, for every t ≤ n2/4 such that s ≥ dt it holds that

Σt(A) ≤ 22n3·(ed(2s/dt)d)t

.

Proof. We follow the same steps as in the proof of Lemma 9, replacing the measure Γt,F(A)
by Σt(A). As before,

Ai,j =
(

d∏
`=1

P`

)
i,j

=
∑

k1,...,kd−1

(P1)i,k1 ·

(
d−1∏
`=2

(P`)k`−1,k`

)
· (Pd)kd−1,j .

Every element in Πt(A) can be written as∑
α∈M

cα · α (1)

whereM is the set of monomials of degree dt in the entries of P1, P2, . . . , Pd, and each cα is a
non-negative integer of absolute value at most sdt ≤ 2n3 (since s ≤ n2d and d is O(1)). It now
follows that each element in Σt(A) has the same form as in (1), with cα ≤ |Πt(A)| ·2n3 ≤ 22n3

. We conclude that

Σt(A) ≤ (22n3
)(

s+dt
dt ),

which implies the statement of the lemma using the same bounds on binomial coefficients as
in Lemma 9. J

We now move on to describe constructions of matrices which have large Shoup-Smolensky
dimension, and then deduce lower bounds for them.
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2.4 Sidon sets and hard univariate matrices
In this section, we describe a construction of a matrix G ∈ F[y]n×n which has a large value
of Γt,F. Let us denote Gi,j = yei,j for some non-negative integer ei,j . For G to have a large
Shoup-Smolensky dimension of order t, the set S = {e1,1, e1,2, . . . , en,n} ⊆ N should have the
property that S(t) := {a1 + a2 + . . .+ at : ai ∈ S distinct} has size comparable to

(|S|
t

)
. A

set S such that every subset of size t of S has a distinct sum is called a t-wise Sidon set.
These are very well studied objects in arithmetic combinatorics, and explicit constructions
are known for them in poly(n) time (e.g., Lemma 60 in [9]). However, another important
parameter in the construction is the degree of y, and such a set will inevitably contain
integers of size roughly nΩ(t). Thus, the construction of G would take time which is not
polynomially bounded in n. Below we give an elementary construction of such a set in time
nO(t) (cf. [2]).

I Lemma 11. Let t be a positive integer. There is a set S ⊆ N of size m such that:
1. S(t) := {a1 + a2 + . . .+ at : ai ∈ S distinct} has size

(
m
t

)
.

2. The maximal element in S is at most mO(t).
3. S can be constructed in time mO(t).

Proof. Let S′ =
{

1, 2, 22, . . . , 2m−1}. Clearly, every subset of S′ has a distinct sum. For
a prime p we denote Sp = S′ mod p = {a mod p : a ∈ S′}, and we claim that there exists
a prime p ≤ mO(t) such that |(Sp)(t)| =

(
m
t

)
. Since this condition can be checked in time

mO(t), this would immediately imply the statement of the lemma, by checking this condition
for every p ≤ mO(t) and letting S = Sp for a p which satisfies this condition.

For every subset T ⊆ S′ of size t, let σT denote the sum of its elements, and observe that
σT ≤ 2m. Clearly, σT mod p = σT ′ mod p if and only if p | σT − σT ′ , so it is enough to show
that there exists p ≤ mO(t) which does not divide

N :=
∏

T 6=T ′⊆S′
|T |=|T ′|=t

(σT − σT ′),

and therefore does not divide any of the terms on the right hand size. It further holds that
0 6= N ≤ (2m)m

O(t)
= 2mO(t) , so the existence of p now follows from the fact that N can have

at most logN = mO(t) distinct prime divisors, and from the prime number theorem. J

Given the above construction of t-wise Sidon sets, we now describe the construction of
matrices with univariate polynomial entries which has large Shoup-Smolensky dimension.

I Construction 12. Let S = {ei,j : i, j ∈ [n]} be a t-wise Sidon set of positive integers of size
n2 as in Lemma 11. Then, the matrix Gt,n ∈ F[y]n×n is defined as follows as (Gt)i,j = yei,j .

The useful properties of Construction 12 are given by the following lemma.

I Lemma 13. Let t ≤ n be a parameter, S ⊆ N be a t-wise Sidon set of size n2 and let Gt,n
be the matrix defined in Construction 12. Then, the following are true.
1. Every entry of Gt,n is a monomial of degree at most nO(t).
2. Γt,F((Gt,n)) ≥

(
n2

t

)
≥
(
n2

t

)t
.

Proof. The first item follows from the definition of Gt,n and the properties of the set S
in Lemma 11. The second item also follows from the properties of S and the definition of
Shoup-Smolensky dimension, since every t-wise product of elements of Gt,n gives a distinct
monomial in y, and thus they are all linearly independent over the base field F. J
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2.5 Hard matrices over finite fields
From the univariate matrix in Construction 12, we now construct, for every p and parameter
t, a matrix M over an extension of Fp which has large Shoup-Smolensky dimension over Fp
with the same parameters as Gt,n.

I Lemma 14. Let p be a prime, and t be any positive integer. There is a matrix Mt,n ∈ En×n
over an extension E of Fp of degree exp (O(t logn)), which can be deterministically constructed
in time nO(t), and satisfies

Γt,Fp
(Mt,n) ≥

(
n2

t

)t
Proof. Let Gt,n be as in Construction 12, and let ∆ be the maximum degree of any entry
of Gt,n. Set D = 10 · t ·∆ = exp (O(t logn)). We use Shoup’s algorithm (see Theorem 3.2
in [48]) to construct an irreducible polynomial g(z) of degree D + 1 over Fp in deterministic
poly(D, |Fp|) time. Let α be a root of g(z) in an extension E of Fp, where E ≡ Fp[z]/〈g(z)〉.8
Then, it follows that 1, α, α2, . . . , αD are linearly independent over F.

The matrix Mt,n is obtained from Gt by just replacing every occurrence of the variable
y by α. We now need to argue that Mt,n continues to satisfy Γt,Fp

(Mt,n) ≥
(
n2

t

)t
. By the

choice of α, it immediately follows that Γt,Fp
(Mt,n) = Γt,Fp

(Gt,n), since every monomial in
the set Πt(Mt,n) is mapped to a distinct power of α in {0, 1, . . . , D}, which are all linearly
independent over Fp.

The upper bound on the running time needed to construct Mt,n now follows from the
upper bound on the degree of the extension E, and from Lemma 11. J

The following theorem now directly follows.

I Theorem 15. Let p be any prime and d ≥ 2 be a positive integer. Then, there exists a
family of matrices {An}n∈N which can be constructed in time nO(n1−1/2d) such that every
depth-d linear circuit Fp computing An has size at least Ω(n1+1/2d). Moreover, the entries
of An lie in an extension of Fp of degree at most exp(O(n1−1/2d logn)).

Proof. We invoke Lemma 14 with parameter t set to n1−1/2d to get matrices {An} in time
nO(t) with the following lower bound on their Shoup-Smolensky dimension.

Γt,Fp(Mn) ≥
(
n2

t

)t
.

If there is a depth d linear circuit of size s computing the linear transformation An · x, the
following inequality must hold (from Lemma 9),

(
ed(2s/dt)d

)t ≥ (n2

t

)t
. (2)

If s ≤ n1+1/2d/2, we have,(
ed(2s/dt)d

)t ≤ (O(e/d))dt · nt .

8 We identify the elements of E with coefficient vectors of polynomials of degree at most D in Fp[z], and
in this representation α is identified with the polynomial z.
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We also have,(
n2

t

)t
≥
(
n1+1/2d

)t
.

For any constant d, these estimates contradict Equation 2, thereby implying a lower bound
of Ω(n1+1/2d) on s. J

2.6 Hard matrices over C
An analog for Lemma 14 can be proved over C by constructing a matrix whose Σt-measure
(rather than Γt,F as before) is large. The full statement and its proof appear in the full
version of the paper. The analog of Theorem 15 for C is given below, with the proof again
deferred to the full version.

I Theorem 16. There exists a family of matrices {An}n∈N over Q which can be constructed
in time nO(n1−1/2d) such that every depth-d linear circuit C computing An has size at least
Ω(n1+1/2d). Moreover, the entries of An are positive integers of bit complexity at most
exp(O(n1−1/2d logn)).

2.7 Lower bounds for depth-2 linear circuits
The lower bounds of Theorem 16 and Theorem 15 apply to any constant depth. However, here
we briefly remark that in the special case of d = 2 there is in fact a much simpler construction.
As discussed in the introduction, for depth-2 linear circuits, the best lower bounds currently
known is a lower bound of Ω

(
n log2 n

log logn

)
based on the study of super-concentrator graphs in

the work of Radhakrishnan and Ta-Shma [45].
In the full version of the paper, we give two simple constructions of matrices in quasi-

polynomial time which improve upon this bound.

3 Lower bounds via Hitting Sets

In this section, we prove lower bounds for several classes of depth 2 circuits using hitting
sets for matrices. We first recall the definition.

I Definition 17 (Hitting set for matrices, [18]). Let C ⊆ Fn×n be a set of matrices. A set
H ⊆ Fn × Fn is said to be a hitting set for C, if for every non-zero M ∈ C, there is a pair
(a,b) ∈ H such that

〈a,M · b〉 =
∑

i∈[n],j∈[m]

Mi,jaibj 6= 0.

3.1 Matrices with no sparse vectors in their kernel
In this section, we recall some simple, deterministic and efficient constructions of matrices
which do not have any sparse non-zero vector in their kernel. Such a construction forms the
basic building block for building hard instances of matrices for various cases of the matrix
factorization problem that we discuss in the rest of this paper. We start by describing such a
construction over the field of real numbers.
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3.1.1 Construction over R
The following is a weak form of a classical lemma of Descartes.

I Lemma 18 (Descartes’ rule of signs). Let d1 < d2 < · · · < dk be non-negative integers, and
let a1, a2, . . . , ak be arbitrary real numbers. Then, the number of distinct positive roots of the
polynomial

∑k
i=1 aix

di is at most k − 1.

Lemma 18 immediately gives the following construction of a small set of vectors, such that
not all of them can lie in the kernel of any matrix with at least one sparse row.

I Lemma 19. For i ∈ [n], let vi :=
(
1, i, i2, . . . , in−1) ∈ Rn. Then, for every 1 ≤ s ≤ n and

for every m× n matrix B over real numbers that has a non-zero row with at most s non-zero
entries, there is an i ∈ [s] such that B · vi 6= 0.

Proof. Let (a0, a1, . . . , an−1) ∈ Rn be any non-zero vector with at most s non zero entries.
So, the polynomial P (x) =

∑n−1
i=0 aix

i has sparsity at most s. From Lemma 18, it follows that
P has at most s− 1 positive real roots. Therefore, there exists an i ∈ [s] such that i is not a
root of P (x), i.e., P (i) 6= 0. The lemma now follows immediately by taking (a0, a1, . . . , an−1)
to be any non-zero s-sparse row of B. J

We remark that Lemma 19 also holds for matrices over C which have a sparse non-zero row
for the choice of the vectors vi as above. This follows from the application of Lemma 18
separately for the real and complex parts of a sparse complex polynomial, both of which are
individually sparse, with real coefficients and at least one of them is not identically zero. This
observation extends our results over R in Subsection 3.2 to the field of complex numbers.

3.1.2 Construction over finite fields
We now recall some basic properties of Reed-Solomon codes, and observe they can be used
as well in lieu of the construction in Lemma 19.

The proofs for these properties can be found in any standard reference on coding theory,
e.g., Chapter 5 in [25].

I Definition 20 (Reed Solomon codes). Let Fq = {α0, α1, . . . , αq−1} be the finite field with q
elements and let k ∈ {0, 1, . . . , q−1}. The Reed-Solomon code of block length q and dimension
k are defined as follows.

RSq[q, k] = {(P (α0), P (α1), . . . , P (αq−1)) : P (z) ∈ Fq[z],deg(P ) ≤ k − 1}.

I Lemma 21. Let Fq be the finite field with q elements and let k ∈ {0, 1, . . . , q − 1}. The
linear space RSq[q, k] as in Definition 20 satisfies the following properties.

Every non-zero vector in RSq[q, k] has at least q − k + 1 non-zero coordinates.
The dual of RSq[q, k] is the space of Reed Solomon codes of block length q and dimension
q − k.

I Lemma 22. Let Fq = {α0, α1, . . . , αq−1} be the finite field with q elements. For any
k ≤ q − 1, let Gk be the q × k matrix over Fq whose i-th row is (1, αi−1, α

2
i−1, . . . , α

k−1
i−1 ).

Then, every non-zero vector in Fqq in the kernel of (Gk)T has at least k+1 non-zero coordinates.

Proof. Observe that Gk is the precisely the generator matrix of Reed Solomon codes of block
length q and dimension k over Fq. In particular, the linear space RSq[q, k] as in Lemma 21
is spanned by the columns of Gk. Thus any vector w in the kernel of (Gk)T is in fact a
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codeword of the dual of these codes, which as we know from Item 2 of Lemma 21, is itself a
Reed Solomon code of block length q and dimension q − k. From the first item of Lemma 21,
it now follows that w has at least k + 1 non-zero coordinates. J

The following lemma is an analog of Lemma 19.

I Lemma 23. Let Fq = {α0, α1, . . . , αq−1} be the finite field with q elements, s ∈ [q] be a
parameter and let vi be the i-th column of the matrix Gk as in Lemma 22 for k = s.

Then, for every m× n matrix B over Fq that has a non-zero row with at most s non zero
entries, there is an i ∈ [s] such that B · vi 6= 0.

Proof. The proof follows from the observation that any non-zero vector orthogonal to all
the vectors v1, v2, . . . , vs must be in the kernel of the matrix GTs and hence by Lemma 22
must have at least s+ 1 non-zero entries. J

3.2 Lower bounds for symmetric circuits
We now prove our lower bounds for symmetric circuits. Recall that a symmetric circuit is a
linear depth-2 circuit of the form BTB.

I Theorem 24. There is an explicit family of positive semidefinite matrices {Mn} such that
every symmetric circuit computing Mn has size at least n2/4.

For the proof of this theorem, we give an efficient deterministic construction of a hitting
set H for the set of matrices which factor as BT ·B for B of sparsity less than n2/4, and as
outlined in Subsection 1.7, we construct a hard matrix M = M̃T · M̃ which is not hit by
such a hitting set and has a high rank.

We start by describing the construction of M .

I Lemma 25. Let {vi : i ∈ [n]} be the set of vectors defined in Lemma 19. There exists an
explicit PSD matrix M of rank n/2 such that vTi Mvi = 0 for i ∈ [n/2].

Proof. We wish to find a matrix M̃ of high rank such that M̃vi = 0 for i = 1, . . . , n/2. This
can be done by completing {vi : i ∈ {1, 2, . . . , n/2}} to a basis (in an arbitrary way) and
requiring that the other n/2 basis elements are mapped to linearly independent vectors under
M̃ . Conveniently, the set {vi : i ∈ [n]} is itself a basis for Rn: the matrix V whose rows are
the vi’s is a Vandermonde matrix.

We now describe this in some more detail. For i ∈ [n], let ei by the i-th elementary basis
vector. For a set of n2 variables Y = (yi,j)n×n consider the system of (non-homogeneous)
linear equations on the variables Y given by the n constraints.

Y · vi = 0 for i ∈ {1, 2, . . . , n/2}
Y · vi = ei for i ∈ {n/2 + 1, . . . , n} .

Since the vectors {vi : i ∈ [n]} are linearly independent, this system has a solution, which
can be found in polynomial time using basic linear algebra. More explicitly the j-th row
of Y , yj , is given by the solution to the linear system V · (yj)T = 0 for 1 ≤ j ≤ n/2 and
V · (yj)T = ej for n/2 + 1 ≤ j ≤ n where V is the Vandermonde matrix whose rows are the
vi’s. Let M̃ be the matrix whose rows are the solution to the system above. Also, note that
the rank of M̃ is at least n/2, as linearly independent vectors en/2+1, en/2+2, . . . , en are in
the image of the linear transformation given by M̃ .
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Now let M = (M̃T ) · M̃ , so that indeed M is a positive semi-definite matrix, and
rankM = n/2 as well. It immediately follows that

vTi Mvi = (vTi M̃T )(M̃vi) = 0. J

We are now ready to prove Theorem 24.

Proof of Theorem 24. Let M be the matrix from Lemma 25. Let B ∈ Rm×n be real matrix
such that ‖B‖0 < n2/4, and suppose towards contradiction that M = BTB.

It follows that the rank of B must be at least n/2. Thus, B must have at least n/2
non-zero rows. Now, since the total sparsity of B is at most n2/4 − 1, there must be a
non-zero row of B with sparsity at most (n2/4− 1)/(n/2) ≤ n/2. From Lemma 19, it follows
that there is an i ∈ [n/2] such that B · vi is non-zero. Thus, for this index i, we have that

vTi (BTB)vi = ‖Bvi‖22 6= 0,

contradicting Lemma 25. J

We remark that the proof of Theorem 24 goes through almost verbatim for symmetric
circuits over C (recall that over C these are circuits of form B∗B, where B∗ is the conjugate
transpose of B).

3.3 Lower bounds for invertible circuits
Recall that an invertible circuit is a circuit of them form BC where either B or C is invertible.
In this section, we prove Theorem 6, which shows a quadratic lower bound for such circuits.
For convenience, we restate the theorem.

I Theorem 26. There exists an explicit family of n × n matrices {An}, over any field F
such that F ≥ poly(n), such that every invertible circuit computing An has size n2/4.

The proof of this theorem appears in the full version of the paper.

4 Open Problems

An important problem that continues to remain open is to prove a lower bound of the form
Ω(n1+ε) for some constant ε > 0 for the depth-2 complexity of an explicit matrix. Such a
lower bound would follow from an explicit hitting set of size at most n2 − 1 for the class of
polynomials of the form xTBCy such that ‖B‖0 + ‖C‖0 ≤ n1+ε.

Another natural question here is to understand if this PIT based approach can be used for
explicit constructions of rigid matrices, which improve the state of art. One concrete question
in this direction would be to construct explicit hitting sets for the set of matrices which are
not (r, s) rigid for rs > ω(n2 log(n/r)). Using the techniques in this paper, it is possible
to construct hitting sets of size O(rs) for matrices which are not (r, s) rigid. But, this is
non-trivial only when rs ≤ cn2 for some constant c < 1, which is a regime of parameters
for which explicit construction of rigid matrices is already known. A sequence of recent
results [5, 15, 17] showed that many natural candidates for rigid matrices that posses certain
symmetries are in fact not as rigid as suspected. This approach might circumvent these
obstacles by giving an explicit construction which is not ruled out by these results.

A lower bound of s on the size of depth d linear circuits computing the linear transformation
Ax implies a lower bound of Ω(s) for depth Ω(d) algebraic circuits computing the degree-2
polynomial yTAx [7, 28] (so, we can convert lower bounds for circuits with n outputs to
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5:18 Lower Bounds for Matrix Factorization

lower bounds for circuits with 1 output). A notable open problem in algebraic complexity,
which is very related to this work, is to prove any super-linear lower bound for algebraic
circuits of depth O(logn) computing a polynomial with constant total degree. We refer
to [46] for a discussion on the importance of this problem.
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Abstract
There are only a few known general approaches for constructing explicit pseudorandom generators
(PRGs). The “iterated restrictions” approach, pioneered by Ajtai and Wigderson [2], has provided
PRGs with seed length polylogn or even Õ(logn) for several restricted models of computation. Can
this approach ever achieve the optimal seed length of O(logn)?

In this work, we answer this question in the affirmative. Using the iterated restrictions approach,
we construct an explicit PRG for read-once depth-2 AC0[⊕] formulas with seed length

O(logn) + Õ(log(1/ε)).

In particular, we achieve optimal seed length O(logn) with near-optimal error ε = exp(−Ω̃(logn)).
Even for constant error, the best prior PRG for this model (which includes read-once CNFs and
read-once F2-polynomials) has seed length Θ(logn · (log logn)2) [22].

A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials, a
generalization of elementary symmetric polynomials. Like elementary symmetric polynomials, subset-
wise symmetric polynomials provide a way to organize the expansion of

∏m

i=1(1 + yi). Elementary
symmetric polynomials simply organize the terms by degree, i.e., they keep track of the number of
variables participating in each monomial. Subset-wise symmetric polynomials keep track of more
data: for a fixed partition of [m], they keep track of the number of variables from each subset
participating in each monomial. Our tail bound extends prior work by Gopalan and Yehudayoff [17]
on elementary symmetric polynomials.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases Pseudorandom generators, Pseudorandom restrictions, Read-once depth-2
formulas, Parity gates

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.6

Funding Dean Doron: Supported by NSF grant CCF-1763311. Part of this work was done while at
UT Austin and supported by NSF grant CCF-1705028.
Pooya Hatami: Supported by NSF grant CCF-1947546. Part of this work was done while at UT
Austin and supported by a Simons Investigator Award (#409864, David Zuckerman).
William M. Hoza: Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington
Fellowship from UT Austin.

Acknowledgements We thank David Zuckerman for very helpful discussions.

© Dean Doron, Pooya Hatami, and William M. Hoza;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 6; pp. 6:1–6:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1862-8341
https://cs.stanford.edu/~ddoron/
mailto:ddoron@stanford.edu
https://orcid.org/0000-0001-7928-8008
https://pooyahatami.org/
mailto:pooyahat@gmail.com
https://orcid.org/0000-0001-5162-9181
https://williamhoza.com/
mailto:whoza@utexas.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Log-Seed Pseudorandom Generators via Iterated Restrictions

1 Introduction

The famous “L vs. BPL” problem asks whether randomness is ever truly necessary for
space-efficient computation. To prove L = BPL, it suffices to design a suitable pseudorandom
generator (PRG), i.e., an efficient algorithm that stretches a short truly random seed to a
long bitstring that “looks random”. To be more specific, the action of a small-space algorithm
on its random bits can be modeled by a read-once branching program (ROBP). Therefore, to
prove L = BPL, it suffices to design an efficient PRG with seed length O(logn) that fools
polynomial-width ROBPs.

A large and growing body of work has made significant progress toward this ambitious
goal. Most work on L vs. BPL can be broadly divided into two main approaches.

1.1 The “Seed Recycling” Approach
The “classical” approach to L vs. BPL is based on the observation that there is limited
communication between the first half of an ROBP and its second half. Therefore, after using
a few truly random bits to generate the first half of a pseudorandom string, the truly random
bits can be efficiently recycled to generate the second half of the pseudorandom string. This
insight is essentially due to Nisan [26].

Of the line of work that uses this approach, some highlights include PRGs for polynomial-
width ROBPs with seed length O(log2 n) [26, 20, 15]; PRGs for constant-width “regular”
ROBPs with seed length Õ(logn) [7, 11, 21, 32, 6]; and derandomization techniques that
go beyond the construction of PRGs [27, 31]. More recently, this “seed recycling” approach
has been used to obtain improved generators for polynomial-width ROBPs when the error
parameter ε is very small [5, 19].

1.2 The “Iterated Restrictions” Approach
The more “modern” approach to L vs. BPL is to design a pseudorandom generator by iterated
pseudorandom restrictions. That is, we pseudorandomly assign values to a pseudorandomly
chosen subset of the variables, and then repeat the process to assign values to all variables.
Intuitively, designing a pseudorandom restriction for some function f is easier than fooling
f outright, because designing a pseudorandom restriction amounts to fooling a “smoothed
out” version of f [16], or equivalently, designing a PRG that would fool f if some noise
were added [18]. This “iterated restrictions” approach goes back to early work by Ajtai and
Wigderson [2], but its modern incarnation is largely due to Gopalan et al. [16].

Of the line of work that takes this approach, some highlights include PRGs for arbitrarily-
ordered ROBPs with seed length polylogn [33, 9, 14]; PRGs for width-3 ROBPs with seed
length Õ(logn) [16, 33, 24]; PRGs for bounded-depth read-once formulas with seed length
Õ(logn) [16, 10, 13]; and near-optimal PRGs for arbitrary-order product tests [18, 22].

1.3 Log-Seed PRGs and Our Main Result
At two extremes, one can either try to derandomize all of BPL as efficiently as possible
(e.g. [26, 31]), or else one can try to optimally derandomize as much of BPL as possible
(e.g. [28, 29]). Let us adopt the second goal.

In some cases, the “seed recycling” approach has indeed yielded PRGs with truly optimal
seed length, at least for moderate error. For example, PRGs are known with seed length
O(logn) that fool all O(logn)-space algorithms that use only polylog(n) random bits in the
first place [1, 28, 19]. For another example, PRGs for constant-width “permutation” ROBPs
are known with seed length O(logn) [11, 21, 32].
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The present work considers the question of whether the “iterated restrictions” approach
can also yield a PRG with seed length O(logn) for some interesting class of tests. At
first glance, this might seem doubtful, since after all we must pay for many pseudorandom
restrictions. Nevertheless, we answer in the affirmative, proving the following theorem.

I Theorem 1. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once depth-2
AC0[⊕] formulas on n input bits with seed length

O(logn) + Õ(log(1/ε)).

Specifically, the seed length of our PRG is O
(
logn+ log(1/ε) · (log log(1/ε))5). One can

prove a lower bound of Ω(logn+ log(1/ε)) on the seed length of any PRG for this model.1

1.4 Read-Once Depth-2 AC0[⊕] Formulas
The class of functions that is fooled by our PRG (read-once depth-2 formulas over the basis
{∧,∨,⊕}, with negations allowed at the inputs for free) is certainly of interest. It includes
read-once CNFs and read-once F2-polynomials as special cases. The problems of fooling
these classes have both received a lot of attention [12, 16, 4, 23, 24, 22]. Previously, even for
read-once CNFs, PRGs with seed length O(logn) were only known for constant error [8, 12],
whereas our PRG maintains seed length O(logn) with near-optimal error ε = exp(−Ω̃(logn)).
Meanwhile, for read-once F2-polynomials, no PRGs with seed length O(logn) were known at
all prior to our work.

Gopalan et al. did give a PRG with near-optimal seed length Õ(log(n/ε)) for read-once
CNFs, and more generally for read-once depth-2 AC0[⊕] formulas with the property that
the output gate is not ⊕ [16]. They used their PRG to construct a near-optimal hitting
set for width-3 ROBPs [16]. A subsequent line of work provided near-optimal PRGs for all
read-once depth-2 AC0[⊕] formulas [23, 24, 22].2

Conversely, a read-once depth-2 AC0[⊕] formula can be simulated by a width-4 ROBP
(after suitably permuting the variables). The problems of designing improved PRGs for
width-4 ROBPs and for read-once AC0[⊕] formulas of any constant depth are two major
frontiers in unconditional pseudorandomness [24, 13]. The model we study in this paper is
an interesting special case.

1.5 Overview of Our Approach
Let us focus on the problem of designing a PRG with seed length O(logn), with ε as
small as possible. For simplicity, assume the test function is a read-once F2-polynomial
f = f1 ⊕ · · · ⊕ fm.

1.5.1 One Restriction
Ultimately, we wish to design a full PRG via iterated pseudorandom restrictions. To begin,
we will explain how to construct just one pseudorandom restriction that assigns values to
a constant fraction of the inputs. We use almost O(logn)-wise independence to select the
subset of inputs to keep “alive” for each coordinate, where the probability of staying alive is
a constant p ≈ 1. We use a small-bias distribution to assign values to the remaining inputs.
Sampling this pseudorandom restriction only costs O(logn) truly random bits.

1 This lower bound holds already for fooling parity functions.
2 The PRGs we are referring to were designed to fool read-once F2-polynomials, but in fact they fool all

of read-once depth-2 AC0[⊕].

CCC 2020
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We must show that our pseudorandom restriction X is correct. That is, we need to show
that∣∣∣∣ EX,U [f |X(U)]− E[f ]

∣∣∣∣ ≤ ε,
where U is a uniform random variable over {0, 1}n.

We will outline three different arguments for proving correctness, each of which works
under certain assumptions about f . We defer to the full proof to explain how to stitch these
three arguments together to get a general proof of correctness for any f .

1.5.1.1 Argument 1: Keeping Many Terms Alive

Assume f is a homogeneous F2-polynomial of degree w � log logn, and assume there are
many terms, m ≥ 3w. (For simplicity, in this informal discussion, we are making stronger
assumptions than necessary.) Since f is the parity of all these terms, one can show from
these assumptions that f is approximately balanced, i.e., E[f ] ≈ 1

2 . Under a truly random
restriction, for each term, the probability that all variables in the term remain alive would
be pw, so with high probability, the number of nonconstant terms after the restriction would
be at least m · pw ≥ (3p)w. Standard techniques suffice to derandomize this calculation, so
after our pseudorandom restriction, with high probability, there are still many terms alive –
enough that the restricted function is still approximately balanced.

1.5.1.2 Argument 2: The Forbes-Kelley Approach [14]

Building on prior work [30, 18, 9], Forbes and Kelley showed that a restriction based on
δ-biased distributions preserves the expectation of any arbitrary-order constant-width ROBP
to within error 1/n, where log(1/δ) = O(logn log logn) [14]. Our test function f can be
simulated by a width-4 ROBP under some variable order. Unfortunately, given our budget
of O(logn) truly random bits, we can only afford to sample from a (1/poly(n))-biased
distribution.

To move forward, let us turn things around a little: the analysis of Forbes and Kelley
shows that a restriction based on δ-biased distributions preserves the expectation to within
error ε, where ε = exp(−Ω(log(1/δ)/ log log(1/δ))). The point is that this latter statement
holds even for a relatively large δ, assuming the ROBP reads at most 1/ε variables. Therefore,
if we assume that our test function f only reads a few variables (say, polylogn many), then the
Forbes-Kelley approach shows that our pseudorandom restriction preserves the expectation
of f to within error ε = exp(−Ω(logn/ log logn)).

1.5.1.3 Argument 3: Subset-Wise Symmetric Polynomials

Assume this time that the degree of every term of f is in the interval [C log logn,C logn] for
some appropriate constant C. Assume also that for every w, there are at most 3w terms of
degree w. For this case, we return to an older approach based on symmetric polynomials
[16, 17, 24], introduced by Gopalan et al. [16]. The idea is as follows. Let Z ∈ {0, 1}n
indicate which variables will remain alive. For convenience, for any {0, 1}-valued function f ,
let f = (−1)f . Having already sampled Z, our remaining task is to argue that the small-bias
distribution Y fools the “bias function” defined by

f̃(x) = E
U

[f(x+ Z ∧ U)].
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Translating {0, 1} to {±1}, the ⊕ operation becomes multiplication, i.e., f =
∏
i fi. For

independent random variables, product and expectation can be interchanged, so the bias
function of f is the product of the bias functions of the fi-s. Define f̂i so that the bias
function of fi is E[fi] · (1 + f̂i). That way,

f̃ = E[f ] ·
m∏
i=1

(1 + f̂i). (1)

The approach used in prior work [16, 17, 24] is to expand Equation (1) in terms of elementary
symmetric polynomials. Recall that for y ∈ Rm, the k-th elementary symmetric polynomial
Sk(y) is defined by

Sk(y) =
∑
I⊆[m]
|I|=k

∏
i∈I

yi.

We can expand Equation (1) as

f̃ = E[f ] ·
m∑
k=0

Sk(f̂1, . . . , f̂m). (2)

Therefore, the error of our pseudorandom restriction is captured by
∑m
k=1 Sk(f̂1, . . . , f̂m).

Now we can reason as follows. Pick a cutoff point k0.
For k ≤ k0, we do a Fourier L1 calculation to show that Sk(f̂1, . . . , f̂m) has near-zero
expectation even under the small-bias distribution Y .
For k ≈ k0, we do a variance calculation to show that Sk(f̂1, . . . , f̂m) is small with
high probability under the uniform distribution, hence also under Y by the previous L1
calculation.
Finally we invoke a tail bound [17], which says that if Sk0 and Sk0+1 are both small, then
the sum of all subsequent values is also small.

How should we choose the cutoff point k0? If f is a homogeneous F2-polynomial of degree w,
then we should pick k0 = Θ( logn

w ). That way, k0 is small enough for the L1 calculation to
work out, because the number of monomials in Sk0(y1, . . . , ym) is(

m

k0

)
≤ mk0 ≤ 3wk0 ≤ poly(n).

But at the same time, k0 is large enough to sufficiently dampen Sk(f̂1, . . . , f̂m) for k ≈ k0.
In fact, one can show that

E[S2
k(f̂1(Y ), . . . , f̂m(Y ))] ≤ exp(−Ω(wk))

k! ,

which for k ≈ k0 is 1
poly(n)·k! . This is small enough for the tail bound to give an overall error

of 1/ poly(n).
The difficulty, of course, is that f is not necessarily homogeneous, i.e., the terms of

f do not necessarily all have the same degree. To address this difficulty, following prior
work, let us partition the terms of f into Q = O(log logn) buckets based on degree, say
f = F1 ⊕ F2 ⊕ · · · ⊕ FQ. For each bucket q ∈ [Q], there is a suitable cutoff point k0, so our
restriction preserves the expectation of Fq.

CCC 2020
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At this point, the approach taken by prior work has been to invoke a generic XOR lemma
(see Lemma 6) to argue that our restriction must also preserve the expectation of the parity
of the Fq’s, i.e., our test function f . This XOR lemma is a suitable generalization of the
fact that the Fourier L1 norm is submultiplicative. Unfortunately, invoking the XOR lemma
would require us to start with a smaller-bias distribution Y . Effectively, to invoke the XOR
lemma, we would have to pay a factor of Q in the seed length, which we cannot afford.

Therefore, we take a different approach. Our observation is that ideally, the cutoff point k0

should guarantee that every product
∏
i∈I f̂i appearing in Sk0(f̂1, . . . , f̂m) involves Θ(logn)

of the input variables x1, . . . , xn. Intuitively, that’s why the right choice is k0 = Θ( logn
w )

for degree w. When the terms of f do not all have the same degree, the products
∏
i∈I f̂i

appearing in Sk(f̂1, . . . , f̂m) do not all involve the same number of input variables x1, . . . , xn,
hence there isn’t a well-defined correct choice of k0. This suggests that Equation (2) is simply
not the best expansion of Equation (1).

These observations motivate the definition of subset-wise symmetric polynomials. We
defer to Section 2 for the precise definition, but the point is that they allow us to give a
more refined expansion of Equation (1), where instead of just keeping track of k (the number
of fi-s participating in each monomial of Sk) we keep track of a whole vector ~k giving the
numbers of fi-s from each bucket participating in each monomial of S~k. This allows us to
define a norm ‖~k‖ that measures the number of input variables x1, . . . , xn that participate
in each monomial of S~k(f̂1, . . . , f̂m).

We expand Equation (1) in terms of subset-wise symmetric polynomials by summing over
all vectors ~k:

f̃ = E[f ] ·
∑
~k∈NQ

S~k(f̂1, . . . , f̂m).

Now we can cut off this sum at ‖~k‖ = Θ(logn). To complete the argument, we extend known
tail bounds for elementary symmetric polynomials [17] to the case of subset-wise symmetric
polynomials.

1.5.2 Iterating the Restriction to Get a Full PRG

So far, we have outlined the proof that our pseudorandom restriction preserves the expectation
of the test function f . Our pseudorandom restriction costs O(logn) truly random bits. But
our goal is to design a full PRG with seed length O(logn). It seems that one restriction
already uses up our entire budget of truly random bits, so how can we afford to iterate
the process?

A key insight is that if f only reads n′ variables (n′ ≤ n), then a pseudorandom restriction
for f ought to only cost O(logn′) truly random bits rather than O(logn). This intuition can
be justified using standard constructions of n′-wise small-bias distributions [25, 3], provided
n′ ≥ logn. (A similar insight was used previously by Lee and Viola [23].) Let C be a constant
such that one pseudorandom restriction costs C logn′ truly random bits.

To simplify the discussion, assume f is homogeneous of degree w = Θ(logn). Each
restriction keeps approximately a p-fraction of variables alive. For simplicity, assume that in
each term, exactly a p-fraction of variables remain alive, i.e., assume that after i pseudorandom
restrictions, the restricted F2-polynomial is homogeneous of degree piw.
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We divide into two cases. For the first case, suppose that the number of terms is always
at most exponential in the degree. Specifically, suppose the number of terms is at most 16w′ ,
where w′ is the degree at that stage. In this case, our pseudorandom restrictions get cheaper
and cheaper as we go. Quantitatively, after i restrictions, the restricted polynomial reads
only n′ variables, where n′ = piw · 16piw. Therefore, the cost of restriction i+ 1 is only

C log
(
piw · 16p

iw
)
≤ 5C · piw.

Therefore, if we do a total of t pseudorandom restrictions, the total cost is bounded by

t−1∑
i=0

5Cpiw.

This geometric sum is bounded by O(w) = O(logn), regardless of t. To optimize the error of
our PRG, we choose t = O(log log logn); after this many restrictions, the number of living
variables is small enough that we can stop the iteration and apply a prior near-optimal PRG
by Lee [22] to finish the job.

For the second case, suppose that at some stage the number of terms is enormous
compared to the degree: the degree is w′ and the number of terms is more than 16w′ . This
setting was studied previously by Meka, Reingold, and Tal [24], who gave an optimal PRG
for any function that can be written as a parity of an enormous number of functions on small
disjoint variable sets. Therefore, in this case, we can stop doing pseudorandom restrictions,
and instead fool the function outright using the PRG by Meka et al. [24].

Of course we do not know in advance which case we are in, but this difficulty can be
resolved by straightforward XORing.

2 Subset-Wise Symmetric Polynomials

In this section, we will formally define subset-wise symmetric polynomials and prove suitable
tail bounds for them. This section can be read on its own, independent of the application to
PRGs. We start by recalling known tail bounds for elementary symmetric polynomials.

2.1 Gopalan and Yehudayoff’s Bounds for Symmetric Polynomials

As a reminder, the k-th elementary symmetric polynomial is defined by

Sk(y) =
∑
I⊆[m],
|I|=k

∏
i∈I

yi.

We rely on the following tail bound by Gopalan and Yehudayoff [17]. As discussed in
Section 1.5.1, the bound says that if two Sk-s in a row are small, then all subsequent Sk-s
are small.

I Theorem 2 ([17]). Let y ∈ Rm, θ > 0, and ` ∈ N satisfy S2
` (y) ≤ θ`

`! and S2
`+1(y) ≤ θ`+1

(`+1)! .
Then, for every k ≥ `,

|Sk(y)| ≤
(

64e2θ`

k

)k/2
.

CCC 2020
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The exact statement of Theorem 2 does not appear in Gopalan and Yehudayoff’s work [17],
but it follows readily from their analysis, and it was used previously by Meka et al. [24,
Theorem 5.2].3

2.2 Our Tail Bounds for Subset-Wise Symmetric Polynomials
Let B = (B1, . . . , BQ) be a partition of [m], namely [m] = B1t· · ·tBQ. (The sets B1, . . . , BQ
correspond to the “buckets” discussed in Section 1.5.1.) Throughout this paper, let N denote
the set of nonnegative integers, N = {0, 1, 2, . . . }. For a vector ~k = (~k[1], . . .~k[Q]) ∈ NQ and
y ∈ Rm, we define the following polynomial:

S~k,B(y) =
∑
I⊆[m],

∀q,|Bq∩I|=~k[q]

∏
i∈I

yi.

We name these polynomials as subset-wise symmetric polynomials, since for every q ∈ [Q],
S~k(y) when restricted to the Bq variables is a degree ~k[q] symmetric polynomial.

Throughout this section we fix B = (B1, ..., BQ) to be a partition of [m]. When the
partition B is clear from the context, we will simply write S~k instead of S~k,B. To formulate
our tails bounds for the subset-wise symmetric polynomials, we will need the following
auxiliary polynomials:

R~k(y) def= S2
~k
(y) ·

Q∏
q=1

~k[q]!.

Given c > 1, we will assign each vector ~k ∈ NQ a weight, defined as

‖~k‖(c) =
Q∑
q=1

cq~k[q].

(In our PRG application, Bq will be the set of terms with approximately cq input variables,
so ‖~k‖(c) will be approximately the number of input variables participating in each monomial
of S~k, as outlined in Section 1.5.1.) It is easy to verify that the above weight function is
indeed a norm; however, we will not be using this observation.

The main result of this section is a tail-bound for subset-wise symmetric polynomials. In
Lemma 3, the parameter A is analogous to the “cutoff point” k0 discussed in Section 1.5.1.

I Lemma 3. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let Y be

a random variable taking values in Rm. Moreover, suppose for every ~k ∈ NQ with ‖~k‖(c) ≤ A,

E
Y

[
R~k(Y )

]
≤ 2− 1

8‖~k‖(c) .

Then, except with probability 2−A/223 over y ∼ Y ,∑
~k∈NQ,
‖~k‖(c)>A

|S~k(y)| ≤ 2− A
1024 .

3 The careful reader will notice a slight discrepancy between the exact constants of Theorem 2 on the
one hand and the statements by Gopalan and Yehudayoff [17] and Meka et al. [24] on the other. This
discrepancy reflects a minor mistake in the original paper by Gopalan and Yehudayoff [17] that we have
here corrected.
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Lemma 3 is similar in spirit to Theorem 2: it says that if the “early” subset-wise sym-
metric polynomials are small (with high probability), then the “late” subset-wise symmetric
polynomials are all small (with high probability).

2.3 Non-probabilistic Tail Bound
Before moving to the proof of Lemma 3 in the next subsection, here we first give a tail-bound
in the case when the input y satisfies some useful properties. We will later prove Lemma 3,
by showing that a random Y satisfies these properties with high probability. Given a vector
~k ∈ NQ, we define the restriction of ~k to a set Q ⊆ [Q] by

~k|Q[q] =
{
~k[q] if q ∈ Q,
0 if q /∈ Q.

Our non-probabilistic tail bound goes as follows.

I Lemma 4. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let

y ∈ Rm be a fixed vector. Suppose that for every ~k ∈ NQ, with A/105 ≤ ‖~k‖(c) ≤ A, and for
every pair of disjoint sets Q1,Q2 ⊆ [Q] satisfying {q : ~k[q] > 1} ⊆ Q1 ∪Q2, we have

R(~k|Q1)(y) ·R(~k|Q2)(y)4 ≤ 2− 1
32 ·‖~k‖(c) .

Then,∑
~k∈NQ,
‖~k‖(c)>A

∣∣S~k(y)
∣∣ ≤ 2− A

1024 .

Proof. For a fixed ` ∈ N and q ∈ [Q], define

S`,q =
∑

I⊆Bq,|I|=`

∏
i∈I

yi,

which is the `-th elementary symmetric polynomial applied to (yi)i∈Bq . Similarly, define

R`,q = S2
`,q(y) · `!.

Fix ~k with ‖~k‖(c) > A, let λ = 105 ·‖~k‖(c)/A and let ~k′ ∈ NQ be such that ~k′[q] = d~k[q]/λe.
Thus, A/105 ≤ ‖~k′‖(c) ≤ A/2. Let Q := {q ∈ Q : ~k[q] ≥ 1}, and for each q ∈ Q, let θq > 0
be the smallest4 number satisfying

R~k′[q],q ≤ θ
~k′[q]
q and R~k′[q]+1,q ≤ θ

~k′[q]+1
q . (3)

By Theorem 2,

∣∣∣S~k[q],q

∣∣∣ ≤ (64e2θq ~k′[q]
~k[q]

)~k[q]/2

.

4 It is possible that θq = 0 satisfies Equation (3). In this degenerate case, we must have S~k[q],q = 0. This
implies S~k(y) = 0, hence Equation (4) trivially holds.
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Subset-wise symmetric polynomials by design can be expressed as a product of elementary
symmetric polynomials, hence

|S~k(y)| =
Q∏
q=1

∣∣∣S~k[q],q(y)
∣∣∣ ≤ ∏

q∈Q

(
64e2θq ~k′[q]

~k[q]

)~k[q]/2

=

∏
q∈Q

θ
~k[q]/λ
q

λ/2

·
∏
q∈Q

(
8e
√
~k′[q]/~k[q]

)~k[q]
.

By our choice of θq,

θ
~k′[q]
q = max

{
R~k′[q],q(y), R~k′[q]+1,q(y)~k′[q]/(~k′[q]+1)

}
≤ max

{
R~k′[q],q(y), R~k′[q]+1,q(y),

√
R~k′[q]+1,q(y)

}
.

Observe that ~k[q]/λ ∈
[
~k′[q]− 1, ~k′[q]

]
, and thus θ

~k[q]/λ
q is between θ

~k′[q]−1
q and θ

~k′[q]
q . If

~k′[q] = 1, then θk
′
q−1
q = 1, and otherwise θ

~k′[q]−1
q is between θ

~k′[q]
q and

√
θ
~k′[q]
q . Therefore,

θ
~k[q]/λ
q ≤ max

{
θ
~k′[q]
q ,

√
θ
~k′[q]
q ,1~k′[q]=1

}
≤ max

{
R~k′[q],q(y), R~k′[q],q(y)1/4, R~k′[q]+1,q(y), R~k′[q]+1,q(y)1/4,1~k′[q]=1

}
.

For every q, choose ~k′′[q] ∈ {~k′[q], ~k′[q] + 1} such that

θ
~k[q]/λ
q ≤ max

{
R ~k′′[q],q(y), R ~k′′[q],q(y)1/4,1 ~k′′[q]=1

}
.

Note that ‖ ~k′′‖(c) ≥ ‖~k′‖(c) and

‖ ~k′′‖(c) ≤ ‖~k′‖(c) +
Q∑
q=1

cq ≤ ‖~k′‖(c) + A

106 < A.

Therefore, there exist disjoint sets Q1,Q2 ⊆ [Q] such that {q : ~k′′[q] > 1} ⊆ Q1 ∪ Q2, and
that for every q ∈ Q,

θ
~k[q]/λ
q ≤


R ~k′′[q],q(y) if q ∈ Q1,

R ~k′′[q],q(y)1/4 if q ∈ Q2,

1 otherwise.

Multiplying over q ∈ Q, we get∏
q∈Q

θ
~k[q]/λ
q ≤

∏
q∈Q1

R ~k′′[q],q(y) ·
∏
q∈Q2

R ~k′′[q],q(y)1/4

=
(
R(~k′′|Q1)(y)4 ·R(~k′′|Q2)(y)

)1/4
≤ 2− 1

128 ·‖ ~k′′‖(c) ≤ 2− 1
128 ·‖~k′‖(c) .
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As a result,

|S~k(y)| ≤ 2−
‖~k′‖(c)

128 ·λ2 ·
∏
q∈Q

(
8e
√
~k′[q]/~k[q]

)~k[q]

≤ 2−
‖~k′‖(c)

256 ·λ ·
∏
q∈Q

(
8e
√

2/105
)~k[q]

·
(√

105/2
)λ

≤ 2−
‖~k′‖(c)

256 ·λ · 28Q·λ · 4−‖~k‖1 ≤ 2−
‖~k′‖(c)

512 ·λ · 4−‖~k‖1 ≤ 2−
‖~k‖(c)

512 · 4−‖~k‖1 . (4)

To see the second inequality, observe that when ~k[q] > λ, then
(

8e
√
~k′[q]/~k[q]

)~k[q]
≤

(8e
√

2/105)~k[q], and otherwise
(

8e
√
~k′[q]/~k[q]

)~k[q]
≤ (8e)λ. Summing up over all choices of

~k we get,∑
~k∈NQ,‖~k‖(c)>A

|S~k(y)| ≤
m∑
L=1

∑
~k∈NQ,

‖~k‖(c)>A,‖~k‖1=L

2−
‖~k‖(c)

512 · 4−L

≤ 2− A
512 ·

m∑
L=1

4−L ·
∣∣∣{~k ∈ Nq : ‖~k‖1 = L

}∣∣∣
= 2− A

512 ·
m∑
L=1

4−L ·
(
Q− 1 + L

Q− 1

)

≤ 2− A
512 ·

m∑
L=1

4−L · 2Q−1+L ≤ 2− A
512 · 2Q−1 ·

m∑
L=1

2−L ≤ 2− A
1024 .J

2.4 Probabilistic Tail Bound: Proof of Lemma 3
Proof. Let ~k, Q1, and Q2 be as in the statement of Lemma 4. Using the Cauchy-Schwarz
inequality and the concavity of (·)1/4, we get

E
[(
R~k|Q1

(Y )
)1/8

·
(
R~k|Q2

(Y )
)1/2

]
≤
(
E
[(
R~k|Q1

(Y )
)1/4

]
· E
[
R~k|Q2

(Y )
])1/2

≤
(
E
[
R~k|Q1

(Y )
]1/4
· E
[
R~k|Q2

(Y )
])1/2

≤
(

2− 1
32 ·‖~k|Q1‖(c) · 2− 1

8 ·‖~k|Q2‖(c)
)1/2

≤ 2− 1
64 ·‖~k|Q1∪Q2‖(c)

≤ 2−
1

64 ·(‖~k‖(c)−( c
c−1 )·cQ)

≤ 2−
1

64 ·(‖~k‖(c)− A
20000 )

≤ 2− 1
128 ·‖~k‖(c) .

Therefore, by Markov’s inequality, except with probability at most 2−‖~k‖(c)/256 ≤
2−A/2560000, we have(

R~k|Q1
(Y )
)
·
(
R~k|Q2

(Y )
)4
≤ 2−

‖~k‖(c)
32 .
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6:12 Log-Seed Pseudorandom Generators via Iterated Restrictions

The above analysis was done for a fixed choice of ~k, Q1, and Q2. The number of choices for
such ~k is AQ (which is subexponential in A), and the number of such Q1, Q2 is at most 3Q
(which is a polynomial in A), thus Lemma 3 follows by a union bound. More precisely, one
can check that since A ≥ 260Q2, then (3A)Q · 2−A/2560000 ≤ 2−A/223

. J

3 Pseudorandomness Preliminaries

Having completed our analysis of subset-wise symmetric polynomials, we now move on to
setting the groundwork for our PRG construction and analysis.

3.1 Probability Basics
Let Un denote the uniform distribution over {0, 1}n. We will simply write U if n is clear
from context. For f : {0, 1}n → R, as a shorthand, we write E[f ] to denote E[f(U)] and
Var[f ] to denote Var[f(U)]. If X is a distribution over {0, 1}n, we say that X ε-fools f , or
X fools f with error ε, if

|E[f(X)]− E[f ]| ≤ ε.

We say that X ε-fools a family F of functions, if it ε-fools every f ∈ F .

3.2 Small Bias
A parity function is a function of the form f(x) =

⊕
i∈I xi for some set I ⊆ [n]. We say that

a random variable Y ∈ {0, 1}n is δ-biased if it δ-fools all parity functions. We say that Y is
n′-wise δ-biased if it δ-fools all parity functions on at most n′ bits, i.e., all parity functions
with |I| ≤ n′. There are explicit constructions of n′-wise δ-biased distributions that can be
sampled with O(log(n′/δ) + log logn) truly random bits [25, 3].

Recall that for a function f : {0, 1}n → R with Fourier expansion f =
∑
S⊆[n] f̂(S) · χS ,

the L1 norm of f is defined by

L1(f) =
∑
S⊆[n]

|f̂(S)|.

This norm is subadditive (L1(f + g) ≤ L1(f) + L1(g)) and submultiplicative (L1(f · g) ≤
L1(f) · L1(g)). Functions with bounded L1 norm are fooled by small-bias distributions:

B Claim 5. If f : {0, 1}n → R and Y is δ-biased, then Y fools f with error 2δ · L1(f).

We will also rely on the following “XOR lemma” for small-bias distributions.

I Lemma 6 ([16, 24]). Let 0 < δ < ε ≤ 1. Let f1, . . . , fk : {0, 1}n → [−1, 1] depend on
disjoint variable sets, and define

f(x) =
k∏
i=1

fi(x).

If every δ-biased distribution ε-fools every fi, then every δk-biased distribution fools f with
error 16k · 2ε.
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3.3 Limited Independence
For p ∈ [0, 1], let Bernoulli(p)⊗n denote the distribution over {0, 1}n where the bits are
i.i.d. and each bit has expectation p. For example, Un = Bernoulli(1/2)⊗n. For a set
I = {i1 < i2 < · · · < i`} ⊆ [n] and a string z ∈ {0, 1}n, we let z|I = zi1zi2 . . . zi` ∈ {0, 1}`.
We say that Z ∈ {0, 1}n is γ-almost k-wise independent with marginals p if for every set
I ⊆ [n] with |I| ≤ k, the total variation distance between Z|I and Bernoulli(p)⊗|I| is at
most γ.

B Claim 7. For every n, k, C ∈ N and γ > 0, there is an explicit γ-almost k-wise independent
distribution with marginals p = 1−2−C that can be sampled with O(Ck+log(1/γ)+log logn)
truly random bits.

Proof. Sample Y ∈ {0, 1}Cn from a (Ck)-wise (2−Ck/2−1γ)-biased distribution. Note that
as discussed above Y can be sampled using

O
(
log(2Ck/γ) + log logn

)
= O (Ck + log(1/γ) + log logn)

truly random bits. Divide Y into n blocks Y (1), . . . , Y (n) ∈ {0, 1}C , and set

Zi = 0 ⇐⇒ Y (i) = 1C .

The desired distribution is Z ∈ {0, 1}n.
To prove correctness, let f : {0, 1}n → {0, 1} be any test function depending on only k

variables. There is a function g : {0, 1}Cn → {0, 1} depending on only Ck variables such that
f(Z) = g(Y ). By Claim 5,

|E[f(Z)]− E[f(Bernoulli(p)⊗n)]| = |E[g(Y )]− E[g]|

≤ 2−Ck/2−1 · 2γ · L1(g) ≤ γ. C

The expectation parameter p can be “amplified” by drawing independent samples and
combining with a coordinate-wise conjunction:

B Claim 8. Let Z be γ-almost k-wise independent with marginals p. Draw t independent
samples z(1), . . . , z(t) ∼ Z, and let Z ′ = z(1) ∧ · · · ∧ z(t). Then Z ′ is (tγ)-almost k-wise
independent with marginals pt.

Proof sketch. The proof is a simple hybrid argument. Draw t independent samples r(1), . . . ,

r(t) ∼ Bernoulli(p)⊗n, and let

Z(i) = z(1) ∧ · · · ∧ z(i) ∧ r(i+1) ∧ · · · ∧ r(t).

One can show by induction on i that Z(i) is (iγ)-almost k-wise independent with marginals
pt. C

3.4 PARITY ◦ AND Formulas
Recall that our main result (Theorem 1) is a PRG for read-once depth-2 AC0[⊕]. For most
of the paper, we will focus on the special case that the root gate is ⊕ and its immediate
children are ∧ gates. That is, define a PARITY ◦AND formula to be a function of the form

f(x) =
m⊕
i=1

fi(x),
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where each fi is a conjunction of literals, i.e., variables or their negations. We refer to
f1, . . . , fm as the terms of f . We say that the formula is read-once if each variable xi appears
in at most one term. Most of our effort will be spent fooling read-once PARITY ◦ AND
formulas. Note that this is a slight generalization of read-once F2-polynomials due to the
availability of ¬ gates. We will explain in Section 5.6 why it is sufficient to focus on this
special case.

The width of a term is the number of variables in the term; the width of f is the maximum
width of its terms. The length of f is m, the number of its terms.

For convenience, if f is a function taking values in {0, 1}, we let f = (−1)f . That way, if
f is a PARITY ◦AND formula,

f =
m∏
i=1

fi.

3.5 Restrictions
A restriction is a string x ∈ {0, 1, ?}n; intuitively, xi = ? means that xi has still not been
assigned a value. We define an associative composition operation on restrictions by the
formula

(x ◦ x′)i =
{
xi if xi 6= ?,

x′i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by

f |x(x′) = f(x ◦ x′).

A restriction x can be specified by two strings y, z ∈ {0, 1}n using the following notation5.
Define Res: {0, 1}n × {0, 1}n → {0, 1, ?}n by

(Res(y, z))i =
{
? if zi = 1,
yi if zi = 0.

In words, z indicates the ? positions, and y provides the bits in the non-? positions.

3.6 Pseudorandom Restrictions
Let Y,Z be distributions over {0, 1}n, and let X = Res(Y, Z). For a function f : {0, 1}n → R,
we say that the distribution X preserves the expectation of f with error ε if

|E[f |X(U)]− E[f ]| ≤ ε.

An equivalent condition is that |E[f(Y + Z ∧ U)]− E[f ]| ≤ ε, where + denotes addition
over Fn2 and ∧ denotes coordinate-wise conjunction. This second condition is the “pseu-
dorandomness plus noise” perspective [18] (the string Z ∧ U can be thought of as a noise
vector.)

5 With apologies, we here flip the order of the arguments to Res compared to the notation used in the
authors’ prior work [13].
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If f takes on values in {0, 1}, for each particular value z that Z might take on, we define
the bias function [16] f̃z : {0, 1}n → [−1, 1] by

f̃z(x) = E
[
f(x+ z ∧ U)

]
.

(We use f rather than f simply for convenience.) The statement that X preserves the
expectation of f with error ε is also equivalent to the condition∣∣∣E

Z

[
E
Y

[f̃Z(Y )]− E
[
f
]]∣∣∣ ≤ 2ε.

When z is clear from context, we will just write f̃ instead of f̃z.
If X is a distribution over {0, 1, ?}n and t ∈ N, let X◦t denote the distribution over

x ∈ {0, 1, ?}n obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing
them, x = x(1) ◦ · · · ◦ x(t).

Suppose F is a class of Boolean functions that is closed under restriction. If X preserves
the expectation of every f ∈ F with error ε, then X◦t preserves the expectation of every
f ∈ F with error tε. Furthermore, informally, if X “has ?-probability p”, then X◦t “has
?-probability pt”. To be precise, we can consider the case X = Res(Y,Z) where Z is γ-almost
k-wise independent with marginals p. Then the distribution of ? positions in X◦t is described
by Claim 8.

4 Applying a Single Restriction

In this section, we prove that the expectation of a PARITY ◦ AND formula is preserved
under a suitable pseudorandom restriction. The cost of the restriction is only O(logn) truly
random bits, the error is exp(−Ω̃(logn)) (near-optimal), and the restriction assigns values to
a constant fraction of the inputs.

4.1 Restriction Construction
Set C = 500, C = 2000C, c = 1.1, and β = 0.95, and consider the following two distributions.

Let Y be a δ3-biased distribution over {0, 1}n for δ = min
{
n−12C , 1

2n
− 5c
c−1−1

}
=

n−12,000,000.6
Let Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p =
1− 2−C , for k = 6 logn and γ = n−9.

Our restriction is Res(Y,Z), i.e., Z indicates where to put ? and Y fills in the non-? bits.

I Lemma 9. Let f be a read-once PARITY ◦ AND formula over n variables of width at
most C logn. Then, Res(Y, Z) preserves the expectation of f to within error 2−C

logn
log logn , i.e.,

|E[f(Y + Z ∧ U)]− E[f ]| ≤ 2−C
logn

log logn .

4.2 Buckets
Toward proving Lemma 9, we first set some preliminary notations. Recall that f is of the
form

f =
m⊕
i=1

fi =
m⊕
i=1

wi∧
j=1

`ij ,

where every literal `ij is either some variable in {x1, . . . , xn} or its negation.

6 No attempt was made to optimize the constants.
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Set Q = dlogc(C logn)e = O(log logn). We partition the terms of f into Q buckets
according to their width. Namely, for each q ∈ [Q] we define the interval Iq = [cq−1, cq) and
define Bq ⊆ [m] to be the set of indices i such that wi ∈ Iq. Also, for q ∈ [Q] we define

Fq =
⊕
i∈Bq

fi,

so f =
⊕Q

q=1 Fq. For every q ∈ [Q] we further denote mq = |Bq|.
We divide into two cases (Section 4.3 and Section 4.4) depending on whether there exists

a bucket with substantially many terms. Lemma 9 will follow immediately from Lemma 10
and Lemma 15, which cover these two cases respectively.

4.3 Case I – There Exists a Heavy Bucket
Say that bucket q ∈ [Q] is heavy if both mq > 3cq and mq > logC n. The first case is that
there exists a heavy bucket (i.e., there are many terms of roughly the same width, even
relative to q). In this case, we will argue that f itself is balanced and also that it stays
balanced, w.h.p., after a pseudorandom restriction.

I Lemma 10. Let f be a read-once PARITY ◦ AND formula over n variables of width at
most C logn. Suppose there exists a heavy bucket as defined above. Then, with probability at
least 1− 1

n over (y, z) ∼ Y × Z,

∣∣E[f |Res(y,z)]− E[f ]
∣∣ ≤ 1

n
.

Toward proving Lemma 10, let us define a few more auxiliary notations. Write

f = frest ⊕ Fq,

where q is a heavy bucket.

B Claim 11. It holds that
∣∣E[f ]

∣∣ ≤ 1
4n .

Proof. By the read-once property and the fact that frest is bounded,∣∣E[f ]
∣∣ =

∣∣E[frest]E[Fq]
∣∣ ≤ ∣∣E[Fq]

∣∣ =
∏
i∈Bq

∣∣E[fi]
∣∣ .

Each term in Fq has width at least cq−1, so∣∣E[f ]
∣∣ ≤ (1− 2 · 2−c

q−1
)mq

≤ e−2·2−c
q−1
·mq .

Recalling that mq ≥ 3cq , we have 2−cq−1 ≥ mγ
q for γ = log3 2c−1

< 3
4 . Thus, using that fact

that mq ≥ logC n,∣∣E[f ]
∣∣ ≤ e−2m1−γ

q ≤ e−2 log(1−γ)C n ≤ 2− log100 n. C

Next, we must analyze the bias of f after the pseudorandom restriction. Let nq be the
number of variables read by Fq. Let b = dlog3 nqe. We will group the terms of Fq into
blocks, each of which reads roughly b variables. To define this grouping, first observe that
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b ≥ log3mq, as each term reads at least one variable. Recalling that cq < log3mq, we know
that b > cq. Therefore, since each term in Fq has width at most cq, we can write

Fq =
B⊕
i=1

gi,

where each block gi reads bi variables for bi ∈
[
b− 1

2c
q, b+ 1

2c
q
]
.

Let us now estimate B, the number of blocks. Since b > cq, bi ∈
[
b
2 ,

3b
2
]
. Also,mq > logC n

so b > C
2 log logn. Thus, on the one hand,

B ≥ 2nq
3b ≥

2 · 3b

9b ,

and on the other hand, B ≤ nq ≤ 3b.
Toward arguing that f is balanced after pseudorandom restrictions, we wish to show that

with high probability, z ∼ Z keeps many variables in many terms alive.

I Definition 12. For z ∈ {0, 1}n and a formula f , we say f is good under z if z assigns 1
to at least a (1− β)-fraction of the variables f reads.

B Claim 13. For a fixed z ∈ {0, 1}n, let Xz ⊆ [B] be the set of blocks gi that are not good
under z. Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
⌈

4 logn
b

⌉
.

Proof. Set k0 =
⌈

4 logn
b

⌉
. Let S ⊆ [B] be some subset of cardinality k0. We first bound

the probability p that every block gi for i ∈ S is bad under z ∼ Z. For a truly random
z ∼ Bernoulli(1− 2−C)⊗n, the above probability is bounded by∏

i∈S

(
bi
βbi

)
2−Cβbi ≤

∏
i∈S

2bi2−5bi ≤
(

2−4· b2
)|S|
≤ n−8.

Now, for every i ∈ [B], k ≥ k0bi so for z ∼ Z, we get that p ≤ n−8 + γ ≤ 2n−8. Thus, by the
union bound, with probability at most(

B

k0

)
p ≤ 2Bk0n−8 ≤ 2

(
3b
) 4 logn

b n−8 ≤ 2n−(2−log 3)4 ≤ n− 4
3 <

1
2n

there will be some S whose all blocks are bad. Taking the contrapositive, we infer that with
probability at least 1− 1

2n over z ∼ Z, at most k0 of the gi-s are bad under z. C

I Lemma 14. With probability at least 1− 1
n over (y, z) ∼ Y × Z, it holds that∣∣∣E [f |Res(y,z)

]∣∣∣ ≤ 1
2n.

Proof. Fix a good z, for which at most 4 logn
b of the gi-s are not good under it. By Claim 13,

z is good with probability at least 1− 1
2n . Let B

alive = [B] \Xz, so

f = frest ⊕

 ⊕
i∈Balive

gi

⊕
 ⊕
i∈[B]\Balive

gi

 .

For every i ∈ Balive, set the following notations.
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For every y ∈ {0, 1}n, let gyi denote the function gi|Res(y,z).
Let Idead

i ⊆ [n] be the literals read by gi for which z = 0. As i ∈ Balive,
∣∣Idead
i

∣∣ ≤ βbi ≤ 3β
2 b.

Note that each literal j ∈ Idead
i is set by y ∼ Y .

Let Ialive
i ⊆ [n] be the literals read by gi for which z = 1. As i ∈ Balive,

∣∣Ialive
i

∣∣ ≥ (1−β)bi ≥
1−β

2 b.

Define the function hi so that hi(y) = 1 if gyi is a nonconstant function, and 0 otherwise.
Namely,

hi(y) =
∧

j∈Idead
i

y′j ,

where y′j is either yj or ¬yj depending on whether yj appears positively or negatively in gi.
Also, define

S(y) =
∑
i∈Balive

hi(y),

where the sum is over the reals. Denote

µ = E[S(U)] =
∑
i∈Balive

2−|I
dead
i |,

and note that µ ≥ |Balive| · 2−
3β
2 b. Set ∆S = S − µ. The spectral norm of the AND function

is 1, and so by the sub-additivity we get that L1(∆S) ≤ 2|Balive|. Set ` = 2
⌈

C logn
2 log(2|Balive|)

⌉
.

By the sub-multiplicativity of the spectral norm we have that

L1
(
∆S`

)
≤
(
2
∣∣Balive∣∣)` ≤ nC .

For ε = 1
2 , note that δ ≤ ε

2 · L1
(
∆S`

)−1. By Claim 5, Y ε-fools the function ∆S`, so∣∣∣E [(S(Y )− µ)`
]
− E

[
(S(U)− µ)`

]∣∣∣ ≤ ε. (5)

Next, observe that ∆S(U) is the sum of zero-mean independent random variables, as the
hi-s are supported over disjoint set of variables. Set A = |Balive| · 2−4βb. By the Chernoff
bound,

E
[
∆S(U)`

]
≤ E

[
∆S(U)` | ∆S(U)` ≤ A`

]
+ E

[
∆S(U)` | ∆S(U)` ≥ A`

]
· Pr

[
∆S(U)` ≥ A`

]
≤ A` +

∣∣Balive∣∣` · Pr [∆S(U) ≥ A] ≤
∣∣Balive∣∣` · (2−4βb` + e

− 2A2
|Balive|

)
.

Recall that b > C
2 log logn, so 3b ≥ 36 logn for a large enough n, and since B ≥ 2

9b3
b we get

that B ≥ 8 logn
b and |Balive| ≥ B − 4 logn

b ≥ B
2 . Next, we observe that

2A2

|Balive|
= 2

∣∣Balive∣∣ 2−8βb ≥ B · 2−8βb ≥ 2
9b2(log 3−8β)b ≥ 2b.

As b` ≤ Cb logn
logB ≤ C logn, we can conclude that 2b ≥ 4βb` and so e−

2A2
|Balive| ≤ 2−4βb`, which

implies that E
[
∆S(U)`

]
≤ 2|Balive|` · 2−4βb`.
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Using Equation (5) and the above bound yields a bound on E
[
∆S(Y )`

]
. By Markov’s

inequality,

Pr
[
S(Y ) < µ

2

]
≤

E
[
(S(Y )− µ)`

]
(µ/2)` ≤ ε+ 2|Balive|` · 2−4βb`

(µ/2)` ≤

(
8
∣∣Balive

∣∣ 2−4βb

µ

)`
. (6)

Recalling that µ ≥ |Balive| · 2−
3β
2 b, Equation (6) becomes

Pr
[
S(Y ) < µ

2

]
≤
(

8 · 2(−4β+ 3β
2 )b
)`
< 2−2βb` ≤ 2− 1

2βC logn ≤ 1
2n,

where we have used the fact that b` ≥ C logn
4 .

Overall, with probability at least 1− 1
2n over y ∼ Y , gyi is nonconstant for at least µ

2 of
the i-s, and recall that each such gyi is over at least (1− β)bi variables. Fix such a good y,
and let G ⊆ [Balive] be the set of nonconstant gyi -s. Again, we can write

⊕
i∈Balive

gyi =
(⊕
i∈G

gyi

)
⊕

 ⊕
i∈Balive\G

gyi

 , t1 ⊕ t2.

Similarly to Claim 11, in order to bound the bias of f |Res(Y,Z) it is sufficient to bound the
bias of t1, and so

E[t1] ≤
(

1− 2− 3b
2

)µ
2
.

Using the fact that µ ≥ 1
2B · 2

− 3β
2 b ≥ 1

9b2
(log 3− 3β

2 )b > 2 301
200 b, we get

E[t1] ≤ e−2−
3b
2 2

301b
200 ≤ e− log

C
400 n ≤ 1

2n. J

Proof of Lemma 10. Finally, the fact that with probability at least 1− 1
n over (y, z) ∼ Y ×Z,∣∣∣f̃z(y)− E[f ]

∣∣∣ ≤ 1
n , follows immediately from Claim 11 and Lemma 14. J

4.4 Case II – There Are No Heavy Buckets
In this subsection, we prove that a single pseudorandom restriction preserves the expectation
in the case where there is no such a heavy Bq. Namely, for every q ∈ [Q], either mq ≤ 3cq or
mq ≤ logC n (or both).

I Lemma 15. Let f be a read-once PARITY ◦AND formula over n variables in which the
width of every term is at most C logn, and in which there are no heavy buckets as described
above. Then, with probability at least 1− 1

2 · 2
−C logn

log logn over z ∼ Z it holds that∣∣∣E [f̃z(Y )
]
− E[f ]

∣∣∣ ≤ 1
2 · 2

−C logn
log logn .

Toward proving Lemma 15, we partition the Q buckets into two sets and treat terms that
fall into each set of buckets separately. Namely, define the two sets as follows.
A =

{
q ∈ [Q] : mq ≤ log2C n

}
. We refer to these buckets as the sparse buckets.

B = [Q] \ A. We refer to these buckets as the well-behaved buckets.
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For each set T ∈ {A,B} we denote

fT =
⊕
i∈T

Fi,

and so f = fA⊕fB. The next two subsections will be devoted to proving that the expectation
of each fT is preserved after a single pseudorandom restriction. In Section 4.4.3 we will
combine the two results using the XOR lemma for small-bias distributions (Lemma 6) to
prove Lemma 15.

4.4.1 Handling Sparse Buckets
For the sparse buckets, we will follow the Forbes-Kelley approach [14] to prove the following.

I Lemma 16. With probability at least 1− 1
4 · 2

−C logn
log logn over z ∼ Z, it holds that∣∣∣E [(f̃A)

z
(Y )
]
− E[fA]

∣∣∣ ≤ 1
4 · 2

−C logn
log logn .

As outlined in Section 1.5.1, Lemma 16 follows readily from the work by Forbes and
Kelley [14]. We require our restriction to work with high probability over z ∼ Z, not merely
in expectation, so we must redo some of Forbes and Kelley’s analysis. (No substantial
modification is needed.) The details follow.

Proof of Lemma 16. First, recall that each term in fA is of width at most C logn. There
are at most log2C n terms in each bucket, and at most Q = O(log logn) such buckets, so
overall fA reads at most n′ = log2C+2 n variables.

Note that fA can be computed by a width-4 ROBP of length n′. We follow [14] and let
G : {0, 1}n

′
→ R4×4 encode the transition of the branching program. Namely, perhaps after

renumbering the variables, we have G(x) = G1(x1) · . . . ·Gn′(xn′) where Gi(xi) = Ai,xi for
Ai,b being the transition matrix that corresponds to taking the bit b while at layer i. Set
k0 = 8 logn

log logn , and note that k0 ≤ k. By [14, Lemma 4.1], G can be written as

G = E[G] + L+
n′∑
i=1

Hi ·G>i,

where L has degree7 less than k0, Hi is of degree exactly k0, G>i is a width-4 ROBP, and
Hi and G>i are on disjoint set of variables. More specifically,

L =
∑

α∈Fn′2 ,0<|α|<k0

Ĝαχα

is the truncated Fourier expansion of G, G>i(xi+1, . . . , xn) = Gi+1(xi+1) · . . . ·Gn′(xn′), and

Hi =
∑

α∈Fn′2 ,|α|=k0,αi=1

Ĝ≤iαχα,

whereG≤i(x1, . . . , xi) = G1(x1)·. . .·Gi(xi). Let ‖·‖ be the Frobenius norm. By sub-additivity,
we have

7 We say a function H : {0, 1}n → Rw×w having Fourier expansion
∑

α∈Fn2
Ĥαχα has degree d if Ĥα is

the zero matrix for every α with Hamming weight larger than d.
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E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]
∥∥∥∥] ≤ E

Z

[∥∥∥∥ E
Y,U

[L(Y + Z ∧ U)]
∥∥∥∥]+

n′∑
i=1

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] . (7)

Just as in [14], the low-degree term L is dealt with a δ-biased distribution. From the work of
Chattopadhyay, Hatami, Reingold, and Tal [9] we know that

L1(L) =
k0∑
k′=1

(cCHRT logn′)4k′ ≤ 2(cCHRT logn′)4k0

for some universal constant cCHRT ≥ 1. Thus, by Claim 5, we get that the first term of
Equation (7) is bounded by

2δ · 2(cCHRT logn′)4k0 ≤ 2−C logn · 28k0 log log logn ≤ n−C2 ,

taking into account the fact that E[L(U)] = 0.
For each i of the second term of Equation (7), we use sub-multiplicativity and the fact

that Hi and G>i are on disjoint set of variables to get

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] ≤ E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥ · ∥∥∥E

U
[G>i(Y + Z ∧ U)]

∥∥∥] .
As G>i is a width-4 ROBP,

∥∥EU [G>i(y + z ∧ U)]
∥∥ ≤ 2 for all y ∼ Y and z ∼ Z. Continuing

the above bound, by Cauchy-Schwarz we get

E
Z

[∥∥∥∥ E
Y,U

(Hi ·G>i)[Y + Z ∧ U ]
∥∥∥∥] ≤ 2

√
E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥2
]
.

Following [14, Lemma 7.1]8, using the bound by Chattopadhyay et al. [9] and Parseval’s
identity [14, Proposition 3.1], we get

E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥2
]
≤
(
2−Ck0 + γ

)
·

δ
 ∑
α∈Fn′2

∥∥∥(Ĥi)α
∥∥∥
2

+
∑
α∈Fn′2

∥∥∥(Ĥi)α
∥∥∥2


≤
(
2−Ck0 + γ

)
·
(
δ · L2

1
(
G≤i

)
+ E

[∥∥G≤i(U)
∥∥2])

≤ 8 · 2−Ck0 .

Overall, we get that

E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]
∥∥∥∥] ≤ n−C2 + 2n′

√
8 · 2−Ck0 ≤ 1

16 · 2
−C4 k0 = 1

16 · 2
− 2C log

log logn ,

and we can choose the encoding G so that fA(x) = G(x)1,1. Markov’s inequality completes
the proof. J

8 Forbes and Kelley [14] take the bits of Z to have marginals p = 1
2 , but one can extend the lemma easily

for the case of a general p.
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4.4.2 Handling Well-Behaved Buckets
We will use our tail bounds for subset-wise symmetric polynomials to prove the following
lemma.

I Lemma 17. With probability at least 1− 1
2n over z ∼ Z, fB can be written as fB = f ′B⊕f ′′B ,

where f ′B and f ′′B are over disjoint set of variables, and for every g ∈ {f ′B, f ′′B} it holds that

|E [g̃z(Y )]− E [g]| ≤ 1
n
.

The proof of Lemma 17 will follow immediately from Claim 20 and Lemma 21. Toward
proving the above lemma, let us set some preliminaries.

B Claim 18. If q ∈ B then cq ∈ [C log logn,C logn] and mq ≤ 3cq .

Proof. The upper bound on cq follows immediately from the assumption in Lemma 15 that
every term has width at most C logn. Also, mq > log2C n since q /∈ A. Since we are at
Case II, mq > log2C n implies that mq ≤ 3cq . From the fact that log2C n < 3cq we get
cq > log3(log2C n) > C log logn. C

Recall that a term fi is good under z if the variables read by fi intersects with z in at
least 1− β fraction.

B Claim 19. For a fixed z ∈ {0, 1}n, let Xz ⊆ [m] be the set of terms in fB that are not
good under z. Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
3c
c− 1 logn.

Proof. The proof is very similar to Claim 13. Fix a bucket q ∈ B, set kq = 3 logn
cq and observe

that k ≥ kq. Let S ⊆ Bq be some subset of cardinally kq. We first bound the probability p
that every term fi for i ∈ S is bad under z ∼ Z.

For a truly random z ∼ Bernoulli(1− 2−C)⊗n, the above probability is bounded by

∏
i∈S

(
wi
βwi

)
2−βCwi ≤

∏
i∈S

2wi2−5wi ≤
(

2−4·cq−1
)kq
≤ 2−3kqcq ≤ n−9.

For z ∼ Z, we get that p ≤ n−9 +γ ≤ 2n−9. Thus, with probability at most
(
mq
kq

)
p over z ∼ Z

there exists a set of kq terms in Bq whose all terms are bad under z. By using Claim 18, we
get(

mq

kq

)
p ≤ mkq

q · 2−9 logn+1 ≤ 3kqc
q+log3 2·(−9 logn+1) ≤ 3− 9

4 logn ≤ n−3.

Moreover, with probability at most |B|n−3 ≤ n−2 over z ∼ Z there exists a q ∈ B and a set
of kq terms in Bq whose all terms are bad under z. Taking the contrapositive, we infer that
with probability at least 1− n−2 ≥ 1− 1

2n over z ∼ Z, we have at most

∑
q∈B

kq ≤
Q∑
q=1

3 logn
cq

≤ 3c
c− 1 logn.

terms that are bad for z. C
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From here onwards, we fix a z satisfying |Xz| ≤ 3c
c−1 logn. Write

fB =
⊕

i∈C\Xz

fi ⊕
⊕
i∈Xz

fi , f ′B ⊕ f ′′B ,

where C =
⋃
q∈B Bq ⊆ [m] is the set of all terms that belong to B’s buckets. Simply put, we

divide fB to the parity of exceptional terms f ′′B and non-exceptional terms f ′B for whom we
will refer to as good terms. We stress that both f ′B and f ′′B depend on z.

B Claim 20 (Exceptional terms).∣∣∣E [(f̃ ′′B)
z

(Y )
]
− E[f ′′B ]

∣∣∣ ≤ 1
n
.

Proof. For brevity, let g = f ′′B . For a fixed w ∈ {0, 1}n, let gw(x) = g(x+ w). The proof will
follow from bounding the spectral norm of gw. Indeed, gw is a multiplication of at most
3c
c−1 logn terms, each of which has spectral norm at most 3. By sub-multiplicativity,

L1 (gw) ≤ 3
3c
c−1 logn ≤ n

5c
c−1 .

Now, δ ≤ 1
2n
− 5c
c−1−1, so by Claim 5 we get that |E[gw(Y )]−E[gw]| ≤ 1

n for every w ∈ {0, 1}n.
Fooling gw is sufficient to fool g̃z. To see this, note that

|E [g̃z(Y )]− E[g]| = |E[g(Y + z ∧ U)]− E[g(U + z ∧ U ′)]|

=
∣∣∣ E
w∼U

[E [gw(Y )]− E [gw]]
∣∣∣ ≤ 1

n
,

where U ′ is an independent copy of U . C

Next, we prove:

I Lemma 21 (Good terms).∣∣∣E [(f̃ ′B)
z

(Y )
]
− E[f ′B]

∣∣∣ ≤ 1
n
.

Proof. For brevity, let g = f ′B and recall that its set of terms is given by C \Xz. Shifting
the bias function g̃ = g̃z to mean zero, recall that we define

ǧ(x) = g̃(x)
E[g̃] − 1.

Thus, we can write

g̃ = E[g]
∏

i∈C\Xz

(
1 + ĝi

)
= E[g]

∑
I⊆C\Xz

∏
i∈I

ĝi = E[g]
∑
~k∈NQ

∑
I⊆C\Xz,K(I)=~k

∏
i∈I

ĝi,

where by K(I) = ~k we mean that for every q ∈ [Q], there are ~k[q] terms in I that belong
to the q-th bucket, i.e., |I ∩Bq| = ~k[q]. For simplicity, we reorder the terms of g and write
g =

⊕
i∈[m′] gi for m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that

belong to the q-th bucket. We abbreviate ~g = (ĝ1, . . . , ĝm′), and write

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Under these notations, g̃ = E[g]
∑
~k∈NQ S~k(~g).
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Let Ig(x) be the Boolean-valued function which is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2− A

1024 ,

where A = C logn and ‖~k‖(c) =
∑Q
q=1 c

q · ~k[q]. Section 4.4.4 will be devoted to showing that
E[Ig(Y )] is very close to 1. Namely,

I Lemma 22. The following two inequalities hold.
1. E[Ig(Y )] ≥ 1− e−cIA for cI = ln 2

223 .
2. E

[
S2
~k
(~g(Y ))

]
≤ 2− 1

8‖~k‖(c) .

For now, let us take Lemma 22 as given and continue with the proof of Lemma 21. We
proceed by writing

|E[g̃(Y )]− E[g̃]| ≤ |E [g̃(Y ) | Ig(Y ) = 1]− E[g̃]|+ 2 Pr [Ig(Y ) = 0] . (8)

By Lemma 22, we have that Pr[Ig(Y ) = 0] ≤ e−cIA. Next, observe that

|E [g̃(Y ) | Ig(Y ) = 1]− E[g̃]| =

∣∣∣∣∣∣∣E[g]
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y )) | Ig(Y ) = 1

]∣∣∣∣∣∣∣ ,
and set

∆ =

∣∣∣∣∣∣∣
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y )) | Ig(Y ) = 1

]∣∣∣∣∣∣∣ ,
so Equation (8) gives us

|E[g̃(Y )]− E[g̃]| ≤∆ + 2e−cIA. (9)

We bound ∆ as follows.

∆ ≤

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y )) | Ig(Y ) = 1

]∣∣∣∣∣∣∣+ max
y∈{0,1}n,Ig(y)=1

∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k(~g(y))
∣∣ .

By definition, the second term is at most 2− A
1024 . The first term, call it ∆1, can be split into

two terms as follows.

∆1 = 1
Pr[Ig(Y ) = 1]

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y )) · Ig(Y )

]∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y )) · Ig(Y )

]∣∣∣∣∣∣∣ (10)

≤ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y ))

]
∣∣∣∣∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y )) · (1− Ig(Y ))

]
∣∣∣∣∣∣∣∣∣∣
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≤ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y ))

]
∣∣∣∣∣∣∣∣∣∣

+ 2
√

E[1− Ig(Y )] ·
∑
~k∈NQ,

0<‖~k‖(c)≤A

√
E
[
S2
~k
(~g(Y ))

]
, (11)

where the last inequality follows from the triangle inequality followed by Cauchy-Schwarz.
By Lemma 22, the second term of Equation (11), ∆1,2, is at most

∆1,2 ≤ 2 · e−cIA ·
∑

~k∈NQ,0<‖~k‖(c)≤A

√
2− 1

8‖~k‖(c)

≤ 2 · e−cIA ·
A−1∑
w=1

∣∣∣{~k ∈ NQ : w < ‖~k‖(c) ≤ w + 1
}∣∣∣ 2− 1√

8
w

≤ 2 · e−cIA(A+ 1)Q
A∑
w=1

2−
1√
8
w ≤ 8(A+ 1)Qe−cIA ≤ 2

2
log c (log logn)2

e−cIA ≤ 1
8n.

To finish bounding ∆1, it is left to bound the first term of Equation (11), denoted by ∆1,1.

B Claim 23. ∆1,1 = 2
∣∣∣∑~k∈NQ,0<‖~k‖(c)≤A E

[
S~k(~g(Y ))

]∣∣∣ ≤ 1
8n .

Proof. The proof goes by bounding the spectral norm of the function S~k(~g(x)). As for every
~k ∈ NQ with ‖~k‖(c) 6= 0, E[S~k(~g(U))] = 0, the claim will follow by using Claim 5, together
with sub-additivity and sub-multiplicativity. First, note that:

B Claim 24. For every i ∈ [m], L1(ĝi) ≤ 4.

Proof. Consider the function hi = 1−gi, so L1(g̃i) ≤ L1(h̃i)+1 and E[h̃i] = E[hi] = 1−E[gi] ≥
1
2 . Now, L1(ĥi) ≤ 1

E[hi]L1(h̃i) + 1 ≤ 2L1(h̃i) + 1. Recalling that h̃i(x) = E[hi(x + z ∧ U)],
we get L1(h̃i) ≤ 1 as every shift of hi is a negated conjunction of literals. Thus, L1(ĥi) ≤ 3
and L1(ĝi) ≤ 4. C

Then, for every such ~k ∈ NQ,

L1
(
S~k(~g)

)
≤

∑
I⊆C\XT ,K(I)=~k

∏
i∈I

L1
(
ĝi
)
≤

∑
I⊆C\XT ,K(I)=~k

4|I|

=
∑

I⊆C\XT ,K(I)=~k

∏
q∈[Q]

4~k[q] =
∏
q∈[Q]

(~k[q]
mq

)
4~k[q].

Recall that Claim 18 tells us that mq ≤ 3cq , so

L1
(
S~k(~g)

)
≤
∏
q∈[Q]

3c
q(1+log3 4)~k[q] ≤ 12‖~k‖(c) . (12)

Finally,

L1

 ∑
~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y ))

] ≤ (A+ 1)Q · 12A ≤ 26A ≤ n6C ,

and the claim follows by observing that δ ≤ 1
32nn

−6C . C
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Incorporating the above claim, we get that ∆1 = ∆1,1 + ∆1,2 ≤ 1
8n + 1

8n ≤
1

4n , which
readily gives ∆ ≤ 1

4n + 2− A
1024 ≤ 1

2n . Plugging-it in Equation (9), we finally get

|E[g̃(Y )]− E[g̃]| ≤ 1
2n + 2e−cIA ≤ 1

n

and the desired result. J

4.4.3 Putting It Together
Here we finally incorporate Lemma 16 and Lemma 17.

Proof of Lemma 15. By Lemma 16 and Lemma 17, with probability at least 1 − 1
4 ·

2−C
logn

log logn − 1
n ≥ 1− 1

2 · 2
−C logn

log logn over z ∼ Z, we can write

f = fA ⊕ f ′B ⊕ f ′′B ,

where the three functions are over disjoint set of variables, and it holds that for each
T ∈ {A,B,B′},∣∣∣(f̃T )

z
(Y ′)− E

[
fT
]∣∣∣ ≤ 1

4 · 2
−C logn

log logn

for any δ-biased distribution Y ′. Using the XOR lemma for small-biased spaces (see Lemma 6),
taking into account that our distribution Y is in fact δ3-biased, we conclude that∣∣∣E[f̃z(Y )]− E[f ]

∣∣∣ ≤ 163 · 2 · 1
4 · 2

−C logn
log logn ≤ 1

2 · 2
−C logn

log logn ,

and the lemma follows. J

4.4.4 Ig Almost Always Happens
We keep using the notations of Section 4.4.2. Specifically, recall that g = f ′B =

⊕
i∈[m′] gi for

m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that belong to the q-th
bucket. Also, for ~g = (ĝ1, . . . , ĝm′),

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Recall that Ig(x) ∈ {0, 1} is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2− A

1024 ,

where A = C logn and ‖~k‖(c) =
∑
q∈[Q] c

q · ~k[q].

Proof of Lemma 22. As in Section 2, we define

R~k(~g) = S2
~k
(~g) ·

∏
q∈[Q]

~k[q]!.

By Lemma 3, to prove the bound on Pr[Ig(Y ) = 0] it is sufficient to prove that for every
~k ∈ NQ with ‖~k‖(c) ≤ A we have that

E
[
R~k(~g(Y ))

]
≤ 2− 1

8‖~k‖(c) .
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By now a standard course of action, we aim at bounding the spectral norm of the function
R~k(~g), together with its expectation under the uniform distribution. To this end, let us
define, for q ∈ [Q] and an integer `,

Š`,q =
∑

I⊆Bq,|I|=`

∏
i∈I

ĝi,

so R~k(~g) =
∏
q∈[Q] Š

2
~k[q],q

~k[q]!. First, we record that:

B Claim 25. For every i ∈ [m′], E
[
ĝi

2
]
≤ 2−(2−2β)wi .

Proof. Let Vi ⊆ [n] be the set of variables read by gi, of cardinality wi, and let `i =
|Vi ∩ {j ∈ [n] : zj = 1}| be the number of live variables read by gi. Note that

g̃i(x) = E[gi(x+ z ∧ U)] =
{

0 if there exists j ∈ Vi such that xj = zj = 0,
2−`i otherwise.

Then,

E
[
g̃i

2
]

= 2−2`i Pr
x∼U

[for everyj ∈ Vi s.t. zj = 0 it holds that xj = 1]

= 2−2`i2−(wi−`i) = 2−wi−`i .

Recalling that `i ≥ (1−β)wi (gi is good under z), we have E[g̃i2] ≤ 2−(2−β)wi . Let hi = 1−gi,
and note that

E
[
ĥi

2
]

= Var
[
ĥi

]
= Var[g̃i]

E2[hi]
≤ 4 · E

[
g̃i

2
]
≤ 4 · 2−(2−β)wi ≤ 2−(2−2β)wi .

The fact that Var[ĥi] = Var[ĝi] = E[ĝi
2] finishes the proof. C

Now,

E
[
Š2
`,q

]
=

∑
I⊆Bq,|I|=`

∏
i∈I

E
[
ĝi

2
]
≤

∑
I⊆Bq,|I|=`

∏
i∈I

2−(2−2β)wi

≤
∑

I⊆Bq,|I|=`

2−(2−2β)cq` ≤
(
mq

`

)
2−(2−2β)cq` ≤ 3cq`e`2−(2−2β)cq`

`! ≤ 1
`! 2
− cq`4 .

Plugging it in our expression for R~k, we get

E
[
R~k(~g)

]
=
∏
q∈[Q]

E
[
Š~k[q],q

~k[q]!
]
≤
∏
q∈[Q]

2−
cq~k[q]

4 = 2− 1
4‖~k‖(c) . (13)

Finally, let us bound L1(R~k(~g)). In Equation (12) we established the fact that L1(S~k(~g)) ≤
12‖~k‖(c) ≤ 12A. Thus,

L1
(
R~k(~g)

)
≤ 122A

∏
q∈[Q]

~k[q]! ≤ 122Ae

∑
q∈[Q]

~k[q] ln~k[q] ≤ 122Ae
(lnA)

∑
q∈[Q]

~k[q]
.

As ‖~k‖(c) =
∑
q∈[Q] c

q~k[q] ≤ A and cq ≥ C log logn (see Claim 18),
∑
q∈[Q]

~k[q] ≤ A
C log logn

and we get

L1
(
R~k(~g)

)
≤ 122AelnA A

C log logn ≤ 122A2CC logn ≤ n10C .
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Note that δ ≤ 1
32n
−10C2−A4 . Thus, by Claim 5,

E
[
R~k(~g(Y ))

]
≤ 2− 1

4‖~k‖(c) + δ · n10C ≤ 2− 1
8‖~k‖(c) ,

and we are done with bounding Pr[Ig(Y ) = 0]. For the bound on E
[
S2
~k
(~g(Y ))

]
, simply

observe that E
[
S2
~k
(~g(Y ))

]
< E

[
R~k(~g(Y ))

]
. J

5 Full PRG via Iterated Restrictions

So far, we have shown how to pseudorandomly assign values to a constant fraction of the
inputs of any read-once PARITY◦AND formula using O(logn) truly random bits, preserving
the expectation of the formula to within near-optimal error. In this section, to complete the
proof of Theorem 1, we show how to pseudorandomly assign values to all the inputs, i.e., we
give a genuine PRG.

For convenience, we make the following definitions.

I Definition 26. Let w > 0. A w-proper formula is a read-once PARITY ◦AND formula of
width at most w and length most 28w. We say that such a formula is short if its length is at
most 24w; otherwise, we say that the formula is long.

Our main goal is to fool (C logn)-proper formulas, but along the way, we will obtain a PRG
for w-proper formulas with seed length O(w) and error exp(−Ω̃(w)), even for w substantially
smaller than logn.

5.1 Restrictions for Proper Formulas
Recall that Lemma 9 provides a pseudorandom restriction that uses only O(logn) truly
random bits. We now generalize this fact in two respects. First, in the case of w-proper
formulas (log logn ≤ w ≤ C logn), we improve the seed length to O(w). Second, in the case
of short w-proper formulas, we argue that the restriction simplifies the formula, in the sense
that it transforms it into a (w/2)-proper formula.

I Lemma 27. For every w, n ∈ N with w ≤ C logn, there is a distribution X over {0, 1, ?}n
with the following properties.
1. (Seed length) There is an explicit algorithm to sample from X using just O(w + log logn)

truly random bits.
2. (Expectation preservation) If f is a w-proper formula, then X preserves the expectation

of f with error exp(−Ω(w/ logw)).
3. (Simplification) If f is a short w-proper formula, then

Pr[f |X is a (w/2)-proper formula] ≥ 1− 2−w.

Proof. Let n′ = 28w · w. Let Y be an n′-wise δ3-biased distribution where δ = (n′)−12C ,
and let Z be γ-almost k-wise independent with marginals 1− 2−C , where k = 6 logn′ and
γ = (n′)−9. Our restriction is

X = Res(Y,Z)◦2
C+4

.

By standard constructions [25, 3] and Claim 7, X can be explicitly sampled using O(w +
log logn) truly random bits.
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Now, to prove expectation preservation, let f be a w-proper formula. By w-properness,
there is some set of indices I ⊆ [n], |I| ≤ n′, such that f(x) only depends on x|I . Let
g : {0, 1}|I| → {0, 1} be the w-proper formula such that f(x) = g(x|I). Since Y |I is δ3-
biased and Z|I is γ-almost k-wise independent with marginals 1− 2−C , Lemma 9 implies
that Res(Y |I , Z|I) preserves the expectation of g with error exp(−Ω( logn′

log logn′ )), which is
exp(−Ω(w/ logw)). It follows that Res(Y, Z) preserves the expectation of f with the same
error. The error of X is only larger by a constant factor 2C+4, because any restriction of a
w-proper formula is trivially another w-proper formula.

Finally, to prove simplification, let f be a short w-proper formula, and let fi be a term.
Since k > w/2, by Claim 8, the probability that more than w/2 variables from fi are assigned
? by X is bounded by(

w

w/2

)
·
(

(1− 2−C)2C+4·w/2 + 2C+4γ
)
≤ 2w ·

(
e−2−C ·2C+3w + 2C+4 · (n′)−9

)
< 2−5w.

The number of terms in f is at most 24w, so by the union bound, except with probability
2−w, f |X has maximum width at most w/2. Furthermore, restricting cannot increase the
number of terms, so the number of terms is still bounded by 24w = 28(w/2). Therefore, in
this case, f |X is (w/2)-proper. J

5.2 Full PRGs for Long Proper Formulas [24]
The simplification clause of Lemma 27 only applies if f is short. If f is long, we will therefore
need a different approach. We will take a similar approach as Meka, Reingold, and Tal [24].
A full PRG for long w-proper formulas follows readily from their work.

I Lemma 28 ([24]). For every w, n ∈ N, there is an explicit (2−w)-PRG for long w-proper
formulas with seed length

O(w + log logn).

Proof sketch. In short, the PRG is one of the PRGs by Meka et al. [24, full version,
Lemma 6.2], except we replace every δ-biased distribution with a (·)-wise δ-biased distribution
to optimize the seed length.

In more detail, let n′ = 28w · w. Sample v ∈ {0, 1}wn from an (n′w)-wise (c−wMRT)-biased
distribution, where cMRT is a suitable constant. Think of v as n blocks of w bits. Define a
set I ⊆ [n] as follows: include i in I if and only if the i-th block of v is 1w.

Sample x(0), x(1), . . . , x(16) ∈ {0, 1}n independently from an (n′)-wise (c−wMRT)-biased
distribution. The PRG outputs the string x defined by

xi =
{
x

(0)
i if i 6∈ I⊕16
j=1 x

(j)
i if i ∈ I.

By standard constructions [25, 3], the seed length of this PRG is

O(logn′ + w + log logn) = O(w + log logn).

As for correctness, let f be a long w-proper formula. Let J ⊆ [n] be the set of indices
of variables that f reads, so there is some long w-proper formula g on |J | input bits such
that f(x) = g(x|J). Let X be the distribution output by the PRG. Since |J | ≤ n′, the
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distribution X|J is exactly the pseudorandom distribution designed by Meka et al. [24, full
version, Lemma 6.2]. Furthermore, since f is long, |J | > 24w. It follows that g is in the
class of functions fooled by Meka et al.’s pseudorandom distribution: g is an XOR of m
non-constant Boolean functions on disjoint variables, where each function is on at most w
variables, with 16w < m ≤ 162w and log log(|J |/2w)� w ≤ log |J |. Therefore, X|J fools g
with error 2−w, and hence X fools f with error 2−w. J

5.3 Full PRGs for Width-O(log n) Formulas
For short proper w-formulas, to get a full PRG, we will iterate the restriction of Lemma 27
several times, assigning values to more and more variables. Eventually, we’ll stop this
recursive process and use a different PRG. Specifically, for the “base case,” we’ll use a PRG
by Lee [22] with minor modifications:

I Lemma 29 ([22]). For every w, n ∈ N and every ε > 0, there is an explicit ε-PRG for
w-proper formulas with seed length

O((w + log(1/ε)) · (logw + log log(1/ε))2) + poly(log log(n/ε)).

Proof sketch. In short, the PRG is one of the PRGs by Lee [22, Theorem 6], except we
replace every δ-biased distribution with a (·)-wise δ-biased distribution to optimize the seed
length, just like the proofs of Lemma 27 and Lemma 28.

To give a little more detail, let n′ = 28w · w; a w-proper formula only reads n′ variables.
Lee’s PRG [22, Theorem 6] is designed to fool arbitrary-order combinatorial checkerboards,
i.e., parities of functions on disjoint variable sets of size at most w. This class includes
w-proper formulas as a special case. Lee’s original PRG has seed length

O((w + log(n/ε)) · (logw + log log(n/ε))2).

After making suitable replacements, one can show that the seed length is reduced to

O((w + log(n′/ε)) · (logw + log log(n′/ε))2) + poly(log log(n/ε)).

(We omit the full proof, since it repeats much of Lee’s analysis [22].) Plugging in the value
of n′, we get the claimed seed length. J

We now give our full PRG for general formulas of width at most C logn. The PRG follows a
similar approach to one of the PRGs by Meka et al. [24, full version, Algorithm 3]: iteratively
apply the restriction of Lemma 27, but at each step, XOR with the PRG of Lemma 28 in
case the formula is long.

I Lemma 30. For every n ∈ N, there is an explicit PRG for read-once PARITY ◦ AND
formulas of width at most C logn with seed length O(logn) and error

2−Ω
(

logn
(log logn)3

)
.

Proof. Define

w0 = logn
(log logn)2 .

We recursively define a PRG Gw for w-proper formulas, w0 ≤ w ≤ C logn, as follows.
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(Base case) If w ≤ 2w0, then Gw is the (2−w0)-PRG of Lemma 29 based on Lee’s work [22].
(Recursive case) If w > 2w0, sample X ∈ {0, 1, ?}n from the distribution guaranteed
by Lemma 27 based on the work in Section 4. Sample Y ∈ {0, 1}n using the PRG of
Lemma 28 based on Meka et al.’s work [24]. Recursively sample Gdw/2e, and set

Gw = Y ⊕ (X ◦Gdw/2e).

For the analysis, observe first that in the base case w ≤ 2w0, Gw fools w-proper formulas
with error 2−w0 . Now, for the inductive step, consider some w > 2w0. Assume Gdw/2e fools
dw/2e-proper formulas with error εdw/2e; we will show that Gw fools w-proper formulas with
error εw, where

εw = εdw/2e + 2−Ω(w/ logw).

Let f be a w-proper formula, and for brevity, let G = Gdw/2e. For the first case, suppose
f is long. Any shift of f is also a long w-proper formula, so

|E[f(Gw)]− E[f ]| =
∣∣∣∣ EX,G [EY [f(Y ⊕ (X ◦G))]

]
− E[f ]

∣∣∣∣
≤ E
X,G

[∣∣∣E
Y

[f(Y ⊕ (X ◦G))]− E[f ]
∣∣∣]

= E
X,G

[∣∣∣E
Y

[f(Y ⊕ (X ◦G))]− E
U

[f(U ⊕ (X ◦G))]
∣∣∣]

≤ 2−w.

For the second case, suppose f is short. For each y ∈ {0, 1}n, define fy(x) = f(y⊕x), another
short w-proper formula. Fix y ∼ Y , and let E be the event that fy|X is (w/2)-proper, so
whether E occurs depends only on X. Then

|E[(fy|X)(G)]− E[f ]|

≤
∣∣∣E
X

[
E
G

[(fy|X)(G)]
∣∣∣ E]− E[f ]

∣∣∣+ Pr[¬E]

≤
∣∣∣E
X

[
E
U

[(fy|X)(U)]
∣∣∣ E]− E[f ]

∣∣∣+ εdw/2e + Pr[¬E] (Induction)

≤
∣∣∣E
X

[
E
U

[(fy|X)(U)]
]
− E[f ]

∣∣∣+ εdw/2e + 2 Pr[¬E]

≤ 2−Ω(w/ logw) + εdw/2e + 2 Pr[¬E] (Item 2 of Lemma 27)

≤ 2−Ω(w/ logw) + εdw/2e + 2 · 2−w (Item 3 of Lemma 27).

Let εw be the final right-hand side, so indeed εw = εdw/2e + exp(−Ω(w/ logw)). Then

|E[f(Gw)]− E[f ]| ≤ E
Y

[∣∣∣∣ EX,G[(fY |X)(G)]− E[f ]
∣∣∣∣]

≤ εw.

Now, let us add up all these errors. Since w ≥ w0 always holds, we have εw ≤
εdw/2e + exp(−Ω(w0/ logw0)). Starting at w = C logn, we only need to halve w a to-
tal of O(log log logn) times to reach the base case w ≤ 2w0. Therefore, the total error of
GC logn is bounded by

2−w0 + 2−Ω(w0/ logw0) ·O(log log logn) = 2−Ω
(

logn
(log logn)3

)
.
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Finally, let us bound the seed length of Gw. In the base case w ≤ 2w0, by our choice of
w0, the seed length sw of Gw is bounded by some value sbase ≤ O(logn). In the recursive
case w > 2w0, the seed length sw of Gw is bounded by

sw = sdw/2e +O(w + log logn) = sdw/2e +O(w).

The point is that this is essentially a geometric series. More precisely, let cseed be a constant
such that sw ≤ sdw/2e + cseed ·w for all w > 2w0. Then by induction, for all w ≥ w0, we have

sw ≤ sbase + 3cseedw,

because

sw ≤ sdw/2e + cseedw

≤ sbase + 3cseeddw/2e+ cseedw (Induction)
< sbase + 3cseedw.

Therefore, we can take the desired PRG to be GC logn, because sC logn ≤ O(logn), and any
read-once PARITY ◦AND formula of width at most C logn is (C logn)-proper. J

5.4 Arbitrary-Error PRGs for Width-O(log(n/ε)) Formulas
At this point, the main work of proving Theorem 1 is complete. We just need to address
three minor issues: small ε, large width, and formulas not of the form PARITY ◦ AND.
We begin by addressing the case of small ε. Recall that we wish to achieve seed length
O(logn) + Õ(log(1/ε)) for an arbitrary error ε. This follows readily by combining the PRG
of Lemma 30 with Lee’s PRG (Lemma 29).

I Lemma 31. For any n ∈ N, ε > 0, there is an explict ε-PRG for read-once PARITY◦AND
formulas of width at most C

2 log(n/ε) with seed length

O(logn+ log(1/ε) · (log log(1/ε))5).

Proof. Let ε0 be the error parameter in Lemma 30, so ε0 = exp(−Ω( logn
(log logn)3 )). If ε ≥ ε0,

the PRG of Lemma 30 works, because C
2 log(n/ε) < C logn. If ε < ε0, use Lee’s PRG [22],

i.e., the ε-PRG of Lemma 29 for (C2 log(n/ε))-proper formulas, which has seed length

O(log(n/ε) · (log log(n/ε))2) ≤ O(log(1/ε) · (log log(1/ε))5). J

(In the proof of Lemma 31, we could just as well have used Lee’s original PRG [22,
Theorem 6] instead of the slightly modified version given by Lemma 29.)

5.5 PRGs for Any Width
In this section, we eliminate the assumption that the maximum width is bounded.

I Lemma 32. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once PARITY ◦
AND formulas on n input bits with seed length

O
(
logn+ log(1/ε) · (log log(1/ε))5) .
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Proof. Sample G from the (ε/3)-PRG for formulas of width C
2 log(3n/ε) guaranteed by

Lemma 31. Sample Y from an ( ε
6n )-biased distribution. Our final PRG outputs

H
def= G⊕ Y.

To prove that this works, let f be a read-once PARITY ◦AND formula. Write f = f ′ ⊕ f ′′,
where every term in f ′ has width at most C2 log(3n/ε) and every term in f ′′ has width greater
than C

2 log(3n/ε).
Since any shift of a width-w read-once PARITY ◦ AND formula is another width-w

read-once PARITY ◦AND formula, H fools f ′ with error ε/3. Meanwhile, since each term
f ′′i of f ′′ is a conjunction of more than C

2 log(3n/ε) literals,

E[f ′′i ] ≤
( ε

3n

)C/2
<

ε

6n.

Furthermore, the L1 norm of any conjunction of literals is 1, and H is ( ε
6n )-biased, so by

Claim 5, E[f ′′i (H)] < ε
3n . Therefore, by the union bound, for either distribution X ∈ {H,U},

E[f ′′(X)] < ε/3.

This allows us to bound the error of the final PRG as follows:

|E[f(H)]− E[f ]| ≤ |E[f(H)]− E[f ′(H)]|+ |E[f ′(H)]− E[f ′]|+ |E[f ′]− E[f ]|
≤ E[|f(H)− f ′(H)|] + |E[f ′(H)]− E[f ′]|+ E[|f ′ − f |]
= E[f ′′(H)] + |E[f ′(H)]− E[f ′]|+ E[f ′′]
< ε/3 + ε/3 + ε/3 = ε. J

5.6 Proof of Theorem 1
In this section, we finally complete the proof of Theorem 1 by showing that fooling read-once
PARITY ◦AND formulas is sufficient for fooling read-once depth-2 AC0[⊕]:

I Lemma 33. Let X be a distribution over {0, 1}n, and let ε > 0. If X fools all read-once
PARITY ◦AND formulas with error ε, then X fools all read-once depth-2 AC0[⊕] formulas
with error 2ε.

Proof. Let f be a read-once depth-2 AC0[⊕] formula.
For the first case, suppose the output gate of f is ⊕. By merging the output gate with

any ⊕ children and introducing trivial ∧ gates with fan-in 1 as necessary, we see that without
loss of generality, every child of the output gate is either ∧ or ∨. By de Morgan’s laws, it
follows that either f or ¬f can be computed by a read-once PARITY ◦AND formula. Either
way, this implies that X ε-fools f .

For the second case, suppose the output gate of f is ∧, say f =
∧m
i=1 fi. Using the Fourier

expansion of the m-input AND function, we get

f =
∑
I⊆[m]

(−1)|I|

2m ·
∏
i∈I

(−1)fi

=
∑
I⊆[m]

(−1)|I|

2m ·

(
1− 2 ·

⊕
i∈I

fi

)
.
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By our analysis for the first case, X fools
⊕

i∈I fi with error ε. Therefore, by the triangle
inequality,

|E[f(X)]− E[f ]| ≤
∑
I⊆[m]

∣∣∣∣ (−1)|I| · (−2)
2m

∣∣∣∣ ·
∣∣∣∣∣E
[(⊕

i∈I
fi

)
(X)

]
− E

[⊕
i∈I

fi

]∣∣∣∣∣
≤
∑
I⊆[m]

2
2m · ε = 2ε.

For the final case, suppose the output gate of f is ∨. By de Morgan’s laws, ¬f can be
computed by a read-once depth-2 AC0[⊕] formula with output gate ∧. By our analysis for
the second case, X fools ¬f with error 2ε, hence X fools f with the same error. J

6 Directions for Further Work

Is there any setting where the iterated restrictions approach (with ω(1) iterations) can give
a pseudorandom generator (or even a hitting set generator) with truly optimal seed length
O(log(n/ε))?

Suppose X,X ′, X ′′ are three independent small-bias distributions. Does X +X ′ ∧X ′′
fool read-once CNFs with optimal seed length O(log(n/ε))?
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We study quantum algorithms that are given access to trusted and untrusted quantum witnesses. We
establish strong limitations of such algorithms, via new techniques based on Laurent polynomials (i.e.,
polynomials with positive and negative integer exponents). Specifically, we resolve the complexity of
approximate counting, the problem of multiplicatively estimating the size of a nonempty set S ⊆ [N ],
in two natural generalizations of quantum query complexity.

Our first result holds in the standard Quantum Merlin–Arthur (QMA) setting, in which a
quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm makes
T quantum queries to S, and also receives an (untrusted) m-qubit quantum witness, then either
m = Ω(|S|) or T = Ω

(√
N/ |S|

)
. This is optimal, matching the straightforward protocols where

the witness is either empty, or specifies all the elements of S. As a corollary, this resolves the open
problem of giving an oracle separation between SBP, the complexity class that captures approximate
counting, and QMA.

In our second result, we ask what if, in addition to a membership oracle for S, a quantum
algorithm is also given “QSamples”– i.e., copies of the state |S〉 = 1√

|S|

∑
i∈S
|i〉 – or even access to

a unitary transformation that enables QSampling? We show that, even then, the algorithm needs
either Θ

(√
N/ |S|

)
queries or else Θ

(
min
{
|S|1/3 ,

√
N/ |S|

})
QSamples or accesses to the unitary.

Our lower bounds in both settings make essential use of Laurent polynomials, but in different ways.
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1 Introduction

Understanding the power of quantum algorithms has been a central research goal over the last
few decades. One success story in this regard has been the discovery of powerful methods that
establish limitations on quantum algorithms in the standard setting of query complexity. This
setting roughly asks, for a specified function f , how many bits of the input must be examined
by any quantum algorithm that computes f (see [16] for a survey of query complexity).

A fundamental topic of study in complexity theory is algorithms that are “augmented”
with additional information, such as an untrusted witness provided by a powerful prover.
For example, the classical complexity class NP is defined this way. In the quantum setting, if
we go beyond standard query algorithms, and allow algorithms to receive a quantum state,
the model becomes much richer, and we have very few techniques to establish lower bounds
for these algorithms. In this paper, we develop such techniques. Our methods crucially use
Laurent polynomials, which are polynomials with positive and negative integer exponents.

We demonstrate the power of these lower bound techniques by proving optimal lower
bounds for the approximate counting problem, which captures the following task. Given
a nonempty finite set S ⊆ [N ] := {1, . . . , N}, estimate its cardinality, |S|, to within some
constant (say, 2) multiplicative accuracy. Approximate counting is a fundamental task with
a rich history in computer science. This includes the works of Stockmeyer [54], which showed
that approximate counting is in the polynomial hierarchy, and Sinclair and Jerrum [52],
which showed the equivalence between approximate counting and approximate sampling
that enabled the development of a whole new class of algorithms based on Markov chains.
Additionally, approximate counting precisely highlights the limitations of current lower bound
techniques for the complexity class QMA (as we explain in Section 1.1).

Formally, we study the following decision version of the problem in this paper:

I Problem 1 (Approximate Counting). In the ApxCountN,w problem, our goal is to decide
whether a nonempty set S ⊆ [N ] satisfies |S| ≥ 2w (YES) or |S| ≤ w (NO), promised that
one of these is the case.

In the query model, the algorithm is given a membership oracle for S: one that, for any
i ∈ [N ], returns whether i ∈ S. How many queries must we make, as a function of both N
and |S|, to solve approximate counting with high probability?

For classical randomized algorithms, it is easy to see that Θ(N/|S|) membership queries
are necessary and sufficient. For quantum algorithms, which can query the membership
oracle on superpositions of inputs, Brassard et al. [14, 13] gave an algorithm that makes only
O
(√

N/|S|
)
queries. It follows from the optimality of Grover’s algorithm (i.e., the BBBV

Theorem [10]) that this cannot be improved. Hence, the classical and quantum complexity
of approximate counting with membership queries alone is completely understood. In this
paper, we study the complexity of approximate counting in models with untrusted and
trusted quantum states.
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1.1 First result: QMA complexity of approximate counting
Our first result, presented in Section 3, considers the standard Quantum Merlin–Arthur
(QMA) setting, in which the quantum algorithm receives an untrusted quantum state (called
the witness). This model is the quantum analogue of the classical complexity class NP, and
is of great interest in quantum complexity theory. It captures natural problems about ground
states of physical systems, properties of quantum circuits and channels, noncommutative
constraint satisfaction problems, consistency of representations of quantum systems, and
more [12].

In a QMA protocol, a skeptical verifier (Arthur) receives a quantum witness state |ψ〉 from
an all-powerful but untrustworthy prover (Merlin), in support of the claim that f(x) = 1.
Arthur then needs to verify |ψ〉, via some algorithm that satisfies the twin properties of
completeness and soundness. That is, if f(x) = 1, then there must exist some |ψ〉 that causes
Arthur to accept with high probability, while if f(x) = 0, then every |ψ〉 must cause Arthur
to reject with high probability. We call such a protocol a QMA (Quantum Merlin–Arthur)
protocol for computing f .

In the query complexity setting, there are two resources to consider: the length of the
quantum witness, m, and the number of queries, T , that Arthur makes to the membership
oracle. A QMA protocol for f is efficient if both m and T are polylog(N).

The known lower bound technique for QMA

Prior to our work, all known QMA lower bounds used the same proof technique.1 The
technique establishes (and exploits) the complexity class containment QMA ⊆ SBQP, where
SBQP is a complexity class that models quantum algorithms with tiny acceptance and
rejection probabilities. Specifically, we say that a function f has SBQP query complexity at
most k if there exists a k-query quantum algorithm that

outputs 1 with probability ≥ α when f(x) = 1, and
outputs 1 with probability ≤ α/2 when f(x) = 0,

for some α that does not depend on the input (but may depend on the input size). Note
that when α = 2/3, we recover standard quantum query complexity. But α could be also be
exponentially small, which makes SBQP algorithms very powerful.

Nevertheless, one can establish significant limitations on SBQP algorithms, by using a
variation of the polynomial method of Beals et al. [8]. If a function f can be evaluated by
an SBQP algorithm with k queries, then there exists a real polynomial p of degree 2k such
that p(x) ∈ [0, 1] whenever f(x) = 0 and p(x) ≥ 2 whenever f(x) = 1. The minimum degree
of such a polynomial is also called one-sided approximate degree [19].

The relationship between SBQP and QMA protocols is very simple: if f has a QMA
protocol that receives an m-qubit witness and makes T queries, then it also has an SBQP
algorithm that makes O(mT ) queries. This was essentially observed by Marriott and
Watrous [36, Remark 3.9] and used by Aaronson [4] to show an oracle relative to which
SZK 6⊂ QMA.

1 There is one special case in which it is trivial to lower-bound QMA complexity. Consider the ANDN

function on N bits that outputs 1 if and only if all N bits equal 1. For this function, since Merlin wants
to convince Arthur that f(x) = 1, intuitively there is nothing interesting that Merlin can say to Arthur
other than “x is all ones” since that is the only input with f(x) = 1. Formally, Arthur can simply create
the witness state that an honest Merlin would have sent on the all ones input, and hence Arthur does
not need Merlin [45]. For such functions, QMA complexity is the same as standard quantum query
complexity.
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MA

QMA SBP

SBQP

PP

AM

Figure 1 Relationships between complexity classes. An upward line indicates that a complexity
class is contained in the one above it relative to all oracles.

Beyond the known lower bound technique for QMA

Our goal is to find a new method of lower bounding QMA, that does not go through SBQP
complexity. The natural way to formalize this quest is to find a problem that has an efficient
SBQP algorithm, and show that it does not have an efficient QMA protocol. A natural
candidate for this is the ApxCountN,w problem. We know that ApxCountN,w does have a very
simple SBQP algorithm of cost 1: the algorithm picks an i ∈ [N ] uniformly at random, and
accepts if and only if i ∈ S. Clearly the algorithm accepts with probability greater than
2w/N on yes inputs and with probability at most w/N on no inputs.

Our first result establishes that ApxCountN,w does not have an efficient QMA protocol.

I Theorem 2. Consider a QMA protocol that solves ApxCountN,w. If the protocol receives
a quantum witness of length m, and makes T queries to the membership oracle for S, then
either m = Ω(w) or T = Ω

(√
N/w

)
.

This lower bound proved in Section 3.2 resolves the QMA complexity of ApxCountN,w, as
(up to a logN factor) it matches the cost of two trivial QMA protocols. In the first, Merlin
sends 2w items claimed to be in S, and Arthur picks a constant number of the items at
random and confirms they are all in S with one membership query each. This protocol has
witness length m = O(w logN) (the number of bits needed to specify 2w elements out of N)
and T = O(1). In the second protocol, Merlin does nothing, and Arthur solves the problem
with T = O

(√
N/w

)
quantum queries.

Oracle separation

Our result also yields new oracle separations. The approximate counting problem is complete
for the complexity class SBP [11], which is sandwiched between MA (Merlin–Arthur) and
AM (Arthur–Merlin). The class SBQP (discussed above), first defined by Kuperberg [33], is
a quantum analogue of SBP that contains both SBP and QMA.

By the usual connection between oracle separations and query complexity lower bounds,
Theorem 2 implies an oracle separation between SBP and QMA – i.e., there exists an oracle
A such that SBPA 6⊂ QMAA (see Corollary 20). Prior to our work, it was known that there
exist oracles A,B such that SBPA 6⊂ MAA [11] and AMB 6⊂ QMAB, which follows from
AMB 6⊂ PPB [56], but the relation between SBP and QMA remained elusive.2 Figure 1 shows
the known inclusion relations among these classes (all of which hold relative to all oracles).

2 It is interesting to note that in the non-relativized world, under plausible derandomization assump-
tions [38], we have NP = MA = SBP = AM. In this scenario, all these classes are equal, and all are
contained in QMA.
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Previous techniques were inherently unable to establish this oracle separation for the
reason stated above: all existing QMA lower bounds intrinsically apply to SBQP as well.
Since SBP is contained in SBQP, prior techniques cannot establish SBPA 6⊂ QMAA, or even
SBQPA 6⊂ QMAA, for any oracle A. Our analysis also yields the first oracle with respect to
which SBQP is not closed under intersection.

Proof overview

To get around the issue of ApxCountN,w being in SBQP, we use a clever strategy that
was previously used by Göös et al. [26], and that was suggested to us by Thomas Watson
(personal communication). Our strategy exploits a structural property of QMA: the fact that
QMA is closed under intersection, but (at least relative to oracles, and as we’ll show) SBQP
is not.

Given a function f , let AND2 ◦ f be the AND of two copies of f on separate inputs.3
Then if f has small QMA query complexity, it’s not hard to see that AND2 ◦ f does as well:
Merlin simply sends witnesses corresponding to both inputs; then Arthur checks both of
them independently. While it’s not completely obvious, one can verify that a dishonest
Merlin would gain nothing by entangling the two witness states. Hence if ApxCountN,w had
an efficient QMA protocol, then so would AND2 ◦ ApxCountN,w, with the witness size and
query complexity increasing by only a constant factor.

By contrast, even though ApxCountN,w does have an efficient SBQP algorithm, we will
show that AND2 ◦ApxCountN,w does not. This is the technical core of our proof and proved
in Section 3.1.

I Theorem 3. Consider an SBQP algorithm for AND2◦ApxCountN,w that makes T queries to
membership oracles for the two instances of ApxCountN,w. Then T = Ω

(
min

{
w,
√
N/w

})
.

Theorem 3 is quantitatively optimal, as we’ll exhibit a matching SBQP upper bound.
Combined with the connection between QMA and SBQP, Theorem 3 immediately implies a
QMA lower bound for AND2 ◦ ApxCountN,w, and by extension ApxCountN,w itself. However,
this QMA lower bound is not quantitatively optimal. To obtain the optimal bound of
Theorem 2, we exploit additional analytic properties of the SBQP protocols that are derived
from QMA protocols.

At a high level, the proof of Theorem 3 assumes that there’s an efficient SBQP algorithm
for AND2 ◦ ApxCountN,w. This assumption yields a low-degree one-sided approximating
polynomial for the problem in 2N Boolean variables, where N variables come from each
ApxCountN,w instance. We then symmetrize the polynomial (using the standard Minsky–
Papert symmetrization argument [39]) to obtain a bivariate polynomial in two variables x and
y that represent the Hamming weight of the original instances.4 This yields a polynomial
p(x, y) that for integer pairs x, y (also called lattice points) satisfies p(x, y) ∈ [0, 1] when
either x ∈ {0, . . . , w} and y ∈ {0, . . . , w} ∪ {2w, . . . , N}, or (symmetrically) y ∈ {0, . . . , w}
and x ∈ {0, . . . , w} ∪ {2w, . . . , N}. If both x ∈ {2w, . . . , N} and y ∈ {2w, . . . , N}, then
p(x, y) ≥ 2. This polynomial p is depicted in Figure 2.

3 Because we focus on lower bounds, for a promise problem f (such as ApxCountN,w), we take the promise
for AND2 ◦ f to be that both instances of f must satisfy f ’s promise. Then, any lower bound also
applies to more relaxed definitions, such as only requiring one of the two instances to be in the promise.

4 The term “symmetrization” originally referred to the process of averaging a multivariate polynomial
over permutations of its inputs to obtain a symmetric polynomial. More recently, authors have used
“symmetrization” more generally to refer to any method for turning a multivariate polynomial into a
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Figure 2 The behavior of the (Minsky–Papert symmetrized) bivariate polynomial p(x, y) at
integer points (x, y) in the proof of Theorem 3. The polynomial q obtained by erase-all-subscripts
symmetrization is not depicted. We later restrict q to a hyperbola similar to the one drawn in blue.

One difficulty is that we have a guarantee on the behavior of p at lattice points only,
whereas the rest of our proof requires precise control over the polynomial even at non-
integer points. We ignore this issue for now and assume that p(x, y) ≥ 2 for all real values
x, y ∈ [2w,N ], and p(x, y) ∈ [0, 1] whenever x ∈ [0, w] and y ∈ [2w,N ] or vice versa. We
outline how we address integrality issues one paragraph hence.

The key remaining difficulty is that we want to lower-bound the degree of a bivariate
polynomial, but almost all known lower bound techniques apply only to univariate polynomials.
To address this, we introduce a new technique to reduce the number of variables (from 2 to
1) in a degree-preserving way: we pass a hyperbola through the xy plane (see Figure 2) and
consider the polynomial p restricted to the hyperbola. Doing so gives us a new univariate
Laurent polynomial `(t) = p(2wt, 2w/t), whose positive and negative degree is at most
deg(p). This Laurent polynomial has an additional symmetry, which stems from the fact
that AND2 ◦ApxCountN,w is the AND of two identical problems (namely, ApxCountN,w). We
leverage this symmetry to view `(t), a Laurent polynomial in t, as an ordinary univariate
polynomial r in t+ 1/t of degree deg(p). We know that r(2) = `(1) = p(2w, 2w) ≥ 2, while
for all k ∈ [2.5, N/w+w/N ], we know that r(k) ∈ [0, 1]. It then follows from classical results
in approximation theory that this univariate polynomial must have degree Ω

(√
N/w

)
.

Returning to integrality issues, to obtain a polynomial whose behavior we can control
at non-integer points, we use a different symmetrization argument (dating back at least to
work of Shi [51]) that we call “erase-all-subscripts” symmetrization (see Lemma 12). This
symmetrization yields a bivariate polynomial q of the same degree as p that is bounded

univariate one in a degree non-increasing manner (see, e.g., [48, 49]). In this paper, we use the term
“symmetrization” in this more general sense.
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in [0, 1] at all real-valued inputs in [0, N ] × [0, N ]. However, while we have more control
over q’s values at non-integer inputs relative to p, we have less control over q’s values at
integer inputs relative to p, and this introduces additional challenges. (These challenges
are not merely annoyances; they are why the SBQP complexity of AND2 ◦ ApxCountN,w is
T = Θ

(
min

{
w,
√
N/w

})
, and not Θ

(√
N/w

)
). Ultimately, both types of symmetrization

play an important role in our analysis, as we use p to bound q when the polynomials have
degree o(w), using tools from approximation theory and Chernoff bounds.

1.2 Second result: Approximate counting with quantum samples

Our second result resolves the complexity of ApxCountN,w in a different generalization of the
quantum query model, in which the algorithm is given access to certain (trusted) quantum
states.

Quantum samples

In practice, when trying to estimate the size of a set S ⊆ [N ], often we can do more than
make membership queries to S. At the least, often we can efficiently generate nearly uniform
samples from S, for instance by using Markov Chain Monte Carlo techniques. To give two
examples, if S is the set of perfect matchings in a bipartite graph, or the set of grid points in a
high-dimensional convex body, then we can efficiently sample S using the seminal algorithms
of Jerrum, Sinclair, and Vigoda [29] or of Dyer, Frieze, and Kannan [21], respectively.

The natural quantum generalization of uniform sampling from a set S is QSampling
S – a term coined in 2003 by Aharonov and Ta-Shma [7], and which means that we can
approximately prepare the uniform superposition

|S〉 := 1√
|S|

∑
i∈S
|i〉 (1)

via a polynomial-time quantum algorithm (where “polynomial” here means polylog(N)).
Because we need to uncompute garbage, the ability to prepare |S〉 as a coherent superposition
is a more stringent requirement than the ability to classically sample from S. Indeed,
Aharonov and Ta-Shma [7] showed that the ability to QSample lends considerable power: all
problems in the complexity class SZK (which contains problems that are widely believed be
hard on average [24, 25, 37, 23, 44]) can be efficiently reduced to the task of QSampling some
set that can be classically sampled in polynomial time. To be clear, QSampling supposes
that the algorithm is given trusted copies of |S〉; unlike in the QMA setting, the state need
not be “verified” by the algorithm.

On the other hand, Aharonov and Ta-Shma [7], and Grover and Rudolph [27], observed
that many interesting sets S can be efficiently QSampled as well.5

5 In particular, this holds for all sets S such that we can approximately count not only S itself, but also
the restrictions of S obtained by fixing bits of its elements. So in particular, the set of perfect matchings
in a bipartite graph, and the set of grid points in a convex body, can both be efficiently QSampled.
There are other sets that can be QSampled but not because of this reduction. A simple example would
be a set S such that |S| ≥ N

polylogN : in that case we can efficiently prepare |S〉 using postselection, but
approximately counting S’s restrictions might be hard.
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QSampling via unitaries

In many applications (such as when S is the set of perfect matchings in a bipartite graph
or grid points in a convex body), the reason an algorithm can QSample S is because it is
possible to efficiently construct a quantum circuit implementing a unitary operator U that
prepares the state |S〉. Access to this unitary U potentially conveys substantially more power
than QSampling alone. For example, access to U conveys (in a black box manner) the ability
not only to QSample, but also to perform reflections about |S〉: that is, to apply the unitary
transformation

RS := 1− 2|S〉〈S|, (2)

which has eigenvalue −1 for |S〉 and eigenvalue +1 for all states orthogonal to |S〉. More
concretely, let U be the unitary that performs the map U |0〉 = |S〉, for some canonical
starting state |0〉. Since we know the circuit U , we can also implement U†, by reversing the
order of all the gates and replacing all the gates with their adjoints. Then RS is simply

RS = 1− 2|S〉〈S| = U (1− 2|0〉〈0|)U†. (3)

Note that a priori, QSamples and reflections about |S〉 could be incomparable resources;
it is not obvious how to simulate either one using the other. On the other hand, it is known
how to apply a quantum channel that is ε-close to RS (in the diamond norm) using Θ(1/ε)
copies of |S〉 [34, 30].

Access to a quantum circuit computing U also permits an algorithm to efficiently apply
U on inputs that do not produce the state |S〉, to construct a controlled version of U , etc.

Results

As previously mentioned, Aharonov and Ta-Shma [7] showed that the ability to QSample
lends considerable power, including the ability to efficiently solve SZK-complete problems. It
is natural to ask just how much power the ability to QSample conveys. In particular, can one
extend the result of Aharonov and Ta-Shma [7] from any problem in SZK to any problem
in SBP? Equivalently stated, can one solve approximate counting efficiently, using any
combination of polylog(N) queries and applications of a unitary U that permits QSampling?6
In this work, we show that the answer is no. We begin by focusing on the slightly simplified
setting where the algorithm is only permitted to perform membership queries, QSamples,
and reflections about the state |S〉.

I Theorem 4. Let Q be a quantum algorithm that makes T queries to the membership oracle
for S, and uses a total of R copies of |S〉 and reflections about |S〉. If Q decides whether
|S| = w or |S| = 2w with high probability, promised that one of those is the case, then either

T = Ω
(√

N

w

)
or R = Ω

(
min

{
w1/3,

√
N

w

})
. (4)

This is proved in Section 4.4. So if (for example) we set w := N3/5, then any quantum
algorithm must either query S, or use the state |S〉 or reflections about |S〉, at least Ω(N1/5)
times. Put another way, Theorem 4 means that unless w is very small (w ≤ polylog(N)))

6 We thank Paul Burchard (personal communication) for bringing this question to our attention.



S. Aaronson, R. Kothari, W. Kretschmer, and J. Thaler 7:9

or extremely large (w ≥ N/polylog(N)), the ability to QSample S, reflect about |S〉, and
determine membership in S is not sufficient to approximately count S efficiently. Efficient
quantum algorithms for approximate counting will have to leverage additional structure of S,
beyond the ability to QSample, reflect about |S〉, and determine membership in S.

In Theorem 31 of Section 4.6, we then strengthen Theorem 4 to hold not only against
algorithms that can QSample and reflect about |S〉 (in addition to performing membership
queries to S), but also against all algorithms that are given access to a specific unitary U
that conveys the power to QSample and reflect about |S〉.7

Finally, we prove that the lower bounds in Theorem 4 and Theorem 31 are optimal. As
mentioned before, Brassard et al. [14] gave a quantum algorithm to solve the problem using
T = O(

√
N/w) queries alone, which proves the optimality of the lower bound on the number

of queries. On the other hand, it’s easy to solve the problem using O (
√
w) copies of |S〉

alone, by simply measuring each copy of |S〉 in the computational basis and then searching
for birthday collisions. Alternately, we can solve the problem using O

(
N
w

)
copies of |S〉

alone, by projecting onto the state |ψ〉 = 1√
N

(|1〉+ · · ·+ |N〉) or its orthogonal complement.
This measurement succeeds with probability |〈S|ψ〉|2 = |S|

N , so we can approximate |S| by
simply counting how many measurements succeed.

In Section 4.2 we improve on these algorithms by using samples and reflections, and
thereby establish that Theorem 4 and Theorem 31 are tight.

I Theorem 5. There is a quantum algorithm that solves ApxCountN,w with high probability

using R copies of |S〉 and reflections about |S〉, where R = O
(

min
{
w1/3,

√
N
w

})
.

The Laurent polynomial method

In our view, at least as interesting as Theorem 4 is the technique used to achieve it. In 1998,
Beals et al. [8] famously observed that, if a quantum algorithm Q makes T queries to an
input X, then Q’s acceptance probability can be written as a real multilinear polynomial
in the bits of X, of degree at most 2T . And thus, crucially, if we want to rule out a
fast quantum algorithm to compute some function f(X), then it suffices to show that any
real polynomial p that approximates f pointwise must have high degree. This general
transformation, from questions about quantum algorithms to questions about polynomials,
has been used to prove many results that were not known otherwise at the time, including the
quantum lower bound for the collision problem [1, 6] and the first direct product theorems
for quantum search [2, 31].

In our case, even in the simpler model with only queries and samples (and no reflections),
the difficulty is that the quantum algorithm starts with many copies of the state |S〉. As a
consequence of this – and specifically, of the 1/

√
|S| normalizing factor in |S〉 – when we

write the average acceptance probability of our algorithm as a function of |S|, we find that we
get a Laurent polynomial: a polynomial that can contain both positive and negative integer
powers of |S|. The degree of this polynomial (the highest power of |S|) encodes the sum of
the number of queries, the number of copies of |S〉, and the number of uses of RS , while the
“anti-degree” (the highest power of |S|−1) encodes the sum of the number of copies of |S〉 and
number of uses of RS . This is described more precisely in Section 4.1. We’re thus faced with
the task of lower-bounding the degree and the anti-degree of a Laurent polynomial that’s
bounded in [0, 1] at integer points and that encodes the approximate counting problem.

7 To be precise, the unitary U to which the lower bound of Theorem 31 applies maps a canonical starting
state to |S〉|S〉. As we explain in Section 4.6, such a unitary suffices to implement QSampling, reflections
about |S〉, etc., since the register containing the second copy of |S〉 can simply be ignored.
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We then lower bound the degree of Laurent polynomials that approximate ApxCountN,w,
showing that degree Ω

(
min

{
w1/3,

√
N/w

})
is necessary. We give two very different lower

bound arguments. The first approach, which we call the “explosion argument,” is shorter
but yields suboptimal lower bounds, whereas the second approach using “dual polynomials”
yields the optimal lower bound.

There are two aspects of this that we find surprising: first, that Laurent polynomials
appear at all, and second, that they seem to appear in a completely different way than they
appear in our other result about QMA (Theorem 3), despite the close connection between
the two statements. For Theorem 4, Laurent polynomials are needed just to describe the
quantum algorithm’s acceptance probability, whereas for Theorem 3, ordinary (bivariate)
polynomials sufficed to describe this probability; Laurent polynomials appeared only when
we restricted a bivariate polynomial to a hyperbola in the plane. In any case, the coincidence
suggests that the “Laurent polynomial method” might be useful for other problems as well.8

Before describing our techniques at a high level, observe that there are rational functions9
of degree O(log(N/w)) that approximate ApxCountN,w. This follows, for example, from
Aaronson’s PostBQP = PP theorem [3], or alternately from the classical result of Newman [41]
that for any k > 0, there is a rational polynomial of degree O(k) that pointwise approximates
the sign function on domain [−n,−1] ∪ [1, n] to error 1− n−1/k. Thus, our proof relies on
the fact that Laurent polynomials are an extremely special kind of rational function.

We also remark that in the randomized classical setting, the complexity of ApxCountN,w
with queries and uniform (classical) samples is easily characterized without such powerful
techniques. Either O(N/w) queries or O(

√
w) samples are sufficient, and furthermore either

Ω(N/w) queries or Ω(
√
w) samples are necessary. For completeness, we provide a sketch of

these bounds in Section 4.5.

Overview of the explosion argument

Our first proof (in Section 4.3) uses an “explosion argument” that, as far as we know, is
new in quantum query complexity. We separate out the purely positive degree10 and purely
negative degree parts of our Laurent polynomial as q (|S|) = u (|S|) + v(1/|S|), where u and
v are ordinary polynomials. We then show that, if u and v both have low enough degree,
namely deg (u) = o

(√
N/w

)
and deg (v) = o

(
w1/4), then we get “unbounded growth” in

their values. That is: for approximation theory reasons, either u or v must attain large
values, far outside of [0, 1], at some integer values of |S|. But that means that, for q itself
to be bounded in [0, 1] (and thus represent a probability), the other polynomial must also
attain large values. And that, in turn, will force the first polynomial to attain even larger
values, and so on forever – thereby proving that these polynomials could not have existed.

Overview of the method of dual polynomials

Our second argument (in Section 4.4) obtains the (optimal) lower bound stated in Theorem 4,
via a novel adaptation of the so-called method of dual polynomials.

8 Since writing this, a third application of the Laurent polynomial method was discovered by the third
author [32]: a simple proof that the AND-OR tree ANDm ◦ ORn has approximate degree Ω̃(

√
mn).

9 A rational function of degree d is of the form p(x)
q(x) , where p and q are both real polynomials of degree at

most d.
10Throughout this paper we allow any “purely positive degree” Laurent polynomial and any “purely

negative degree” Laurent polynomial to include a constant (degree zero) term.
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With this method, to lower-bound the approximate degree of a Boolean function f , one
exhibits an explicit dual polynomial ψ for f , which is a dual solution to a certain linear
program. Roughly speaking, a dual polynomial ψ is a function mapping the domain of f to
R that is (a) uncorrelated with any polynomial of degree at most d, and (b) well-correlated
with f .

Approximating a univariate function g via low-degree Laurent polynomials is also captured
by a linear program, but the linear program is more complicated because Laurent polynomials
can have negative-degree terms. We analyze the value of this linear program in two steps.

In Step 1, we transform the linear program so that it refers only to ordinary polynomials
rather than Laurent polynomials. Although simple, this transformation is crucial, as it
lets us bring techniques developed for ordinary polynomials to bear on our goal of proving
Laurent polynomial degree lower bounds.

In Step 2, we explicitly construct an optimal dual witness to the transformed linear
program from Step 1. We do so by first identifying two weaker dual witnesses: ψ1, which
witnesses that ordinary (i.e., purely positive degree) polynomials encoding approximate
counting require degree at least Ω

(√
N/w

)
, and ψ2, which witnesses that purely negative

degree polynomials encoding approximate counting require degree Ω(w1/3). The first witness
is derived from prior work of Bun and Thaler [18] (who refined earlier work of Špalek [53]),
while the second builds on a non-constructive argument of Zhandry [57].

Finally, we show how to “glue together” ψ1 and ψ2, to get a dual witness ψ showing
that any general Laurent polynomial that encodes approximate counting must have either
positive degree Ω

(√
N/w

)
or negative degree Ω(w1/3).

Overview of the upper bound

To recap, Theorem 4 shows that any quantum algorithm for ApxCountN,w needs either
Θ(
√
N/w) queries or Θ

(
min

{
w1/3,

√
N/w

})
samples and reflections. Since we know from

the work of Brassard, Høyer, Tapp [14] that the problem can be solved with O(
√
N/w) queries

alone, it remains only to show the matching upper bound using samples and reflections,
which we describe in Section 4.2.

First we describe a simple algorithm that uses O(
√
N/w) samples and reflections. If we

take one copy of |S〉, and perform a projective measurement onto |ψ〉 = 1√
N

(|1〉+ · · ·+ |N〉)
or its orthogonal complement, the measurement will succeed with probability |〈S|ψ〉|2 =
|S| /N . Thus O(N/w) repetitions of this will allow us to distinguish the probabilities w/N
and 2w/N . We can improve this by using amplitude amplification [13] and only make
O(
√
N/w) repetitions.

Our second algorithm solves the problem with O(w1/3) reflections and samples and is
based on the quantum collision-finding algorithm [15]. We first use O(w1/3) copies of |S〉 to
learn w1/3 distinct elements in S. We now know a fraction of elements in S, and this fraction
is either w−2/3 or 1

2w
−2/3. We then use amplitude amplification (or quantum counting) to

distinguish these two cases, which costs O(w1/3) repetitions, where each repetition uses a
reflection about |S〉.

2 Preliminaries

In this section we introduce some definitions and known facts about polynomials and
complexity classes.
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2.1 Approximation theory
We will use several results from approximation theory, each of which has previously been used
(in some form) in other applications of the polynomial method to quantum lower bounds.
We start with the basic inequality of A.A. Markov [35].

I Lemma 6 (Markov). Let p be a real polynomial, and suppose that

max
x,y∈[a,b]

|p (x)− p (y)| ≤ H. (5)

Then for all x ∈ [a, b], we have

|p′ (x)| ≤ H

b− a
deg (p)2

, (6)

where p′(x) is the derivative of p at x.

We’ll also need a bound that was explicitly stated by Paturi [43], and which amounts to
the fact that, among all degree-d polynomials that are bounded within a given range, the
Chebyshev polynomials have the fastest growth outside that range.

I Lemma 7 (Paturi). Let p be a real polynomial, and suppose that |p (x)| ≤ 1 for all |x| ≤ 1.
Then for all x ≤ 1 + µ, we have

|p (x)| ≤ exp
(

2deg (p)
√

2µ+ µ2
)
. (7)

We now state a useful corollary of Lemma 7, which says (in effect) that slightly shrinking
the domain of a low-degree real polynomial can only modestly shrink its range.

I Corollary 8. Let p be a real polynomial of degree d, and suppose that

max
x,y∈[a,b]

|p (x)− p (y)| ≥ H. (8)

Let ε ≤ 1
100d2 and a′ := a+ ε (b− a). Then

max
x,y∈[a′,b]

|p (x)− p (y)| ≥ H

2 . (9)

Proof. Suppose by contradiction that

|p (x)− p (y)| < H

2 (10)

for all x, y ∈ [a′, b]. By affine shifts, we can assume without loss of generality that |p (x)| < H
4

for all x ∈ [a′, b]. Then by Lemma 7, for all x ∈ [a, b] we have

|p (x)| < H

4 · exp

2d

√
2
(

1
1− ε − 1

)
+
(

1
1− ε − 1

)2
 ≤ H

2 . (11)

But this violates the hypothesis. J

We will also need a bound that relates the range of a low-degree polynomial on a discrete
set of points to its range on a continuous interval. The following lemma generalizes a result
due to Ehlich and Zeller [22] and Rivlin and Cheney [46], who were interested only in the
case where the discrete points are evenly spaced.
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I Lemma 9. Let p be a real polynomial of degree at most
√
k, and let 0 = z1 < · · · < zM = k

be a list of points such that zi+1 − zi ≤ 1 for all i (the simplest example being the integers
0, . . . , k). Suppose that

max
x,y∈[0,k]

|p (x)− p (y)| ≥ H. (12)

Then

max
i,j
|p (zi)− p (zj)| ≥

H

2 . (13)

Proof. Suppose by contradiction that

|p (zi)− p (zj)| <
H

2 (14)

for all i, j. By affine shifts, we can assume without loss of generality that |p (zi)| < H
4 for all

i. Let

c := max
x∈[0,k]

|p (x)|
H/4 . (15)

If c ≤ 1, then the hypothesis clearly fails, so assume c > 1. Suppose that the maximum,
|p (x)| = cH

4 , is achieved between zi and zi+1. Then by basic calculus, there exists an
x∗ ∈ [zi, zi+1] such that

|p′ (x∗)| > 2 (c− 1)
zi+1 − zi

· H4 ≥
(c− 1)H

2 . (16)

So by Lemma 6,

(c− 1)H
2 <

cH/4
k

deg (p)2
. (17)

Solving for c, we find

c <
2k

2k − deg (p)2 ≤ 2. (18)

But if c < 2, then maxx∈[0,k] |p (x)| < H
2 , which violates the hypothesis. J

We also use a related inequality due to Coppersmith and Rivlin [20] that bounds a
polynomial on a continuous interval in terms of a bound on a discrete set of points, but now
with the weaker assumption that the degree is at most k, rather than

√
k. This gives a

substantially weaker bound.

I Lemma 10 (Coppersmith and Rivlin). Let p be a real polynomial of degree at most k, and
suppose that |p(x)| ≤ 1 for all integers x ∈ {0, 1, . . . , k}. Then there exist universal constants
a, b such that for all x ∈ [0, k], we have

|p(x)| ≤ a · exp
(
bdeg(p)2/k

)
. (19)
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2.2 Symmetric polynomials
Univariate symmetrizations

Our starting point is the well-known symmetrization lemma of Minsky and Papert [39] (see
also Beals et al. [8] for its application to quantum query complexity), by which we can often
reduce questions about multivariate polynomials to questions about univariate ones.

I Lemma 11 (Minsky–Papert symmetrization). Let p : {0, 1}N → R be a real multilinear
polynomial of degree d, and let q : {0, 1, . . . , N} → R be defined as

q (k) := E|X|=k [p (X)] . (20)

Then q can be written as a real polynomial in k of degree at most d.

We now introduce a different, lesser known notion of symmetrization, which we call the
erase-all-subscripts symmetrization for reasons to be explained shortly. This symmetrization
previously appeared in [51] under the name “linearization,” and it is also equivalent to the
noise operator used in analysis of Boolean functions [42, Definition 2.46].

I Lemma 12 (Erase-all-subscripts symmetrization). Let p : {0, 1}N → R be a real multilinear
polynomial of degree d, and for any real number k ∈ [0, 1], let Mk denote the distribution
over {0, 1}N , wherein each coordinate is selected independently to be 1 with probability k. Let
q : [0, 1]→ R be defined as

q (k) := EX∼Mk
[p (X)] . (21)

Then q can be written as a real polynomial in k of degree at most d.

Proof. (see, for example, [47, Proof of Theorem 3]). Given the multivariate polynomial
expansion of p, we can obtain q easily just by “erasing all the subscripts in each variable”.
For example, if p(x1, x2, x3) = 2x1x2 + x2x3 + x2, we replace every xi with k to obtain
q(k) = 2k · k + k · k + k = 3k2 + k. This follows from linearity of expectation along with the
fact that Mk is defined to be the product distribution wherein each coordinate has expected
value k. J

We highlight the following key difference between Minsky–Papert symmetrization and
the erase-all-subscripts symmetrization. Let p : {0, 1}N → [0, 1] be a real multivariate
polynomial whose evaluations at Boolean inputs are in [0, 1], i.e., for all x ∈ {0, 1}n, we have
p(x) ∈ [0, 1]. If q is the erase-all-subscripts symmetrization of p, then q takes values in [0, 1]
at all real-valued inputs in [0, 1]: q(k) ∈ [0, 1] for all k ∈ [0, 1]. If q is the Minsky–Papert
symmetrization of p, then it is only guaranteed to take values in [0, 1] at integer-valued inputs
in [0, N ], i.e., q(k) ∈ [0, 1] is only guaranteed to hold at k ∈ {0, 1, . . . , N}. This is the main
reason we use erase-all-subscripts symmetrization in this work.

Bivariate symmetrizations

In this paper, it will be convenient to consider bivariate versions of both Minsky–Papert and
erase-all-subscripts symmetrization, and their applications to oracle separations. To this
end, define X ∈ {0, 1}N , the “characteristic string” of the set S ⊆ [N ], by xi = 1 if i ∈ S
and xi = 0 otherwise. Let OS denote the unitary that performs a membership query to S,
defined as

OS |i〉 |b〉 = (1− 2bxi) |i〉 |b〉 (22)

for any index i ∈ [N ] and bit b ∈ {0, 1}.
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Because we study oracle intersection problems, it is often convenient to think of an
algorithm as having access to two oracles, wherein the first bit in the oracle register selects
the choice of oracle. As a consequence, we need a slight generalization of a now well-
established fact in quantum complexity: that the acceptance probability of a quantum
algorithm with an oracle can be expressed as a polynomial in the bits of the oracle string.

I Lemma 13 (Symmetrization with two oracles). Let QOS0 ,OS1 be a quantum algorithm that
makes T queries to a pair of membership oracles for sets S0, S1 ⊆ [N ]. Let Dµ denote the
distribution over subsets of [N ] wherein each element is selected independently with probability
µ
N . Then there exist bivariate real polynomials q(s, t) and p(x, y) of degree at most 2T
satisfying:

for all real numbers s, t ∈ [0, N ], q(s, t) = ES0∼Ds,
S1∼Dt

[
Pr[QOS0 ,OS1 accepts]

]
, and

for all integers x, y ∈ {0, 1, . . . , N}, p(x, y) = E|S0|=x,
|S1|=y

[
Pr[QOS0 ,OS1 accepts]

]
.

Proof. Take X = X0|X1 to be the concatenation of the characteristic strings of the two
oracles, and let S ⊆ [2N ] be such that X is the characteristic string of S. Then, Lemma 4.2
of Beals et al. [8] tells us that there is a real multilinear polynomial r(X) of degree at most
2T in the bits of X such that r(X) = Pr[QOS accepts].

Observe that r has a meaningful probabilistic interpretation over arbitrary inputs in [0, 1].
A vector X ∈ [0, 1]2N of probabilities corresponds to a distribution over {0, 1}2N wherein
each bit is chosen from a Bernoulli distribution with the corresponding probability. Because
r is multilinear, r in fact computes the expectation of the acceptance probability over this
distribution. In particular, the polynomial

q(s, t) = r

(
s

N
, . . . ,

s

N︸ ︷︷ ︸
N times

,
t

N
, . . . ,

t

N︸ ︷︷ ︸
N times

)
= ES0∼Ds,

S1∼Dt

[
Pr[QOS0 ,OS1 accepts]

]
(23)

corresponds to selecting S0 ∼ Ds and S1 ∼ Dt. The total degree of q is obviously at most
the degree of r, by the same reasoning as in the proof of Lemma 12.

To construct p, we apply the symmetrization lemma of Minsky and Papert [39] to
symmetrize r, first with respect to X0, then with respect to X1:

p0(x,X1) = E|S0|=x r(X0, X1) = E|S0|=x
[
Pr[QOS0 ,OS1 accepts]

]
(24)

p(x, y) = E|S1|=y p0(x,X1) = E|S0|=x,
|S1|=y

[
Pr[QOS0 ,OS1 accepts]

]
(25)

The degree of p is at most the degree of r, due to Lemma 11. J

We remark that, as a consequence of their definitions in Lemma 13, p and q satisfy:

q(s, t) = E [p(X,Y )] , (26)

whereX and Y are drawn from N -trial binomial distributions with means s and t, respectively.
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Symmetric Laurent polynomials

Finally, we state a useful fact about Laurent polynomials:

I Lemma 14 (Symmetric Laurent polynomials). Let `(x) be a real Laurent polynomial of
positive and negative degree d that satisfies `(x) = `(1/x). Then there exists a (ordinary)
real polynomial q of degree d such that `(x) = q(x+ 1/x).

Proof. `(x) = `(1/x) implies that the coefficients of the xi and x−i terms are equal for all
i, as otherwise `(x) − `(1/x) would not equal the zero polynomial. Thus, we may write
`(x) =

∑d
i=0 ai · (xi + x−i) for some coefficients ai. So, it suffices to show that xi + x−i can

be expressed as a polynomial in x+ 1/x for all 0 ≤ i ≤ d.
We prove by induction on i. The case i = 0 corresponds to constant polynomials. For

i > 0, by the binomial theorem, observe that (x+ 1/x)i = xi +x−i + r(x) where r is a degree
i− 1 real Laurent polynomial satisfying r(x) = r(1/x). By the induction assumption, r can
be expressed as a polynomial in x+ 1/x, so we have xi +x−i = (x+ 1/x)i− r(x) is expressed
as a polynomial in x+ 1/x. J

2.3 Complexity classes
I Definition 15. The complexity class QMA consists of the languages L for which there
exists a quantum polynomial time verifier V with the following properties:

1. Completeness: if x ∈ L, then there exists a quantum witness state |ψ〉 on poly(|x|) qubits
such that Pr [V (x, |ψ〉) accepts] ≥ 2

3 .
2. Soundness: if x 6∈ L, then for any quantum witness state |ψ〉 on poly(|x|) qubits,

Pr [V (x, |ψ〉) accepts] ≤ 1
3 .

A quantum verifier that satisfies the above promise for a particular language will be
referred to as a QMA verifier or QMA protocol throughout.

Though SBP and SBQP can be defined in terms of counting complexity functions, for our
purposes it is easier to work with the following equivalent definitions (see Böhler et al. [11]):

I Definition 16. The complexity class SBP consists of the languages L for which there exists
a probabilistic polynomial time algorithm M and a polynomial σ with the following properties:

1. If x ∈ L, then Pr [M(x) accepts] ≥ 2−σ(|x|).
2. If x 6∈ L, then Pr [M(x) accepts] ≤ 2−σ(|x|)/2.

The complexity class SBQP is defined analogously, wherein the classical algorithm is
replaced with a quantum algorithm.

A classical (respectively, quantum) algorithm that satisfies the above promise for a
particular language will be referred to as an SBP (respectively, SBQP) algorithm throughout.
Using these definitions, a query complexity relation between QMA protocols and SBQP
algorithms follows from the procedure of Marriott and Watrous [36], which shows that one
can exponentially improve the soundness and completeness errors of a QMA protocol without
increasing the witness size. This relationship is now standard; see for example [36, Remark 6]
or [50, Proposition 4.2] for a proof of the following lemma:

I Lemma 17. Suppose there is a QMA protocol for some problem that makes T queries
and receives an m-qubit witness. Then there is a quantum query algorithm Q for the same
problem that makes O(mT ) queries, and satisfies the following:

1. If x ∈ L, then Pr [Q(x) accepts] ≥ 2−m.
2. If x 6∈ L, then Pr [Q(x) accepts] ≤ 2−10m.
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Figure 3 Diagram of Theorem 18 (not drawn to scale).

3 QMA complexity of approximate counting

This section establishes an optimal lower bound on the QMA complexity of approximate
counting. We first lower bound the SBQP complexity of the AND2 ◦ ApxCountN,w problem
(Theorem 3). This implies a QMA lower bound for ApxCountN,w via Lemma 17, but it is not
quantitatively optimal. We prove the optimal QMA lower bound (Theorem 2) via Lemma 19,
which leverages additional properties of the SBQP protocol derived via Lemma 17 from
any QMA protocol with small witness length. Finally, Corollary 20 describes new oracle
separations that are immediate consequences of Theorem 2 and Theorem 3.

3.1 Lower bound for SBQP algorithms

Our lower bound on the SBQP complexity of AND2 ◦ ApxCountN,w hinges on the following
theorem. The theorem uses Laurent polynomials to prove a degree lower bound for bivariate
polynomials that satisfy an upper bound on an “L”-shaped pair of rectangles and a lower
bound at a nearby point:

I Theorem 18. Let 0 < w < 32w < N and M ≥ 1. Let R1 = [4w,N ] × [0, w/2] and
R2 = [0, w/2]× [4w,N ] be disjoint rectangles in the plane, and let L = R1 ∪R2. Let p(x, y)
be a real polynomial of degree d with the following properties:
1. p(4w, 4w) ≥ 1.5 ·M .
2. 0 ≤ p(x, y) ≤ 1 for all (x, y) ∈ L.
Then d = Ω(

√
N/w · logM).
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Proof. Observe that if p(x, y) satisfies the statement of the theorem, then so does p(y, x).
This is because the constraints in the statement of the theorem are symmetric in x and y (in
particular, because R1 and R2 are mirror images of one another along the line x = y; see
Figure 3). As a result, we may assume without loss of generality that p is symmetric, i.e.,
p(x, y) = p(y, x). Else, we may replace p by p(x,y)+p(y,x)

2 because the set of polynomials that
satisfy the inequalities in the statement of the theorem are closed under convex combinations.

Consider the hyperbolic parametric curve (x = 4wt, y = 4w/t) as it passes through R1
(see Figure 3). We can view the restriction of p(x, y) to this curve as a Laurent polynomial
`(t) = p(4wt, 4w/t) of positive and negative degree d. The bound of p(x, y) on all of R1
implies that |`(t)| ≤ 1 when t ∈ [8, N4w ] and that `(1) ≥ 1.5 (see Figure 3). Moreover, the
condition that p(x, y) is symmetric implies that `(t) = `(1/t).

By Lemma 14 for symmetric Laurent polynomials, `(t) can be viewed as a degree
d polynomial q(t + 1/t). Under the transformation s = t + 1/t, q satisfies |q(s)| ≤ 1 for
s ∈ [8+1/8, N4w + 4w

N ] and q(2) ≥ 1.5M . Note that the length of the interval [8+1/8, N4w + 4w
N ]

is Θ(N/w) because w < N . By an appropriate affine transformation of q, we can conclude
from Lemma 7 with µ = Θ(w/N) that d = Ω(

√
N/w · logM). J

Why is Theorem 18 useful? One may be tempted to apply this theorem directly to the
polynomial p(x, y) obtained in Lemma 13 to conclude a degree lower bound (and thus a
query complexity lower bound), as the “L”-shaped pair of rectangles L = R1 ∪R2 correspond
to “no” instances of AND2 ◦ ApxCountN,w, while (4w, 4w) corresponds to a “yes” instance.
However, even though p(x, y) is bounded at lattice points in L, it need not be bounded along
the entirety of L.11

To obtain a lower bound, we instead use the connection between the polynomials p(x, y)
and q(s, t) from Lemma 13, and establish Theorem 3 from the introduction, restated for
convenience:

I Theorem 3. Consider an SBQP algorithm for AND2◦ApxCountN,w that makes T queries to
membership oracles for the two instances of ApxCountN,w. Then T = Ω

(
min

{
w,
√
N/w

})
.

Proof. Let N > 32w (otherwise the theorem holds trivially). Since Q is an SBQP algorithm,
we may suppose that Q accepts with probability at least 2α on a “yes” instance and with
probability at most α on a “no” instance (note that α may be exponentially small in N).
Take p(x, y) and q(s, t) to be the symmetrized bivariate polynomials of degree at most 2T
defined in Lemma 13. Define L′ = ([0, w] × [0, w]) ∪ ([0, w] × [2w,N ]) ∪ ([2w,N ] × [0, w]).
The conditions on the acceptance probability of Q for all S0, S1 that satisfy the ApxCountN,w
promise imply that p(x, y) satisfies these corresponding conditions:
1. 1 ≥ p(x, y) ≥ 2α for all (x, y) ∈ ([2w,N ]× [2w,N ]) ∩ Z2.
2. 0 ≤ p(x, y) ≤ α for all (x, y) ∈ L′ ∩ Z2.

Our strategy is to show that if T = o(w), then these conditions on p imply that the
polynomial q(s, t) · 0.9

α satisfies the statement of Theorem 18 for all sufficiently large w.
This in turn implies T = Ω(

√
N/w). This allows us conclude that either T = Ω(w) or

T = Ω(
√
N/w), which proves the theorem.

11One can nevertheless use this intuition to obtain a nontrivial (though suboptimal) lower bound by
inspecting p alone. Using the Markov brothers’ inequality (Lemma 6), if deg(p) = o(

√
w), then the

bounds on p(x, y) at lattice points in L imply that |p(x, y)| ≤ 1 + ow(1) for all (x, y) ∈ L. Thus,
Theorem 18 applies if deg(p) = o(

√
w), so overall we get a lower bound of Ω

(
min

{√
w,
√
N/w

})
for

the SBQP query complexity of AND2 ◦ ApxCountN,w. See arXiv:1902.02398 for details.

https://arxiv.org/abs/1902.02398


S. Aaronson, R. Kothari, W. Kretschmer, and J. Thaler 7:19

Suppose T = o(w), so that p(x, y) and q(s, t) both have degree d = o(w). We begin by
upper bounding p(x, y) at the lattice points (x, y) outside of L′. We claim the following:
(a) |p(x, y)| ≤ α · a · exp(bd2/w) ≤ α · a · exp(bd) whenever (x, y) ∈ L′ and either x or y is an

integer, where a and b are the constants from Lemma 10. This follows from Lemma 10
by fixing either x or y to be an integer and viewing the resulting restriction of p(x, y) as
a univariate polynomial in the other variable.

(b) |p(x, y)| ≤ α · a · exp(bd) · exp(2
√

3d) = α · a · exp((b + 2
√

3)d) whenever x ∈ [w, 2w],
y ∈ [0, w], and y is an integer. This follows Lemma 7: consider the univariate polynomial
p(·, y) on the intervals [0, w] and [2w, 3w], where it is bounded by (a).

(c) |p(x, y)| ≤ α · a · exp((b+ 2
√

3)d) · a · exp(bd2/w) ≤ α · a2 · exp((2b+ 2
√

3)d) whenever
x ∈ [w, 2w] and y ∈ [0, w]. This follows from Lemma 10: consider the univariate
polynomial p(x, ·) on the interval [0, w], where it is bounded at integer points by (b).

(d) |p(x, y)| ≤ α · a2 · exp((2b + 2
√

3)d) · exp(4dy/w) = α · a2 · exp((2b + 2
√

3 + 4y/w)d)
whenever x ∈ [0, N ], y ∈ [w + 1, N ], and x is an integer. This follows from Lemma 7:
consider the univariate polynomial p(x, ·) on the interval [0, w], where it is bounded by
(a) when x ∈ [0, w] or x ∈ [2w,N ], or bounded by (c) when x ∈ [w, 2w]. By an affine
shift, this corresponds to applying Lemma 7 with µ = 2y/w − 2, with the observation
that

√
2µ+ µ2 < µ+ 2.

We now use this to upper bound q(s, t) when s ∈ [4w,N ] and t ∈ [0, w/2]. Let X and
Y be drawn from N -trial binomial distributions with means s and t, respectively, so that
q(s, t) = E[p(X,Y )]. Using the above bounds and basic probability, we have

0 ≤ q(s, t) = E[p(X,Y )] (27)

≤ α ·
(

Pr[X ≥ 2w, Y ≤ w] + Pr[X ≤ 2w, Y ≤ w] · a · exp
((
b+ 2

√
3
)
d
)

+
N∑

y=w+1
Pr[Y = y] · a2 · exp

((
2b+ 2

√
3 + 4y/w

)
d
))

(28)

≤ α ·
(

1 + Pr[X ≤ 2w] · a · exp
((
b+ 2

√
3
)
d
)

+
N∑

y=w+1
Pr[Y ≥ y] · a2 · exp

((
2b+ 2

√
3 + 4y/w

)
d
))

. (29)

The probabilities above are easily bounded with a Chernoff bound:

q(s, t) = E[p(X,Y )] ≤ α ·
(

1 + a · exp
((
b+ 2

√
3
)
d− w/2

)
+

N∑
y=w+1

a2 · exp
((

2b+ 2
√

3 + 4y/w
)
d− y/6

))
. (30)

Because a and b are universal constants from Lemma 10, when d = o(w), the first exponential
term becomes arbitrarily small for all sufficiently large w. Moreover, for all sufficiently large
w, the remaining sum becomes bounded by a geometric sum. For some constant c, we have

N∑
y=w+1

a2 · exp
((

2b+ 2
√

3 + 4y/w
)
d− y/6

)
≤

∞∑
y=w+1

c · exp (−y/12)

≤ c

1− exp(−1/12) · exp(−w/12)

= ow(1).
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Thus we conclude that 0 ≤ q(s, t) ≤ α · (1 + ow(1)) when s ∈ [4w,N ] and t ∈ [0, w/2] (i.e.,
(s, t) ∈ R1 in the statement of Theorem 18). By symmetry, we can conclude the same bound
when s ∈ [0, w/2] and t ∈ [4w,N ] (i.e., (s, t) ∈ R2 in the statement of Theorem 18).

Now, we lower bound q(4w, 4w). Let X and Y be drawn from independent N -trial
binomial distributions with mean 4w, so that q(4w, 4w) = E [p(X,Y )]. Then we have

E [p(X,Y )] ≥ 2α · Pr[X ≥ 2w, Y ≥ 2w]
≥ 2α · (1− Pr[X ≤ 2w]− Pr[Y ≤ 2w])
≥ 2α · (1− 2 exp(−w/2))
≥ 2α · (1− ow(1))

We conclude that q(s, t) · 0.9
α satisfies the statement of Theorem 18 (with M = 1) for all

sufficiently large w. J

We remark that this lower bound is tight, i.e., there exists an SBQP algorithm that
makes O

(
min

{
w,
√
N/w

})
queries. The O(

√
N/w) upper bound follows from the BQP

algorithm of Brassard, Høyer, and Tapp [14]. The O(w) upper bound is in fact an SBP
upper bound with the following algorithmic interpretation: first, guess w+ 1 items randomly
from each of S0 and S1. Then, verify using the membership oracle that the first w+ 1 items
all belong to S0 and that the latter w+ 1 items all belong to S1, accepting if and only if this
is the case. Clearly, this accepts with nonzero probability if and only if |S0| ≥ w + 1 and
|S1| ≥ w + 1.

3.2 Lower bound for QMA
In this section, we establish the optimal QMA lower bound (Theorem 2). We begin by
quantitatively improving the SBQP lower bound for AND2 ◦ ApxCountN,w of Theorem 3,
under the stronger assumption that the parameter α in the SBQP protocol is not smaller
than 2−w. (In addition to a stronger conclusion, this assumption also permits a considerably
simpler analysis than was required to prove Theorem 3).

I Lemma 19. Consider any quantum query algorithm QOS0 ,OS1 for AND2 ◦ ApxCountN,w
that makes T queries to the membership oracles OS0 and OS1 for the two instances of
ApxCountN,w and satisfies the following. For some m = o(w), α = 2−m, and M ∈ [1, α−1]:
1. If x ∈ L, then Pr [Q(x) accepts] ≥ α.
2. If x 6∈ L, then Pr [Q(x) accepts] ≤ α/(2M).
Then T = Ω

(√
N/w · logM

)
Proof. As in the proof of Theorem 3, define L′ = ([0, w] × [0, w]) ∪ ([0, w] × [2w,N ]) ∪
([2w,N ]× [0, w]), and take p(x, y) and q(s, t) to be the symmetrized bivariate polynomials of
degree at most 2T defined in Lemma 13. p(x, y) satisfies the following properties.
(a) 1 ≥ p(x, y) ≥ α for all (x, y) ∈ ([2w,N ]× [2w,N ]) ∩ Z2.
(b) 0 ≤ p(x, y) ≤ α/(1.5M) for all (x, y) ∈ L′ ∩ Z2.
(c) 0 ≤ p(x, y) ≤ 1 for all (x, y) ∈ ([0, N ]× [0, N ]) ∩ Z2.

We use these properties to upper bound q(s, t) when s ∈ [4w,N ] and t ∈ [0, w/2]. Let X
and Y be drawn from N -trial binomial distributions with means s and t, respectively, so
that q(s, t) = E[p(X,Y )]. Using the above bounds and basic probability, we have
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0 ≤ q(s, t) = E[p(X,Y )]
≤ α/(2M) Pr[X ≥ 2w, Y ≤ w] + (1− Pr[X ≥ 2w, Y ≤ w])

≤ α/(2M) + 2−Ω(w) ≤ (1 + o(1))α/(2M)

Here, the first inequality holds by Properties (a)-(c) above, while the second follows from a
Chernoff Bound, and the third holds because α/(2M) ≥ 2−o(w).

Thus we conclude that 0 ≤ q(s, t) ≤ α/(2M)·(1+ow(1)) when s ∈ [4w,N ] and t ∈ [0, w/2]
(i.e., (s, t) ∈ R1 in the statement of Theorem 18). By symmetry, we can conclude the same
bound when s ∈ [0, w/2] and t ∈ [4w,N ] (i.e., (s, t) ∈ R2 in the statement of Theorem 18).

Now, we lower bound q(4w, 4w). Let X and Y be drawn from independent N -trial
binomial distributions with mean 4w, so that q(4w, 4w) = E [p(X,Y )]. Then we have

E [p(X,Y )] ≥ α · Pr[X ≥ 2w, Y ≥ 2w]
≥ α · (1− Pr[X ≤ 2w]− Pr[Y ≤ 2w])
≥ α · (1− 2 exp(−w/2))
≥ α · (1− ow(1))

We conclude that q(s, t) · 1.8M
α satisfies the statement of Theorem 18 for all sufficiently large

w. Hence, T = Ω
(√

N/w · logM
)
as claimed. J

We now establish Theorem 2 from the introduction, which quantitatively lower bounds
the QMA complexity of ApxCountN,w. The analysis exploits two key properties of the SBQP
protocols that result from applying Lemma 17 to a QMA protocol with witness length m:
(1) the parameter α of the SBQP protocol is not too small (at least 2−m) and (2) the
multiplicative gap between acceptance probabilities when f(x) = 0 vs. f(x) = 1 is at least
2m, which may be much greater than 2.

I Theorem 2. Consider a QMA protocol that solves ApxCountN,w. If the protocol receives
a quantum witness of length m, and makes T queries to the membership oracle for S, then
either m = Ω(w) or T = Ω

(√
N/w

)
.

Proof. Consider a QMA protocol for ApxCountN,w with witness size m and query cost T .
If m = Ω(w), the theorem is vacuous, so suppose that m = o(w). Running the verifier,
Arthur, a constant number of times with fresh witnesses to reduce the soundness and
completeness errors, one obtains a verifier with soundness and completeness errors 1/6 that
receives an O(m)-length witness and makes O(T ) queries. Repeating twice with two oracles
and computing the AND, one obtains a QMA verifier V ′OS0 ,OS1 for AND2 ◦ ApxCountN,w
with soundness and completeness errors 1/3 that receives an O(m)-length witness and
makes O(T ) queries. Applying Lemma 17 to V ′, there exists a quantum query algorithm
QOS0 ,OS1 for AND2 ◦ApxCountN,w that makes O(m ·T ) queries and satisfies the hypothesis of
Lemma 19 with M = 2−Θ(m). Theorem 3 tells us that m ·T = Ω

(√
N/w ·m

)
. Equivalently,

T = Ω
(√

N/w
)
. J

Theorem 3 also implies several oracle separations:

I Corollary 20. There exists an oracle A and a pair of languages L0, L1 such that:
1. L0, L1 ∈ SBPA

2. L0 ∩ L1 6∈ SBQPA.
3. SBPA 6⊂ QMAA.
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Proof. For an arbitrary function A : {0, 1}∗ → {0, 1} and i ∈ {0, 1}, define Ani = {x ∈
{0, 1}n : A(i, x) = 1}. Define the unary language LAi = {1n : |Ani | ≥ 2n/2}. Observe that as
long as A satisfies the promise |Ani | ≥ 2n/2 or |Ani | ≤ 2n/2−1 for all n ∈ N, then LAi ∈ SBPA.
Intuitively, the oracles A that satisfy this promise encode a pair of ApxCountN,w instances
|An0 | and |An1 | for every n ∈ N where N = 2n and w = 2n/2−1.

Theorem 3 tells us that an SBQP algorithm Q that makes o(2n/4) queries fails to
solve AND2 ◦ ApxCountN,w on some pair (S0, S1) that satisfies the promise. Thus, one can
construct an A such that L0, L1 ∈ SBPA and L0 ∩ L1 6∈ SBQPA, by choosing (An0 , An1 ) so as
to diagonalize against all SBQP algorithms.

Because QMAA is closed under intersection for any oracle A, and because QMAA ⊆ SBQPA

for any oracle A, it must be the case that either L0 6∈ QMAA or L1 6∈ QMAA. J

4 Approximate counting with quantum samples and reflections

4.1 The Laurent polynomial method
By using Minsky–Papert symmetrization (Lemma 11), we now prove the key fact that relates
quantum algorithms, of the type we’re considering, to real Laurent polynomials in one
variable. The following lemma generalizes the connection between quantum algorithms and
real polynomials established by Beals et al. [8].

I Lemma 21. Let Q be a quantum algorithm that makes T queries to OS, uses R1 copies
of |S〉, and makes R2 uses of the unitary RS. Let R := R1 + 2R2. For k ∈ {1, . . . , N}, let

q (k) := E|S|=k
[
Pr
[
QOS ,RS

(
|S〉⊗R1

)
accepts

]]
. (31)

Then q can be written a univariate Laurent polynomial, with maximum exponent at most
2T +R and minimum exponent at least −R.

Proof. Let |ψinitial〉 denote the initial state of the algorithm, which we can write as

|ψinitial〉 = |S〉⊗R1 =
(

1√
|S|

∑
i∈S
|i〉

)⊗R1

=

 1√
|S|

∑
i∈[N ]

xi|i〉

⊗R1

= 1
|S|R1/2

∑
i1,...,iR1∈[N ]

xi1 · · ·xiR1
|i1, . . . , iR1〉 .

Thus, each amplitude is a complex multilinear polynomial in X = (x1, . . . , xN ) of degree R1,
divided by |S|R1/2.

Throughout the algorithm, each amplitude will remain a complex multilinear polynomial
in X divided by some power of |S|. Since x2

i = xi for all i, we can always maintain
multilinearity without loss of generality.

Like Beals et al. [8], we now consider how the polynomial degree of each amplitude and
the power of |S| in the denominator change as the algorithm progresses. We have to handle
3 different kinds of unitaries that the quantum circuit may use: the membership query oracle
OS , unitaries independent of the input, and the reflection unitary RS .

The first two cases are handled as in Beals et al. Since OS is a unitary whose entries
are degree-1 polynomials in X, each use of this unitary increases a particular amplitude’s
degree as a polynomial by 1 and does not change the power of |S| in the denominator.
Second, input-independent unitary transformations only take linear combinations of existing
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polynomials and hence do not increase the degree of the amplitudes or the power of |S| in the
denominator. Finally, we consider the reflection unitary RS = 1− 2|S〉〈S|. The (i, j)th entry
of this operator is δij − 2xixj

|S| = δij |S|−2xixj

|S| , where δij is the Kronecker delta function. Since
|S| =

∑
i xi, this is a degree-2 polynomial divided by |S|. Hence applying this unitary will

increase the degree of the amplitudes by 2 and increase the power of |S| in the denominator
by 1.

In conclusion, we start with each amplitude being a polynomial of degree R1 divided by
|S|R1/2. T queries to the membership oracle will increase the degree of each amplitude by at
most T and leave the power of |S| in the denominator unchanged. R2 uses of the reflection
unitary will increase the degree by at most 2R2 and the power of |S| in the denominator by
R2. It follows that Q’s final state has the form

|ψfinal〉 =
∑
z

αz (X) |z〉 , (32)

where each αz (X) is a complex multilinear polynomial in X of degree at most R1 +2R2 +T =
R+ T , divided by |S|R1/2+R2 = |S|R/2. Since X itself is real-valued, it follows that the real
and imaginary parts of αz (X), considered individually, are real multilinear polynomials in
X of degree at most R+ T divided by |S|R/2.

Hence, if we let

p (X) := Pr
[
QOS ,RS

(
|S〉⊗R1

)
accepts

]
, (33)

then

p (X) =
∑

accepting z
|αz (X)|2 =

∑
accepting z

(
Re2 αz (X) + Im2 αz (X)

)
(34)

is a real multilinear polynomial in X of degree at most 2 (R+ T ), divided through (in every
monomial) by |S|R = |X|R.

Now consider

q (k) := E|X|=k [p (X)] . (35)

By Lemma 11, this is a real univariate polynomial in |X| of degree at most 2 (R+ T ), divided
through (in every monomial) by |S|R = |X|R. Or said another way, it’s a real Laurent
polynomial in |X|, with maximum exponent at most R + 2T and minimum exponent at
least −R. J

4.2 Upper bounds
Before proving our lower bounds on the degree of Laurent polynomials approximating
ApxCountN,w, we establish some simpler upper bounds. We show upper bounds on Laurent
polynomial degree and in the queries, samples, and reflections model.

Laurent polynomial degree of approximate counting

We now describe a purely negative degree Laurent polynomial of degree O(w1/3) for approx-
imate counting. This upper bound will serve as an important source of intuition when we
prove the (matching) lower bound of Theorem 4 (see Section 4.4.3). We are thankful to user
“fedja” on MathOverflow for describing this construction.12

12See https://mathoverflow.net/questions/302113/real-polynomial-bounded-at-inverse-inte-
ger-points
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I Lemma 22 (fedja). For all w, there is a real polynomial p of degree O
(
w1/3) such that:

1. 0 ≤ p(1/k) ≤ 1
3 for all k ∈ [w].

2. 2
3 ≤ p(1/k) ≤ 1 for all integers k ≥ 2w.

3. 0 ≤ p(1/k) ≤ 1 for all k ∈ {w + 1, w + 2, . . . , 2w − 1}.

Proof. Assuming for simplicity that w is a perfect cube, consider

u (x) := (1− x) (1− 2x) · · ·
(

1− w1/3x
)
. (36)

Notice that deg (u) = w1/3 and u
( 1
k

)
= 0 for all k ∈

[
w1/3]. Furthermore, we have

u (x) ∈ [0, 1] for all x ∈
[
0, 1

w1/3

]
, and also u (x) ∈

[
1−O

( 1
w1/3

)
, 1
]
for all x ∈

[
0, 1

w

]
. Now,

let v be the Chebyshev polynomial of degree w1/3, affinely adjusted so that v (x) ∈ [0, 1] for
all x ∈

[
0, 1

w1/3

]
(rather than in [−1, 1] for all all |x| ≤ 1), and with a large jump between

1
2w and 1

w . Then the product, p(x) := u (x) v (x), has degree 2w1/3 and satisfies all the
requirements, except possibly that the constants 1

3 and 2
3 in the first two requirements may

be off. Composing with a constant degree polynomial corrects this, and gives a polynomial
of degree O(w1/3) that satisfies all three requirements. J

Interestingly, if we restrict our attention to purely negative degree Laurent polynomials,
then a matching lower bound is not too hard to show. In the same MathOverflow post, user
fedja also proves the following, which can also be shown using earlier work of Zhandry [57,
Proof of Theorem 7.3]):

I Lemma 23. Let p be a real polynomial, and suppose that |p (1/k)| ≤ 1 for all k ∈ [2w],
and that p

( 1
w

)
≤ 1

3 while p
( 1

2w
)
≥ 2

3 . Then deg (p) = Ω
(
w1/3).

Section 4.3 and Section 4.4 below take the considerable step of extending Lemma 23 from
purely negative degree Laurent polynomials to general Laurent polynomials.

Upper bounds in the queries, samples, and reflections model

Although we showed that there is a purely negative degree Laurent polynomial of degree
O(w1/3) for ApxCountN,w, this does not imply the existence of a quantum algorithm in the
queries, samples, and reflections model with similar complexity.

We now show that our lower bounds in the queries, samples, and reflections model (in
Theorem 4) are tight (up to constants). This is Theorem 5 in the introduction, restated here
for convenience:

I Theorem 5. There is a quantum algorithm that solves ApxCountN,w with high probability

using R copies of |S〉 and reflections about |S〉, where R = O
(

min
{
w1/3,

√
N
w

})
.

Proof. We describe two quantum algorithms for this problem with the two stated complexit-
ies.

The first algorithm uses O(w1/3) samples and reflections. This algorithm is reminiscent
of the original collision finding algorithm of Brassard, Høyer, and Tapp [15]. We first use
O(w1/3) copies of |S〉 to learn a set M ⊂ S of size w1/3 by simply measuring copies of |S〉 in
the computational basis. Now we know that the ratio |S|/|M | is either w2/3 or 2w2/3. Now
consider running Grover’s algorithm on the set S where the elements in M are considered the
“marked” elements. Grover’s algorithm alternates reflections about the uniform superposition
over the set being searched, S, with an operator that reflects about the marked elements
in M . The first reflection is simply RS , which we have access to. The second unitary can be
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constructed since we have an explicit description of the set M . Now Grover’s algorithm can
be used to distinguish whether the fraction of marked elements is 1/w2/3 or half of that, and
the cost will be O(w1/3).

The second algorithm uses O(
√
N/w) reflections only and no copies of |S〉. Consider

running the standard approximate counting algorithm [13] that uses membership queries to S
and distinguishes |S| ≤ w from |S| ≥ 2w using O(

√
N/w) membership queries. Observe that

this algorithm starts with the state |ψ〉 = 1√
N

(|1〉+ · · ·+ |N〉), which is in span{|S〉, |S̄〉},
and only uses reflections about |ψ〉 and membership queries to |S〉 in the form of a unitary
that maps |i〉 to −|i〉 when i ∈ S. This means the state of the algorithm remains in
span{|S〉, |S̄〉} at all times. Within this subspace, a membership query to S is the same as a
reflection about |S〉. Hence we can replace membership queries with the reflection operator
to get an approximate counting algorithm that only uses O(

√
N/w) reflections and no copies

of |S〉. J

Note that both the algorithms presented above generalize to the situation where we want
to distinguish |S| = w from |S| = (1 + ε)w. For the first algorithm, we now pick a subset M
of size w1/3/ε2/3. Now we want to (1+ε)-approximate the fraction of marked elements, which
is either 1/(wε)2/3 or (1 + ε)−1 times that. This can be done with approximate counting [13,
Theorem 15], and the cost will be O

( 1
ε (wε)1/3) = O

(
w1/3

ε2/3

)
. The second algorithm is simpler

to generalize, since we simply plug in the query complexity of ε-approximate counting, which
is O

(
1
ε

√
N
w

)
.

4.3 Lower bound using the explosion argument
We now show a weaker version of Theorem 4 using the explosion argument described in the
introduction. The difference between the following theorem and Theorem 4 is the exponent
of w in the lower bound.

I Theorem 24. Let Q be a quantum algorithm that makes T queries to the membership
oracle for S, and uses a total of R copies of |S〉 and reflections about |S〉. If Q decides
whether |S| = w or |S| = 2w with success probability at least 2/3, promised that one of those
is the case, then either

T = Ω
(√

N

w

)
or R = Ω

(
min

{
w1/4,

√
N

w

})
. (37)

Proof. Since we neglect multiplicative constants in our lower bounds, let us allow the
algorithm to use up to R copies of |S〉 and R uses of RS . Let

q (k) := E|S|=k
[
Pr
[
QOS ,RS

(
|S〉⊗R

)
accepts

]]
. (38)

Then by Lemma 21, we can write q as a Laurent polynomial:

q (k) = u (k) + v (1/k) , (39)

where u is a real polynomial in k with deg (u) = O(T + R), and v is a real polynomial in
1/k with deg (v) = O(R). So to prove the theorem, it suffices to show that either deg (u) =
Ω
(√

N
w

)
, or else deg (v) = Ω

(
w1/4). To do so, we’ll assume that deg (u) = o

(√
N
w

)
and

deg (v) = o
(
w1/4), and derive a contradiction.
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Our high-level strategy is as follows: we’ll observe that, if approximate counting is being
successfully solved, then either u or v must attain a large first derivative somewhere in its
domain. By the approximation theory lemmas that we proved in Section 2.1, this will force
that polynomial to have a large range – even on a subset of integer (or inverse-integer) points.
But the sum, u (k) + v (1/k), is bounded in [0, 1] for all k ∈ [N ]. So if one polynomial has a
large range, then the other does too. But this forces the other polynomial to have a large
derivative somewhere in its domain, and therefore (by approximation theory) to have an
even larger range, forcing the first polynomial to have an even larger range to compensate,
and so on. As long as deg (u) and deg (v) are both small enough, this endless switching will
force both u and v to attain unboundedly large values – with the fact that one polynomial is
in k, and the other is in 1/k, crucial to achieving the desired “explosion.” Since u and v are
polynomials on compact sets, such unbounded growth is an obvious absurdity, and this will
give us the desired contradiction.

In more detail, we will study the following quantities.

Gu := maxx,y∈[√w,2w] |u (x)− u (y)| Gv := maxx,y∈[ 1
N

, 1
w ] |v (x)− v (y)|

∆u := maxx∈[√w,2w] |u
′ (x)| ∆v := maxx∈[ 1

N
, 1

w ] |v
′ (x)|

Hu := maxx,y∈[√w,N] |u (x)− u (y)| Hv := max
x,y∈
[

1
N

, 1√
w

] |v (x)− v (y)|

Iu := maxx,y∈[w,N ] |u (x)− u (y)| Iv := max
x,y∈
[

1
2w

, 1√
w

] |v (x)− v (y)|

Lu := maxx,y∈{w,...,N} |u (x)− u (y)| Lv := maxx,y∈{√w,...,2w}
∣∣v ( 1

x

)
− v
(

1
y

)∣∣
(40)

We have 0 ≤ q (k) ≤ 1 for all k ∈ [N ], since in those cases q (k) represents a probability.
Since Q solves approximate counting, we also have q (w) ≤ 1

3 and q (2w) ≥ 2
3 . This means

in particular that either
(i) u (2w)− u (w) ≥ 1

6 , and hence Gu ≥ 1
6 , or else

(ii) v
( 1

2w
)
− v

( 1
w

)
≥ 1

6 , and hence Gv ≥ 1
6 .

We will show that either case leads to a contradiction.
We have the following inequalities regarding u:

Gu ≥ Lv − 1 by the boundedness of q
∆u ≥ Gu

2w
by basic calculus

Hu ≥
∆u(N−

√
w)

deg(u)2 by Lemma 6
Iu ≥ Hu

2 by Corollary 8
Lu ≥ Iu

2 by Lemma 9

(41)

Here the fourth inequality uses the fact that, setting ε :=
√
w
N , we have deg (u) = o

(
1√
ε

)
(thereby satisfying the hypothesis of Corollary 8), while the fifth inequality uses the fact that
deg (u) = o

(√
N
)
.

Meanwhile, we have the following inequalities regarding v:

Gv ≥ Lu − 1 by the boundedness of q
∆v ≥ Gvw by basic calculus

Hv ≥
∆v

(
1√
w
− 1

N

)
deg(v)2 by Lemma 6

Iv ≥ Hv
2 by Corollary 8

Lv ≥ Iv
2 by Lemma 9

(42)

Here the fourth inequality uses the fact that, setting ε := 1/2w
1/
√
w

= 1
2
√
w
, we have deg (v) =

o
(

1√
ε

)
(thereby satisfying the hypothesis of Corollary 8). The fifth inequality uses the fact

that, if we set V (x) := v (x/w), then the situation satisfies the hypothesis of Lemma 9: we
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are interested in the range of V on the interval
[ 1

2 ,
√
w
]
, compared to its range on discrete

points w√
w
, w√

w+1 , . . . ,
w
2w that are spaced at most 1 apart from each other; and we also have

deg (V ) = deg (v) = o
(
w1/4).

All that remains is to show that, if we insert either Gu ≥ 1
6 or Gv ≥ 1

6 into the coupled
system of inequalities above, then we get unbounded growth and the inequalities have no
solution. Let us collapse the two sets of inequalities to

Lu ≥
1
4
N −

√
w

deg (u)2
Gu
2w = Ω

(
N

wdeg (u)2Gu

)
,

Lv ≥
1
4

1√
w
− 1

N

deg (v)2 Gvw = Ω
( √

w

deg (v)2Gv

)
.

Hence

Gu ≥ Lv − 1 = Ω
( √

w

deg (v)2Gv

)
− 1,

Gv ≥ Lu − 1 = Ω
(

N

wdeg (u)2Gu

)
− 1.

By the assumption that deg (v) = o
(
w1/4) and deg (u) = o

(√
N
w

)
, we have

√
w

deg(v)2 � 1
and N

wdeg(u)2 � 1. Plugging in Gu ≥ 1
6 or Gv ≥ 1

6 , this is enough to give us unbounded
growth. J

4.4 Lower bound using dual polynomials
In this section we use the method of dual polynomials to establish our main result, Theorem 4,
restated for convenience:
I Theorem 4. Let Q be a quantum algorithm that makes T queries to the membership oracle
for S, and uses a total of R copies of |S〉 and reflections about |S〉. If Q decides whether
|S| = w or |S| = 2w with high probability, promised that one of those is the case, then either

T = Ω
(√

N

w

)
or R = Ω

(
min

{
w1/3,

√
N

w

})
. (4)

Let p(r) be a univariate Laurent polynomial of negative degree D1 and positive degree
D2. That is, let p(r) be of the form

p(r) = a0/r
D1 + a1/r

D1−1 + · · ·+ aD1−1/r + aD1 + aD1+1 · r + · · ·+ aD2+D1 · rD2 . (43)

Theorem 4 follows by combining the Laurent polynomial method (Lemma 21) and the
following theorem.
I Theorem 25. Let ε < 1. Suppose that p has negative degree D1 and positive degree D2
and satisfies the following properties.
|p(w)− 1| ≤ ε
|p(2w) + 1| ≤ ε
|p(`)| ≤ 1 + ε for all ` ∈ {1, 2, . . . , n}

Then either D1 ≥ Ω
(
w1/3) or D2 ≥ Ω

(√
N/w

)
.

In fact, our proof of Theorem 25 will show that the lower bound holds even if |p(`)| ≤ 1+ε
only for ` ∈ {w1/3, w1/3 +1, . . . , w}∪{2w, 2w+1, . . . , N}. We refer to a Laurent polynomial
p satisfying the three properties of Theorem 25 as an approximation for approximate counting.
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Proof of Theorem 25

Let p be any Laurent polynomial satisfying the hypothesis of Theorem 25. We begin
by transforming p into a (standard) polynomial q in a straightforward manner. This
transformation is captured in the following lemma, whose proof is so simple that we omit it.

I Lemma 26. If p satisfies the properties of Theorem 25, then the polynomial q(r) =
p(r) · rD1 = a0 + a1r + · · · + aD1+D2r

D1+D2 is a (standard) polynomial of degree at most
D1 +D2, and q satisfies the following three properties.∣∣q(w)− wD1

∣∣ ≤ ε · wD1∣∣q(2w) + (2w)D1
∣∣ ≤ ε · (2w)D1

|q(`)| ≤ (1 + ε) `D1 for all ` ∈ {1, 2, . . . , N}

We now turn to showing that, for any constant ε < 1, no polynomial q can satisfy the
conditions of Lemma 26 unless D1 ≥ Ω(w1/3) or D2 ≥ Ω

(√
N/w

)
.

Consider the following linear program. The variables of the linear program are ε, and
the D2 +D1 + 1 coefficients of q.

minimize ε

such that
|q(w)− wD1 | ≤ ε · wD1

|q(2w) + (2w)D1 | ≤ ε · (2w)D1

|q(`)| ≤ (1 + ε) · `D1 for all ` ∈ {1, 2, . . . , N}
ε ≥ 0

(44)

Standard manipulations reveal the dual.

maximize φ(w) · wD1 − φ(2w) · (2w)D1 −
∑
`∈{1,...,N}, 6̀∈{w,2w} |φ(`)| · `D1

such that ∑N
`=1 φ(`) · `j = 0 for j = 0, 1, 2, . . . , D1 +D2∑N
`=1 |φ(`)| · `D1 = 1

φ : R→ R

(45)

Theorem 25 will follow if we can exhibit a solution φ to the dual linear program achieving
value ε > 0, for some setting of D1 ≥ Ω(w1/3) and D2 ≥ Ω

(√
N/w

)
.13 We now turn to

this task.

4.4.1 Constructing the dual solution
For a set T ⊆ {0, 1, . . . , N}, define

QT (t) =
∏

i=0,1,...,N,i6∈T
(t− i). (46)

13We will alternatively refer to such dual solutions φ as dual witnesses, since they act as a witness to the
fact that any low-degree Laurent polynomial p approximating the approximate counting problem must
have large error.
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Let c > 2 be an integer constant that we will choose later (the bigger we choose c to be,
the better the objective value achieved by our final dual witness. But choosing a bigger c
will also lower the degrees D1, D2 of Laurent polynomials against which our lower bound
will hold).

We now define two sets T1 and T2. The size of T1 will be

d1 := b(w/c)1/3c = Θ
(
w1/3

)
(47)

and the size of T2 will be d2 for

d2 := b
√
N/(cw)c = Θ

(√
N/w

)
. (48)

Let

T1 =
{
bw/(ci2)c : i = 1, 2, . . . , d1

}
(49)

and

T2 =
{
c · i2 · w : i = 1, 2, . . . , d2 :=

√
N/(cw)

}
. (50)

Finally, define

T = {w, 2w} ∪ T1 ∪ T2. (51)

At last, define Φ: {0, 1, . . . , N} → R via

Φ(t) = (−1)t ·
(
N

t

)
·QT (t). (52)

Our final dual solution φ will be a scaled version of Φ. Specifically, Φ itself does not
satisfy the second constraint of the dual linear program, that

∑N
`=1 |Φ(`)| · `D1 = 1. So

letting

C =
N∑
`=1
|Φ(`)| · `D1 , (53)

our final dual witness φ will be Φ/C.

The sizes of T1 and T2

Clearly, under the above definition of T2, |T2| = d2 as claimed above. It is not as immediately
evident that |T1| = d1: to establish this, we must show that for distinct i, j ∈ {1, 2, . . . , d1},
bw/(ci2)c 6= bw/(cj2)c. This is handled in the following easy lemma.

I Lemma 27. Let i 6= j be distinct numbers in {1, . . . , d1} and c > 2 be a constant. Then
as long as d1 < (w/c)1/3, it holds that bw/(ci2)c 6= bw/(cj2)c.

Proof. Assume without loss of generality that i > j. Then w/(cj2) − w/(ci2) is clearly
minimized when i = d1 and j = i− 1. For the remainder of the proof, fix i = d1. In this case,

w/(cj2)− w/(ci2) ≥ w/
(
c(i− 1)2)− w/ (ci2) = wi2 − w (i− 1)2

c · i2 · (i− 1)2

= w

c
· 2i− 1
i2 (i− 1)2 ≥

w

c
· 2i− 1

i4
≥ w

ci3
≥ 1. (54)

Here, the final inequality holds because i3 = d3
1 ≤ w/c.

Equation (54) implies the lemma, as two numbers whose difference is at least 1 cannot
have the same integer floor. J
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Lemma 27 is false for d1 = ω(w1/3), highlighting on a technical level why one cannot
choose d1 larger than Θ(w1/3) without the entire construction and analysis of Φ breaking
down.

4.4.2 Intuition: “gluing together” two simpler dual solutions
Before analyzing the dual witnesses Φ and φ constructed in Equation (52) and Equation (53),
in this subsection and the next, we provide detailed intuition for why the definitions of Φ
and φ are natural, and briefly overview their analysis.

A dual witness for purely positive degree (i.e., approximate degree)

Suppose we were merely interested in showing an approximate degree lower bound of
Ω(
√
N/w) for approximate counting (i.e., a lower bound on the degree of traditional poly-

nomials that distinguish input w from 2w, and are bounded at all other integer inputs in
1, . . . , N). This is equivalent to exhibiting a solution to the dual linear program with D1 = 0.
A valid dual witness φ1 for this simpler case is to also use Equation (52), but to set

T = {w, 2w} ∪ T2, (55)

rather than T = {w, 2w} ∪ T1 ∪ T2.
We will explain intuition for why Equation (55) is a valid dual solution for the approximate

degree of approximate counting in the next subsection. For now, we wish to explain how
this construction relates to prior work. In [18], for any constant δ > 0, a dual witness is
given for the fact that the (1− δ)-approximate degree of OR is Ω(

√
N). This dual witness

nearly corresponds to the above, with w = 1. Specifically, Bun and Thaler [18] use the set
T = {0, 1} ∪ {ci2 : i = 1, 2, . . . ,

√
N/c}, and they show that almost all of the “mass” of this

dual witness is located on the inputs 0 and 1, i.e.,

|Φ(0)|+ |Φ(1)| ≥ (1− δ) ·
N∑
i=2
|Φ(i)| . (56)

Here, the bigger c is chosen to be, the smaller the value of δ for which Equation (56) holds.
In the case of w = 1, our dual witness for approximate counting differs from this only

in that {0, 1} is replaced with {1, 2}. This is because, in order to show a lower bound for
distinguishing input w = 1 from input 2w = 2, we want almost all of the mass to be on
inputs {1, 2} rather than {0, 1} (this is what will ensure that the objective function of the
dual linear program is large).

For general w, we want most of the mass of ψ to be concentrated on inputs w and 2w.
Accordingly, relative to the w = 1 case, we effectively multiply all points in T by w, and one
can show that this does not affect the calculation regarding concentration of mass.

A dual witness for purely negative degree

Now, suppose we were merely interested in showing that Laurent polynomials of purely
negative degree require degree Ω(w1/3) to approximate the approximate counting problem.
This is equivalent to exhibiting a solution to the dual linear program with D2 = 0. Then a
valid dual witness φ2 for this simpler case is to also use Equation (52), but to set

T = {w, 2w} ∪ T1. (57)
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Again, we will give intuition for why this is a valid dual solution in the next subsection
(Section 4.4.3). For now, we wish to explain how this construction relates to prior work.
Essentially, the Ω

(
w1/3)-degree lower bound for Laurent polynomials with only negative

powers was proved by Zhandry [57, Theorem 7.3]. Translating Zhandry’s theorem into our
setting is not entirely trivial, and he did not explicitly construct a solution to our dual linear
program. However (albeit with significant effort), one can translate his argument to our
setting to show that Equation (57) gives a valid dual solution to prove a lower bound against
Laurent polynomials with only negative powers.

Gluing them together

The above discussion explains that the key ideas for constructing dual solutions φ1, φ2
witnessing degree lower bounds for Laurent polynomials of only negative or only positive
powers were essentially already known, or at least can be extracted from prior work with
enough effort. In this work, we are interested in proving lower bounds for Laurent polynomials
with both positive and negative powers. Our dual solution Φ essentially just “glues together”
the dual solutions that can be derived from prior work. By this, we mean that the set T of
integer points on which our Φ is nonzero is the union of the corresponding sets for φ1 and φ2
individually. Moreover, this union is nearly disjoint, as the only points in the intersection of
the two sets being unioned are w and 2w.

Overview of the analysis

To show that we have constructed a valid solution to the dual linear program (Equation (45)),
we must establish that (a) Φ is uncorrelated with every polynomial of degree at most D1 +D2
and (b) Φ is well-correlated with any function g that evaluates to +1 on input w, to −1 on
input 2w, and is bounded in [−1, 1] elsewhere. In (b), the correlation is taken with respect
to an appropriate weighting of the inputs, that on input ` ∈ [N ] places mass proportional
to `D1 .

The definition of Φ as a “gluing together” of φ1 and φ2 turns out, in a straightforward
manner, to ensure that Φ is uncorrelated with polynomials of degree at D1 +D2. All that
remains is to show that Φ is well-correlated with g under the appropriate weighting of inputs.
This turns out to be technically demanding, but ultimately can be understood as stemming
from the fact that φ1 and φ2 are individually well-correlated with g (albeit, in the case of φ2,
under a different weighting of the inputs than the weighting that is relevant for Φ).

4.4.3 Intuition via complementary slackness
We now attempt to lend some insight into why the dual witnesses φ1 and φ2 for the purely
positive degree and purely negative degree take the form that they do. This section is
deliberately slightly imprecise in places, and builds on intuition that has been put forth in
prior works proving approximate degree lower bounds via dual witnesses [18, 55, 17].

Notice that φ1 is precisely defined so that φ1(i) = 0 for any i 6∈ {w, 2w}∪T2, and similarly
φ2(i) = 0 for any i 6∈ {w, 2w} ∪ T1. The intuition for why this is reasonable comes from
complementary slackness, which states that an optimal dual witness should equal 0 except
on inputs that correspond to primal constraints that are made tight by an optimal primal
solution. By “constraints made tight by an optimal primal solution”, we mean constraints
that, for the optimal primal solution, hold with equality rather than (strict) inequality.

Unpacking that statement, this means the following. Suppose that q is an optimal
solution to the primal linear program of Section 4.4, meaning it minimizes the error ε
amongst all polynomials of the same same degree. The constraints made tight by q are
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precisely those inputs ` at which q hits its “maximum error” (e.g., an input ` such that
|q(`)| = (1 + ε) · `D1). We call these inputs maximum-error inputs for q. Complementary
slackness says that there is an optimal solution to the dual linear program (Equation (45))
that equals 0 at all inputs that are not maximum-error inputs for q.

In both the purely positive degree case, and the purely negative degree case, we know
roughly what primal optimal solutions q look like, and moreover we know what roughly
their maximum-error points look like. In the first case, the maximum-error points are
well-approximated by the points in T2, and in the purely negative degree case, the maximum
error points are well-approximated by the points in T1. Let us explain.

Purely positive degree case

Let Td be the degree d Chebyshev polynomial of the first kind. It can be seen that
P (`) = T√N (1 + 2/N − `/N) satisfies P (1) ≥ 2, while |P (`)| ≤ 1 for ` = 2, 3, . . . , N . That
is, up to scaling, P approximates the approximate counting problem for w = 1, and its
known that its degree is within a constant factor of optimal.

It is known that the extreme points of Td are of the following form, for k = 1, . . . , d:

cos
(

(2k − 1)
2d π

)
≈ 1− k2/(2d2), (58)

where the approximation uses the Taylor expansion of the cosine function around 0. Equa-
tion (58) means that the extreme points of P are roughly those inputs ` such that 1 + 2/N −
`/N ≈ 1 − k2/(2d2), where d =

√
N . Such ` are roughly of the form ` ≈ c · i2 for some

constant c, as i ranges from 1 up to Θ(N1/2).
More generally, when w ≥ 1, an asymptotically optimal approximation for distinguishing

input w from 2w is P (`) = T√
N/w

(1 + 2w/N − `/(wN)). The extreme points of P are

roughly of the form ` ≈ c · i2 · w for some constant c, as i ranges from 1 up to Θ(
√
N/w),

which is exactly the form of the points in our set T2.

Purely negative degree case

In Lemma 22, we exhibited a simple, purely negative degree Laurent polynomial p (i.e., p(`)
is a standard polynomial in 1/`) with degree D1 = w1/3 that solves the approximate counting
problem (the construction is due to MathOverflow user “fedja”). Roughly speaking, p can be
written as a product p(`) = u(`) · v(`), where u(`) has the roots ` = 1, 2, . . . , w1/3, and v(`)
is (an affine transformation) of a Chebyshev polynomial of degree w1/3, applied to 1/`. One
can easily look at this construction and see that p(`) outputs exactly the correct value on
inputs {1, 2, . . . , w1/3}, so these are not maximum error points for p. Moreover, the analysis
of the maximum error points for Chebyshev polynomials above can be applied to show that
the maximum error points of p are roughly of the form ` such that 1/` = c · i2/w for some
constant c, with i ranging from 1 up to Θ(w1/3). This means that the extreme points are
roughly of the form ` ≈ w

ci2 , which is why our set T1 consists of points of the form b wci2 c (the
floors are required because we are proving lower bounds against polynomials whose behavior
is only constrained at integer inputs).



S. Aaronson, R. Kothari, W. Kretschmer, and J. Thaler 7:33

4.4.4 Analysis of the dual solution Φ
I Lemma 28. Let d1 = |T1| and d2 = |T2|. Then for any j = 0, 1, . . . , d1 + d2, it holds that

N∑
`=1

Φ(`) · `j = 0.

Proof. A basic combinatorial fact is that for any polynomial Q of degree at most N − 1, the
following identity holds:

N∑
`=0

(
N

`

)
(−1)`Q(`) = 0. (59)

Observe that for any j ≤ d1 + d2 + 1,

QT (`) · `j is a polynomial in ` of degree at most N − 1. (60)

Furthermore, Φ(0) = 0, because 0 6∈ T . Hence

N∑
`=0

(
N

`

)
(−1)`QT (`) · `j =

N∑
`=1

(
N

`

)
(−1)`QT (`) · `j . (61)

Thus, we can calculate:
N∑
`=1

Φ(`) · `j =
N∑
`=1

(−1)` ·
(
N

`

)
·QT (`) · `j

=
N∑
`=0

(−1)` ·
(
N

`

)
·QT (`) · `j = 0.

Here, the second equality follows from Equation (61), while the third follows from Equations
(59) and (60). J

Let us turn to analyzing Φ’s value on various inputs. Clearly the following condition
holds:

Φ(`) = 0 for all ` 6∈ T . (62)

Next, observe that for any r ∈ T ,

|Φ(r)| = N ! · 1∏
j∈T,j 6=r |r − j|

.

Consider any quantity c · i2 · w ∈ T2. Then∣∣Φ(c · w · i2)
∣∣ / |Φ(w)| =

∏
j∈T,j 6=w

|w − j|∏
j∈T,j 6=c·i2·w |w · c · i

2 − j|

=
|w − 2w| ·

(∏d2
j=1

∣∣w − c · j2 · w
∣∣) · (∏d1

j=1

(
w −

⌊
w

cj2

⌋))
|c · i2 · w − w| · |c · i2 · w − 2w| ·

(∏d2
j=1,j 6=i

|w · c · i2 − w · c · j2|
)
·
(∏d1

j=1

(
w · c · i2 −

⌊
w

c·j2

⌋))
=

cd2 ·
(∏d2

j=1

(
j2 − 1

c

))
·
∏d1

j=1

(
w −

⌊
w

c·j2

⌋)
(ci2 − 1) · (ci2 − 2) · cd2−1 ·

(∏d2
j=1,j 6=i

|i2 − j2|
)
·
(∏d1

j=1

(
w · c · i2 −

⌊
w

c·j2

⌋))
≤

c ·
(∏d2

j=1

(
j2 − 1

c

))
·
∏d1

j=1

(
w −

⌊
w

c·j2

⌋)
(ci2 − 1) · (ci2 − 2) ·

(∏d2
j=1,j 6=i

|i2 − j2|
)
·
(∏d1

j=1

(
w · c · i2 − w

c·j2

)) (63)
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Now, observe that
d1∏

j=1

(
w −

⌊
w

c · j2

⌋)
≤

d1∏
j=1

(
w − w

cj2 + 1
)

=
d1∏

j=1

w ·
(

1− 1
cj2

)
·

(
1 + 1

w ·
(
1− 1

cj2

))

≤
d1∏

j=1

w ·
(

1− 1
cj2

)(
1 + 1

(1− 1/c) · w

)
≤

(
d1∏

j=1

w ·
(

1− 1
cj2

))
· (1 + o(1)) . (64)

Hence, we see that Expression (63) is bounded by

c ·
(∏d2

j=1
(
j2 − 1

c

))
·
(∏d1

j=1

(
1− 1

c·j2

))
· (1 + o(1))

(ci2 − 1) · (ci2 − 2) ·
(∏d2

j=1,j 6=i |i2 − j2|
)
·
(∏d1

j=1

(
c · i2 − 1

c·j2

))
≤

c · (d2!)2 ·
(∏d1

j=1

(
1− 1

c·j2

))
· (1 + o(1))

(ci2 − 1) · (ci2 − 2) ·
(∏d2

j=1,j 6=i |i− j| |i+ j|
)
· (c · i2)d1 ·

(∏d1
j=1

(
1− 1

c2·i2·j2

))
=

c · (d2!)2 · 2i2 ·
(∏d1

j=1

(
1− 1

c·j2

))
· (1 + o(1))

(ci2 − 1) · (ci2 − 2) · (d2 + i)! (d2 − i)! · (c · i2)d1 ·
(∏d1

j=1

(
1− 1

c2·i2·j2

))
≤ c · 2i2 · (d2!)2 · (1 + o(1))

(ci2 − 1) (ci2 − 2) · (d2 + i)! (d2 − i)! · (c · i2)d1
≤ 2 (1 + o(1))(

1− 1
c·i2
)
· (c · i2 − 2) · (c · i2)d1

.

(65)

In the penultimate inequality, we used the fact that (d2!)2

(d2+i)!(d2−i)! = ( 2d2
d2+i)
(2d2

d2 ) ≤ 1.

Next, consider any quantity
⌊
w
c·i2
⌋
∈ T1. Then∣∣∣Φ(⌊ w

c · i2
⌋)∣∣∣ / |Φ(w)|

=
|w − 2w|

(∏d2
j=1 |w − cj2w|

)(∏d1
j=1

(
w −

⌊
w
cj2

⌋))
(
w −

⌊
w
c·i2
⌋)
·
(
2w −

⌊
w
c·i2
⌋) (∏d2

j=1
(
w · c · j2 −

⌊
w
c·i2
⌋))∏d1

j=1,j 6=i

∣∣∣⌊ w
c·i2
⌋
−
⌊
w
c·j2

⌋∣∣∣
≤

|w − 2w|
(∏d2

j=1 |w − cj2w|
)(∏d1

j=1

(
w −

⌊
w
cj2

⌋))
(
w − w

c·i2
)
·
(
2w − w

c·i2
) (∏d2

j=1
(
w · c · j2 − w

c·i2
))∏d1

j=1,j 6=i

∣∣∣⌊ w
c·i2
⌋
−
⌊
w
c·j2

⌋∣∣∣
≤

|w − 2w|
(∏d2

j=1 |w − cj2w|
)(∏d1

j=1

(
w − w

cj2

))
· (1 + o(1))(

w − w
c·i2
)
·
(
2w − w

c·i2
) (∏d2

j=1
(
w · c · j2 − w

c·i2
))∏d1

j=1,j 6=i

∣∣∣⌊ w
c·i2
⌋
−
⌊
w
c·j2

⌋∣∣∣ (66)

Here, the final inequality used Equation (64).
Let us consider the expression

∏d1
j=1,j 6=i

∣∣∣⌊ w
c·i2
⌋
−
⌊
w
c·j2

⌋∣∣∣. This quantity is at least
d1∏

j=1,j 6=i

(∣∣∣∣ w

c · i2 −
w

c · j2

∣∣∣∣− 1
)

= wd1−1 ·
d1∏

j=1,j 6=i

∣∣j2 − i2
∣∣− ci2j2

w

ci2j2

= wd1−1 ·
d1∏

j=1,j 6=i

|j − i| · |j + i| − ci2j2

w

ci2j2

=
(
w

ci2

)d1−1
·

d1∏
j=1,j 6=i

|j − i| · |j + i| − ci2j2

w

j2 (67)
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We claim that Expression (67) is at least( w
ci2

)d1−1
· 1

2 . (68)

In the case that c = 2 and d1 is (at most) w1/3, this is precisely [57, Claim 4]. We will
ultimately take c to be a constant strictly greater than 2 and hence d1 = b(w/c)1/3c is a
constant factor smaller than w1/3. The proof of [57, Claim 4] works with cosmetic changes
in this case. For completeness, we present a derivation of the claim in Appendix A.

Equation (68) implies that Expression (66) is at most:

|w − 2w|
(∏d2

j=1 |w − cj2w|
)(∏d1

j=1

(
w − w

cj2

))
· (1 + o(1))(

w − w
c·i2
)
·
(
2w − w

c·i2
) (∏d2

j=1
(
w · c · j2 − w

c·i2
)) (

w
ci2

)d1−1 · 1
2

=
2
(∏d2

j=1 |1− cj2|
)(∏d1

j=1

(
1− 1

cj2

))
· (1 + o(1))(

1− 1
c·i2
)
·
(
2− 1

c·i2
) (∏d2

j=1
(
c · j2 − 1

c·i2
)) ( 1

ci2

)d1−1

=
2
(∏d2

j=1(j2 − 1/c)
)(∏d1

j=1

(
1− 1

cj2

))
· (1 + o(1))(

1− 1
c·i2
)
·
(
2− 1

c·i2
) (∏d2

j=1
(
j2 − 1

c2·i2
)) ( 1

ci2

)d1−1

≤ 2 (1 + o(1))(
1− 1

c·i2
)
·
(
2− 1

c·i2
) ( 1

ci2

)d1−1 ≤ 4 ·
(
ci2
)d1−1

. (69)

Summarizing Equations (65) and (69), we have shown that: for any quantity c · i2 ·w ∈ T2,

∣∣Φ(c · w · i2)
∣∣ / |Φ(w)| ≤ 2 (1 + o(1))(

1− 1
c·i2
)
· (c · i2 − 2) · (c · i2)d1

(70)

and for any quantity
⌊
w
c·i2
⌋
∈ T1,∣∣∣Φ(⌊ w

c · i2
⌋)∣∣∣ / |Φ(w)| ≤ 4 ·

(
ci2
)d1−1

. (71)

Let φ = Φ/C, where C is as in Equation (53). Let D1 = d1 and D2 = d2. Lemma 28
implies that φ is a feasible solution for the dual linear program of Section 4.4.1. We now
show that, for any constant δ > 0, by choosing c to be a sufficiently large constant (that
depends on δ), we can ensure that φ achieves objective value 1− 2δ.

Let

A = |Φ(w)| · wD1 ,

B = |Φ(2w)| · (2w)D1 ,

and

E =
d1∑
i=1
|Φ(bw/ci2c)| ·

(
bw/ci2c

)D1 +
d2∑
i=1
|Φ(bw · ci2c)| ·

(
w · c · i2

)D1
.

By Equation (62), C = A+B + E.
Moreover, observe that sgn(Φ(w)) = −sgn(Φ(2w)), so without loss of generality we may

assume Φ(w) ≥ 0 and Φ(2w) ≤ 0 (if not, then replace Φ with −Φ throughout).
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We now claim that by choosing c to be a sufficiently large constant, we can ensure that
E ≤ δ ·A. To see this, observe that Equations (70) and (71), along with the fact that D1 = d1
and D2 = d2 implies that

E/A ≤ 1
wD1

[(
d1∑

i=1

(
bw/ci2c

)D1 · 4 ·
(
ci2
)d1−1

)
+

(
d2∑

i=1

(
w · c · i2

)D1 2
(
1− 1

c·i2

)
(1 + o(1))

(c · i2 − 2) · (c · i2)d1

)]

≤ 1
wD1

[(
d1∑

i=1

(
w/ci2

)D1 · 4 ·
(
ci2
)d1−1

)
+

(
d2∑

i=1

(
w · c · i2

)D1 2
(
1− 1

c·i2

)
(1 + o(1))

(c · i2 − 2) · (c · i2)d1

)]

≤ 4

(
d1∑

i=1

1
c · i2

)
+

(
d2∑

i=1

2 (1 + o(1))(
1− 1

c·i2

)
(c · i2 − 2)

)

Since
∑∞
i=1 1/(ci2) ≤ π2

6c , we see that choosing c to be a sufficiently large constant
depending on δ ensures that E/A ≤ δ as desired.

Hence, φ achieves objective value at least

φ(w) · wD1 − φ(2w) · (2w)D1 −
∑

`∈{1,...,N}, 6̀∈{w,2w}

|φ(`)| · `D1

≥ A+B − E
A+B + E

≥ (1− δ)A+B

(1 + δ)A+B
≥ 1− 2δ.

4.5 Approximate counting with classical samples
For completeness, in this section, we sketch classical counterparts of Theorem 4 and Theorem 5.
That is, we show tight bounds on classical randomized algorithms for ApxCountN,w that
make membership queries and have access to uniform random samples from the set being
counted.

I Proposition 29. There is a classical randomized algorithm that solves ApxCountN,w with
high probability using either O(N/w) queries to the membership oracle for S, or else using
O(
√
w) uniform samples from S.

Proof sketch. By reducing approximate counting to the problem of estimating the mean of
a biased coin, O(N/w) queries are sufficient.

Alternatively, if we take R samples, then the expected number of birthday collisions is(
R
2
)
· 1
|S| and the variance is

(
R
2
)
· 1
|S|

(
1− 1

|S|

)
. So, taking O(

√
w) samples and computing

the number of birthday collisions is sufficient to distinguish |S| ≤ w from |S| ≥ 2w with 2
3

success probability. J

I Proposition 30. Let M be a classical randomized algorithm that makes T queries to the
membership oracle for S, and takes a total of R uniform samples from S. If M decides
whether |S| = w or |S| = 2w with high probability, promised that one of those is the case,
then either T = Ω(N/w) or R = Ω(

√
w).

Proof sketch. Note that without loss of generality, we may assume that the algorithm first
takes all of the samples it needs, and then queries random elements of [N ] that did not
appear in the samples. Suppose the algorithm takes R = o(

√
w) samples and then makes

T = o(N/w) queries. Consider what happens when the algorithm tries to distinguish a
random subset of size w from a random subset of size 2w of [N ]. By a union bound, the
probability that the algorithm sees any collisions in the samples is o(1), and the probability
that the algorithm finds any additional elements of S via queries is also o(1). So, if the set
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has size either w or 2w, with 1 − o(1) probability, the algorithm’s view of the samples is
just a random subset of size R of [N ] drawn without replacement, and the algorithm’s view
of the queries is just T “no” answers to membership queries. Hence, the algorithm fails to
distinguish random sets of size w and size 2w with any constant probability of success. J

4.6 Extending the lower bound to QSampling unitarily

So far in this section we have proved upper and lower bounds on the power of quantum
algorithms for approximate counting that have access to two resources (in addition to
membership queries): copies of |S〉, and the unitary transformation that reflects about |S〉.
The assumption of access to the reflection unitary is justified by the argument that, if we
had access to a unitary that prepared |S〉, then it could be used to reflect about |S〉 as well.

Giving the algorithm access to just the two resources above is an appealing model to
use for upper bounds, since it does not assume anything about the method by which copies
of |S〉 are prepared. This means algorithms derived in this model work in many different
settings. For example, the algorithm may be able to QSample because someone else simply
handed the algorithm copies of |S〉, or perhaps several copies of |S〉 just happen to be stored
in the algorithm’s quantum memory as a side effect of the execution of some earlier quantum
algorithm. The upper bound given in Theorem 5 applies in any of these settings.

On the other hand, since only permitting access to QSamples and reflections about |S〉
ties the algorithm’s hands, lower bounds for this model (e.g., Theorem 4) could be viewed
as weaker than is desirable. In particular, our original justification for allowing access to
reflections about |S〉 was that access to a unitary that prepared the state |S〉 would in
particular allow such reflections to be done. Given this justification, it is very natural to
wonder whether our lower bounds extend beyond just QSamples and reflections, to algorithms
that are given access to some unitary process that permits both QSampling and reflections
about |S〉.

Note that an algorithm with access to such a unitary could potentially exploit the unitary
in ways other than QSamples and reflections to learn information about |S〉. For example,
the algorithm could choose to run the unitary on inputs that do not produce |S〉. More
generally, given a quantum circuit that implements a unitary, it is possible to construct, in a
completely black-box manner, the inverse of this unitary, and also a controlled version of the
unitary. The algorithm may choose to run the inverse on a state other than |S〉 to learn some
additional information that is not captured by access to QSamples and reflections alone.

In summary, in this section we ask whether we can we extend the lower bound of
Theorem 4 to work in a model where the algorithm is given access to some unitary operator
that conveys the power to both QSample and reflect about |S〉.14 Via Theorem 31 below, we
explain that the answer is yes.

It may seem convenient to assume that the unitary transformation preparing |S〉 maps
the all-zeros state to |S〉. But this is not the most general method of preparing |S〉 by a
unitary. A unitary U that maps the all-zeros state to |S〉|ψ〉 would also suffice to create
copies of |S〉, since the register containing |ψ〉 can simply be ignored for the remainder of the
computation. More formally, assume U behaves as

U |0m〉 = |S〉|ψ〉, (72)

14We thank Alexander Belov (personal communication) for raising this question.
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where |S〉|ψ〉 is some m-qubit state. Clearly we can use U to create as many copies of |S〉 as
we like, which as a by-product also creates copies of |ψ〉. This unitary also lets us reflect
about |S〉. To see how, first use this unitary to create a copy of |ψ〉, and then consider the
action of the unitary U(1 − 2|0m〉〈0m|)U† on the state |φ〉|ψ〉 for any state |φ〉. We claim
that this unitary acts as a reflection about |S〉 when restricted to the first register. This
establishes that any U of this form subsumes the power of both QSamples and reflections
about |S〉.

Let us also assume without loss of generality that |S〉|ψ〉 is orthogonal to |0m〉 from now
on. This can be achieved by adding an additional qubit to the input that is always negated by
the unitary. That is, we could instead consider the map (U ⊗X)|0m〉|0〉 = |S〉|ψ〉|1〉, which
is orthogonal to the starting state by construction, and only increases the value of m by 1.

Of course, the requirement that U |0m〉 = |S〉|ψ〉 does not fully specify U , as it does not
prescribe how U behaves on other input states. A reasonable prescription is that U should
behave “trivially” on other input states, so that it does not leak information about S by its
behavior on other states. In tension with this prescription is the fact the rest of the unitary
must depend on S, since the first column of the unitary contains |S〉, and the rest of the
columns have to be orthogonal to this.

Alexander Belov (personal communication) brought to our attention a very simple
construction of such a unitary that leaks minimal additional information about S. Consider
the unitary U that satisfies U |0m〉 = |S〉|ψ〉 and U |S〉|ψ〉 = |0m〉, with U acting as identity
outside span{|0m〉, |S〉|ψ〉}. U is simply a reflection about the state 1√

2

(
|0m〉 − |S〉|ψ〉

)
. This

state is correctly normalized because we assumed that |S〉|ψ〉 is orthogonal to |0m〉. Clearly
U is now fully specified on the entire domain (once we have fixed |ψ〉) and it does not seem
to leak any additional information about S.

In order to prove concrete lower bounds on the cost of algorithms for approximate counting
given access to U , we need to fix |ψ〉. To answer the question posed in this section, we only
need to establish that there exists some choice of |ψ〉 for which our algorithms cannot be
improved. (Note that we cannot hope to establish lower bounds for arbitrary |ψ〉, since |ψ〉
could just contain the answer to the problem we are solving.)

To this end we make the specific choice of |ψ〉 = |S〉 and consider the unitary V that acts
as the unitary U above with |ψ〉 = |S〉. In other words, V maps |0m〉 to |S〉|S〉, |S〉|S〉 to
|0m〉, and acts as identity on the rest of the space. We also assume that |0m〉 is orthogonal
to |S〉|S〉. In other words, V simply reflects about the state 1√

2

(
|0m〉 − |S〉|S〉

)
.

As previously discussed, granting an algorithm access to this unitary V lends the algorithm
at least as much power the ability to QSample and perform reflections about |S〉. How
efficiently can we solve approximate counting with membership queries and uses of the
unitary V ?

We can use our Laurent polynomial method to establish optimal lower bounds in this
model as well and we obtain lower bounds identical to Theorem 4.

I Theorem 31. Let Q be a quantum algorithm that makes T queries to the membership oracle
for S, and makes R uses of the unitary V defined above (and its inverse and controlled-V ).
If Q decides whether |S| = w or |S| = 2w with high probability, promised that one of those is
the case, then either

T = Ω
(√

N

w

)
or R = Ω

(
min

{
w1/3,

√
N

w

})
. (73)
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Proof. We follow the same strategy as in the proof of Theorem 4. Recall that x ∈ {0, 1}N
denotes the indicator vector of the set S. We only need to show that such a quantum
algorithm gives rise to a Laurent polynomial in |S| :=

∑n
i=1 xi, with maximum exponent

O(T +R) and minimum exponent at least −O(R) (as shown in Lemma 21 for the QSamples
and reflections model).

We can prove this exactly the same way as Lemma 21 is established. Our quantum
algorithm starts out from a canonical starting state that does not depend on the input and
hence each entry of the starting state is a degree-0 polynomial. Membership queries involve
multiplication with an oracle whose entries are ordinary polynomials of degree at most 1.
The only thing that remains is understanding what the entries of the unitary V look like.
We claim that the entries of V are given by a polynomial of degree at most 2 in the entries
of the input x, with all coefficients of this degree-2 polynomial equal to either a constant, or
a constant multiple of |S|−1.

To see this, note that V is simply a reflection about the state

1√
2
(
|0m〉 − |S〉|S〉

)
= 1√

2

|0m〉 − 1
|S|

(∑
i

xi|i〉
)(∑

j

xj |j〉
) . (74)

The coefficient in front of |0m〉 is a degree-0 polynomial and the other nonzero coefficients
are a polynomial of degree at most 2 in the entries of the input x, with each coefficient of
this polynomial equal to a constant multiple of |S|−1.

Hence, each entry of the unitary V is also a polynomial of degree at most 2 in the entries
of the input x, with each coefficient of this degree-2 polynomial equal to either a constant, or
a constant multiple of |S|−1. The same also holds for controlled-V , since that unitary is just
the direct sum of identity with V . V is also self-inverse, so we do not need to account for
that separately.

After the algorithm has made all the membership queries and uses of V , each amplitude
of the final quantum state can be expressed as a polynomial of degree O(T +R) in the input
x, in which all coefficients are constant multiples of |S|−R. The acceptance probability p(x)
of this algorithm will be a sum of squares of such polynomials. Exactly as in the proof of
Theorem 4, Lemma 11 implies that there is a univariate polynomial q of degree at most
O(T +R), with coefficients that are multiples of the coefficients of p, such that for all integers
k ∈ {0, . . . , N},

q (k) := E|X|=k [p (X)] . (75)

Since the coefficients of p(X) are constant multiples of |X|−2R, q is in fact a real Laurent
polynomial in k, with maximum exponent at most O(R+T ) and minimum exponent at least
−2R. The theorem follows by a direct application Theorem 25 to q. J

5 Discussion and open problems

5.1 Approximate counting with QSamples and queries only
If we consider the model where we only have membership queries and samples (but no
reflections), then the best upper bound we can show is O

(
min

{√
w,
√
N/w

})
, using the

sampling algorithm that looks for birthday collisions, and the quantum counting algorithm.
It would be interesting to improve the lower bound further in this case, but it is clear that
the Laurent polynomial approach cannot do so, since it hits a limit at w1/3. Hence a new
approach is needed to tackle the model without reflections.
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We now give what we think is a viable path to solve this problem. Specifically, we
observe that our problem – of lower-bounding the number of copies of |S〉 and the number
of queries to OS needed for approximate counting of S – can be reduced to a pure problem
of lower-bounding the number of copies of |S〉. To do so, we use a hybrid argument, closely
analogous to an argument recently given by Zhandry [58] in the context of quantum money.

Given a subset S ⊆ [L], let |S〉 be a uniform superposition over S elements. Then let

ρL,w,k := ES⊆[L] : |S|=w

[
(|S〉 〈S|)⊗k

]
(76)

be the mixed state obtained by first choosing S uniformly at random subject to |S| = w, then
taking k copies of |S〉. Given two mixed states ρ and σ, recall also that the trace distance,
‖ρ− σ‖tr, is the maximum bias with which ρ can be distinguished from σ by a single-shot
measurement.

I Theorem 32. Let 2w ≤ L ≤ N . Suppose ‖ρL,w,k − ρL,2w,k‖tr ≤
1
10 . Then any quantum

algorithm Q requires either Ω
(√

N
L

)
queries to OS or else Ω (k) copies of |S〉 to decide

whether |S| = w or |S| = 2w with success probability at least 2/3, promised that one of those
is the case.

Proof. Choose a subset S ⊆ [N ] uniformly at random, subject to |S| = w or |S| = 2w, and
consider S to be fixed. Then suppose we choose U ⊆ [N ] uniformly at random, subject to
both |U | = L and S ⊆ U . Consider the hybrid in which Q is still given R copies of the state
|S〉, but now gets oracle access to OU rather than OS . Then so long as Q makes o

(√
N
L

)
queries to its oracle, we claim that Q cannot distinguish this hybrid from the “true” situation
(i.e., the one where Q queries OS) with Ω (1) bias. This claim follows almost immediately
from the BBBV Theorem [10]. In effect, Q is searching the set [N ] \ S for any elements of
U \ S (the “marked items,” in this context), of which there are L− |S| scattered uniformly
at random. In such a case, we know that Ω

(√
N−|S|
L−|S|

)
= Ω

(√
N
L

)
quantum queries are

needed to detect the marked items with constant bias.
Next suppose we first choose U ⊆ [N ] uniformly at random, subject to |U | = L, and

consider U to be fixed. We then choose S ⊆ U uniformly at random, subject to |S| = w

or |S| = 2w. Note that this produces a distribution over (S,U) pairs identical to the
distribution that we had above. In this case, however, since U is fixed, queries to OU are no
longer relevant. The only way to decide whether |S| = w or |S| = 2w is by using our copies
of |S〉 – of which, by assumption, we need Ω (k) to succeed with constant bias, even after
having fixed U . J

One might think that Theorem 32 would lead to immediate improvements to our lower
bound for the queries and samples model. In practice, however, the best lower bounds
that we currently have, even purely on the number of copies of |S〉, come from the Laurent
polynomial method (Theorem 4)! Having said that, we are optimistic that one could obtain
a lower bound that beats Theorem 4 at least when w is small, by combining Theorem 32
with a brute-force computation of trace distance.

5.2 Approximate counting to multiplicative factor 1 + ε

Throughout, we considered the task of approximating |S| to within a multiplicative factor of
2. But suppose our task was to distinguish the case |S| ≤ w from the case |S| ≥ (1 + ε)w;
then what is the optimal dependence on ε?
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In the model with quantum membership queries only, the algorithm of Brassard et al. [13,
Theorem 15] makes O

(
1
ε

√
N
w

)
queries, which is optimal [40]. The algorithm uses amplitude

amplification, the basic primitive of Grover’s search algorithm [28]. The original algorithm
of Brassard et al. also used quantum phase estimation, in effect combining Grover’s algorithm
with Shor’s period-finding algorithm. However, one can remove the phase estimation, and
adapt Grover search with an unknown number of marked items to get an approximate count
of the number of marked items [5].

One can also show without too much difficulty that in the queries+QSamples model, the
problem can be solved with

O

(
min

{√
w

ε2 ,
1
ε

√
N

w

})
(77)

queries and copies of |S〉. As observed after Theorem 5, the problem can also be solved with

O

(
min

{
w1/3

ε2/3 ,
1
ε

√
N

w

})
(78)

samples and reflections. On the lower bound side, what generalizations of Theorem 4 can
we prove that incorporate ε? We note that the explosion argument doesn’t automatically
generalize; one would need to modify something to continue getting growth in the polynomials
u and v after the first iteration. The lower bound using dual polynomials should generalize,
but back-of-the-envelope calculations show that the lower bound does not match the upper
bound.

5.3 Other questions
Non-oracular example of our result

Is there any interesting real-world example of a class of sets for which QSampling and
membership testing are both efficient, but approximate counting is not? (I.e., is there an
interesting non-black-box setting that appears to exhibit the behavior that this paper showed
can occur in the black-box setting?)

The Laurent polynomial connection

At a deeper level, is there is any meaningful connection between our two uses of Laurent
polynomials? And what other applications can be found for the Laurent polynomial method?

6 Followup work

Since this work was completed, Belovs and Rosmanis [9] obtained essentially tight lower
bounds on the complexity of approximate counting with access to membership queries,
QSamples, reflections, and a unitary transformation that prepares the QSampling state,
for all possible tradeoffs between these different resources. Additionally, they resolve the
ε-dependence of approximate counting to multiplicative factor 1 + ε. The techniques involved
are quite different from ours: Belovs and Rosmanis use a generalized version of the quantum
adversary bound that allows for multiple oracles, combined with tools from the representation
theory of the symmetric group.
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A Establishing Equation 68

A.1 A clean calculation establishing a loose version of equation 68
For clarity of exposition, we begin by presenting a relatively clean calculation that establishes
a slightly loose version of Equation (68). Using just this looser bound, we would be able
to establish that Equation (68) holds (with the constant 1/2 replaced by a slightly smaller
constant) so long as we set d1 to be Θ

(
w1/3/ logw

)
. A slightly more involved calculation (cf.

Appendix A.2) is required to establish Equation (68) for our desired value of d1 = b(w/c)1/3c.
Expression (67) equals

( w
ci2

)d1−1
· i2

((d1)!)2 ·
d1∏

j=1,j 6=i

(
|j − i| · |j + i| − ci2j2

w

)

=
( w
ci2

)d1−1
· i2

((d1)!)2 ·
d1∏

j=1,j 6=i
(|j − i| · |j + i|) ·

(
1− ci2j2

w · |j − i||j + i|

)

=
( w
ci2

)d1−1
· (d1 + i)!(d1 − i)!

2 ((d1)!)2 ·
d1∏

j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)
(79)

≥
( w
ci2

)d1−1
· 1

2 ·
d1∏

j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)

≥
( w
ci2

)d1−1
· 1

2 ·

1−
d1∑

j=1,j 6=i

ci2j2

w · |j − i||j + i|


≥
( w
ci2

)d1−1
· 1

2 ·

1− ci2

w

d1∑
j=1,j 6=i

j2

|j − i||j + i|

 . (80)

Let us consider the expression
∑d1
j=1,j 6=i

j2

|j−i||j+i| . If i
2 6∈ [j2/2, 3j2/2], then the j’th term

in this sum is at most 2. Hence, letting Hi denote the ith Harmonic number and using the
fact that Hi ≤ ln(i+ 1),

d1∑
j=1,j 6=i

j2

|j − i||j + i|

≤ 2 · d1 +
b
√

2ic∑
j=b
√

2/3ic

j2

|j − i||j + i|

≤ 2 · d1 +
d
√

2·ie∑
j=b
√

2/3·ic

j

|j − i|

≤ 2d1 +
√

2 · i ·
(
√

2−1)·i∑
j=1

2/j

≤ 2d1 + 2
√

2 · i ·Hi ≤ 2d1 + 2
√

2i ln(i+ 1). (81)

We conclude that if d1 were set to a value less than w1/3/(100 · c2 · ln(w)) (rather than
to b(w/c)1/3c), then Expression (80) is at least( w

ci2

)d1−1
· 1− 1/c

2 . (82)
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A.2 The tight bound
To obtain the tight bound, we need a tighter sequence of inequalities following Expression
(79). Specifically, Expression (79) is bounded below by:

≥
( w
ci2

)d1−1
· 1

2

(
1 + i

2d1

)i
·

d1∏
j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)

≥
( w
ci2

)d1−1
· 1

2 · e
i2/(2d1) ·

d1∏
j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)

≥
( w
ci2

)d1−1
· 1

2 · e
i2/(2d1) ·

d1∏
j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)
(83)

The rough idea of how to proceed is as follows. Equation (81) implies that for i �
w1/3/ lnw, the factor

F1 :=
d1∏

j=1,j 6=i

(
1− ci2j2

w · |j − i||j + i|

)

is at some a positive constant, and hence Expression (83) is bounded below by the desired
quantity. If i & w1/3/ lnw, then Equation (81) does not yield a good bound on this factor,
leaving open the possibility that this factor is subconstant. But in this case, the factor
F2 := ei

2/(2d1) ≥ eΩ̃(d1), and the largeness of F2 dominates the smallness of F1.
In more detail, let xi,j = ci2j2

w·|i−j|j+i|| . Then for all i 6= j such that i, j ≤ d1,

xi,j ≤
c · d2

1(d1 − 1)2

(2d1 − 1) · w ≤ c · d3
1

2w ≤ 1/2, (84)

where in the final inequality we used the fact that d1 ≤ (w/c)1/3.
Using the fact that 1− x ≥ e−x−x2 for all x ∈ [0, 1/2], we can write

F1 ≥
d1∏

j=1,j 6=i
e−xi,j−x2

i,j .

Hence,

F1 · F2 ≥ exp

i2/(2d1)−
d1∑

j=1,j 6=i
−xi,j − x2

i,j

 .

From Equations (81) and (84), we know that

d1∑
j=1,j 6=i

xi,j + x2
i,j ≤

ci2

w
·
(

3d1 + 3
√

2i ln(i+ 1)
)
≤ ci2

w
· (4d1 ln(d1)) .

Hence,

F1 · F2 ≥ exp
(
i2/(2d1)− ci2

w
· 4c ln(d1)

)
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= exp
(
i2
(

1
2d1
− 4c2 ln(d1)

w

))
≥ exp

(
i2 · 1

2d1
· (1− o(1))

)
≥ 1.

Equation (68) follows.
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Abstract
In this work we prove a version of the Sylvester-Gallai theorem for quadratic polynomials that takes
us one step closer to obtaining a deterministic polynomial time algorithm for testing zeroness of
Σ[3]ΠΣΠ[2] circuits. Specifically, we prove that if a finite set of irreducible quadratic polynomials Q
satisfy that for every two polynomials Q1, Q2 ∈ Q there is a subset K ⊂ Q, such that Q1, Q2 /∈ K
and whenever Q1 and Q2 vanish then

∏
Qi∈K Qi vanishes, then the linear span of the polynomials

in Q has dimension O(1). This extends the earlier result [33] that showed a similar conclusion when
|K| = 1.

An important technical step in our proof is a theorem classifying all the possible cases in which
a product of quadratic polynomials can vanish when two other quadratic polynomials vanish. I.e.,
when the product is in the radical of the ideal generated by the two quadratics. This step extends a
result from [33] that studied the case when one quadratic polynomial is in the radical of two other
quadratics.
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1 Introduction

This paper studies a problem at the intersection of algebraic complexity, algebraic geometry
and combinatorics that is motivated by the polynomial identity testing problem (PIT for
short) for depth 4 circuits. The question can also be regarded as an algebraic generalization
and extension of the famous Sylvester-Gallai theorem from discrete geometry. We shall first
describe the Sylvester-Gallai theorem and some of its many extensions and generalization
and then discuss the relation to PIT.

Sylvester-Gallai type theorems

The Sylvester-Gallai theorem asserts that if a finite set of points in Rn has the property that
every line passing through any two points in the set also contains a third point in the set then
all the points in the set are colinear. Kelly extended the theorem to points in Cn and proved
that if a finite set of points satisfy the Sylvester-Gallai condition then the points in the set
are coplanar. Many variants of this theorem were studied: extensions to higher dimensions,
colored versions, robust versions and many more. For a more on the Sylvester-Gallai theorem
and some of its variants see [6, 3, 9].
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There are two extensions that are of specific interest for our work: The colored version,
proved by Edelstein and Kelly, states that if three finite sets of points satisfy that every line
passing through points from two different sets also contains a point from the third set, then,
all the points belong to a low dimensional space. This result was further extended to any
constant number of sets. The robust version, obtained in [3, 9], states that if a finite set of
points satisfy that for every point p in the set a δ fraction of the other points satisfy that
the line passing through each of them and p spans a third point in the set, then the set is
contained in an O(1/δ)-dimensional space.

Although the Sylvester-Gallai theorem is formulated as a geometric question, it can be
stated in algebraic terms: If a finite set of pairwise linearly independent vectors, S ⊂ Cn,
has the property that every two vectors span a third vector in the set then the dimension
of S is at most 3. It is not very hard to see that if we pick a subspace H of codimension 1,
which is in general position with respect to the vectors in the set, then the intersection points
pi = H ∩ span{si}, for si ∈ S, satisfy the Sylvester-Gallai condition. Therefore, dim(S) ≤ 3.
Another formulation is the following: If a finite set of pairwise linearly independent linear
forms, L ⊂ C[x1, . . . , xn], has the property that for every two forms `i, `j ∈ L there is a third
form `k ∈ L, so that whenever `i and `j vanish then so does `k, then the linear dimension of
L is at most 3. To see this note that it must be the case that `k ∈ span{`i, `j} and thus the
coefficient vectors of the forms in the set satisfy the condition for the (vector version of the)
Sylvester-Gallai theorem, and the bound on the dimension follows.

The last formulation can now be extended to higher degree polynomials. In particular,
the following question was asked by Gupta [17].

I Problem 1. Can we bound the linear dimension or algebraic rank of a finite set P of
pairwise linearly independent irreducible polynomials of degree at most r in C[x1, . . . , xn],
that has the following property: For any two distinct polynomials P1, P2 ∈ P there is a third
polynomial P3 ∈ P, such that whenever P1, P2 vanish then so does P3.

A robust or colored version of this problem can also be formulated. As we have seen, the
case r = 1, i.e when all the polynomials are linear forms, follows from the Sylvester-Gallai
theorem. For the case of quadratic polynomials, i.e. r = 2, [33] gave a bound on the linear
dimension for both the non-colored and colored versions. A bound for the robust version is
still unknown for r = 2 and the entire problem is open for r ≥ 3. Gupta [17] also raised a
more general question of the same form.

I Problem 2. Can we bound the linear dimension or algebraic rank of a finite set P of
pairwise linearly independent irreducible polynomials of degree at most r in C[x1, . . . , xn]
that has the following property: For any two distinct polynomials P1, P2 ∈ P there is a subset
I ⊂ P, such that P1, P2 /∈ I and whenever P1, P2 vanish then so does

∏
Pi∈I Pi.

As before this problem can also be extended to robust and colored versions. In the case
of linear forms, the bound for Problem 1 carries over to Problem 2 as well. This follows from
the fact that the ideal generated by linear forms is prime (see Section 2 for definitions). In
the case of higher degree polynomials, there is no clear reduction. For example, let r = 2 and

P1 = xy + zw , P2 = xy − zw , P3 = xw , P4 = yz.

Then, it is not hard to verify that whenever P1 and P2 vanish then so does P3 · P4, but
neither P3 nor P4 always vanishes when P1 and P2 do. The reason is that the radical of
the ideal generated by P1 and P2 is not prime. Thus it is not clear whether a bound for
Problem 1 would imply a bound for Problem 2. The latter problem was open, prior to this
work, for any degree r > 1.
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The Sylvester-Gallai theorem has important consequences for locally decodable and locally
correctable codes [3, 9], for reconstruction of certain depth-3 circuits [32, 22, 35] and for the
polynomial identity testing (PIT for short) problem, which we describe next.

Sylvester-Gallai type theorems and PIT

The PIT problem asks to give a deterministic algorithm that given an arithmetic circuit as
input determines whether it computes the identically zero polynomial. This is a fundamental
problem in theoretical computer science that has attracted a lot of attention because of its
intrinsic importance, its relation to other derandomization problems [24, 25, 15, 13, 19, 36]
and its connections to lower bounds for arithmetic circuits [20, 1, 21, 11, 16, 7]. Perhaps
surprisingly, it was shown that deterministic algorithms for the PIT problem for homogeneous
depth-4 circuits or for depth-3 circuits would lead to deterministic algorithms for general
circuits [2, 18]. This makes small depth circuit extremely interesting for the PIT problem.
We next explain how Sylvester-Gallai type questions are directly related to PIT for such low
depth circuits. For more on the PIT problem see [34, 28, 29, 14].

The Sylvester-Gallai theorem is mostly relevant for the PIT problem in the setting when
the input is a depth-3 circuit with small top fan-in. Specifically, a homogeneous Σ[k]Π[d]Σ
circuit in n variables computes a polynomial of the form

Φ(x1, . . . , xn) =
k∑
i=1

d∏
j=1

`i,j(x1, . . . , xn) , (1)

where each `i,j is a linear form. Consider the PIT problem for Σ[3]Π[d]Σ circuits, i.e., Φ is
given as in Equation 1 and k = 3. In particular,

Φ(x1, . . . , xn) =
d∏
j=1

`1,j(x1, . . . , xn) +
d∏
j=1

`2,j(x1, . . . , xn) +
d∏
j=1

`3,j(x1, . . . , xn) . (2)

If Φ computes the zero polynomial, then for every j, j′ ∈ [d].

d∏
i=1

`1,i ≡ 0 mod 〈`2,j , `3,j′〉 .1

This means that the sets Ti = {`i,1, . . . , `i,d} satisfy the conditions of the colored version
of Problem 2 for r = 1, and therefore have a small linear dimension. Thus, if Φ ≡ 0 then,
assuming that no linear form belongs to all three sets, we can rewrite the expression for Φ
using only constantly many variables (after a suitable invertible linear transformation). This
gives an efficient PIT algorithms for such Σ[3]Π[d]Σ identities. The case of more than three
multiplication gates is more complicated but it also satisfies a similar higher dimensional
condition. This rank-bound approach for PIT of ΣΠΣ circuits was raised in [10] and later
carried out in [23, 31].2

As such rank-bounds found important applications in studying PIT of depth-3 circuits it
seemed that a similar approach could potentially work for depth-4 ΣΠΣΠ circuits as well.3
In particular, it seemed most relevant for the case where there are only three multiplication

2 The best algorithm for PIT of Σ[k]Π[d]Σ circuits was obtained through a different, yet related, approach
in [30].

3 For multilinear ΣΠΣΠ circuits Saraf and Volkovich obtained an analogous bound on the sparsity of the
polynomials computed by the multiplication gates in a zero circuit [27].
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gates and the bottom fan-in is two, i.e. for homogeneous Σ[3]Π[d]ΣΠ[2] circuits that compute
polynomials of the form

Φ(x1, . . . , xn) =
d∏
j=1

Q1,j(x1, . . . , xn) +
d∏
j=1

Q2,j(x1, . . . , xn) +
d∏
j=1

Q3,j(x1, . . . , xn) . (3)

Both Beecken et al. [4] and Gupta [17] suggested an approach to the PIT problem of such
identities based on the colored version of Problem 2 for r = 2. Both papers described PIT
algorithms for depth-4 circuits assuming a bound on the algebraic rank of the polynomials.
In fact, Gupta conjectured that the algebraic rank of polynomials satisfying the conditions
of Problem 2 depends only on their degree (see Conjectures 1, 2 and 30 in [17]).

I Conjecture 3 (Conjecture 1 in [17]). Let F1, . . . ,Fk be finite sets of irreducible homogenous
polynomials in C[x1, . . . , xn] of degree ≤ r such that ∩iFi = ∅ and for every k−1 polynomials
Q1, . . . , Qk−1, each from a distinct set, there are P1, . . . , Pc in the remaining set such that
whenever Q1, . . . , Qk−1 vanish then also the product

∏c
i=1 Pi vanishes. Then, trdegC(∪iFi) ≤

λ(k, r, c) for some function λ, where trdeg stands for the transcendental degree (which is the
same as algebraic rank).

Furthermore, using degree arguments Gupta showed that in Problem 2 we can restrict
our attention to sets I such that |I| ≤ rk−1. In particular, if the circuit in Equation (3)
vanishes identically, then for every (j, j′) ∈ [d]2 there are i1,j,j′ , i2,j,j′ , i3,j,j′ , i4,j,j′ ∈ [d] so
that

Q1,i1,j,j′ ·Q1,i2,j,j′ ·Q1,i3,j,j′ ·Q1,i4,j,j′ ≡ 0 mod 〈Q2,j , Q3,j′〉 .

In [4] Beecken et al. conjectured that the algebraic rank of simple and minimal
Σ[k]Π[d]ΣΠ[r] circuits (see their paper for definition of simple and minimal) is Ok(log d). We
note that for k = 3 this conjecture is weaker than Conjecture 3 as every zero Σ[3]Π[d]ΣΠ[r]

circuit gives rise to a structure satisfying the conditions of Conjecture 3, but the other
direction is not necessarily true. Beecken et al. also showed how to obtain a deterministic
PIT for Σ[k]Π[d]ΣΠ[r] circuits, assuming the correctness of their conjecture.

1.1 Our Result
Our main result gives a bound on the linear dimension of polynomials satisfying the conditions
of Problem 2 when all the polynomials are irreducible of degree at most 2. Specifically we
prove the following theorem.

I Theorem 4. There exists a universal constant c such that the following holds. Let Q̃ =
{Qi}i∈{1,...,m} ⊂ C[x1, . . . , xn] be a finite set of pairwise linearly independent homogeneous
polynomials, such that every Qi ∈ Q̃ is either irreducible or a square of a linear form. Assume
that, for every i 6= j, whenever Qi and Qj vanish then so does

∏
k∈{1,...,m}\{i,j}Qk. Then,

dim(span{Q}) ≤ c.

While our result still does not resolve Conjecture 3, as we need a colorful version of it,
we believe that it is a significant step towards solving the conjecture for k = 3 and r = 2,
which will yield a PIT algorithm for Σ[3]Π[d]ΣΠ[2] circuits.

An interesting aspect of our result is that while the conjectures of [4, 17] speak about
the algebraic rank we prove a stronger result that bounds that linear dimension (the linear
rank is an upper bound on the algebraic rank). As our proof is quite technical it is an
interesting question whether one could simplify our arguments by arguing directly about the
algebraic rank.
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An important algebraic tool in the proof of Theorem 4 is the following result characterizing
the different cases in which a product of quadratic polynomials vanishes whenever two other
quadratics vanish.

I Theorem 5. Let {Qk}k∈K, A,B be homogeneous polynomials of degree 2 such that∏
k∈KQk ∈

√
〈A,B〉. Then one of the following cases hold:

(i) There is k ∈ K such that Qk is in the linear span of A,B
(ii) There exists a non trivial linear combination of the form αA+ βB = c · d where c and

d are linear forms.
(iii) There exist two linear forms c and d such that when setting c = d = 0 we get that A,B

and one of {Qk}k∈K vanish.

From now on, to ease notations, we use Theorem 5i, Theorem 5ii or Theorem 5iii to
describe different cases of Theorem 5.

The statement of the result is quite similar to Theorem 1.8 of [33] that proved a similar
result when |K| = 1. Specifically, in [33] the second item reads “There exists a non trivial
linear combination of the form αA + βB = a2, where a is a linear form.” This “minor”
difference in the statements (which is necessary) is also responsible for the much harder work
we do in the paper.

The proof of this theorem can be found in the full version of the paper [26].

1.2 Proof Idea
Our proof has a similar structure to the proofs in [33], but it does not rely on any of the
results proved there.

Our starting point is the observation that Theorem 5 guarantees that unless one of {Qk}
is in the linear span of A and B then A and B must satisfy a very strong property, namely,
they must span a reducible quadratic or they have a very low rank (as quadratic polynomials).
The proof of this theorem is based on analyzing the resultant of A and B with respect to
some variable. We now explain how this theorem can be used to prove Theorem 4.

Consider a set of polynomials Q = {Q1, . . . , Qm} satisfying the condition of Theorem 4.
First, consider the case in which for every Q ∈ Q, at least, say, (1/100) ·m of the polynomials
Qi ∈ Q, satisfy that there is another polynomial in Q in span{Q,Qi}. In this case, we can
use the robust version of the Sylvester-Gallai theorem [3, 9] (see Theorem 13) to deduce that
the linear dimension of Q is small.

The second case we consider is when every polynomial Q ∈ Q that did not satisfy the
first case now satisfies that for at least, say, (1/100) ·m of the polynomials Qi ∈ Q there are
linear forms ai and bi such that Q,Qi ∈ 〈ai, bi〉. We prove that if this is the case then there
is a bounded dimensional linear space of linear forms, V , such that all the polynomials in
Q that are of rank 2 are in 〈V 〉. Then we argue that the polynomials that are not in 〈V 〉
satisfy the robust version of the Sylvester-Gallai theorem (Theorem 13). Finally we bound
the dimension of Q∩ 〈V 〉.

Most of the work however (Section 4) goes into studying what happens in the remaining
case when there is some polynomial Qo ∈ Q for which at least 0.98m of the other polynomials
in Q satisfy Theorem 5ii with Qo. This puts a strong restriction on the structure of these
0.98m polynomials. Specificity, each of them is of the form Qi = Qo + aibi, where ai and bi
are linear forms. The idea in this case is to show that the set {ai, bi} is of low dimension.
This is done by again studying the consequences of Theorem 5 for pairs of polynomials
Qo + aibi, Qo + ajbj ∈ Q. After bounding the dimension of these 0.98m polynomials we
bound the dimension of all the polynomials in Q. The proof of this case is much more
involved than the cases described earlier, and in particular we handle differently the case
where Qo is of high rank and the case where its rank is low.

CCC 2020
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1.3 On the relation to the proof of [33]
In [33] the following theorem was proved.

I Theorem 6 (Theorem 1.7 of [33]). Let {Qi}i∈[m] be homogeneous quadratic polynomials
over C such that each Qi is either irreducible or a square of a linear function. Assume further
that for every i 6= j there exists k 6∈ {i, j} such that whenever Qi and Qj vanish Qk vanishes
as well. Then the linear span of the Qi’s has dimension O(1).

As mentioned earlier, the steps in our proof are similar to the proof of Theorem 1.7 in [33].
Specifically, [33] also relies on an analog of Theorem 5 and divides the proof according to
whether all polynomials satisfy the first case above or not. However, the fact that case ii of
Theorem 5 is different than the corresponding case in the statement of Theorem 1.8 of [33],
makes our proof is significantly more difficult. The reason for this is that while in [33] we
could always pinpoint which polynomial vanishes when Qi and Qj vanish, here we only know
that this polynomial belongs to a small set of polynomials. This leads to a richer structure in
Theorem 5 and consequently to a considerably more complicated proof. To understand the
effect of this on our proof we note that the corresponding case to Theorem 5ii was the simpler
case to analyze in the proof of [33]. The fact that ai = bi when |K| = 1 almost immediately
implied that the dimension of the span of the ais is constant (see Claim 5.2 in [33]). In our
case however, this is the bulk of the proof, and Section 4 is devoted to handling this case.

In addition to being technically more challenging, our proof gives new insights that may
be extended to higher degree polynomials. The first is Theorem 5. While a similar theorem
was proved for the simpler setting of [33], it was not clear whether a characterization in the
form given in Theorem 5 would be possible, let alone true, in our more general setting. This
gives hope that a similar result would be true for higher degree polynomials. Our second
contribution is that we show (more or less) that either the polynomials in our set satisfy the
robust version of Sylvester-Gallai theorem (Definition 12) or the linear functions composing
the polynomials satisfy the theorem. Potentially, this may be extended to higher degree
polynomials.

2 Preliminaries

In this section we explain our notation and present some basic algebraic preliminaries.
We will use the following notation. Greek letters α, β, . . . denote scalars from C. Non-

capitalized letters a, b, c, . . . denote linear forms and x, y, z denote variables (which are also
linear forms). Bold faced letters denote vectors, e.g. ~x = (x1, . . . , xn) denotes a vector of
variables, ~α = (α1, . . . , αn) is a vector of scalars, and ~0 = (0, . . . , 0) the zero vector. We
sometimes do not use a boldface notation for a point in a vector space if we do not use its
structure as vector. Capital letters such as A,Q,P denote quadratic polynomials whereas
V,U,W denote linear spaces. Calligraphic letters I,J ,F ,Q, T denote sets. For a positive
integer n we denote [n] = {1, 2, . . . , n}. For a matrix X we denote by |X| the determinant
of X.

A Commutative Ring is a group that is abelian with respect to both multiplication and
addition operations. We mainly use the multivariate polynomial ring, C[x1, . . . , xn]. An Ideal
I ⊆ C[x1, . . . , xn] is an abelian subgroup that is closed under multiplication by ring elements.
For S ⊂ C[x1, . . . , xn], we denote with 〈S〉, the ideal generated by S, that is, the smallest
ideal that contains S. For example, for two polynomials Q1 and Q2, the ideal 〈Q1, Q2〉 is
the set C[x1, . . . , xn]Q1 + C[x1, . . . , xn]Q2. For a linear subspace V , we have that 〈V 〉 is the
ideal generated by any basis of V . The radical of an ideal I, denoted by

√
I, is the set of
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all ring elements, r, satisfying that for some natural number m (that may depend on r),
rm ∈ I. Hilbert’s Nullstellensatz implies that, in C[x1, . . . , xn], if a polynomial Q vanishes
whenever Q1 and Q2 vanish, then Q ∈

√
〈Q1, Q2〉 (see e.g. [8]). We shall often use the

notation Q ∈
√
〈Q1, Q2〉 to denote this vanishing condition. For an ideal I ⊆ C[x1, . . . , xn]

we denote by C[x1, . . . , xn]/I the quotient ring, that is, the ring whose elements are the
cosets of I in C[x1, . . . , xn] with the proper multiplication and addition operations. For an
ideal I ⊆ C[x1, . . . , xn] we denote the set of all common zeros of elements of I by Z(I).

For V1, . . . , Vk linear spaces, we use
∑k
i=1 Vi to denote the linear space V1 + . . . + Vk.

For two non zero polynomials A and B we denote A ∼ B if B ∈ span{A}. For a space of
linear forms V = span{v1, . . . , v∆}, we say that a polynomial P ∈ C[x1, . . . , xn] depends
only on V if the value of P is determined by the values of the linear forms v1, . . . , v∆. More
formally, we say that P depends only on V if there is a ∆-variate polynomial P̃ such that
P ≡ P̃ (v1, . . . , v∆). We denote by C[v1, . . . , v∆] ⊆ C[x1, . . . , xn] the subring of polynomials
that depend only on V .

Another notation that we will use throughout the proof is congruence modulo linear
forms.

I Definition 7. Let V ⊂ C[x1, . . . , xn] be a space of linear forms, and P,Q ∈ C[x1, . . . , xn].
We say that P ≡V Q if P −Q ∈ 〈V 〉.

I Fact 8. Let V ⊂ C[x1, . . . , xn] be a space of linear forms and P,Q ∈ C[x1, . . . , xn]. If
P =

∏t
k=1 Pk, and Q =

∏t
k=1Qk satisfy that for all k, Pk and Qk are irreducible in

C[x1, . . . , xn]/〈V 〉, and P ≡V Q 6≡V 0 then, up to a permutation of the indices, Pk ≡V Qk
for all k ∈ [t].

This follows from the fact that the quotient ring C[x1, . . . , xn]/〈V 〉is a unique factorization
domain.

2.1 Sylvester-Gallai Theorem and some of its Variants
In this section we present the formal statement the of Sylvester-Gallai theorem and the
extensions that we use in this work.

I Definition 9. Given a set of points, v1, . . . , vm, we call a line that passes through exactly
two of the points of the set an ordinary line.

I Theorem 10 (Sylvester-Gallai theorem). If m distinct points v1, . . . , vm in Rn are not
collinear, then they define at least one ordinary line.

I Theorem 11 (Kelly’s theorem). If m distinct points v1, . . . , vm in Cn are not coplanar,
then they define at least one ordinary line.

The robust version of the theorem was stated and proved in [3, 9].

I Definition 12. We say that a set of points v1, . . . , vm ∈ Cn is a δ-SG configuration if
for every i ∈ [m] there exists at least δm values of j ∈ [m] such that the line through vi, vj
contains a third point in the set.

I Theorem 13 (Robust Sylvester-Gallai theorem, Theorem 1.9 of [9]). Let V = {v1, . . . , vm} ⊂
Cn be a δ-SG configuration. Then dim(span{v1, . . . , vm}) ≤ 12

δ + 1.

The following is the colored version of the Sylvester-Gallai theorem.
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I Theorem 14 (Theorem 3 of [12]). Let Ti, for i ∈ [3], be disjoint finite subsets of Cn such
that for every i 6= j and any two points p1 ∈ Ti and p2 ∈ Tj there exists a point p3 in the
third set that lies on the line passing through p1 and p2. Then, any such Ti satisfy that
dim(span{∪iTi}) ≤ 3.

We also state the equivalent algebraic versions of Sylvester-Gallai.

I Theorem 15. Let S = {~s1, . . . , ~sm} ⊂ Cn be a set of pairwise linearly independent vectors
such that for every i 6= j ∈ [m] there is a distinct k ∈ [m] for which ~sk ∈ span{~si, ~sj}. Then
dim(S) ≤ 3.

I Theorem 16. Let P = {`1, . . . , `m} ⊂ C[x1, . . . , xn] be a set of pairwise linearly independ-
ent linear forms such that for every i 6= j ∈ [m] there is a distinct k ∈ [m] for which whenever
`i, `j vanish so does `k. Then dim(P) ≤ 3.

In this paper we refer to each of Theorem 11, Theorem 15 and Theorem 16 as the Sylvester-
Gallai theorem. We shall also refer to sets of points/vectors/linear forms that satisfy the
conditions of the relevant theorem as satisfying the condition of the Sylvester-Gallai theorem.

2.2 Resultant
A tool that will play an important role in the proof of Theorem 5 is the resultant of two
polynomials. We will only define the resultant of a a quadratic polynomial and a linear
polynomial as this is the case relevant to our work.4 Let A,B ∈ C[x1, . . . , xn]. View A and
B as polynomials in x1 over C[x2, . . . , xn] and assume that degx1(A) = 2 and degx1(B) = 1,
namely,

A = αx2
1 + ax1 +A0 and B = bx1 +B0 .

Then, the resultant of A and B with respect to x1 is the determinant of their Sylvester
matrix

Resx1(A,B) =:

∣∣∣∣∣∣
A0 B0 0
a b B0
α 0 b

∣∣∣∣∣∣ .
A useful fact is that if the resultant of A and B vanishes then they share a common factor.

I Theorem 17 (See e.g. Proposition 8 in §5 of Chapter 3 in [8]). Given F,G ∈ F[x1, . . . , xn]
of positive degree in x1, the resultant Resx1(F,G) is an integer polynomial in the coefficients
of F and G. Furthermore, F and G have a common factor in F[x1, . . . , xn] if and only if
Resx1(F,G) = 0.

2.3 Rank of Quadratic Polynomials
In this section we define the rank of a quadratic polynomial, and present some of its useful
properties.

I Definition 18. For a homogeneous quadratic polynomial Q we denote with ranks(Q) the
minimal r such that there are 2r linear forms {ak}2rk=1 satisfying Q =

∑r
k=1 a2k · a2k−1. We

call such representation a minimal representation of Q.

4 For the general definition of Resultant, see Definition 2 in §5 of Chapter 3 in [8].
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This is a slightly different definition than the usual way one defines rank of quadratic
forms,5 but it is more suitable for our needs. We note that a quadratic Q is irreducible if
and only if ranks(Q) > 1. The next claim shows that a minimal representation is unique in
the sense that the space spanned by the linear forms in it is unique.

B Claim 19. Let Q be a homogeneous quadratic polynomial and let Q =
∑r
i=1 a2i−1 ·a2i and

Q =
∑r
i=1 b2i−1 ·b2i be two different minimal representations of Q. Then span{a1, . . . , a2r} =

span{b1, . . . , b2r}.

Proof. Note that if the statement does not hold then, without loss of generality, a1 is not
contained in the span of the bi’s. This means that when setting a1 = 0 the bi’s are not
affected on the one hand, thus Q remains the same function of the bi’s, and in particular
ranks(Q|a1=0) = r, but on the other hand ranks(Q|a1=0) = r − 1 (when considering its
representation with the ai’s), in contradiction. C

This claim allows us to define the notion of minimal space of a quadratic polynomial Q,
which we shall denote Lin(Q).

I Definition 20. Let Q be a quadratic polynomial, where ranks(Q) = r, and let Q =
r∑
i=1

a2i−1 · a2i be some minimal representation of Q. Define Lin(Q) =: span{a1, . . . , a2r},

also denote Lin(Q1, . . . , Qk) =
k∑
i=1

Lin(Qi).

Claim 19 shows that the minimal space is well defined. The following fact is easy to verify.

I Fact 21. Let Q =
∑m
i=1 a2i−1 · a2i be a homogeneous quadratic polynomial, then Lin(Q) ⊆

span{a1, . . . , a2m}.

We now give some basic claims regarding ranks.

B Claim 22. Let Q be a homogeneous quadratic polynomial with ranks(Q) = r, and
let V ⊂ C[x1, . . . , xn] be a linear space of linear forms such that dim(V ) = ∆. Then
ranks(Q|V=0) ≥ r −∆.

Proof. Assume without loss of generality V = span{x1, . . . , x∆}, and consider Q ∈
C[x∆+1, . . . , xn][x1, . . . , x∆]. There are a1, . . . , a∆ ∈ C[x1, . . . , xn] and Q′ ∈ C[x∆+1, . . . , xn]
such that Q =

∑∆
i=1 aixi + Q′, where Q|V=0 = Q′. As ranks(

∑∆
i=1 aixi) ≤ ∆, it must be

that ranks(Q|V=0) ≥ r −∆. C

B Claim 23. Let P1 ∈ C[x1, . . . , xk], and P2 = y1y2 ∈ C[y1, y2]. Then ranks(P1 + P2) =
ranks(P1) + 1. Moreover, y1, y2 ∈ Lin(P1 + P2).

Proof. Denote ranks(P1) = r and assume towards a contradiction that there are a1, . . . , a2r

linear forms in C[x1, . . . , xk, y1, y2] such that P1 +P2 =
r∑
i=1

a2i−1a2i. Clearly,
r∑
i=1

a2i−1a2i ≡y1

P1. As ranks(P1) = r this is a minimal representation of P1. Hence, for every i, ai|y1=0 ∈
Lin(P1) ⊂ C[x1, . . . , xk]. Moreover, from the minimality of r, ai|y1=0 6= 0. Therefore, as
y1 and y2 are linearly independent, we deduce that all the coefficients of y2 in all the ai’s
are 0. By reversing the roles of y1 and y2 we can conclude that a1, . . . , a2r ⊂ C[x1, . . . , xk]
which means that Q does not depend on y1 and y2 in contradiction. Consider a minimal

5 ranks(Q) is the minimal t such that there are t linear forms {ak}tk=1, satisfying Q =
∑t

k=1 a2
k.

CCC 2020



8:10 A Generalized Sylvester-Gallai Type Theorem for Quadratic Polynomials

representation P1 =
∑2r
i=1 b2i−1b2i, from the fact that ranks(P1 + P2) = r + 1 it follows

that P1 + P2 =
∑2r
i=1 b2i−1b2i + y1y2 is a minimal representation of P1 + P2 and thus

Lin(P1 + P2) = Lin(P1) + span{y1, y2}. C

I Corollary 24. Let a and b be linearly independent linear forms. Then, if c, d, e and f are
linear forms such that ab+ cd = ef then dim(span{a, b} ∩ span{c, d}) ≥ 1.

B Claim 25. Let a, b, c and d be linear forms, and V be a linear space of linear forms.
Assume {0} 6= Lin(ab− cd) ⊆ V then span{a, b} ∩ V 6= {0}.

Proof. As Lin(ab− cd) ⊆ V it follows that ab ≡V cd. If both sides are zero then ab ∈ 〈V 〉
and without loss of generality b ∈ V and the statement holds. If neither sides is zero then
from Fact 8 there are linear forms v1, v2 ∈ V , and λ1, λ2 ∈ C× such that, λ1λ2 = 1 and
without loss of generality c = λ1a+ v1, d = λ2b+ v2. Note that not both v1, v2 are zero, as
ab− cd 6= 0. Thus,

ab− cd = ab− (λ1a+ v1)(λ2b+ v2) = λ1av2 + λ2bv1 + v1v2.

As Lin(ab− cd) ⊆ V it follows that Lin(λ1av2 + λ2bv1) ⊆ V and therefore there is a linear
combination of a, b in V and the statement holds. C

We end this section with claims that will be useful in our proofs.

B Claim 26. Let V =
∑m
i=1 Vi where Vi are linear subspaces, and for every i, dim(Vi) = 2.

If for every i 6= j ∈ [m], dim(Vi ∩ Vj) = 1, then either dim(
⋂m
i=1 Vi) = 1 or dim(V ) = 3.

Proof. Let w ∈ V1 ∩ V2. Complete it to basis of V1 and V2: V1 = span{u1, w} and V2 =
span{u2, w}. Assume that dim(

⋂m
i=1 Vi) = 0. Then, there is some i for which w /∈ Vi. Let

x1 ∈ Vi ∩ V1, and so x1 = α1u1 + β1w, where α1 6= 0. Similarly, let x2 ∈ Vi ∩ V2. Since
w /∈ Vi, x2 = α2u2 + β2w, where α2 6= 0. Note that x1 /∈ span{x2}, as dim(V1 ∩ V2) = 1, and
w is already in their intersection. Thus, we have Vi = span{x1, x2} ⊂ span{w, u1, u2}.

Now, consider any other j ∈ [m]. If Vj does not contain w, we can apply the same
argument as we did for Vi and conclude that Vj ⊂ span{w, u1, u2}. On the other hand, if
w ∈ Vj , then let xj ∈ Vi ∩ Vj , it is easy to see that xj , w are linearly independent and so
Vj = span{w, xj} ⊂ span{w, Vi} ⊆ span{w, u1, u2}. Thus, in any case Vj ⊂ span{w, u1, u2}.
In particular,

∑
j Vj ⊆ span{w, u1, u2} as claimed. C

2.4 Projection Mappings
In this section we present and apply a new technique which allows us to simplify the structure
of quadratic polynomials. Naively, when we want to simplify a polynomial equation, we can
project it on a subset of the variables. Unfortunately, this projection does not necessarily
preserve pairwise linear independence, which is a crucial property in our proofs. To remedy
this fact, we present a set of mappings, which are somewhat similar to projections, but do
preserve pairwise linear independence among polynomials.

I Definition 27. Let V = span{v1, . . . , v∆} ⊆ span{x1, . . . , xn} be a ∆-dimensional linear
space of linear forms, and let {u1, . . . , un−∆} be a basis for V ⊥. For ~α = (α1, . . . , α∆) ∈ C∆

we define T~α,V : C[x1, . . . , xn] 7→ C[x1, . . . , xn, z], where z is a new variable, to be the linear
map given by the following action on the basis vectors: T~α,V (vi) = αiz and T~α,V (ui) = ui.

I Observation 28. T~α,V is a linear transformation and is also a ring homomorphism.
This follows from the fact that a basis for span{x1, . . . , xn} is a basis for C[x1, . . . , xn] as
C-algebra.
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B Claim 29. Let V ⊆ span{x1, . . . , xn} be a ∆-dimensional linear space of linear forms. Let
F and G be two polynomials that share no common irreducible factor. Then, with probability
1 over the choice of ~α ∈ [0, 1]∆ (say according to the uniform distribution), T~α,V (F ) and
T~α,V (G) do not share a common factor that is not a polynomial in z.

Proof. Let {u1, . . . , un−∆} be a basis for V ⊥. We think of F and G as polynomials in
C[v1, . . . , v∆, u1, . . . , un−∆]. As T~α,V : C[v1, . . . , v∆, u1, . . . , un−∆] → C[z, u1, . . . , un−∆],
Theorem 17 implies that if T~α,V (F ) and T~α,V (G) share a common factor that is not a
polynomial in z, then, without loss of generality, their resultant with respect to u1 is
zero. Theorem 17 also implies that the resultant of F and G with respect to u1 is not
zero. Observe that with probability 1 over the choice of ~α, we have that degu1(F ) =
degu1(T~α,V (F )) and degu1(G) = degu1(T~α,V (G)). As T~α,V is a ring homomorphism this
implies that Resu1(T~α,V (G), T~α,V (F )) = T~α,V (Resu1(G,F )). The Schwartz-Zippel-DeMillo-
Lipton lemma now implies that sending each basis element of V to a random multiple of z,
chosen uniformly from (0, 1) will keep the resultant non zero with probability 1. This also
means that T~α,V (F ) and T~α,V (G) share no common factor. C

I Corollary 30. Let V be a ∆-dimensional linear space of linear forms. Let F and G

be two linearly independent, irreducible quadratics, such that Lin(F ),Lin(G) 6⊆ V . Then,
with probability 1 over the choice of ~α ∈ [0, 1]∆ (say according to the uniform distribution),
T~α,V (F ) and T~α,V (G) are linearly independent.

Proof. As F and G are irreducible they share no common factors. Claim 29 implies that
T~α,V (F ) and T~α,V (G) do not share a common factor that is not a polynomial in z. The
Schwartz-Zippel-DeMillo-Lipton implies that with probability 1, T~α,V (F ) and T~α,V (G) are
not polynomials in z, and therefore they are linearly independent. J

B Claim 31. Let Q be an irreducible quadratic polynomial, and V a ∆-dimensional linear
space. Then for every ~α ∈ C∆, ranks(T~α,V (Q)) ≥ ranks(Q)−∆.

Proof. ranks(T~α,V (Q)) ≥ ranks(T~α,V (Q)|z=0) = ranks(Q|V=0) ≥ ranks(Q) −∆, where the
last inequality follows from Claim 22. C

B Claim 32. Let Q be a set of quadratics, and V be a ∆-dimensional linear space. Then,
if there are linearly independent vectors, {~α1, . . . , ~α∆} ⊂ C∆, such that, for every i,6
dim(Lin(T~αi,V (Q))) ≤ σ then dim(Lin(Q)) ≤ (σ + 1)∆.

Proof. As dim(Lin(T~αi,V (Q))) ≤ σ, there are ui1, . . . , uiσ ⊂ V ⊥ such that Lin(T~αi,V (Q)) ⊆
span{z, ui1, . . . , uiσ}. We will show that Lin(Q) ⊂ V + span{{ui1, . . . , uiσ}∆i=1}, which is of
dimension at most ∆ + σ∆.

Let P ∈ Q, then there are linear forms, a1, . . . , a∆ ⊂ V ⊥ and polynomials PV ∈ C[V ]
and P ′ ∈ C[V ⊥], such that

P = PV +
∆∑
j=1

ajvj + P ′.

6 Recall that Lin(T~αi,V (Q)) is the space spanned by ∪Q∈QLin(T~αi,V (Q)).
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Therefore, after taking the projection for a specific T~αi,V , for some γ ∈ C,

T~αi,V (P ) = γz2 +

 ∆∑
j=1

αijaj

 z + P ′.

Denote bP,i =
∆∑
j=1

αijaj . By Corollary 30 if a1, . . . , a∆ are not all zeros, then, with probability

1, bP,i 6= ~0 .
If bP,i /∈ Lin(P ′) then from Claim 23 it follows that {z, bP,i,Lin(P ′)} ⊆

span{Lin(T~αi,V (P ))}. If, on the other hand, bP,i ∈ Lin(P ′), then clearly {bP,i,Lin(P ′)} ⊆
span{z,Lin(T~αi,V (P ))}. To conclude, in either case, {bP,i,Lin(P ′)} ⊆ span{z, ui1, . . . , uiσ}.

Applying the analysis above to T~α1,V , . . . , T~α∆,V we obtain that span{bP,1, · · · bP,∆} ⊆
span{{ui1, . . . , uiσ}∆i=1}. As ~α1, . . . ~α∆ are linearly independent, we have that
{a1, . . . , a∆} ⊂ span{bP,1, · · · bP,∆}, and thus Lin(P ) ⊆ V + {a1, . . . , a∆} + LS(P ′) ⊆
V + span{{ui1, . . . , uiσ}∆i=1}. C

3 Sylvester-Gallai theorem for quadratic polynomials

In this section we prove Theorem 4. For convenience we repeat the statement of the theorem.

I Theorem (Theorem 4). There exists a universal constant c such that the following holds.
Let Q̃ = {Qi}i∈{1,...,m} ⊂ C[x1, . . . , xn] be a finite set of pairwise linearly independent
homogeneous polynomials, such that every Qi ∈ Q̃ is either irreducible or a square of
a linear form. Assume that, for every i 6= j, whenever Qi and Qj vanish then so does∏
k∈{1,...,m}\{i,j}Qk. Then, dim(span{Q}) ≤ c.

I Remark 33. The requirement that the polynomials are homogeneous is not essential as
homogenization does not affect the property Qk ∈

√
〈Qi, Qj〉.

I Remark 34. Note that we no longer demand that the polynomials are irreducible but rather
allow some of them to be square of linear forms, but now we restrict all polynomials to be of
degree exactly 2. Note that both versions of the theorem are equivalent, as this modification
does not affect the vanishing condition.

We use the following claim of [17].

B Claim 35 (Claim 11 in [17]). Let P1, . . . , Pd, Q1, . . . , Qk ∈ C[x1, . . . , xn] be homogeneous
and the degree of each Pi is at most r. Then,

k∏
i=1

Qi ∈
√
〈P1, . . . , Pd〉 ⇒ ∃{i1, . . . , ird} ⊂ [k] such that

rd∏
j=1

Qij ∈
√
〈P1, . . . , Pd〉 .

I Remark 36. Note that from Claim 35 for r = d = 2, it follows that for every i 6= j there
exists a subset K ⊆ [m] \ {i, j} such that |K| ≤ 4 and whenever Qi and Qj vanish then so
does

∏
k∈KQk.

In what follows we shall use the following terminology. Whenever we say that two
quadratics Q1, Q2 ∈ Q̃ satisfy Theorem 5i we mean that there is a polynomial Q3 ∈
Q̃ \ {Q1, Q2} in their linear span. Similarly, when we say that they satisfy Theorem 5ii
(Theorem 5iii) we mean that there is a reducible quadratic in their linear span (they belong
to 〈a1, a2〉 for linear forms a1, a2).
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Proof of Theorem 4. Partition the polynomials to two sets. Let L be the set of all squares
and let Q be the subset of irreducible quadratics, thus Q̃ = Q∪ L. Denote |Q| = m, |L| = r.
Let δ = 1

100 , and denote
P1 = {P ∈ Q | There are at least δm polynomials in Q such that P

satisfies Theorem 5i but not Theorem 5ii with each of them}.
P3 = {P ∈ Q | There are at least δm polynomials in Q such that P

satisfies Theorem 5iii with each of them}.
The proof first deals with the case where Q = P1 ∪ P3. We then handle the case that there
is Q ∈ Q \ (P1 ∪ P3).

3.1 The case Q = P1 ∪ P3

Assume that Q = P1 ∪ P3. For our purposes, we may further assume that P1 ∩ P3 = ∅, by
letting P1 = P1 \ P3.

B Claim 37. There exists a linear space of linear forms, V , such that dim(V ) = O(1) and
P3 ⊂ 〈V 〉.

The intuition behind the claim is based on the following observation.

I Observation 38. If Q1, Q2 ∈ Q satisfy Theorem 5iii then dim(Lin(Q1)),dim(Lin(Q2)) ≤ 4
and dim(Lin(Q1) ∩ Lin(Q2)) ≥ 2.

Thus, we have many small dimensional spaces that have large pairwise intersections and
we can therefore expect that such a V may exist.

Proof. We prove the existence of V by explicitly constructing it. Repeat the following
process: Set V = {~0}, and P ′3 = ∅. At each step consider any Q ∈ P3 such that Q /∈ 〈V 〉
and set V = Lin(Q) + V , and P ′3 = P ′3 ∪ {Q}. Repeat this process as long as possible, i.e,
as long as P3 6⊆ 〈V 〉. We show next that this process must end after at most 3

δ steps. In
particular, |P ′3| ≤ 3

δ . It is clear that at the end of the process it holds that P3 ⊂ 〈V 〉.

B Claim 39. Let Q ∈ Q and B ⊆ P ′3 be the subset of all polynomials in P ′3 that satisfy
Theorem 5iii with Q, then |B| ≤ 3.

Proof. Assume towards a contradiction that |B| ≥ 4, and that Q1, Q2, Q3 and Q4 are the
first 4 elements of B that where added to P ′3. Denote U = Lin(Q), and Ui = U ∩ Lin(Qi),
for 1 ≤ i ≤ 4.

As Q satisfies Theorem 5iii we have that dim(U) ≤ 4. Furthermore, for every i, dim(Ui) ≥
2 (by Observation 38). As the Qis were picked by the iterative process, we have that U2 6⊆ U1.
Indeed, since Q2 ∈ 〈U2〉, if we had U2 ⊆ U1 ⊆ Lin(Q1) ⊆ V , then this would imply that
Q2 ∈ 〈V 〉, in contradiction to the fact that Q2 ∈ P ′3. Similarly we get that U3 6⊆ U1 + U2
and U4 6⊆ U1 + U3 + U3. However, as the next simple lemma shows, this is not possible.

I Lemma 40. Let V be a linear space of dimension ≤ 4, and let V1, V2, V3 ⊂ V each of
dimension ≥ 2, such that V1 6⊆ V2 and V3 6⊆ V2 + V1 then V = V1 + V2 + V3.

Proof. As V1 6⊆ V2 we have that dim(V1 +V2) ≥ 3. Similarly we get 4 ≤ dim(V1 +V2 +V3) ≤
dim(V ) = 4. J

Thus, Lemma 40 implies that V = U1 + U2 + U3 and in particular, U4 ⊆ U1 + U2 + U3 in
contradiction. This completes the proof of Claim 39. C
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For Qi ∈ P ′3, define Ti = {Q ∈ Q | Q,Qi satisfiy Theorem 5iii}. Since |Ti| ≥ δm, and as
by Claim 39 each Q ∈ Q belongs to at most 3 different sets, it follows by double counting
that |P ′3| ≤ 3/δ. As in each step we add at most 4 linearly independent linear forms to V ,
we obtain dim(V ) ≤ 12

δ .
This completes the proof of Claim 37. J

So far V satisfies that P3 ⊂ 〈V 〉. Next, we find a small set of polynomials I such that
Q ⊂ 〈V 〉+ span{I}.

B Claim 41. There exists a set I ⊂ Q such that Q ⊂ 〈V 〉+ span{I} and |I| = O(1/δ).

Proof. As before the proof shows how to construct I by an iterative process. Set I = ∅ and
B = P3. First add to B any polynomial from P1 that is in 〈V 〉. Observe that at this point
we have that B ⊂ Q∩ 〈V 〉. We now describe another iterative process for the polynomials in
P1. In each step pick any P ∈ P1 \B such that P satisfies Theorem 5i, but not Theorem 5ii,7
with at least δ

3m polynomials in B, and add it to both I and to B. Then, we add to B all the
polynomials P ′ ∈ P1 that satisfy P ′ ∈ span{(Q∩ 〈V 〉) ∪ I}. Note, that we always maintain
that B ⊂ span{(Q∩ 〈V 〉) ∪ I}.

We continue this process as long as we can. Next, we prove that at the end of the process
we have that |I| ≤ 3/δ.

B Claim 42. In each step we added to B at least δ
3m new polynomials from P1. In particular,

|I| ≤ 3/δ.

Proof. Consider what happens when we add some polynomial P to I. By the description
of our process, P satisfies Theorem 5i with at least δ

3m polynomials in B. Any Q ∈ B,
that satisfies Theorem 5i with P , must span with P a polynomial P ′ ∈ Q̃. Observe that
P ′ /∈ L as Q,P do not satisfy Theorem 5ii, and thus P ′ ∈ Q. It follows that P ′ ∈ P1 since
otherwise we would have that P ∈ span{B} ⊂ span{(Q∩ 〈V 〉) ∪ I}, which implies P ∈ B in
contradiction to the way that we defined the process. Furthermore, for each such Q ∈ B
the polynomial P ′ is unique. Indeed, if there was a P 6= P ′ ∈ P1 and Q1, Q2 ∈ B such that
P ′ ∈ span{Q1, P} ∩ span{Q2, P} then by pairwise independence we would conclude that
P ∈ span{Q1, Q2} ⊂ span{B}, which, as we already showed, implies P ∈ B in contradiction.
Thus, when we add P to I we add at least δ

3m polynomials to B. In particular, the process
terminates after at most 3/δ steps and thus |I| ≤ 3/δ. C

Consider the polynomials left in P1 \ B. As they ”survived” the process, each of them
satisfies the condition in the definition of P1 with at most δ

3m polynomials in B. From the
fact that P3 ⊆ B and the uniqueness property we obtained in the proof of Claim 42, we get
that P1 \B satisfies the conditions of Definition 12 with parameter δ/3 and thus, Theorem 13
implies that dim(P1 \ B) ≤ O(1/δ). Adding a basis of P1 \ B to I we get that |I| = O(1/δ)
and every polynomial in Q is in span{(Q∩ 〈V 〉) ∪ I}. C

We are not done yet as the dimension of 〈V 〉, as a vector space, is not a constant.
Nevertheless, we next show how to use Sylvester-Gallai theorem to bound the dimension of
Q given that Q ⊂ span{(Q∩ 〈V 〉) ∪ I}. To achieve this we introduce yet another iterative
process: For each P ∈ Q \ 〈V 〉, if there is quadratic L, with ranks(L) ≤ 2, such that
P + L ∈ 〈V 〉, then we set V = V + Lin(L) (this increases the dimension of V by at most
4). Since this operation increases dim (〈V 〉 ∩ Q) we can remove one polynomial from I, and
thus decrease its size by 1, and still maintain the property that Q ⊂ span{(Q∩ 〈V 〉) ∪ I}.

7 By this we mean that there are many polynomials that together with P span another polynomial in Q
but not in L.
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We repeat this process until either I is empty, or none of the polynomials in I satisfies
the condition of the process. By the upper bound on |I| the dimension of V grew by at
most 4|I| = O(1/δ) and thus it remains of dimension O(1/δ) = O(1). At the end of the
process we have that Q ⊂ span{(Q∩ 〈V 〉) ∪ I} and that every polynomial in P ∈ Q \ 〈V 〉
has ranks(P ) > 2, even if we set all linear forms in V to zero.

Consider the map T~α,V as given in Definition 27, for a randomly chosen ~α ∈ [0, 1]dim(V ).
Each polynomial in Q∩ 〈V 〉 is mapped to a polynomial of the form form zb, for some linear
form b. From Claim 22, it follows that every polynomial in Q \ 〈V 〉 still has rank larger than
2 after the mapping. Let

A = {b | some polynomial in Q∩ 〈V 〉 was mapped to zb} ∪ T~α,V (L) .

We now show that, modulo z, A satisfies the conditions of Sylvester-Gallai theorem. Let
b1, b2 ∈ A such that b1 6∈ span{z} and b2 6∈ span{z, b1}. As Q̃ satisfies the conditions of
Theorem 4 we get that there are polynomials Q1, . . . , Q4 ∈ Q̃ such that

∏4
i=1 T~α,V (Qi) ∈√

〈b1, b2〉 = 〈b1, b2〉, where the equality holds as 〈b1, b2〉 is a prime ideal. This fact also
implies that, without loss of generality, T~α,V (Q4) ∈ 〈b1, b2〉. Thus, T~α,V (Q4) has rank at
most 2 and therefore Q4 ∈ L ∪ (Q∩ 〈V 〉). Hence, T~α,V (Q4) was mapped to zb4 or to b24. In
particular, b4 ∈ A. Claim 29 and Corollary 30 imply that b4 is neither a multiple of b1 nor
a multiple of b2, so it must hold that b4 depends non-trivially on both b1 and b2. Thus, A
satisfies the conditions of Sylvester-Gallai theorem modulo z. It follows that dim(A) = O(1).

The argument above shows that the dimension of T~α,V (L ∪ (Q∩ 〈V 〉)) = O(1). Claim 32
implies that if we denote U = span{L ∪ Lin(Q∩ 〈V 〉)} then dim(U) is O(1). As Q ⊆
span{(Q∩ 〈V 〉) ∪ I}, we obtain that dim(Q̃) = dim(L ∪Q) = O(1), as we wanted to show.

This completes the proof of Theorem 4 for the case Q = P1 ∪ P3.

3.2 The case Q 6= P1 ∪ P3

In this case there is some polynomial Qo ∈ Q \ (P1 ∪ P3). In particular, Q0 satisfies
Theorem 5ii with at least (1− 2δ)m of the polynomials in Q; of the remaining polynomials,
at most δm satisfy Theorem 5i with Qo; and, Qo satisfies Theorem 5iii with at most δm
polynomials. Let
Q1 = {P ∈ Q | P,Qo satisfiy Theorem 5ii } ∪ {Qo}
Q2 = {P ∈ Q | P,Qo do not satisfiy Theorem 5ii }
m1 = |Q1|, m2 = |Q2|.

As Qo /∈ P1 ∪ P3 we have that m2 ≤ 2δm and m1 ≥ (1− 2δ)m. These properties of Qo and
Q are captured by the following definition.

I Definition 43. Let Q1 = {Qo, Q1, . . . , Qm1} and Q2 = {P1, . . . , Pm2} be sets of irreducible
homogeneous quadratic polynomials. Let L = {`21, . . . , `

2
r} be a set of squares of homogeneous

linear forms. We say that Q̃ = Q∪L where Q = Q1 ∪Q2 is a (Qo,m1,m2)-set if it satisfies
the following:
1. Q̃ satisfy the conditions in the statement of Theorem 4.
2. m1 > 5m2 + 2.
3. For every j ∈ [m1], there are linear forms aj , bj such that Qj = Qo + ajbj.
4. For every i ∈ [m2], every non-trivial linear combination of Pi and Qo has rank at least 2.
5. At most m2 of the polynomials in Q satisfy Theorem 5iii with Qo.

By the discussion above, the following theorem is what we need in order to complete the
proof for the case Q 6= P1 ∪ P3.

I Theorem 44. Let Q̃ satisfy the conditions of Definition 43, then dim Q̃ = O(1).

We prove this theorem in Section 4. This concludes the proof of Theorem 17. J
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4 Proof of Theorem 44

In this section we prove Theorem 44. The proof is divided to two parts according to whether
the polynomial Qo in Definition 43 is of high rank (Claim 46) or of low rank (Claim 60). Each
part is also divided to two – first we consider what happens when m2 = 0 and then the general
case where m2 6= 0. The reason for this split is that when Qo is of high rank then we know,
e.g., that it cannot satisfy Theorem 5iii with any other polynomial. Similarly any polynomial
satisfying Theorem 5ii with Qo is also of high rank and cannot satisfy Theorem 5iii with any
other polynomial. The reason why we further break the argument to weather m2 = 0 or not,
is that when m2 = 0 all the polynomials are of the form Qo + ab for some linear forms a, b,
which means we have fewer cases to analyse. While this seems a bit restrictive, the general
case is not much harder and most of the ideas there already appear in the case m2 = 0.

Throughout the proof we use the notation of Definition 43. In particular, each Qi ∈ Q1
is of the form Qi = Qo + aibi.

4.1 Qo is of high rank
In this subsection we assume that Q̃ is a (Qo,m1,m2)-set for some quadratic Qo of rank at
least 100, this constant is arbitrary, as we just need it to be large enough. The following
observation says that for our set Q we will never have to consider Theorem 5iii.

I Observation 45. For Q̃ = Q ∪ L that satisfy Definition 43 with ranks(Qo) ≥ 100, for
every j ∈ [m1] the rank of Qj is at least 100− 1 > 2 and so Qj never satisfies Theorem 5iii
with any other polynomial in Q̃.

Our goal in this subsection is to prove the next claim.

B Claim 46. Let Q̃ = Q ∪ L be a (Qo,m1,m2)-set with ranks(Qo) ≥ 100. Then
dim(span{Q̃}) = O(1).

We break the proof of Claim 46 to two steps. First we handle the case m2 = 0 and then
the case m2 6= 0.

4.1.1 The case m2 = 0
In this subsection we prove the following version of Claim 46 for the case m2 = 0.

B Claim 47. Let Q̃ = Q ∪ L be a (Qo,m1, 0)-set with ranks(Qo) ≥ 100. Then, for
ai, bi, `j as in Definition 43, dim(span{a1, . . . , am1 , b1, . . . , bm1 , `1, . . . , `r}) ≤ 7. In particular,
dim(span{Q}) ≤ 8.

We first show some properties satisfied by the products {a1b1, . . . , am1bm1}.
I Remark 48. For `2i ∈ L we can write `2i = 0 ·Qo + `i`i. Thus, from now on we can assume
that every Qi ∈ Q̃ is of the form Qi = αiQo + aibi, for αi ∈ {0, 1}, and when αi = 0 it holds
that ai = bi. We shall use the convention that for i ∈ {m1 + 1, . . . ,m1 + r}, ai = `i−m1 .

B Claim 49. Let Q̃ = Q∪L be a (Qo,m1, 0)-set with ranks(Qo) ≥ 100, and let Qi = Qo+aibi
and Qj = Qo + ajbj be polynomials in Q = Q1.
1. If Qi and Qj satisfy Theorem 5i then there exists k ∈ [m1 + r] such that for some

α, β ∈ C \ {0}

αaibi + βajbj = akbk. (4)
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2. If Qi and Qj satisfy Theorem 5ii then there exist two linear forms, c and d such that

aibi − ajbj = cd. (5)

The claim only considers Theorem 5i and Theorem 5ii as by Observation 45 we know that
Qi, Qj do not satisfy Theorem 5iii. Note that the guarantee of this claim is not sufficient to
conclude that the dimension of a1, . . . , am1 , b1, . . . , bm1 is bounded. The reason is that c and
d are not necessarily part of the set. For example if for every i, aibi = x2

i − x2
1. Then every

pair, Qi, Qj satisfy Theorem 5ii, but the dimension of a1, . . . , am1 , b1, . . . , bm1 is unbounded.

Proof of Claim 49. If Qi, Qj satisfy Theorem 5i then there are constants α, β ∈ C and
k ∈ [m1 + r]\{i, j} such that α(Qo+aibi) +β(Qo+ajbj) = αQi+βQj = Qk = αkQo+akbk.
Rearranging we get that

αaibi + βajbj − akbk = (αk − (α+ β))Qo .

From the fact that ranks(Qo) ≥ 100, it must be that αk − (α+ β) = 0. Hence,

αaibi + βajbj = akbk (6)

and (4) holds. Observe that α, β 6= 0 as otherwise we will have two linearly dependent
polynomials in Q.

If Qi, Qj satisfy Theorem 5ii then there are α, β ∈ C and two linear forms c and d such
that α(Qo+aibi)+β(Qo+ajbj) = cd, and again, by the same argument, we get that β = −α,
and that, without loss of generality,

aibi − ajbj = cd. J

Let Vi =: span{ai, bi}. We next show that the different spaces Vi satisfy some non-trivial
intersection properties.

B Claim 50. Let Q̃ be a (Qo,m1, 0)-set such that ranks(Qo) ≥ 100. If for some i ∈ [m1] we
have dim(Vi) = 2 then for every j ∈ [m1] it holds that dim(Vj ∩ Vi) ≥ 1. In particular it
follows that if dim(Vj) = 1 then Vj  Vi.

Proof. This follows immediately from Claim 49 and Corollary 24. C

Next we use this fact to conclude some structure on the set of pairs (ai, bi).

B Claim 51. Let Q̃ be as in Claim 47. If dim(span{ai, bi}) > 3 then there is a linear
space of linear forms, V such that dim(V ) ≤ 4, and for all i ∈ [m1 + r], bi ∈ span{ai, V } or
ai ∈ span{bi, V }.

Proof. Consider the set of all Vi’s of dimension 2. Combining Claim 49 and Claim 26 we get
that either dim(

⋃m
i=1 Vi) ≤ 3 or dim(

⋂m
i=1 Vi) = 1. If dim(

⋃m
i=1 Vi) ≤ 3 then V =

⋃m
i=1 Vi is

the linear space promised in the claim. If
⋂m
i=1 Vi) = 1 there is a linear form, w, such that

span{w} = dim(
⋂m
i=1 Vi). It follows that for every i ∈ [m1] there are constants εi, δi such

that, with out loss of generality, bi = εiai + δiw. Note that if dim(Vi) = 1 this representation
also holds with δi = 0, and thus V = span{w}. is the linear space promised in the claim.

C

From now on we assume there is a linear space of linear forms, V such that dim(V ) ≤ 4
and for every i ∈ [m1 + r] it holds that bi = εiai + vi (we can do this by replacing the roles
of ai and bi if needed). Indeed, if dim(span{ai, bi}) > 3 then this follows from Claim 51 and
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8:18 A Generalized Sylvester-Gallai Type Theorem for Quadratic Polynomials

otherwise we can take V = span{ai, bi}. Thus, following Remark 48, every polynomial in Q
is of the form αiQ+ ai(εiai + vi) and for polynomials in L we have that αi = 0, εi = 1 and
vi = 0.

The following claim is the crux of the proof of Claim 47. It shows that, modulo V , the
set {a1, . . . , am1+r} satisfies the Sylvester-Gallai theorem..

B Claim 52. Let i 6= j ∈ [m1 + r] be such that ai /∈ V and aj /∈ span{ai, V }. Then, there is
k ∈ [m1 + r] such that ak ∈ span{ai, aj , V } and ak /∈ span{ai, V } ∪ span{aj , V }.

Proof. We split the proof to three cases (recall Remark 48): Either
(i) αi = αj = 1, or
(ii) αi = 1, αj = 0 (without loss of generality), or
(iii) αi = αj = 0.
Recall that αi = 0 if and only if i ∈ {m+ 1, . . . ,m+ r}.

(i) αi = αj = 1. Claim 49 implies that there are two linear forms c and d such that cd is a
nontrivial linear combination of aj(εjaj + vj), ai(εiai + vi). We next show that without
loss of generality c depends non-trivially on both ai and aj .
I Lemma 53. In the current settings, without lost of generality, c = µai + ηaj where
µ, η 6= 0.

Proof. Setting ai = 0 gives that, without loss of generality, cd ≡ai
aj(εjaj + vj) and as

aj 6∈ span{ai, V } we have that cd 6≡ai
0. Thus, without loss of generality c ≡ai

ηaj , for
some non-zero η. Let µ and η be such that c = µai + ηaj . We will now show that µ 6= 0.
Indeed, if this was not the case then we would have that cd = ηajd. This means that
ai(εiai + vi) ∈ span{aj(εjaj + vj), ηajd} (since the linear dependence was non-trivial)
setting aj = 0 we see that either ai, or εiai + vi in span{aj}, which contradicts our
assumption. J

Equation 4 and Lemma 53 show that if Qi and Qj satisfy Theorem 5i, i.e. they span
Qk (for k 6∈ {i, j}), then one of ak, εkak + vk is a non-trivial linear combination of ai
and aj . Thus, modulo V , ak is in the span of ai and aj , which is what we wanted to
show.
We next handle the case where Qi and Qj satisfy Theorem 5ii. Let cd be a product of
linear forms in the span of Qi and Qj . From Lemma 53 we can assume that c = µai+ηaj
with µη 6= 0. In particular, this means that

√
〈Qi, Qj〉 =

√
〈cd,Qj〉.

The assumption that ranks(Qo) ≥ 100 implies that Qj is irreducible even after setting
c = 0. It follows that if a product of irreducible polynomials satisfy

∏
iAi ∈

√
〈cd,Qj〉

then, after setting c = 0, some Ai is divisible by Qj |c=0. Thus, there is a multiplicand
that is equal to αQj + ce for some linear form e. In particular, there must be a
polynomial Qk, k ∈ [m1 + r] \ {i, j}, such that Qk = αQj + ce. If α = 0 then it holds
that Qk = a2

k = ce and therefore ak satisfies the claim. Otherwise, as before, the rank
condition on Qo implies that α = 1 and thus ak(εkak+vk) = aj(εjaj+vj)+(µai+ηaj)e.
Consider what happens when we set aj = 0. We get that ak(εkak + vk) ≡aj

µaie. Note
that it cannot be the case that e ≡aj

0 as this would imply that ak ∈ span{aj , vk}
and in turn, this implies that ai ∈ span{aj , V } in contradiction to the choice of ai and
aj . Thus, we get that either ak or εkak + vk are equivalent to ai modulo aj . We next
show that if either of them depends only on ai, then we get a contradiction. Thus,
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we are left in the case that ak = λai (the case εkak + vk = λai is equivalent). Since
Qk = Qo+λai (εkλai + vk) = Qj+ce and we have that Qi = Qo+ai(εiai+vi) = Qj+cd
we get by subtracting Qi from Qk that

ai
(
(λ2εk − εi)ai + (λvk − vi)

)
= λai(εkλai+vk)−ai(εiai+vi) = Qk−Qi = c(e−d) ,

and clearly neither side of the equation is zero since Qi 6= Qk. This implies that
c ∈ span{ai, V }, in contradiction. Thus, in this case too we get that ak satisfies the
claim.

(ii) αi = 1, αj = 0. In this case, Qi, Qj must satisfy Theorem 5ii, as 0 · Qi + Qj = a2
j .

As before, the assumption that ranks(Qo) ≥ 100 implies that Qi is irreducible even
after setting aj = 0. It follows that if a product of irreducible polynomials satisfy∏
tAt ∈

√〈
a2
j , Qi

〉
then, after setting aj = 0, some At is divisible by Qi|aj=0. In

our case we get that there is a multiplicand that is equal to αQi + aje for some
linear form e. In particular, there must be a polynomial Qk, for k ∈ [m1 + r] \ {i, j},
such that Qk = αQi + aje. If α = 0 it follows that Qk is reducible and thus of
the form Qk = a2

k = aje which is a contradiction to pairwise linear independence
(as Qk ∼ Qj). Thus α = αk = 1, and ak(εkak + vk) = ai(εiai + vk) + aje. As
before, we can conclude that ak ∈ span{ai, aj , V } and that it cannot be the case
that ak ∈ span{ai, V } ∪ span{aj , V } (as by rearranging the equation we will get a
contradiction to the fact that aj /∈ span{ai, V }), which is what we wanted to show.

(iii) αi = αj = 0. Then
√
〈Qi, Qj〉 = 〈ai, aj〉 is a prime ideal. It follows that there is

k ∈ [m1 + r] \ {i, j} such that Qk ∈ 〈ai, aj〉 the rank condition on Qo implies that
αk = 0 and therefore ak is a non-trivial linear combination of ai and aj , which is what
we wanted to show.

This completes the proof of Claim 52. C

We can now prove Claim 47.

Proof of Claim 47. Claim 52 implies that any two linear functions in {a1, . . . , am1+r} that
are linearly independent modulo V , span (modulo V ) a third function in the set. This implies
that if we project all the linear functions to the perpendicular space to V then they satisfy
the usual condition of the Sylvester-Gallai theorem and thus the dimension of the projection
is at most 3. As span{a1, . . . , am1 , b1, . . . , bm1 , am1+1, . . . , am1+r} ⊆ span{a1, . . . , am1+r, V },
we get that dim({a1, . . . , am1 , b1, . . . , bm1 , am1+1, . . . , am1+r}) ≤ 3 + dim(V ) ≤ 7, as claimed.

C

Thus far we have proved Claim 47 which is a restriction of Claim 46 to the case m2 = 0.
In the next subsection we handle the general case m2 6= 0.

4.1.2 The case m2 6= 0

In this subsection we prove Claim 46. We shall assume without loss of generality that m2 6= 0.
We first show that each Pi ∈ Q2 (recall Definition 43) is either a rank-2 quadratic, or it is
equal to Qo plus a rank-2 quadratic.

B Claim 54. Let Q̃ be a (Qo,m1,m2)-set such that ranks(Qo) ≥ 100. Then for every
i ∈ [m2] there exists γi ∈ C such that ranks(Pi − γiQo)) = 2.
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Proof. Fix i ∈ [m2]. We shall analyse, for each j ∈ [m1], which case of Theorem 5 Qj and Pi
satisfy. From Observation 45 we know that Pi does not satisfy Theorem 5iii with any Qj .
We start by analysing what happens when Pi and Qj satisfy Theorem 5ii. By definition,
there exist linear forms a′, b′ and non zero constants α, β ∈ C, such that αPi + βQj = a′b′

and thus,

Pi = 1
α

(a′b′ − β (Qo + ajbj)) = −β
α
Qo +

(
1
α
a′b′ − β

α
ajbj

)
. (7)

Hence, the statement holds with γi = −β
α . Indeed, observe that the ranks of ( 1

αa
′b′ − β

αajbj)
cannot be 1 as this will contradict item 4 in Definition 43.

Thus, the only case left to consider is when Pi satisfies Theorem 5i alone with all the
Qj ’s. If for some j ∈ [m1] there is j′ ∈ [m1] such that Qj′ ∈ span{Qj , Pi}, then there are
α, β ∈ C \ {0}, for which Pi = αQj + βQj′ and then

Pi = (α+ β)Qo + αajbj + βaj′bj′ ,

and the statement holds with γi = β + α. So, let us assume that for every j ∈ [m1], there is
tj ∈ [m2] such that Ptj ∈ span{Qj , Pi}. As 5m2 + 2 < m1 there must be j′ 6= j′′ ∈ [m1] and
t′ ∈ [m2] such that Pt′ ∈ span{Qj′ , Pi} and Pt′ ∈ span{Qj′′ , Pi}. Since Q is a set of pairwise
linearly independent polynomials, we can deduce that span{Pi, Pt′} = span{Qj′ , Qj′′}. In
particular there exist α, β ∈ C, for which Pi = αQj + βQj′ , which, as we already showed,
implies what we wanted to prove. C

For simplicity, rescale Pi so that Pi = γiQo + Li with ranks(Li) = 2 and γi ∈ {0, 1}.
Clearly Q still satisfies the conditions of Definition 43 after this rescaling, as it does not affect
the vanishing conditions or linear independence. The next claim shows that even in the case
m2 6= 0, the linear forms {a1, . . . , am1 , b1, . . . , bm1} “mostly” belong to a low dimensional
space (similar to Claim 47).

B Claim 55. Let Q̃ be a (Qo,m1,m2)-set such that ranks(Qo) ≥ 100. Then, there exists
a subspace V of linear forms such that dim(V ) ≤ 4 and that for at least m1 −m2 indices
j ∈ [m1] it holds that aj , bj ∈ V . Furthermore, there is a polynomial P ∈ Q2 such that
P = γQo + L and Lin(L) = V .

Proof. Let P1 = γ1Qo + L1 where ranks(L1) = 2. To simplify notation we drop the index
1 and only talk of P , L and γ. Set V = Lin(L). As before, Observation 45 implies that P
cannot satisfy Theorem 5iii with any Qj ∈ Q1.

Let Qj ∈ Q1 ∪ L. If Qj , P satisfy Theorem 5iii, then αj = 0 and Qj = a2
j . By the rank

condition on Qo it follows that γ = 0 and therefore aj ∈ Lin(L) = V .
Let Qj ∈ Q1 ∪ L be such that Qj and P satisfy Theorem 5ii. This means that there are

two linear forms e, f , and non zero α, β ∈ C for which αP − βQj = ef , and so,

(αγ − βαj)Qo = −αL+ βajbj + ef (8)

As we assumed that ranks(Qo) ≥ 100 this implies that αγ−βαj = 0 and thus βajbj+ef =
βL. Claim 19 implies that e, f, aj , bj ∈ V .

We have shown that V contains all aj , bj that come from polynomials satisfying The-
orem 5ii with P .

Let j ∈ [m1] be such that P and Qj satisfy Theorem 5i but not Theorem 5ii, i.e, they span
another polynomial in Q̃ \ L. If this polynomial is in Q1, i.e. there exists j′ ∈ [m1] such that
Qj′ ∈ span{P,Qj} then P = αQj + βQj′ and as before we would get that aj′ , bj′ , aj , bj ∈ V .
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All that is left is to bound the number of j ∈ [m1] so that P and Qj span a polynomial
in Q2. If there are more than m2 such indices j then, by the pigeonhole principle, for two of
them, say j, j′ it must be the case that there is some i ∈ [m2] such that Pi ∈ span{P,Qj}
and Pi ∈ span{P,Qj′}. As our polynomials are pairwise independent this implies that
P ∈ span{Qj , Qj′}, and as before we get that aj′ , bj′ , aj , bj ∈ V .

It follows that the only j’s for which we may have aj , bj 6∈ V must be such that Qj and P
span a polynomial in Q2, and no other Qj′ spans this polynomial with P . Therefore, there
are at most m2 such “bad” j’s and the claim follows. C

I Remark 56. The proof of Claim 55 implies that if Qi = αiQo + aibi ∈ Q1 satisfies that
{ai, bi} 6⊆ V then it must be the case that Qi and P span a polynomial Pj ∈ Q2.

B Claim 57. Let Q̃ be a (Qo,m1,m2)-set such that ranks(Qo) ≥ 100. Then there exists a
4-dimensional linear space V , such that for every Pi ∈ Q̃ either Pi is defined over V , or there
is a quadratic polynomial P ′i and a linear form vi that are defined over V , and a linear form
ci, such that Pi = Qo + P ′i + ci(εici + vi), or Pi = c2i .

Proof. Claim 55 implies the existence of a polynomial P = γQo + L ∈ Q2 and 4-dimensional
linear space V = Lin(L) such that the set I = {Qj | j ∈ [m1] and aj , bj ∈ V } satisfies
|I| ≥ m1 −m2. We will prove that V is the space guaranteed in the claim. We first note
that every Pi ∈ I satisfies the claim with P ′i = aibi and vi = ci = 0, and clearly for Qi ∈ L
the claim trivially holds.

Consider Qi ∈ Q1\I. By Remark 56 it must be the case that Qi and P span a polynomial
Pj ∈ Q2. Hence, there are α, β ∈ C \ {0} such that Pj = αP + βQi. From Claim 54 we get
that Pj = γjQo + Lj and thus

(γj − αγ − β)Qo = αL+ βaibi − Lj .

As ranks(Qo) ≥ 100 it follows that (γj −αγ− β) = 0 and αL+ βaibi = Lj . Claim 23 implies
that span{ai, bi}∩V 6= {~0} and therefore there is vi ∈ V such that, without loss of generality,
bi = εiai + vi, for some constant εi. Thus, the claimed statement holds for Qi with ci = ai
and Q′i = 0. I.e., Qi = Qo + 0 + ai(εiai + vi).

Consider a polynomial Pi = γiQo + Li ∈ Q2.
If γi = 0 then by rank argument we see that Pi cannot satisfy Theorem 5ii nor Theorem 5iii

with any polynomial in Q1. Hence it must satisfy Theorem 5i with all the polynomials in Q1.
Therefore, by the pigeonhole principle Pi must be spanned by two polynomials in I. Note
that in this case we get that Pi = Li is a polynomial defined over V .

Assume then that γi = 1. If Pi is spanned by Qj and Qj′ such that j, j′ ∈ I, then,
as before, Lin(Li) ⊆ span{ajbj , aj′bj′} and hence Li is a function of the linear forms in V .
Thus, the statement holds with P ′i = L and vi = ci = 0.

The only case left to consider is when γi = 1 and every polynomial Qj , for j ∈ I, that
satisfies Theorem 5i with Pi, does not span with Pi any polynomial in {Qj | j ∈ I}∪L. Note
that in such a case it must hold that Qj spans with Pi a polynomial in {Qj | j ∈ [m1]\I}∪Q2.
Observe that since our polynomials are pairwise linearly independent, if two polynomials
from I span the same polynomial with Pi then Pi is in their span and we are done. From

|{Qj | j ∈ [m1] \ I} ∪ Q2| ≤ (m1 − |I|) +m2 ≤ 2m2 < m1 −m2 − 2 ≤ |I| − 2 ,

we see that for Pi to fail to satisfy the claim it must be the case that it satisfies Theorem 5ii
with at least 2 polynomials whose indices are in I. Let Qj , Qj′ ∈ I be two such polynomials.
In particular, there are four linear forms c, d, e and f and scalars εj , εj′ , such that

Pi − εjQj = cd and Pi − εj′Qj′ = ef . (9)
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Equivalently,

(1− εj)Qo = cd+ εjajbj − Li and (1− εj′)Qo = ef + εj′aj′bj′ − Li .

As ranks(Qo) ≥ 100 it must hold that εj = εj′ = 1 and hence

Li = cd+ ajbj and Li = ef + aj′bj′ .

It follows that cd− ef = aj′bj′ − ajbj and therefore Lin(cd− ef) ⊆ V . Claim 25 implies that
without loss of generality d = εic+ vi. We therefore conclude that

Pi = Qo + Li = Qo + ajbj + c(εic+ vi)

and the statement holds for P ′i = ajbj and ci = c. This completes the proof of the Claim 57.
C

Consider the representation guaranteed in Claim 57 and let

S = {ci | there is Pi ∈ Q such that either Pi = c2i or, for some P ′i defined over V,
Pi = Qo + P ′i + ci(εici + vi)} .

Clearly, in order to bound the dimension of Q̃ it is enough to bound the dimension of S. We
do so, by proving that S satisfies the conditions of Sylvester-Gallai theorem modulo V , and
thus have dimension at most 3 + dim(V ) = 7.

B Claim 58. Let ci, cj ∈ S be such that ci /∈ V and cj /∈ span{ci, V }. Then, there is ck ∈ S
such that ck ∈ span{ci, cj , V } and ck /∈ span{ci, V } ∪ span{cj , V }.

Before proving the claim we prove the following simple lemma.

I Lemma 59. Let PV be a polynomial defined over V and let ci, cj as in Claim 58. If there
are linear forms e, f such that

cj(εjcj + vj) + ci(εici + vi) + ef = PV

then, without loss of generality, e ∈ span{ci, cj , V } and e /∈ span{ci, V } ∪ span{cj , V }.

Proof. First note that e 6∈ V as otherwise we would have that ci ≡V cj in contradiction.
By our assumption, ef = PV modulo ci, cj . We can therefore assume without loss of

generality that e ∈ span{ci, cj , V }. Assume towards a contradiction and without loss of
generality that e = λci + ve, where λ 6= 0 and ve ∈ V . Consider the equation cj(εjcj +
vj) + ci(εici + vi) + ef = PV modulo ci. We have that cj(εjcj + vj) + vef ≡ci

PV which
implies that εj = 0. Consequently, we also have that f = µcj + ηci + vf , for some µ 6= 0 and
vf ∈ V . We now observe that the product cicj has a non zero coefficient λµ in ef and a zero
coefficient in PV − cj(εjcj + vj) + ci(εici + vi), in contradiction. J

Proof of Claim 58. Following the notation of Claim 57, we either have Qi = Qo+Q′i+ci(εici+
vi) or Qi = c2i . Very similarly to Claim 52, we consider which case of Theorem 5 Qi and Qj
satisfy, and what structure they have.

Assume Qi = Qo +Q′i + ci(εici + vi) and Qj = Qo +Q′j + cj(εjcj + vj). As argued before,
since the rank of Qo is large they can not satisfy Theorem 5iii. We consider the remaining
cases:
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Qi, Qj satisfy Theorem 5i: there is Qk ∈ Q such that Qk ∈ span{Qi, Qj}.
By assumption, for some scalars α, β we have that

Qk = α(Qo +Q′i + ci(εici + vi)) + β(Qo +Q′j + cj(εjcj + vj)) . (10)

If Qk depends only on V then we would get a contradiction to the choice of ci, cj . Indeed,
in this case we have that

(α+ β)Qo = Qk − α(Q′i + ci(εici + vi))− β(Q′j + cj(εjcj + vj)) .

Rank arguments imply that α+ β = 0 and therefore

αci(εici + vi) + βcj(εjcj + vj) = Qk − αQ′i − βQ′j ,

which implies that ci and cj are linearly dependent modulo V in contradiction.
If Qk = c2k then by Lemma 59 it holds that ck satisfies the claim condition.
We therefore assume that Qk is not a function of V alone and denote Qk = Qo +Q′k +
ck(εkck + vk). Equation 10 implies that

(1− α− β)Qo = αQ′i + βQ′j −Q′k + αci(εici + vi) + βcj(εjcj + vj)− ck(εkck + vk) .

As αQ′i + βQ′j −Q′k is a polynomial defined over V , its rank is smaller than 4 and thus,
combined with the fact that ranks(Qo) ≥ 100, we get that (1− α− β) = 0 and

Q′k − αQ′i − βQ′j = αci(εici + vi) + βcj(εjcj + vj)− ck(εkck + vk) .

We now conclude from Lemma 59 that ck satisfies the claim.
Qi, Qj satisfy Theorem 5ii: There are linear forms e, f such that for non zero scalars α, β,
αQi + βQj = ef . In particular,

(α+ β)Qo = ef − αQ′i − βQ′j − αci(εici + vi)− βcj(εjcj + vj).

From rank argument we get that α+β = 0 and from Lemma 59 we conclude that, without
loss of generality, e = µci + ηcj + ve where µ, η 6= 0. We also assume without loss of
generality that Qi = Qj + ef .
By our assumption that ranks(Qo) ≥ 100 it follows that Qj is irreducible even after
setting e = 0. It follows that if a product of irreducible quadratics satisfy∏

k

Ak ∈
√
〈Qi, Qj〉 =

√
〈ef,Qj〉

then, after setting e = 0, some Ak is divisible by Qj |e=0. Thus, there is a multiplicand
that is equal to γQj + ed for some linear form d and scalar γ. In particular, there must
be a polynomial Qk ∈ Q̃ \ {Q1, Q2}, such that Qk = γQj + ed. If γ = 0 then it must
hold that Qk = a2

k = ed and thus ak ∼ e, and the statment holds. If γ = 1 then we can
assume without loss of generality that Qk = Qj + ed. Thus,

Q+Q′k + ck(εkck + vk) = Qk = Qj + ed = Qo +Q′j + cj(εjcj + vj) + (µci + ηcj + ve)d .

Setting cj = 0 we get that

Q′k + ck(εkck + vk) ≡cj
Q′j + (µci + ve)d . (11)

Note that it cannot be the case that d ≡cj 0. Indeed, if d = 0 then we get that Qj and Qk
are linearly dependent in contradiction. If d ∼ cj then (11) implies that ck ∈ span{cj , V }.
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From the equality Qk = Qj + ed and the fact that e depends non trivially on ci, it now
follows that ci ∈ span{cj , V } in contradiction to the choice of ci and cj . As d 6≡cj

0, we
deduce from (11) that, modulo cj , ck ∈ span{ci, V }. We next show that if ck depends
only on ci and V then we reach a contradiction and this will conclude the proof. So
assume towards a contradiction that ck = λci + v′k, for a scalar λ and v′k ∈ V . Since

Qj + ed = Qk = Qo +Q′k + ck(εkck + vk) = Qo +Q′k + (λci + v′k) (εk(λci + v′k) + vk)

and

Qj + ef = Qi = Qo +Q′i + ci(εici + vi)

we get by subtracting Qi from Qk that

e(d− f) = Qk −Qi = Q′k −Q′i + (λci + v′k) (εk(λci + v′k) + vk)− ci(εici + vi)

and clearly neither side of the equation is zero since Qi 6= Qk. This implies that
e ∈ span{ci, V }. This however contradicts the fact that e = µci + ηcj + ve where µ, η 6= 0.

Now let us consider the case where without loss of generality, Qi = Qo +Q′i + ci(εici + vi)
and Qj = c2j . In this case the polynomials satisfy Theorem 5ii as 0 ·Qi +Qj = c2j . Similarly
to the previous argument, it holds that there is Qk such that Qk = γQi + cje. If γ = 0
it holds that Qk is reducible, and therefore a square of a linear form, in contradiction to
pairwise linear independence. Thus γ 6= 0. If Qk is defined only on the linear functions in V
then it is of rank smaller then dim(V ) ≤ 4, which will result in a contradiction to the rank
assumption on Qo. Thus Qk = Qo +Q′k + ck(εkck + vk) and γ = 1. Therefore, we have

Qo +Q′k + ck(εkck + vk) = Qk = Qi + cje = Qo +Q′i + ci(εici + vi) + cje.

Hence,

Q′k −Q′i − ci(εici + vi)− cje = −ck(εkck + vk).

Looking at this equation modulo cj implies that ck ∈ span{V, ci, cj}. and ck /∈ span{V, cj},
or we will get a contradiction to the fact that ci /∈ span{cj , V }. Similarly it holds that
ck /∈ span{V, ci}, as we wanted to show.

The last structure we have to consider is the case where Qi = c2i , Qj = c2j . In this case,
the ideal

√〈
c2i , c

2
j

〉
= 〈ci, cj〉 is prime and therefore there is Qk ∈ 〈ci, cj〉 this means that

ranks(Qk) ≤ 2. If ranks(Qk) = 1 then Qk = c2k and the statement holds. ranks(Qk) = 2
then Qk is defined on the linear function of V , which implies ci, cj ∈ V in contradiction to
our assumptions. C

We are now ready to prove Claim 46.

Proof of Claim 46. Claim 58 implies that if we project the linear forms in S to V ⊥ then, after
removing linearly dependent forms, they satisfy the conditions of the Sylvester-Gallai theorem.
As dim(V ) ≤ 4 we obtain that dim(span{S ∪ V }) ≤ 7. By Claim 57 every polynomial P ∈ Q
is a linear combination of Qo and a polynomial defined over span{S ∪ V } which, by the
argument above, implies that dim(span{Q}) ≤ 8. C

This completes the proof of Theorem 44 when Qo has high rank. We next handle the
case where Qo is of low rank.
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4.2 Qo is of Low Rank
In this section we prove the following claim.

B Claim 60. Let Q̃ be a (Qo,m1,m2)-set such that 2 ≤ ranks(Qo) < 100. Then,
dim(span{Q̃}) = O(1).

Before we start with the proof of the main claim, let us prove a similar claim but for a
more specific structure of polynomials. We will later see that, essentially, this structure holds
when 2 ≤ ranks(Qo) < 100.

B Claim 61. Let Q̃ be a set of quadratics polynomials that satisfy the conditions in the
statement of Theorem 4. Assume farther that there is a linear space of linear forms, V
such that dim(V ) = ∆ and for each polynomial Qi ∈ Q̃ one of the following holds: either
Qi ∈ 〈V 〉 or there is a linear form ai such that Lin(Qi) ⊆ span{V, ai}. Then dim(Q̃) ≤ 8∆2.

Proof. Note that by the conditions in the statement of Theorem 4, no two polynomials in Q̃
share a common factor.

Let ~α ∈ C∆ be such that if two polynomials in T~α,V (Q̃) (recall Definition 27) share a
common factor then it is a polynomial in z. Note that by Claim 29 such ~α exists. Thus, each
P ∈ Q̃, satisfies that either T~α,V (P ) = αP z

2 or Lin(T~α,V (P )) ⊆ span{z, aP } for some linear
form aP independent of z. It follows that every polynomial in T~α,V (Q̃) is reducible. We next
show that S = {aP | P ∈ Q̃} satisfies the conditions of Sylvester-Gallai theorem modulo z.

Let a1, a2 ∈ S such that a2 /∈ span{z, a1}. Consider Q1 such that Lin(T~α,V (Q1)) ⊆
span{z, a1} yet Lin(T~α,V (Q1)) 6⊆ span{z}. Similarly, let Q2 be such that Lin(T~α,V (Q2)) ⊆
span{z, a2} and Lin(T~α,V (Q2)) 6⊆ span{z}. Then there is a factor of T~α,V (Q1) of the form
γ1z+ δ1a1 where δ1 6= 0. Similarly there is a factor of T~α,V (Q2) of the form γ2z+ δ2a2 where
δ2 6= 0.

This implies that
√
〈T~α,V (Q1), T~α,V (Q2)〉 ⊆ 〈γ1z + δ1a1, γ2z + δ2a2〉. Indeed, it is

clear that for i ∈ {1, 2}, T~α,V (Qi) ∈ 〈γiz + δiai〉. Hence,
√
〈T~α,V (Q1), T~α,V (Q2)〉 ⊆√

〈γ1z + δ1a1, γ2z + δ2a2〉 = 〈γ1z + δ1a1, γ2z + δ2a2〉, where the equality holds since
〈γ1z + δ1a1, γ2z + δ2a2〉 is a prime ideal.

We know that, there are Q3, Q4, Q5, Q6 ∈ Q such that

Q3 ·Q4 ·Q5 ·Q6 ∈
√
〈Q1, Q2〉.

As T~α,V is a ring homomorphism it follows that,

T~α,V (Q3) · T~α,V (Q4) · T~α,V (Q5) · T~α,V (Q6) ∈
√
〈T~α,V (Q1), T~α,V (Q2)〉,

and√
〈T~α,V (Q1), T~α,V (Q2)〉 ⊆ 〈γ1z + δ1a1, γ2z + δ2a2〉 .

Since 〈γ1z + δ1a1, γ2z + δ2a2〉 is prime it follows that, without loss of generality,
T~α,V (Q3) ∈ 〈γ1z + δ1a1, γ2z + δ2a2〉. It cannot be the case that T~α,V (Q3) ∈ 〈γiz + δiai〉 for
any i ∈ {1, 2}, because otherwise this will imply that T~α,V (Q3) and T~α,V (Qi) share a common
factor that is not a polynomial in z, in contradiction to our choice of T~α,V . This means
that there is a factor of T~α,V (Q3) that is in span{a1, a2, z} \ (span{a1, z} ∪ span{a2, z}).
Consequently, a3 ∈ span{a1, a2, z} \ (span{a1, z} ∪ span{a2, z}) as we wanted to prove. This
shows that S satisfies the conditions of Sylvester-Gallai theorem, and therefore dim(S) ≤ 3.
Repeating the analysis above for linearly independent ~α1, . . . , ~α∆, we can use Claim 32 and
obtain that dim(Lin(Q̃)) ≤ (3 + 1)∆, and thus dim(Q̃) ≤

(4∆
2
)

+ ∆ ≤ 8∆2. C
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Back to the proof of Claim 60. As before we first prove the claim for the case m2 = 0
and then we prove the general case.

4.2.1 The case m2 = 0
Similarly to the high rank case, in this subsection we prove the following claim.

B Claim 62. Let Q̃ = Q ∪ L be a(Qo,m1, 0)-set such that 2 ≤ ranks(Qo) < 100, then
dim(span{a1, . . . , am1 , b1, . . . , bm1 , `1, . . . , `r}) = O(1).

The proof is similar in structure to the proof of Claim 47. As before, we consider a
polynomial `2i ∈ L as 0 ·Qo + `i`i. We start by proving an analog of Claim 49. The claims
are similar but the proofs are slightly different as we cannot rely on Qo having high rank.

B Claim 63. Let Q̃ satisfy the assumptions of Claim 62. Let i ∈ [m1] be such that
dim(ai, bi) = 2 and span{ai, bi} ∩ Lin(Qo) = {~0}. Then, for every j ∈ [m1] the following
holds:
1. Qi and Qj do not satisfy Theorem 5iii.
2. If Qi and Qj satisfy Theorem 5i then there exists α, β ∈ C \ {0} such that for some

k ∈ [m1] \ {i, j}

αaibi + βajbj = akbk . (12)

3. If Qj is irreducible and Qi and Qj satisfy Theorem 5ii then there exist two linear forms,
c and d such that

aibi − ajbj = cd . (13)

Proof. Assume Qi and Qj satisfy Theorem 5i, i.e., there are α, β ∈ C and k ∈ [m1] \ {i, j}
such that

α(Qo + aibi) + β(Qo + ajbj) = αQi + βQj = Qk = αkQ+ akbk

This implies that αaibi + βajbj − akbk = (αk − (α+ β))Qo. We next show that it must be
the case that αk − (α+ β) = 0.

Indeed, if αk− (α+β) 6= 0 we get that βajbj−akbk = (αk− (α+β))Qo−αaibi. However,
as we assumed span{ai, bi} ∩ Lin(Qo) = {~0}, we get by Claim 23 that

ranks(αk − (α+ β))Qo − αaibi) = ranks(Qo) + 1 > 2 ≥ ranks(βajbj − akbk)

in contradiction. We thus have that αk − (α+ β) = 0 and hence

αaibi + βajbj = akbk (14)

and Equation 12 is satisfied. Observe that since our polynomials are pairwise independent
α, β 6= 0.

A similar argument to the one showing αk−(α+β) = 0 also implies that Qi and Qj do not
satisfy Theorem 5iii. If this was not the case then we would have that ranks(Qo + aibi) = 2
which would again contradict Claim 23.

IfQj is irreducible, the only case left is whenQo+aibi, Qo+ajbj satisfy Theorem 5ii. In this
case there are α, β ∈ C and two linear forms c and d such that α(Qo+aibi)+β(Qo+ajbj) = cd,
and again, by the same argument we get that β = −α and so (after rescaling c)

aibi − ajbj = cd .

This completes the proof of Claim 63. C
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For each i ∈ [m1] let Vi =: span{ai, bi}. The next claim is analogous to Claim 50.

B Claim 64. Let Q̃ satisfy the assumption in Claim 62. If for some i ∈ [m1] it holds that
dim(Vi) = 2 and Lin(Qo)∩Vi = {~0} then for every j ∈ [m1] it is the case that dim(Vj∩Vi) ≥ 1.
In particular, if dim(Vj) = 1 then Vj  Vi.

Proof. The proof of this claim follows immediately from Claim 63 and Corollary 24. C

the next claim is an analogous to Claim 51.

B Claim 65. Under the assumptions of Claim 62 there exists a subspace V of linear forms
such that dim(V ) ≤ 2 · 100 + 3 and for every i ∈ [m1] there exists vi ∈ V and a constant
εi ∈ C such that bi = εiai + vi (or ai = εibi + vi).

Proof. Let I = {i ∈ [m1] | dim(Vi) = 2 and Lin(Qo) ∩ Vi = {~0}}. If dim(
⋃
i∈I Vi) ≤ 3 then

we set V = span{Lin(Qo) ∪ (
⋃
i∈I Vi)}. Clearly dim(V ) ≤ 2 · ranks(Q) + 3 ≤ 2 · 100 + 3.

Claim 64 implies that V has the required properties.
If dim(

⋃
i∈I Vi) > 3 then from Claim 64 and Claim 26 it follows that dim(

⋂
i∈I Vi) = 1.

Let w be such that span{w} =
⋂
i∈I Vi and set V = span{Lin(Qo), w}. In this case too it is

easy to see that V has the required properties. C

From now on we assume, without loss of generality that for every i ∈ [m1], bi = εiai + vi.
This structure also holds for the polynomials in L.

Proof of Claim 62. Claim 65 implies that there is a linear space of linear forms, V , with
dim(V ) ≤ 2 · 100 + 3, with the property that for every Qi ∈ Q̃ there is a linear form ai such
that Lin(Qi) ⊆ span{V, ai}. Thus Q̃ satisfies the conditions of Claim 61, and dim(Q̃) = O(1),
as we wanted to show. C

We next consider the case m2 6= 0.

4.2.2 The case m2 6= 0
In this subsection we prove Claim 60, we can assume without loss of generality that m2 6= 0,
as the case that m2 = 0 was proved in the previous subsection. To handle this case we prove
the existence of a subspace V of linear forms, of dimension O(1), such that every polynomial
in Q̃ is in 〈V 〉, and then, like we did before, we bound the dimension of Q̃. The first step is
proving an analog of Claim 54.

B Claim 66. Let Q̃ be a (Qo,m1,m2)-set such that ranks(Qo) < 100. Then for every
i ∈ [m2] there exists γi ∈ C such that ranks(Pi − γiQo) = 2.

Proof. Consider i ∈ [m2]. If Pi satisfies Theorem 5iii with any Qj ∈ Q1, then the claim holds
with γi = 0. If Pi satisfies Theorem 5ii with any Qj ∈ Q then there exist linear forms c and
d and non zero α, β ∈ C, such that αPi + βQj = cd. Therefore, Pi = 1

α (cd− β(Q+ ajbj))
and the statement holds with γi = −β

α . Observe that the rank of cd− βajbj cannot be 1 by
Definition 43.

Thus, the only case left to consider is when Pi satisfies Theorem 5i with all the Qj ’s
in Q1. We next show that in this case there must exist j 6= j′ ∈ [m1] such that Qj′ ∈
span{Qj , Pi}. Indeed, since m1 > 5m2 + 2 there must be j, j′ ∈ [m1] and i′ ∈ [m2] such
that Pi′ ∈ span{Qj′ , Pi} and Pi′ ∈ span{Qj , Pi}. As we saw before this implies that
Pi ∈ span{Qj , Qj′}, which is what we wanted to show.
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Let j 6= j′ ∈ [m1] be as above and let α, β ∈ C be such that Pi = αQj + βQj′ . It follows
that

Pi = (α+ β)Qo + αajbj + βaj′bj′ .

Let γi = α+ β. Property 4 in Definition 43 implies that ranks(αajbj + βaj′bj′) = 2 and the
claim follows. C

As before, whenever γi 6= 0 let us replace Pi with 1
γi
Pi. Thus, from now on we shall

assume γi ∈ {0, 1}. We next prove an analog of Claim 55.

B Claim 67. Let Q̃ be a (Qo,m1,m2)-set such that ranks(Qo) < 100. Then there is a
subspace V of linear forms such that dim(V ) ≤ 2 · 100 + 4, Lin(Qo) ⊆ V and for at least
m1 − 2m2 of the indices j ∈ [m1] it holds that aj , bj ∈ V .

Proof. Let P = P1. Claim 66 implies that P = γQo + L, for some L of rank 2. Set
V = span{Lin(Qo) ∪ Lin(L)}. Clearly dim(V ) ≤ 2 · 100 + 4.

Let j ∈ [m1]. If P and Qj satisfy Theorem 5iii, then there are two linear forms c and
d such that Qj , P ∈

√
〈c, d〉, this implies that span{c, d} ⊂ Lin(P ) ⊆ V . If Qo = Qj − ajbj

is not zero modulo c, d, then we obtain that Qo ≡c,d −ajbj . Thus, there are linear forms
v1, v2 ∈ Lin(Qo) such that aj ≡c,d v1 and bj ≡c,d v2. In particular, as Lin(Qo) ∪ {c, d} ⊂ V
it follows that aj , bj ∈ V . If Qo is zero modulo c and d, then Qj , Qo satisfy Theorem 5iii and
from property 5 of Definition 43 we know that there are at most m2 such Qj ’s. Furthermore,
as c, d ∈ Lin(Qo) ⊂ V we obtain that Qj ∈ 〈V 〉. Denote by K the set of all Qj that satisfy
Theorem 5iii with Qo. As we mentioned, |K| ≤ m2.

If P and Qj satisfy Theorem 5ii then there are two linear forms c and d, and non zero
α, β ∈ C, such that αP + βQj = cd. Hence,

βQo + αP = −βajbj + cd .

As βQo + αP is a non trivial linear combination of Qo and P , we get from property 4 of
Definition 43 that 2 ≤ ranks((αγ + β)Qo + αL). It follows that

ranks(−βajbj + cd) = ranks((αγ + β)Qo + αL) = 2

and therefore by Fact 21,

{aj , bj , c, d} ⊂ Lin(−βajbj + cd) = Lin((αγ + β)Qo + αL) ⊆ V ,

and again aj , bj ∈ V .
The last case to consider is when P and Qj satisfy Theorem 5i. If they span a polynomial

Qj′ ∈ Q1 ∪ L, then P = αQj + βQj′ and as in the previous case we get that aj , bj ∈ V .
Let J be the set of all indices j ∈ [m1] such that P and Qj span a polynomial in Q2 but

no polynomial in Q1 ∪ L. So far we proved that for every j ∈ [m1] \ (J ∪ K) we have that
aj , bj ∈ V . We next show that |J | ≤ m2 which concludes the proof.

Indeed, if this was not the case then by the pigeonhole principle there would exist a
polynomial Pi ∈ Q2 and two polynomials Qj , Qj′ ∈ Q1 such that Pi ∈ span{Qj , P} and
Pi ∈ span{Qj′ , P}. By pairwise independence this implies that Qj′ is in the linear span of P
and Qj which contradicts the definition of J . C

Our next claim gives more information about the way the polynomials in Q̃ relate to the
subspace V found in Claim 67.
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B Claim 68. Let Q̃ and V be as in Claim 67. Then, every polynomial P in Q̃ satisfies (at
least) one of the following cases:
1. Lin(P ) ⊆ V or
2. P ∈ 〈V 〉 or
3. P = P ′ + c(c+ v) where P ′ is a quadratic polynomial such that Lin(P ′) ⊆ V , v ∈ V and

c is a linear form.

Proof. Let I = {j ∈ [m1] | aj , bj ∈ V }. Claim 67 implies that |I| ≥ m1 − 2m2. Furthermore,
by the construction of V we know that Lin(Qo) ⊆ V . Observe that this implies that for
every j ∈ I, Lin(Qj) ⊆ V .

Note that every polynomial in L satisfies the third item of the claim. Let P be any
polynomial in Q2 ∪ {Qj | j ∈ [m1] \ I}. We study which case of Theorem 5 P satisfies with
polynomials whose indices belong to I.

If Pi satisfies Theorem 5iii with any polynomial Qj , for j ∈ I, then, as Lin(Qj) ⊆ V , it
follows that P ∈ 〈V 〉.

If P is spanned by two polynomials Qj , Qj′ such that j, j′ ∈ I, then clearly Lin(P ) ⊆ V .
Similarly, if P is spanned by a polynomial Qj , Qj′ such that j ∈ I and Qj′ ∈ L then
P = αQj + βa2

j′ , and hence it also satisfies the claim.
Hence, for P to fail to satisfy the claim, it must be the case that every polynomial

Qj , for j ∈ I, that satisfies Theorem 5i with P , does not span with P any polynomial in
{Qj | j ∈ I} ∪ L. Thus, it must span with P a polynomial in {Qj | j ∈ [m1] \ I} ∪ Q2. As
before, observe that by pairwise linear independent, if two polynomials from I span the same
polynomial with P , then P is in their span and we are done. Thus, since

|{Qj | j ∈ [m1] \ I} ∪ Q2| ≤ (m1 − |I|) +m2 ≤ 3m2 < m1 − 2m2 − 2 ≤ |I| − 2 ,

for P to fail to satisfy the claim it must be the case that it satisfies Theorem 5ii with at least
2 polynomials whose indices are in I.

Let Qj , Qj′ be two such polynomials. There are four linear forms, c, d, e and f and scalars
εj , εj′ such that

P + εjQj = cd and P + εj′Qj′ = ef .

Therefore

εjQj − εj′Qj′ = cd− ef . (15)

In particular, Lin(cd − ef) ⊆ V . Claim 25 and Equation (15) imply that, without loss of
generality, d = εc+ v for some v ∈ V and ε ∈ C. Thus, P = cd− εjQj = c(εc+ v)− εjQj and
no matter whether ε = 0 or not. P satisfies the claim. Indeed, if ε = 0 then P ∈ 〈V 〉 and we
are done. Otherwise, we can normalize c, v to assume that ε = 1 and get that Lin(P −c2) ∈ V
as claimed. C

We can now complete the proof of Claim 60.

Proof of Claim 60. Claim 68 implies that there is a linear space of linear forms, V , such that
dim(V ) ≤ 2 ·100 + 4 and every polynomial Qi ∈ Q̃ satisfies the following. Either Qi ∈ 〈V 〉 or,
there is a linear form ai such that Lin(Qi) ⊆ span{V, ai}. (It might be that Lin(Qi) ⊆ V or
that Lin(Qi) ⊆ span{ai}). Thus Q̃ satisfies the conditions of Claim 61, and dim(Q̃) = O(1),
as we wanted to show.

C

Claim 46 together with Claim 60 completes the proof of Theorem 44. J
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5 Conclusions and future research

In this work we solved Problem 2 in the case where all the polynomials are irreducible and
of degree at most 2. This result directly relates to the problem of obtaining deterministic
algorithms for testing identities of Σ[3]Π[d]ΣΠ[2] circuits. As mentioned in Section 1, in order
to obtain PIT algorithms we need a colored version of this result. Formally, we need to prove
the following conjecture:

I Conjecture 69. Let T1, T2 and T3 be finite sets of homogeneous quadratic polynomials over
C satisfying the following properties:

Each Qo ∈ ∪iTi is either irreducible or a square of a linear form.8
No two polynomials are multiples of each other (i.e., every pair is linearly independent).
For every two polynomials Q1 and Q2 from distinct sets, whenever Q1 and Q2 vanish
then also the product of all the polynomials in the third set vanishes.

Then the linear span of the polynomials in ∪iTi has dimension O(1).

We believe that tools similar to the tools developed in this paper should suffice to verify
this conjecture. Another interesting question is a robust version of this problem, which is
still open.

I Problem 70. Let δ ∈ (0, 1]. Can we bound the linear dimension (as a function of δ) of a
set of polynomials Q1, . . . , Qm ∈ C[x1, . . . , xn] that satisfy the following property: For every
i ∈ [m] there exist at least δm values of j ∈ [m] such that for each such j there is Kj ⊂ [m],
where i, j /∈ Kj and

∏
k∈Kj

Qk ∈
√
〈Qi, Qj〉.

In this result, we prove that the dimension of a set of quadratic polynomials satisfying
the conditions of Theorem 4 is bounded by a constant c. By carefully examining the proof,
we get that c ≤ 20, 000. This is a very loose bound, and we believe it can be improved. Thus,
it might be interesting to find a tight bound on the dimension, or even presenting examples
for which the dimension is larger then 10.

Extending our approach to the case of more than 3 multiplication gates (or more than
3 sets as in the colored version of the Sylvester-Gallai theorem (Theorem 14)) seems more
difficult. Indeed, an analog of Theorem 5 for this case seems harder to prove in the sense
that there are many more cases to consider which makes it unlikely that a similar approach
will continue to work as the number of gates get larger. Another difficulty is proving an
analog of Theorem 5 for higher degree polynomials. Thus, we believe that a different proof
approach may be needed in order to obtain PIT algorithms for Σ[O(1)]Π[d]ΣΠ[O(1)] circuits.

In this paper we only considered polynomials over the complex numbers. However, we
believe (though we did not check the details) that a similar approach should work over positive
characteristic as well. Observe that over positive characteristic we expect the dimension of
the set to scale like O(log |Q|), as for such fields a weaker version of Sylvester-Gallai theorem
holds.

I Theorem 71 (Corollary 1.3 in [5]). Let V = {~v1, . . . , ~vm} ⊂ Fdp be a set of m vectors, no
two of which are linearly dependent. Suppose that for every i, j ∈ [m], there exists k ∈ [m]
such that ~vi, ~vj , ~vk are linearly dependent. Then, for every ε > 0

dim(V ) ≤ poly(p/ε) + (4 + ε) logpm .

8 We replace a linear form with its square to keep the sets homogeneous of degree 2.
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Abstract
A systematic study of simultaneous optimization of constraint satisfaction problems was initiated
by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous Max-Cut.
Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous
Max-Cut which is almost optimal assuming the Unique Games Conjecture (UGC). For single
instance Max-Cut, Goemans-Williamson [JACM, 1995] gave an αGW -approximation algorithm
where αGW ≈ .87856720... which is optimal assuming the UGC.

It was left open whether one can achieve an αGW -minimum approximation algorithm for
simultaneous Max-Cut. We answer the question by showing that there exists an absolute constant
ε0 > 10−5 such that it is NP-hard to get an (αGW − ε0)-minimum approximation for simultaneous
Max-Cut assuming the Unique Games Conjecture.
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1 Introduction

Constraint satisfaction problems (CSPs) are among the most fundamental problems in
computer science and Max-Cut is the most basic among those. In Max-Cut we are given
an undirected (weighted) graph G(V,E) on the vertex set V along with the edge set E.
We assume that the total weight of edges is 1 and denote the number of vertices by n.
The objective is to partition V into two sets S, S so as to maximize the total weight of
crossing edges i.e. having one endpoint in S and the other in S. Let us denote the cut value
corresponding to the partition (S, S) by CutG(S). Since Max-Cut is one of the classic
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NP-complete problems, we resort to finding an approximate solution. The seminal result of
Goemans-Williamson [9] gave an αGW ≈ .87856720... approximation algorithm for Max-Cut.
The exact value of the approximation factor is given by the following expression:

αGW := min
ρ∈[−1,0]

2 arccos(ρ)
π(1− ρ) .

In [7], the authors initiate the study of simultaneous approximation algorithms for
constraint satisfaction problems. In particular, the study of simultaneous Max-Cut which
we describe next is the main focus of this paper. In simultaneous Max-Cut the input
consists of a collection of weighted undirected graphs G1, G2, . . . , Gk on the same set of
vertices V but with different edge weights E1, E2, . . . , Ek. The goal is to find a single cut
(S, S) which is good for each of Gi. The notion of how good the cut is needs to be defined
formally. Following are the two notions that [7] considered in their paper:
1. Pareto approximation: Suppose (c1, c2, . . . , ck) ∈ [0, 1]k is such that there exists a

partition (S, S) such that CutGi(S) > ci for all i ∈ [k]. The objective is to find such a
partition. An α-Pareto approximation algorithm in this context is a polynomial time
algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a partition (S, S)
such that CutGi(S) > α · ci for all i ∈ [k].

2. Minimum approximation: This is the Pareto approximation problem when c1 = c2 =
. . . = ck. Define the optimal value of the instance to be

c = max
S⊆V

min
i∈[k]

CutGi(S).

An α-minimum approximation algorithm in this context is a polynomial time algorithm
which finds a cut (S, S) such that mini∈[k] CutGi(S) > α · c.

Note that an α-Pareto approximation gives an α-minimum approximation of simultaneous
Max-Cut. For any constant k > 1 and ε > 0, [7] gave ( 1

2 − ε)-Pareto approximation for
simultaneous Max-Cut which was improved to .878-Pareto approximation by [6].

I Theorem 1. (Pareto approximation algorithm of [6]) Given a collection of graphs
Gi(V,Ei) for 1 6 i 6 k and c1, c2, . . . , ck ∈ [0, 1] with a guarantee that there exists a partition
(S?, S?) such that CutGi(S?) > ci for all i, there exists a randomized algorithm running in
time |V |poly(k) which outputs a cut (S, S) with a guarantee that CutGi(S) > .878 · ci for all i.

In terms of hardness of approximation, the Unique Games Conjecture by [11] gives
the tightness of the Goemans-Williamson algorithm for approximating Max-Cut. [12]
showed that if approximating a certain optimization problem called the Unique Games is
NP-hard then it is NP-hard to approximate Max-Cut better than αGW factor. Trivially, the
Unique Games Conjecture based hardness (UG-hard henceforth) of approximating Max-Cut
within a factor of (αGW + ε) implies that getting an (αGW + ε)-minimum approximation
for simultaneous Max-Cut is also UG-hard for all constants ε > 0. As .878 < αGW , this
leaves an intriguing question of achieving an αGW -minimum approximation for simultaneous
Max-Cut.

We answer this question in this paper by proving that there exists an absolute constant
ε0 > 10−5 such that it is UG-hard to get an (αGW − ε0)-minimum approximation (and hence
(αGW − ε0)-Pareto approximation) for simultaneous Max-Cut, unlike the single instance
Max-Cut.

I Theorem 2 (Main theorem). There exists an absolute constant ε0 > 10−5 such that
assuming the Unique Games Conjecture, it is NP-hard to achieve (αGW − ε0)-minimum
approximation for simultaneous Max-Cut.
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One interesting feature of our reduction is that the hard instance involves only three
graphs! This should be compared with the algorithm of [6] from Theorem 1 which works
for any constantly many number of instances of Max-Cut. It will be interesting to know
whether one can achieve αGW -minimum approximation for the simultaneous Max-Cut when
the number of instances is two.

1.1 Organisation
We start with preliminaries in Section 2 where we formally define the simultaneous Max-
Cut problem, various distributions on the Boolean hypercube, invariance principle and the
Unique Games Conjecture. In Section 3, we present the dictatorship tests for Max-Cut and
simultaneous Max-Cut. Finally, in Section 4, we provide our reduction from the Unique
Games to the simultaneous Max-Cut.

2 Preliminaries

We first define the main problem that we study. Given an undirected weighted graph G(V,E),
the cut value of the partition (S, S) of V , denoted by CutG(S), is defined to be the total
weight of the edges whose endpoints are in different parts. The Max-Cut of a graph G is the
maximum cut value over all the partitions of V .

I Definition 3. (Simultaneous Max-Cut) An instance of simultaneous Max-Cut is a
collection of undirected weighted graphs Gi(V,Ei), 1 6 i 6 k, on the same set of vertices.

Given an instance Gi(V,Ei), 1 6 i 6 k of simultaneous Max-Cut and (c1, c2, . . . , ck) ∈
[0, 1]k such that there exists a partition (S, S) satisfying CutGi(S) > ci for all i ∈ [k]. The
objective is to find such a partition. An α-Pareto approximation algorithm in this context
is a polynomial time algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a
partition (S, S) such that CutGi(S) > α · ci for all i ∈ [k].

We work with the problem of finding α-minimum approximation for simultaneous Max-
Cut, which is a special case of the above problem. In this case, the optimum value is
given by:

Opt(G1, G2, . . . , Gk) := max
S⊆V

min
i∈[k]

CutGi(S).

An algorithm is called an α-minimum approximation for simultaneous Max-Cut if given
input the graphs G1, G2, . . . , Gk, it always outputs a cut (T, T ) such that

min
i∈[k]

CutGi(T ) > α ·Opt(G1, G2, . . . , Gk).

For a, b, c ∈ R>0 and a polynomial P (x1, x2, . . . , xt), we define

range
x1,...,xt∈[a,b]

{P (x1, . . . , xt) > c} := {(x1, . . . , xt) |xi ∈ [a, b] ∀i ∈ [t] and P (x1, . . . , xt)) > c}.

2.1 Analysis of Boolean functions
We will be working with functions f : {0, 1}n → R on the Boolean hypercube. For q ∈ [0, 1],
let µq be the distribution of a q-biased bit given as µq(1) = q and µq(0) = 1− q. Let µ⊗nq be
the corresponding product distribution on {0, 1}n. Let L2(µ⊗nq ) be the space of functions
f : {0, 1}n → R endowed with the distribution µ⊗nq . Also, let µq(f) := Ex∼µ⊗nq [f(x)].
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9:4 Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

Given x define the ρ-correlated copy y of x as follows:

I Definition 4. Given ρ and x ∼ µ⊗nq we write y ∼ Nρ(x) to denote the ρ-correlated copy of
x where the distribution Nρ(x) is as follows: Independently for each i ∈ [n] , if xi = 1 then
set yi = 1 with probability q + ρ(1− q), and yi = 0 otherwise. If xi = 0 then set yi = 1 with
probability q − ρq, and yi = 0 otherwise.

We will be interested in the setting when ρ 6 0. In this case, if we want y to be distributed
according to µ⊗nq then ρ cannot be arbitrary in [−1, 0]. Specifically, for a given q ∈ (0, 1), ρ
must be in the following interval:

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

(−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2.

As in [4], we will denote the above interval as κ(q) for any given q ∈ (0, 1). Next we define
the noise operator Tρ over the probability space L2(µ⊗nq ).

I Definition 5. Let q ∈ (0, 1) and ρ ∈ [−1, 1]. The noise operator Tρ : L2(µ⊗nq )→ L2(µ⊗nq )
is given as follows:

Tρf(x) = E
y∼Nρ(x)

[f(y)].

I Definition 6 (Influence). Let f ∈ L2(µ⊗nq ). The influence of the ith variable on f , denoted
by Inf i(f) is defined as:

Inf i(f) = E
x∼µ⊗nq

[Varxi∼µq [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]].

The useful property of the operator Tρ is that if Var[f ] is bounded then the image of
f under Tρ has a bounded number of influential variables. The proof of the lemma can be
found in [10, Lemma 3.6]

I Lemma 7. Let q ∈ (0, 1) and ρ ∈ κ(q) and f ∈ L2(µ⊗nq ). Then, for any τ > 0 we have

|{i ∈ [n] | Inf i[Tρf ] > τ}| 6 Var[f ]
2τe ln(1/|ρ|) .

We have the following definition for functions whose all the influences are low (under the
map Tρ).

I Definition 8. Let q ∈ (0, 1) and 0 < ε, δ < 1. A function f ∈ L2(µ⊗nq ) is called (ε, δ)-
quasirandom if for all i ∈ [n], we have Inf i[T1−δf ] 6 ε.

2.2 Invariance Principle
We need the following definition related to correlated spaces defined by Mossel [13].

I Definition 9. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between Ω1 and
Ω2 with respect to µ is defined as

ρ(Ω1,Ω2;µ) := sup
f :Ω1→R,g:Ω2→R,
Var[f ]=Var[g]=1

Cov[f, g].
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We will need the following Gaussian stability measure in our analysis:

I Definition 10. Let φ : R→ [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter ρ, ν1, ν2 ∈ [0, 1], we define the following two
quantities:

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y > φ−1(1− ν2)],

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y 6 φ−1(ν2)],

where X and Y are two standard Gaussian variables with covariance ρ. We also define
Γρ(ν) = Γρ(ν, ν) and Γρ(ν) = Γρ(ν, ν) for notational convenience.

We are now ready to state a version of invariance principle from [13] which follows
from Theorem 3.1 in [8] that we need for our reduction. For variables ε1, ε2, ε3, . . ., by
ε1(ε2, ε3, . . .) we mean ε1 is a function of ε2, ε3, . . . such that ε1 → 0 as all ε2, ε3, . . .→ 0.

I Theorem 11 ([13, 8]). Let (Ω1×Ω2, µ) be a finite correlated space, the correlation between
Ω1 and Ω2 with respect to µ is ρ ∈ [0, 1]. Then for any τ > 0 there exists ε(τ) > 0, δ(τ) > 0
such that if f : Ωn1 → [0, 1] and g : Ωn2 → [0, 1] are two functions satisfying

min(Inf i(T1−δf), Inf i(T1−δg)) 6 ε, (1)

for all i ∈ [n], then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)] 6 Γρ(ν1, ν2) + τ,

where ν1 = E[f ], ν2 = E[g].

I Remark 12. One difference between the versions of invariance principle in Mossel [13] and
Dinur et al. [8] is that in [13] instead of a min in (1), it was a max. This improvement was
crucial for hardness of graph coloring in [8]. For our hardness result, the difference is not
important.

We will be working with correlated spaces ({0, 1} × {0, 1}, µ) with negative correlation.
The following corollary follows from the above theorem.

I Corollary 13. Assume the settings in Theorem 11 for a correlated space ({0, 1} × {0, 1}, µ)
except ρ ∈ [−1, 0), then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)].

Proof. Define f ′(x) = 1− f(1− x) and let ρ′ = −ρ. We apply Theorem 11 to f ′, g and ρ′

E[f(x)g(y)] = E[g(y)]−E[f ′(−x)g(y)]
> ν2 − Γρ′(1− ν1, ν2)− τ
= ν2 − Γρ′(1− ν1, ν2)− Γρ′(ν1, ν2) + Γρ′(ν1, ν2)− τ.

Now, Γρ′(1− ν1, ν2) + Γρ′(ν1, ν2) = Γρ′(ν2, 1− ν1) + Γρ′(ν2, ν1) = ν2. Therefore,

E[f(x)g(y)] > Γρ′(ν1, ν2)− τ
= Γρ(ν1, ν2)− τ. J
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2.3 Unique Games
Our hardness result is based on the Unique Games Conjecture. First, we define what the
Unique Game is:

I Definition 14 (Unique Games). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique
Games constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), an
alphabet [L] and a permutation map πe : [L] → [L] for every edge e ∈ E. Given a labeling
` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the
edges.

The following is a conjecture by Khot [11] which has been used to prove many tight
inapproximability results.

I Conjecture 15 (Unique Games Conjecture [11]). For every sufficiently small δ > 0 there
exists L ∈ N such that the following holds. Given a an instance (U, V,E, [L], {πe}e∈E) of
Unique Games it is NP-hard to distinguish between the following two cases:

YES case: There exist an assignment that satisfies at least (1− δ) fraction of the edges.
NO case: Every assignment satisfies at most δ fraction of the edge constraints.

3 Dictatorship Tests

A function f : {0, 1}n → R is called a dictator function if f(x1, x2, . . . , xn) = xi for some
i ∈ [n]. Dictatorship tests are designed to distinguish between the cases when f is a dictator
function and f is an (ε, δ)-quasirandom function for small enough ε, δ > 0.

3.1 Dictatorship Test for Max-Cut
The αGW Unique Games hardness of Max-Cut relies on the analysis of a certain dictatorship
test that we describe next. This will lead us to our dictatorship test for simultaneous Max-
Cut. Consider the following test:

Given f : {0, 1}n → {0, 1},
1. Select x ∈ {0, 1}n uniformly at random.
2. Select a ρ-correlated copy y of x i.e. independently for each i ∈ [n] set yi = xi w.p. 1+ρ

2
and set yi = xi w.p. 1−ρ

2 .
3. Check if f(x) 6= f(y).

We have the following completeness property of the dictatorship test, which is easy to
show.

I Lemma 16. If f is a dictator function, then the test passes with probability 1−ρ
2 .

The following soundness of the test relies on the “Majority of the Stablest” theorem, which
roughly states that among all the Boolean functions with all the influences low, Majority
function is the most stable under “positive” perturbation.

I Lemma 17 ([14]). For ρ ∈ [−1, 0), if f is (ε, δ)-quasirandom, then the test passes with
probability at most arccos(ρ)

π + τ(ε, δ).

This dictatorship test can be composed with Unique Games [12] which gives αGW -hardness
of approximation for Max-Cut, where αGW is given by the following expression.

min
ρ∈[−1,0)

arccos(ρ)
π

1−ρ
2

= αGW = .87856720...
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3.2 Dictatorship Test for simultaneous Max-Cut
In the above dictatorship test, we get a family of graphs parameterized by the quantity ρ.
This might give a way to construct multiple instances of Max-Cut, one for each ρ ∈ (−1, 1).
However, this will not work and instead we will construct instances whose vertex set is
concentrated around the q · nth slice of the hypercube for some q ∈ (0, 1). This will give us
the family of graphs for each q ∈ (0, 1) and ρ.

Our final dictatorship test for the simultaneous Max-Cut problem will consist of three
graphs, G1 on the qnth slice, G2 on the (1 − q)nth slice and G3 will be a bipartite graph
between the qnthand (1− q)nth slice of the Boolean hypercube {0, 1}n.

I Definition 18 (ρ-correlated µq strings). For every q ∈ [0, 1] and ρ ∈ [−1, 0), define A⊗nρ,q
to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n where, Aρ,q : {0, 1}2 → R>0 is
defined as follows:

Aρ,q(0, 0) = (1− q)− t,
Aρ,q(0, 1) = t,

Aρ,q(1, 0) = t,

Aρ,q(1, 1) = q − t,

where t = (q − q2)(1− ρ). As mentioned before, ρ in the above definition must satisfy the
following property

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

[−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2.

I Definition 19 (ρ-correlated (x, y) where x ∼ µ⊗nq and y ∼ µ⊗n(1−q)). For every q ∈ [0, 1] and
ρ ∈ [−1, 0), define B⊗nρ,q to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n where,
Bρ,q : {0, 1}2 → R>0 is defined as follows:

Bρ,q(0, 0) = t,

Bρ,q(0, 1) = (1− q)− t,
Bρ,q(1, 0) = q − t,
Bρ,q(1, 1) = t,

where t = (q − q2)(1 + ρ). Note that ρ in the above definition must satisfy the following
property:

ρ ∈


[−1, q/(1− q)) , if q < 1/2,

[−1, 0), if q = 1/2,
[−1, (1− q)/q) , if q > 1/2.

We will define a simultaneous Max-Cut instance on the vertex set {0, 1}n. The instance
consists of three weighted graphs G1, G2 and G3. We fix q? = .58, ρ1 = − 1−q?

q?
and

ρ2 = 2q2
?−1

2q?(1−q?) .

G1 is concentrated around the q?nth slice of the hypercube. More formally, the edge
distribution of this graph is given by the distribution A⊗nρ1,q? .
G2 is concentrated around the (1 − q?)nth slice of the hypercube. Formally, the edge
distribution of this graph is given by the distribution A⊗nρ1,(1−q?).
G3 is roughly a bipartite graph between the q?nth and (1− q?)nth slices of the hypercube.
The edge distribution is given by the distribution B⊗nρ2,q? .
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A few remarks about the choice of parameters: We arrive at the choice of q? = .58 by
doing numerical calculations. Setting ρ1 = − 1−q?

q?
is a natural choice as it is the maximum

negative correlation that the two q?-biased bits can have. Finally, ρ2 = 2q2
?−1

2q?(1−q?) is chosen
such that the following is satisfied:

Pr
(xi,yi)∼Aρ1,q?

[xi 6= yi] = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi].

3.2.1 Completeness
I Lemma 20. If f is a dictator function then the value of the cut induced by f is 2(1− q?)
for all G1, G2, G3.

Proof. The proof is easy in this case. Suppose f is an ith dictator for some i ∈ [n]. This
induces a cut (Sf , Sf ) where Sf = {x ∈ {0, 1}n |xi = 0}. In this case, CutG1(Sf ) is
equal to the probability that (xi, yi) sampled from Aρ1,q? are not equal. This is precisely
2(q? − q2

?)(1− ρ1) which is equal to 2(1− q?) by the choice of ρ1 = − 1−q?
q?

.
Similarly, CutG2(Sf ) is equal to the probability that (xi, yi) sampled from Aρ1,(1−q?) are

not equal. This is also 2(1− q?).
For G3,

CutG3(Sf ) = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi] = 1− 2(q? − q2
?)(1 + ρ2).

By our choice of ρ2, this also equals to 2(1− q?). J

3.2.2 Soundness
I Lemma 21. Let f : {0, 1}n → {0, 1} be an (ε, δ)-quasirandom function and let (Sf , Sf ) be
the cut induced by f . Then

min
i∈[3]

CutGi(Sf ) 6 (αGW − 10−5) · 2(1− q?) + τ(ε, δ).

Proof. The proof is as follows:
1. We have an (ε, δ)-quasirandom function f : {0, 1}n → {0, 1}. Invariance principle says

that in order to get at least (αGW − 10−5) approximation for G1, the density of function
µq?(f) must be in some range. This essentially follows from the analysis of Austrin et
al. [3, 4]. Furthermore, the invariance principle precisely tells us that this is similar to
what approximation ratio the biased hyperplane rounding algorithm of [6] gives us on a
pair of vectors with SDP biases q? when rounded using rounding bias µq?(f). (See [6] for
the formal definitions of SDP bias and rounding bias). More formally, if the µq?(f) = ν1
then the cut value is bounded as follows:

CutG1(Sf ) = E
(x,y)∼A⊗nρ1,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼A⊗nρ1,q?

[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν1 − 2 E
(x,y)∼A⊗nρ1,q?

[f(x)f(y)]

6 2ν1 − 2Γρ1(ν1) + τ1(ε, δ),

where the last inequality follows from Corollary 13. Let us define the following range:
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R1(ε, δ) := range
ν1∈[0,1]

{
2ν1 − 2Γρ1(ν1) + τ1(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.

R1(ε, δ) is the set of all biases µq?(f) that gives CutG1(Sf ) which is at least (αGW −10−5)
factor greater than 2(1− q?). For a sufficiently small ε, δ > 0 and our given values of q?
and ρ1, numerical calculations show that

R1(ε, δ) ⊆ [.43676765, .56323235].

2. Same is true for G2. More formally, if the µ1−q? measure of f is ν2 then the cut value is
bounded above by 2ν2 − 2Γρ1(ν2) and we have

R2(ε, δ) := range
ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2) + τ2(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.

3. This fixes possible densities of f with respect to the µ⊗nq? and µ⊗n(1−q?) distributions. Both
these densities should lie in [.43676765, .56323235] if we want CutG1(Sf ) > (αGW −
10−5) · 2(1− q?) and CutG2(Sf ) > (αGW − 10−5) · 2(1− q?). Now we use the full power
of the invariance principle to claim that the value of the cut given by such an f is similar
to what the biased hyperplane rounding gives us on the graph G3.

CutG3(Sf ) = E
(x,y)∼B⊗nρ2,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼B⊗nρ2,q?

[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν2 − 2 E
(x,y)∼B⊗nρ2,q?

[f(x)f(y)]

6 ν1 + ν2 − Γρ2(ν1, ν2) + τ3(ε, δ).

Here again, the last inequality follows from Corollary 13. By doing numerical calculations,
we show that for the following range

R(ε, δ) := range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + τ3(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
,

R(ε, δ) ∩ (R1(ε, δ)×R2(ε, δ)) = ∅ for sufficiently small ε, δ > 0.
Therefore, no matter which f we start with, if it is (ε, δ)-quasirandom for sufficiently small
ε, δ > 0, then there exists an i ∈ [3] such that the cut guaranteed by Sf on Gi is strictly less
that (αGW − 10−5) · 2(1− q?) + τ(ε, δ). J

4 Actual Reduction

In this section we give a reduction from Unique Games to the simultaneous Max-Cut
problem. Given an instance G = (U, V,E, [L], {πe}e∈E) of the Unique Games, we reduce it
to a simultaneous Max-Cut instance I on the vertex set V = V × 2[L] = {(v, x) | v ∈ V, x ∈
{0, 1}L}.

The instance will involve three weighted graphs G1(V, E1),G2(V, E2) and G3(V, E3) on
the common vertex set V. We fix the following parameters: q? = .58, ρ1 = − 1−q?

q?
and

ρ2 = 2q2
?−1

2q?(1−q?) . For a string x ∈ {0, 1}
L and a permutation π : [L]→ [L], define x◦π ∈ {0, 1}L

such that (x◦π)i = xπ(i) for all i ∈ [L]. The respective edge weights are given by the following
distributions:
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1. E1: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to A⊗Lρ1,q? and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

2. E2: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to A⊗Lρ1,(1−q?) and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

3. E3: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to B⊗Lρ2,q? and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

We now prove the completeness and the soundness of the reduction.

I Lemma 22 (Completeness). If the Unique Games instance G is (1− η
2 )-satisfiable then

there exists a cut (S,S) such that

min
i∈[3]

CutGi(S) > 2(1− q?)− η.

I Lemma 23 (Soundness). There exist absolute constants ε0 > 10−5 and 0 < η0 < 1 such
that for all 0 < η 6 η0 and ε(η/2), δ(η/2) from Theorem 11, if there exists a cut (S, S) such
that

min
i∈[3]

CutGi(S) > (αGW − ε0)(2(1− q?)− η),

then there exists an assignment to the Unique Games instance G which satisfies at least
η′ = η · ε

2·e·ln(1/(1−δ))
2 fraction of the constraints.

The above two lemmas along with Conjecture 15 show that assuming the Unique Games
Conjecture, it is NP-hard to get an α-minimum approximation for simultaneous Max-Cut
where α 6 αGW − 10−5. This proves Theorem 2. We now prove the completeness and
soundness of the reduction.

Proof of Lemma 22. Let σ : U ∪ V → [L] be an assignment to the Unique Games instance
G which satisfies at least (1− η) fraction of the constraints. Consider the following partition
(S,S) of V where

S = {(v, x) | v ∈ V, xσ(v) = 0}.

Let us analyze the value of this cut for the graph G1:

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[(v1, x ◦ π−1
uv1

), (v2, y ◦ π−1
uv2

) in different parts]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[((x ◦ π−1
uv1

))σ(v1) 6= (y ◦ π−1
uv2

)σ(v2)]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[xπ−1
uv1 (σ(v1)) 6= yπ−1

uv2 (σ(v2))]

> (1− η) Pr
(x,y)∼A⊗Lρ1,q?

[xσ(u) 6= yσ(u)]

= (1− η) · 2(q? − q2
?)(1− ρ1)

= (1− η) · 2(1− q?)
> 2(1− q?)− η,

where the first inequality uses the fact that with probability at least 1−η, both the constraints
on the edges (u, v1) and (u, v2) are satisfied by the assignment σ. Using similar calculations,
we can show that

CutG2(S) > (1− η) · 2(q? − q2
?)(1− ρ1) > 2(1− q?)− η

CutG3(S) > (1− η) · (1− 2(q? − q2
?)(1 + ρ2)) > 2(1− q?)− η.
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Thus, we have

min
i∈[3]

CutGi(S) > 2(1− q?)− η. J

We now prove the main soundness lemma:

Proof of Lemma 23. Suppose the value of the Unique Games instance is at most η′. Let
f : V × 2[L] → {0, 1} be the indicator function of the cut (S,S). We will show that

min
i∈[3]

CutGi(S) 6 (αGW − ε0)(2(1− q?)− η).

We start with analysing the value CutG1(S):

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[f(v1, x ◦ π−1
uv1

) 6= f(v2, y ◦ π−1
uv2

)]

= E
u∈U

E
v1,v2∈N(u)

E
(x,y)∼A⊗Lρ1,q?

[
1
2 −

(1− 2f(v1, x ◦ π−1
uv1

))(1− 2f(v2, y ◦ π−1
uv2

))
2

]
= E
u∈U

E
v1,v2∈N(u)

E
(x,y)∼A⊗Lρ1,q?

[
f(v1, x ◦ π−1

uv1
) + f(v2, y ◦ π−1

uv2
)−

2f(v1, x ◦ π−1
uv1

)f(v2, y ◦ π−1
uv2

)

]
.

Define fv(x) := f(v, x) for v ∈ V and fu(x) := Ev∼N(u)
[
fv(x ◦ π−1

uv )
]
for u ∈ U . Let

νuq (f) = Ex∼µ⊗Lq [fu(x)] be the q-biased measure of the function fu and νq(f) = Eu∈U [νuq (f)]
be the average q-biased measure of f . Since we sample v1, v2 ∈ N(u) independently, we have

CutG1(S) = E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] .

We now show that the expectation in the above expression is lower bounded by the
quantity Γρ1(νuq?(f), νuq?(f))− η′

2 unless the value of the Unique Games instance is at least η′.

B Claim 24. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] > Γρ1(νuq?(f), νuq?(f))− η

2 .

Proof. Consider fu ∈ L2(µ⊗nq? ) and suppose the claim is not true and we have for at least η
fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] 6 Γρ1(νuq?(f), νuq?(f))− η

2 .

Then using Corollary 13, there exists ε(η/2), δ(η/2) > 0 such that for at least η fraction
of fu, we have that Inf i(T1−δfu) > ε for some i ∈ [L]. Since fu(x) := Ev∼N(u)

[
fv(x ◦ π−1

uv )
]

and Inf i is a convex function, we have

E
v∼N(u)

[
Inf i(T1−δ(fv(x ◦ π−1

uv )))
]
> ε =⇒ E

v∼N(u)

[
Infπuv(i)(T1−δfv)

]
> ε.

Thus, if Inf i(T1−δfu) > ε, then by an averaging argument, for at least ε/2 fraction of
v ∈ N(u) we have that Infπuv(i)(T1−δfv) > ε/2. Let

Lv = {j ∈ [L] | Inf j(T1−δfv) > ε/2}.

CCC 2020



9:12 Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

We know that |Lv| 6 1
ε·e·ln(1/(1−δ)) using Lemma 7. Consider the following randomized

labeling to the Unique Games instance. For each u ∈ U , if there exists i ∈ [L] such that
Inf i(T1−δfu) > ε then assign label i to u. Otherwise, assign a random label from [L] to u. For
each v ∈ V , pick a random label from Lv if it is non-empty. If |Lv| = 0 then pick a random
label from [L]. The randomized labeling satisfies at least η · ε2 ·

1
|Lv| > η · ε2 ·

ε·e·ln(1/(1−δ))
1 = η′

fraction of the edges in expectation, which is a contradiction. C

Let U ′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above claim,
we have

CutG1(S) = 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)]

6 2 · νq?(f)− 2
(

(1− η) E
u∈U ′

[
Γρ1(νuq?(f), νuq?(f))− η

2

]
+ η · 0

)
6 2 · νq?(f)− 2 E

u∈U ′
[Γρ1(νuq?(f), νuq?(f))] + η.

Now using the convexity of the function Γρ(x, y), we have

E
u∈U ′

[
Γρ1(νuq?(f), νuq?(f))

]
> Γρ1

(
E

u∈U ′
(νuq?(f)), E

u∈U ′
(νuq?(f))

)
> Γρ1 (νq?(f)− η, νq?(f)− η) ,

where the last inequality follows from
∣∣Eu∈U [νuq?(f)]−Eu∈U ′ [νuq?(f)]

∣∣ 6 η and the fact that
Γρ(x, y) is an increasing function of x and y. Thus, we have

CutG1(S) 6 2 · νq?(f)− 2 · Γρ1 (νq?(f)− η, νq?(f)− η) + η

6 2 · νq?(f)− 2 · Γρ1 (νq?(f), νq?(f)) + 3η. (2)

The exact same calculation shows that

CutG2(S) 6 2 · ν(1−q?)(f)− 2 · Γρ1

(
ν(1−q?)(f), ν(1−q?)(f)

)
+ 3η. (3)

We now analyze the value of the cut given by f in G3:

CutG3(S) = E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)] .

Similar to Claim 24, we have,

B Claim 25. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼B⊗Lρ1,q?

[fu(x)fu(y)] > Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2 .

Proof. The proof is similar to the proof of Claim 24 once we conclude, using Corollary 13
that there exists ε, δ > 0 such that for at least η fraction of fu we have that Inf i(T1−δfu) > ε

for some i ∈ [L]. C
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Figure 1 Plots of R1(0), R2(0) and R3(0). Figure 2 Zooming in to the black box in
Figure 1 shows R1(0) ∩R2(0) ∩R3(0) = ∅.

Let U ′′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above claim,
we have

CutG3(S) = νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)]

6 νq?(f) + ν(1−q?)(f)− 2
(

(1− η) E
u∈U ′′

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2

]
+ η · 0

)
6 νq?(f) + ν(1−q?)(f)− 2 E

u∈U

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)]
+ η.

Again, using the convexity of Γρ2 ,

CutG3(S) 6 νq?(f) + ν(1−q?)(f)− 2Γρ2

(
νq?(f)− η, ν(1−q?)(f)− η

)
+ η

6 νq?(f) + ν(1−q?)(f)− 2Γρ2

(
νq?(f), ν(1−q?)(f)

)
+ 3η. (4)

Now, let us compare the solution w.r.t 2(1− q?)− η. For the notational convenience, let
ν1 = νq?(f) and ν2 = ν(1−q?)(f). Then,

CutG1(S) 6 2 · ν1 − 2Γρ1(ν1, ν1) + 3η
CutG2(S) 6 2 · ν2 − 2Γρ1(ν2, ν2) + 3η
CutG3(S) 6 ν1 + ν2 − 2Γρ2 (ν1, ν2) + 3η.

In this case, ν1, ν2 are the free parameters which come from the indicator function f of
the cut we started with. Define the following ranges:

R1(η) = range
ν1,ν2∈[0,1]

{
2ν1 − 2Γρ1(ν1, ν1) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R2(η) = range
ν1,ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R3(η) = range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
.

If we want to get a cut with values (αGW − 10−5) · (2(1− q?)− η) in all the graphs G1,G2
and G3 then we must have the R1(η) ∩R2(η) ∩R3(η) 6= ∅.
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By performing numerical calculations, we show that there exists an absolute constant
η0 > 0 such that for all 0 < η 6 η0, R1(η) ∩R2(η) ∩R3(η) is in fact ∅. This is depicted in
Figure 1 and Figure 2.2 Thus, no matter which densities ν1 = νq?(f) and ν2 = ν(1−q?)(f) we
choose, there exists an i ∈ [3] such that the value of the cut in graph Gi given by f will be
less than (αGW − ε0)(2(1− q?)− η) for some fixed constant ε0 > 10−5. J
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Abstract
A hitting set is a “one-sided” variant of a pseudorandom generator (PRG), naturally suited to
derandomizing algorithms that have one-sided error. We study the problem of using a given hitting
set to derandomize algorithms that have two-sided error, focusing on space-bounded algorithms.
For our first result, we show that if there is a log-space hitting set for polynomial-width read-once
branching programs (ROBPs), then not only does L = RL, but L = BPL as well. This answers a
question raised by Hoza and Zuckerman [16].

Next, we consider constant-width ROBPs. We show that if there are log-space hitting sets for
constant-width ROBPs, then given black-box access to a constant-width ROBP f , it is possible
to deterministically estimate E[f ] to within ±ε in space O(log(n/ε)). Unconditionally, we give
a deterministic algorithm for this problem with space complexity O(log2 n + log(1/ε)), slightly
improving over previous work.

Finally, we investigate the limits of this line of work. Perhaps the strongest reduction along
these lines one could hope for would say that for every explicit hitting set, there is an explicit
PRG with similar parameters. In the setting of constant-width ROBPs over a large alphabet, we
prove that establishing such a strong reduction is at least as difficult as constructing a good PRG
outright. Quantitatively, we prove that if the strong reduction holds, then for every constant α > 0,
there is an explicit PRG for constant-width ROBPs with seed length O(log1+α n). Along the way,
unconditionally, we construct an improved hitting set for ROBPs over a large alphabet.
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1 Introduction

Suppose some decision problem can be solved by an efficient randomized algorithm. That’s
good, but an efficient deterministic algorithm would be even better. We would therefore
like to deterministically analyze the acceptance probability of the randomized algorithm
on a given input. An ambitious approach to derandomization is to try to design a suitable
pseudorandom generator (PRG).
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I Definition 1.1. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,

∣∣E[f ]− EX∈{0,1}s [f(G(X))]
∣∣ ≤ ε.

Let n be the number of random bits used by the randomized algorithm, and ensure that
F can compute the action of the randomized algorithm on its random bits. By iterating
over all “seeds” x ∈ {0, 1}s and plugging G(x) into the randomized algorithm, we can get an
estimate of its acceptance probability with additive error ε.

Unfortunately, designing efficient PRGs has proved to be extremely difficult. Constructing
a hitting set is sometimes less difficult.

I Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-hitting set for F
is a set H ⊆ {0, 1}n such that for every f ∈ F with E[f ] ≥ ε, there is some x ∈ H such that
f(x) = 1.

The image of any PRG is clearly a hitting set. By iterating over all strings in a hitting set,
we can at least distinguish acceptance probability 0 from acceptance probability ≥ ε. This is
already sufficient for derandomizing some algorithms (namely, those with “one-sided error”).
In this paper, we investigate the possibility of using a hitting set in a nontrivial way to obtain
an estimate of the acceptance probability with a small additive error, just like what a PRG
would have provided.

This possibility was previously studied in the context of derandomizing time-bounded
algorithms. Several proofs have been discovered showing that if there is a polynomial-time
hitting set for size-n circuits, then P = BPP [3, 9, 4, 11]. In Appendix A we provide yet
another proof of this theorem; our short proof is arguably simpler than all previous proofs.
However, the focus of our paper is derandomizing space-bounded algorithms.

1.1 Derandomizing Log-Space Algorithms

The behavior of a small-space algorithm as a function of its random bits can be modeled
by a read-once1 branching program (ROBP). A width-w length-n ROBP is a directed graph
consisting of n+ 1 layers with w vertices per layer. There is a designated “start vertex” vstart
in the first layer. Every vertex not in the last layer has two outgoing edges labeled 0 and
1 leading to the next layer. An n-bit input string naturally identifies a path through the
graph by reading from left to right. The program accepts or rejects this string depending on
whether the path ends at the designated “accept vertex” vacc in the last layer.

Recall that BPL and RL are the classes of languages that can be decided by randomized
log-space algorithms that always halt with two-sided and one-sided error respectively. A
log-space hitting set2 for polynomial-width ROBPs would immediately imply L = RL. For
our first result, we show that such a hitting set would also imply L = BPL.

I Theorem 1.3. Assume that for every n ∈ N, there is a 1
2 -hitting set for width-n, length-n

ROBPs that can be computed in space O(logn). Then L = BPL.

1 Because space-bounded algorithms only have read-once access to their random bits, it does not seem
possible to adapt the existing derandomizations of BPP using a hitting set to the BPL case.

2 When we say “a log-space hitting set,” we mean a family of hitting sets Hn ⊆ {0, 1}n such that given
input n ∈ N, the set Hn can be enumerated in space O(logn). For such a family, |Hn| ≤ poly(n).
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1.2 Motivation: Recent Work on Hitting Sets
Theorem 1.3 is especially interesting in light of recent constructions of improved hitting sets
for ROBPs [8, 16, 10]. The best known PRG for polynomial-width ROBPs is still Nisan’s
PRG [22], which has seed length

O(log2 n+ logn log(1/ε)).

Until recently, Nisan’s PRG also provided the best hitting set for polynomial-width ROBPs.
Using sophisticated and novel techniques, Braverman, Cohen, and Garg obtained a hitting
set with space complexity

Õ(log2 n+ log(1/ε)),

which is an improvement when ε is very small [8].
Actually, Braverman, Cohen, and Garg constructed something better than a hitting set,

called a pseudorandom pseudodistribution (PRPD).

I Definition 1.4 ([8]). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRPD for
F is a function D : {0, 1}n → R such that for every f ∈ F ,∣∣∣∣∣∣

∑
x∈{0,1}n

f(x)D(x)− E[f ]

∣∣∣∣∣∣ ≤ ε.
A PRPD can be used to estimate E[f ] to within ±ε, provided there is an efficient algorithm
that enumerates all x ∈ supp(D) and computes D(x). The concept of a PRPD generalizes
the concept of a PRG, because given a PRG G with seed length s, one can set D(x) =
|G−1(x)| · 2−s. In turn, if D is a PRPD, then supp(D) is a hitting set. So a PRPD
is intermediate between a hitting set and a genuine PRG. (Independently of our work,
Chattopadhyay and Liao recently gave an improved PRPD construction with space complexity
Õ(log2 n) +O(log(1/ε)) [10].)

After Braverman, Cohen, and Garg’s work [8], Hoza and Zuckerman gave a simpler
construction of an ε-hitting set for polynomial-width ROBPs, with the slightly improved
space complexity O(log2 n+ log(1/ε)) [16]. Their construction is weaker in that it does not
provide a PRPD. Theorem 1.3 bridges the gap between the two concepts somewhat: by
Theorem 1.3, any generic hitting set can be used for two-sided derandomization, which was
the main strength of a PRPD over a hitting set in the first place.

1.3 The Constant-Width Setting
However, there is a weakness of Theorem 1.3. A PRG or a PRPD would provide a black-box
derandomization, whereas the algorithm of Theorem 1.3 is not black-box. This weakness
is especially acute when we consider the constant-width case. Given a constant-width
ROBP f directly as input, it is trivial to compute E[f ] with high accuracy, so the algorithm
of Theorem 1.3 is meaningless. Nevertheless, constant-width ROBPs can compute many
interesting functions, and it is a major open challenge to design improved PRGs, PRPDs,
or hitting sets for constant-width ROBPs. (For width 2, optimal PRGs are known [7]. For
width 3, the current best PRG has seed length Õ(logn log(1/ε)) [21]. The best hitting sets
for width 3 are superior, with space complexity Õ(log(n/ε)) for small ε [14] or O(logn) for
ε ≈ 1 [25]. For width 4, the state of the art is simply the best results for polynomial-width
ROBPs.)
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PRG

PRPD

Deterministic
sampler

Hitting
set

Estimating
E[f ] ± ε

Theorem 1.3

Theorem 1.7
(const. width)

Distinguishing
E[f ] = 0 vs. E[f ] ≥ ε

Figure 1 The relationships between different derandomization goals. The solid arrows are
implications that are immediate from the definitions and hold for essentially any class F (possibly
with some loss in ε). The dashed arrows are theorems in this paper, holding for ROBPs specifically.

To address this weakness of Theorem 1.3, we abstract the “black-box” feature of PRGs
and PRPDs in the following definition.

I Definition 1.5. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-
sampler for F is a deterministic oracle algorithm A that outputs a real number such that for
every f ∈ F ,

|Af − E[f ]| ≤ ε.

The concept of a deterministic sampler generalizes that of a PRPD, because given a
PRPD D, one can set Af =

∑
x f(x)D(x). In the other direction, deterministic samplers

imply hitting sets.

I Proposition 1.6. Identify 0 with the constant 0 function on {0, 1}n, and assume 0 ∈ F .
Let A be a deterministic ε-sampler for F , and let H ⊆ {0, 1}n be the set of points where A0

queries its oracle. Then for every ε′ > 2ε, H is an ε′-hitting set for F .

Proof. Let f ∈ F satisfy E[f ] > 2ε. Since |A0 − 0| ≤ ε and |Af − E[f ]| ≤ ε, A0 6= Af .
Therefore, Af must query f at some point x ∈ f−1(1). The first such query must be at a
point x ∈ H. J

All known derandomizations of BPP using a hitting set [3, 9, 4, 11], including our new
derandomization in Appendix A, are black-box. That is, one can generically “upgrade” a
polynomial-time hitting set for size-n circuits into a polynomial-time deterministic sampler
for size-n circuits. For our second result, we prove the analogous reduction for constant-width
ROBPs. (See Figure 1.)
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I Theorem 1.7. Assume that for every constant w, for all n ∈ N, there is a 1
2 -hitting set for

width-w length-n ROBPs that can be computed in space O(logn). Then for every constant w,
for all n ∈ N and all ε > 0, there is a deterministic ε-sampler for width-w length-n ROBPs
that runs in space O(log(n/ε)).

The proof of Theorem 1.7 uses different techniques than that of Theorem 1.3. The
space complexity of our deterministic sampler is proportional to the width parameter w (see
Theorem 3.1), so the sampler becomes meaningless when w is large. Thus, Theorems 1.3
and 1.7 are incomparable.

We also obtain a new unconditional deterministic sampler. When ε is moderate, the best
deterministic sampler for constant-width ROBPs is simply from Nisan’s PRG [22], which
gives a sampler with space complexity O(log2 n + logn log(1/ε)). When ε is small, using
prior work, the best deterministic sampler for constant-width ROBPs was from Braverman,
Cohen, and Garg’s PRPD [8] (space complexity Õ(log2 n+ log(1/ε))). The concurrent work
by Chattopadhyay and Liao [10] gives a slightly better PRPD, and hence a slightly better
deterministic sampler (space complexity Õ(log2 n) +O(log(1/ε))). By applying the reduction
underlying Theorem 1.7 to the hitting set of Hoza and Zuckerman [16], we achieve a slightly
better bound.

I Theorem 1.8 (Unconditional sampler). For every constant w, for all n ∈ N and all
ε > 0, there is a deterministic ε-sampler for width-w length-n ROBPs running in space
O(log2 n+ log(1/ε)).

In light of Theorem 1.8, when it comes to deterministic samplers, there is now a slight
gap between the state of the art for polynomial-width ROBPs vs. the state of the art for
width-w ROBPs with w a large constant. In other words, Theorem 1.8 is a case where we
can take advantage of narrowness. There is no such gap when it comes to PRGs, PRPDs, or
hitting sets.

1.4 Negative Result
Theorem 1.7 raises the question of whether we can go even further and upgrade any hitting
set into a genuine PRG. In the time-bounded setting, this is indeed possible via the “hardness
vs. randomness” paradigm. (If for every n there is a hitting set for size-n circuits computable
in poly(n) time, then there is a language in E that requires circuits of size 2Ω(n). A major
achievement in complexity theory was to show that assuming such a language exists, for
every n, there is a polynomial-time logarithmic-seed PRG for size-n circuits [18].) Also, in
the context of low-degree polynomials, Bogdanov showed how to convert any hitting set with
a certain density property into a PRG [6]. Can a similar reduction be proven for small-space
models?

We focus on the setting of constant-width ROBPs over a large alphabet. (An ROBP over
the alphabet Σ computes a function f : Σn → {0, 1}; each vertex not in the last layer has |Σ|
outgoing edges labeled with the symbols in Σ.) We prove that if for every explicit hitting
set in this setting, there is an explicit PRG with similar parameters, then there is in fact an
explicit PRG for constant-width binary ROBPs with seed length O(log1+α n), where α > 0
is an arbitrarily small constant. See Theorem 4.3 for the precise statement.

Our result is similar to a theorem by Hoza and Umans [15]. Like us, Hoza and Umans
showed that if PRGs are equivalent to a seemingly weaker notion, then the equivalence itself
can be used to construct a good PRG. Hoza and Umans focused on the distinction between
PRGs and non-black-box derandomization, whereas we focus on the distinction between
PRGs and hitting sets.
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Interpretation

Like any conditional theorem, Theorem 4.3 has both a positive and a negative interpretation.3
According to the negative interpretation, Theorem 4.3 shows that it would be difficult to
establish a general reduction from PRGs to hitting sets. After all, it’s as difficult as
constructing a good PRG for constant-width ROBPs, which is a challenge that researchers
have been struggling with for decades. In this sense, Theorem 4.3 provides an “excuse” for
the fact that Theorems 1.3 and 1.7 do not provide genuine PRGs.

We feel that the negative interpretation is more realistic, but there is also a sensible
positive interpretation. According to the positive interpretation, our work provides a new
approach to constructing improved PRGs or hitting sets for constant-width ROBPs. One
“merely” needs to bridge the gap between deterministic samplers and PRGs. This could
be done in one of two ways. One could improve Theorem 1.7 so that it concludes with a
PRG instead of a deterministic sampler. Alternatively, one could improve the construction
of Theorem 4.3 so that rather than relying on the equivalence of hitting sets and PRGs, it
merely relies on the equivalence of hitting sets and deterministic samplers. (In exchange,
presumably the conclusion would merely be a deterministic sampler rather than a true PRG,
but that would still be a breakthrough.)

1.5 Overview of Techniques
Let us first fix some notation. Let Un denote the uniform distribution over {0, 1}n. For two
strings x, y, let x ◦ y denote the concatenation of x with y. Suppose an ROBP f is clear from
context. If u and v are vertices, let pu→v be the probability that a random walk starting at
u reaches v. We use the shorthand p→v = pvstart→v and pu→ = pu→vacc . We use Vi to denote
the set of vertices in the i-th layer of the ROBP, where i ∈ {0, 1, . . . , n}.

1.5.1 Techniques for Theorem 1.3
We begin by outlining the proof of Theorem 1.3 (on derandomizing BPL). To derandomize
BPL, it suffices to show that given a width-n length-n ROBP f , one can estimate E[f ] to
within a small additive error in log space. We do this using a hitting set H for width-(nc)
length-(nc) ROBPs, where c is a large enough constant.

Each x ∈ H is a string of length nc. We think of it as a list of many shorter strings.
Specifically, for every vertex v in f , the string x provides poly(n) “sample inputs” associated
with v. We compute the fraction p̂→v of those sample inputs that lead to v. The hope is
that

∀v, p̂→v ≈ p→v. (1)

Of course we cannot directly verify Equation (1), since we do not know the values p→v.
Instead, our algorithm looks for an x ∈ H such that the estimates p̂→v are locally consistent,
i.e., for every i ∈ [n] and every v ∈ Vi,

p̂→v ≈
∑

u∈Vi−1

p̂→u · pu→v.

Having found such an x ∈ H, we output the corresponding value p̂→vacc .

3 Throughout this discussion, we will ignore the issue of alphabet size, to simplify matters. The proof of
Theorem 1.7 does generalize well to the large-alphabet case.
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To establish the correctness of our algorithm, we must show two assertions. First, if the
estimates p̂→v pass the local consistency test, then E[f ] ≈ p̂→vacc . Second, there is always a
string x ∈ H that passes the local consistency test.

To show the first assertion, we bound
∑
v∈Vi |p̂→v − p→v| by induction on i. Because of

the structure of the ROBP, the error accumulates mildly, only blowing up by a factor that is
approximately the size of f .

For the second assertion, we use the hitting property of H. At first glance, it might seem
that the assertion is immediate. After all, a random x certainly passes the local consistency
test with high probability, and the local consistency test can be computed in small space.
Unfortunately, however, that computation involves reading the bits of x multiple times,
whereas H is merely guaranteed to hit read-once branching programs.

To deal with this issue, we notice that if x were chosen at random, then with high
probability, it would satisfy Equation (1). Furthermore, there exists a width-(nc) length-(nc)
ROBP f ′ that determines whether its input x satisfies Equation (1). The values p→v are all
hard-coded into f ′. There is no need to algorithmically construct f ′; the mere fact that it
exists implies the existence of an x ∈ H that satisfies Equation (1). Satisfying Equation (1)
readily implies that x also passes the local consistency test, completing the proof of the
second assertion.

1.5.2 Techniques for Theorem 1.7

The proof of Theorem 1.7 (on deterministic samplers) uses different techniques. Let f be a
constant-width ROBP. To estimate E[f ], we attempt to work our way backward through
the branching program, computing the acceptance probability pv→ from each vertex v. This
plan is complicated by the fact that we only have black-box access to f . At a high level, for
each layer, we use the assumed hitting set H to approximately compute the transitions at
that layer, which allows us to continue computing the values pv→.

In more detail, the hitting set assists us in two different ways. First, we identify each
prefix of a string in H with the vertex that is reached when f reads the prefix. In this way
we are able to “find” all the vertices of f – or at least, all non-negligible vertices.

However, we are now effectively dealing with a width-|H| branching program, because
we have a copy of v for each string in H that leads to v. This interferes with our plan,
because |H| = poly(n) and hence we cannot afford to store the acceptance probabilities of all
vertices in a single layer. The second way we use H is to determine which of these vertices
are redundant. If there is some string in H that leads to accept from one vertex and reject
from another, then the two vertices are not equivalent. Otherwise, the two vertices can be
safely merged, because they must be two copies of the same vertex in f – or at least, they
must correspond to two very similar vertices in f . The merging condition can be checked by
making queries to f . By merging vertices, we effectively bring the width back down to a
constant. (This merging operation is similar to a randomized learning algorithm by Gopalan,
Klivans, and Meka [13]. Note that their algorithm is not space-efficient.)

Unfortunately, the fact that two vertices are equivalent does not imply that their out-
neighbors are equivalent, so it is not immediately clear how to “merge” the outgoing edges.
We show that it suffices to retain the outgoing edges from whichever vertex has the higher
acceptance probability.
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1.5.3 Techniques for Theorem 4.3
Recall that to prove Theorem 4.3, we must (conditionally) construct a PRG with seed length
O(log1+α n), where α > 0 is an arbitrarily small constant. For simplicity, in this overview,
we will focus on the case α = 1/2, i.e., seed length O(log3/2 n). Recall also that we are
focusing on the constant-width case.

The starting point of the construction is the INW PRG, which ε-fools constant-width
ROBPs over the alphabet {0, 1}t with seed length O(t+log(n/ε) logn) [17]. (Nisan’s PRG [22]
does not achieve the same optimal dependence on t.) Next, we present a reduction, showing
how to convert a PRG with moderate error into a hitting set with very small threshold
(Theorem 4.4). Hoza and Zuckerman gave a similar reduction [16], but their reduction only
applies to binary ROBPs (the case t = 1). Our reduction is based on a more sophisticated
variant of a key lemma in Hoza and Zuckerman’s work [16].

Applying our new reduction to the INW generator, we unconditionally obtain an improved
hitting set. The best previous hitting sets had space complexity O(t+ log2 n+ log(1/ε) logn)
[17] or O(t logn+ log2 n+ log(1/ε)) [16]. Our new hitting set (Corollary 4.8) achieves the
“best of both worlds,” with space complexity O(t+ log2 n+ log(1/ε)).

The next step in the proof of Theorem 4.3 is to apply the assumption of Theorem 4.3,
converting our hitting set into a PRG. The final step is to use traditional “seed recycling”
techniques to trade the excellent dependence on ε for an improved dependence on n. Briefly,
starting with a length-n ROBP over the alphabet {0, 1}t, we first use a randomized sam-
pler [12] to reduce the alphabet size to poly(n). Then we divide our length-n ROBP of
interest into blocks of length m = 2

√
logn. We can fool each chunk to within error 1/poly(n)

using a seed of length O(log2m+ logn) = O(logn). Using the randomized sampler again,
this allows us to effectively pay O(logn) truly random bits and reduce the length of the
branching program by a factor of m. After repeating this process

√
logn times, the length is

reduced to a constant, and we have paid a total of O(log3/2 n) truly random bits.
(To achieve seed length O(log1+α n), we start the whole process over again and iterate

roughly 1/α times. This iterative strategy is similar to the work of Hoza and Umans [15],
but the specific reductions are different.)

1.6 Related Work
We have already referenced most of the work related to this paper, such as work on deran-
domizing BPP using a hitting set [3, 9, 4, 11]. However, a couple additional papers deserve
mention.

1.6.1 BPL ⊆ ZP∗L

Our derandomization of BPL given a hitting set is similar to Nisan’s unconditional proof that
BPL ⊆ ZP∗L [23]. To estimate the acceptance probability of a width-n length-n ROBP f ,
Nisan, like us, interprets a string x ∈ {0, 1}poly(n) as a list of sample inputs, which he uses to
compute estimates of p→v for each vertex v. Nisan’s algorithm picks x at random, and then in
a similar fashion as our algorithm, performs certain “local tests” at each vertex to verify that
the sample inputs are trustworthy. Nisan’s local tests can be computed in small space given
two-way access to x, and passing the local tests implies that the estimates are close to the
corresponding true probabilities. Our local consistency test also satisfies these properties, and
indeed, one can obtain an alternative proof that BPL ⊆ ZP∗L from our analysis. However,
a technical point is that we use fresh samples for each vertex, whereas Nisan uses one set of
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n-bit sample inputs for all the vertices. This crucial distinction is how we are able to ensure
the existence of a polynomial-width ROBP that verifies Equation (1). Unfortunately, using
fresh samples breaks Nisan’s local tests, hence our new local consistency test.

1.6.2 Deterministically Simulating BPL with Very Low Error
The current best hitting sets for polynomial-width ROBPs [8, 16, 10] are superior to the
best known PRGs [22] when ε is very small. One might hope that by plugging in the recent
hitting sets, our reductions could provide a new unconditional deterministic algorithm for
estimating the acceptance probability of a BPL algorithm to within ±ε, with an improved
space complexity when ε is very small. Unfortunately, this idea doesn’t get off the ground,
because to estimate the acceptance probability to within ±ε, we rely on a 1

2 -hitting set for
ROBPs of length poly(n/ε) rather than an ε-hitting set for ROBPs of length n. The good
news is that Ahmadinejad et al. recently tackled this same problem with different techniques.
They designed an algorithm that runs in space O(log3/2 n+ logn log log(1/ε)) [1].

1.7 Outline of This Paper
In Section 2, we present our derandomization of BPL given a hitting set for polynomial-width
ROBPs. In Section 3, we present our deterministic sampler for constant-width ROBPs given
a hitting set. Finally, in Section 4, we present our theorem on the limitations of this line
of work.

2 Derandomizing BPL Given a Hitting Set

In this section, we show that the acceptance probability of an arbitrary polynomial width
ROBP can be approximated within a small bias in small space, given a certain hitting set.
Theorem 1.3 will follow from this.

I Theorem 2.1. Assume there is a 1
2 -hitting set H for width-w′ length-n′ ROBPs that can

be computed in space s. Then the acceptance probability of a given width-w length-n ROBP
f can be approximated within a bias ±ε, in space O(s+ log wn

ε ).
Here w′ =

⌈
9w

3n2 log(wn)
ε2

⌉
, n′ =

⌈
5w

3n4 log(wn)
ε2

⌉
.

Strictly speaking, Theorem 2.1 ought to be phrased in terms of families of ROBPs, to
make the space bounds meaningful. That is, we assume there is an algorithm that constructs
a 1

2 -hitting set for width-w length-n ROBPs, given w and n as inputs, running in space
s(w, n). Then given inputs f, ε, Theorem 2.1 should be understood to say that we can
estimate E[f ] to within ±ε in space O(s(w′, n′) + log(wn/ε)).

We are most interested in the case that ε is a small constant, but we remark that when
ε is very small, the parameters of Theorem 2.1 could be improved by applying the recent
amplification technique by Ahmadinejad et al. [1].

We first give the derandomization and then give the analysis.

2.1 Derandomization Based on a Local Consistency Test
For x ∈ {0, 1}n′ , we interpret it as a concatenation of wn segments. For each i ∈ [n] and
each v ∈ Vi, there is a segment corresponding to v consisting of a concatenation of t sample
strings of length i, where t is a power of two satisfying t ≥ 4(wnε )2 log(wn). Let p̂→v(x) be
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the fraction of strings that lead to v from the start vertex, among these t sample strings for
v. When x is clear, we simply denote it as p̂→v. Also, for v ∈ V0, we let p̂→v = 1 if v = vstart
and p̂→v = 0 otherwise.

The derandomization conducts a local consistency test Test : {0, 1}n′ → {0, 1} for every
x ∈ H as follows. For all i ∈ [n], for all v ∈ Vi, check if∣∣∣∣∣∣p̂→v −

 ∑
u∈Vi−1

p̂→u · pu→v

∣∣∣∣∣∣ ≤
1 +

∑
u∈Vi−1

pu→v

 ε′, (2)

where ε′ = ε
2wn . If x passes the checks for all v, then Test(x) = 1, otherwise it is 0.

Finally we find an x ∈ H that passes Test, and output p̂→vacc(x) as the approximation of
E[f ].

2.2 Analysis
We now define the “sample verification” function f ′ of f . For each x ∈ {0, 1}n′ , we set
f ′(x) = 1 if and only if for every vertex v in f ,

|p̂→v − p→v| ≤ ε′. (3)

We stress that our derandomization algorithm does not require computing f ′; we define f ′
only for the sake of analysis.

I Lemma 2.2. f ′ can be computed by a width-w′ length-n′ ROBP.

Proof. For each vertex v of f , we construct an ROBP f ′v which simulates f on each sample
string and counts how many lead to v. It stores a state of f and a counter value, for a total
width of w · (t+ 1) and a total length i · t. f ′v accepts if and only if the counter value is in
[p→vt− ε

2wn t, p→vt+ ε
2wn t].

To construct f ′, we take the conjunction of f ′v, over all v in f . Note that this is
a conjunction of ROBPs over disjoint variables. So we can easily see that f ′ can be
computed by an ROBP with width at most w(t+ 1) + 1 ≤

⌈
9w

3n2 log(wn)
ε2

⌉
, length at most

tw
∑n
i=1 i ≤

⌈
5w

3n4 log(wn)
ε2

⌉
. J

I Lemma 2.3. The acceptance probability of f ′ is at least 1
2 .

Proof. By the construction of f ′, for each v of f , there are t uniform random samples. For
each sample string, the probability that it leads to v from vstart in f is p→v. Hence the
expected number of samples leading to v from vstart is p→vt. So by Hoeffding’s inequality,
Pr[|p̂→vt − p→vt| ≥ ε

2wn t] ≤ 2 · 2−2 log(wn) ≤ 2
(wn)2 . There are wn vertices that need to be

tested in f . (For v ∈ V0, the estimate p̂→v is always exactly correct.) Thus by a union
bound,

Pr
[
∀v, |p̂→v − p→v| ≤

ε

2wn

]
≥ 1− 2

wn
.

This is at least 1
2 when considering n to be at least some large enough constant. So by the

definition of f ′, its acceptance probability is at least 1
2 . J

I Lemma 2.4. For every x ∈ {0, 1}n′ , if f ′(x) = 1 then Test(x) = 1.
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Proof. For every i ∈ [n], every v ∈ Vi,

p→v =
∑

u∈Vi−1

p→upu→v, (4)

by the structure of ROBP. So∣∣∣∣∣∣p̂→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣
=

∣∣∣∣∣∣p̂→v − p→v + p→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣
=

∣∣∣∣∣∣p̂→v − p→v +
∑

u∈Vi−1

p→upu→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣ (Equation (4))

≤ |p̂→v − p→v|+
∑

u∈Vi−1

|p→u − p̂→u| pu→v (Triangle Inequality)

≤

1 +
∑

u∈Vi−1

pu→v

 ε′. (Equation (3)) J

I Lemma 2.5. For every x ∈ {0, 1}n′ , if Test(x) = 1 then |p̂→vacc − p→vacc | ≤ ε.

Proof. We use induction to show that for the i-th layer of f ,∑
v∈Vi

|p̂→v − p→v| ≤ 2wiε′.

For the base case, when i = 0, it’s trivially true since we set p̂→v = p→v for each v ∈ V0.
For the induction case, assume the hypothesis is true for layer i. Consider layer i+ 1.∑

v∈Vi+1

|p̂→v − p→v|

=
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p→upu→v

∣∣∣∣∣ (Equation (4))

=
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v +
∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣
≤

∑
v∈Vi+1

(∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v

∣∣∣∣∣+

∣∣∣∣∣∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣
)

≤
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v

∣∣∣∣∣+
∑

v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u|

≤
∑

v∈Vi+1

(
1 +

∑
u∈Vi

pu→v

)
ε′ +

∑
v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u| (Test(x) = 1)

= 2wε′ +
∑
u∈Vi

|p̂→u − p→u| (5)

≤ 2wε′ + 2wiε′ (Induction)
= 2w · (i+ 1) · ε′.
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Here Equation (5) is due to structures of ROBPs. Note that∑
v∈Vi+1

∑
u∈Vi

pu→v =
∑
u∈Vi

∑
v∈Vi+1

pu→v = w,

since for every pair (u, v), pu→v appears and only appears once in the summation. Also due
to the same reasoning,∑

v∈Vi+1

∑
u∈Vi

pu→v|p̂→u − p→u| =
∑
u∈Vi

∑
v∈Vi+1

pu→v|p̂→u − p→u| =
∑
u∈Vi

|p̂→u − p→u|.

As a result, for the last layer,

|p̂→vacc − p→vacc | ≤
∑
v∈Vn

|p̂→v − p→v| ≤ 2wnε′ = ε. J

I Lemma 2.6. The derandomization is in space O(s+ log wn
ε ).

Proof. Since H is computable in space s, for every x ∈ H we can output any specified bit of
it in space O(s+ logn′). So when considering the space for computing Test(x) and p̂→v(x),
we can just regard x as an input string and only consider working space.

Given vertex v in f , we first consider the space for computing p̂→v. By the definition of
p̂→v, we can locate the starting position of the t samples for v, taking space O(log wn

ε ). From
there, we read the t samples one by one. For each sample, we run f from vstart to the layer
of v to test if the sample leads to v. We use a counter c to record the number of samples
leading to v. Then compute p̂→v as c/t. Since t is a power of two, we can store this number
exactly, with no rounding errors. So this step takes space O(log(wn)) +O(log t) = O(log wn

ε ).
Thus the whole computation is in space O(log wn

ε ).
Next we consider Test. By the definition of Test, for every i ∈ [n], for each vertex v ∈ Vi,

we only need to compute p̂→v,
∑
u∈Vi−1

p̂→u · pu→v and then test the inequality (2). This
again takes space O(log wn

ε ). Note that computing Test(x) requires two-way access to x.
So the overall space of the derandomization is O(s+ log wn

ε ). J

Proof of Theorem 2.1. Given a width-w length-n ROBP f , by Lemma 2.2, the function f ′
can be computed by a width-w′ length-n′ ROBP. By Lemma 2.3, the acceptance probability
of f ′ is at least 1/2. Since H is a 1

2 -hitting set for width-w′ length-n′ ROBPs, there exists
x ∈ H s.t. f ′(x) = 1. So by Lemma 2.4, there is an x ∈ H s.t. Test(x) = 1. Hence we can
exhaustively search though H to find an x which passes Test. Further, by Lemma 2.5, for this
x, | p̂→vacc − p→vacc | ≤ ε. This shows the derandomization outputs the desired approximation
for p→vacc .

By Lemma 2.6, the derandomization can be done in space O(s+ log wn
ε ). J

Theorem 1.3 is directly implied from Theorem 2.1. The proof is straightforward by
applying the well known transformation between logspace computations and ROBPs.

3 Deterministic Samplers for Constant-Width ROBPs

In this section, we will show how to use hitting sets to construct deterministic samplers
for constant-width ROBPs, thereby proving Theorem 1.7. Most of the work will go toward
establishing the following reduction, which is meaningful even for slightly super-constant
width.
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I Theorem 3.1. Let w, n ∈ N and let ε > 0. Assume there is an ( ε
2n )-hitting set H for width-

(
(
w
2
)

+ 1) length-n ROBPs computable in space s. Then there is a deterministic ε-sampler
for width-w length-n ROBPs that runs in space O(s+ w log(n/ε)).

Like Theorem 2.1, Theorem 3.1 technically ought to be phrased in terms of families of
ROBPs. We should also clarify the model of space-bounded oracle algorithm. We assume
that the sampler has write-only access to a “query tape” where it can write down an n-bit
query string (the query string does not count against the sampler’s space complexity). The
sampler can then enter a special “query” state, which returns the result of the query into the
algorithm’s state and clears the query tape. This simple model was perhaps first studied by
Ladner and Lynch [19].

3.1 Setting Up the Reduction
Toward proving Theorem 3.1, we begin by setting up some notation. For any ROBP f and a
string x ∈ {0, 1}≤n, let vf (x) be the vertex reached when f reads x. Furthermore, define

pf (x) = E[f(x ◦ Un−|x|)],

i.e., pf (x) = pvf (x)→.
Now, let H ⊆ {0, 1}n be an εH -hitting set for width-(

(
w
2
)

+ 1) ROBPs. For i ≤ n, let Hi

be the set of i-bit prefixes of strings in H, i.e., Hi = {x1x2 . . . xi : x ∈ H}. One can verify
that Hi is an εH -hitting set for width-(

(
w
2
)

+ 1) length-i ROBPs.
Let f be the width-w ROBP to which we have oracle access. Let λ denote the empty

string. Our goal is to estimate pf (λ). For each i ≤ n, define an equivalence relation ∼ on
{0, 1}i by the rule

x ∼ y ⇐⇒ ∀z ∈ Hn−i, f(x ◦ z) = f(y ◦ z).

I Lemma 3.2. If x ∼ y, then |pf (x)− pf (y)| < εH .

Proof. Let i = |x| = |y|. Define g : {0, 1}n−i → {0, 1} by

g(z) = f(x ◦ z)⊕ f(y ◦ z).

The function g(z) can be computed by an ROBP of width
(
w
2
)

+ 1: we have one state in g
for each unordered pair of states in f to run the computations f(x ◦ z), f(y ◦ z) in parallel,
along with one additional ⊥ state in g to indicate that the two computations converged to
the same state. If |pf (x)− pf (y)| ≥ εH , then Hn−i hits g, hence x 6∼ y. J

Let [x] denote the equivalence class of x, so [x] ⊆ {0, 1}|x|. Our deterministic sampler
will be based on numbers p̃f ([x]) ∈ [0, 1] for each equivalence class [x]. The definition of
p̃f will ensure that p̃f ([x]) ≈ pf (x) for typical values of x, although there might be some
anomalous values of x where p̃f ([x]) 6≈ pf (x).

The definition of p̃f ([x]) is inductive. For the base case, when x ∈ {0, 1}n, define
p̃f ([x]) = f(x). This is well-defined, because x ∼ y =⇒ f(x) = f(y). For the inductive step,
suppose x ∈ {0, 1}i with i < n. Define

p̃f ([x]) = max
x′∈Hi∩[x]

(
1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1])
)
, (6)

with the convention that p̃f ([x]) = 0 if Hi ∩ [x] = ∅. Our sampler will output4 p̃f ([λ]). (In
Section 3.3, we will explain in more detail how to efficiently compute p̃f ([λ]).)

4 Actually the sampler’s output differs slightly from p̃f ([λ]) due to rounding errors.

CCC 2020



10:14 Hitting Sets Give Two-Sided Derandomization of Small Space

3.2 Correctness
The upper bound on p̃f ([x]) is straightforward:

B Claim 3.3. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≤ pf (x) + iεH .

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) = pf (x). For
the inductive step i > 0, we consider two cases. If Hi ∩ [x] = ∅, then p̃f ([x]) = 0 and the
claim is trivial. Otherwise, there is some x′ ∈ Hi ∩ [x] such that

p̃f ([x]) = 1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1]) (Equation (6))

≤ 1
2pf (x′ ◦ 0) + 1

2pf (x′ ◦ 1) + (i− 1)εH (Induction)

= pf (x′) + (i− 1)εH
< pf (x) + iεH (Lemma 3.2.) C

The lower bound is a little more subtle. If u is a vertex in layer i of f , we say that u is H-
reachable if there is some x ∈ Hi with vf (x) = u. Otherwise, we say that u is H-unreachable.
Let f̃ be a width-(w + 1) ROBP obtained from f by replacing all H-unreachable nodes with
reject nodes.5

B Claim 3.4. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≥ p
f̃
(x).

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) ≥ f̃(x) = p
f̃
(x).

For the inductive step i > 0, we consider two cases. If f visits some H-unreachable node
when it reads x, then p

f̃
(x) = 0 and the claim is trivial. Therefore, assume that when f reads

x, every node visited is H-reachable. Then there is some x′ ∈ Hn−i such that vf (x) = vf (x′).
Of course when f reads x′, every node visited is H-reachable, so

v
f̃
(x′) = vf (x′) = vf (x) = v

f̃
(x).

Therefore,

p
f̃
(x) = p

f̃
(x′)

= 1
2pf̃ (x′ ◦ 0) + 1

2pf̃ (x′ ◦ 1)

≤ 1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1]) (Induction)

≤ p̃f (x) (Equation (6)).

(The last inequality uses the fact that vf (x) = vf (x′) and hence x ∼ x′.) C

5 More precisely, add an extra node to each layer labeled ⊥. In layers prior to the final layer, both
outgoing edges from ⊥ lead to ⊥, and both outgoing edges from H-unreachable nodes lead to ⊥. In the
final layer, H-unreachable nodes and ⊥ are reject nodes.
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I Corollary 3.5. |p̃f ([λ])− E[f ]| ≤ n · εH .

Proof. By Claim 3.3,

p̃f ([λ]) ≤ pf (λ) + n · εH = E[f ] + n · εH .

In the other direction, by Claim 3.4,

p̃f ([λ]) ≥ p
f̃
(λ) = E

[
f̃
]
.

Define g : {0, 1}n → {0, 1} by

g(x) = 1 ⇐⇒ when f reads x, an H-unreachable node is visited.

Then g can be computed by a width-(w + 1) ROBP by a construction very similar to that
of f̃ . By construction, g rejects every string in H. Therefore, E[g] < εH . Furthermore,
g(x) = 0 =⇒ f(x) = f̃(x). Therefore,

∣∣∣E [f̃]− E[f ]
∣∣∣ < εH , so p̃f ([λ]) > E[f ]− εH . J

3.3 Efficiently Computing p̃f([λ])
To complete the proof of Theorem 3.1, we just need to show how to efficiently compute
p̃f ([λ]). This is fairly straightforward from the definitions; the details follow.

Proof of Theorem 3.1. Say a string x ∈ Hi is a representative if it is the lexicographically
first element of [x] ∩Hi. Let x(i,1), x(i,2), . . . be an enumeration of the representatives in
Hi in lexicographic order. Given i, j, and oracle access to f , one can compute x(i,j) in
space O(s).

Our sampler works its way backward through the branching program, starting at layer n
and ending with layer 0. The sampler stores data about layer i and uses it when processing
layer i − 1. Specifically, the data stored regarding layer i consists of a list of numbers
pi,1, pi,2, . . . , with the interpretation pi,j = p̃f ([x(i,j)]), or rather pi,j ≈ p̃f ([x(i,j)]) due to
rounding error.

For layer n, we can compute this value exactly by setting pi,j = f(x(i,j)). Given these
values for layer i+ 1, we compute pi,j by the rule

pi,j := max
x′∈Hi∩[x(i,j)]
x(i+1,j0)∼x′◦0
x(i+1,j1)∼x′◦1

(
1
2pi+1,j0 + 1

2pi+1,j1

)
, (7)

with the convention pi,j = 0 if there is no suitable triple (x′, j0, j1).
The sampler performs the arithmetic in Equation (7) to within dlog(2n/ε)e bits of precision.

This ensures that the rounding error is not too large in each step; by induction, |pi,j −
p̃f ([x(i,j)])| ≤ ε(n−i)

2n . The sampler outputs p0,1, which is within ε of E[f ] by Corollary 3.5,
since εH = ε

2n .
The number of vertices in each layer of f is at most w, so the number of equivalence classes

in {0, 1}i is also at most w. Therefore, there are at most w representatives in Hi, and hence
there are only w numbers pi,j being stored for each layer. Storing those numbers for the layer
currently being processed and the layer most recently processed takes O(w log(n/ε)) bits of
space, so overall, the space complexity of the sampler is O(s+ w log(n/ε)) as claimed. J

Interestingly, the sampler of Theorem 3.1 can be implemented to be non-adaptive, because
it only queries f at strings of the form x ◦ y or x ◦ b ◦ z, where x ∈ Hi, y ∈ Hn−i, b ∈ {0, 1},
and z ∈ Hn−i−1.
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3.4 Applying the Reduction
Proof of Theorem 1.8. Hoza and Zuckerman constructed an

(
ε

2n
)
-hitting set H even for

polynomial-width ROBPs that can be computed in space O(log2 n+log(1/ε)) [16]. Combining
this result with Theorem 3.1 immediately proves Theorem 1.8. J

To prove Theorem 1.7, we must first amplify the assumed 1
2 -hitting set to get an

(
ε

2n
)
-

hitting set. This is straightforward, although we must pay a small penalty in terms of width,
length, and cardinality.

I Lemma 3.6. Suppose H is a 1
2 -hitting set for width-(w + 1) length-(nm) ROBPs. Divide

each string x ∈ H into blocks of length n, x = x(1) ◦ x(2) ◦ · · · ◦ x(m). Let H ′ = {x(i) : x ∈
H, i ∈ [m]}. Then H ′ is a ( 1

m )-hitting set for width-w length-n ROBPs.

Proof. Let f be a width-w length-n ROBP with E[f ] ≥ 1/m. Define g : ({0, 1}n)m → {0, 1}
by

g(x(1) ◦ · · · ◦ x(m)) =
∨
i∈[m]

f(x(i)).

Then g can be computed by a width-(w + 1) ROBP. Furthermore,

E[g] = 1− (1− E[f ])m ≥ 1−
(

1− 1
m

)m
>

1
2 .

Therefore, H hits g, hence H ′ hits f . J

Proof of Theorem 1.7. Combine Lemma 3.6 with Theorem 3.1. J

4 Negative Result: A Barrier for Upgrading Hitting Sets to PRGs

To directly compare hitting sets and PRGs, it is convenient to address the strings in the
hitting set using a hitting set generator (HSG).

I Definition 4.1. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that G({0, 1}s)
is an ε-hitting set for F .

In our theorem statements so far, we have been somewhat informal with the distinction
between an individual generator vs. a family of generators. Since our negative result is more
“meta” than our other results, we will make a precise definition for clarity’s sake.

I Definition 4.2. Let s(n, t, ε) be a space-constructible6 function. An explicit PRG (HSG)
family for width-w large-alphabet ROBPs with seed length s is a uniform algorithm G that
takes as input the parameters n, t, ε and a string y ∈ {0, 1}s(n,t,ε) and outputs a string
Gn,t,ε(y) ∈ {0, 1}tn. The algorithm runs in space O(s(n, t, ε)), and for each fixed n, t, ε, we
require that Gn,t,ε is an ε-PRG (ε-HSG) for width-w length-n ROBPs over the alphabet
{0, 1}t.

The assumption of Theorem 4.3 says that hitting sets can be upgraded into PRGs with
essentially no loss: the width parameter remains the same, and the seed length only increases
by a constant factor, for any arbitrary setting of n, t, ε. This is only for simplicity’s sake.
The proof would still go through even if the parameters deteriorated a little when moving
from hitting sets to PRGs.

6 I.e., given n, t, ε, the value s(n, t, ε) can be computed in space O(s(n, t, ε)).
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I Theorem 4.3. Let w be a constant. Assume that for every s(n, t, ε), if there exists an
explicit HSG family for width-w large-alphabet ROBPs with seed length s, then there exists an
explicit PRG family for width-w large-alphabet ROBPs with seed length O(s). Then for every
constant α > 0, there exists an explicit PRG family for width-w ROBPs with seed length

O(t+ log(n/ε) logα n).

4.1 From PRGs with Moderate Error to HSGs with Tiny Threshold
As outlined in Section 1.5.3, the proof of Theorem 4.3 is based on two reductions. For
the first reduction, we show how to convert any PRG with inverse polynomial error into
an ε-HSG for any ε. In the regime n ≥ w, our reduction is a generalization of Hoza and
Zuckerman’s reduction [16] to the large-alphabet case t� 1.

I Theorem 4.4. Let w, n, t ∈ N and let ε > 0. Assume there is a ( 1
2w3n2 )-PRG G for

width-w length-n ROBPs over the alphabet {0, 1}t, with seed length and space complexity
bounded by s. Then there is an ε-hitting set H for width-w length-n ROBPs over the alphabet
{0, 1}t, computable in space O(s+ t+ log(wn/ε)).

(Just like Theorems 2.1 and 3.1, Theorem 4.4 technically ought to be phrased in terms of
families of ROBPs.)

4.1.1 Construction of the Hitting Set H
Our hitting set H relies on a hitting set Hrect for combinatorial rectangles [20]. Recall that a
combinatorial rectangle over alphabet Γ of dimension r is a function g : Γr → {0, 1} of the
form g(x1, . . . , xr) = g1(x1) ∧ · · · ∧ gr(xr). Without loss of generality, assume ε < 1

w2n2 and
s ≥ t. The algorithm to enumerate H is as follows.
1. For all r ∈

{
1, 2, . . . ,

⌊
log(1/ε)
log(wn)

⌋}
:

a. Let Hrect ⊆ ({0, 1}s)2r−1 be an ε4-hitting set for combinatorial rectangles over alphabet
{0, 1}s of dimension 2r − 1.

b. For all sequences (x1, y1, x2, y2, . . . , xr−1, yr−1, xr) ∈ Hrect and for all sequences of
nonnegative integers (n1, . . . , nr) satisfying n1 + n2 + · · · + nr = n − r, output the
(nt)-bit string

(G(x1)|n1t) ◦ (y1|t) ◦ (G(x2)|n2t) ◦ (y2|t) ◦ · · · ◦ (yr−1|t) ◦ (G(xr)|nrt). (8)

In Equation (8), the notation y|t denotes the t-bit prefix of the bitstring y. The key difference
between our construction and Hoza and Zuckerman’s original hitting set construction [16] is
the presence of the strings yi, which do not pass through the PRG G.

4.1.2 Proof of Correctness
Hoza and Zuckerman’s reduction was based on a simple structural lemma for ROBPs [16,
Lemma 1]. Toward proving the correctness of H, we will now prove a new variant of that
lemma, applicable to ROBPs over a large alphabet. For two vertices u, v in an ROBP f ,
write u v if there is an edge from u to v. Let  ∗ be the reflexive transitive closure of  ,
i.e., u ∗ v if u = v or there is a path from u to v.

The way to think about Lemma 4.5 is to suppose that one is choosing a route from u

to vacc. Lemma 4.5 suggests two vertices v  u′ that one could visit on the way. Item 2
says that it is not difficult to find v. Item 3 says that if one can make it to u′, it will be
quite a bit easier to find vacc from there. Item 4 says that overall, visiting v and u′ is only a
mild detour.
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In general, in any ROBP over the alphabet Σ, if v  u′, then pv→u′ ≥ 1/|Σ|. In Hoza
and Zuckerman’s lemma [16, Lemma 1], they assume Σ = {0, 1}, and they use the fact that
therefore pv→u′ ≥ Ω(1). At a high level, the reason we need a new structural lemma is that
if Σ is large, pv→u′ might be small. Indeed, observe that Lemma 4.5 does not guarantee any
lower bound on pv→u′ .

I Lemma 4.5. Let f be a width-w, length-n ROBP over any alphabet. Let u be a vertex in
f , and assume 0 < pu→ ≤ 1

wn . Then there is a pair of vertices (v, u′) in f such that:
1. u ∗ v  u′.
2. pu→v ≥ 1

w3n2 .
3. pu′→ ≥ wn · pu→.
4. pu→v · pv→u′ · pu′→ ≥ pu→

w2n .

Proof. Suppose some pair (v, u′) satisfies Item 1, but it violates Item 4. For such a pair,
if we take a random walk from u, the probability that we visit v, u′, and vacc is less than
pu→
w2n . The number of such pairs is at most w2n, so by the union bound, when we start at u
and read random bits, the probability that we visit any such pair and vacc is less than pu→.
Therefore, there is some path from u to vacc that never visits such a pair.

Let u′ be the first vertex along that path that satisfies Item 3. (Such a u′ exists, because
if nothing else we can let u′ = vacc.) Let v be the vertex immediately preceding u′ in the
path. (This makes sense, because pu→ < wn · pu→, so u′ 6= u.) This pair clearly satisfies
Items 1, 3 and 4; all that remains is to verify Item 2. Indeed,

pu→
pu→v

≤ w2n · pv→u′ · pu′→ (Item 4)

≤ w2n · pv→
< w2n · wn · pu→,

where the last inequality holds because u′ is the first vertex in the path satisfying Item 3,
and v precedes u′, so v must not satisfy Item 3. Rearranging completes the proof. J

I Corollary 4.6. Let 0 < ε ≤ 1
wn . Let f be a width-w, length-n ROBP over any alphabet

with E[f ] ≥ ε. Then there is a sequence of vertices

vstart = u1  
∗ v1  u2  

∗ v2  · · · ur  
∗ vr = vacc

such that:
1. For every i, pui→vi ≥ 1

w3n2 .
2. r ≤ log(1/ε)

log(wn) .
3. pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥ ε3.

Proof. We define the sequence inductively, starting with u1 = vstart. Assume we’ve defined
u1, v1, u2, v2, . . . , ui. If pui→ ≥ 1

w3n2 , then set r = i, set vi = vacc, and terminate the sequence.
Otherwise, let (vi, ui+1) be the vertices provided by plugging u = ui into Lemma 4.5.

Item 1 of Lemma 4.5 implies that ui  ∗ vi and vi  ui+1. Item 1 is guaranteed by Item 2
of Lemma 4.5 and the termination condition. By Item 3 of Lemma 4.5, pui+1→ ≥ wn · pui→,
which implies Item 2. Finally, iteratively applying Item 4 of Lemma 4.5 shows that

pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥
pu1→

(w2n)r ≥ ε
3,

i.e., Item 3 holds. J
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We are now ready to complete the proof of correctness of our hitting set H.

B Claim 4.7. If f is a width-w length-n ROBP over the alphabet {0, 1}t with E[f ] ≥ ε, then
f−1(1) ∩H 6= ∅.

Proof. Let u1  ∗ v1  · · ·  ur  ∗ vr be the sequence of vertices guaranteed by Corol-
lary 4.6. Let ni be the distance from ui to vi. Let g : ({0, 1}s)2r−1 → {0, 1} be the following
combinatorial rectangle:

g(x1, y1, x2, y2, . . . , xr−1, yr−1, xr) = 1 ⇐⇒
∀i ∈ [r], G(xi)|nit leads from ui to vi and ∀i ∈ [r − 1], yi|t leads from vi to ui+1.

By Item 1 of Corollary 4.6, pui→vi ≥ 1
w3n2 . Since G has error 1

2w3n2 ,

Pr[G(U) leads from ui to vi] ≥
1
2pui→vi .

Therefore, by Item 3 of Corollary 4.6, E[g] ≥ ε3 · 2−r ≥ ε4. Therefore, there is some sequence
(x1, y1, . . . , yr−1, xr) ∈ Hrect that hits g. By construction, the corresponding element of H is
accepted by f . C

4.1.3 Efficiency
Proof of Theorem 4.4. To complete the proof of Theorem 4.4, let us analyze the space
complexity of H. The number r can be stored using O(log log(1/ε)) bits of space. Using
a construction by Linial, Luby, Saks, and Zuckerman [20], because of our chosen value
of r, we can enumerate Hrect in space O(s + log(1/ε)). The integers n1, . . . , nr can be
straightforwardly stored using O(r logn) = O(log(1/ε)) bits of space. Thus, overall, the
space complexity is O(s+ log(1/ε)). (Recall that we assumed without loss of generality that
ε < 1

w2n2 and s ≥ t.) J

4.2 Application: Unconditional Improved Hitting Sets for
Large-Alphabet ROBPs

As outlined in Section 1.5.3, plugging the class INW generator [17] into the reduction of
Theorem 4.4 already gives something interesting: an improved hitting set for large-alphabet
ROBPs, even of polynomial width.

I Corollary 4.8. Let w, n, t ∈ N and let ε > 0. There is an ε-hitting set H for width-w
length-n ROBPs over the alphabet {0, 1}t, computable in space O(t+log(wn) logn+log(1/ε)).

4.3 Trading a Good Dependence on ε for a Good Dependence on n
Recall that to prove Theorem 4.3, we must (conditionally) construct a PRG with a good
dependence on n. So far, unconditionally, Theorem 4.4 has provided us with an HSG with
a good dependence on ε. The assumption of Theorem 4.3 allows us to convert that HSG
into a PRG with the same seed length, O(t+ log2 n+ log(1/ε)) (for width w, a constant).
In this section, we show how to convert that PRG into another PRG with seed length
O(t+ log3/2 n+ log(1/ε)

√
logn), i.e., we improve the dependence on n at the expense of a

worse dependence on ε. That follows from setting α = 1/2 in the following more general
reduction.
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I Lemma 4.9. Let α ∈ (0, 1) be a constant. Let w, n, t ∈ N and ε > 0. Define m =⌈
2(logn)1−α

⌉
and d = dC log(n/ε)e, where C is an appropriate constant. Assume there is an

( ε
4n )-PRG G for width-w length-m ROBPs over the alphabet {0, 1}d with seed length and
space complexity bounded by s. Then there is an ε-PRG G′ for width-w length-n ROBPs
over the alphabet {0, 1}t with seed length and space complexity O(t+ s · logα n+ log(wn/ε)).

As usual, Lemma 4.9 should technically be phrased in terms of families of ROBPs.
As suggested in Section 1.5.3, the proof of Lemma 4.9 is not particularly novel. It is an
application of traditional seed-recycling techniques, similar to classic constructions of PRGs
for space-bounded computation [22, 17, 24]. Our construction and analysis are especially
similar to Armoni’s work [5].

One difference is that we use randomized samplers rather than extractors for convenience;
in this respect, our construction is similar to a variant of the INW generator [17] described
by Braverman, Cohen, and Garg [8] as a warm-up to their main construction. In particular,
we rely on the following randomized sampler by Goldreich and Wigderson [12].

I Theorem 4.10 ([12, Lemma 6.6]). For all t ∈ N, δ > 0, there exists a function
Samp : {0, 1}t × {0, 1}O(log(1/δ)) → {0, 1}t such that for any7 function f : {0, 1}t → [0, 1],

Pr
x

[∣∣∣∣Ey [f(Samp(x, y))]− E[f ]
∣∣∣∣ ≤ δ] ≥ 1− δ.

Furthermore, given t, δ, x, y as inputs, Samp(x, y) can be computed in space O(t).

We will recursively use the following basic PRG, which stretches t+ dn bits to tn bits. It
might be helpful to think of the case t = 100d.

I Lemma 4.11. Let t, δ be arbitrary, and let Samp : {0, 1}t × {0, 1}d → {0, 1}t be the
randomized sampler of Theorem 4.10. Define G0 : {0, 1}t × ({0, 1}d)n → ({0, 1}t)n by

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

Then G0 fools width-w length-n ROBPs over the alphabet {0, 1}t with error δw2n.

The proof of Lemma 4.11 is straightforward, and we omit it. When reading the proof of
Lemma 4.9, it might be helpful to keep in mind that all “x” variables are strings of length t,
all “y” variables are strings of length s, and all “z” variables are strings of length d.

Proof of Lemma 4.9. Define ni = n/mi. For simplicity, we ignore rounding issues, i.e.,
we assume that ni is an integer and that m = 2(logn)1−α exactly. Let δ = ε

4w2n , and let
d = O(log(wn/ε)) be the length of the second input to the function Samp of Theorem 4.10.
We will recursively define a sequence of PRGs

Gi : {0, 1}t × ({0, 1}s)i × ({0, 1}d)ni → ({0, 1}t)n.

The base case i = 0 is the basic PRG of Lemma 4.11:

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

7 Goldreich and Wigderson analyze the case that f is {0, 1}-valued, but the [0, 1]-valued case automatically
follows with only a quadratic loss in δ.
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For the inductive step i > 0, we define8

Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni)
= Gi−1(x, y1 ◦ · · · ◦ yi−1, G(Samp(yi, z1)) ◦ · · · ◦G(Samp(yi, zni))),

where G is the given PRG. To analyze these generators, let f be a width-w length-n ROBP
over the alphabet {0, 1}t. For each i and each fixing of x, y1, . . . , yi, define

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))

h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1
) = f(Gi(x, y1 ◦ · · · ◦ yi, G(y′1) ◦ · · · ◦G(y′ni+1

)).

These functions are related to one another by the rules

h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1
) = g(x,y1,...,yi)(G(y′1) ◦ · · · ◦G(y′ni+1

)) (9)

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = hx,y1,...,yi−1(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni)). (10)

This shows by induction on i that each g function can be computed by a width-w ROBP
over the alphabet {0, 1}d and each h function can be computed by a width-w ROBP over
the alphabet {0, 1}s.

Let us now show by induction on i that Gi fools f with error (δw2 + εG) ·
∑i
j=0 nj , where

εG is the error of G. The base case i = 0 is already established by Lemma 4.11. For the
inductive step, we have

E
x

y1,...,yi
z1,...,zni

[f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))]

= E
x

y1,...,yi
z1,...,zni

[g(x,y1,...,yi)(z1 ◦ · · · ◦ zni)]

= E
x

y1,...,yi
z1,...,zni

[h(x,y1,...,yi−1)(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni))] (Equation (10))

≤ E
x

y1,...,yi−1
y′1,...,y

′
ni

[h(x,y1,...,yi−1)(y′1 ◦ · · · ◦ y′ni)] + δw2ni (Lemma 4.11)

= E
x

y1,...,yi−1
y′1,...,y

′
ni

[g(x,y1,...,yi−1)(G(y′1) ◦ · · · ◦G(y′ni))] + δw2ni (Equation (9))

≤ E
x

y1,...,yi−1
z1,...,zni−1

[g(x,y1,...,yi−1)(z1 ◦ · · · ◦ zni−1)] + (δw2 + εG) · ni

= E
x

y1,...,yi−1
z1,...,zni−1

[f(Gi−1(x, y1 ◦ · · · ◦ yi−1, z1 ◦ · · · ◦ zni−1))] + (δw2 + εG) · ni.

The lower bound follows the same argument. Let r = logα n and G′ = Gr. Then G′ fools f
with error

(δw2 + εG) ·
r∑
i=0

ni ≤ (δw2 + εG) · n ·
∞∑
i=0

m−i ≤ 2n · (δw2 + εG) ≤ ε.

Furthermore, the seed length of G′ is t+ rs+ d as claimed, and the space complexity of G′
is clearly also O(t+ rs+ d). J

8 Note that strictly speaking, we are using two instantiations of Samp. In the base case, Samp has output
length t, whereas in the inductive step, Samp has output length s. Hopefully, using the same name
Samp for both samplers will not cause confusion.
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4.4 Putting Things Together to Prove Theorem 4.3
Proof of Theorem 4.3. We will show by induction on a that for each constant a ∈ N, there
is an explicit PRG family for width-w ROBPs with seed length O(t + log(n/ε) log1/a n).
The base case a = 1 holds unconditionally – this is the seed length of the classic INW
generator [17].

For the inductive step, suppose a > 1. Let t, n, ε be arbitrary; we will construct an ε-PRG
for width-w length-n ROBPs over the alphabet {0, 1}t. Define α = 1/a. Let m = 2(logn)1−α

and d = C log(n/ε), as in Lemma 4.9.
By induction, there is a ( 1

2w3m2 )-PRG G for width-w length-m ROBPs over the alphabet
{0, 1}d, with seed length and space complexity bounded by O(d+ log1+ 1

a−1 m). Now,

log1+ 1
a−1 m = (logn)(1− 1

a )·(1+ 1
a−1 ) = logn,

so G has seed length and space complexity bounded by O(log(n/ε)). Plugging G into
Theorem 4.4, we get an ( ε

4n )-hitting set H for width-w length-m ROBPs over the alphabet
{0, 1}d, computable in space O(log(n/ε)). Now we use our assumption to convert H into a
PRG G′ with exactly the same parameters. Finally, plugging G′ into Lemma 4.9 gives the
desired PRG. J

5 Directions for Further Research

In this paper, we have shown that hitting sets for RL would derandomize BPL. Constructing
a hitting set is the most natural way to prove L = RL, but there are also other approaches. In
general, does L = RL imply L = BPL? In the polynomial-time setting, the “promise” variant
of this question has been answered in the affirmative, i.e., prP = prRP =⇒ P = BPP [9].
Does prL = prRL imply L = BPL? Or relaxing the challenge even further, does L = NL
imply L = BPL?

We gave two different algorithms for estimating the expectation of an ROBP given
a hitting set, one suited for w = poly(n) (Theorem 2.1) and one suited for w = O(1)
(Theorem 3.1). What about the case n = polylogw? Unconditionally, there are optimal
hitting sets known in this regime [2, 16]. Given such an ROBP f as input, is it possible
to compute E[f ] ± 1

w in space O(logw)? (The Nisan-Zuckerman PRG [24] achieves seed
length O(logw) in this regime, but only for moderate error ε� 1

w .) An affirmative answer
would imply that any space-s decision algorithm that uses n random bits could be simulated
by another space-O(s) algorithm using only O(n/sc) random bits, where c is an arbitrarily
large constant.

Recently, Meka, Reingold, and Tal constructed a PRG for width-3 ROBPs with seed
length Õ(logn log(1/ε)) [21]. This is near-optimal when ε is not too small, but for ε = 1/n
it is worse than Nisan’s PRG [22]. On the other hand, there is an explicit hitting set for
width-3 ROBPs with near-optimal seed length Õ(log(n/ε)) [14]. Can one construct an explicit
deterministic sampler for width-3 ROBPs with near-optimal seed length? Unfortunately, to
produce a deterministic sampler for width-3 ROBPs, Theorem 3.1 would require a hitting
set for width-4 ROBPs.

Assuming the existence of a log-space hitting set for polynomial-width ROBPs, is it
possible to construct a log-space deterministic sampler for polynomial-width ROBPs?

Recall that PRPDs are superior to deterministic samplers (see Figure 1). Is it possible to
improve Theorem 1.7 so that it concludes with a PRPD rather than a mere deterministic
sampler?
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A Derandomizing BPP Given a Hitting Set

I Theorem A.1 ([3]). Assume that for every s, n ∈ N, there is a 1
2 -hitting set Hs,n for size-s

circuits on n input bits that can be computed in time poly(s, n). Then P = BPP.

Proof. By naïve amplification, we may assume that the randomized algorithm has failure
probability 2−N , where N is the input length. Let C be a size-n circuit on n input bits
describing the action of this algorithm on its random bits, so n = poly(N) and we are trying
to distinguish the cases E[C] ≤ 2−N vs. E[C] ≥ 1− 2−N . Our algorithm accepts if and only
if there exists x ∈ Hnc,n such that for all y ∈ H3n,n, C(x ⊕ y) = 1. Here, c is a suitable
constant that will become clear later. The runtime is clearly poly(N).

For the correctness proof, first suppose E[C] ≤ 2−N . For any fixed x, the function
y 7→ ¬C(x⊕ y) has expectation at least 1− 2−N and can be computed by a circuit of size
3n. Therefore, there is some y ∈ H3n,n such that C(x ⊕ y) = 0, and hence our algorithm
rejects. Conversely, suppose E[C] ≥ 1− 2−N . Consider sampling x ∈ {0, 1}n and y ∈ H3n,n
uniformly at random. Since x is uniform, Ex,y[¬C(x⊕ y)] ≤ 2−N . By Markov’s inequality,

Pr
x∈{0,1}n

[
E

y∈H3n,n
[¬C(x⊕ y)] < 2 · 2−N

]
> 1/2.

Since H3n,n can be computed in polynomial time, |H3n,n| ≤ poly(N). Therefore, when N is
sufficiently large,

E
y∈H3n,n

[¬C(x⊕ y)] < 2 · 2−N =⇒ E
y∈H3n,n

[¬C(x⊕ y)] = 0.

https://doi.org/10.1007/BF01683260
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Therefore,

Pr
x∈{0,1}n

[∀y ∈ H3n,n, C(x⊕ y) = 1] > 1/2.

Given input x, the predicate ∀y ∈ H3n,n, C(x⊕ y) = 1 can be computed by a circuit of size
nc for some suitable constant c. Therefore, there is some x ∈ Hnc,n that hits that circuit. J
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Abstract
A tree code is an edge-coloring of the complete infinite binary tree such that every two nodes of equal
depth have a fraction–bounded away from 0–of mismatched colors between the corresponding paths
to their least common ancestor. Tree codes were introduced in a seminal work by Schulman [29]
and serve as a key ingredient in almost all deterministic interactive coding schemes. The number of
colors effects the coding scheme’s rate.

It is shown that 4 is precisely the least number of colors for which tree codes exist. Thus,
tree-code-based coding schemes cannot achieve rate larger than 1/2. To overcome this barrier, a
relaxed notion called palette-alternating tree codes is introduced, in which the number of colors can
depend on the layer. We prove the existence of such constructs in which most layers use 2 colors–the
bare minimum. The distance-rate tradeoff we obtain matches the Gilbert-Varshamov bound.

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity. To analyze our protocol, we prove a structural
result on the location of failed communication-rounds induced by the error pattern enforced by the
adversary. Our coding scheme is efficient given an explicit palette-alternating tree code and serves
as an alternative to the scheme obtained by [13].
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1 Introduction

Tree codes are a powerful combinatorial structure, defined and proven to exist in [29] in
order to serve as a key ingredient for achieving a constant rate interactive coding scheme.
Tree codes are the central object for encoding information in the interactive coding theory
which developed from the initial papers. They remain a crucial building block in almost all
interactive coding schemes [26, 10, 8, 13, 3, 5, 2, 4, 16, 17, 22, 1, 14, 7, 19, 32].

We turn to formally define tree codes. Let T be a rooted binary tree that is endowed
with an edge coloring from some ambient color set (or alphabet) Σ. Let u, v be a pair of
vertices in T with equal depth and a least common ancestor w. Let ` be the distance, in
edges, from u to w. Let pu, pv ∈ Σ` be the sequences of colors on the path from w to u and
to v, respectively. We define h(u, v) to be the relative Hamming distance between pu and pv.

I Definition 1 (Tree codes [29]). Let T be the complete rooted infinite binary tree. The tree
T , together with an edge-coloring of T by a color set Σ is called a tree code with distance δ
if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. When there is no
δ > 0 for which T is a tree code with distance δ we say that T has vanishing distance.
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Schulman [29] proved that for every distance parameter δ < 1 tree codes with a constant
number of colors c = c(δ) exist. Although tree codes are used in different ways by different
interactive coding schemes, one aspect is common to all: When a party wishes to send a bit,
a suitable color from Σ is sent instead. Thus, the rate of all tree-code-based coding schemes
is bounded above by 1/ log2 |Σ|. One is led to ask a natural combinatorial question–what is
the least number of colors in a tree code with non-vanishing distance?

1.1 Tree codes: 4 colors suffice and are necessary

We first observe that 3 colors do not suffice and, as a result, the rate of every tree-code-based
coding scheme cannot exceed 1/2, let alone approach capacity. Consider any 3-color tree
code. First, we may assume that every two siblings are connected to their parent with edges
having distinct colors as otherwise the distance of the tree code is 0. Let u, v be any two
vertices. Out of u, v go four edges and so by the pigeonhole principal in every 3-coloring,
two of these edges share the same color. By the above, one of these edges goes out of u and
the other goes out of v. This implies that, starting from the two sons of the root, one can
construct two paths of any desired length n ≥ 1 with the same color pattern, establishing
that the tree has vanishing distance.

Based on the ideas Schulman introduced to prove the existence of tree codes with a
constant number of colors, we complement the above observation and establish that 4 colors
suffice for a tree code with non-vanishing distance.

I Theorem 2. There exists a 4-color tree code with distance 0.136.

The proof of Theorem 2 appears in Section 3. As Schulman’s original proof for the
existence of tree codes, Theorem 2 is nonconstructive. Coming up with explicit constructions
of non-vanishing distance tree codes with a constant number of colors is one of the most
challenging problems in this field [30, 15, 6, 25, 23, 13, 11, 24]. The currently best known
result [11] guarantees any designated distance δ < 1 when using (logn)Oδ(1) colors at depth n.
This work, however, concerns with the information-theoretic aspect of the channel capacity,
and the computational aspects are left for future work.

While our proof of Theorem 2 closely follows Schulman’s proof, and the observation that
4 colors are necessary is easy to prove, to the best of our knowledge, this basic combinatorial
result was not known and, furthermore, we find it surprising that merely 4 colors suffice
to guarantee such a strong combinatorial structure. Still, even if 4 is a surprisingly small
number of colors, an interactive coding scheme that uses a 4-color tree code would have rate
bounded above by 1/2.

1.2 Palette-alternating tree codes

To save on communication, one might hope to avoid the use of the tree code “every now
and then”. However, if one sends a bit in the clear without encoding it, and that bit is
flipped by the adversary, the simulation seems doomed to fail without some way of generating
an unpredictable verification (which can be done when considering randomized schemes).
Perhaps a better idea would be to try and apply puncturing–a standard tool from classic
error correcting codes used for improving the rate of a code. However, the distance of a tree
code is far more sensitive than the distance of a standard error correcting code. In particular,
changing the color of a single edge can cause the distance to vanish. It is thus not clear how
one can “puncture” a tree code without vanish its distance.
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Our key insight is to consider a variant of tree codes we call palette-alternating tree codes
in which the number of colors is allowed to depend on the depth. A good first example
to have in mind is a coloring that uses 4 colors in even layers and 2 colors in odd layers.
To our surprise, such palette-alternating tree codes with non-vanishing distance exist! To
calculate the rate-overhead incurred by using this palette-alternating tree code, observe that
the number of bits sent when using an (even) depth-n palette-alternating tree code is

n

2 log2 2 + n

2 log2 4 = 3
2n,

and so the rate incurred by the encoding is 2/3, improving upon the 1/2 rate one would
get by using the best available tree code. Note that this even beats the rate of a 3-color
tree code–had it existed–since log2 3 > 3/2. Put differently, in an amortized sense, the
palette-alternating tree code above requires only 23/2 ≈ 2.83 colors.

One can get greedy and ask whether a palette-alternating tree code that uses, say, 4
colors at layers 0, 3, 6, ... and 2 colors in the remaining layers exist. If so, one can potentially
improve the scheme’s rate to 3/4. We prove the existence of such palette-alternating tree
codes. In fact, we show that one can use 4 colors as seldom as she please and 2 colors–the
bare minimum–in most layers. We turn to give a formal treatment of the above discussion.

I Definition 3 (Palette-alternating tree codes). Let Σ0, . . . ,Σc−1 be (not necessarily distinct)
sets. Let T be the complete rooted infinite binary tree. A palette-alternating tree code is an
edge-coloring of T where at layer t ∈ N the colors are taken from the set Σt (mod c). T is said
to have distance δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ.
We define the rate ρ of T to be the number satisfying

1
ρ

= 1
c

c−1∑
i=0

log2 |Σi|.

We suggest that the flexibility introduced by palette-alternating tree codes allows one to
better capture the notion of rate in the online setting. Indeed, the importance of rate is only
significant when “long” messages are being sent and so, informally, using a big palette of colors
only once in a while should not be considered as an indication of poor rate. Our definition of
rate formalizes that property. Note that we still insist on having the distance measured in
terms of worst-case–a must as we wish to replace tree codes with palette-alternating tree
codes in interactive coding schemes. It is only the rate that is being, in a sense, amortized.

As mentioned, we prove that palette-alternating tree codes can have rate approaching
arbitrarily close to 1 while maintaining non-vanishing distance, thus bypass the 1/2 bound
proven for (standard) tree codes.

I Theorem 4. For every ε > 0 there exists a palette-alternating tree code with rate 1 − ε
and distance δ = Ω(ε · log−1(1/ε)).

Comparison with the Gilbert-Varshamov bound

Observe that the distance-rate trade-off obtained in Theorem 4 is the same as the one
obtained by the Gilbert-Varshamov bound for standard offline binary error correcting codes,
and in particular is optimal (up to constant factors). Interestingly, while it is known that the
channel capacity in the online setting is 1−Θ(

√
ε log(1/ε))–significantly lower than in the

offline setting [20], the online requirement on the encoding function itself does not cost more
in terms of the distance-rate trade-off. Rather, it is the additional overhead incurred by the
mechanism required for synchronization that is responsible for the lower channel capacity in
the online setting. We elaborate more on this in Section 1.3.
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The proof of Theorem 4, which can be found in Section 4, is based on a variant of the
construction we use in Theorem 2. There, the alphabet symbols are taken from the field of
four elements, F4. The key idea in obtaining the savings in the alphabet size is to trace the
F4 field elements down to F2 in most layers. Interestingly, we cannot afford to work over the
field F3 as we crucially rely on the fact that the characteristic of the fields is 2 as well as on
the smaller field being a subfield of the larger one.

1.2.1 Palette-alternating tree codes: further discussion and
generalization

We remark that it is not clear if one can start from an arbitrary 4-color tree code and
change some of the layers to have only 2 colors (in a sense, effectively puncturing the 4-color
tree code) while maintaining non-vanishing distance. Our proof seems to have the effect of
“correlating” the colors in the 4-color layers with the paths that contain them. To emphasize
this point, note that a 2-color layer does not immediately “buy” us redundancy. Nevertheless,
the 2-color layers have the important task of making sure that the 4-color layers do. Indeed,
by switching the colors of siblings in the 2-color layers one can potentially vanish the distance.

It is also interesting to compare palette-alternating tree codes that use 2 colors in most
layers with some of the known probabilistic schemes [20, 18] that take the following strategy:
in most rounds simulate the protocol as is (namely, assuming no errors occur) and only
rarely verify the transcript using hash functions. It is tempting to compare the 2-color layers
in a palette-alternating tree code with the error-free part of the simulation and the 4-color
layers with the verification rounds. Indeed, at the very least, both the 2-color layers and the
error-free part cost nothing in terms of rate. The crucial difference, however, lies in the fact
that while the error-free simulation does not carry any weight in terms of error correction,
the 2-color layers do.

We end this section by proposing a more general, and arguable more natural, definition
than palette-alternating tree codes which allows for different palettes used at different layers
without being necessarily periodical. While our proof of Theorem 4 yields a palette-alternating
tree code, we believe that the more general definition is worth presenting here. For simplicity,
we identify a finite color set Σ with {1, 2, . . . , |Σ|}.

I Definition 5 (Dynamic-Palette Tree Codes). Let c : N→ N. Let T be the complete rooted
infinite binary tree. A dynamic-palette tree code is an edge-coloring of T where at layer
t ∈ N the colors are taken from the set {1, 2, . . . , c(t)}. T is said to have distance δ if for
every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. We define the rate ρ of
T to be the number satisfying

1
ρ

= inf
`∈N

1
`

∑̀
i=1

log2 c(i).

1.3 Interactive coding schemes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity. Our coding scheme is efficient given
an explicit construction of palette-alternating tree codes and serves as an alternative to
the scheme obtained by Gelles et al. [13]. In this section we describe our result and proof
technique. We start by reviewing basic notions in interactive coding schemes.
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Communication complexity
Communication complexity addresses a basic question: If several parties wish to compute a
function of the information they jointly possess, how long does their conversation need to be?
In its most basic form, one considers two parties, Alice and Bob, that would like to jointly
compute a function f : {0, 1}n×{0, 1}n → {0, 1} of their respective inputs x, y ∈ {0, 1}n. The
parties can communicate over a channel, and their goal is to compute f(x, y) by exchanging
as few bits as possible.

An interactive computation as above is performed via a communication protocol π which
consists of a pair of algorithms πA and πB run by Alice and Bob, respectively. In this
paper we focus on deterministic protocols, that is, πA and πB are deterministic algorithms.
Informally, the communication is performed in rounds where the protocol dictates what is
sent in each round based on the round number, the input of the party, and the bits received
so far. After some number of rounds r = r(x, y) the protocol terminates, at which point
both parties know f(x, y). The (deterministic) communication complexity of the protocol π
is given by CC(π) = maxx,y r(x, y). The communication complexity of f , denoted by CC(f),
is the minimum of CC(π) over all protocols π that compute f .

Interactive coding schemes
One aspect that is always an issue when considering communication are errors in transmission
introduced by imperfect or compromised channels. The research field of coding for interactive
communication that addresses this issue was initiated in a sequence of seminal papers by
Schulman [28, 29, 31], and is by now an active and exciting research field (see Gelles’s
excellent survey [12]). There are several models one can consider. For examples, transmitted
bits can be erased (replaced with a senseless symbol ⊥) or worse–flipped–leaving no trace to
the occurred error. In this paper we focus on perhaps the most well-studied model in which
bits can be flipped. Further, we consider the most difficult setting of adversarial errors in
which any ε-fraction of the bits might be flipped.

A protocol π is said to be ε-resilient if the protocol preserves its functionality even at the
presence of ε-fraction of adversarial errors. The ε-resilient communication complexity of f ,
denoted by CCε(f), is the minimum of CC(π) over all ε-resilient protocols π that compute
f . For any fixed function f it is clear that CCε(f) is non-decreasing as ε increases. In the
extreme cases CC0(f) = CC(f) whereas CC1(f) =∞, namely, CC1(f) is unbounded.

Resilient protocols are typically obtained by devising an interactive coding scheme which,
informally, is a compiler CSε that is parameterized by the resiliency parameter ε. Given a
protocol π, the interactive coding scheme produces an ε-resilient protocol CSε(π) = πε that
computes the same function as π. The goal is to design an interactive coding scheme with
low overhead in communication. Namely, one would like to maximize ρ(π) = CC(π)/CC(πε).
The rate of the interactive coding scheme ρ(CSε) is the infimum of ρ(π) over all protocols π.

Channel capacity
Focusing on the channel itself, rather than on any specific function f , one can define the
channel capacity Cap : [0, 1]→ [0, 1] by

Cap(ε) = inf
f

(
CC(f)
CCε(f)

)
,

where the infimum is taken over all functions f : {0, 1}n × {0, 1}n → {0, 1} for all n ≥ 1.
Note that Cap(0) = 1 whereas Cap(1) = 0. A fundamental problem in interactive coding
theory, and the focus of this work, is the study of the channel capacity Cap(ε).
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We remark that the channel capacity can be defined with respect to other models and a
huge body of work is devoted to the study of the channel capacity in our setting as well as for
other channels, most notably binary symmetric channels (BSC) in which every bit is flipped
independently with probability ε. Moreover, one needs to specify other properties of the
protocols so as to formalize the problem. For example, is the turn of speak predetermined by
the protocol or can it depend on the exchanged bits? In case of such “adaptive” protocols,
what happens if both parties send a message at the same round?

As in most works, we focus on non-adaptive protocols in which the turn of speak is
fixed in advance. For concreteness, we focus on alternating protocols where Alice speaks at
even rounds and Bob speaks at odd rounds. We made this choice mostly for convenience
and our results can be straightforwardly generalized. We also assume that the channel is
binary. This is the most difficult setting and allowing for channels over a larger alphabet,
especially one that can depend on the error parameter ε, only makes the problem of devising
protocols easier.

In his seminal work [29], Schulman proved that Cap(ε) > 0 for some ε > 0. In a tour
de force result, Kol and Raz [20] gave a tight bound of Cap(ε) = 1−Θ(

√
ε log 1/ε) on the

channel capacity in this setting for non-adaptive probabilistic protocols. Their upper bound
clearly holds for adversarial errors as well. Gelles et al. [13] gave the first deterministic coding
scheme against adversarial errors, derandomizing Haeupler’s protocol [18], that approaches
capacity, namely, their coding scheme has rate 1−O(

√
ε log 1/ε).

1.4 Capacity approaching coding schemes via palette-alternating tree
codes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity and thus matches the rate obtained
by [13]. The advantage of our coding scheme is that given an explicit construction of palette-
alternating tree codes, our scheme is efficient. We believe that the recent progress on tree
code constructions [11, 24] may eventually lead to constructions of palette-alternating tree
codes. The coding scheme suggested in [13], on the other hand, relies on a certain counting
argument, and it is not clear to us how to obtain an efficient scheme based on these ideas.

I Theorem 6. Let ε > 0. Assume there exists an explicit palette-alternating tree code with
rate 1− ε and distance δ = Ω(ε · log−1(1/ε)) (which, computational aspects aside, we know
exists by Theorem 4). Then, there exists an efficient deterministic coding scheme against
ε-fraction of adversarial errors with rate 1−O(

√
ε log(1/ε)).

1.4.1 Proof idea
In the remaining of this section, we elaborate on some of the ideas that go into our construction
and analysis of Theorem 6.

1.4.1.1 Synchronization

Interactive coding schemes that make use of tree codes do not simply encode the bits that are
meant to be sent by the non-resilient protocol π using the tree code. These schemes also need
to implement a mechanism for making sure that both parties are, in a sense, synchronized.
Indeed, informally, the errors have the effect of causing the parties to transmit data with
respect to information that was never sent to them. Without a way to synchronize, even
with no additional errors, the parties will not be able to make progress on simulating the
protocol as the information they exchange is irrelevant.
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Thus, on top of the bits that the parties would have communicate without the presence
of errors, some meta data used for synchronization must be maintained and transmitted.
Both the “data bits” as well as the “sync bits” are encoded using a tree code before sent
over the channel. Thus, the rate of deterministic interactive coding schemes is determined
both by the rate of the tree code as well as by the overhead required for synchronization.

To obtain interactive coding schemes with rate approaching 1 we need, on top of replacing
a tree code with a palette-alternating tree code, to have a low overhead in synchronization.
There are two main obstacles for accomplishing that:

1. One must argue that not too many sync bits are needed to successfully maintain syn-
chronization; and

2. One needs to distinguish between sync bits and data bits which in previous works was
effectively done by sending a bit indicating the bit “type” (more precisely, a larger
alphabet was used followed by an alphabet reduction).

The first issue is fairly straightforward to handle. Indeed, it is intuitive that in a sensible
scheme, the amount of synchronization required is proportional to the fraction of errors and
this is true for both Schulman’s coding scheme [29] and for Braverman-Rao’s scheme [9]. The
second issue requires more care. Braverman-Rao’s scheme is very dynamic and on any given
round the bit type depends on the error pattern enforced by the adversary. Although most
bits are data bits, it seems difficult to argue that their scheme can be made to have high
rate. Luckily, we are able to devise a coding scheme based on some adaptation of Schulman’s
original ideas. The coding scheme obtained, however, does not approach capacity, and has
rate 1− Õ( 3

√
ε) (see Section 5.3). Further ideas are required to prove Theorem 6 which we

discuss next.

1.4.1.2 Clusters of failed decoding rounds

In order to approach capacity, we examine more closely the effect that adversarial errors have
on (palette-alternating) tree codes. Schulman’s analysis is based on bounding the number of
rounds in which decoding fails. More precisely, it was shown [29] that if one encodes using a
tree code with distance δT C then at most O(ε/δT C) fraction of rounds would result in failed
decoding. We prove a structural result, refining the quantitative one, regarding where these
“bad” rounds may occur as a function of the locations of the adversarial errors. We show
that the bad rounds are, in a sense, clustered around the errors that are introduced. We
exploit this structure to obtain a tighter analysis of our protocol, and achieve the stated,
optimal, rate.

1.5 Organization

In Section 2 we give the formal definitions of protocols and interactive coding schemes, as well
as setting notation and state some known results we use. In Section 3 we prove Theorem 2
which asserts that 4-color tree codes exist. While not directly applicable to our proof of
Theorem 6, we encourage the reader to read the proof (including Section 3.1) as ideas from
the proof will be used for proving the existence of palette-alternating tree codes (Theorem 4).
In Section 4 we prove Theorem 4. Lastly, in Section 5, we prove Theorem 6 where first, in
Section 5.3, we give a sub-optimal analysis.
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2 Preliminaries

Unless otherwise stated, all logarithms are taken to the base 2. We denote by N the set of
natural numbers (of course, including 0), and write N1 for N\{0}. For integers a ≤ b we write
[a, b] for all integers in this interval. For an integer c ≥ 1, we let [c] = {1, 2, . . . , c}. We follow
the convention that strings are indexed starting from 1. For two strings x, y ∈ Σ1 × · · · ×Σn,
we denote by ∆(x, y) their hamming distance. We make use of the following standard
inequalities.

I Lemma 7. For every integers 1 ≤ k ≤ n with k
n = δ ≤ 1

2 it holds that

k∑
i=0

(
n

i

)
≤ 2H(δ)n.

I Lemma 8. For every 0 < x < 1
2 it holds that

x

2 log2(6/x) ≤ H
−1(x) ≤ x

log2(1/x) .

2.1 Coding for interactive communication

2.1.1 Communication protocols

In this section we briefly recall some basic definitions from communication complexity. For
more details we refer the reader to [21, 27]. Let T = (V,E) be a complete finite rooted binary
tree. Given an internal vertex v in T , define son(v, 0), son(v, 1) to be the left son and the
right son of v in T , respectively. Extend son for bit strings of length n ≥ 1 in the natural
way and denote by path the function that given x ∈ {0, 1}n, returns the edges on the unique
rooted path to son(root(T ), x). A communication protocol π consists of:

A function fv : {0, 1}n → {0, 1} for every internal node v in T .

A label player(v) ∈ {A,B} for each internal node v.

A label value(v) ∈ {0, 1} for every leaf v.
The protocol π induces a function f = f(π) : {0, 1}n × {0, 1}n → {0, 1} in the following
natural way. Given x, y ∈ {0, 1}n, for every internal node v ∈ V , if player(v) = A let d = fv(x)
and otherwise let d = fv(y). Let u be the left son of v if d = 0 and otherwise let u be
the right son of v. Thus, given x, y, from every internal node v goes out exactly one edge
ev(x, y) = (v, u(x, y)). Let E(x, y) = {ev(x, y) | v internal node} be the set of these edges.
Observe that the edge set E(x, y) induces a unique root to leaf path in T . Let v(x, y) be
that unique leaf that is reachable from the root. We define f(x, y) = value(v(x, y)). We write
depth(π) for the depth of T .

The computation above of f(x, y) can be made by two parties, Alice that holds x and
Bob that holds y, that can communicate over a channel, in the natural way. Namely, at node
v, if player(v) = A then Alice sends to Bob fv(x) wheres at a node v with player(v) = B

Bobs sends fv(y) to Alice. It is clear that the number of bits communicated is the depth of
the tree. We say that a protocol is alternating if player(v) = A if and only if v is at even
depth. From here on we focus only on alternating protocols.
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2.1.2 The pointer jumping game

The pointer jumping game is, in a sense, a complete problem for interactive protocols. Let
T = (V, F ) be a complete finite rooted binary tree. The depth of a vertex v is the distance,
measured in edges, from the root to v. In particular, the depth of the root is 0. We partition
the internal nodes of T to V = VA ∪ VB, where VA contains all nodes at even depth and
VB all nodes at odd depth. We partition the edge set F = X ∪ Y with X being the edges
going out of VA and Y the edges leaving VB. We call a subset of edges E ⊆ F consistent
if every internal node has exactly one outgoing edge in E. Given a consistent set of edges
E, we partition E = EA ∪ EB where EA = E ∩ X and EB = E ∩ Y . It is convenient to
represent EA and EB by functions πA : VA → {0, 1}, πB : VB → {0, 1} as follows: for v ∈ VA,
πA(v) = 0 if and only if the edge in EA that goes out of v is to the left son of v, and similarly
for πB .

Note that in any consistent set of edges E there is a unique root to leaf path. The pointer
jumping game is a function that given a consistent set of edges E returns the unique leaf
reachable from the root using the edge set E. Consider a function f : {0, 1}n×{0, 1}n → {0, 1}
and a protocol π for f . Note that for any fixed x, y the task of computing the value f(x, y) is
an instance of the pointer jumping game. In that sense, the pointer jumping game is complete.
Given a function f as above, it is sometimes convenient to consider a corresponding pointer
jumping game of depth R > n in which the edge leaving every vertex of depth larger than n
points to its left son (this choice is of course arbitrary and any fixed choice will do).

2.1.3 Resilient protocols and interactive coding schemes

A protocol π is said to be ε-resilient if on any pair x, y ∈ {0, 1}n, in the above two party
computation, both Alice and Bob compute f(x, y) correctly even if at most ε-fraction of the
communicated bits are flipped. An interactive coding scheme (coding scheme for short) is a
function CSε, parameterized by ε ∈ [0, 1], that gets as input a protocol π and outputs an
ε-resilient protocol πε = CSε(π) with f(πε) = f(π). The rate of the coding scheme CSε is
defined by

ρ(CSε) = inf
π

depth(π)
depth(πε)

.

Observe that for the purpose of devising a coding scheme CSε one may assume that the
inputs x, y are fixed. Thus, it suffices to focus on the problem of devising a coding scheme
for the pointer jumping game.

3 Binary Tree Codes: Four Colors Suffice

In this section we prove Theorem 2. We start by setting some notation. Let T be the infinite
complete rooted binary tree. We identify length-n paths in T that starts at the root with
length-n binary strings in the natural way. Namely, we identify left son and right son with 0
and 1, respectively. Given a node v at depth n ≥ 1 we define pv ∈ {0, 1}n to be the string
that encodes the (unique) path from the root to v.

An edge-coloring of T by a color set Σ is given by a function, which for ease of readability,
we slightly abuse notation and also denote by T : {0, 1}N1 → ΣN1 , where the color of an edge
e = u→ v is T (pv)depth(v). Note that T is an online function, namely, for every x ∈ {0, 1}N1

and i ∈ N1, the value T (x)i is determined by x1, . . . , xi.
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The (probabilistic) construction
Let {Ri}i∈N1 be a sequence of independent random variables, each is uniformly distributed
over F4–the field of 4 elements. Let F2 be the (unique) subfield of F4 of size 2. Define the
(random) coloring function T : FN1

2 → FN1
4 (where we identify F2 and {0, 1} in the natural

way) as follows: for every t ∈ N1

T (x)t =
t∑
i=1

Rt+1−ixi. (1)

I Definition 9. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . For k = 1, . . . , `

we define the random variable

av(x, y, k) = T (pv ◦ 1 ◦ y)n+k − T (pv ◦ 0 ◦ x)n+k.

Note that av(x, y, k) is a (random) element in F4. We define the integral random variable

hv(x, y) =
∑̀
k=1

Ik,

where Ik is the indicator random variable that equals 1 when av(x, y, k) 6= 0. Note that
hv(x, y) ∈ {0, 1, . . . , `} is the Hamming distance between T (pv ◦ 0 ◦ x)[n+1,n+`] and T (pv ◦ 1 ◦
y)[n+1,n+`].

B Claim 10. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, for every k ∈ {1, . . . , `}

it holds that

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i.

Proof. Denote the depth of v by n. Fix k ∈ {1, . . . , `}. By Equation (1),

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i. C

B Claim 11. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent and each is uniformly distributed over F4.



G. Cohen and S. Samocha 11:11

Proof. By Claim 10, av(x, y, k) = Rk + Lk where Lk is some F4-linear combination of
R1, . . . , Rk−1. Therefore, av(x, y, k) is independent of the joint distribution of av(x, y, 1),
. . . , av(x, y, k − 1). As this holds for every k we have that av(x, y, 1), . . . , av(x, y, `) are
independent. To conclude the proof, note that for every fixing of R1, . . . , Rk−1, av(x, y, k) =
Rk + `k for some fixed `k ∈ F4 and so av(x, y, k) is uniform over F4. C

B Claim 12. For every two vertices u, v in T and every x, y ∈ F`−1
2 ,

hv(x, y) = hu(x, y),
hv(x, y) = hv(0`−1, y − x).

Proof. The first equality follows immediately by Claim 10 as, for every k ∈ {1, . . . , `}, the
expression obtained for av(x, y, k) is independent of the choice of v. As for the second
asserted equality, again by Claim 10,

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk +
k−1∑
i=1

Rk−i((y − x)− 0)i

= av(0`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4
and so y − x ∈ F`−1

2 . Indeed, recall that av’s second argument is a binary string and so
the equality above would have been meaningless otherwise. The above equation implies
hv(x, y) = hv(0`−1, y − x), proving the claim. C

Given Claim 12 we can simplify our notation as follows. Let r denote the root of T . For
x ∈ {0, 1}`−1 and k ∈ {1, . . . , `} we define the random variables

a(x, k) = ar(0`, 1 ◦ x, k),
h(x) = hr(0`−1, x).

Note that h(x) =
∑`
k=1 a(x, k).

I Theorem 13. There exists a fixing of the sequence {Ri}i such that the function T is a
tree code with distance 0.05.

Proof. First note that for every fixing of the sequence {Ri}i, T is an online function. Observe
that, for a fixing of {Ri}i, T is a tree code with distance δ if and only if for every ` ≥ 1 and
x ∈ {0, 1}`−1 it holds that h(x) ≥ δ`. Indeed, recall that by definition, T is a tree code with
distance δ if and only if for every vertex v in T , ` ≥ 1, and for every x, y ∈ {0, 1}`−1 it holds
that hv(x, y) ≥ δ`. However, by Claim 12, hv(x, y) = h(y − x).

For x ∈ {0, 1}`−1 denote by E(x) the event h(x) < δ`. By the above discussion, it suffices
to prove, for δ = 0.05, that

Pr

 ⋃
x∈{0,1}N

E(x)

 < 1.

To this end, by the union bound, it suffices to prove that∑
x∈{0,1}N

Pr[E(x)] < 1.
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Consider any x ∈ {0, 1}`−1 with ` ≥ 1. Note that the event E(x) holds if and only if there
exists a set T ⊆ {1, . . . , `} of size |T | ≥ d(1− δ)`e such that for every k ∈ T , a(x, k) = 0. By
taking the union bound over all such sets T , and using that a(x, 1), . . . , a(x, `) are independent
and each is uniformly distributed over F4 (Claim 11), we get

Pr[E(x)] ≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e. (2)

By Lemma 7, we have that

1
`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As δ < 1
2 and since the entropy function H decreases in [ 1

2 , 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Substitute to Equation (2), we get that

Pr[E(x)] ≤ 2(H(δ)−2(1−δ))`.

Thus,

∑
x∈{0,1}N

Pr[E(x)] ≤
∞∑
`=1

2`−1 · 2(H(δ)−2(1−δ))`

= 1
2

∞∑
`=1

2(H(δ)+2δ−1)`.

One can verify that for δ = 0.05 the above geometric sum is strictly smaller than 1, and the
theorem follows. J

3.1 Improving the distance
We now show a method for improving the distance. We illustrate it to obtain a bound of
0.136 on the distance, which proves Theorem 2, though we believe that the method can be
used to push the bound further. It is fairly easy to show that the distance of a 4-color tree
code cannot be larger than 1/2.

I Theorem 14. There exists a fixing of the sequence {Ri}i such that the function T is a
tree code with distance 0.136.

Proof. For the proof it will be convenient to consider a specific representation of F4. We
make use of the standard construction of F4 as a quotient of the polynomial ring over F2
with respect to an ideal generated by a degree 2 irreducible element as follows. Note that
t2 + t+ 1 ∈ F2[t] is irreducible, and so K = F2[t]/〈t2 + t+ 1〉 is a field of 4 elements which
we will take as the construction for F4. Let α be the class of t in K. In this representation,
the field F4 consists of the elements 0, 1, α, α+ 1 where α2 + α+ 1 = 0.

Consider the sequence {Ri}i∈N as in the beginning of the section but with the fixings
R1 = 1 and R2 = α. Observe that for every x ∈ F`−1

2 with ` ≥ 2 it holds that a(x, 1) = 1
and a(x, 2) = α+ x1. In particular, a(x, 1), a(x, 2) are both non-zeros and so h(x) ≥ 2. Let
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`0 ≥ 2 be an integer parameter to be chosen later on. By the above, we have that for every
x ∈ F`−1

2 with ` ≤ `0 it holds that

h(x)
`
≥ 2
`0
. (3)

For x ∈ {0, 1}`−1 denote by E1,α(x) the event h(x) < δ` with the {Ri}i∈N as defined
above, namely, R1 = 1, R2 = α and the rest of the random variables {Ri | i ≥ 3} are
independent and uniformly distributed over F4. Once we establish a bound of

Pr

 ⋃
|x|≥`0

E1,α(x)

 < 1 (4)

for some choice of δ then, combined with Equation (3), we will establish the existence of a
tree code with distance at least

min
(

2
`0
, δ

)
.

Consider any x ∈ {0, 1}`−1 with ` ≥ `0 + 1. The event E1,α(x) holds if and only if there
exists a set T ⊆ {3, . . . , `} of size |T | ≥ d(1− δ)`e such that for every k ∈ T , a(x, k) = 0. By
taking the union bound over all such sets T , and using that a(x, 3), . . . , a(x, `) are independent
and each is uniformly distributed over F4, we get that

Pr[E1,α(x)] ≤
(

`− 2
d(1− δ)`e

)
4−d(1−δ)`e

≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e

By Lemma 7, we have that

1
`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As we will choose δ < 1
2 and the entropy function H decreases in [ 1

2 , 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Thus,

Pr[E1,α(x)] ≤ 2(H(δ)−2(1−δ))`.

By substituting the above equation to Equation (4), we get that

∑
|x|≥`0

Pr[E1,α(x)] ≤
∞∑

`=`0+1
2`−1 · 2(H(δ)−2(1−δ))`.

Write β = 2H(δ)+2δ−1. Then, the above is bounded by

1
2

∞∑
`=`0+1

β` = β`0+1

2(1− β) .
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Consider the real polynomial

f`0(x) = x`0+1 − 2(1− x).

We have that

f ′`0
(x) = (`0 + 1)x`0 + 2

Since `0 ≥ 2, f ′`0
(x) > 0 for all x ≥ 0. Further, f`0(0) = −2 and f`0(1) = 1. Thus, f`0(x)

has a single root β`0 ∈ [0, 1] (in fact, β`0 is monotone-increasing as a function of `0, and
β`0 → 1 as `0 →∞). For a fixed choice of `0, by choosing β < β`0 and solving for δ (recall
β = 2H(δ)+2δ−1) to obtain δ`0 , we get that there exists a fixing of {Ri | i ≥ 3} such that the
obtained tree code has distance at least min(δ`0 ,

2
`0

). Thus, the obtained bound is

max
`0≥2

min
(
δ`0 ,

2
`0

)
.

One can verify that `0 = 14 maximizes the above equation to get distance larger than
0.136. J

4 Palette-Alternating Tree Codes

In this section we prove Theorem 4. To this end we recall the definition of the (field) trace
function Tr : F4 → F2 that is given by Tr(x) = x+ x2. Observe that the trace function is an
F2-linear map whose image and kernel are F2. In particular, if X is uniform over F4, then
Tr(X) is uniform over F2.

Let ε be a given parameter and define b = d1/εe. Let {Ri}i∈N be a sequence of independent
random variables, each is uniformly distributed over F4 except that R1 is fixed to R1 = 1.
We define a palette-alternating tree code with b palette sets Σ0, . . . ,Σb−1 such that Σ0 = F4
and Σi = F2 for i > 0. Let x ∈ FN

2 . For every k ∈ N, define

Sk(x) =
k∑
i=1

Rk+1−ixi,

where addition and multiplication are performed in F4 and, as usual, F2 is identified with
the unique subfield of two elements in F4. The coloring function is given by

T (x)k =
{
Sk(x), k ≡b 0;
Tr(Sk(x)), otherwise.

I Theorem 15. The function T above is a palette-alternating tree code with rate 1− ε and
distance δ = Ω(ε log−1(1/ε)).

Proof. First, observe that T is indeed an online function with rate larger than 1− ε. Further
Definition 9 can be carried over to the more general case of palette-alternating tree codes.
We turn to prove an analog to Claim 10.

B Claim 16. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, for every

k ∈ {1, . . . , `} it holds that

av(x, y, k) =
{
Rk + Sk−1(y − x), n+ k ≡b 0;
Tr(Rk + Sk−1(y − x)), otherwise.
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Proof. Fix k ∈ {1, . . . , `}. Assume first that n+ k ≡b 0. Then,

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
n+k∑
i=n+1

Rn+k+1−i(0 ◦ x)i−n

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk + Sk−1(y − x).

Assume now that n+ k 6≡b 0. Using that Tr is F2-linear,

T (pv ◦ 0 ◦ x)n+k = Tr
(
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

)

= Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

n+k∑
i=n+1

Tr (Rn+k+1−i) (0 ◦ x)i−n

= Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k = Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(1 ◦ y)i.

Thus, again by F2-linearity of Tr,

av(x, y, k) = Tr(Rk) +
k−1∑
i=1

Tr(Rk−i)(y − x)i

= Tr(Rk + Sk−1(y − x)). C

B Claim 17. Let v be a depth-n vertex and x, y ∈ F`−1
2 distinct. Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent. Moreover, let k ∈ [`]. If n+k ≡b 0 then av(x, y, k)
is uniformly distributed over F4 and otherwise it is uniform over F2.
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Proof. By Claim 16, if n+k ≡b 0 then av(x, y, k) = Rk+Lk where Lk is a linear combination
of R1, . . . , Rk−1. Thus, in this case, av(x, y, k) is independent of the joint distribution of
av(x, y, 1), . . . , av(x, y, k − 1). Otherwise, namely n + k 6≡b 0, we have that av(x, y, k) =
Tr(Rk+Lk) = Tr(Rk)+Tr(Lk). Since for every fixing of Lk, av(x, y, k) is uniform over F2, we
have that av(x, y, k) is independent of the joint distribution of av(x, y, 1), . . . , av(x, y, k − 1).
As this holds for every k ∈ [`] we have that av(x, y, 1), . . . , av(x, y, `) are independent and
their marginal distributions are as stated. C

B Claim 18. Let u, v be two vertices with depth n,m, respectively such that n ≡b m. Let
x, y ∈ F`−1

2 . Then,

hv(x, y) = hu(x, y),
hv(x, y) = hv(0`−1, y − x).

Proof. Let Ck = Rk + Sk−1(y − x). By Claim 16,

au(x, y, k) =
{
Ck, n+ k ≡b 0;
Tr(Ck), otherwise.

As Ck is independent of the choice of u and n ≡b m we have that au(x, y, k) is the same
random variable as av(x, y, k). Since this holds for every k, we have that hv(x, y) = hu(x, y).

We turn to prove the the second asserted equality. Assume first that k ∈ [`] is such that
n+ k ≡b 0. By Claim 16,

au(x, y, k) = Rk + Sk−1(y − x)
= Rk + Sk−1((y − x)− 0`−1)
= au(0`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4
and so y − x ∈ F`−1

2 . Indeed, recall that av’s second argument is a binary string and so the
equality above would have been meaningless otherwise. The case n + k 6≡b 0 follows by a
similar argument and using the F2-linearity of Tr. C

Given Claim 18, we can simplify our notation as follows. Let v0 denote the root of the
tree. For i = 1, . . . , b− 1 let vi denote the left son of vi−1. For every i ∈ {0, 1, . . . , b− 1} and
x ∈ {0, 1}`−1 we define the random variables

ai(x, k) = avi(0`, 1 ◦ x, k),
hi(x) = hvi(0`−1, x).

Define

δ = c1ε log−1(1/ε),
`0 = 12dε−1 log(1/ε)e,

for some constant c1 ∈ [0, 1] to be set later on. Observe that for every fixing of the sequence
{Ri}, T is a palette-alternating tree code with distance δ if and only if for every x ∈ {0, 1}`−1

and i ∈ {0, 1, . . . , b − 1} it holds that hi(x) ≥ δ`. Indeed, by definition, T is a palette-
alternating tree code with distance δ if and only if for every vertex v, ` ≥ 1, and every
distinct x, y ∈ {0, 1}`−1 it holds that hv(x, y) ≥ δ`. However, by Claim 18, the random
variable hv(x, y) is the same as the random variable hi(y − x) for i = depth(v) mod b.
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For x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b − 1} denote by Ei(x) the event hi(x) < δ`. Note
that as R1 = 1 and since Tr(1) = 1 we have that hi(x) ≥ 1 for every x. Thus, for |x| < `0 we
have that

h(x)
|x|+ 1 ≥

1
`0
.

Therefore, in order to prove Theorem 15 it suffices to prove that

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 < 1.

Indeed, this will give a bound of min
(

1
`0
, δ
)

= Ω(ε log−1(1/ε)) on the distance.
Fix x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b− 1}. Observe that Ei(x) holds if and only if there

exists a set T ⊆ [`] of size d(1 − δ)`e such that for every k ∈ T , ai(x, k) = 0. For ease of
readability we ignore the ceiling in the calculations below. Recall that ai(x, 1), . . . , ai(x, `)
are independent. Further, 1− 1

b fraction of them are uniform over F2 whereas the remaining
1
b fraction are uniform over F4. Note that by our choice of parameters, δ < 1/b. Thus, for
any γ ≥ 0 and a fixed T , we have that

Pr [∀k ∈ T ai(x, k) = 0] ≤ 2−(1− 1
b−γ)`4−( 1

b−δ+γ)`

≤ 2−(1− 1
b )`4−( 1

b−δ)`

= 2−(1+ 1
b−2δ)`.

By taking the union bound over the choice of T , and using Lemma 7, we get that

Pr[Ei(x)] ≤
(

`

d(1− δ)`e

)
2−(1+ 1

b−2δ)`

≤ 2−(1+ 1
b−2δ−H(δ))`.

By the union bound,

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 ≤ ∑
|x|≥`0

b−1∑
i=0

Pr[Ei(x)] (5)

≤ b ·
∞∑
`=`0

2`−1 · 2−(1+ 1
b−2δ−H(δ))`

= b

2 ·
∞∑
`=`0

2(H(δ)+2δ− 1
b )`.

By taking c1 sufficiently small and using Lemma 8, we get that H(δ) + 2δ − 1/b ≤ −ε/3.
Therefore, Equation (5) is bounded above by

b ·
∞∑
`=`0

2−ε`/3 = b · 2−ε`0/3

1− 2−ε/3

≤ bε4

1− 2−ε/3

≤ 2ε3

1− 2−ε/3 ,

where the penultimate inequality follows by our choice of `0 and the last inequality follows
since b = d1/εe. One can verify that the above is strictly bounded by 1 for any ε < 1/3. J
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5 The Interactive Coding Scheme

In this section we prove Theorem 6. In the first section we set up the framework over
which our coding scheme will be defined. In Section 5.2 we present our coding scheme and
Sections 5.3, 5.4 contain the analysis.

5.1 Setting up the framework

Round types

Throughout the scheme Alice and Bob send information in an alternating manner. More
precisely, at even rounds Alice would decide on a bit to be sent and at odd rounds, Bob
will decide what bit to send. Let t ≥ 0. If t is even we say that it is an Alice’s round and
otherwise it is a Bob’s round.

Epochs

We further partition the rounds as follows. Let c be a parameter to be set later on. The
protocol is divided to epochs where each epoch consists of 2c+2 rounds. The first epoch starts
from round 0 to round 2c+1 and is denoted by e0 = [0, 2c+2). The second epoch is denoted by
e1 = [2c+2, 4c+4) and, generally, the k’th epoch consists of rounds [k(2c+2), (k+1)(2c+2)).
Let t be an Alice’s round and consider m = t mod (2c+ 2). If m = 2c, then t is referred
to as Alice’s bit sync round, and otherwise, t is called an Alice’s edge round. Similarly, for
t a Bob’s round, let m = t mod (2c+ 2). If m = 2c + 1, then t is a Bob’s bit sync round.
Otherwise, t is called Bob’s edge round.

We denote by edges(e) the sequence of 2c bits sent throughout the edge rounds during
epoch e, and define syncA(e), syncB(e) the bits sent by Alice and Bob during their sync
rounds, respectively.

Rewinding mechanism

As the adversary introduce some fraction of errors, the coding scheme should incorporate a
“regret mechanism” using which the parties can revert back parts of the already exchanged
messages. To formalize that, we will make use of the pair of functions

rewind : {S,X}∗ → {S,X}∗,
survive : {S,R,X}∗ → {S,X}∗,

which are defined as follows. Let n ≥ 1. We define rewind(Xn) = Xn. Let v ∈ {S,X}n\{Xn}
and denote i ∈ [n] the largest index such that vi = S. Then,

rewind(v)j =
{
vj j 6= i;
X j = i.

We define the function survive recursively as follows. Let v ∈ {S,R,X}n,

survive(v) =
{

rewind(survive(v0, . . . , vn−1)) ◦X vn = R;
survive(v0, . . . , vn−1) ◦ vn vn 6= R.
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Decoding the pointer jumping path

We describe now how to decode a rooted path in the pointer jumping game from the bits
that were sent during a sequence of epochs. To formalize that, we define the function PJPath
that given a sequence of epochs (e0, . . . , en), computes a rooted path in the depth-n tree T
as follows. Define h : e→ {S,R} by

h(e) = R ⇐⇒ syncA(e) ∨ syncB(e) = 1

where an epoch is initialized with syncA(e) = syncB(e) = 0. Denote (m0, . . . ,mn) =
survive(h(e0), . . . , h(en)) and let i1 < · · · < i` be the indices such that mi1 = · · · = mi` = S.
Finally, set

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`)).

where path is defined in the preliminaries.

B Claim 19. Let e0, . . . , en+1 be a sequence of epochs such that syncA(en+1)∨syncB(en+1) =
0, then

v(PJPath(e0, . . . , en)) = ancestor(v(PJPath(e0, . . . , en+1)), 2c).

If on the other hand syncA(en+1) ∨ syncB(en+1) = 1, then

ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).

Proof. For the first direction of the claim, note that as h(en+1) = S it follows that

survive(h(e0), . . . , h(en+1)) = survive(h(e0), . . . , h(en)) ◦ S.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and 0 ≤ i1 < · · · < i` ≤ n where ` ≥ 0, the
indices such that mi1 = · · · = mi` = S. Thus, the set of indices that corresponds to an S
symbol in survive(h(e0), . . . , h(en)) ◦ S is exactly {i1, . . . , i`, n+ 1}. Hence,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`) ◦ edges(en+1)),

and so ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).
For the other direction, by definition, h(en+1) = R and so

survive(h(e0), . . . , h(en+1)) = rewind(survive(h(e0), . . . , h(en))) ◦X.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and i1 < · · · < i` the indices such that mi1 =
· · · = mi` = S. By the definition of the rewind function, if ` > 0 then the indices i1, . . . , i`−1
correspond to an S symbol in rewind(survive(h(e0), . . . , h(en))). Thus,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`−1)).

Therefore, ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)) as stated. In the
case that ` = 0, recall that root(T ) = ancestor(root(T ),m) for all m ∈ N concluding the
proof. C
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Transcript notations

Let T C be the palette-alternating tree code from Theorem 15 set with distance parameter
δT C whose value will be set later on. Denote by TCEnc,TCDec the encoding and decoding
functions of T C, respectively where we decode to minimize the distance from the received
word to a codeword. At every round, one of the parties would decide on a bit to be sent.
That bit is not sent over the channel as is but rather is encoded using a palette-alternating
tree code. For an even integer t ≥ 0 we denote by (a0, a2, . . . , at) those bits that Alice would
“like” to send from round 0 until round t. As mentioned above, the actual symbols that
Alice sends are obtained by encoding these bits using T C. Similarly, for an odd t ≥ 1 we
denote (b1, b3, . . . , bt) the bits Bob would like to send. For an even integer t ≥ 0 we define
ã(t) = (ã(t)0, ã(t)2, . . . , ã(t)t) to be the bits that are decoded, via TCDec, given the received
transmission to Bob at round t. Note that ã(t)i may not equal ã(t′)i for distinct times t, t′,
and certainly may not equal ai.

For an odd t, we define rA(t) = (a0, b̃(t)1, a2, b̃(t)3, . . . , b̃(t)t) and similarly for an even t,
rB(t) = (ã(t)0, b1, ã(t)2, b3, . . . , ã(t)t). We further define r(t) = (a0, b1, a2, . . . , bt) for odd t
and r(t) = (a0, b1, a2, . . . , at) for even t. Recall that for a given set of edges E′, we defined
v(E′) to be the unique vertex in T with largest depth that is reachable from the root using
the edge set E′. We define

pA(t) = PJPath(rA(t));
γA(t) = v(pA(t));
αA(t) = v(pA(t) ∩ (EA ∪ Y )).

Similarly,

pB(t) = PJPath(rB(t));
γB(t) = v(pB(t));
αB(t) = v(pB(t) ∩ (EB ∪X)).

5.2 The coding scheme
The coding scheme is composed of two parts. The first consists of R rounds and the second
of additional 2τR rounds where τ is a parameter to be chosen later on. We turn to describe
the first part of the scheme. The second part is described in Section 5.2.2.

5.2.1 Part 1 of the coding scheme
We present the scheme from Alice’s point of view. The scheme from Bob’s point of view can
be easily inferred. As mentioned, Alice’s algorithm is partitioned to epochs. At the first
round of epoch ek = [k(2c + 2), (k + 1)(2c + 2)) Alice computes vA = γA(k(2c + 2) − 1).
We will make sure to maintain the invariant that at odd times t, γA(t) ∈ VA. In particular,
vA ∈ VA. For each round type, Alice proceeds as follows:

5.2.1.1 Alice’s edge round

Let t be an Alice’s edge round, namely, t is an even integer with t 6≡ 2c (mod 2c+ 2).
1. At the edge rounds, Alice maintains vA in order to choose at which is the bit that she

would like to send at round t. Alice sets at ← πA(vA). This operation is well-defined as
we will be making sure also to maintain the invariant that in Alice’s edge rounds vA ∈ VA.

2. Transmit TCEnc(a0, a2, . . . , at)t/2.
3. Update vA ← son(vA, at).
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5.2.1.2 Bob’s edge round

Let t be Bob’s edge round, namely, t is odd with t 6≡ 2c + 1 (mod 2c + 2). At this round
Bob sent a bit to Alice who, in turn, proceeds by updating vA as follows:
1. vA ← son(vA, b̃(t)t), where, recall b̃(t) is the bit-string Alice decoded from the received

transcript at round t.

5.2.1.3 Alice’s bit sync round

Let t ≡ 2c (mod 2c+ 2). Notice that αA(t− 1) is an ancestor of γA(t− 1). We consider the
following cases according to αA(t− 1), γA(t− 1) locations:
1. If αA(t− 1) = γA(t− 1), then

a. at ← 0 (0 encodes “hold”)
b. Transmit TCEnc(a0, a2, . . . , at)t/2

2. If αA(t− 1) is a strict ancestor of γA(t− 1) then
a. at ← 1 (1 encodes “revert”)
b. Transmit TCEnc(a0, a2, . . . , at)t/2

5.2.2 Part 2 of the coding scheme
Recall that the coding scheme is divided to two parts. We now present the second part
which take place during rounds [R, (1 + 2τ)R]. This part is not partitioned to epochs and
we describe it per round. We define the function counterA : V → N that is initialized to 0.
Recall that n denotes the depth of the tree T . More precisely, our convention is that edges
leaving vertices of depth larger than n always point to their left son.

5.2.2.1 Alice’s edge round

Let t be an Alice’s round, namely, t is an even integer.
1. Alice sets at ← 0.
2. Transmit TCEnc(a0, a2, . . . , at)t/2.

5.2.2.2 Bob’s edge round

Let t be a Bob’s round, namely, t is odd. At this round, Bob sent a bit to Alice who, in turn,
proceeds by updating counterA as follows:
1. Alice computes γA(t).
2. If depth(γA(t)) ≥ n, denote by v the unique ancestor of γA(t) of depth n. Alice sets

counterA(v) = counterA(v) + 1.

5.2.2.3 Final round

Alice returns the vertex v that maximizes counterA(v). The analysis will show that such
vertex exists and is unique.

5.2.2.4 Remark

Note that in most rounds, TCEnc outputs a symbol in F2 which corresponds to a single bit
transmitted. At the rounds in which the symbol is an F4-element, we send the information
in two rounds and the round of the other party in between is ignored. For simplicity, we
make this issue transparent to the coding scheme.
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5.3 A simpler analysis with sub-optimal rate

In this section we prove that the coding scheme above, when set with suitable parameters
δT C , c, τ , has rate 1− Õ( 3

√
ε). Many of the ideas and results used in this section will be used

for the proof of Theorem 6, to be presented in Section 5.4, which requires additional ideas.
We assume R is an integral multiple of 2c+ 2 and let k be the number of epochs, namely,
R = (2c+ 2)k.

Good rounds

We say that t ∈ [R] is good if the decoding at round t succeeds. More precisely, when t is
even, round t is good if

(a0, a2, . . . , at) = (ã(t)0, ã(t)2, . . . , ã(t)t).

Similarly, an odd t is good if

(b1, b3, . . . , bt) = (b̃(t)1, b̃(t)3, . . . , b̃(t)t).

We make use of the following lemma proved by Schulman [29] (see also Section 2.1.3
in [12]).

I Lemma 20 ([29]). Let T C be a palette-alternating tree code with distance δT C. Assume
the channel has at most ε-fraction errors. Then, at most

µ , 2ε/δT C

fraction of rounds are bad.

Good epochs

We say that epoch e = [t, t + 2c + 2) is good if each round r ∈ [t − 1, t + 2c] is good and
otherwise we call it bad. Note that for an epoch to be good we require that the last round
of the previous epoch is good though do not require the last round of the current epoch
to be good. Note further that at least 1 − (2c + 2)µ fraction of the epochs are good. We
wish to define vertices analog to γA(t), αA(t) and γB(t), βB(t) that are defined according to
what was actually sent by the parties in the first t rounds rather than according to what was
received. Formally, define

γ(t) = v(PJPath(r(t)));
α(t) = v(PJPath(r(t)) ∩ (EA ∪ Y ));
β(t) = v(PJPath(r(t)) ∩ (EB ∪X)),

where recall that r(t) is defined in the paragraph presenting our transcript notations in
Section 5.1. Let v(t) be the least common ancestor of α(t), β(t) in T . Observe that v(t) is
equal to either α(t) or β(t) and in particular is an ancestor of γ(t).

B Claim 21. Let e = [t, t+ 2c+ 2) be a good epoch such that v(t− 1) 6= γ(t− 1). Then,

syncA(e) = 1 ∨ syncB(e) = 1.
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Proof. Observe that the hypothesis of the claim implies that v(t− 1) is a strict ancestor of
γ(t− 1). As γ(t− 1) is a strict ancestor of γ(t+ 2c− 1) and since v(t+ 2c− 1) = v(t− 1) it
follows that v(t+ 2c− 1) 6= γ(t+ 2c− 1). As round t+ 2c− 1 is good, it holds that

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

Furthermore, by the definition of αA and βB it follows that

αA(t+ 2c− 1) = α(t+ 2c− 1);
βB(t+ 2c− 1) = β(t+ 2c− 1).

Thus, as v(t+ 2c− 1) 6= γ(t+ 2c− 1), at least one of the following holds αA(t+ 2c− 1) 6=
γA(t+ 2c− 1) or βB(t+ 2c− 1) 6= γB(t+ 2c− 1). Hence, at least one of the parties set its
sync bit to 1. C

Short-split epochs

We define the indicator function

nearAncestor(v(t), γ(t)) =
{

1 dist(v(t), γ(t)) ∈ (0, 2c);
0 otherwise.

A good epoch e = [t, t+ 2c+ 2) is called a short-split epoch if

nearAncestor(v(t− 1), γ(t− 1)) = 1.

B Claim 22. The number of short-split epochs is bounded above by the number of bad
epochs.

Proof. Consider any two short-split epochs e = [t, t+ 2c+ 2), e′ = [t′, t′ + 2c+ 2) with t < t′.
Since e is a short-split epoch, then e is good and also v(t− 1) 6= γ(t− 1). By Claim 21, Alice
or Bob set their sync bit to 1. By Claim 19 it holds that γ(t+ 2c+ 1) = ancestor(γ(t− 1), 2c).
Observe that as d < 2c, this results in v(t+ 2c+ 1) = γ(t+ 2c+ 1).

Observe further that, until the arrival of a bad epoch, at epoch e′′ = [t′′, t′′ + 2c+ 2) we
have that v(t′′ − 1) = γ(t′′ − 1). Since e′ is a short-split epoch, v(t′ − 1) 6= γ(t′ − 1). It then
follows that there exists a bad epoch preceding e′. Since the first epoch is not short-split,
the claim follows. C

Potential function for the progress

For an integer i ≥ 0 and t = (2c+ 2)i− 1, consider the following potential function

Φ(t) = 2depth(v(t))− depth(γ(t)).

Recall that depth(γ(t)) ≥ depth(v(t)) and so when Φ(t) ≥ n it holds that depth(v(t)) ≥ n.

B Claim 23. If e = [t, t+ 2c+ 2) is a good epoch that is not short-split, then Φ(t+ 2c+ 1) =
Φ(t− 1) + 2c. Otherwise, Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c.

Proof. By Claim 19, dist(γ(t+ 2c+ 1), γ(t− 1)) ≤ 2c. Observe that by Claim 19 and by the
definition of v it follows that dist(v(t+ 2c+ 1), v(t− 1)) ≤ 2c as well. Thus, the assertion
Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c follows. Let then e be a good epoch that is not short-split, and
consider the following cases:
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1. First assume that v(t − 1) = γ(t − 1). As epoch e is good, it follows that at the edge
rounds, Alice and bob extends the same (correct) path, and so

v(t+ 2c− 1) = γ(t+ 2c− 1). (6)

Since round t+ 2c− 1 is good,

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

The above equation together with Equation (6) implies that

αA(t+ 2c− 1) = γA(t+ 2c− 1);
βB(t+ 2c− 1) = γB(t+ 2c− 1).

By the algorithm both Alice and Bob sets their sync bit to 0, namely, syncA(e) =
syncB(e) = 0. Thus, together with Claim 19 and Equation (6),

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1)) + 2c,
depth(v(t+ 2c+ 1)) = depth(v(t− 1)) + 2c,

and it follows that Φ(t+ 2c+ 1) = Φ(t− 1) + 2c.
2. Consider now the case that v(t− 1) is a strict ancestor of γ(t− 1). By Claim 21 it follows

that syncA(e) = 1 or syncB(e) = 1. Then, by Claim 19 it holds that ancestor(γ(t−1), 2c) =
γ(t+ 2c+ 1). Since e is not a short-split epoch, v(t− 1) is an ancestor of γ(t+ 2c+ 1),
and by the definition of v this implies v(t+ 2c+ 1) = v(t− 1). Thus, it holds that

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1))− 2c,
depth(v(t+ 2c+ 1)) = depth(v(t− 1)),

and

Φ(t+ 2c+ 1) = Φ(t− 1) + 2c,

concluding the proof. C

By Claim 22, there are at least (1− 2(2c+ 2)µ)k good epochs which are not short-split.
By Claim 23, Φ increases by at least 2c in every such epoch. In the remaining epochs, Φ
decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥ ((1− 2(2c+ 2)µ)2c+ 2(2c+ 2)µ · (−6c))k
= (1− 8(2c+ 2)µ) · 2ck

=
(

1−
(

4
2c+ 2 + 16cµ

))
R.

By setting c to be an integer c = Θ(1/√µ), we get Φ(R) =
(
1−Θ(√µ)

)
R. Now setting

R = (1 + Θ(√µ))n, the first part of the scheme assures that depth(v(R)) ≥ n.

Analysis of part 2 of the scheme

Let vpj be the unique ancestor of v(R) of depth n in T , it is well defined as the analysis
of Part 1 of the scheme assures that depth(v(R)) ≥ n. Recall that the second part of the
scheme contains 2τR rounds. By Lemma 20, there are at most

(1 + 2τ)µR
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bad rounds. By the algorithm, for every good odd round in Part 2 of the scheme, Alice
increases counterA(vpj) by 1. Observe that in the final round Alice returns the vertex that
maximizes counterA and so the assertion counterA(vpj) > (τR)/2 implies that the simulation
will terminates successfully. By setting τ = 6µ, we get

τ

2R > (1 + 2τ)µR

which guarantees that the majority of both Alice’s and Bob’s rounds in the second part of
the coding scheme are good. This concludes the proof of the theorem.

Calculating the rate

At each round of the simulation, a palette-alternating tree code symbol is sent instead of
a single bit. By Theorem 4 T C has rate 1−O(δT C log(1/δT C)). Setting δT C = 3

√
ε, we get

that the simulation uses(
1 +O

(√
ε

δT C

))(
1 +O

(
δT C log

(
1
δT C

)))
n =

(
1 +O

(
3
√
ε log

(
1
ε

)))
n

bits. Thus, the coding scheme rate is 1− Õ( 3
√
ε) as stated.

5.4 Optimal analysis
In this section we prove Theorem 6. We make use of the same coding scheme analyzed in
Section 5.3. The improved analysis follows by applying a more delicate analysis of the bad
rounds locations as a function of the errors introduced by the adversary.

Let T C be a palette-alternating tree code with distance δT C . Denote by E = {e1, . . . , eεR}
the set of rounds at which the adversary has introduced errors, where 0 ≤ e1 < · · · < eεR ≤ R.
A set of consecutive errors C = {ej , . . . , ej+r−1} is called a cluster of errors (with respect to
T C or more precisely δT C) if

∀` ∈ [r − 1] ej+` − ej ≤
2`
δT C

.

We define the cluster interval of C by I(C) = [ej , ej + 2r/δT C ]. We denote by C the set of
all clusters (with respect to E).

B Claim 24. Let C1, C2 ∈ C with C1 ⊆ C2. Then, I(C1) ⊆ I(C2).

Proof. Let C1 = {ei, . . . , ej}, C2 = {em, . . . , ek} with m ≤ i ≤ j ≤ k. By definition, it holds
that I(C1) = [ei, ei + 2(j − i+ 1)/δT C ] , I(C2) = [em, em + 2(k −m+ 1)/δT C ]. As ei ∈ C2
we have that ei ≤ em + 2(i−m)/δT C , and so

ei + 2(j − i+ 1)
δT C

≤ em + 2(j −m+ 1)
δT C

≤ em + 2(k −m+ 1)
δT C

,

which, together with em ≤ ei, concludes the proof. C

We will be interested to study clusters on sub-intervals of [0, R] and in particular we wish
to consider clusters that are, in a sense, maximal in the sub-interval. To formalize that, let
[a, b] be a sub-interval of [0, R]. A cluster C ∈ C with C ⊆ [a, b] is called [a, b]-maximal if for
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every cluster C ′ ⊆ [a, b] such that C ⊆ C ′ it holds that C ′ = C. A [0, R]-maximal cluster is
simply called maximal. We denote byM[a,b] the set of all [a, b]-maximal clusters, and byM
the set of all maximal clusters.

B Claim 25. Every C1, C2 ∈M[a,b] are either equal or disjoint.

The proof of the above claim is straightforward. Indeed, by adapting the proof of Claim 24,
if false C1 ∪ C2 ∈ C in contradiction to the maximality.

B Claim 26. Let C1, C2 ∈M[a,b] distinct. Then, I(C1) ∩ I(C2) = ∅.

Proof. By Claim 25 we have that C1 ∩ C2 = ∅, and so we may denote C1 = {ei, . . . , ei+j},
C2 = {em, . . . , em+n} with i+j < m. Assume toward a contradiction that I(C1)∩I(C2) 6= ∅,
and so em ∈ [ei, ei+2(j+1)/δT C). Observe that this would imply that C ′ = {ei, . . . , em} ∈ C,
which together with C ′ ⊆ [a, b], stands in contradiction to C1 ∈M[a,b]. C

B Claim 27.∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ ≤ 2εR
δT C

.

Proof. By Claim 26, and since | I(C) | = 2 |C | /δT C for every C ∈ C,∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ =
∑
M∈M

2 |M |
δT C

.

As all maximal clusters are disjoint (Claim 25),∑
M∈M

|M | ≤ εR,

which concludes the proof. C

I Lemma 28. Let r ∈ [0, R]. If r 6∈
⋃
C∈C
I(C) then r is a good round.

Proof. Denote by σt the palette-alternating tree code symbol that is sent at round t, and
let σ̃t be the received symbol at that round. Denote by (µ1, . . . , µr) the path on T C that
corresponds to the decoded codeword . Assume toward a contradiction that r is bad, namely,
(σ1, . . . , σr) 6= (µ1, . . . , µr). Let ` ∈ [r] be the largest integer such that µr−` 6= σr−`. As
TCDec(σ̃1, . . . , σ̃r) returns the codeword that minimizes the distance, and since µi = σi for
every i < r − `, we have that

∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) ≤ ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)). (7)

Since T C is a palette-alternating tree code with distance δT C ,

∆((µr−`, . . . , µr), (σr−`, . . . , σr)) ≥ (`+ 1)δT C . (8)

Let I = E ∩ [r − `, r], i.e the set of all rounds i such that σi 6= σ̃i in the interval [r − `, r].
Denote | I | = k. AsM[r−`,r] ⊆ C and by the hypothesis of the lemma, it follows that

r 6∈
⋃

C∈M[r−`,r]

I(C).
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Observe that⋃
C∈M[r−`,r]

I(C) ⊆ [r − `, r).

Claim 26 states that the intervals of any two maximal clusters are disjoint, hence,∑
C∈M[r−`,r]

| I(C) | ≤ `.

As | I(C) | = 2 |C | /δT C for every C ∈ C and sinceM[r−`,r] forms a partition of I, it follows
that ∑

C∈M[r−`,r]

| I(C) | = 2k
δT C

.

By the above two equations, we have that ` ≥ 2k/δT C . Substituting to Equation (8), we have
that ∆((µr−`, . . . , µr), (σr−`, . . . , σr)) > 2k. Since ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)) = k, we
have that ∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) > k in contradiction to Equation (7). J

Using the above, we obtain a better bound on the fraction of bad epochs compared to
the bound O(εc/δT C) established in Section 5.3.

I Lemma 29. At most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad.

Proof. Observe that for every C ∈ C there exists a maximal cluster M ∈ M such that
C ⊆M . By Claim 24 it then follows that I(C) ⊆ I(M), and so⋃

C∈C
I(C) =

⋃
M∈M

I(M).

Claim 27 implies that∑
M∈M

| I(M) | ≤ 2εR
δT C

. (9)

Notice that each clusterM intersect with at most d| I(M) | /(c+1)e bad epochs. By Claim 28,
if r 6∈ I(M) for every M ∈M then r is good. Hence there are at most

∑
M∈M

⌈
| I(M) |
c+ 1

⌉
bad epochs. Since the maximal clusters form a partition of E , it follows that |M | ≤ εR.
This, together with Equation (9) yields

∑
M∈M

⌈
| I(M) |
c+ 1

⌉
≤ εR+

∑
M∈M

| I(M) |
c+ 1

≤ εR+ 2εR
δT C(c+ 1)

=
(

4ε
δT C

+ ε(2c+ 2)
)
k.

So, at most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad as stated. J
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By Claim 22 and Lemma 29 there are at least (1− 2(4ε/δT C + ε(2c+ 2))) k good epochs
that are not short-split. By Claim 23, in each such epoch, Φ increases by at least 2c. In the
remaining epochs, Φ decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥
((

1− 2
(

4ε
δT C

+ ε(2c+ 2)
))

2c+ 2
(

4ε
δT C

+ ε(2c+ 2)
)
· (−6c)

)
k

=
(

1− 32ε
δT C
− 8ε(2c+ 2)

)
· 2ck

≥
(

1− 2
c
− 32ε
δT C
− 16cε

)
R.

By setting c to be an integer with c = Θ( 1√
ε
) and δT C =

√
ε/ log(1/ε), we get that

Φ(R) ≥
(

1−Θ(
√
ε log(1/ε))

)
R.

By setting R = (1 + Θ(
√
ε log(1/ε)))n, and since T C has rate 1 − Θ(δT C log(1/δT C)) =

1−Θ(
√
ε log(1/ε)), the first part of the scheme assures that depth(v(R)) ≥ n. Similarly to

the analysis of Part 2 from Section 5.3, by setting τ = Θ(µ) = Θ(
√
ε log(1/ε)), Theorem 6

follows.
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Abstract
We consider the problem of computing succinct encodings of lists of generators for invariant rings
for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for
invariant rings of SLn(C)-representations. We provide simple examples that disprove this conjecture
(under standard complexity assumptions).

We develop a general framework, denoted algebraic circuit search problems, that captures
many important problems in algebraic complexity and computational invariant theory. This
framework encompasses various proof systems in proof complexity and some of the central problems
in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the
aforementioned problem of computing succinct encodings for generators for invariant rings.
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1 Introduction

In complexity theory, one often encounters problems that ask for an efficiently computable
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12:2 Hardness of Generators for Invariant Rings

we encode the required functions? The answer to these will depend on the context and use.
We will first define the informal notion of an algebraic circuit search problem, and then give
illustrative examples.

I Definition 1 (Algebraic circuit search problems). Given an input (of size n), construct an
algebraic circuit in a complexity class C with k(n)-inputs and m(n)-outputs such that the
polynomials they compute satisfy a desirable property P.

Let us illustrate this definition in the context of algebraic proof complexity: in Null-
stellensatz-based proof systems, one is given a set of multivariate polynomials g1, . . . , gr over
an algebraically closed field F and in variables x = (x1, . . . , xn), and one wants to decide
whether the system g1(x) = g2(x) = . . . = gr(x) = 0 has a solution over F. A fundamental
result of Hilbert tells us that the system has no solution if and only if there is a set of
polynomials {fi}ri=1 such that

∑
i figi = 1. This brings us to the Ideal Proof System [22]:

Ideal Proof System (IPS): Given a collection of polynomials g1(x), g2(x), . . . , gr(x),
we ask to construct a polynomial sized circuit C with n+r inputs. The desirable property
P is that C(x1, . . . , xn, g1(x), . . . , gr(x)) = 1 and that C(x1, . . . , xn, 0, . . . , 0) = 0. It is
not so hard to see these conditions will give us a linear combination of the form

∑
i figi = 1

as required.
In [22] the authors show that super-polynomial lower bounds in this proof system imply
algebraic circuit lower bounds (i.e., VP 6= VNP), which remains a long standing open problem
in complexity theory. Another important point to make is that an instance of 3-SAT, say φ,
can be encoded as a collection of polynomials {gi} such that φ is satisfiable if and only if the
{gi} have a common solution. In other words, φ is unsatisfiable if and only if ∃ polynomials
fi such that

∑
i figi = 1. This converts a co-NP complete problem (unsatisfiability of 3-SAT,

called co-3-SAT) into an algebraic circuit search problem of the IPS form described above.
The existence of a polynomial sized circuit as demanded by the IPS proof system would
mean the existence of fi with small circuits. But that would mean that co-3-SAT is in NP,
thus proving NP = co-NP.

Other important examples of algebraic search problems in proof complexity (with different
desirable properties) are the original Nullstellensatz proof system, Polynomial Calculus, and
the Positivstellensatz1 for sum of squares (SOS) proofs. For more on these systems we refer
the reader to [29, Chapter 6].
I Remark 2. An analogous notion of a “boolean circuit search problem” can also be intro-
duced in the boolean setting. Also here, important problems such as the construction of
pseudorandom generators and the construction of extractors can be captured as boolean
circuit search problems.

1.1 Geometric Complexity Theory
The GCT program was proposed by Mulmuley and Sohoni (see [32, 33]) as an approach (via
representation theory and algebraic geometry) to the VP vs. VNP problem. While there have
been some negative results2 in recent years regarding the techniques one can use towards this
program, these results do not disrupt the core framework of the GCT program. Instead, these
results indicate the difficulty of the problem from the viewpoint of algebraic combinatorics,

1 In this case our field is the real numbers, which is not algebraically closed.
2 The results of Bürgisser, Ikenmeyer and Panova, which show that occurrence obstructions cannot give a

super-polynomial lower bound on the determinantal complexity of the permanent polynomial (see [9]).
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and have identified new directions of research in asymptotic algebraic combinatorics. In [31],
Mulmuley views the VP vs. VNP problem through the lens of computational invariant
theory, and identifies important and interesting problems in computational invariant theory
that form a path towards resolving the VP vs. VNP problem. These include several
conjectures, some of which fit into the framework of algebraic circuit search problems,
and have important connections and consequences to problems in optimization, algebraic
complexity, non-commutative computation, functional analysis and quantum information
theory (see [19, 20, 6]). We therefore believe that a better understanding of algebraic circuit
search problems will likely result in fundamental advances in the aforementioned areas.
Some evidence for these conjectures has emerged over the past few years as they have been
established for special cases (see, for example, [31, 19, 27, 17, 12, 13, 11]).

Let us briefly mention an important algebraic circuit search problem and one that will
be central to this paper: given a group action, describe a set of generators for the invariant
ring (we will elaborate on invariant theory in a subsequent section). Unfortunately, the
number of generators for an invariant ring is usually exponential (in the input size of the
description of the action). So, in order to get a computational handle on them, Mulmuley
suggests in [31] that we should look for a succinct encoding (defined below in Definition 3)
using some auxiliary variables. One amazing feature of such a succinct encoding is that
it would immediately give efficient randomized algorithms for null cone membership and
the orbit closure intersection problems which can then be derandomized in some cases (see,
e.g., [17, 27, 13]). We will define these problems in a subsequent section, but here we
are content to say that many important algorithmic problems such as graph isomorphism,
bipartite matching, (non-commutative) rational identity testing, tensor scaling and a form of
quantum entanglement distillation are all specific instances (or arise in the study) of null
cone membership and orbit closure intersection problems.

Mulmuley conjectures ([31, Conjecture 5.3]3) the existence of polynomial sized succinct
encodings for generators of invariant rings. The main goal of this paper is to (conditionally)
disprove this conjecture. More precisely we give an example of an invariant ring (for a torus
action) where the existence of such a circuit would imply a polynomial time algorithm for the
3D-matching problem, which is well known to be NP-hard. We also give another example
(where the group is SLn(C)) where the existence of such a circuit would imply VP 6= VNP.
Further, the nature of the latter example makes it clear that no simple modification of this
conjecture can hold.

The rest of this section will proceed as follows. We first give a brief introduction to
invariant theory. Then, we discuss the algebraic search problems of interest in computational
invariant theory, followed by the precise statements of our main results. Finally, we discuss
some open problems and future directions.

1.2 Invariant Theory
Invariant theory is the study of symmetries, captured by group actions on vector spaces
(more generally, algebraic varieties), by focusing on the functions (usually, polynomials) that
are left invariant under these actions. It is a rich mathematical field in which computational
methods are sought and well developed (see [10, 39]). While significant advances have been
made on computational problems involving invariant theory, most algorithms are based on
Gröbner bases techniques, and hence still require exponential time (or longer).

3 In the conjecture, the group is specified to be SLn(C), which was done for the purpose of accessibility
and brevity, but it is natural to ask this problem for general connected reductive groups. We will discuss
this further in a later section.

CCC 2020



12:4 Hardness of Generators for Invariant Rings

The basic setting is that of a continuous group4 G acting (linearly) on a finite-dimensional
vector space V = Cm.

An action (also called a representation) of a group G ⊆ GLn(C) on an m-dimensional
complex vector space V is a group homomorphism π : G→ GLm(C), that is, an association of
an invertiblem×mmatrix π(g) for every group element g ∈ G, satisfying π(g1g2) = π(g1)π(g2)
for all g1, g2 ∈ G (and π(e) = Im, where e ∈ G is the identity element and Im is the identity
matrix). To be precise, a group element g ∈ G acts on a vector v ∈ V by the linear
transformation π(g), and in this paper we will be dealing with algebraic actions, that is, the
entries of the matrix π(g) will be rational functions in the entries of the matrix g. We will
write g · v = π(g)v. Invariant theory is nicest when the underlying field is C and the group
G is either finite, the general linear group GLn(C), the special linear group SLn(C), or a
direct product of these groups and their diagonal subgroups. We denote by C[V ] the ring of
polynomial functions on V .

Invariant Polynomials. Invariant polynomials are precisely those which cannot distinguish
between a vector v and a translate of it by an element of the group, i.e., g · v. In other
words, a polynomial function f ∈ C[V ] is called invariant if f(g · v) = f(v) for all v ∈ V
and g ∈ G. Equivalently, invariant polynomials are polynomial functions on V which are
left invariant by the action of G. More precisely, the action of G on V gives an induced
action of G on C[V ], the space of polynomial functions on V . For a polynomial function
p on V , the group element g ∈ G sends it to the function g · p which is defined by the
formula (g · p)(v) = p(g−1 · v) for v ∈ V . Then, a polynomial function is invariant if and only
if g · p = p for all g ∈ G. A set {fi}i∈I of invariant polynomials is called a generating set if
any other invariant polynomial can be written as a polynomial in the fi’s. Two simple and
illustrative examples are

The symmetric group G = Sn acts on V = Cn by permuting the coordinates. In this case,
the invariant polynomials are symmetric polynomials, and the n elementary symmetric
polynomials form a generating set (a result that dates back to Newton).
The group G = SLn(C)×SLn(C) acts on V = Mn(C) by a change of bases of the rows and
columns, namely left-right multiplication: that is, the action of (A,B) sends X to AXBT .
Here, det(X) is an invariant polynomial and in fact every invariant polynomial must be a
univariate polynomial in det(X). In other words, det(X) generates the invariant ring.

The above phenomenon that the ring of invariant of polynomials (denoted by C[V ]G) is
generated by a finite number of invariant polynomials is not a coincidence. The finite
generation theorem due to Hilbert [24, 25] states that, for a large class of groups (including
the groups mentioned above), the invariant ring must be finitely generated. These two papers
of Hilbert are highly influential and laid the foundations of modern commutative algebra and
algebraic geometry. In particular, “finite basis theorem” and “Nullstellansatz” were proved
as “lemmas” on the way towards proving the finite generation theorem!

Orbits and Orbit Closures. The orbit of a vector v ∈ V , denoted by Ov, is the set of all
vectors obtained by the action of G on v. The orbit closure of v, denoted by Ov, is the
closure of the orbit Ov in the Euclidean topology.5 For actions of continuous groups, such

4 In general, the theory works whenever the group is algebraic and reductive. However in this paper, we
will deal with groups that are well understood such as a torus and the special linear group.

5 It turns out mathematically more natural to look at closure under the Zariski topology. However, for
the group actions we study, the Euclidean and Zariski closures match, a consequence of Chevalley’s
theorem on constructible sets.
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as GLn(C), it is more natural to look at orbit closures. The null cone for a group action
is the set of all vectors which behave like the 0 vector i.e. the 0 vector lies in their orbit
closure. Many fundamental problems in theoretical computer science (and many more across
mathematics) can be phrased as questions about orbits and orbit closures. Here are some
familiar examples:

Graph isomorphism problem can be phrased as checking if the orbits of two graphs are
the same or not, under the action of the symmetric group permuting the vertices.
Geometric complexity theory (GCT) [32] formulates a variant of the VP vs. VNP question
as checking if the (padded) permanent lies in the orbit closure of the determinant (of an
appropriate size), under the action of the general linear group on polynomials induced by
its natural linear action on the variables.
Border rank (a variant of tensor rank) of a 3-tensor can be formulated as the minimum
dimension such that the (padded) tensor lies in the orbit closure of the unit tensor,
under the natural action of GLr(C)×GLr(C)×GLr(C). In particular, this captures the
complexity of matrix multiplication.

1.3 Computational invariant theory, Mulmuley’s problems and
conjectures

From its origins in the 19th century, the subject of classical invariant theory has been
computational in nature – one of its central goals is explicit descriptions of generators of
invariant rings, their relations, etc. With the more recent advent of the theory of computation,
it is only natural to ask for the complexity of these descriptions. The influence of complexity
theory has taken an important role in invariant theory as a consequence of the connections to
fundamental problems such as VP vs. VNP that were uncovered as part of the GCT program
by Mulmuley in [31]. In [31], Mulmuley considers the computational complexity of various
invariant theoretic problems. Let G be a group acting on V .

1. (Generators) Output a list of polynomials that generate the invariant ring C[V ]G.
2. (NNL) Output a list of polynomials f1, . . . , fr, such that each fi is a homogeneous

polynomial and the invariant ring C[V ]G is integral over C[f1, . . . , fr].6
3. (Orbit closure intersection) Given two elements of the vector space, do their orbit

closures intersect?
4. (Null cone membership) Given an element of the vector space, does the 0 vector lie

in its orbit closure?
Let us point out straight away that Generators and NNL (Noether Normalization Lemma)
are both algebraic circuit search problems (we will define Generators as an algebraic circuit
search problem more precisely below). Orbit closure intersection and Null cone membership
are not algebraic circuit search problems, but are related to Generators and NNL in a way
that will become clear in a later discussion. We will not get into the details of how the group
is given and how the group action is described. It turns out that even for simple groups and
group actions, these problems turn out to be interesting. They have been long studied and
many algorithms have been developed in the invariant theory community [10, 39]. Mulmuley
[31] introduced these problems to theoretical computer science with the hope of making
progress on the polynomial identity testing (PIT) problem. Before describing the main
conjectures in Mulmuley’s paper, let us see what it even means to output a list of generating

6 This is equivalent to the condition that the zero locus of f1, . . . , fr is precisely the null cone.
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12:6 Hardness of Generators for Invariant Rings

polynomials for an invariant ring. Typically the number of generating polynomials can be
exponential in the dimension of the group and the vector space. To get around this issue,
Mulmuley introduced the following notion of a succinct encoding of the generators of an
invariant ring (which in fact applies to any collection of polynomials).

I Definition 3 (Succinct encoding of generators). Fix an action of a group G on a vector space
V = Cm. We say that an arithmetic circuit C(x1, . . . , xm, y1, . . . , yr) succinctly encodes the
generators of the invariant ring if the set of polynomials formed by evaluating the y-variables,
{C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C, is a generating set for the invariant ring C[V ]G.

I Remark 4. The size of a succinct encoding as defined above is given by the size of the
circuit C(x1, . . . , xm, y1, . . . , yr), which is measured by the bit complexity of the constants
used in the computation of C as well as the number of gates of the computation graph of C.
In particular, this means that all constants used in the computation of C are rationals.

The above notion of a succinct encoding motivates us to define the following algebraic
search problem.

I Problem 5 (Generators). Let G be a group of dimension n and that acts algebraically on an
m-dimensional vector space V by linear transformations. Output a poly(n,m) sized circuit
C(x1, . . . , xm, y1, . . . , yr) such that the polynomials {C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C form
a generating set for the invariant ring C[V ]G. In other words, the problem asks to output a
poly(n,m) sized succinct encoding for the generators of C[V ]G.

I Conjecture 6 (Mulmuley). In the case that G is a connected reductive algebraic group7,
Problem 5 has a positive answer. That is, there exists a poly(n,m) sized circuit which
succinctly encodes the generators of C[V ]G.

Mulmuley requires the circuit family (that succinctly encodes the generators) to be uniformly
computable by a polynomial time algorithm, but we will see that even this weaker conjecture
is false (under standard complexity assumptions).

In [31, Conjecture 5.3], Mulmuley states the above conjecture for actions of the group
SLn(C). However, it is evident that there is nothing special about SLn(C) with regard to
the GCT program and it is natural to state the conjecture in the generality of connected
reductive groups. Let us also note that it was already evident to Mulmuley that one
cannot drop the “connected” assumption on the group, because the permanent appears
as an invariant polynomial for a non-connected reductive group that would disprove the
conjecture immediately using a similar line of reasoning to the one we use in the next section
(see, e.g., [4]).

To understand Mulmuley’s motivation for the conjecture, let us see what it means
for the problems of orbit closure intersection and null cone membership. By definition,
invariant polynomials are constant on the orbits (and thus on orbit closures as well). Thus,
if Ov1 ∩ Ov2 6= ∅, then p(v1) = p(v2) for all invariant polynomials p ∈ C[V ]G. A remarkable
theorem due to Mumford says that the converse is also true for the large class of reductive
groups:

I Theorem 7 ([34]). Fix an action of a reductive group G on a vector space V . Given two
vectors v1, v2 ∈ V , we have Ov1 ∩ Ov2 6= ∅ if and only if p(v1) = p(v2) for all p ∈ C[V ]G.

7 We have not defined what a connected reductive algebraic group is. One should think of simple groups
like the general linear group GLn(C), the special linear group SLn(C), or a direct product of these
groups and their diagonal subgroups.
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Now suppose one had a succinct encoding C(x1, . . . , xm, y1, . . . , yr) for action of a
group G on V = Cm. Then because of Mumford’s theorem, for two vectors v1 and
v2, their orbit closures intersect iff the two polynomials C(v1(1), . . . , v1(m), y1, . . . , yr),
C(v2(1), . . . , v2(m), y1, . . . , yr) are identically the same. These are instances of polynomial
identity testing (PIT)! Thus if Conjecture 6 were true (and additionally the succinct encoding
circuits were polynomial time computable), it immediately gives randomized polynomial
time algorithms for the orbit closure intersection and null cone membership problems. This
also gives us a nice family of PIT problems to play with. Perhaps one might hope that
solving these PIT instances will result in development of new techniques which might shed a
light on the general PIT problem. In fact, for the first few group actions that were studied
in this line of work, simultaneous conjugation [31, 17] and left-right action [19, 27, 12], for
which there are polynomial sized succinct encodings of generators, the null cone membership
problems correspond to PIT problems for restricted models of computation: read-once
algebraic branching programs and non-commutative formulas with division8, both of which
have been successfully derandomized, see [17, 19, 27].

1.4 Our results
While the truth of Conjecture 6 would have great implications, we prove that it is false under
plausible complexity hypotheses. We first state our counterexamples (they are very simple,
and probably many others exist), and then discuss how a related conjecture may be true and
almost as powerful as the original.

For our first counterexample, we analyze a simple (torus) action on 3-tensors. Here,
STn(C) denotes the group of n× n diagonal matrices with determinant 1.

I Theorem 8. Consider the natural action of G = STn(C) × STn(C) × STn(C) on V =
Cn ⊗ Cn ⊗ Cn. Then any set of generators for the invariant ring cannot have a polynomial
sized (in n) succinct encoding, unless NP ⊆ P/poly.

I Corollary 9. Conjecture 6 is false, unless NP ⊆ P/poly.

I Remark 10. As mentioned previously, a primary motivation for succinct encodings of gener-
ators is that they imply (randomized) polynomial time algorithms for null cone membership
problem. For the action in Theorem 8, it is important to note that even though we do
not have a succinct encoding for generators, we still have a polynomial time algorithm for
null cone membership since once can reduce it to an instance of linear programming. For a
general connection between null cone membership and optimization, see [5].

For the above counterexample for the torus action, the notion of a succinct encoding is
quite crucial to our argument, and it is natural to wonder if tweaking the notion would get
rid of the issue. We give another counterexample where it becomes apparent that the precise
form of encoding of the generators is not quite as crucial, as we identify an invariant that is
hard to compute and is essential to any generating set in a sense that we will make precise
in Section 4. Moreover, it is an SLn(C)-action, which provides a counterexample to the exact
formulation of the conjecture in [31].

I Theorem 11. Let k ≥ 2 be even. Consider the action of G = SL2kn on V =
⊗2kC2kn.

Then any set of generators for the invariant ring cannot have a polynomial sized (in n)
succinct encoding, unless VP = VNP.

I Corollary 12. Conjecture 6 is false, unless VP = VNP.

8 Actually a stronger model concerning inverses of matrices.
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1.5 Conclusion, open problems and future directions
We have disproved a conjecture of Mulmuley about the existence of polynomial sized succinct
encodings of generators for invariant rings. We want to emphasize that this only serves a
first guiding light for Mulmuley’s program of understanding the orbit closure intersection
problems (and null cone membership problems) and connections to PIT. To solve the orbit
closure intersection problems, one does not necessarily need a generating set of generators.
This motivates the following definition.

I Definition 13 (Separating set of invariants). For a group G acting algebraically on a vector
space V by linear transformations, a subset S ⊆ C[V ]G is called a separating set of invariants
if for all u, v ∈ V such that Ou ∩ Ov 6= ∅, there exists f ∈ S such that f(u) 6= f(v).

This leads to a natural algebraic search problem that corresponds to the algorithmic problem
of orbit closure intersection. Mulmuley already suggested that a positive answer to the
following search problem would suffice for the purposes of GCT.

I Problem 14 (Separators). Let G be a group of dimension n and suppose it acts al-
gebraically on an m-dimensional vector space V by linear transformations. Output a
poly(n,m) sized circuit C(x1, . . . , xm, y1, . . . , yr), if one exists, such that the set of poly-
nomials S = {C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C is a separating set of invariants.

Similarly, we can define a search problem that corresponds to the algorithmic problem of
null cone membership.

I Problem 15 (Null cone definers). Let G be a group of dimension n and suppose G

acts algebraically on an m-dimensional vector space V by linear transformations. Out-
put a poly(n,m) sized circuit C(x1, . . . , xm, y1, . . . , yr) with the property that the set S =
{C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C consists of invariant polynomials whose zero locus is
precisely the null cone NG(V ) = {v ∈ V | 0 ∈ Ov}.

We conclude the introduction with some open open problems:
1. Are there polynomial sized succinct encodings for separating invariants or, even simpler,

invariants defining the null cone? In other words, do we have positive answers to
Problems 14 and 15 for connected reductive groups? Perhaps the first non-trivial example
is the natural action of G = STn(C)× STn(C)× STn(C) on V = Cn ⊗ Cn ⊗ Cn. Here a
tensor T is in the null cone iff there exists vectors x, y, z ∈ Rn s.t. xi + yj + zk > 0 for all
(i, j, k) ∈ supp(T )9 and

∑
i xi =

∑
j yj =

∑
k zk = 0 (by the Hilbert-Mumford criterion).

Is there a polynomial sized circuit C((zi,j,k), y1, . . . , yr) s.t. C(T, y1, . . . , yr) is identically
zero (as a polynomial in the y-variables) iff T is in the null cone?

2. For the natural action of SLn(C)×SLn(C)×SLn(C) on V = Cn⊗Cn⊗Cn, it is not even
clear if there exists one invariant which has a polynomial sized circuit. Either produce
such an invariant or prove that all invariants are hard to compute.10

3. Are there polynomial time algorithms for the orbit closure intersection and null cone
membership problems? The analytic approach pursued in the papers [19, 7, 2, 5] seems
the most promising approach towards getting such algorithms.

9 supp(T ) = {(i, j, k) ∈ [n]× [n]× [n] : Ti,j,k 6= 0}.
10This problem is known to experts in the field, but has not been written down explicitly anywhere to the

best of our knowledge.
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4. More broadly, invariant theory is begging for its own complexity theory and connecting
it with ours. This includes finding reductions and completeness results, and characteriza-
tions/dichotomies about hard/easy actions. An example of a completeness reduction is
the reduction from all quiver actions to the simple left-right action [15, 16, 35, 12, 20].
Also the papers [31, 19, 27, 17, 12, 13, 11, 23, 30, 5], as well as the current paper, are
trying to identify easy and hard problems in invariant theory.

2 Preliminaries

In this section we establish notation and we formally state basic facts and definitions which
we will need in later sections.

I Definition 16 (3-dimensional matching [28]). The 3-dimensional matching problem is
defined as follows:

Input: a set U ⊆ [n] × [n] × [n], representing the edges of a tripartite, 3-uniform
hypergraph.
Output: YES, if there is a set of hyperedges W ⊆ U such that |W | = n and no two
elements of W agree in any coordinate (that is, they form a matching in this hypergraph).
NO, if there is no such set.

I Theorem 17 (NP-completeness of 3-dimensional matching [28]). The 3-dimensional matching
problem is NP-complete.

2.1 Basic facts from algebraic complexity

We now give basic facts that from algebraic complexity which we will use in the next sections.
The next proposition shows that homogeneous components of low degree of an arithmetic

circuit can be efficiently computed, with a small blow-up in circuit size and without the use
of any extra constants. This proposition was originally proved by Strassen in [38] and its
proof can be found in [37, Theorem 2.2]. In the following proposition, given a polynomial
p(x), we denote its degree-d homogeneous component by Hd[p(x)].

I Proposition 18 (Efficient computation of homogeneous components). Given a circuit C(x)
of size s, then for every r ∈ N there is a homogeneous circuit Ψ(x) of size O(r2s) computing
H0[C(x)], H1[C(x)], . . . ,Hr[C(x)]. Moreover, the constants used in the computation of the
components Hi[C(x)] are a subset of the coefficients used in the computation of C(x).

The next theorem, proved by [1, Theorem 4.10] gives us a randomized polynomial time
algorithm to test whether an algebraic circuit of polynomial size, with rational coefficients,
is identically zero. Another randomized algorithm easily follows from [36, Lemma 2], when
adapted for polynomials with rational coefficients.

I Theorem 19 (PIT for poly-sized circuits [1]). Let P (x) ∈ Q[x] be a polynomial in the variables
x = (x1, . . . , xn), with each variable xi having degree bounded by di, and whose coefficients
are rationals with bit complexity bounded by B. If P (x) is given as an arithmetic circuit of
size s, then there exists a randomized algorithm running in time poly(n, s, log(B), 1/ε) and
using O (

∑n
i=1 log(di) + log(B)) random bits which tests whether P (x) is identically zero. If

P (x) is the identically zero polynomial then the algorithm always succeeds. Otherwise, it errs
with probability at most ε.
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3 Hardness of Generators for torus actions

Let C∗ denote the multiplicative group consisting of all non-zero complex numbers. A direct
product Tn = (C∗)n is called a torus, and is clearly an abelian group. Tori are important
examples of reductive groups – any abelian connected reductive group is a torus! It is often
the case that it is easier to understand tori in comparison with more general (non-abelian)
reductive groups. This is no different for invariant theory, see for example [10, 40]. We
also point to [14, Proposition 3.3] for an elementary linear algebraic description of the
invariant ring for torus actions. Conjecture 6 already fails in this well behaved setting.
This is the content of our Theorem 8, which we will prove in this section. Recall that
STn(C) ∼= {z ∈ Tn : z1 · · · zn = 1}, which is itself a torus.

I Theorem 20 (Theorem 8, restated). Consider the natural action of G = STn(C)×STn(C)×
STn(C) on V = Cn ⊗ Cn ⊗ Cn, where an element (a, b, c) ∈ G acts on a tensor u ∈ V

as follows: (a, b, c) · u := v, such that vijk = aibjckuijk. Any set of generators for the
invariant ring of this action cannot have a polynomial sized (in n) succinct encoding, unless
NP ⊆ P/poly.

Proof. Suppose that the natural action above has a set of generators with a polynomial sized
succinct encoding. Thus, there is an arithmetic circuit C(x,y) of size s = poly(n), where
x = (xijk)ni,j,k=1 is the set of variables corresponding to V and y = (y1, . . . , yr) is the set of
auxiliary variables, with r = poly(n). Moreover, from the definition of the size of a succinct
encoding we also have that the constants used in the computation of C(x,y) are rational
numbers with bit complexity bounded by b = poly(n). In particular, C(x,y) ∈ Q[x,y].

Let us consider the circuit C(x,y) as a circuit whose constants are in Q[y] and whose
variables are only the x variables, that is, a circuit in Q[y][x]. Then, Proposition 18 tells
us that there exists a homogeneous circuit Cn(x,y), in the x variables, of degree n and size
O(n2s) that computes the homogeneous component of C(x,y) of degree n as a function of x.
Moreover, the constants of this circuit are a subset of the constants used in the circuit C(x,y).
Since we consider the latter as a circuit in only the x variables, the constants in this case are
given by the elements of Q used in the computation of C as well as the auxiliary variables y.
In particular, Cn(x,y) can be written in the following way:

Cn(x,y) =
∑

m∈Nn(x)

fm(y) ·m, (1)

where Nn(x) is the set of all monomials of degree n in the variables x and fm(y) are
polynomials in the variables y of degree at most 2s, as the circuit C has size at most s.

In Proposition 21 below, we will show that the invariants of minimum degree of our
action are in degree n, and these are spanned by the (maximum) 3-dimensional matching
monomials. Thus, if a monomial of degree n is invariant under our action, it must be the case
that this monomial corresponds to a 3-dimensional matching. Moreover, the action maps
any monomial (invariant or not) to a constant times itself. As Cn(x,y) must only compute
invariant polynomials, this implies that equation (1) is actually of the following form:

Cn(x,y) =
∑

m∈Mn(x)

fm(y) ·m, (2)

whereMn(x) is the set of all 3-dimensional matching monomials in the variables x. Moverover,
since C(x,y) succinctly encodes of a set of generators, the span of {Cn(x, α)}α∈Cr must
necessarily be the same as the span of the 3-dimensional matching polynomials.
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We will now show that the existence of the circuit Cn(x,y) implies that NP ⊆ P/poly.
For that purpose, we will show that given Cn(x,y) one can solve the 3-dimensional matching
problem in P/poly. Let H be a tripartite 3-uniform hypergraph, whose edges are given by a
subset E ⊆ [n]× [n]× [n]. We can associate to this graph the tensor v ∈ V where vijk = 1 if
hyperedge (i, j, k) ∈ E and vijk = 0 otherwise. Note that H has a 3-dimensional matching of
size n if and only if at least one of the 3-dimensional matching monomials does not vanish
on our tensor v. This last condition is equivalent to the fact that the circuit Cn(v,y) does
not compute the zero polynomial (as we know that the span of the set {Cn(x, α)}α∈Cr is the
same as the span of all 3-dimensional matching monomials). Thus, to solve the 3-dimensional
matching problem in P/poly it is enough to give a randomized polynomial time algorithm
for testing whether Cn(v,y) is the zero polynomial or not.11

Since Cn(v,y) is a circuit of size poly(n) with rational constants of bit complexity poly(n),
it computes a polynomial P (y) with rational coefficients having bit complexity at most
exp(poly(n)) and degree at most exp(poly(n)). This is the setting in which Theorem 19
applies, giving us the desired randomized polynomial time algorithm. This concludes our
proof modulo Proposition 21, which we will now turn our attention to. J

In the following proposition, we denote by Sn the symmetric group on n letters.

I Proposition 21. The maximum 3-dimensional matching monomials
∏n
i=1 xiσ(i)τ(i), where

σ, τ ∈ Sn, span the invariants of degree n of the natural action of G = STn(C)× STn(C)×
STn(C) on V = Cn ⊗Cn ⊗Cn. Moreover, there are no nonconstant invariants of degree less
than n for this action.

Proof. Since the action maps any monomial to a constant times itself, it is easy to see that
the invariant polynomials are generated by invariant monomials. To prove the proposition, it
is therefore enough to show that the matching monomials are invariant, that there are no
other invariant monomials of degree n, and that there are no invariant monomials of smaller
degree.

We first prove that the matching monomials are invariant. Note that the natural action of
G on V induces the following action on the variables xijk: (a,b, c) ·xijk = (aibjck)−1 ·xijk.12
Additionally, note that

∏n
`=1 a` =

∏n
`=1 b` =

∏n
`=1 c` = 1. Given a matching monomial∏n

i=1 xiσ(i)τ(i), we therefore have that

(a,b, c) ·
n∏
i=1

xiσ(i)τ(i) =
n∏
i=1

(
(aibσ(i)cτ(i)))−1 · xiσ(i)τ(i)

)
=

n∏
i=1

(aibσ(i)cτ(i))−1 ·
n∏
i=1

xiσ(i)τ(i)

=
n∏
i=1

xiσ(i)τ(i)

where in the last equality we note that for any permutation σ ∈ Sn (or τ) we have 1 =∏n
`=1 a` =

∏n
`=1 aσ(`) (and similarly for b and c). This proves that the matching monomials

are invariant monomials of the natural G-action on V .
Now, let us prove that no other monomial of degree n is an invariant for this action. Let∏n

m=1 ximjmkm
be a monomial, where (im, jm, km) ∈ [n]3, that is not a matching monomial.

Then there exists some coordinate, w.l.o.g. the first coordinate, for which the set {im}nm=1 is a

11 It is enough to give a randomized polynomial time algorithm because we know that BPP/poly = P/poly.
12The inverse comes from the general formula (g · p)(v) := p(g−1 · v).
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strict subset of [n]. Equivalently, there is an element ` ∈ [n] such that ` 6∈ {im}nm=1. W.l.o.g.,
we can assume that ` = 1. Thus, the action of a = (αn−1, α−1, . . . , α−1),b = c = (1, . . . , 1)
on our monomial

∏n
m=1 ximjmkm

is as follows:

(a,b, c) ·
n∏

m=1
ximjmkm

= αn ·
n∏

m=1
ximjmkm

which proves that this monomial is not an invariant. This completes the proof that the
matching monomials span the invariants of degree n.

Now we are left with proving that there are no nonconstant monomials of degree less
than n that are invariant. Note that if we have a monomial with degree less than n, we can
represent it as

∏d
m=1 ximjmkm , where d < n and by the pigeonhole principle, we know that

there exists ` ∈ [n] such that ` does not appear as a first coordinate entry in the set of tuples
{(im, jm, km)}. If d > 0 then, analogously to the previous paragraph, we know that such
monomials cannot be invariants of the natural action of G over V , therefore showing that no
nonconstant monomial of degree < n can be an invariant. This completes the proof. J

4 Invariant Theory for SLn(C) and Mulmuley’s conjecture

In this section, we will give another example of a group action on tensors for which any set
of generating invariants is hard to compute, i.e., we will prove Theorem 11. Even though the
previous section already gives a counterexample, this example illustrates something more.
The feature of this group action is that invariants of minimial degree span a 1-dimensional
space. In other words, up to scaling, we have a unique invariant of minimal degree. This
unique invariant in the minimal degree is called the hyperpfaffian polynomial (introduced
by Barvinok in 1995 as a natural generalization of the well-known Pfaffian polynomial to
higher order tensors). We then study the hyperpfaffian’s computational complexity and prove
that it is VNP-complete. The importance of this example is that such a unique invariant in
the minimal degree is essential in any generating set.13 So, it is not even possible to give
a generating set consisting of invariant polynomials that are easy to compute, even if we
remove all restrictions on the size of the generating set.14 Moreover, the group action is by
SLn(C) rather than a torus. Therefore our counterexample disproves Mulmuley’s original
conjecture in a strong sense.

4.1 Invariant Rings and Symmetric Tensors
The special linear group SLn(C) consists of complex n× n-matrices with unit determinant
and acts canonically on Cn by matrix-vector multiplication. This action extends to any m-th
tensor power

⊗mCn by

g · (v1 ⊗ · · · ⊗ vm) := (g · v1)⊗ · · · ⊗ (g · vm) (3)

and linear continuation. We will always use the standard bilinear form on
⊗mCn that

satisfies 〈gT · v, w〉 = 〈v, g · w〉 for all v, w ∈
⊗mCn, g ∈ SLn(C).

13Unique invariants in minimal degree have been studied and used in the context of GCT before in [8],
although the problems pursued there are quite different from the one we are considering in this paper.

14A very similar argument also works in the action of SL×4
n on (Cn)⊗4, in which case, the unique minimal

invariant is called Pascal determinant and also known to be VNP–hard. This appeared in an earlier
version of this paper, see [21]. However, our current example using the hyperpfaffian has the added
advantage of disproving the exact formulation of Mulmuley’s conjecture.
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Let V be an arbitrary finite-dimensional SLn(C)-representation (such as V =
⊗mCn).

Then SLn(C) also acts on C[V ]d, the vector space of degree-d homogeneous polynomials
on V , via the formula

(g · p)(v) := p(gT · v),

where p ∈ C[V ]d, g ∈ G and v ∈ V . The formula above is the dual representation of the
action on the ring of all polynomial functions C[V ] =

⊕∞
d=0 C[V ]d that we explained in

in Section 1.2. Using the dual here is only for presentation purposes, as it gives a clearer
connection to multilinear algebra as follows. Note that a polynomial p ∈ C[V ] is invariant if
and only if ∀g ∈ SLn(C) we have g · p = p.

It is convenient to identify polynomial functions with symmetric tensors. Note that SLn(C)
acts canonically on any d-th tensor power

⊗d
V of V . This action restricts to the d-th

symmetric tensor power Symd V , i.e., the Sd-invariant subspace of
⊗d

V . Recall that Sd is the
symmetric group on d letters; it acts on V ⊗d by permuting tensor factors. For any t ∈ Symd V ,
we can define a homogeneous degree-d polynomial p ∈ C[V ]d by p(v) := 〈t, v⊗d〉. Here we
use the quadratic form on Symd V induced by a non-degenerate bilinear form on V that
satisfies 〈gt · v, w〉 = 〈v, gw〉 for all v, w ∈ V , g ∈ SLn(C) as above. Then, p is invariant if
and only if the symmetric tensor t is invariant, i.e., if ∀g ∈ SLn(C) we have g · t = t. We
will tacitly go back and forth between symmetric tensors in Symd⊗mCn and homogeneous
polynomials in C[

⊗mCn]d.
Now, we turn to studying hyperpfaffians.

4.2 Hyperpfaffians

The Pfaffian is the unique (up to scale) homogeneous SL2n(C)-invariant of degree n on C2n⊗
C2n. There are no SL2n(C)-invariants in lower degrees. If we identify C2n ⊗ C2n with the
space of complex 2n × 2n matrices A, then the Pfaffian is invariant under the action of
SL2n(C) given by g ·A := gAgT . The defining property of the Pfaffian generalizes to tensors
of even order as follows (the classical Pfaffian is the special case of k = 1):

I Proposition 22. For any k and n, there is a unique (up to scale) homogeneous SL2kn(C)-
invariant polynomial Pfk,n of degree n on

⊗2kC2kn. Pfk,n identifies with the symmetric
tensor e1 ∧ · · · ∧ e2kn ∈ Symn⊗2kC2kn. There are no nonconstant SL2kn(C)-invariants of
lower degree.

Before proving Proposition 22 we recall some representation theory. The material is well-
known, and we refer to standard texts (e.g., [18]) for details. A partition λ is a nonincreasing
sequence of natural numbers with finite support. We write λ `n m to say that |λ| :=∑
i λi = m and λn+1 = 0. If λn+1 = 0, then we say that λ is an n-partition. The irreducible

polynomial GLn(C)-representations are indexed by n-partitions. For a partition λ, let {λ}
denote the irreducible GLn(C)-representation corresponding to λ. Restricted to SLn(C), the
representation {λ} is trivial if and only if λ1 = . . . = λn; note that this implies that n | m.
The irreducible representations of Sm are indexed by partitions λ with |λ| = m. Let [λ]
denote the irreducible Sm-representation corresponding to λ.

Consider
⊗mCn. This space has an action of SLn(C) by (3), but also an action of Sm

that permutes the tensor factors. Both actions commute, so we have an action of the product
group SLn(C)× Sm. The following well-known result will be crucial for our purposes.
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I Theorem 23 (Schur–Weyl duality). As an SLn(C) × Sm-representation, we have the
decomposition:⊗mCn =

⊕
λ`nm

{λ} ⊗ [λ].

Using Schur–Weyl duality, one sees immediately that
⊗mCn contains nonzero SLn(C)-

invariant vectors if and only if n | m. This is because a vector is invariant if and only if it
spans a trivial irreducible representation – but {λ} is trivial if and only if λ1 = . . . = λn,
as mentioned above. For m = n, there is a unique (up to scale) SLn(C)-invariant vector.
This is because the invariants in

⊗nCn correspond to the component {1n} ⊗ [1n], where
we write 1n for the partition λ1 = . . . = λn = 1. Here, {1n} is the trivial representation of
SLn(C) and [1n] is one-dimensional, as it is the sign representation of Sn. Thus the space of
invariants is one-dimensional. This unique vector (up to scale) is given by the wedge product
e1∧ e2∧ · · ·∧ en, where a∧ b := 1

2 (a⊗ b− b⊗a), and higher order wedge products are defined
analogously.

Proof of Proposition 22. It suffices to show that Symd⊗2kC2kn contains no SL2kn(C)-
invariant vector if 0 < d < n and that it contains a unique such vector if d = n. Note that
Symd⊗2kC2kn is a subspace of

⊗d⊗2kC2kn '
⊗2kdC2kn. Thus the first claim holds since⊗2kdC2kn contains SL2kn(C)-invariant vectors only if 2kn | 2kd. Thus if 0 < d < n, there are

no invariants. For d = n,
⊗d⊗2kC2kn '

⊗2knC2kn contains the unique SL2kn(C)-invariant
vector v = (e1 ∧ · · · ∧ e2k) ∧ · · · ∧ (e2k(n−1)+1 ∧ · · · ∧ e2kn). It remains to show that v is
symmetric, i.e., an element of Symd⊗2kC2kn, which is a subspace of

⊗d⊗2kC2kn. But
this is easy to see since each of the d blocks has even size 2k and the wedge product is
skew-commutative. This proves the second claim. J

The polynomial Pfk,n was introduced in [3, Def. 3.4] in its monomial presentation, where
it is called the hyperpfaffian. Note that, for fixed k, Pfk := (Pfk,1,Pfk,2, . . . ) is a p-family
(i.e., both the degree and the number of variables are polynomially bounded), since Pfk,n
has degree n and (2kn)2k variables. The monomial presentation in [3] immediately yields
that Pfk ∈ VNP.

I Theorem 24. For even k, Pfk is VNP-complete.

Proof. We present a projection of Pfk,d to the d× d permanent. The same projection yields
the determinant if k is odd, which explains why the proof does not work for the classical
Pfaffian (k = 1). The case k = 2 is enough to disprove Mulmuley’s conjecture.

By Proposition 22, the Pfaffian Pfk,d identifies with the symmetric tensor

v := e1 ∧ · · · ∧ e2kd ∈ Symd⊗2kC2kd.

Thus, the evaluation Pfk,d(p) at a tensor p ∈
⊗2kC2kd is given by 〈v, p⊗d〉 (cf. [26,

Sec. 4.2(A)]). We choose

p =
d−1∑
i,j=0

xi+1,j+1(e1+2ki ⊗ e2+2ki ⊗ · · · ⊗ ek+2ki ⊗ ek+1+2kj ⊗ ek+2+2kj ⊗ · · · ⊗ e2k+2kj),

where the xi,j (1 ≤ i, j ≤ d) are formal variables.
The point p is parametrized linearly by the xi,j , so the evaluation of Pfk,d at p is a

projection of Pfk,d. We verify that the evaluation of Pfk,n at p gives the d× d permanent
(up to a constant nonzero scalar) as follows.
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p⊗d =
d−1∑

i1,j1,...,id,jd=0

xi1+1,j1+1 · · ·xid+1,jd+1

(e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1 )
⊗ · · · ⊗ (e1+2kid

⊗ e2+2kid
⊗ · · · ⊗ ek+2kid

⊗ ek+1+2kjd
⊗ ek+2+2kjd

⊗ · · · ⊗ e2k+2kjd
)

and by linearity

〈v, p⊗d〉 =
d−1∑

i1,j1,...,id,jd=0

xi1+1,j1+1 · · ·xid+1,jd+1

〈v, (e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1 )
⊗ · · · ⊗ (e1+2kid

⊗ e2+2kid
⊗ · · · ⊗ ek+2kid

⊗ ek+1+2kjd
⊗ ek+2+2kjd

⊗ · · · ⊗ e2k+2kjd
)〉

A crucial property of v is that 〈v, eπ(1) ⊗ eπ(2) ⊗ · · · ⊗ eπ(n)〉 6= 0 iff π is a permutation, in
which case it is equal to the sign of the permutation. It follows that the nonzero summands
in 〈v, p⊗d〉 are precisely those for which i = (i1, . . . , id) and j = (j1, . . . , jd) are permutations
of {0, . . . , d− 1}. For a single summand with i and j permutations we see:

xi1+1,j1+1 · · ·xid+1,jd+1

〈v, (e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1 )
⊗ · · · ⊗ (e1+2kid

⊗ e2+2kid
⊗ · · · ⊗ ek+2kid

⊗ ek+1+2kjd
⊗ ek+2+2kjd

⊗ · · · ⊗ e2k+2kjd
)〉

= sgn(i)k sgn(j)kxi1+1,j1+1 · · ·xid+1,jd+1.

Hence, for even k we obtain 〈v, p⊗d〉 = d! Perd. J

Finally, we put together the preceding results to prove Theorem 11.

I Theorem 25 (Theorem 11, restated). Let k ≥ 2 be even. Consider the action of G =
SL2kn(C) on V =

⊗2kC2kn. Then any set of generators for the invariant ring cannot have
a polynomial sized (in n) succinct encoding, unless VP = VNP.

Proof. We summarize the results so far. Let k ≥ 2. Consider the action of G = SL2kn(C)
on V =

⊗2kC2kn. Then:
1. There are no homogeneous invariant polynomials of degree < n.
2. The space of homogeneous invariant polynomials of degree n is 1-dimensional, and spanned

by the hyperpfaffian polynomial Pfk,n.
3. The hyperpfaffian polynomial Pfk,n is VNP-complete.
The rest of the proof proceeds along the same lines as in the proof of Theorem 8 in Section 3.
If we had a poly-sized succinct encoding for the generators of this invariant ring, then one
would be able to extract the lowest degree part, which would yield a poly-sized circuit
computing Pfk,n. This is not possible unless VP = VNP, since Pfk,n is VNP-complete. J
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1 Introduction

Over the last two decades, the Unique Games Problem has emerged as an obstacle to
the approximability of many combinatorial optimization problems. More precisely, the
Unique Games Conjecture (UGC) states that there is no polynomial-time algorithm to
solve the Unique Games Problem within a certain performance guarantee. If the UGC is
true, the current best-known approximation algorithms for many problems such as Min-
2Sat-Deletion [19], Vertex Cover [21], Max-Cut [20] and Non-Uniform Sparsest
Cut [9, 22] are in fact optimal. On the other hand, falsification of the conjecture is likely to
provide powerful new algorithmic techniques that apply to many important computational
problems. The fact that either resolution of the conjecture could be an important advance in
the understanding of approximation algorithms and complexity theory is one reason why the
UGC has played a key role in recent theoretical computer science research.

Our main contribution is a pair of algorithms, each deeply rooted in ideas from statistical
physics, that solve a natural variant of the Unique Games Problem. We give some important
definitions before the statement of these results.

I Definition 1. In a Unique Games problem we are given a constraint graph G = (V,E), a
set of colours [k] = {1, . . . , k} which is referred to as the alphabet, a set of variables {xu}u∈V ,
one for each vertex u, and a set of permutations (also known as constraints) πuv : [k]→ [k],
one for each edge uv ∈ E. We study assignments giving a colour from [k] to each variable
xu, and are interested in the number of satisfied edges (or satisfied constraints) of the form1

πuv(xu) = xv. The value of the assignment is the fraction of satisfied constraints. The
value of the Unique Games instance is the maximum fraction of constraints that can be
simultaneously satisfied.

We denote by UG(k, ε, δ) the promise problem consisting of a Unique Games instance
with alphabet size k and the promise that the instance either has value at least 1− ε, or has
value at most δ. To solve the problem is to correctly determine which of the two cases hold.

When the parameters are unimportant or clear from context they are omitted, and we
will always be interested in ε, δ ≥ 0 with 1 − ε > δ, otherwise the problem is ill-posed or
impossible to solve. The Unique Games Conjecture of Khot [19] can now be stated as follows.

I Conjecture (UGC). For any constants ε, δ > 0 with 1− ε > δ, there is a positive k(ε, δ)
such that for any alphabet size k > k(ε, δ), the problem UG(k, ε, δ) is NP-hard.

We note that in [11, 12] it was shown that for any δ > 0, for all large enough k the
problem UG(k, 1/2− δ, δ) is NP-hard.

Upon translating a Unique Games problem into a form amenable to methods from
statistical physics, which we elaborate upon later, a natural variant of the problem arises.

I Definition 2. Count Unique Games, or CUG(f, k, ε, δ), is the promise problem consisting
of a Unique Games instance with alphabet size k and the promise that the instance either has
at least (fk)|V | colourings with value at least 1− ε, or that every colouring has value at most
δ. To solve the problem is to correctly determine which of the two cases hold, and when the
parameters are clear from context they are omitted.

1 Formally, let G be an oriented graph so each edge has a direction. Then the edge (or constraint) u→ v
is satisfied when πuv(xu) = xv, or equivalently π−1

uv (xv) = xu. Without orientations it is unspecified
whether to use πuv or π−1

uv here. We suppress this detail as in other parts of the paper it is more natural
to consider undirected graphs.
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Note that with f = k−1, CUG(f, k, ε, δ) corresponds exactly to UG(k, ε, δ); and with
f = 1 the problem is easily solvable as the guarantee covers all colourings in both cases. To
solve CUG(1, k, ε, δ) simply requires checking the value of an arbitrary colouring. So via the
parameter f CUG can be smoothly reduced in difficulty from equal to UG to trivial. We can
now state our main results.

I Theorem 3. For ε, δ > 0 with 1−ε > δ and any fixed integer k ≥ 3, there exists ∆0(ε, δ, k)
such that for all ∆ ≥ ∆0 the following holds.

Let G be an n-vertex, ∆-regular CUG(f, k, ε, δ) instance with f ≥ kε+δ− 1
2 . Then there is

a deterministic algorithm that solves CUG for G in time

n exp
(
eO(log2 k) log2 ∆

)
.

I Theorem 4. For ε, δ > 0 with 1 − ε > δ and any k satisfying log k ≥ ∆3/2 log ∆, there
exists ∆0(ε, δ) such that for all ∆ ≥ ∆0 the following holds.

Let G be an n-vertex, ∆-regular CUG(f, k, ε, δ) instance with f ≥ k2ε+2δ−1. Then there
is a deterministic algorithm that solves CUG for G in time knO(1)eO(∆).

To illustrate how close Theorem 4 gets to an algorithm for usual Unique Games, consider
an n-vertex, ∆-regular instance of UG and suppose there exists an assignment of value 1− ε.
Let S be an arbitrary set of εn vertices, and consider all assignments obtained by relabelling
vertices in S. There are at most ε∆n constraints that could be violated by modifying the
labels of vertices in S, hence each such assignment has value at least 1− 3ε. Thus there are
at least kεn assignments of value 1− 3ε, which corresponds to having parameter f = kε−1 as
a CUG instance. In summary, if we were permitted to take f = kε/3−1 in Theorem 4, which
is only slightly smaller than the stated f ≥ k2ε+2δ−1, then we would be able to refute the
Unique Games Conjecture.

The idea at the heart of both Theorem 3 and Theorem 4 is to encode a CUG problem as
the problem of approximating the value of a partition function Z(G;w) which depends on
the instance G, and is a polynomial in w. The partition function is intimately connected to
statistical physics, and we use two techniques recently developed for approximating partition
functions to prove our two main results. Theorem 3 is proved via polynomial interpolation, a
method due to Barvinok (see [4] and references therein) and furthered by Patel and Regts [26]
who improved the running time in many examples. Theorem 4 is proved via the cluster
expansion and methods given in [8]. These techniques have recently been developed and
applied to the problem of approximating the partition function of the Potts model [4, 6, 8, 24],
random cluster model [8], and other models from statistical physics [4, 17, 26]. The main
conceptual advances in this paper are demonstrations that these techniques may be adapted
to UG instances, cleanly handling the constraints assigned to edges that are not present in
the standard Potts model. The main technical advance in this paper is a zero-free region
for (a generalization of) the ferromagnetic Potts model partition function, that may be of
independent interest. See Theorem 10 below.

I Remark 5. We note that in the majority of interesting cases for the Unique Games
conjecture, the degree ∆ of the constraint graphs is not very large (e.g. the hypercube),
so by considering ∆ polylogarithmic in n, we get a quasi-polynomial time algorithm from
Theorem 4.

CCC 2020



13:4 Statistical Physics Approaches to Unique Games

1.1 Paper organization

In the following subsection we summarize related work on the UGC. In Section 2 we define
our partition function and relate it to solving UG problems. This involves stating our
algorithmic results for approximating the partition function, and proving that our main
results follow from these algorithms. In Sections 3 and 4 we discuss approximation algorithms
for our partition function with the polynomial interpolation and cluster expansion methods
respectively. Certain details are deferred to the appendices. Finally, we discuss an important
open problem arising from our work and identify plausible barriers to improving our methods
in Section 5.

1.2 Related work

An intimate connection between the UGC and semidefinite programming (SDP) can be
traced back to a seminal paper by Goemans and Williamson [15] on the Max-Cut problem.
An instance of Max-Cut can be seen as a system of linear equations over Z2, and thus it is a
Unique Games instance with alphabet size two. Goemans and Williamson gave an SDP-based
algorithm for Max-Cut which, on inputs where the maximal cut is of size 1− ε, produces a
cut that satisfies at least a fraction 1− (2/π)

√
ε of the constraints. A matching integrality

gap was found by [18] and [13], and in [20] it was proven that if the UGC is correct, then the
Goemans–Williamson algorithm has the best approximation ratio that a polynomial-time
algorithm for Max-Cut can achieve. Raghavendra [29] proved that for every constraint
satisfaction problem there is a polynomial time, semidefinite programming-based algorithm
which, if the UGC is true, achieves the best possible approximation ratio for the problem.
These results cement the central role of the UGC in the theory of approximation algorithms.

There are also spectral algorithms that give good polynomial-time or quasi-polynomial-
time approximations algorithms for large classes of Unique Games instances. These include
expanders [3, 25], local expanders [2, 30], and more generally, graphs with few large eigen-
values [23]. In [1], the authors gave a general sub-exponential algorithm for Unique Games
based on spectral techniques.

In contrast to previous approaches to refuting the UGC, our methods use techniques from
statistical physics and naturally lead to the consideration of CUG. The strengthened promise
of CUG connects to an active area of research for other computational problems such as Sat.
With no assumptions finding a satisfying assignment for a 3CNF-formula is NP-hard, but
how fast can we find a satisfying assignment under the assumption that many exist? When
a constant fraction of the possible assignments satisfy the formula, simply trying random
assignments performs quite well; and it is an intriguing problem to match this performance
with a deterministic algorithm. Servedio and Tan [31] gave such an algorithm that uses a
deterministic algorithm for approximating the number of satisfying assignments of a formula
as a key building block. We note that deterministic approximate counting is at the heart of
our methods too.

2 Solving a Unique Games problem with a partition function

In this section we define a partition function Z(G;w) and describe how to solve CUG
instances via knowledge of the partition function, leading to proofs of Theorems 3 and 4. We
also observe how CUG naturally arises from UG in this context.
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A partition function is a mathematical object that encodes as a polynomial some weighted
substructures in a graph. The general definition arises in the statistical physics of spin systems,
and important examples include the independence polynomial and matching polynomials of
a graph, see e.g. [4]. Here we will only describe the partition function we define to study
Unique Games instances, which is closely related to the Potts and random cluster models.

I Definition 6. Given a Unique Games instance G = (V,E, π), the partition function
Z(G;w) is a polynomial in a parameter w ∈ C given as a sum of terms wi for each colouring
of the graph with the alphabet [k] that has i satisfied constraints (i.e. that has value i/|E|).
That is,

Z(G;w) :=
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E,

xv=πuv(xu)

w,

where the sum is over all assignments of colours in [k] to the labels {xu}u∈V .

If the permutations πuv are all the identity, then a satisfied constraint corresponds to
a monochromatic edge: both endpoints of the edge received the same colour. In this case
the above Z(G;w) corresponds to the partition function of the Potts model from statistical
physics. The relevance to Unique Games problems arises from the fact that the cases of the
promise in (C)UG give contrasting bounds on Z(G;w). When w ≥ 1 is real, in the case that
a highly satisfying assignment is guaranteed to exist we have a lower bound, and in the case
that no highly satisfying assignments exist we have an upper bound. When the upper bound
is less than the lower bound, at most one of the bounds can hold for any given instance,
so knowledge of Z(G;w) immediately solves the problem. If the bounds are sufficiently far
apart an approximate value of Z(G;w) suffices.

I Lemma 7. Consider an instance G = (V,E) of CUG(f, k, ε, δ), and let α > 0. Then to
solve the instance it suffices to know any value ξ satisfying e−α ≤ Z(G;w)/ξ ≤ eα for any
real w such that

logw >
|V | log(1/f) + 2α

(1− ε− δ)|E| .

In the case that G has average degree ∆ (so 2|E| = ∆|V |), and α = C|V | this becomes

logw >
2

1− ε− δ
log(1/f) + 2C

∆ .

Proof. Consider any real w ≥ 1. Then if there are (fk)|V | colourings of G with value 1− ε
we have

eαξ ≥ Z(G;w) ≥ (fk)|V |w(1−ε)|E|,

and if every colouring has value at most δ we have

e−αξ ≤ Z(G;w) ≤ k|V |wδ|E|.

Since these bounds go in opposite directions, knowledge of ξ immediately yields a solution to
the problem when the implied intervals for ξ are disjoint. This occurs precisely for w as in
the statement of the lemma. J

CCC 2020
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We now see that increasing f allows CUG instances to be solved via Z(G;w) for smaller
w, and this is how the Count variant of Unique Games naturally arises. We are unable
to approximate Z(G;w) with w large enough to permit f = 1/k (i.e. refute UGC), but by
slightly increasing f we bring w into a range amenable to our methods. In Section 5 we
discuss the problem of how large f can be while CUG(f) is still equivalent to UG, and
identify natural barriers to using algorithms for larger w. To obtain Theorems 3 and 4 we
need a pair of algorithms and some calculations.

I Theorem 8. Let k ∈ N≥3, ∆ ∈ N≥3, and w∗ = 1 + (log k − 1)/∆. Then there exists
a deterministic algorithm which, given α satisfying 0 < α < 2n

e∆e
O(log2 k), and an n-vertex

UG(k) instance G of maximum degree at most ∆, computes a number ξ satisfying e−α ≤
Z(G;w∗)/ξ ≤ eα in time bounded by

n exp
(
eO(log2 k) log

(
n∆
α
eO(log2 k)

)
log(∆

√
k)
)
.

I Theorem 9. Let ∆ ∈ N and let ζ = 8/
√

∆. For k ≥ exp ((18∆ + 4∆ log ∆)/ζ) and
w∗ = exp((2 − ζ) log(k)/∆) there exists an deterministic algorithm, which given α > 0
and an n-vertex UG(k) instance G of maximum degree at most ∆, computes ξ satisfying
e−α ≤ |Z(G;w∗)/ξ| ≤ eα in time bounded by knO(1)(n/α)O(∆).

Note that we write UG(k) above as neither algorithm depends on value or the promise on
the value of the instance (and hence the values of ε and δ are irrelevant). These parameters
feature in the application of these algorithms to prove our main results. The above results
are proved in Sections 3 and 4 respectively. In both cases we define a series for logZ(G;w),
show that it converges, and obtain an additive approximation to it by evaluating a truncation
of the series. Here we give the calculations that show what CUG problems we can solve with
these algorithms.

Proof of Theorem 3. Take w∗ as in Theorem 8. As ∆→∞, and with approximation error
α = Cn for any C < 2eO(log2 k)−1/∆, by Lemma 7 we require

logw∗ = (1− o(1)) log k
∆ >

2
1− ε− δ

log(1/f) + 2C
∆ .

For large enough ∆, C = log(k)/∆ is valid in Theorem 8 and implies the above for any

f ≥ kε+δ− 1
2 . J

We remark that a very similar calculation gives a result for k growing with ∆, but we present
the special case of constant k here as it is instructive of our methods and permits a concise
expression for f and the running time.

Proof of Theorem 4. Take w∗ as in Theorem 9. With ∆ ≥ e9/2, ζ = 8/
√

∆, k ≥ ∆∆3/2 ,
and α = Cn for some C > 0 we choose later, by Lemma 7 we require

logw = (2− ζ) log k
∆ >

2
1− ε− δ

log(1/f) + 2C
∆ ,

which holds when

f > e2Ck−
1
2 (2−ζ)(1−ε−δ).

With ∆ ≥ ∆0(ε, δ) and C ≤ 1
4 (ε+ δ) log k, this holds for f ≥ k2ε+2δ−1. For large enough ∆0

(which makes k sufficiently large) we can take e.g. C = 1/2 and obtain a running time of
knO(1)eO(∆). J
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3 Polynomial interpolation

The proof of Theorem 8 proceeds by an influential method known as polynomial interpolation
introduced by Barvinok, see e.g. [4]. In our application of this method, for some real w∗ > 0
we show that there is a region U ⊂ C containing the interval [1, w∗] on which Z(G;w) 6= 0
for any UG instance G of maximum degree ∆. The region U is a zero-free region, and it
guarantees that a Taylor series for (a suitable modification of) logZ converges inside U . We
then approximate Z by computing the coefficients of a truncation of the Taylor series. We
require that U is independent of the size of the graph G to obtain a good approximation.
The analysis yielding the approximation from U is rather standard, e.g. [4, 5, 26], though
we include it in Appendix A for completeness. The main technical work is in the following
theorem establishing the region U . We write N (S, η) for an open set in C containing the
open ball of radius η around every point in S.

I Theorem 10. Let k ∈ N≥3 and ∆ ∈ N≥3. Then with w∗ = 1 + (log k − 1)/∆ there exists
η = ω( 1

∆ log k ) such that for any w ∈ N ([1, w∗] , η) and any UG(k) instance G of maximum
degree at most ∆, Z(G;w) 6= 0.

Our proof of Theorem 10 is inductive in the style of [6] which gives a zero-free region for
the antiferromagnetic Potts model, though here we have a generalization of the ferromagnetic
Potts model rather than than the antiferromagnetic Potts model that was studied in [6]. We
give a proof sketch here and defer the full details to Appendix B.

Consider an n-vertex UG(k) instance with G = (V,E, π) with maximum degree ∆. In
order to prove our results, we will need to work more generally with the partition function
with boundary conditions. For m > 0 and a list W = w1 . . . wm of distinct vertices of V and
a list L = `1 . . . `m of pre-assigned colours in [k] for the vertices in W the restricted partition
function ZWL (G;w) is defined by

ZWL (G;w) :=
∑

{xu}u∈V ∈[k]V
{xu}u∈V respects (W,L)

∏
(u,v)∈E,

xv=πuv(xu)

w,

where we say that a colour assignment {xu}u∈V respects (W,L) if for all i = 1 . . . ,m we
have xwi = `i. As it does not vary in the steps of the proof, we will omit the parameter
w and write ZWL (G) for ZWL (G;w). We call the vertices w1, . . . , wm fixed and refer to the
remaining vertices in V as free vertices. The length of W (resp. L), written |W | (resp. |L|)
is the length of the list. Given a list of distinct vertices W ′ = w1 . . . wm, and a vertex u
(distinct from w1, . . . , wm) we write W = W ′u for the concatenated list W = w1 . . . wmu

and we use similar notation L′` for concatenation of lists of colours. We write deg(v) for the
degree of a vertex v and we write G \ uv (G− u) for the graph obtained from G by removing
the edge uv (by removing the vertex u).

To prove Theorem 10 we consider the same statement for restricted partition functions
and induct over the number of vertices whose colour is not fixed by the boundary conditions.
With a strengthened induction hypothesis we can argue that unfixing the specified colour
of a single vertex cannot affect the value of the partition function too much and continue
the induction. The main technical difficulties are to bound the change in angle and radius
unfixing a vertex can induce in the value of the partition function (as a complex number).

I Lemma 11. Let ∆ ∈ N≥3 and let k ∈ N≥3. Let c = log k − 1 and α = log k1/2 − 1. Then
there exists constants 0 < ε < θ < π

3∆ with ε, θ = ω(1/∆) and η = ω(1/(∆ log k)) such that
for any w ∈ N ([1, 1 + c/∆], η) and any UG(k) instance G of maximum degree at most ∆ the
following hold.
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1. For all lists W of distinct vertices of G and all lists of pre-assigned colours L of length
|W |, ZWL (G) 6= 0.

2. For all lists W = W ′u of distinct vertices of G such that u is a leaf and any two lists L′l,
L′l′ of length |W |, the following hold.
a. If the unique neighbour v of u is free,

i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most θ, and

ii. Z
W ′u
L′l (G)

ZW
′u

L′l′ (G)
≤ 1 + α

∆ .

b. If the unique neighbour v of u is fixed,
i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most ε, and

ii. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ 1 + c

∆ .

3. For all lists W = W ′u of distinct vertices of G, and for all lists of pre-assigned colours
L′ of length |W ′|, let d be the number of free neighbours of u, and let b = ∆− d. Then
for any pair of colours l, l′,
a. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most dθ + bε, and

b. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ (1 + α/∆)d(1 + c/∆)∆−d.

Note that Statement 1 withW = L = ∅ is the result we want for Theorem 10, Statement 2
shows that changing the fixed colour of a leaf (degree 1) vertex u affects the angle and length
of the restricted partition function by a small amount (depending on whether the neighbour
of u is itself free or fixed), and Statement 3 is a similar but weaker version for any vertex.
We give the proof of Lemma 11 in Appendix B.

4 Cluster expansion

On the surface our proof of Theorem 9 has a similar flavour to the polynomial interpolation
method: we define a series expansion for logZ(G;w), show that it converges, and approximate
Z(G;w) by computing the coefficients of a truncation of the series. Instead of working with
a Taylor series and a zero-free region, we work with a different formal power series for
logZ called the cluster expansion which expresses logZ as a sum involving weights given
to connected subgraphs of G. This technique was recently applied to approximating the
partition functions of the Potts and random cluster models in [8], where the random cluster
model is a random graph model from statistical physics that generalizes the Ising and Potts
models, and the concept of percolation2. To obtain the result we adapt a standard reduction
to express our partition function Z(G;w) in terms of the random cluster model, and apply
the method of [8] which gives an approximation algorithm via the cluster expansion.

4.1 The random cluster model
The random cluster model, instead of counting graph labellings according to satisfied edges,
counts connected subgraphs according to some weights. We adapt the standard reduction
comparing the Potts model and random cluster model partition functions to our Z(G;w) for
Unique Games instances.

2 Note the distinct uses of the term “cluster” in “cluster expansion” and “random cluster model”, though
there is a common theme of connected subgraphs in both uses.
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We start by rewriting Z(G;w) for a given instance G = (V,E, π). Let (V ′, E′) be a
connected component of G, so that V ′ is a nonempty subset of V and E′ ⊂ E ∩

(
V ′

2
)
. We

consider a singleton vertex {u} to comprise the connected component ({u}, ∅). Define

satπ(V ′, E′) :=
∑

{xu}u∈V ′∈[k]V ′

∏
(u,v)∈E′

1{xv = πuv(xu)},

where 1{P} = 1 if P is true, and 0 otherwise. In other words satπ(V ′, F ′) counts the number
of assignments of value 1 (perfectly satisfying assignments) of the Unique Games instance
restricted to the subgraph (V ′, E′). The definition means that satπ({u}, ∅) = k as there
are no constraints and the empty product is 1. Since we work with (V ′, E′) connected, we
also have

0 ≤ satπ(V ′, E′) ≤ k, (1)

as given any starting colour for an arbitrary first vertex u ∈ V ′, there is at most one
completion of the colouring to a perfectly satisfying assignment obtained by following the
constraints out along the component from u.

We use the notation C(V, F ) for the set of connected components of the graph (V, F ),
taken as pairs (V ′, E′) with E′ ⊂ F . The following lemma gives the reduction from Z(G;w)
to the random cluster model partition function. The simple proof is given in Appendix C.

I Lemma 12. Let G = (V,E, π) be a UG instance and w ∈ C. Then

Z(G;w) =
∑
F⊆E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′).

4.2 The cluster expansion
We closely follow the notation and setup of [8, 17]. Given a UG instance G = (V,E, π),
define a polymer γ to be a connected subgraph of G with at least two vertices. A collection
of polymers is compatible if the polymers contained in it are pairwise vertex disjoint. We
define the incompatibility graph HG on the collection of all polymers as follows: vertices of
HG are the polymers and two polymers are connected by an edge if they are not compatible
(that is if they share a vertex). Write |γ| := |V (γ)|, ‖γ‖ := |E(γ)|, and given w ∈ C, define
the weight of a polymer γ as

wγ := (w − 1)‖γ‖k−|γ| satπ(γ),

where we write satπ(γ) for the more cumbersome satπ(V (γ), E(γ)). Then by Lemma 12 and
the observation that for a single vertex u we have satπ({u}, ∅) = k, we have

Ξ(G) :=
∑

Γ={γ1,...,γt}

t∏
i=1

wγi = k−|V |Z(G;w),

where the sum is over all sets Γ of (pairwise) compatible polymers. Note that Ξ(G) is the
multivariate independence polynomial of the compatibility graph HG.

The cluster expansion is the following formal power series for log Ξ(G):

log Ξ(G) =
∑

Γ⊂V (HG)
HG[Γ] connected

φ(Γ)
∏
γ∈Γ

wγ , (2)
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where φ(Γ) is the Ursell function of the graph HG[Γ] = (Γ, F ), defined as

φ(Γ) := 1
|Γ|!

∑
A⊆F

(Γ,A) connected

(−1)|A|.

For Γ ⊂ V (HG), let ‖Γ‖ be given by ‖Γ‖ :=
∑
γ∈Γ ‖γ‖, and define the truncated cluster

expansion as follows

Tm :=
∑

Γ⊂V (HG), ‖Γ‖<m
HG[Γ]connected

φ(Γ)
∏
γ∈Γ

wγ . (3)

With the definitions and a reduction to the right partition function in place, we can now
state a result essentially proved in [8] that gives convergence of the cluster expansion and an
approximation guarantee.

I Lemma 13 (Borgs et al. [8, Lemma 2.1]). Suppose that polymers are connected subgraphs
containing at least one edge of a graph G of maximum degree ∆ on n vertices, that ‖γ‖ is
the number of edges of the polymer γ, and that

|wγ | ≤ e−(7+log ∆)‖γ‖. (4)

Then the cluster expansion converges absolutely and for any m ∈ N, |Tm− log Ξ(G)| ≤ ne−3m.
To prove Theorem 9 we simply check that these conditions hold, which we state as a

lemma below. The details are in Appendix C.

I Lemma 14. Let ∆ ∈ N≥16, let C = e−9−2 log ∆, and let ζ = 8
√

1/∆. Then if k ≥ C−2∆/ζ

and 1 ≤ w ≤ e(2−ζ) log(k)/∆, Lemma 13 holds for UG(k) instances G of maximum degree ∆.
We deduce the following runtime guarantees from our setup and the analyses of [17, 26].

The truncated series Tm can be computed in time eO(∆m+logn) given an enumeration of all
polymers on fewer than m edges and their weights (see [17]). We can enumerate the polymers
in time O(n2m7(e∆)2m) as they are connected subgraphs of a graph of maximum degree ∆
(see [26]), and compute each weight in time O(km) as all perfectly satisfying assignments on
a connected graph are found by following each of the k assignments of an initial vertex and
propagating along constraints. To get an approximation of the form e−α ≤ Z(G;w∗)/ξ ≤ eα
we take m = log(n/α)/3 which means the entire computation of ξ can be done in time

eO(∆m+logn) +O(km8n2(e∆)2m) = knO(1)(n/α)O(∆).

We see that the number of colours needed to make the lemma work is of the order ∆O(∆3/2).
It would be interesting to get a better dependence on ∆.

5 Conclusions

Lemma 7 shows that a hypothetical polynomial-time algorithm for computing Z(G;w) exactly
when

logw = 2
1− ε− δ

log k
∆

would refute the UGC. This problem is likely #P hard so we resort to approximation, which
we can only do for some range of w. In Theorem 10 we have logw = (1−o(1)) log(k)/∆ when
k is small enough that log k = o(∆), and in Theorem 9 we have logw = (2− o(1)) log(k)/∆
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when k is larger than some ∆poly(∆). This means we must increase f from k−1 to solve
any CUG problems, and the size of w in these results is what gives the bound on f in
Theorems 3 and 4. It is therefore important to determine the threshold f∗ such that CUG(f)
is equivalent to UG when f ≤ f∗. Trivially we have k−1 ≤ f∗ ≤ 1, but if one could show
e.g. that f∗ ≥ k2θ−1 then Theorem 4 would mean the Unique Games problem is in P for
bounded-degree graphs when k is large enough and ε+ δ < θ.

5.1 Phase transitions
In this subsection we focus on the ferromagnetic Potts model, which is the special case of our
partition function Z(G;w) when the constraints on each edge are the identity permutation
and we take w ≥ 1. The behaviour of the Potts model on bounded-degree graphs is strongly
related to the phases of the model on the infinite ∆-regular tree T∆. We will not define
precisely what we mean by a phase or a phase transition here, but as the parameter w varies,
the behaviour of the model undergoes certain changes that seem to affect both zeros of the
partition function and the dynamics of associated Markov chains. Häggström [16] showed
that the uniqueness phase transition on T∆ occurs at w = wu(k,∆), the unique value of w
for which the polynomial

(k − 1)x∆ + (2− w − k)x∆−1 + wx− 1 (5)

has a double root in (0, 1). There is a further ordered/disordered phase transition (see [14]) at

wo(k,∆) := k − 2
(k − 1)1−2/∆ − 1

.

Below we relate the values of w found in Theorems 9 and 10 to these phase transitions.

5.2 Potential barriers to improving Theorem 3
To strengthen Theorem 3 to a result that would refute the UGC, we need roughly a
factor two improvement in the leading constant in logw∗ ∼ log(k)/∆ as k →∞ (provided
log k = o(∆)) from Theorem 10, but there are reasons to believe it may be hard to make
such an improvement.

The authors of [7] analysed a natural Markov chain known as the Glauber dynamics which
walks the set of possible colourings of a graph G, and when this mixes rapidly we expect
an efficient, randomised approximation algorithm for the Potts model partition function to
follow. They showed for the Potts model that Glauber dynamics mixes rapidly on graphs of
maximum degree ∆ when

logw ≤ (1 + o(1)) log k
∆− 1 ,

as k →∞, and that on almost all ∆-regular graphs (for ∆ ≥ 3), Glauber dynamics mixes
slowly when w is just a little larger, satisfying

logw > (1 + o(1)) log k
∆− 1− 1

∆−1
.

These bounds sandwich the phase transition point wu; they also showed that as k →∞,

logwu = log k
∆− 1 +O(1).

Thus it appears that wu is a barrier for approximating Z(G;w) via Glauber dynamics.
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Similarly, we expect that wu is a barrier for the zero-free region. Underpinning Lemma 11
is a complex dynamical system (see [28] for a treatment of the case k = 2), and equation (5)
appears in the analysis of this system. Essentially, the behaviour of a fixed point in the
complex dynamics changes at w = wu in a way which means it is reasonable to expect zeros
of Z(G;w) to accumulate near wu for some G with maximum degree ∆. Thus we suspect
that the method cannot work for w > wu.

5.3 Potential barriers to improving Theorem 4
There are several regimes of interest for the algorithm in Theorem 9 that gives Theorem 4.
When we apply Theorem 9 to solve CUG problems, we only need an approximation with
α = Cn for constant C in which case the running time is bounded by knO(1)eO(∆). Recall
that we also need k ≥ ∆O(∆3/2), and hence when ∆ and k do not grow too fast with n, the
running time is sub-exponential in n. For the hypercube with ∆ = logn and with k as small
as the result allows, the algorithm is quasi-polynomial. In the case where ∆ is constant, to
get an approximation as accurate as α being constant the running time of the algorithm is
polynomial in n. It is interesting to compare this with a paper of Galanis et al. [14] who
show that it is #BIS-hard to approximate the partition function of the Potts model with
k colours on graphs of maximum degree ∆ when w > wo. With ζ = 8/

√
∆, if we take

k = k0 = exp((18∆+4∆ log ∆)/ζ), then Theorem 9 shows that we can approximate the Potts
model partition function on graphs of maximum degree at most ∆ with w = k

(2−ζ)/∆
0 . A

quick calculation shows that, as ∆→∞ (and hence k →∞), wo(k0,∆) ∼ k2/∆
0 . We conclude

that if one assumes that there are no efficient algorithms for approximating #BIS-hard
problems, Theorem 9 is very close to optimal in this regime.
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A Details for the proof of Theorem 8

What follows is a rather precise description of results developed by Barvinok in [4, 5], lightly
specialised to our application and notation.

I Definition 15. Let f : C→ C be any function, and m ≥ 0. Then we define the degree-m
Taylor polynomial of f about zero, Tm(f), as the polynomial in z given by

Tm(f)(z) := f(0) +
m∑
k=1

f (k)(0)
k! zk.

I Lemma 16 (see [4, Lemma 2.2.1] or [5, Lemma 2.1]). Let g : Ĉ → Ĉ be a polynomial of
degree at most N , and for β > 1 suppose that g(z) 6= 0 for |z| < β.

Then given a choice of branch for f(z) = log g(z) where |z| < β, we have

|f(1)− Tm(f)(1)| ≤ N

(m+ 1)βm(β − 1) .

I Corollary 17 (cf. [5, Corollary 2.2]). For any c > 0 there exists c′ > 0 such that the following
holds. Suppose that the conditions of Lemma 16 hold, and in addition that β ≤ 1 + c.

Then for any 0 < α < N/e, and for any

m ≥ c′

β − 1 log
(
N

α

)
,

we have |f(1)− Tm(f)(1)| ≤ α.

The only differences from [5, Corollary 2.2] are the relaxation of the assumption α < 1 to
α ≤ N/e, the additional assumption that β is close to 1, and a more precise analysis of m.
In fact one can take c′ = c/ log(1 + c).

Proof. By Lemma 16, we are done if

N

(m+ 1)βm(β − 1) ≤ α

for m as in the statement of the corollary. This holds if and only if

(m+ 1)βm+1 ≥ N

α

β

β − 1 ⇐⇒ (m+ 1) log β ≥W
(
N

α

β log β
β − 1

)
,

where W is the upper real branch of the Lambert W -function, see [10]. We take this branch
because β > 1 so (m+ 1) log β > 0. Since W is increasing and log β

β−1 < 1, this is implied by

m+ 1 ≥ W (Nβ/α)
log β .

https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1109/FOCS.2017.80
https://doi.org/10.1109/FOCS.2017.80
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Now we have log x ≥W (x) for all x ≥ e, so since β > 1 and N/α ≥ e this is implied by

m+ 1 ≥ log(Nβ/α)
log β = log(N/α)

log β + 1.

Then it suffices to take m ≥ log(N/α)/ log β. But since log β ∼ β−1 as β → 1 and β < 1 + c,
we can find c′ depending only on c such that c′ log β ≥ β − 1. Then it suffices to take

m ≥ c′

β − 1 log
(
N

α

)
J

Corollary 17 tells us how many terms of a Taylor expansion of log g we need to get an
additive error of at most α, under the condition that g has no roots in the disc {z ∈ C : |z| <
β}. We want to work with a zero-free region of the form N ([0, 1], η), the open set containing
a ball of radius η around each point in [0, 1]. Barvinok [4, 5] also gives constructions that
perform well for this situation which we reproduce below.

I Lemma 18 ([4, Lemma 2.2.3]). For 0 < ρ < 1 there is a polynomial p of degree

Nρ :=
⌊(

1 + 1
ρ

)
e1+ 1

ρ

⌋
≥ 14

such that p(0) = 0, p(1) = 1, and

−ρ ≤ < p(z) ≤ 1 + 2ρ and |= p(z)| ≤ 2ρ

for all z such that |z| ≤ β(ρ) where

βρ := 1− e−1− 1
ρ

1− e−
1
ρ

> 1.

I Corollary 19 (cf. [5, Theorem 1.6]). Suppose that 0 < η < 1, and g is a polynomial of
degree N such that g(z) 6= 0 for all z ∈ N ([0, 1], η). Then given any 0 < α < Ne6/η−1, it
suffices to compute the first

m = e6/η log
(
Ne6/η

α

)
coefficients of g to obtain a number ξ satisfying | log g(1)− ξ| ≤ ε.

Proof. Let ρ = η/
√

8 and βρ, Nρ be given by Lemma 18. Then since η < 1, we note that

Nρ ≤ e6/η and βρ ≥ 1 + 1
2e

1
ρ

≥ 1 + e−4/η.

Now the polynomial p as in Lemma 18 maps {z ∈ C : |z| ≤ βρ} into N ([0, 1], η), so the
polynomial g ◦ p(z) is a degree NNρ ≤ Ne6/η polynomial which is nonzero for all z ∈ C such
that |z| ≤ 1 + e−4/η.

We now apply Corollary 17 to g ◦ p. With f(z) = log(g ◦ p(z)) we have f(1) = log g(1)
since p(1) = 1, and so the Taylor polynomial Tm(1) (as defined in Definition 15) for this f is
the quantity we want for ξ. More precisely, as described in [4, Section 2.2.2], to compute
Tm(log g ◦ p) at z = 0 it suffices to compute Tm(g ◦ p). In turn, to compute Tm(g ◦ p) it
suffices to compute Tm(g) and the truncation pm of p obtained by deleting all monomials of
degree higher than m, and then the composition of polynomials Tm(g) ◦ pm. The final step
is to truncate Tm(g) ◦ pm to be degree m, and to obtain ξ by evaluating this polynomial at
z = 1. This can be done in time O(m), and by Corollary 17 applied to g ◦ p, when we have

m ≥ e6/η log
(
Ne6/η

α

)
,

and α < Ne6/η−1, we have the desired | log g(1)− ξ| ≤ α. J
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We know now how many coefficients are needed for an approximation to a polynomial.
For the complexity of computing these coefficients we refer to Patel and Regts [26, 27].
Our partition function Z(G;w) is an edge-coloured BIGCP in the sense of Patel and Regts’
definition in [27]. Z(G;w) has degree at most ∆n/2 with BIGCP parameters α = 2 and
βi = O(ki) according to [26, Section 6]. Then by [27, Theorem 2.1] there is a deterministic
algorithm to compute the first m coefficients of Z in time

Õ
(
n(4e∆

√
k)2m),

where Õ means that we omit factors polynomial in m.
To prove Theorem 8 we want an approximation for logZ(G;w) with error α = Cn,

and we have a zero-free region surrounding [1, w∗] with w∗ = 1 + (log k − 1)∆ at distance
η = ω(1/(∆ log k)). Then we can transform Z into a polynomial with zero-free region around
[0, 1] of distance η/(w∗ − 1) = ω(1/(log k)2), so we need

C ≤ 2
e∆eO(log2 k),

and

m = eO(log2 k) log
(

∆
2C e

O(log2 k)
)
,

according to Corollary 19.
Then we have a running time of

Õ
(
n(4e∆

√
k)2m) = n exp

(
eO(log2 k) log

(
∆
C
eO(log2 k)

)
log(∆

√
k)
)
.

B Details for the proof of Theorem 10

Lemma 11 directly implies Theorem 10, and we give the proof in this section.

B.1 Preliminaries
First, we state a lemma of Barvinok which is useful for evaluating sums of restricted partition
functions.

I Lemma 20 (Barvinok [4, Lemma 3.6.3]). Let u1, . . . , un ∈ R2 be non-zero vectors such that
the angle between any two vectors ui and uj is at most α for some α ∈ [0, 2π/3). Then the
ui all lie in a cone of angle at most α and∣∣∣∣ n∑

i=1
ui

∣∣∣∣ ≥ cos(α/2)
n∑
i=1
|ui|.

Furthermore the following simple corollary of of the cosine rule will come in handy.

I Lemma 21. Let z, z′ be two complex numbers at an angle of at most π/3, then |z − z′| ≤
max{|z|, |z′|}.

Proof. Recall the cosine rule, for a triangle with sides a, b and c; and angles A, B and C
where side a is not adjacent to angle A, then

|a|2 = |b|2 + |c|2 − 2|b||c| cos(A),
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where |a| is the length of side a. Now consider the triangle with vertices in C at the origin, z
and z′. The sides have length |z|, |z′| and |z − z′| and the angle at the origin is the angle
θ ≤ π/3 between z and z′. As cos(x) ≥ 1/2 for x ≤ π/3,

|z − z′|2 ≤ |z|2 + |z′|2 − |z||z′| ≤ max{|z|2, |z′|2}. J

To prove Lemma 11 we need some definitions and an auxiliary lemma. We define rational
functions (which depend on k and w) in two variables z0, z and respectively k − 1 variables
z0, . . . , zk−2 by

R(z0, z;w, k) := wz0 + (k − 2)z + 1
z0 + (k − 2)z + w

,

Rk(z0, z1, . . . , zk−2;w) := wz0 + z1 + . . .+ zk−2 + 1
z0 + z1 + . . .+ zz−2 + w

.

Consider the cone

C(θ) := {z = reiϑ | r ≥ 0 and |ϑ| ≤ θ},

and define for d = 0, . . . ,∆ and c, α > 0, the region

K(θ, d, c, α, ε) := C(dθ + ∆− ε) ∩{
z :
(

1 + c

∆

)d−∆ (
1 + α

∆

)d
≤ |z| ≤

(
1 + c

∆

)∆−d (
1 + α

∆

)d}
.

I Lemma 22. Let ∆ ∈ N≥3 and let k ∈ N≥3. Define c = log k − 1 and α = log k1/2 − 1.
Then there exists 0 < ε < θ < π/(3∆) and η = ω( 1

∆ ) such that for each d = 0, . . . ,∆,
and any z0, . . . , zk−2 ∈ Kd := K(θ, d, c, α, ε) such that for each i, j, zi/zj ∈ Kd and any
w ∈ N ([1, 1 + c/∆], η) the ratio R = Rk(z0, z1, . . . , zk−2;w) satisfies

(1 + α/∆)−1 < |R| < 1 + α/∆ and | arg(R)| < θ. (6)

In particular the following values suffice,

θ = 1
5∆ , ε = θ

100 log k , η = min
{

∆c
800(∆ + α)2 ,

1
2400(∆ + α) ,

c

800∆

}
.

We will prove this lemma in the next subsection, but we first utilize it to prove Lemma 11,
which we restate here for convenience.

I Lemma 11. Let ∆ ∈ N≥3 and let k ∈ N≥3. Let c = log k − 1 and α = log k1/2 − 1. Then
there exists constants 0 < ε < θ < π

3∆ with ε, θ = ω(1/∆) and η = ω(1/(∆ log k)) such that
for any w ∈ N ([1, 1 + c/∆], η) and any UG(k) instance G of maximum degree at most ∆ the
following hold.
1. For all lists W of distinct vertices of G and all lists of pre-assigned colours L of length
|W |, ZWL (G) 6= 0.

2. For all lists W = W ′u of distinct vertices of G such that u is a leaf and any two lists L′l,
L′l′ of length |W |, the following hold.
a. If the unique neighbour v of u is free,

i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most θ, and

ii. Z
W ′u
L′l (G)

ZW
′u

L′l′ (G)
≤ 1 + α

∆ .

b. If the unique neighbour v of u is fixed,
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i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most ε, and

ii. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ 1 + c

∆ .

3. For all lists W = W ′u of distinct vertices of G, and for all lists of pre-assigned colours
L′ of length |W ′|, let d be the number of free neighbours of u, and let b = ∆− d. Then
for any pair of colours l, l′,
a. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most dθ + bε, and

b. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ (1 + α/∆)d(1 + c/∆)∆−d.

Proof. The choice of constants is the same as in Lemma 22 except that we need to choose η
small enough so that each w ∈ N ([1, 1 + c/∆], η) has argument at most ε. It thus suffices to
take η = ω( 1

∆ log(k) ).
We prove the lemma by induction on the number of free vertices of G. For the base

case, we have no free vertices and so every vertex is fixed. Therefore ZWL (G) is a product of
non-zero terms, hence is non-zero, proving 1. Statement 22a is vacuous as there are no free
vertices. Statement 22b follows as the products ZW ′uL′l (G) and ZW ′uL′l′ (G) differ in at most one
term. Thus their ratio is either 1, w or w−1. Similarly we deduce Statement 3 (in which d
must be zero) from the fact that the products ZW ′uL′l (G) and ZW ′uL′l′ (G) differ in at most ∆
terms.

Now, we assume that Statements 1, 2, and 3 hold for graphs with r ≥ 0 free vertices. We
prove the statements for r + 1 free vertices. First, we shall prove 1.

Suppose that u is a free vertex. Note that ZWL (G) =
∑k
j=1 Z

Wu
Lj (G). As each term in

the sum on the right hand side of this expression has one fewer free vertex, we may apply
induction to deduce that all of these terms are non-zero by 1. Furthermore, by 3 each pair
has angle at most dθ + (∆− d)ε where d is the number of free neighbours of u. Lemma 20
tells us that the ZWu

Lj all lie in a cone of angle at most dθ + (∆− d)ε and

|ZWL (G)| =
∣∣∣∣ k∑
j=1

ZWu
Lj (G)

∣∣∣∣ ≥ cos(dθ/2 + (∆− d)ε/2)
k∑
j=1
|ZWu
Lj (G)| 6= 0.

Next, we shall prove 22a so consider the ratios,

Rj,l(G) =
ZW

′u
L′j (G)

ZW
′u

L′` (G)
, Rvj,`(G) =

ZW
′v

L′j (G− u)
ZW

′v
L′` (G− u)

.

As v is the unique neighbour of u and is free, we may write, denoting j∗ for πuv(j) and `∗
for πuv(`),

Rj,l(G) =
∑
i Z

Wuv
Lji (G)∑

i Z
Wuv
L`i (G)

=
wZWv

Lj∗ (G− u)
∑
i/∈{j∗,`∗} Z

Wv
Li (G− u) + ZWv

L`∗ (G− u)
ZWv
Lj∗ (G− u) +

∑
i/∈{j∗,`∗} Z

Wv
Li (G− u) + wZWv

L`∗ (G− u)
.

Dividing both the numerator and denominator by ZWv
L`∗ (G−u) (which by induction is nonzero)

we obtain,

wRvj∗,`∗(G) +
∑
i6=j∗,`∗ R

v
i,`∗(G) + 1

Rvj∗,`∗(G) +
∑
i6=j∗,`∗ R

v
i,l(G) + w

= Rk(Rvj∗,`∗(G), Rv1,`∗(G), . . . , Rvk,`∗(G);w). (7)

Where the function Rk in (7) takes as arguments all Rvi,`∗(G) for i 6= `∗ precisely once (and
so takes precisely k − 1 arguments as expected.)
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Suppose that v has d free neighbours that are not u. Since G − u has one fewer free
vertex than G, we may apply the inductive hypothesis. By 3 we find that for any i 6= `∗, we
have Rvi,`(G) ∈ Kd. However, we also have that for any i, j 6= `∗, that

Rvi,`∗(G)
Rvj,`∗(G) = ZW

′v
L′i (G− u)

ZW
′v

L′j (G− u)
= Rvi,j(G) ∈ Kd.

To prove 22a2(a)i, observe that the angle between ZW ′uL′j and ZW ′uL′l is precisely the angle of
Rj,l(G) from the real axis in C and so is bounded by the absolute value of the argument
of Rj,l(G), which by Lemma 22 bounded by θ as desired. Statement 22a2(a)ii also follows
immediately from Lemma 22.

For the proof of 22b, we note that as v is fixed, then

ZW
′u

L′j (G) ∈ {w−1ZW
′u

L′l (G), ZW
′u

L′l (G), wZW
′u

L′l (G)}

from which both 2(b)i and 2(b)ii follow.
Finally, we prove 3. To do so we consider the graph G ? u which is formed as follows.

Let v1, . . . , vr be the neighbours of u ordered arbitrarily. Let u1, . . . , ur be r new vertices
which will be copies of u. Then G ? u is the graph obtained by deleting u and its incident
edges, adding the vertices u1, . . . , ur and edges u1v1, . . . , urvr. Furthermore, G ? u inherits
any colouring of G and if u is coloured, all of the new vertices inherit this colour. Note that
if u is coloured, then the graph G ? u has the same partition function as G. Also, in this
case G ? u has the same number of free vertices as G. This allows us to prove 3 from 2 by
changing the colour of one copy of u at a time. That is,

ZW
′u

L′j (G)
ZW

′u
L′l (G)

=
ZW

′u1...ur
L′j...j (G ? u)

ZW
′u1...ur

L′l...l (G ? u)
=

r∏
i=1

Z
W ′u1...ui−1ui...ur
L′j...jl...l (G ? u)

Z
W ′u1...uiui+1...ur
L′j...jl...l (G ? u)

(8)

By 2 each of the terms in the product in (8) has angle at most θ and absolute value at most
1 + α/∆ (if ui is free) or angle at most ε and absolute value at most 1 + c/∆ (if ui is fixed).
As u has d free neighbours and at most ∆−d fixed neighbours, this allows us to conclude 33a
and 33b, completing the induction. J

B.2 Proof of Lemma 22
We will require a technical lemma which concerns the real and imaginary parts of the ratios
R(z1, z2;w, k).
I Lemma 23. Let z1, z2 ∈ C be defined as z1 = xeiθx , z2 = yeiθy with x, y ∈ R+ and
θx, θy ∈ [0, 2π) and suppose w ∈ [1, 1 + c

∆ ] is real. Then, the real and imaginary parts of
R(z1, z2;w, k) are as follows where N is a nonzero constant,

<(R(z1, z2;w, k)) = N(wx2 + (w + 1)(k − 2)xy cos(θx − θy) + (k − 2)2y2 (9)
+ (w2 + 1)x cos(θx) + (w + 1)(k − 2)y cos(θy) + w),

=(R(z1, z2;w, k)) = N(w − 1)((k − 2)xy sin(θx − θy) (10)
+ (1 + w)x sin(θx) + (k − 2)y sin(θy)).

I Remark 24. Set θ = max(|θx|, |θy|, |θx − θy|) and assume |θ| ≤ 1. Then as | sin t| ≤ |t| and
cos t ≥ 1− t2/2 for all t, and using w ≥ 1 we obtain the following bounds:

<(R(z1, z2;w, k)) ≥ N(1− θ2/2)(wx2 + (w + 1)(k − 2)xy + (k − 2)2y2

+ (w2 + 1)x+ (w + 1)(k − 2)y + w)
≥ N(1− θ2/2)(x+ (k − 2)y + w)(wx+ (k − 2)y + 1);

and
=(R(z1, z2;w, k)) ≤ N(w − 1)((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|).
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Hence∣∣∣∣=(R(z1, z2;w, k))
<(R(z1, z2;w, k))

∣∣∣∣ ≤ (w − 1) ((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|)
(1− θ2

2 )(x+ (k − 2)y + w)(wx+ (k − 2)y + 1)
. (11)

Proof. We may write z1 = x cos(θx) + ix sin(θx) and z2 = y cos(θy) + iy sin(θy). Hence,

R(z1, z2;w, k)

= w(x cos(θx) + ix sin(θx)) + (k − 2)(y cos(θy) + iy sin(θy)) + 1
x cos(θx) + ix sin(θx) + (k − 2)(y cos(θy) + iy sin(θy)) + w

= wx cos(θx) + (k − 2)y cos(θy) + 1 + i(wx sin(θx) + (k − 2)y sin(θy))
x cos(θx) + (k − 2)y cos(θy) + w + i(x sin(θx) + (k − 2)y sin(θy)) (12)

Rationalising the denominator in (12), we obtain

R(z1, z2;w, k)

= 1
N

(wx cos(θx) + (k − 2)y cos(θy) + 1 + i(wx sin(θx) + (k − 2)y sin(θy)))

× (x cos(θx) + (k − 2)y cos(θy) + w − i(x sin(θx) + (k − 2)y sin(θy))) (13)

where N = |x cos(θx) + (k − 2)y cos(θy) + w + i(x sin(θx) + (k − 2)y sin(θy))|2. Expanding
the expression in (13), the real and imaginary parts are given by the following expressions in
which we write cx for cos(θx) and similarly define cy, sx and sy to simplify notation.

<(R(z1, z2;w, k)) = N−1(wx2c2x + (w + 1)(k − 2)xycxcy + (k − 2)2c2y

+ wx2s2
x + (w + 1)(k − 2)xysxsy + (k − 2)2s2

y

+ (w2 + 1)xcx + (w + 1)(k − 2)ycy + w)
=(R(z1, z2;w, k)) = N−1((k − 2)xy(cxsy + wsxcy)− (k − 2)xy(wcxsy + sxcy)

+ (w2 − 1)xsx + (w − 1)(k − 2)ysy)

Combining these expressions with the trigonometric identities

cos2(ϑ) + sin2(ϑ) = 1
sin(α− β) = sin(α) cos(β)− sin(β) cos(β)
cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

yields the expressions (9) and (10) as claimed.
By an application of the triangle law combined with an applications of the approximations,

| sin θ| ≤ |θ| and cos θ ≥ 1− θ2/2, we obtain

|=(R(z1, z2;w, k))| ≤ N−1(w − 1) ((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|) ,
(14)

<(R(z1, z2;w, k)) ≥ N−1 ((wx+ (k − 2)y + 1)(x+ (k − 2)y + w)
− ((w + 1)(k − 2)(x+ 1)y + (w2 + 1)x)θ2/2

)
. (15)

Dividing (14) by (15), noting that for θ small this is maximised when w = 1 + c
∆ and

regrouping some terms yields the bound (11). J

We can now give a proof of Lemma 22.



M. Coulson, E. Davies, A. Kolla, V. Patel, and G. Regts 13:21

Proof of Lemma 22. We first prove a slightly stronger version of the lemma for w′ real.
That is, we will show that there exist a small constants κ = c/100 and κ′ = 0.02 such that

(1 + (α− κ)/∆)−1 < |R| < 1 + (α− κ)/∆ and | arg(R)| < (1− κ′)θ. (16)

To do so we start by taking a constant δ small enough so that for all k ≥ 3, c and α satisfy
the strict inequality

cec

cos(δ)(ec + k − 1) < α− κ; (17)

for example δ = 1/2 is sufficient.
Fix d ∈ {0, . . . ,∆}. First we observe that we may assume that |R| ≥ 1. Indeed, if |R| < 1,

then

1/R =
z0 +

∑k−2
i=1 zi + w

wz0 +
∑k−2
i=1 zi + 1

=
1 +

∑k−2
i=1 zi/z0 + w/z0

w +
∑k−2
i=1 zi/z0 + 1/z0

and |1/R| > 1. Since for each i, j ≥ 0, the pairs zi/z0 and zj/z0 also satisfy our assumptions
this shows our claim. We start by showing that |R| is bounded by 1 + (α− κ)/∆.

We observe that (setting z = (z1 + · · ·+ zk−2)/k)

|R| = |R(z0, z;w, k)| =
∣∣∣∣1 + (w − 1)z0 + (1− w)

z0 +
∑k−2
i=1 zi + w

∣∣∣∣ ≤ 1 +
c
∆ |z0 − 1|

|z0 +
∑k−2
i=1 zi + w|

. (18)

Lower bounding the denominator of (18) may be done with an application of Barvinok’s
lemma. For the numerator we apply Lemma 21 as the angle between z0 and 1 is certainly
less than π/3. This allows us to deduce that

|R(z0, z;w, k)| ≤ 1 +
c
∆ max{|z0|, 1}

cos(dθ/2 + (∆− d)ε/2))(|z0|+
∑k−2
i=1 |zi|+ 1)

.

We next observe that by symmetry we may assume that |z0| ≤ 1; otherwise we divide the
numerator and the denominator by z0. To maximize the above quantity clearly one should take
each |zi| as small as possible. So we take |zi| = (1+c/∆)d−∆(1+α/∆)−d ≥ (1+c/∆)−∆ ≥ e−c
and noting that θ ≤ δ/∆, we rearrange to deduce that

|R(z0, z;w, k)| < 1 + c/∆
cos(δ)((k − 1)e−c + 1) < 1 + (α− κ)/∆

by (17). This proves the first bound in (16).
For the other bound in (16), recall that z = 1

k−2
∑k−2
i=1 zj so that Rk(z0, z1, . . . , zk−2;w) =

R(z0, z;w, k). Note that z ∈ C(dθ+ (∆− d)ε) by convexity of the cone and so by Lemma 20
we have

cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤ |z| ≤ (1 + c/∆)∆−d(1 + α/∆)d.

To prove the bound on the argument of R(z0, z;w, k) we use the inequality, |β| ≤ | tan(β)|.
It therefore suffices to bound the ratio |=R(z0,z;w,k)|

|<R(z0,z;w,k)| = tan(arg(R(z0, z;w, k))), which by
Lemma 23 and Remark 24 is bounded by

(w − 1) ((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(1− θ2

2 )(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1)
. (19)
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Now suppose we can prove that

((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1) <

∆τθ
c

(20)

where τ = 7/e2 < 0.96. Then by choosing θ ≤ 0.2 and κ′ < 0.02, we have that ∆τθ/c <
(1− θ2

2 )(w − 1)−1(1− κ′)θ (using w < 1 + c/∆). This together with (20) proves that (19) is
at most θ(1− κ′) and hence | arg(R(z0, z;w, k))| < θ(1− κ′), as desired.

We will now show that (20) holds. So, first note that

((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1)

≤ ((k − 2)|z0z||θ0 − θz|+ 2|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ 1)2 , (21)

which can be observed by computing the derivative of the left hand side of (20) with respect
to w and noting it is strictly negative for w ≥ 1. Now, we maximize (21), so first we
show that there is a maximum point where exactly two of |θ0 − θz|, |θ0|, |θz| are as large as
possible and one is zero. To see this, first note that clearly at least one of |θ0 − θz|, |θ0|, |θz|
must be as large as possible i.e. equal to dθ + (∆ − d)ε. In fact exactly two of these
must be maximised as the maximization with respect to the θ terms only is of the form
f(θ0, θz) = a|θ0 − θz|+ b|θ0|+ c|θz| for constants a, b, c > 0. So if |θ0 − θz| = dθ + (∆− d)ε
for example, then if b ≥ c we may set θ0 = dθ+ (∆− d)ε, θz = 0 increasing f(θ0, θz). Similar
logic allows one to conclude that two of |θ0 − θz|, |θ0|, |θz| are equal to dθ + (∆ − d)ε and
one is 0 in every other case.

This leaves us with three maximization problems over Rd ⊆ R2 defined by

Rd = {(x, y)|(1 + c/∆)d−∆(1 + α/∆)−d ≤x ≤ (1 + c/∆)∆−d(1 + α/∆)d,
cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y ≤ (1 + c/∆)∆−d(1 + α/∆)d,
cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y/x ≤ (1 + c/∆)∆−d(1 + α/∆)d}.

We enlarge the region slightly obtaining the region R̃d ⊆ R2 defined by

R̃d =
{

(x, y)

∣∣∣∣∣ cos(δ)
exp

(
d
∆α+ (1− d

∆ )c
) ≤ x, y, y/x ≤ exp

(
d
∆α+ (1− d

∆ )c
)

cos(δ)

}

=
{

(x, y)

∣∣∣∣∣e cos(δ)
k1− d

2∆
≤ x, y, y/x ≤ k1− d

2∆

e cos(δ)

}
The functions to maximise are

f1(x, y) = (k − 2)(xy + y)
(x+ (k − 2)y + 1)2 , f2(x, y) = (k − 2)xy + 2x

(x+ (k − 2)y + 1)2 ,

f3(x, y) = 2x+ (k − 2)y
(x+ (k − 2)y + 1)2 .

First we look at f1, it has critical points along the line x+ 1 = (k − 2)y where it attains its
maximum value of 1/4. However, note that due to our choice of c and α, this line does not lie
inside of R̃d, hence the maximum must be attained at a boundary point. Furthermore both
f2 and f3 have no critical points strictly inside the first quadrant, so again their maxima
must be attained at a boundary point. This allows us to reduce the problem to eighteen
univariate maximization problems, each of which has maximum at most 3e−1k−

d
2∆ over R̃d

(see Appendix B.3 for details).
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Thus (21) is upper bounded by (dθ + (∆ − d)ε)3e−1k−
d

2∆ . As a function of d, this is
maximised when d = ( 2

log k −
ε
θ−ε )∆, which (if d ≥ 1) gives an upper bound to (21) of

6e−2∆(θ − ε)
log k exp

(
ε

2(θ − ε) log k
)
.

Thus (20) is satisfied provided 6
7 (θ − ε) exp( 1

2 log k ε
θ−ε ) < θ. By taking ε = θx/ log k and

assuming log k ≥ 1, the left hand side is bounded above by 6
7 (1− x) exp(x/2(1− x))θ and

this is at most θ (as required) by taking x = 1/100 as assumed in the statement of the lemma.
If d = 0, then as f1, f2 and f3 are all bounded above by 1, provided ε < θ

100 log(k) , the left
hand side of (20) at most ε∆ < τθ∆/c. This completes the proof of (20) and hence of (16).

We finally extend the proof to the case that w ∈ N ([1, c/∆], η) for η = 1/[800(∆ + α)2]
using continuity. First observe that Rk(w) := Rk(z0, . . . , zk−2;w) satisfies

Rk(w) = z0 + (z0 + (k − 2)z + 1)(1− z0)
z0 + (k − 2)z + w

.

Then

|Rk(w + η)−Rk(w)| =
∣∣∣∣ [z0 + (k − 2)z + 1](1− z0)
(z0 + (k − 2)z + w + η)(z0 + (k − 2)z + w)η

∣∣∣∣ .
The numerator is upper bounded by [|z0|+ (k− 2)|z|+ 1](1 + |z0|)|η|, while the denominator
is lower bounded by

[
(|z0|+ (k − 2)|z|+ |w| − |η| cos−1(∆θ/2))(|z0|+ (k − 2)|z|+ |w|) cos(∆θ/2)

]2
where we use the fact that the angle between any two of w, z0, z is at most ∆θ and so we
can apply Barvinok’s lemma. In the statement of the lemma, we assume ∆θ ≤ π/3 so
cos(∆θ) ≥ 1/2. Then using that (x+ a)/(x+ b) ≤ a/b for x ≥ 0 and a ≥ b and using that
|w| ≥ 1 and that η < 1/4 (so that |w| − |η| cos−1(∆θ/2) > 1/2), we have

|z0|+ (k − 2)|z|+ 1
(|z0|+ (k − 2)|z|+ |w| − |η| cos−1(∆θ)) cos(∆θ) ≤ 4

and

|z0|+ 1
(|z0|+ (k − 2)|z|+ |w|) cos(∆θ) ≤ 2.

Combining the above inequalities we obtain |Rk(w + η) − Rk(w)| ≤ 8η. Recall η ≤
min{∆c/[800(∆ + α)2], 1/[2400(∆ + α)], c/[800∆]}. Then for w ∈ N ([1, c/∆], η), we can
write w = w′ + η with w′ ∈ [1, c∆ ] real. Writing R = R(w), we have

(
1 + α

∆

)−1
≤
(

1 + α− κ
∆

)−1
− 8η ≤ |R(w′)| − 8η < |R|

< |R(w)|+ 8η ≤
(

1 + α− κ
∆

)
+ 8η ≤ 1 + α

∆ ,

where the first and last inequalities follow by our choice of η.
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It follows from simple geometry that if |z1 − z2| ≤ µ for z1, z2 ∈ C and µ ∈ R+ with
µ < |z1|, then | arg(z1)−arg(z2)| < arcsin(µ/|z1|). Using this, and since |R(w′)| > (1+ α

∆ )−1,
we see that

arg(R) < arg(R(w′)) + arcsin
(

8η
(

1 + α

∆

))
= θ(1− κ′) + arcsin

(
8η
(

1 + α

∆

))
< θ;

in order to check the last inequality holds, it is sufficient to check that 8η(1 + α
∆ ) < sin(κ′θ).

Noting that sin x > x− x3/6 > 5x/6 for x ∈ (0, 1), it is sufficient that 8η(1 + α
∆ ) < 5κ′θ/6

(since κ′θ < 1 by our choice of κ′ and θ) and this holds by our choice of η. This completes
the proof of the lemma. J

B.3 Maximization problems

We look at the maximization problems coming from Appendix B.2 and claim that each has
an upper bound of at most 3k− d

2∆ /e. We find eighteen of them, one for each of the three
functions with either x, y, or y/x fixed to one of the two corresponding boundary values.
This allows us to reduce to the univariate maximization problems detailed below. To simplify
the expressions we will let r = k − 2, s = cos(δ)ek d

2∆−1 and t = k1− d
2∆ (e cos(δ))−1.

f1 f2 f3

x = s p1(y) = ry(1+s)
(s+ry+1)2 p2(y) = rsy+2s

(s+ry+1)2 p3(y) = 2s+ry
(s+ry+1)2

x = t p4(y) = ry(1+t)
(t+ry+1)2 p5(y) = rty+2t

(t+ry+1)2 p6(y) = 2t+ry
(t+ry+1)2

y = s p7(x) = rs(1+x)
(x+rs+1)2 p8(x) = rxs+2x

(x+rs+1)2 p9(x) = 2x+rs
(x+rs+1)2

y = t p10(x) = rt(1+x)
(x+rt+1)2 p11(x) = rxt+2x

(x+rt+1)2 p12(x) = 2x+rt
(x+rt+1)2

y/x = s p13(x) = rs(1+x−1)
(x−1+rs+1)2 p14(x) = rs+2x−1

(x−1+rs+1)2 p15(x) = 2x−1+rx−1s
(x−1+rs+1)2

y/x = t p16(x) = rt(1+x−1)
(x−1+rt+1)2 p17(x) = rt+2x−1

(x−1+rt+1)2 p18(x) = 2x−1+rx−1t
(x−1+rt+1)2

To begin the maximization, first observe that under the map x 7→ x−1, each of the
functions pj(x) is the same as some function pl(x) for some 13 ≤ j ≤ 18 and 7 ≤ l ≤ 12.
Furthermore, y = s yields the bounds s ≤ x ≤ 1 and y/x = s gives 1 ≤ x ≤ t. Similarly we
may compare y = t and y/x = t. Thus the ranges for x are identical after inverting x. Hence
we may ignore p13 through p18 leaving us with 12 problems.

Next, consider p10, p11 and p12, each of which can be bounded above by

2rtx
(x+ rt+ 1)2 ≤

2rtx
r2t2

≤ 2
r
,

where the final inequality follows as x ≤ t.
Similarly, we can bound p4, p5 and p6. As it must be the case that y ≥ 1, the numerator

of each is bounded above by 2try. Thus an upper bound for all three is 2t/ry. Furthermore,
r ≥ 2k

3 cos(δ) provided k ≥ 7 and δ small enough. So we are left with an upper bound of
3k− d

2∆ /e.
The remaining problems are similar. The numerators may all be bounded above by

rs(1 + x) ≤ 2rs (or for p1, p2 and p3 by 2ry.) The denominators are all bounded from below
by r2s2 and r2y2 respectively. Thus all six of these are upper bounded by 2/rs which is at
most 3k− d

2∆ /e.
Hence an upper bound on all of the problems p1 through p18 is 3k− d

2∆ /e as claimed.
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B.4 Improvements for small k

When k is small, then the parameter c = log(k) − 1 is also very small. In fact we do not
obtain a better constant than what is known for the Ising model until k ≥ 21. However it is
possible to do better, we can choose different values for α and c which work better in these
cases. In this appendix we will show how to derive such values.

First, we note that we may do the the analysis in an identical way until we find ourselves
with the maximization problems f1, f2 and f3. Now we maximise these more carefully than
in appendix B.3. First, for f1 we apply the AM-GM inequality to the denominator to deduce
that f1(x, y) ≤ 1

4 for any x, y. This allows us to take any c < 4 and as k is small this is all
we need and so we may ignore this constraint. This leaves us to maximise f2 and f3. A
similar argument to the one in the proof of Lemma 22 allows us to deduce that the maxima
are on the boundary of Rd and hence we need only consider the boundary of R̃d.

Now, we proceed as in Appendix B.3 with different choices of s and t where this time we
will take t = ed/∆α+(1−d/∆)c and s = t−1. We start with 12 maximization problems which we
reduce to 8 by symmetry as before. Furthermore, f2 > f3 if and only if x > 1 which allows us
to halve the number of problems left to consider leaving us with 4 problems. More precisely,
we are left with p3, p5, p9 and p11. All of these are of the form f(x) = (a1x+ a2)(x+ a3)−2

which has a maximum at x = a3 − 2a2/a1. See the following table for the maximization of
these 4 functions.

Function a1 a2 a3 x∗ f(x∗)
p3

1
k−2

2s
(k−2)2

s+1
k−2

1−3s
k−2

1
4(1−s)

p5
t

k−2
2t

(k−2)2
t+1
k−2

t−3
k−2 ≤ 1 kt

(t+k−1)2

p9 2 (k − 2)s 1 + (k − 2)s 1 1
(2+(k−2)s)

p11 2 + (k − 2)t 0 1 + (k − 2)t 1 + (k − 2)t > t (k−2)t2+2t

((k−1)t+1)2

Note that in the cases of p5 and p11 the maximum value x∗ is outside the domain which we
are maximising over and thus we maximise at the endpoints of the domain instead.

Now, recall that the maximum values obtained above must also satisfy (17). Also, when
s = e−α it must be the case that (2 + (k− 2)e−α)−1 < c−1 (from p9). Combining these after
rearrangement yields the inequity

cec

ec + k − 1 ≤ α ≤ log
(
k − 2
c− 2

)
(22)

We may solve this inequality computationally for c, and deduce that there is a choice of α, c
which satisfies (22) provided that c ≤ ck for some ck which can be found in the following
table. The corresponding value of αk is also provided. We give both ck and αk rounded to
three decimal places.

k 3 4 5 6 7 8 9 10 11 12
αk 1.767 1.803 1.849 1.896 1.944 1.990 2.034 2.076 2.116 2.154
ck 2.171 2.330 2.472 2.600 2.716 2.820 2.916 3.003 3.084 3.160

Now, we check that these are indeed the maximum values. To do this, we first note that
we have p3 ≤ 1/4 and applying AM-GM to the denominator of the maximum for p5 yields a
result which is smaller than the values from we obtained for the maximum of p9. Finally, for
p11, the denominator is at least (k − 1)(k − 2)t2 + 2t(k − 1). Thus, after cancellations we
are left with p11 ≤ 1/(k − 1) which suffices for k ≥ 4. For k = 3 we can easily check that
(t2 + 2t)(2t+ 1)−2 is maximised when t = 1 and hence is certainly at most 1/3 < 1/2.17.
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Recall when computing the maximum of p9, we took s as large as possible where one
would expect that we should do the opposite to maximise p9. We now justify this choice. So
recall that we must ensure dθp9(x) ≤ ∆θ/c. Furthermore, s may be considered as a function
of d and as such is equal to exp(−d/∆α− (1− d/∆)c). Thus we must ensure that

g(d) = dc/∆
2 + (k − 2)s ≤ 1.

Writing λ for d/∆ gives the following function with domain [0, 1]

G(λ) = λc

2 + (k − 2)e−λα−(1−λ)c .

Differentiating this with respect to λ, we see that either c− α < 1 and G is increasing on
[0, 1] or there is a maximum with λ > 1 which is not inside the domain. Thus, we maximise
G at one of its boundary points and it is easy to see that λ = 1 is the maximum point rather
than λ = 0 where G(λ) = 0.

C Details for the proof of Theorem 9

We collect the proofs of results required to give Theorem 9 here.
First, we show how to transform the partition function in Definition 6 to the partition

function of the random cluster model. Here is the statement again for convenience.

I Lemma 12. Let G = (V,E, π) be a UG instance and w ∈ C. Then

Z(G;w) =
∑
F⊆E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′).

Proof. This follows by writing w = 1 + (w − 1) and expanding the partition function:

Z(G;w) =
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E,

xv=πuv(xu)

(1 + (w − 1))

=
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E

(
1 + (w − 1)1{xv = πuv(xu)}

)
=

∑
{xu}u∈V ∈[k]V

∑
F⊂E

∏
(u,v)∈F

(w − 1)1{xv = πuv(xu)}

=
∑
F⊂E

(w − 1)|F |
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈F

1{xv = πuv(xu)},

where the second line follows from writing the product over all edges instead of just satisfied
edges, the third line follows by expanding the product, writing F for the edges for which
the term (w − 1)1{xv = πuv(xu)} is taken, and the final line follows by interchanging the
order of summation. Now if we break the final sum over colour assignments and product
over satisfied edges into a sum and product for each component (V ′, E′) of (V, F ), and recall
the definition of satπ(V ′, E′), we obtain

Z(G;w) =
∑
F⊂E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′). J

The final task is to prove Lemma 14 which, via Lemma 13, shows that the cluster
expansion converges. We restate these lemmas below.
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I Lemma 13 (Borgs et al. [8, Lemma 2.1]). Suppose that polymers are connected subgraphs
containing at least one edge of a graph G of maximum degree ∆ on n vertices, that ‖γ‖ is
the number of edges of the polymer γ, and that

|wγ | ≤ e−(7+log ∆)‖γ‖. (4)

Then the cluster expansion converges absolutely and for any m ∈ N, |Tm− log Ξ(G)| ≤ ne−3m.

I Lemma 14. Let ∆ ∈ N≥16, let C = e−9−2 log ∆, and let ζ = 8
√

1/∆. Then if k ≥ C−2∆/ζ

and 1 ≤ w ≤ e(2−ζ) log(k)/∆, Lemma 13 holds for UG(k) instances G of maximum degree ∆.

Proof of Lemma 14. We proceed in a manner inspired by [8, Theorem 2.4]. First observe
that our polymers are connected subgraphs of G containing at least one edge. Recalling that
C = e−9−2 log ∆, we now show that the conditions k ≥ C−2∆/ζ and 1 ≤ w ≤ e(2−ζ) log(k)/∆

give

|wγ | ≤ C‖γ‖. (23)

We verify (23) in three cases according to the value of s = ‖γ‖. We also recall the
bound (1).
Case 1: s > 2∆/ζ. We use that |γ| ≥ 2‖γ‖/∆. Then

|wγ | = k−|γ|(w − 1)‖γ‖ satπ(γ) ≤ k−|γ|(w − 1)‖γ‖k ≤ k−2‖γ‖/∆(w − 1)‖γ‖k

≤ k−2s/∆ · ks(2−ζ)/∆ · k ≤ k1−sζ/∆ ≤ k−sζ/(2∆),

which is bounded above by C−s since k ≥ C−2∆/ζ .
Case 2: ∆ < s ≤ 2∆/ζ. We use that fact that ‖γ‖ ≤

(|γ|
2
)
and thus

√
2s < |γ|. Then

|wγ | ≤ kk(2−ζ)s/∆k−
√

2s = k1+(2−ζ)s/∆−
√

2s.

Looking at the exponent of k we see by our assumptions on s that

1 + (2− ζ)s/∆−
√

2s ≤ 1 + 4/ζ −
√

2∆ ≤ 1−
√

∆/2 ≤ −1

for ∆ large enough (i.e ∆ ≥ 16 suffices). So since k ≥ C−2∆/ζ we are in business.
Case 3: 1 ≤ s ≤ ∆. If |γ| = 2 we have s = 1 and therefore

|wγ | ≤ k−1k(2−ζ)/∆ ≤ k−1/2

provided ∆ ≥ 4. If |γ| ≥ 3 we have

|wγ | ≤ k−2k(2−ζ) = k−ζ .

So since k ≥ C−2∆/ζ the required bound holds.
This finishes the proof. J
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Abstract
Schur Polynomials are families of symmetric polynomials that have been classically studied in
Combinatorics and Algebra alike. They play a central role in the study of Symmetric functions, in
Representation theory [39], in Schubert calculus [26] as well as in Enumerative combinatorics [14,
38, 39]. In recent years, they have also shown up in various incarnations in Computer Science, e.g,
Quantum computation [17, 31] and Geometric complexity theory [21].

However, unlike some other families of symmetric polynomials like the Elementary Symmet-
ric polynomials, the Power Symmetric polynomials and the Complete Homogeneous Symmetric
polynomials, the computational complexity of syntactically computing Schur polynomials has not
been studied much. In particular, it is not known whether Schur polynomials can be computed
efficiently by algebraic formulas. In this work, we address this question, and show that unless every
polynomial with a small algebraic branching program (ABP) has a small algebraic formula, there
are Schur polynomials that cannot be computed by algebraic formula of polynomial size. In other
words, unless the algebraic complexity class VBP is equal to the complexity class VF, there exist
Schur polynomials which do not have polynomial size algebraic formulas.

As a consequence of our proof, we also show that computing the determinant of certain generalized
Vandermonde matrices is essentially as hard as computing the general symbolic determinant. To
the best of our knowledge, these are one of the first hardness results of this kind for families of
polynomials which are not multilinear. A key ingredient of our proof is the study of composition of
well behaved algebraically independent polynomials with a homogeneous polynomial, and might be
of independent interest.
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1 Introduction

In this paper, we explore a theme at the intersection of Algebraic Complexity Theory, which
studies the computational complexity of computing multivariate polynomials using algebraic
operations, and Algebraic Combinatorics, which studies, among other things, algebraic
identities among polynomials associated to various combinatorial objects.

Specifically, the questions we study are related to the computational complexity of
Symmetric Polynomials, which are polynomials in C[x1, . . . , xn] that are invariant under
permutations of the underlying variable set x1, . . . , xn.1 Examples of such polynomials
include

The Elementary Symmetric polynomials e0, e1, . . . , en where ed =
∑
|S|=d

∏
j∈S xj is the

sum of all multilinear monomials of degree exactly d,
The Complete Homogeneous Symmetric polynomials h0, h1, . . . where hd is the sum of all
monomials (multilinear or otherwise) of degree exactly d, and
The Power Symmetric polynomials p0, p1, . . . where pd =

∑n
i=1 x

d
i .

It is a standard fact that the above three families generate all symmetric polynomials
in a well-defined sense. More precisely, the Fundamental Theorem of Symmetric Polyno-
mials states that every symmetric polynomial f can be written uniquely as a polynomial
in {e1, . . . , en}, and similarly in {h1, . . . , hn} and {p1, . . . , pn}, each of which is thus an
algebraically independent set of polynomials. In particular, for λ = (λ1, λ2, . . . , λ`) a non-
increasing sequence of positive integers, if we define eλ =

∏
i∈[`] eλi

, then the {eλ}λ are
linearly independent, and moreover the set Ed := {eλ |

∑
i λi = d} forms a basis for the

vector space Λd of homogeneous symmetric polynomials of degree d; the same is true also of
hλ and pλ (defined analogously), yielding bases Hd and Pd respectively for Λd.

Symmetric Polynomials in Mathematics

The study of Symmetric Polynomials is a classical topic in Mathematics, with close connec-
tions to combinatorics and representation theory, among other fields (see, e.g., [28, 33]). In
representation theory , it is known that the entries of the change-of-basis matrices between
different bases for the space Λd yield important numerical invariants of various representations

1 In Combinatorics literature, these are more commonly known as Symmetric Functions. One can also
consider symmetric functions over fields other than the complex numbers, but throughout this paper,
we will stick to C.

https://eccc.weizmann.ac.il/author/1282/
https://arxiv.org/abs/1911.12520
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of the symmetric group Sd. In algebraic and enumerative combinatorics, the study of sym-
metric polynomials leads to formulas and generating functions for interesting combinatorial
quantities such as Plane Partitions (see, e.g. [39, Chapter 7]). These studies have in turn
given rise to many interesting algebraic identities and generating functions for various families
of symmetric polynomials. Some of these, as we note below, have already had consequences
for computational complexity.

Algebraic Complexity of Symmetric Polynomials

Symmetric polynomials have also been intensively investigated by researchers in Algebraic
complexity [30, 36, 35, 19, 13], with several interesting consequences. The famous “Ben-Or
trick” in algebraic complexity (also known simply as “interpolation”) was discovered by
Ben-Or [36] in the context of using a standard generating function for the Elementary
Symmetric Polynomials to obtain small depth-3 formulas for e1, . . . , en.

2 The same idea also
yields small constant-depth formulas for the complete homogeneous symmetric polynomials.
Symmetric polynomials have also been used to prove lower bounds for several interesting
models of computation including homogeneous and inhomogeneous ΣΠΣ formulas [30, 36, 35],
homogeneous multilinear formulas [19] and homogenous ΣΠΣΠ formulas [13]. Further, via
reductions, the elementary and power symmetric polynomials have been used to define
restricted models of algebraic computation known as the symmetric circuit model [35] and
the Σ ∧ Σ model (or Waring rank), which in turn have been significantly investigated (see,
e.g. [34, 25, 32]).

Schur polynomials

In this paper, we study the complexity of an important family of symmetric polynomials
called the Schur Polynomials, which we now define.

I Definition 1. Let λ = (λ1, . . . , λ`) be a non-increasing sequence of positive integers with∑
i λi = d. We define the Schur polynomial sλ(x1, . . . , xn) of degree d as follows.

sλ =
det
(

(xλj+n−j
i )i,j∈[n]

)
det
(

(xn−ji )i,j∈[n]

)
(Here, if λ = (λ1, . . . , λ`), then we define λj = 0 for j > `.)

The Schur polynomials are known to generalize the elementary symmetric polynomials as
well as homogeneous symmetric polynomials. It is also known that the Schur polynomials
of degree d form a basis for Λd, which is the vector space of all homogeneous symmetric
polynomials of degree d.

The Schur polynomials occupy a central place in the study of symmetric polynomials.
Their importance in representation theory can be seen for instance by the fact that, they
describe the characters of representations of the general linear and symmetric groups. In
particular, consider the general linear group GL(V ) over a complex vector space V of
dimension n. If ρ is an irreducible representation of GL(V ) that is polynomial, meaning
that the eigenvalues of ρ(A) can be expressed as a polynomial in the eigenvalues of A, then
the character Tr(ρ(A)) is a Schur polynomial sλ(x1, . . . , xn) evaluated at the eigenvalues

2 The generating function referred to is
∏n

i=1(t− xi) =
∑n

j=0(−1)n−jen−jt
j .
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x1, . . . , xn of A, where λ is a partition with at most n non-zero parts. Furthermore, the
entries of the change-of-basis matrix (for the vector space Λd) from the power symmetric
polynomials to the Schur polynomials are exactly the values of the irreducible characters
of the symmetric group Sd. Specifically, the Murnaghan-Nakayama rule states that when
expanded into the basis of power symmetric polynomials we have

sλ =
∑

µ=(µ1,...,µl)`n

χλ(µ)
l∏
i=1

pµi

where χλ(µ) is an irreducible character of the symmetric group Sn evaluated at a permutation
of cycle type µ. See [39, Chapter 7] for further details about these uses in representation
theory.

Beyond representation theory, Schur polynomials are used in algebraic geometry in the
Schubert calculus [26], which is used to calculate the number of ways in which Schubert sub-
varieties in the Grassmannian (the set of all k dimensional linear subspaces in an n-dimensional
space) may intersect. Schur polynomials are also used in enumerative combinatorics, as
they provide generating functions for counting various combinatorial objects, including plane
partitions, tableaux [39, Chapter 7], reduced decompositions of permutations [38], and graph
colourings [14].

Being one of the most well-studied objects in the theory of symmetric functions, Schur
polynomials appear in many different avatars in the literature. The following classical
definition is also known to capture Schur polynomials. The definition uses combinatorial
structures called Ferrers diagrams. A Ferrers diagram (or a Young diagram or simply a
diagram) of shape λ, is a left-aligned two-dimensional array of boxes with the ith row
containing λi many boxes. (See, e.g. Stanley [39], for more about Ferrers diagrams.)

I Definition 2. Consider a Ferrers diagram of shape λ. For any non-decreasing sequence
µ = (µ1, . . . , µm) with

∑
j µj = d, we define the Kostka number Kλµ to be the number of

ways of filling the boxes of the Ferrers diagram with numbers from 1, . . . ,m such that each
row is non-decreasing, each column is strictly increasing, and the number of i’s equals µi for
each i ∈ [m].

The Schur polynomial sλ(x1, . . . , xn) ∈ Λd is defined so that the coefficient of xµ1
1 · · ·xµm

m

is the Kostka number Kλµ (the coefficients of other monomials are defined by symmetry).
In particular, sλ = 0 if n < `. So we assume that n ≥ ` throughout.

From this definition it is easy to see that Schur polynomials generalize both elementary
symmetric polynomials (when ` = d and λ1 = λ2 · · · = λd = 1 in the definition above) and
homogeneous symmetric polynomials (when ` = 1 and λ1 = d in the definition above).

The Kostka numbers used in the definition above have been investigated extensively both
from combinatorial and computational perspectives. (See for instance [39, 29].)

Algebraic Complexity of Schur Polynomials

In this work we focus on the algebraic complexity of Schur polynomials. As stated in
Definition 1, which is also known as the bialternant formula of Jacobi, the Schur polynomial
sλ can be expressed as the ratio of two determinants. In particular, this implies that the
Schur polynomials have algebraic circuits of size poly(n, d). In fact, it also implies that
these polynomials belong to the smaller algebraic complexity class VBP,3 for which the
Determinant is the complete polynomial.

3 The class of polynomial families which can be efficiently computed by algebraic branching programs.



P. Chaugule, M. Kumar, N. Limaye, C. K. Mohapatra, A. She, and S. Srinivasan 14:5

However, this upper bound is quite a bit weaker than what is known for other well-
studied symmetric polynomials mentioned above, all of which have constant-depth formulas
of polynomial size. We consider the question of whether the Schur polynomials have
constant-depth formulas of polynomial size or even general (arbitrary depth) formulas of
polynomial size.

Our main result is that under reasonable complexity assumptions, the answer to the
above question is negative for many different λ. (Note that since the elementary and complete
homogeneous symmetric polynomials are particular examples of Schur polynomials, there
are some Schur polynomials that have formulas of polynomial size.)

I Theorem 3 (Main Theorem). Assume that λ = (λ1, . . . , λ`) is such that λi ≥ λi+1 + (`− 1)
for all i ∈ [` − 1], also λ` ≥ ` and let d =

∑
i λi. Then, for n ≥ λ1 + `, if sλ(x1, . . . , xn)

has an algebraic formula of size s and depth ∆, then the ` × ` determinant (det`) has an
algebraic formula of size poly(s) and depth ∆ +O(1).

For suitable choices of `, d, n above, we can ensure that these parameters are all polyno-
mially related. The theorem then implies that the Schur polynomials do not have algebraic
formulas of polynomial size unless the entire complexity class VBP collapses to the complexity
class VF which consists of polynomials with small formulas. Moreover, the Schur polynomials
do not have constant-depth formulas of subexponential size unless the determinant does, a
result that would greatly improve the state-of-the-art in this direction [16].

The above theorem and its proof have several interesting aspects that we now elaborate on.

Newton iteration and formula complexity

Theorem 3 is motivated in part by a recent result of Bläser and Jindal [1] who prove
the following interesting result about symmetric polynomials. As mentioned earlier, it is
known that any symmetric polynomial fsym ∈ C[x1, . . . , xn] can be written uniquely as a
polynomial in (say) the elementary symmetric polynomials e1, . . . , en. I.e., there exists a
unique fE ∈ C[x1, . . . , xn] such that

fsym(x1, . . . , xn) = fE(e1, . . . , en).

Motivated by a question of Lipton and Regan [27], Bläser and Jindal studied the computational
complexity of fsym vis-a-vis that of fE . It is clear that if fE has algebraic circuits of polynomial
size (resp. formulas) then so does fsym, since the elementary symmetric polynomials have
algebraic formulas of polynomial size. Interestingly, Bläser and Jindal showed a converse to
this statement: they showed that if fsym has small algebraic circuits, then so does fE . 4

At first sight, this looks highly relevant to our theorem, since by the classical Jacobi-Trudi
identity (see, e.g. Theorem 24 in this paper or [39, Theorem 7.16.1]), when fsym is a Schur
polynomial of the type assumed in Theorem 3, then fE is in fact the determinant (on a
subset of its variables). We could hope to use the theorem of Bläser and Jindal to prove that
if the Schur polynomial has a small formula, then so does the determinant. However, this
doesn’t quite work, since the proof of [1] only yields small circuits for the polynomial fE ,
even if we assume that the polynomial fsym has small formulas.

4 Bläser and Jindal work throughout with the elementary symmetric polynomials. However, using
algebraic identities that link various symmetric polynomials with each other, we observe in this paper
that their result also holds for the complete homogeneous and power symmetric polynomials.
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14:6 Formula Complexity of Schur Polynomials

We briefly outline the reason for this, noting that this hurdle occurs quite often in trying
to adapt results in algebraic circuit complexity to algebraic formulas. As mentioned above,
the polynomials e1, . . . , en are algebraically independent. A standard proof of this (see,
e.g., [35]) goes via showing that the map

e : Cn → Cn, defined by a = (a1, . . . , an) 7→ (e1(a), . . . , en(a))

is surjective. Hence, for each b ∈ Cn, there exists an a ∈ Cn such that e(a) = b. The reason
this is relevant to the result of [1] is that if we have an efficient algorithm for “inverting”
e in this way and we additionally have an efficient algorithm for computing fsym, then we
immediately obtain an efficient algorithm for computing fE on any given input b ∈ Cn by
first inverting the map e to obtain an a as above, and then applying the algorithm for fsym
to obtain f(a) = fE(b). The main technical result in Bläser and Jindal’s work is to show how
to invert the map e as above using an algebraic circuit. The inversion is done by carefully
applying a standard algebraic version of Newton iteration, which can be performed by an
efficient algebraic circuit. Having done this, we plug the output of this circuit into the circuit
for fsym to obtain the circuit for fE .

The reason the above proof does not work in the setting of algebraic formulas is the use
of Newton iteration, which is not known to be doable with small formulas (or even within the
seemingly larger class VBP). Indeed, this is the main bottleneck in translating several results
in algebraic complexity on polynomial factorization [23, 8, 6] and hardness-randomness
tradeoffs [22, 9, 5] that are known in the context of algebraic circuits to the setting of
algebraic formulas.

In the proof of the main theorem, we show how to get around the use of Newton iteration
in this setting and use it to prove a (slightly weaker) version of the result of Bläser and Jindal
for algebraic formulas. We hope that the ideas we use here can be adapted and extended to
circumvent the use of Newton iteration in some of the other settings mentioned above as
well. Our main technical lemma is the following.

I Lemma 4 (Main Technical Lemma (informal)). Let g1, . . . , gn ∈ C[x1, . . . , xn] be “well-
behaved” algebraically independent polynomials. Then, for any homogeneous polynomial f̃ , if
f = f̃(g1, . . . , gn) has a formula of size s and depth ∆, the polynomial f̃ has a formula of
size poly(s) and depth ∆ +O(1).

For a formal definition of what we mean by “well-behaved” and for a formal statement of
this lemma, we refer the reader to Definition 26 and Lemma 27 respectively. This lemma,
and some of the ideas in its (very simple) proof might be of independent interest and may
have other applications, e.g. in Subsection 4.4 we discuss an application of this lemma to
some special cases of a question of Amir Shpilka on proving lower bounds on the partial
derivative complexity of a product of algebraically independent polynomials.

Generalized Vandermonde determinants

The Vandermonde matrix (xn−ji )i,j∈[n] and its determinant are ubiquitous in computation
because of their relation to polynomial interpolation. More precisely, the problem of finding
a degree-(n− 1) univariate polynomial that takes prescribed values at a specified set of n
distinct points involves solving a linear system of equations where the underlying matrix is
precisely the Vandermonde matrix. It is, therefore, an important fact that the Vandermonde
determinant is computationally much easier than the general determinant: in fact, it has the
following standard depth-2 formula

detn
(

(xn−ji )i,j∈[n]

)
=

∏
i,j∈[n]:i<j

(xi − xj).
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However, it is unclear whether such small expressions continue to exist if we allow the
exponents of the variables to vary more generally. For integers µ1 > µ2 > · · · > µn ≥ 0,
consider the generalized Vandermonde matrix (xµj

i )i,j∈[n]. Similar to the Vandermonde
matrix, the determinant of this matrix is related to the problem of sparse polynomial
interpolation, where we are trying to interpolate a polynomial only involving the monomials
of degree µ1, . . . , µn through the given points.

Can we expect that computing any generalized Vandermonde determinant is much easier
than computing the determinant itself? It follows from Theorem 3 and the bialternant
formula from Definition 1 above that the answer to this question is negative: for certain
(polynomially large) exponents, the generalized Vandermonde determinant is not much easier
than the determinant.

Discussion on Schur Polynomials and Generating functions

In algebraic and enumerative combinatorics, we often study a family of related combinatorial
objects by considering a generating function that combines them, in the hope that the
generating function yields a nice closed-form expression which can further be used to estimate
or otherwise understand these objects better. (See e.g. [41, 10] for much more about this.) For
instance, we know that the generating functions for the elementary and complete homogeneous
symmetric polynomials

E(t) =
n∑
i=0

tiei(x) and H(t) =
n∑
i=0

tihi(x)

have small expressions given by

E(t) =
∏
i∈[n]

(1 + txi) and H(t) = 1∏
i∈[n](1− txi)

.

Furthermore, as such expressions are algebraic formulas using additions, multiplications and
divisions, we can use these formulas along with division elimination and interpolation to
construct small algebraic formulas for the eis and hjs themselves.

Recall that both the elementary and complete homogeneous symmetric polynomials are
special cases of Schur polynomials. It therefore is natural to ask if generating functions can
be obtained for other simple sequences of Schur polynomials. Our results imply that the
generating function for certain sequences of Schur polynomials do not have small closed-form
expressions with small formulas unless the determinant has small formulas. This seems
like an interesting statement in algebraic combinatorics, conditioned upon a well-known
conjecture in Computational Complexity theory.

For concreteness, here is one such “hard” generating function made up of Schur polyno-
mials. For any ` ≥ 0, let λ` = (`2, `2 − `, `2 − 2`, · · · , `). Define

S(t) =
∑
`≥0

t`sλ`
.

Note that this is a finite sum for any fixed n as sλ`
= 0 if ` > n. In algebraic combinatorics,

it is common to consider symmetric polynomials in an infinite number of variables in which
case the above is truly an infinite sum. A simple expression in the infinite case typically leads
to a simple expression in the finite case by simply setting all variables other than x1, . . . , xn
to 0 in the expression.

CCC 2020
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Proving hardness of non-multilinear polynomial families

The most natural and widely studied notion of completeness in the algebraic setting is
the notion of projections. A polynomial P ∈ C[x1, . . . , xn] is said to be a projection of a
polynomial Q ∈ C[y1, . . . , ym] if there is a setting σ of y1, . . . , ym to either field constants or
to variables from the set {x1, . . . , xn}, such that the polynomial Q (σ(y1), σ(y2), . . . , σ(ym))
equals P . While this notion of reductions is very natural and intuitive and in particular, it
is clear that easiness of Q (with respect to having a small algebraic circuit or formula, for
instance) immediately implies the easiness of P , there is an inherent difficulty in using this
notion of reductions for proving the hardness of families of non-multilinear polynomials. To
see this, observe that if Q is non-multilinear in each of its variables, and P is a multilinear
polynomial which depends on at least one variable, then P cannot be expressed as a projection
of Q. In particular, this notion of reductions cannot be used to prove the hardness of non-
multilinear Schur polynomials or the hardness of generalized Vandemonde determinant,
assuming the hardness of determinant for algebraic formulas.5 We avoid this issue by showing
that there is a c-reduction from the Determinant to the non-multilinear polynomials we
study.6 More precisely, we show that a small formula for any of our hard non-multilinear
polynomials can be used to construct a small formula for the Determinant polynomial with
only a small blow-up in size and depth.

Other related work

The algebraic complexity of Schur polynomials has been studied in various restricted models
of computation. Koev [24], Chan et al. [3] and Fomin et al. [11] consider the complexity of
computing Schur polynomials in the subtraction-free algebraic circuit model. An algebraic
circuit is subtraction-free if it uses only addition, multiplication and division operators.7
They showed that sλ(x1, . . . , xn) has subtraction-free circuits of size polynomial in n and
λ1. In Fomin et al. [11], the authors also proved polynomial bounds on the size of the
subtraction-free circuits computing other interesting variants of Schur polynomials such
as double Schur polynomials and skew Schur polynomials. All the algorithms presented
in [24, 3, 11] for computing Schur polynomials used division in non-trivial ways.

Demmel et al. [7] and Fomin et al. [12] studied the monotone complexity of Schur
polynomials. In the monotone setting, only addition and multiplication operators are used.
(Both division and subtraction operators are not allowed.) They proved exponential upper
bounds on the monotone complexity of Schur polynomials and conjectured an exponential
lower bound. The exact complexity of Schur polynomials is not resolved in the monotone
setting. However, Grigoriev et al. [15] proved an exponential monotone circuit lower bound
for a related family of symmetric polynomials, called the monomial symmetric polynomials.

5 There is a more general notion of projections which involves substituting y1, . . . , ym with affine linear
functions in x1, . . . , xn. While such projections can be used to reduce multilinear polynomials to
non-multilinear ones, the reduction must rely on clever cancellations in order to achieve this. Designing
such reductions is in general challenging. We do not know of such a reduction in our setting.

6 A c-reduction in algebraic complexity is similar in spirit to Turing reductions in standard Computational
Complexity. See for example [2, 20].

7 For example, consider the polynomial x2 − xy + y2. It is computed by the following subtraction-free
circuit: (x3 + y3)/(x+ y).
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Organization of the paper

The rest of the paper is organized as follows. We start with a brief discussion of some of
the preliminaries in Section 2 and a brief introduction to Symmetric polynomials and Schur
polynomials in Section 3. We formally state and prove Lemma 4 in Subsection 4.1, followed
by its application to the proof of Theorem 3 in Subsection 4.2. We discuss further applications
of some of these ideas to extending the result of Bläser and Jindal’s [1] in Subsection 4.3 and
to the question of proving lower bounds on the partial derivative complexity of a product
of algebraically independent polynomials in Subsection 4.4. We conclude with some open
questions in Section 5.

2 Notations and Preliminaries

Throughout this paper, we assume that we are working over the field C. It is not very hard
to see that the results we present can be made to work for fields of characteristic zero or
fields of sufficiently large characteristic. Boldface letters are used for tuples of variables e.g.
x for (x1, x2, . . . , xn). For b = (b1, b2, . . . , bn) ∈ Nn and x = (x1, x2, . . . , xn), we use xb to
denote

∏n
i=1 x

bi
i . We use |b|1 to denote

∑
i∈[n] bi.

2.1 Models of computation
We start by defining some of the standard models of algebraic computation that we work
with in the rest of the paper.

I Definition 5 (Algebraic circuit). An algebraic circuit C is a directed acyclic graph with a
unique sink node, called the root node. The source nodes are called leaves and are labelled
with field constants or variables. All the other nodes are labelled with + or ×. Each + node
computes the addition of the polynomials computed by its children and similarly, each × node
computes the multiplication of the polynomials computed by its children. The circuit is said
to compute the polynomial computed by the root node.

I Definition 6 (Algebraic formula). If the underlying graph of an algebraic circuit is a directed
tree (which is a special type of a directed acyclic graph) then the circuit is called a formula.

I Definition 7 (Algebraic branching program). An algebraic branching program (ABP) is a
layered directed acyclic graph with a unique source vertex denoted s and a unique sink vertex
denoted t. Each edge is labelled by a linear polynomial. The weight of a path p is the product
of the labels of the edges in p. The polynomial that the ABP computes is the sum of all the
weights of paths from s to t.

2.2 Interpolation and Division elimination
We now state two fairly standard facts about algebraic formulas. The first of these relates
the formula complexity of a polynomial to the formula complexity of each of its homogeneous
components.

I Lemma 8. Let P (x) ∈ C[x] be a polynomial which can be computed by a formula of size
at most s and depth ∆. Then, for every d, the homogeneous component of P of degree d can
be computed by a formula of size at most O(s2) and depth ∆ +O(1).
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14:10 Formula Complexity of Schur Polynomials

The proof of this lemma is via a standard interpolation argument, where we consider the
polynomial Q(t) = P (x1t, x2t, . . . , xnt) ∈ C(x)[t] as a univariate in t. The point to note
is that the homogeneous components of P are coefficients of various powers of t in this
new polynomial, and hence can be computed as a linear combination of sufficiently many
evaluations of Q(t) for distinct values of t in the base field (which we assume to be large
enough). For every α ∈ C, the formula size of Q(α) is upper bounded by the formula size of
P . Similarly the depth of the formula of Q(α) is bounded by the depth of P . The number of
such distinct evaluations needed is upper bounded by one more than the degree of Q, which
is one more than the degree of P itself. The final observation needed for proving the size
upper bound is that a polynomial which can be computed by a formula of size s has degree
upper bounded by s. Thus, we need to take an appropriately weighted linear combination of
s+ 1 distinct substitutions of t in Q, each of which has a formula of size at most s; thereby
giving us an upper bound of O(s2). Taking linear combinations of such substitutions can be
done in depth O(1), which gives the overall depth bound of ∆ +O(1).

The next statement we need is about the formula complexity of a polynomial which can
be written as quotient of two polynomials with small formulas.

I Lemma 9. Let P and R be polynomials in C[x] of formula (ABP/circuit) size at most s
and depth at most ∆ such that R divides P . Then, the polynomial Q = P

R can be computed
by a formula (an ABP/circuit resp.) of size at most poly(s) and depth at most ∆ +O(1).

The proof of this lemma goes via the standard division elimination argument of Strassen and
that of Lemma 8. We refer the reader to the excellent survey of Shpilka and Yehudayoff [37]
for formal details on division elimination.

2.3 Algebraic independence and the Jacobian
The notion of algebraic independence that we now define plays a crucial role in the proofs in
the paper. We start with a formal definition.

I Definition 10. Polynomials q1, q2, . . . , qk ∈ C[x] are said to be algebraically independent
over C if there is no non-zero polynomial g(y1, y2, . . . , yk) ∈ C[y] such that g(q1, q2, . . . , qk)
is identically zero.

This definition generalizes the notion of linear independence, which is the special case when
there is no non-zero polynomial g in k variables and degree 1 such that g(q1, q2, . . . , qk) is
identically zero. As we shall see next, over fields of characteristic zero ( or sufficiently large
characteristic), the notion of algebraic independence is characterized by the rank of the
Jacobian matrix defined below.

I Definition 11. The Jacobian matrix of a tuple (q1, q2, . . . , qk) of n-variate polynomials
in C[x], denoted by J (q1, q2, . . . , qk) is a k × n matrix with entries from C[x] whose (i, j)th
entry equals ∂qi

∂xj
.

Thus, the row corresponding to qi in J (q1, q2, . . . , qk) contains all of the n first order partial
derivatives of qi. In other words, the ith row of the Jacobian gives us the gradient of qi.
The connection between algebraic independence and the Jacobian stems from the following
(almost folklore) theorem.

I Theorem 12 (Jacobian and Algebraic Independence). Let (q1, q2, . . . , qk) be a k tuple of
n-variate polynomials in C[x] of degree at most d. Then, q1, q2, . . . , qk are algebraically
independent over C if and only if the the rank of the Jacobian matrix J (q1, q2, . . . , qk) over
the field C(x) is equal to k.

A proof of this theorem can be found in the survey of Chen, Kayal and Wigderson [4,
Chapter 3].
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2.4 Taylor’s expansion
For our proof, we need the following well-known form of Taylor’s expansion.

I Theorem 13. Let P ∈ C[x] be an n-variate polynomial of degree at most d, and let a ∈ Cn
be a point. Then, for an n-tuple of variables z

P (a + z) =
d∑
i=0

 ∑
u∈Nn,|u|1=i

zu

u! ·
∂P

∂xu (a)


where, for u = (u1, u2, . . . , un), u! = u1! · u2! · · ·un!.

Note that for i = 0, the summand
(∑

u∈Nn,|u|1=i
zu

u! ·
∂P
∂xu (a)

)
is just equal to P (a), and for

every positive integer i at most d, this summand is a homogeneous polynomial of degree
equal to i in z. Of particular utility to us is the following easy corollary of Theorem 13.

I Corollary 14. Let P ∈ C[x] be an n-variate polynomial of degree d ≥ 1, and let a ∈ Cn be
a point. Then, for an n-tuple of variables z

P (a + z) = P (a) +
n∑
j=1

zj ·
∂P

∂xj
(a) mod 〈z〉2 .

2.5 Two useful lemmas
We use the following (well known) lemma in our arguments. While the lemma is essentially
folklore, we sketch a proof for completeness.

I Lemma 15. Let f(x) ∈ C[x] and P (x, y) ∈ C[x, y] be polynomials such that P (x, f(x))
is identically zero. Then, there exists a polynomial Q(x, y) ∈ C[x, y] such that P (x, y) =
(y − f(x)) ·Q(x, y).

Proof. Let d be the degree of P in y and let C0(x), C1(x), . . . , Cd(x) be polynomials in C[x]
such that

P (x, y) =
d∑
i=0

Ci(x) · yi .

Therefore, P (x, f(x)) can be written as

P (x, f(x)) =
d∑
i=0

Ci(x) · f(x)i .

Subtracting the two expressions above, we get

P (x, y)− P (x, f(x)) =
d∑
i=0

Ci(x) · yi −
d∑
i=0

Ci(x) · f(x)i .

Now, on the right hand side, the term for i = 0 cancels out and on further simplification,
we get

P (x, y)− P (x, f(x)) =
d∑
i=1

Ci(x) ·
(
yi − f(x)i

)
.

CCC 2020



14:12 Formula Complexity of Schur Polynomials

Note that for every natural number i ≥ 1, yi − f(x)i is divisible by (y − f(x)). Therefore,
every summand on the right hand side has (y − f(x)) as a factor, and thus there is a
polynomial Q(x, y) such that

P (x, y)− P (x, f(x)) = (y − f(x)) ·Q(x, y) .

Moreover, since P (x, f(x)) is identically zero, we have that P (x, y) = (y − f(x)) ·Q(x, y) ,
thereby completing the proof of the lemma. J

In particular, if |S| ≥ d+ 1, then there exists some a ∈ Sn satisfying P (a) 6= 0. This gives
us a brute force deterministic algorithm, running in time (d+ 1)n, to test if an arithmetic
circuit computing a polynomial of degree at most d in n variables is identically zero.

3 Symmetric polynomials

A polynomial is said to be symmetric if it is invariant under a permutation of variables. We
now define some of the families of symmetric polynomials that are discussed in this paper
and briefly discuss some of their properties. For a more detailed introduction on symmetric
polynomials, we refer the reader to the book [28]. We start with the definitions.

I Definition 16 (Elementary symmetric polynomials). The elementary symmetric polynomial
of degree k on n variables denoted by ek(x) is defined as follows:

ek(x) =
∑
S⊆[n]

∏
i∈S

xi .

The following fact states a property of the elementary symmetric polynomials which will be
useful for our proofs in the later sections.

I Fact 17. For all α1, α2, . . . , αn ∈ C, if c1, c2, . . . , cn are field elements such that
n∏
i=1

(z − αi) = zn − c1 · zn−1 + c2 · zn−2 − · · ·+ (−1)ncn ,

then, for every j ∈ [n], cj = ej(α1, α2, . . . , αn).

I Definition 18 (Homogeneous (Complete) symmetric polynomials). The homogeneous sym-
metric polynomial of degree k on n variables denoted by hk(x) is defined as follows:

hk(x) =
∑

b∈Nn:|b|1=k

xb.

I Definition 19 (Homogeneous (Complete) symmetric polynomials). The homogeneous sym-
metric polynomial of degree k on n variables denoted by hk(x) is defined as follows:

hk(x) =
∑

b∈Nn:|b|1=k

xb.

I Definition 20 (Power symmetric polynomials). The power symmetric polynomial of degree
k on n variables denoted by pk(x) is defined as follows: pk =

∑n
i=1 x

k
i .

These sets of polynomials are algebraically independent. The following fact states this
formally.
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I Fact 21. Let x be an n tuple of variables. Then, elementary symmetric polynomials
e1(x), . . . , en(x) are algebraically independent over C. Similarly, homogeneous symmetric
polynomials h1(x), . . . , hn(x) and power symmetric polynomials p1(x), p2(x), . . . , pn(x) are
also algebraically independent over C.

We now formally state the fundamental theorem of symmetric polynomials, which essentially
says that over field of characteristic zero, every symmetric polynomial can be written as a
unique polynomial combinations of the elementary symmetric polynomials (similarly, for
power symmetric polynomials or homogeneous symmetric polynomials).

I Theorem 22 (The fundamental theorem of symmetric polynomials). For a symmetric poly-
nomial fsym ∈ C[x] there exists a unique polynomial f ∈ C[x] s.t. fsym=fE(e1(x), e2(x), . . .
en(x)) where ei(x) is the elementary symmetric polynomial of degree i.

Similarly, there exists a unique polynomial fH ∈ C[x] such that fsym=fH(h1(x), h2(x), . . .
hn(x)) and a unique polynomial fP ∈ C[x] such that fsym = fP (p1(x), p2(x), . . . pn(x)), where
hi(x) is the homogeneous symmetric polynomial of degree i and pi(x) is the power symmetric
polynomial of degree i.

3.1 Schur polynomials
A partition of a natural number d is any sequence λ = (λ1, λ2 . . . , λ`) of non-negative integers
in a non-increasing order λ1 ≥ λ2 . . . ≥ λ` ≥ 0 such that

∑`
i=1 λi = d.8 The number of

non-zero parts of λ is called the length of λ and is denoted by l(λ). The weight of λ, denoted
by |λ| is defined to be the sum of each individual component, i.e. |λ| = λ1 + λ2 + · · ·+ λl(λ).
If |λ| = d, then we say that λ is a partition of the number d or alternatively a partition of
degree d.

Let λ be a partition of the number d. A Ferrers diagram (or simply a diagram) of shape
λ is is a left-aligned two-dimensional array of boxes with the ith row containing λi many
boxes. The conjugate of λ, denoted by λ′, is the diagram obtained by switching the rows
and columns of the diagram of λ.

I Definition 23 (Schur polynomials). Let λ be a partition of degree d and let l(λ) ≤ n. Then
the Schur polynomial sλ(x) is defined as

sλ(x) = aλ+δ(x)
aδ(x)

where,

δ = (n− 1, n− 2, . . . . . . 2, 1, 0)

aλ+δ(x) = det(xλj+n−j
i )1≤i,j≤n

aδ(x) = det(xn−ji )1≤i,j≤n =
∏

1≤i<j≤n
(xi − xj)

8 Usually the λis are assumed to be positive integers as defined earlier. For the sake of notational
convenience we allow trailing zeroes in the definition of λ.

CCC 2020



14:14 Formula Complexity of Schur Polynomials

We first observe that sλ(x) is a symmetric polynomial. To see this, note that if xi = xj
for any i 6= j then aλ+δ(x) is 0. Thus, by Lemma 15 and the fact that xi − xj and xi′ − xj′
do not share a common factor unless {i, j} = {i′, j′},

∏
i<j(xi − xj) is factor of aλ+δ(x) i.e.,

aδ(x) is a factor of aλ+δ(x). Therefore, sλ(x) is a polynomial. Moreover, for any permutation
of variables, the sign changes in the numerator and the denominator are the same, and thus
their ratio does not see a change in sign. This implies that sλ(x) is a symmetric polynomial.

We now state the classical Jacobi-Trudi identities which relates Schur polynomials to the
elementary symmetric and homogeneous symmetric polynomials.

I Theorem 24 (Jacobi-Trudi identities).
(1) sλ(x) = det(hλi−i+j(x))1≤i,j≤`, where λ = (λ1, . . . , λ`).
(2) sλ(x) = det(eλ′

i
−i+j(x))1≤i,j≤m, where λ′ is the conjugate of λ and m = l(λ′) .

In particular,

sλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 . . . hλ1+`−1

hλ2−1 hλ2 . . . hλ2+`−2

...
...

. . .
...

hλ`−`+1 hλ`−`+2 . . . hλ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
`×`

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eλ′1 eλ′1+1 . . . eλ′1+m−1

eλ′2−1 eλ′2 . . . eλ′2+m−2

...
...

. . .
...

eλ′m−m+1 eλ′m−m+2 . . . eλ′m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

Note that the identity depends only on the properties of λ (i.e. ` or m) and does not depend
on the number of variables n.

I Theorem 25. For any λ, sλ(x) can be computed using a small ABP, hence by a small
algebraic circuit.

Proof. For polynomials P,Q ∈ C[x1, x2 . . . xn] such that both P and Q have small ABPs,
then by Lemma 9; R = P

Q also has a small ABP. Homogenization or interpolation can be
used to extract the required polynomial without much blow up. Here both aλ+δ(x), aδ(x)
have small ABPs (as they are small determinants), thus sλ(x) has an ABP of polynomial
size which also implies that is has an algebraic circuit of polynomial size. J

It is well-known that aδ(x), also known as the Principal Vandermonde Determinant, has
a small algebraic formula. However much less is known about the complexity of aλ+δ(x).
These polynomials are also known as Generalized Vandermonde determinants and are well
studied (see for instance [18]). To the best of our knowledge, before this work it was not
known whether for all λ, aλ+δ(x)s have small formulas. Suppose they did, then by Lemma 9,
we get that sλ(x) also have small formulas for all λ. In this paper we show that there exists
some λ for which sλ(x) does not have a small formula unless the Determinant has a small
formula. This in particular implies that there exist λ such that aλ+δ(x) cannot be computed
using small formulas (unless the Determinant can be computed by a small formula).
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4 Proofs of main results

4.1 Proof of Lemma 4
We start with the following definition, which is crucial for our proofs.

I Definition 26 (Property S). A set of n-variate polynomials {q1, q2, . . . , qk} ⊆ C[x] is said
to satisfy Property S, if there exists an a ∈ Cn such that

For all i ∈ [k], qi(a) = 0, and,
The rank of the Jacobian matrix of q1, q2, . . . , qk when evaluated at a is equal to its
symbolic rank, i.e. rankC (J (q1, q2, . . . , qk)(a)) = rankC(x) (J (q1, q2, . . . , qk)).

Property S gives us a concrete way to capture an appropriate notion of niceness of a set of
algebraically independent polynomials. The following lemma which uses this notion is a key
technical ingredient of our proofs.

I Lemma 27. Let {q1, q2, . . . , qk} ∈ C[x1, x2, . . . , xn] be a set of algebraically independent
polynomials which satisfy Property S. Let g ∈ C[z1, z2, . . . , zk] be a homogeneous k-variate
polynomial of degree equal to d such that the composed polynomial g(q1, q2, . . . , qk) ∈ C[x]
has an algebraic formula of size s and depth ∆. Then, g(z1, z2, . . . , zk) can be computed by
an algebraic formula of size O(s2n) and depth ∆ +O(1).

Proof. Let Φ be the formula of size s which computes the polynomial g (q1(x), q2(x), . . . , qk(x)).
Since q1, q2, . . . , qk satisfy Property S, there is an a ∈ Cn such that q1(a) = q2(a) = · · · =
qk(a) = 0 and rankC (J (q1, q2, . . . , qk)(a)) = rankC(x) (J (q1, q2, . . . , qk)). Moreover, since
they are algebraically independent, the rank of (J (q1, q2, . . . , qk)(a)) is equal to k. Thus,

rankC (J (q1, . . . , qk)(a)) = k .

Applying Corollary 14 to each qi(x) around this point a ∈ Cn, we get

qi(a + x) =
n∑
j=1

xj ·
∂qi
∂xj

(a) mod 〈x〉2 .

Observe that ith row of the matrix (J (q1, q2, . . . , qk)(a)) is the vector(
∂qi

∂x1
(a), ∂qi

∂x2
(a), · · · , ∂qi

∂xn
(a)
)
and by the choice of a, these vectors are linearly independent.

Thus, the homogeneous linear forms u1(x), u2(x), . . . , uk(x) are linearly independent, where
ui(x) is defined as

ui(x) =
n∑
j=1

xj ·
∂qi
∂xj

(a) .

The rest of the proof follows immediately from the following two claims. We state the claims
and use them to complete the proof of this lemma, and then move on to prove the claims.

B Claim 28. Let d be the degree of g(x). Then, the homogeneous component of degree d of
the polynomial g(q1, q2, . . . , qk) is equal to g(u1, u2, . . . , uk).

B Claim 29. If g(u1, u2, . . . , uk) has a formula of size s′ and depth ∆, then g(z) has a
formula of size at most s′n and depth ∆ +O(1).

To complete the proof of the lemma, observe that given the formula Φ of size at most s
and depth at most ∆ which computes g(q1, q2, . . . , qk), we know from Lemma 8 that the
homogeneous component of degree d of g(q1, q2, . . . , qk) can be computed by a formula Φ1
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of size at most O(s2) and depth at most ∆ + O(1). Moreover, from the homogeneity of
g and Claim 28, we also know that Φ1 computes the polynomial g(u1, u2, . . . , uk), where
u1, u2, . . . , uk are linearly independent linear forms. Thus, from Claim 29, this implies that
g(z1, z2, . . . , zk) has a formula of size at most O(s2n) and depth ∆ +O(1). This completes
the proof of the lemma, modulo the two claims which we prove next. J

Proof of Claim 28. Let f1, f2, . . . , fk ∈ C[x] be polynomials which are zero modulo 〈x〉2 (i.e.
every monomial in f1, f2, . . . , fk has degree at least 2) such that for every i, qi(a + x) =
ui(x) + fi(x). Since g is a homogeneous polynomial of degree d, it can be expressed as

g(z) =
∑

b∈Nk,|b|1=d

αbzb ,

for field constants αb. Let b ∈ Nk be any vector such that |b|1 = d. Observe that the
homogeneous component of degree d of the polynomial

k∏
j=1

qj(a + x)bj =
k∏
j=1

(uj(x) + fj(x))bj

is equal to
∏k
j=1 u

bj

j . Thus, by linearity, the homogeneous component of degree d of

g (q1(a + x), q2(a + x), . . . , qk(a + x)) =
∑

b∈Nk,|b|1=d

αb ·
k∏
j=1

(qj(a + x))bj

equals

∑
b∈Nk,|b|1=d

αb ·
k∏
j=1

(uj)bj ,

which, in turn is the equal to the polynomial g(u1, u2, . . . , uk). C

Proof of Claim 29. The idea for the proof of this claim is to show that each variable xj
can be replaced by a homogeneous linear form `j(z) in the variables z such that for every
i ∈ [k], the linear form ui satisfies ui(`1(z), `2(z), . . . , `n(z)) = zi. Thus, under this linear
transformation, the composed polynomial g(u1(x), u2(x), . . . , uk(x)) ∈ C[x] gets mapped
to the polynomial g(z1, z2, . . . , zk). Once we can show an existence of these linear forms
`1, `2, . . . , `n, the bounds on the formula size and depth follow immediately since all we need
to do to obtain a formula for g(z) is to replace every occurrence of a variable in x, e.g xj by
the linear form `j(z). Since every such linear form has a formula of size at most k and depth
O(1), this process blows up the formula size by a multiplicative factor of at most O(k) and
the depth by an additive factor of O(1).

Intuitively, to obtain these linear forms, we just solve the system of linear equations
U · xT = zT , where U is the k × n matrix whose ith row is ui. Since the rank of U is equal
to k, let U ′ be an invertible k × k submatrix of U , and let V be the inverse of U ′ and let
v1, v2, . . . , vk be the rows of V . Moreover, for brevity, let us assume that U ′ consists of the
first k columns of U . Observe that (V · U) is a k × n matrix such that its leftmost k × k
sub-matrix is the identity matrix. We are now ready to define the linear forms {`j : j ∈ [n]}.
For j ∈ [k], let `j(z) be equal to vj(z) and for j > k, `j(z) is defined to be zero. It is
straightforward to check that this definition satisfies the desired property and we skip the
details. C
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4.2 Formula complexity of Schur polynomials
We are now ready to prove Theorem 3. Our first stop, which we reach in the next two
lemmas, is to show that which shows that the elementary symmetric polynomials of degree
at most n− 1 on n variables are well behaved. We start by establishing a sufficient condition
for their Jacobian matrix to have full rank at a point.

I Lemma 30. Let x = (x1, x2, . . . , xn) be an n-tuple of variables. Let J(x) be the Jacobian
of e1(x), e2(x), . . . , en−1(x), and let b = (b1, b2, . . . , bn) ∈ Cn be such that for all i 6= j,
bi 6= bj. Then,

rankC(x) (J(x)) = rankC(J(b)) = n− 1 .

Proof. Using Fact 21, we can observe that the n-variate polynomials e1(x), e2(x), . . . , en−1(x)
are algebraically independent. Therefore, from Theorem 12 we know that rankC(x) (J(x)) is
equal to n− 1.

Let J ′(x) be any n− 1×n− 1 submatrix of J(x) of rank equal to n− 1 and by symmetry
we can assume that the columns in J ′(x) come from the first n− 1 columns of J(x). Thus,
for i, j ∈ [n − 1], the (i, j) entry of J ′(x) is equal to ∂ei

∂xj
. We now show that the rank of

J ′(b) over C is equal to n− 1 and this would complete the proof. To this end, we observe
that the determinant of J ′(x) is a non-zero scalar multiple of

∏
i,i′∈[n−1],i6=i′(xi − xi′). Since

the coordinates of b are all distinct, this determinant remains non-zero on b.
From the definition of J ′(x), we know that the entries in its ith row are homogeneous

polynomials of degree equal to i− 1. Thus, det(J ′(x)) is a homogeneous polynomial in x of
degree equal to

0 + 1 + 2 + · · ·+ n− 2 = (n− 2)(n− 1)
2 .

Recall that the (i, j) entry of J ′(x), is equal to ∂ei

∂xj
, which is equal to

∑
S⊆[n]/{i}

∏
k∈S xk.

Thus, if we replace every occurrence of the variable xi by the variable xi′ for i 6= i′ ∈ [n− 1],
then columns i, i′ in J ′(x) become identical, and hence det(J ′(x)) is identically zero. Thus,
by Lemma 15, (xi − xi′) is a factor of det(J ′(x)). Also, for any two distinct sets {i1, i′1} and
{i2, i′2} where i1 6= i′1 and i2 6= i′2, the polynomials (xi1 − xi′1) and (xi2 − xi′2) do not share
a non-trivial divisor. Thus, the determinant of J ′(x) must be divisible by the polynomial∏
i,i′∈[n−1],i6=i′(xi − xi′). Moreover, we observed that the degree of determinant of J ′(x) is

equal to (n−2)(n−1)
2 , which is also equal to the degree of

∏
i,i′∈[n−1],i6=i′(xi − xi′). Thus, they

must be non-zero scalar multiples of each other. This observation, together with the fact
that the coordinates of b are all distinct, shows that det(J ′(x)) is non-zero at b and hence,
rank(J(b)) equals n− 1 over C. J

We now use Lemma 27 to show that e1(x), e2(x), . . . , en−1(x) satisfy Property S, where n is
the number of variables.

I Lemma 31. Let x = (x1, x2, . . . , xn) be an n-tuple of variables. Then, the set of elementary
symmetric polynomials of degree at most n− 1 on x, i.e. the set {e1(x), e2(x), . . . , en−1(x)}
of polynomials satisfies Property S.

Proof. Let a = (1, ω, ω2, . . . , ωn−1), where ω is the primitive nth root of unity. So, we have
the following identity

zn − 1 =
n∏
i=1

(z − ωi−1) .
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However, from Fact 17, we also know that zn − 1, which equals
∏n
i=1(z − ai) can be

expressed as
n∏
i=1

(z − ai) = zn − c1 · zn−1 + c2 · zn−2 − · · ·+ (−1)ncn ,

where ci = ei(a). Comparing these two expressions for zn − 1, we get that for all 1 ≤ i < n,
ci = ei(a) = 0 . Thus, a = (1, ω, ω2, . . . , ωn−1) is a common zero of e1, e2, . . . , en−1, which
satisfies the first item in Definition 26. Moreover, since ω is a primitive nth root of one, we
also know that for all pairs i 6= j, ai 6= aj . Therefore, by Lemma 30, a satisfies the second
condition in Definition 26. Thus, the n-variate polynomials e1(x), e2(x), . . . , en−1(x) satisfy
Property S. J

We now observe that analogous statements are also true for homogeneous symmetric polyno-
mials and power symmetric polynomials as well.

I Lemma 32. Let x = (x1, x2, . . . , xn) be an n-tuple variables. Then the set of complete
symmetric polynomials of degree at most n− 1 on x, i.e. the set {h1(x), h2(x), . . . , hn−1(x)}
of polynomials satisfies Property S. Similarly, the set {p1(x), p2(x), . . . , pn−1(x)} of power
symmetric polynomials of degree at most n− 1 also satisfies Property S.

Proof sketch. The proof goes via generating functions of ei, hi, pi and the relations among
them. We denote the generating function of ei, hi, pi by E(t), H(t), P (t) respectively. The
following relations are known between these polynomials. (See for instance [28].)

E(t) =
∏
i≥1

(1 + xit) =
∑
k≥0

ekt
k

H(t) =
∏
i≥1

1
1− xit

=
∑
k≥0

hkt
k

P (t) =
∏
i≥1

xi
1− xit

=
∑
k≥1

pkt
k−1

It is easy to see that E(−t)H(t) = 1. Therefore we get,

H(t) = 1
E(−t) = 1

1− e1t+ e2t2 . . .+ (−1)nentn
(1)

From Lemma 31, we know there exists a point a = (a1, a2, . . . , an), where e1(a), e2(a), . . . ,
en−1(a) vanish and en(a) is non-zero. We evaluate the above equation at the same a. We
denote the above evaluation by H(t)|x=a.

H(t)|x=a = 1− (−1)nen(a)tn + ((−1)nen(a)tn)2 . . .

Observing the equation for H(t)|x=a, it follows that at point a , h1(a), h2(a), . . . , hn−1(a)
are zero and hn(a) is non-zero. An analogous relation between P (t) and E(t), given by

P (t) = E′(−t)
E(−t) ,

where E′(−t) is the first derivative of E(−t) with respect to t, can be used to show that the
power symmetric polynomials p1(a), . . . , pn−1(a) are zero and pn(a) is non-zero.

Thus, we are halfway towards showing that the set of power symmetric polynomials of
degree at most n− 1 and homogeneous symmetric polynomials of degree at most n− 1 also
satisfy Property S. It remains to be argued that the rank of the Jacobian of these polynomials
at a is equal to n− 1. The proof is analogous to the argument for the elementary symmetric
polynomials, as in the proof of Lemma 31. We skip the remaining details for brevity. J
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From Definition 26 of Property S and Theorem 12, it follows that is a set A of polynomials
satisfies Property S, then all the non-empty subsets of A also satisfy Property S. Thus, we
have the following corollary of Lemma 31 and Lemma 32.

I Corollary 33. Let i1 < · · · < ik < n be positive integers. Consider the sets E =
{ei1(x), . . . , eik (x)} and H = {hi1(x), . . . , hik (x)} of elementary and homogeneous symmetric
polynomials respectively in n > ik variables. Then both E and H satisfy property S.

We are now ready to prove the main theorem.

I Theorem 34 (Main theorem). Let λ = (λ1, . . . , λ`) be a partition of d such that λi ≥
λi+1 + (` − 1) for all i ∈ [` − 1], and λ` ≥ `. Then, for all n, such that n ≥ λ1 + `, if
sλ(x1, . . . , xn) has an algebraic formula of size s and depth ∆, then the `× ` determinant
(det`) has an algebraic formula of size poly(s) and depth ∆ +O(1).

Proof. We use Jacobi-Trudi Identity from Theorem 24, which expresses sλ(x) in the form of
homogeneous symmetric determinant.

sλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 . . . hλ1+`−1

hλ2−1 hλ2 . . . hλ2+`−2

...
...

. . .
...

hλ`−`+1 hλ`−`+2 . . . hλ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let Mλ denote the matrix on the right hand side in the above equality. By our choice of λ,
observe that the highest degree entry of Mλ is hλ1+`−1, which has degree at most n− 1, and
the lowest degree entry of Mλ is hλ`−`+1 which for λ` ≥ ` has degree at least 1. Moreover,
from the choice of λ, it also follows that all the entries of Mλ are distinct.

From Lemma 32, we know that there exists a point a for which the n-variate polynomials
{h1(x), h2(x), . . . hn−1(x)} satisfy the Property S, where n can be taken to be strictly greater
than `2. Thus, now if we take the `2-variate homogeneous polynomial g to be the symbolic
determinant of an `× ` matrix, then sλ is obtained by a composition of g with a subset of
polynomials h1, h2, . . . , hn−1.

Thus, by Lemma 27, we get that if g(h1(x), h2(x), . . . h`2(x)) (i.e sλ) has an algebraic
formula of size s and depth ∆, then g(x1, x2, . . . x`2) also has a small formula of size poly(s)
and depth ∆ +O(1) . J

I Remark 35 (Contrasting hard and easy λs). Let λ = (`2, `2 − `, . . . , 2`, `, 0, 0, . . . , 0, 0, 0) and
let λ̃ = (n`, (n− 1)`, . . . , `2, `2 − `, . . . , 3`, 2`, `), where we will take n ≥ `2 + ` and ` > 0. It
is easy to see that λ̃ forms an arithmetic progression in which the difference between the
successive terms is `. Whereas λ is a truncated arithmetic progression, in which n− `-many
elements are zeroes and the non-zero elements form an arithmetic progression.

Here the structure of λ and λ̃ is quite similar, but the algebraic complexities of sλ and
sλ̃ are different. In particular, Theorem 34 is applicable to λ. Therefore we can conclude
that sλ does not have a small algebraic formula unless the determinant has a small algebraic
formula.
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On the other hand, there are small formulas for sλ̃. To see this, observe that λ̃ + δ =
((n− 1)(`+ 1) + `, (n− 2)(`+ 1) + `, . . . , (`+ 1) + `, `), which is also an arithmetic progression
in which the difference between successive terms is `+ 1. Therefore, we have

aλ̃+δ =

∣∣∣∣∣∣∣∣∣∣
x`1 x`2 . . . x`n
x

(`+1)+`
1 x

(`+1)+`
2 . . . x

(`+1)+`
n

...
...

. . .
...

x
(n−1)(`+1)+`
1 x

(n−1)(`+1)+`
2 . . . x

(n−1)(`+1)+`
n

∣∣∣∣∣∣∣∣∣∣
n×n

aλ̃+δ =
( n∏
i=1

x`i

) ∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

x`+1
1 x`+1

2 . . . x`+1
n

...
...

. . .
...

x
(n−1)(`+1)
1 x

(n−1)(`+1)
2 . . . x

(n−1)(`+1)
n

∣∣∣∣∣∣∣∣∣∣
n×n

sλ̃ =

(∏n
i=1 x

`
i

) ∏
i<j

(x`+1
j − x`+1

i )∏
i<j

(xj − xi)

In the above expression the numerator and denominator have small formulas and therefore
using Lemma 9 we get that sλ̃ has a small formula of size poly(`, n).

4.2.1 Generalization to Skew Schur Polynomials
A straightforward generalization of the previous result is to prove that a class of skew Schur
polynomials(defined in [28]) also hard for formulas. They can be defined via a Jacobi-Trudi
like formula.

I Theorem 36. Let µ and λ be partitions with µi ≤ λi for every part i. Then, the skew
Schur polynomial sλ/µ satisfies
(1) sλ/µ = det(hλi−µj−i+j)1≤i,j≤k where k = l(λ).
(2) sλ/µ = det(eλ′

i
−µ′

j
−i+j)1≤i,j≤k where k = l(λ′).

From these definitions of skew Schur polynomials, we can see that they also have ABPs
of polynomial size, like Schur polynomials. However, skew Schur polynomials are in general
linear combinations of Schur polynomials, by the Littlewood-Richardson rule

sλ/µ =
∑

ν`n−m

cλµ,νsν .

The Littlewood-Richardson coefficients cλµ,ν count tableau whose Young diagram is of shape
λ/µ and whose content satisfy certain technical conditions. They are also important in
representation theory as they describe how Schur polynomials multiply, or equivalently
how a tensor product of polynomial GL(n) representations decomposes into irreducible
representations. They are also known to be #P-hard to compute [29].

Hardness of skew Schur polynomials assuming hardness of determinant follows from the
following lemma, Corollary 33 and Lemma 27.

I Lemma 37. Let l ≥ 2 and µ1 ≥ 1 be positive integers. Let λ, µ be partitions with l parts
with λi = (l − (i− 1))l + µ1 and µi = µ1 for all i < l and µl = µ1 − 1. Then all entries of
the homogeneous Jacobi-Trudi determinant sλ/µ are distinct.
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Proof. For simplicity, we call the integer k the label of the homogeneous symmetric poly-
nomial hk. Here, the (i, j) entry of the matrix is h(l−(i−1))l−i+j for 1 ≤ j < l and
h(l−(i−1))l+1−i+j for j = l. Hence, for a fixed row i, all entries are distinct and the la-
bels increase from left to right. Furthermore,

(l − i)l + 1− (i+ 1) + l = (l − i)(l − 1) + 1− i < l(l − (i− 1))− i+ 1

so the label of the last entry of row (i+ 1) is strictly less than the label of the first entry of
row i. Hence, all entries of the Jacobi-Trudi determinant are distinct. J

4.3 Extensions of the results of Bläser and Jindal [1]

Shifted variants for formulas

A fairly direct consequence of our techniques is the following theorem which can be considered
a partial generalization of the result of Bläser-Jindal [1] for algebraic formulas.

I Theorem 38. There exist field constants a1, a2, . . . , an such that the following is true: if for
an n-variate homogeneous polynomial g over C, the composition g(e1 − a1, . . . , en − an) has
a formula of size at most s, then the polynomial g(y) has a formula of size at most O(s2n).

Proof. We will primarily use Lemma 27 to prove the above theorem. Note that the set
{e1 − a1, . . . , en − an} continue to be algebraically independent as the Jacobian matrix
J (e1− a1, . . . , en− an) = J (e1, . . . , en). Recall that (e1 . . . en) are algebraically independent
over n variables and thus has a full rank Jacobian matrix, which also implies the algebraic
independence of (e1 − a1, . . . , en − an) using Theorem 12. The next step would be to find
a point c where ei(c)− ai is zero for all i. We also need to make sure that at point c the
J (e1 − a1, . . . , en − an) matrix has full rank. It is easy to verify that the determinant of
J (e1 − a1, . . . , en − an) is a polynomial of degree

(
n
2
)
. As per our assumption, the field

we use is quite large, in fact much larger than n2. Thus, from the Polynomial Identity
lemma, we know that over every large enough set S ⊆ C, there exists a point c ∈ Sn

at which the determinant of J (e1 − a1, . . . , en − an) is non-zero and hence, the matrix
J (e1 − a1, . . . , en − an)(c) is full rank. By setting ai = ei(c) for all i, {e1 − a1, . . . , en − an}
satisfy the Property S mentioned in Definition 26 for point c. The proof of this theorem is
now an immediate corollary of Lemma 27. J

The proof above gives a slightly stronger statement than what is stated in Theorem 38.
Moreover, the statement of Theorem 38 holds for many such a1, a2, . . . , an. To see this,
note that the only property that the proof above uses about a1, a2, . . . , an is that a =
(a1, a2, . . . , an) is a point in the image of the polynomial map σ from Cn to Cn which is given
by mapping y ∈ Cn to (e1(y), e2(y), . . . , en(y)) such that there is a point c in the pre-image
of a where the Jacobian J (e1 − a1, . . . , en − an)(b) (which is equal to J (e1, . . . , en)(b))
is full rank. Now, observe that the map σ is invertible. To see this, note that σ can be
thought of as mapping n roots b1, b2, . . . , bn of the univariate polynomial

∏n
i=1(z − bi) to its

coefficients, and hence its inverse is the map which maps the n coefficients of a monic degree
n polynomial to its roots.

Thus, if we take b to be a random point from a large enough grid, then the Jacobian
J (e1 − a1, . . . , en − an) has rank n with high probability. Moreover, whenever this event
happens, Theorem 38 holds with a being set to be the image of b under σ.
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Generalizing the results in [1] to other bases
We know that the fundamental theorem of symmetric polynomials also holds for other bases
and not just for elementary symmetric basis. For any given n-variate symmetric polynomial
fsym, Bläser-Jindal efficiently finds f such that fsym = f(e1, e2 . . . en). The degree of f is
also given apriori. We generalize the Bläser-Jindal work to other bases such as homogeneous
symmetric base and power symmetric base efficiently. In order to prove that, we need to
show there exists an efficient transformation which can represent any elementary symmetric
polynomial in the form of homogeneous symmetric or power symmetric polynomial. The
following lemma illustrates that.

I Lemma 39. Any n-variate elementary symmetric polynomial of degree k can be written
as an algebraic combination of homogeneous symmetric polynomials (or power symmetric
polynomials) using a small formula.

Proof. It is well known that these transformations are doable using ABP of polynomial size
as the transformation uses small determinants [28] . We prove the same for formula. Recall
that E(t)H(−t) = 1

E(t) = 1
H(−t) = 1

1− h1t+ h2t2 . . .+ (−1)nhntn
= 1

1− z =
∑
i≥0

zi

where z = h1t− h2t
2 . . .+ (−1)n−1hnt

n.

Consider the truncated polynomial A(t) = E(t) mod 〈z〉k+1, where 〈z〉 is the ideal
generated by z. Now we use interpolation to find the coefficient of tk in the polynomial A(t),
which is precisely ek. A(t) can have degree at most nk, which implies a formula size of O(nk)
for A(t) (assuming the field to be algebraically closed). But, k ≤ n, hence the trivial formula
complexity for expressing ek in the form of hi’s is O(n4) using Lemma 8.

From the definition of the generating functions P (t) and E(t), it is easy to verify that

E(t) = e
∫
P (−t)dt = e

∫
(
∑

m≥1
pmt

m−1)dt = e
(
∑

m≥1
pmtm

m! ) = 1 + q + q2

2! . . . ,

where q =
∑
m≥1

pmt
m

m! .
Now we consider the truncated polynomial containing degree up to qk and interpolate this

polynomial to get the coefficient of tk. The formula complexity for expressing ek as power
symmetric polynomials is O(n4). Also, the proof outline is very similar to the homogeneous
symmetric case. J

I Theorem 40 (Bläser-Jindal for other bases). For any n-variate symmetric polynomial
fsym ∈ C[x], we can efficiently compute the polynomials fE , fH , fP ∈ C[x] that are n-variate
and unique s.t fsym = fE(e1, e2 . . . en) = fH(h1, h2 . . . hn) = fP (p1, p2 . . . pn).

Proof. Bläser-Jindal proves that fE can be efficiently computed using an algebraic circuit.
They prove that the circuit size for computing fE is bounded by O(d2S(fsym)+poly(n, d))
where d is the degree of fE , S(fsym) denotes the circuit size of fsym and n is the number
of working variables. We extend their work for computing fH and fP . To prove that, we
shall use Bläser-Jindal method as a black box. We use Bläser-Jindal technique and get the
circuit for fE . We denote this circuit by CfE

. CfE
can be visualized as a circuit having

elementary symmetric polynomials(ei’s) as its input. But, from Lemma 39, we know ei’s can
be uniquely expressed in the form of hi’s and pi’s using a formula of polynomial size. We
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denote the modified circuit as CfH
after transforming ei’s to hi’s in CfE

. The output of CfH

is fH because hi’s are algebraically independent and also satisfy fundamental theorem of
symmetric polynomials. The proof for fP is similar. Thus fH and fP can still be computed
using a circuit of size O(d2S(fsym)+poly(n, d)) as the transformation just adds some poly
factor to the previously calculated size. J

Bläser-Jindal method works for the circuit and we do not know whether it works for
ABPs or formula. If it works for ABP, then the basis transformation is trivial using a small
determinant (i.e a small ABP). If it works for formula, then Theorem 40 would be useful to
extend the notion for other bases while still staying in the formula regime.

4.4 Partial derivatives of a product of algebraically independent
polynomials

We digress a little in this section to discuss another application of the ideas used in the
proof of Lemma 27 to a question of Amir Shpilka on the partial derivative complexity of a
product of algebraically independent polynomials. We start with the definition of the partial
derivative complexity.

I Definition 41. The partial derivative complexity of a polynomial P ∈ C[x] is the dimension
of the linear space of polynomials over C spanned by all the partial derivatives of P .

The following question was asked by Amir Shpilka and our techniques provide a partial
answer. As far as we are aware, the general question remains open.

I Question 42 (Shpilka). Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials.
Then, prove (or disprove) that the partial derivative complexity of the the product

∏k
i=1 gi(x)

is at least exp(Ω(k)).

A canonical example of polynomials satisfying the hypothesis is when gi(x) = xi. Thus, the
product polynomial

∏k
i=1 gi(x) is equal to the monomial x1 · x2 · · ·xk, and indeed the partial

derivative complexity of this monomial is at least 2k, since for every S ⊆ [k], the monomial∏
i∈S xi is a partial derivative and these monomials are all linearly independent over C .

Thus, in general, we cannot hope for a better lower bound on the partial derivative complexity
of such polynomials. Using our techniques, we observe the following two statements which
answer special cases of this question.

I Theorem 43. Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials which
satisfy Property S. Then, the partial derivative complexity of

∏k
i=1 gi(x) is at least 2k.

I Theorem 44. Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials. Then,
there are field constants a1, a2, . . . , an such that the partial derivative complexity of∏k
i=1 (gi(x) + ai) is at least 2k.
In fact, the lower bound holds for almost all choices of a1, a2, . . . , ak.

The following observation essentially follows from the definition of Property S (Definition 26)
and Theorem 13. The proof is also implicit in the proof of Lemma 27.

I Observation 45. Let q1(x), q2(x), . . . , qk(x) ∈ C[x] be algebraically independent polynomi-
als which satisfy Property S. Then, there is an a ∈ Cn such that the degree zero homogeneous
component of the the polynomials q1(x + a), q2(x + a), . . . , qk(x + a) are all zero, and their
homogeneous components of degree one are all linearly independent.

Theorem 43 and Theorem 44 are essentially immediate consequences of Observation 45 and
some standard properties of partial derivatives, which we now discuss.
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I Lemma 46. Let P ∈ C[x] be a polynomial. Then,
1. For every a ∈ Cn, the partial derivative complexity of P is equal to the partial derivative

complexity of P (x + a). More generally, the partial derivative complexity is invariant
under invertible linear transformation of variables.

2. Let i be the degree of the lowest degree homogeneous component of P which is non-zero
and let Pi denote this homogeneous component. Then, the partial derivative complexity
of P is at least as large as the partial derivative complexity of Pi.

3. The partial derivative complexity of a product of k linearly independent homogeneous
linear forms is at least 2k.

We briefly sketch the main ideas in the proof.

Proof Sketch. For the first item, we prove the statement for first order partial derivatives.
The argument easily extends to higher order derivatives as well. By the chain rule, ∂P (x+a)

∂xi

equals ∂P (x+a)
∂(xi+ai) ·

∂(xi+ai)
∂xi

. Observe that this is equal to the polynomial obtained by taking
the partial derivative ∂P (x)

∂xi
of the original polynomial and then shifting the variables by a,

i.e. replacing xj by xj + aj for every j. Thus, the linear space spanned by the first order
partial derivatives of P (x + a) is equal to the linear space obtained by taking the space of
first order partial derivatives of P (x) and shifting the variables by a. It is not hard to see
that this preserves the dimension of the space. The proof of the moreover part needs a bit
more care, but follows similarly.

For the second item, observe that for any set of polynomials {Q1, Q2, . . . , Qt}, the
dimension of the linear span of {Q1, Q2, . . . , Qt} is at least as large as the dimension of
the linear span of the lowest degree non-zero homogeneous components of Q1, Q2, . . . , Qt.
Also, observe that for any monomial xb, if the partial derivative ∂Pi

∂xb is non-zero, then the
lowest degree non-zero homogeneous component of ∂P

∂xb equals ∂Pi

∂xb . Now, let S be the set of
monomials such that the space of partial derivatives of Pi with respect to monomials in S is
a basis for the linear space of all partial derivatives of Pi. From the two earlier observations
in this paragraph, it follows that the derivatives of P with respect to monomials in the set S
are all linearly independent, thereby implying the desired lower bound.

The third item is an immediate consequence of the observation that the partial derivative
complexity of the monomial

∏k
i=1 xi is equal to 2k and the “moreover” part of the first item

of this lemma, which says that partial derivative complexity is invariant under invertible
linear transformations. J

We now sketch the main ideas in the proof of Theorem 43.

Proof of Theorem 43. The goal is to prove a lower bound on the partial derivative com-
plexity of the polynomial

∏k
i=1 qi(x). Let a ∈ Cn be the point guaranteed by Observation 45.

Thus, q1(x + a), q2(x + a), . . . , qk(x + a) are all zero, and their homogeneous components of
degree one are all linearly independent. From the first item of Lemma 46, we know that it
suffices to prove a lower bound on the partial derivative complexity of

∏k
i=1 qi(x + a).

The claim now is that the lowest degree homogeneous component of
∏k
i=1 qi(x + a) of

which is non-zero is the homogeneous component of degree equal to k, and this is equal to the
product of the homogeneous components of degree one of q1(x + a), q2(x + a), . . . , qk(x + a).
This immediately follows from Claim 28 in the proof of Lemma 27. But once we have this
claim, the theorem follows from the third item of Lemma 46. We skip rest of the details. J

Theorem 44 follows from observing that we can pick a1, a2, . . . , an so that q1 + a1, q2 +
a2, . . . , qk + ak satisfy Property S. This follows from a similar observation in the proof of
Theorem 38. Once we have this observation, we are back in the setting of Theorem 43.
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Before we conclude this section, we note that in order to generalize Theorem 43 and
Theorem 44 to completely answer Question 42 in affirmative, it would suffice to prove the
following conjecture.

I Conjecture 47. For all constants α1, α2, . . . , αk ∈ C and linearly independent homogeneous
linear forms `1, `2, . . . , `k the following is true : if q1, q2, . . . , qk are polynomials such that
their minimum degree non-zero monomial has degree at least two, then the partial derivative
complexity of the polynomial

∏k
i=1(αi + `i + qi) is at least 2k.

If the conjecture is false, a counterexample to the conjecture may be instructive towards
understanding how the partial derivative complexity behaves over taking a product of
polynomials.

5 Open problems

We conclude with some open problems.
(i) Perhaps the most natural question would be to characterize the formula complexity of

all Schur polynomials. As discussed in Remark 35, there exist partitions λ for which
the corresponding sλ have small (polynomial sized) algebraic formulas. On the other
hand, as shown in this work, there exist families of λs which do not have polynomial
sized formulas unless the determinant does. Due to classical results such as [40], we
know that the latter class of λs in fact have formulas of size nO(logn). It would be of
great interest to extend these two results and get a complete characterization of the
formula complexity of sλ, as a function of the partition λ.

(ii) Bläser and Jindal gave a computationally efficient version of the fundamental theorem
for symmetric polynomials. In particular, they showed that if fsym is a symmetric
polynomial computed by a polynomial-sized algebraic circuit then the unique polynomial
fE such that fsym = fE(e1, . . . , en), also has a polynomial-sized algebraic circuit.
A natural question one can ask is: if fsym has a polynomial-sized algebraic formula
(or ABP) then does fE also have a polynomial-sized algebraic formula (ABP resp.)?
In Theorem 38 we take a step towards proving this statement. We show that there
exists a ∈ Cn such that if fsym can be expressed as fE(e1 − a1, . . . , en − an) for a
homogeneous fE then fE has a small algebraic formula if fsym does. To get the exact
Bläser-Jindal-like statement in the formula setting, we would have to improve our result
in two ways. We would have to prove it for general fE rather than for homogeneous fE
and we would have to prove it for a = 0n. We believe that both of these are interesting
directions to pursue.

(iii) Another interesting extension of the results here would be to show that there are families
of Generalized Vandermonde matrices such that circuit complexity of computing their
permanent is essentially as large as the circuit complexity of the Permanent. This
would be a VNP analogue of Theorem 3.

(iv) Yet another interesting direction would be to extend Theorem 43 to answer Question 42
completely.
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Abstract
The class FORMULA[s] ◦ G consists of Boolean functions computable by size-s de Morgan formulas
whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning,
and PRG) algorithms for FORMULA[n1.99] ◦ G, for classes G of functions with low communication
complexity. Let R(k)(G) be the maximum k-party number-on-forehead randomized communication
complexity of a function in G. Among other results, we show that:

The Generalized Inner Product function GIPk
n cannot be computed in FORMULA[s] ◦ G on more

than 1/2 + ε fraction of inputs for

s = o

(
n2

(k · 4k ·R(k)(G) · log(n/ε) · log(1/ε))2

)
.

This significantly extends the lower bounds against bipartite formulas obtained by [61]. As a
corollary, we get an average-case lower bound for GIPk

n against FORMULA[n1.99] ◦ PTFk−1, i.e.,
sub-quadratic-size de Morgan formulas with degree-(k − 1) PTF (polynomial threshold function)
gates at the bottom.
There is a PRG of seed length n/2 + O

(√
s ·R(2)(G) · log(s/ε) · log(1/ε)

)
that ε-fools

FORMULA[s]◦G. For the special case of FORMULA[s]◦LTF, i.e., size-s formulas with LTF (linear
threshold function) gates at the bottom, we get the better seed length
O
(
n1/2 · s1/4 · log(n) · log(n/ε)

)
. In particular, this provides the first non-trivial PRG (with

seed length o(n)) for intersections of n half-spaces in the regime where ε ≤ 1/n, complementing
a recent result of [44].
There exists a randomized 2n−t-time #SAT algorithm for FORMULA[s] ◦ G, where

t = Ω
(

n√
s · log2(s) ·R(2)(G)

)1/2

.

In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99] ◦ LTF.
The Minimum Circuit Size Problem is not in FORMULA[n1.99] ◦ XOR; thereby making progress
on hardness magnification, in connection with results from [45, 12]. On the algorithmic side, we
show that the concept class FORMULA[n1.99] ◦ XOR can be PAC-learned in time 2O(n/ log n).
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1 Introduction

A (de Morgan) Boolean formula over {0, 1}-valued input variables x1, . . . , xn is a binary tree
whose internal nodes are labelled by AND or OR gates, and whose leaves are marked with a
variable or its negation. The power of Boolean formulas has been intensively investigated
since the early years of complexity theory (see, e.g., [57, 42, 38, 5, 47, 30, 27, 58, 19]).
The techniques underlying these complexity-theoretic results have also enabled algorithmic
developments. These include learning algorithms [52, 55], satisfiability algorithms (cf. [59]),
compression algorithms [14], and the construction of pseudorandom generators [29] for
Boolean formulas of different sizes. But despite many decades of research, the current
non-trivial algorithms and lower bounds apply only to formulas of less than cubic size, and
understanding larger formulas remains a major open problem in circuit complexity.

In many scenarios, however, understanding smaller formulas whose leaves are replaced by
certain functions would also be very useful. Motivated by several recent works, we initiate a
systematic study of the FORMULA◦G model, i.e., Boolean formulas whose leaves are labelled
by an arbitrary function from a fixed class G. This model unifies and generalizes a variety of
models that have been previously studied in the literature:

Oliveira, Pich, and Santhanam [45] show that proving certain lower bounds against
formulas of size n1+ε over parity (XOR) gates would have significant consequences in
complexity theory. Note that de Morgan formulas of size n3+ε can simulate such devices.
Therefore, a better understanding of the FORMULA ◦ G model even when G = XOR is
necessary before we are able to analyze super-cubic size formulas.1
Tal [61] obtains almost quadratic lower bounds for the model of bipartite formulas, where
there is a fixed partition of the input variables into x1, . . . , xn and y1, . . . , yn, and a
formula leaf can compute an arbitrary function over either ~x or ~y. This model was
originally investigated by Pudlák, Rödl, and Savický [49], where it was referred to as
graph complexity. The model is also equivalent to PSPACE-protocols in communication
complexity (cf. [23]).

1 We remark that even a single layer of XOR gates can compute powerful primitives, such as error-correcting
codes and hash functions.
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Abboud and Bringmann [1] consider formulas where the leaves are threshold gates whose
input wires can be arbitrary functions applied to either the first or the second half of the
input. This extension of bipartite formulas is denoted by F2 in [1]. Their work establishes
connections between faster F2-SAT algorithms, the complexity of problems in P such
as Longest Common Subsequence and the Fréchet Distance Problem, and circuit lower
bounds.
Polytopes (i.e. intersection of half-spaces), which corresponds to G being the family of
linear-threshold functions, and the formula contains only AND gates as internal gates.
The constructing of PRGs for this model has received significant attention in the literature
(see [44] and references therein).

We obtain in a unified way several new results for the FORMULA ◦ G model, for natural
classes G of functions which include parities, linear (and polynomial) threshold functions,
and indeed many other functions of interest. In particular, we show that this perspective
leads to stronger lower bounds, general satisfiability algorithms, and better pseudorandom
generators for a broad class of functions.

1.1 Results
We now describe in detail our main results and how they contrast to previous works. Our
techniques will be discussed in Section 1.2, while a few open problems are mentioned in
Section 1.3.

We let FORMULA[s] ◦ G denote the set of Boolean functions computed by formulas
containing at most s leaves, where each leaf computes according to some function in G. The
set of parity functions and their negations will be denoted by XOR.

We use the following notation for communication complexity. For a Boolean function
f : {0, 1}n → {0, 1}, we let D(f) be the two-party deterministic communication complexity
of f , where each party is given an input of n/2 bits. Similarly, for a Boolean function
g : {0, 1}n → {0, 1}, we denote by R

(k)
δ (g) the communication cost of the best k-party

number-on-forehead (NOF) communication protocol that computes g with probability at
least 1 − δ on every input, where the probability is taken over the random choices of the
protocol. For simplicity, we might omit the superscript (k) from R

(k)
δ (g) when k = 2. One

of our results will also consider k-party number-in-hand (NIH) protocols, and this will be
clearly indicated in order to avoid confusion. We always assume a canonical partition of
the input coordinates in all statements involving k-party communication complexity, unless
stated otherwise. We generalize these definitions for a class of functions G in the natural
way. For instance, we let R(k)

δ (G) = maxg∈G R(k)
δ (g).

Our results refer to standard notions in the literature, but in order to fix notation, Section
2 formally defines communication protocols, Boolean formulas, and other notions relevant in
this work. We refer to the textbooks [39] and [32] for more information about communication
complexity and Boolean formulas, respectively. To put our results into context, here we
only briefly review a few known upper bounds on the communication complexity of certain
classes G.

Parities (XOR) and Bipartite Formulas. Clearly, the deterministic two-party communica-
tion complexity of any parity function is at most 2, since to agree on the output it is enough
for the players to exchange the parity of their relevant input bits. Moreover, note that the
bipartite formula model discussed above precisely corresponds to formulas whose leaves are
computed by a two-party protocol of communication cost at most 1.

CCC 2020
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Halfspaces and Polynomial Threshold Functions (PTFs). Recall that a halfspace, also
known as a Linear Threshold Function (LTF), is a Boolean function of the form sign(

∑n
i ai ·

xi − b), where each ai, b ∈ R and x ∈ {0, 1}n, and that a degree-d PTF is its natural
generalization where degree-d monomials are allowed. It is known that if g(x1, . . . , xn) is a
halfspace, then its randomized two-party communication complexity, namely R(2)

δ (g), satisfies
R

(2)
δ (g) = O(log(n) + log(1/δ)) [43]. On the other hand, if g(x1, . . . , xn) is a degree-d PTF,

then R(d+1)
δ (g) = O

(
(d log d)(d logn+ log(1/δ))

)
[43, 64].

Degree-d Polynomials over GF(2). It is well known that a degree-d GF(2)-polynomial
admits a (d+ 1)-party deterministic protocol of communication cost d+ 1 under any variable
partition, since in the number-on-forehead model each monomial is entirely seen by some
player. In particular, the Inner Product function IPn(x, y) =

∑
i xi · yi (mod 2) satisfies

R
(3)
1/3(IPn) = O(1).

1.1.1 Lower bounds

Prior to this work, the only known lower bound against FORMULA ◦ XOR or bipartite
formulas was the recent result of [61] showing that IPn is hard (even on average) against
nearly sub-quadratic formulas. In contrast, we obtain a significantly stronger result and
establish lower bounds for different Boolean functions. We define such functions next.

GIPk
n. The Generalized Inner Product function GIPkn : {0, 1}n → {0, 1} is defined as

GIPkn
(
x(1), x(2), . . . , x(k)

)
=

n/k∑
j=1

k∧
i=1

x
(i)
j (mod 2),

where x(i) ∈ {0, 1}n/k for each i ∈ [k].

MKtP. In the Minimum Kt Problem, where Kt refers to Levin’s time-bounded Kolmogorov
complexity2, we are given a string x ∈ {0, 1}n and a string 1`. We accept (x, 1`) if and only
if Kt(x) ≤ `.

MCSP. In the Minimum Circuit Size Problem, we are given as input the description of a
Boolean function f : {0, 1}logn → {0, 1} (represented as an n-bit string), and a string 1`. We
accept (f, 1`) if and only the circuit complexity of f is at most `.

I Theorem 1 (Lower bounds). The following unconditional lower bounds hold:
1. If GIPkn is (1/2 + ε)-close under the uniform distribution to a function in FORMULA[s]◦G,

then

s = Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)(G) + logn

)2 · log2(1/ε)

 .

2 For a string x ∈ {0, 1}∗, Kt(x) denotes the minimum value |M |+ log t taken over M and t, where M is
a machine that prints x when it computes for t steps, and |M | is the description length of M according
to a fixed universal machine U .
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2. If MKtP ∈ FORMULA[s] ◦ G, then

s = Ω̃

 n2

k2 · 16k ·R(k)
1/3(G)

 .

3. If MCSP ∈ FORMULA[s]◦XOR, then s = Ω̃(n2), where Ω̃ hides inverse polylog(n) factors.

Observe that, while [61] showed that the Inner Product function IPn is hard against
sub-quadratic bipartite formulas, Theorem 1 Item 1 yields lower bounds against formulas
whose leaves can compute bounded-degree PTFs and GF(2)-polynomials, including IPn.
Previously, only sub-linear lower bounds were known [43, 64] for circuits with PTF gates of
similar degree.

Let us now comment on the relevance of Items 2 and 3. Both MCSP and MKtP are
believed to be computationally much harder than GIPkn. However, it is more difficult to
analyze these problems compared to GIPkn because the latter is mathematically “structured,”
while the former problems do not seem to be susceptible to typical algebraic, combinatorial,
and analytic techniques.

More interestingly, MCSP and MKtP play an important role in the theory of hardness
magnification (see [45, 12]). In particular, if one could show that MCSP restricted to an
input parameter ` ≤ no(1) is not in FORMULA[n1+ε] ◦ XOR for some ε > 0, then it would
follow that NP cannot be computed by Boolean formulas of size nc, where c ∈ N is arbitrary.
Theorem 1 makes partial progress on this direction by establishing the first lower bounds for
these problems in the FORMULA ◦ G model. (We note that the proof of Theorem 1 Item 3
requires instances where the parameter ` is nΩ(1).)

1.1.2 Pseudorandom generators
We also get pseudorandom generators (PRGs) against FORMULA ◦ G for various classes of
functions G. Recall that a PRG against a class of functions C is a function G mapping short
Boolean strings (seeds) to longer Boolean strings, so that every function in C accepts G’s
output on a uniformly random seed with about the same probability as that for an actual
uniformly random string. More formally, G : {0, 1}` → {0, 1}n is a PRG that ε-fools C if for
every Boolean function h : {0, 1}n → {0, 1} in C, we have∣∣∣∣ Pr

z∈{0,1}`
[h(G(z)) = 1]− Pr

x∈{0,1}n
[h(x) = 1]

∣∣∣∣ ≤ ε.

Furthermore, we require G to run in deterministic time poly(n) on an input string z ∈ {0, 1}`.
The parameter ` = `(n) is called the seed length of the PRG and is the main quantity to be
minimized when constructing PRGs.

There exists a PRG that fools formulas of size s and that has a seed of length s1/3+o(1) [29].
In particular, there are non-trivial PRGs for n-variate formulas of size nearly n3. Unfortu-
nately, such PRGs cannot be used to fool even linear size formulas over parity functions,
since the naive simulation of these enhanced formulas by standard Boolean formulas requires
size n3. Moreover, it is not hard to see that this simulation is optimal: Andreev’s function,
which is hard against formulas of nearly cubic size (cf. [27]), can be easily computed in
FORMULA[O(n)] ◦ XOR. Given that a crucial idea in the construction of the PRG in [29]
(shrinkage under restrictions) comes from this lower bound proof, new techniques are needed
in order to approach the problem in the FORMULA ◦ XOR model.

CCC 2020
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More generally, extending a computational model for which strong PRGs are known to
allow parities at the bottom layer can cause significant difficulties. A well-known example
is AC0 circuits and their extension to AC0-XOR. While the former class admits PRGs of
poly-logarithmic seed length (see e.g. [56]), the most efficient PRG construction for the latter
has seed length (1−o(1)) ·n [21]. Consequently, designing PRGs of seed length ≤ (1−Ω(1)) ·n
can already be a challenge. We are not aware of previous results on PRGs for FORMULA ◦ G
for any non-trivial class G.

By combining ideas from circuit complexity and communication complexity, we construct
PRGs of various seed lengths for FORMULA ◦ G, where G ranges from the class of parity
functions to the much larger class of functions of bounded randomized k-party communication
complexity.

I Theorem 2 (Pseudorandom generators). Let G be a class of n-bits functions. Then,
1. In the context of parity functions, there is a PRG that ε-fools FORMULA[s] ◦XOR of seed

length

` = O
(√
s · log(s) · log(1/ε) + log(n)

)
.

2. In the context of two-party randomized communication complexity, there is a PRG that
ε-fools FORMULA[s] ◦ G of seed length

` = n/2 +O
(√

s ·
(
R

(2)
ε/(6s)(G) + log(s)

)
· log(1/ε)

)
.

More generally, for every k(n) ≥ 2, let G be the class of functions that have k-party
number-in-hand (NIH) (ε/6s)-error randomized communication protocols of cost at most
R

(k-NIH)
ε/(6s) . There exists a PRG that ε-fools FORMULA[s] ◦ G with seed length

` = n/k +O
(√

s ·
(
R

(k-NIH)
ε/(6s) + log(s)

)
· log(1/ε) + log(k)

)
· log(k).

3. In the setting of k-party NOF randomized communication complexity, there is a PRG
that ε-fools FORMULA[s] ◦ G of seed length

` = n− n

O
(√

s · k · 4k ·
(
R

(k)
ε/(2s)(G) + log(n)

)
· log(n/ε)

) .
A few comments are in order. Under a standard connection between PRGs and lower

bounds (see e.g. [33]), improving the dependence on s in the seed length for FORMULA[s] ◦
XOR (Theorem 2 Item 1) would require the proof of super-quadratic lower bounds against
FORMULA ◦ XOR. We discuss this problem in more detail in Section 1.3. Note that the
additive term n/2 is necessary in Theorem 2 Item 2, since the model computes in particular
every Boolean function on the first n/2 input variables (i.e. a protocol of communication
cost 1). Similarly, ` ≥ (1 − 1/k) · n in Theorem 2 Item 3. Removing the exponential
dependence on k would also require advances in state-of-the-art lower bounds for multiparty
communication complexity.

Theorem 2 Item 2 has an interesting implication for fooling a well-studied class of
functions: intersections of halfspaces.3 Note that an intersection of halfspaces is precisely a
polytope, or equivalently, the set of solutions of a 0-1 integer linear program. Such objects
have found applications in many fields, including optimization and high-dimensional geometry.

3 Clearly, the intersection of s functions can be computed by an enhanced formula of size s+ 1.
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After a long sequence of works on the construction of PRGs for bounded-weight halfspaces,
(unrestricted) halfspaces, and generalizations of these classes,4 the following results are known
for the intersection of m halfspaces over n input variables. Gopalan, O’Donnell, Wu, and
Zuckerman [24] gave a PRG for this class for error ε with seed length

O
(
m · log(m/ε) + logn) · log(m/ε)

)
.

Note that the seed length of their PRG becomes trivial if the number of halfspaces is linear
in n. More recently, O’Donnell, Servedio and Tan [44] constructed a PRG with seed length

poly(log(m), 1/ε) · log(n).

Their PRG has a much better dependence on m, but it cannot be used in the small error
regime. For example, the seed length becomes trivial if ε = 1/n. In particular, before
this work it was open to construct a non-trivial PRG for the following natural setting of
parameters (cf. [44, Section 1.2]): intersection of n halfspaces with error ε = 1/n.

We obtain the following consequence of Theorem 2 Item 2, which follows from a result
of Viola [64] on the k-party number-in-hand randomized communication complexity of a
halfspace.

I Corollary 3 (Fooling intersections of halfspaces in the low-error regime). For every n,m ∈ N
and ε > 0, there is a pseudorandom generator with seed length

O
(
n1/2 ·m1/4 · log(n) · log(n/ε)

)
.

that ε-fools the class of intersections of m halfspaces over {0, 1}n.

We note that the PRG from Theorem 2 Item 3 can fool, even in the exponentially small
error regime, not only intersections of halfspaces, but also small formulas over bounded-degree
PTFs.

Finally, Theorem 2 Item 2 yields the first non-trivial PRG for formulas over symmetric
functions. Let SYM denote the class of symmetric Boolean functions on any number of input
variables.

I Corollary 4 (Fooling sub-quadratic formulas over symmetric gates). For every n, s ∈ N and
ε > 0, there is a pseudorandom generator with seed length

O
(
n1/2 · s1/4 · log(n) · log(1/ε)

)
.

that ε-fools n-variate Boolean functions in FORMULA[s] ◦ SYM.

Prior to this work, Chen and Wang [13] proved that the number of satisfying assignments
of an n-variate formula of size s over symmetric gates can be approximately counted to
an additive error term ≤ ε · 2n in deterministic time exp(n1/2 · s1/4+o(1)

√
(log(n) + log(s))),

where ε > 0 is an arbitrary constant. While their upper bound is achieved by a white-box
algorithm, Corollary 4 provides a (black-box) PRG for the same task.

4 We refer to the recent reference [44] for an extensive review of the literature in this area.
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1.1.3 Satisfiability algorithms
In the #SAT problem for a computational model C, we are given as input the description
of a computational device D(x1, . . . , xn) from C, and the goal is to count the number of
satisfying assignments for D. This generalizes the SAT problem for C, where it is sufficient
to decide whether D is satisfiable by some assignment.

In this section, we show that #SAT algorithms can be designed for a broad class
of functions. We consider the FORMULA ◦ G model for classes G that admit two-party
communication protocols of bounded cost. We establish a general result in this context which
can be used to obtain algorithms for previously studied classes of Boolean circuits.

To put our #SAT algorithms for FORMULA ◦ G into context, we first mention relevant
related work on the satisfiability of Boolean formulas. Recall that in the very restricted
setting of CNF formulas, known algorithms run (in the worst-case) in time 2n−o(n) when
the input formulas can have a super-linear number of clauses (cf. [18]). On the other hand,
for the class of general formulas, there is a better-than-brute-force algorithm for formulas
of size almost n3. In more detail, for any ε > 0, there is a deterministic #SAT algorithm
for FORMULA[n3−ε] that runs in time 2n−nΩ(ε) [59]. No results are known for formulas of
cubic size and beyond, and for the reasons explained in Section 1.1.2, the algorithm from
[59] cannot even be applied to FORMULA ◦ XOR.

Before stating our results, we discuss the input encoding in the #SAT problem for
FORMULA ◦ G. The top formula F is represented in some canonical way, while for each leaf
` of F , the input string contains the description of a protocol Π` computing a function in
G. Our results are robust to the encoding employed for Π`. Recall that a protocol for a
two-party function is specified by a protocol tree and a sequence of functions, where each
function is associated with some internal node of the tree and depends on n/2 input bits.
Since a protocol of communication cost o(n) has a protocol tree containing at most 2o(n)

nodes, it can be specified by a string of length 2n/2+o(n). Our algorithms will run in time
closer to 2n, and using a fully explicit input representation for the protocols is not an issue.
Another possibility for the input representation is to use “computational efficient” protocols.
Informally, the next bit messages of such protocols can be computed in polynomial time from
the current transcript of the protocol and a player input. An advantage of this representation
is that an input to our #SAT problem can be succinctly represented. We observe that these
input representations can be generalized to randomized two-party protocols in natural ways.
We refer to Section 2 for a formal presentation.

We obtain non-trivial satisfiability algorithms assuming upper bounds on the two-party
deterministic and randomized communication complexities of functions in G.

I Theorem 5 (Satisfiability algorithms). The following results hold.
1. There is a deterministic #SAT algorithm for FORMULA[s] ◦ G that runs in time

2n−t, where t = Ω
(

n√
s · log(s) · (log(s) +D(G))

)
.

2. There is a randomized #SAT algorithm for FORMULA[s] ◦ G that runs in time

2n−t, where t = Ω
(

n
√
s · log2(s) ·R1/3(G)

)1/2

.

Theorem 5 readily provides algorithms for many circuit classes. For instance, since one
can effectively describe a randomized communication protocol for linear threshold functions
[43, 64], the algorithm from Theorem 5 Item 2 can be used to count the number of satisfying
assignments of Boolean devices from FORMULA[n1.99] ◦ LTF.
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I Corollary 6 (#SAT algorithm for formulas of linear threshold functions). There is a randomized
#SAT algorithm for FORMULA[s] ◦ LTF that runs in time

2n−t, where t = Ω
(

n
√
s · log2(s) · log(n)

)1/2
.

In connection with Corollary 6, prior to this work essentially two lines of research have
been pursued. #SAT and/or SAT algorithms were known for bounded-depth circuits of
almost-linear size whose gates can compute LTFs or (low-degree) PTFs (see [15, 34, 8]), and
for sub-exponential size ACC0 circuits with two layers of LTFs at the bottom, assuming a
sub-quadratic number of them in the layer next to the input variables (see [2] for this result
and further related work). Corollary 6 seems to provide the first non-trivial SAT algorithm
that operates with unbounded-depth Boolean devices containing a layer with a sub-quadratic
number of LTFs.

Theorem 5 can be seen as a generalization of several approaches to designing SAT
algorithms appearing in the literature, which often employ ad-hoc constructions to convert
bottlenecks in the computation of devices from a class C into non-trivial SAT algorithms
for C. We observe that, before this work, [48] had made a connection between faster SAT
algorithms for CNFs and the 3-party communication complexity of a specific function. Their
setting is different though: it seems to work only for CNFs, and they rely on conjectured
upper bounds on the communication complexity of a particular problem. More recently, [13]
employed quantum communication protocols to design approximate counting algorithms for
several problems.5 In comparison to previous works, to our knowledge Theorem 5 is the first
unconditional result that yields faster #SAT algorithms via communication complexity in a
generic way.6

1.1.4 Learning algorithms
We describe a learning algorithm for the FORMULA◦XOR class in Leslie Valiant’s challenging
PAC-learning model [63]. Recall that a (PAC) learning algorithm for a class of functions
C has access to labelled examples (x, f(x)) from an unknown function f ∈ C, where x is
sampled according to some (also unknown) distribution D. The goal of the learner is to
output, with high probability over its internal randomness and over the choice of random
examples (measured by a confidence parameter δ), a hypothesis h that is close to f under
D (measured by an error parameter ε). We refer to [37] for more information about this
learning model, and to Section 2 for its standard formalization.

It is known that formulas of size s can be PAC-learned in time 2Õ(
√
s) [52]. Therefore,

formulas of almost quadratic size can be non-trivially learned from random samples of an
arbitrary distribution. A bit more formally, we say that a learning algorithm is non-trivial if
it runs in time 2n/nω(1), i.e., noticeably faster than the trivial brute-force algorithm that
takes time 2n · poly(n). Obtaining non-trivial learning algorithms for various circuit classes
is closely connected to the problem of proving explicit lower bounds against the class [46]
(see also [55] for a systematic investigation of such algorithms). We are not aware of the
existence of non-trivial learning algorithms for super-quadratic size formulas. However, it

5 Recall that approximately counting satisfying assignments is substantially easier than solving #SAT,
for which the fastest known algorithms run in time 2(1−o(1))n.

6 It has been brought to our attention that Avishay Tal has independently discovered a SAT algorithm
for bipartite formulas of sub-quadratic size (see the discussion in [1, Page 7]), which corresponds to a
particular case of Theorem 5.
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seems likely that such algorithms exist at least for formulas of near cubic size. As explained
in Section 1.1.2, this would still be insufficient for the learnability of classes such as (linear
size) FORMULA ◦ XOR.

We explore structural properties of FORMULA ◦ XOR employed in previous results and
boosting techniques from learning theory to show that sub-quadratic size devices from this
class can be PAC-learned in time 2O(n/ logn).

I Theorem 7 (PAC-learning FORMULA ◦ XOR in sub-exponential time). For every con-
stant γ > 0, there is an algorithm that PAC learns the class of n-variate Boolean functions
FORMULA[n2−γ ] ◦ XOR to accuracy ε and with confidence δ in time
poly

(
2n/ logn, 1/ε, log(1/δ)

)
.

Note that a sub-exponential running time cannot be achieved for FORMULA ◦ G when
we consider the communication complexity of G. Again, the class is too large, for the same
reason discussed in Section 1.1.2. It might still be possible to design a non-trivial learning
algorithm in this case, but this would possibly require the introduction of new lower bound
techniques for FORMULA ◦ XOR.

In contrast to the algorithm mentioned above that learns (standard) formulas of size
s ≤ n2−o(1) in time 2Õ(

√
s), the algorithm from Theorem 7 does not learn smaller formulas

over parities in time faster than 2O(n/ logn). We discuss this in more detail in Sections 1.2
and 1.3.

Finally, we mention a connection to cryptography that provides a conditional upper
bound on the size of FORMULA ◦ XOR circuits that can be learned in time 2o(n). It is well
known that if a circuit class C can compute pseudorandom functions (or some variants of
this notion), then it cannot be learned in various learning models (see e.g. [37]). It has
been recently conjectured that depth-two MOD3 ◦ XOR circuits of linear size can compute
weak pseudorandom functions of exponential security [10, Conjecture 3.7]. If this conjecture
holds, then such circuits cannot be learned in time 2o(n). Since MOD3 gates over a linear
number of input wires can be simulated by formulas of size at most O(n2.8) [54], under this
cryptographic assumption it is not possible to learn FORMULA[n2.8] ◦ XOR in time 2o(n),
even if the learner only needs to succeed under the uniform distribution.

1.2 Techniques
In order to explain our techniques, we focus for the most part on the design of PRGs for
FORMULA ◦ G when G is of bounded two-party randomized communication complexity (a
particular case of Theorem 2 Item 2). This proof makes use of various ingredients employed
in other results. After sketching this argument, we say a few words about our strongest lower
bound (Theorem 1 Item 1) and the satisfiability and learning algorithms (Theorems 5 and 7,
respectively).

We build on a powerful result showing that any small de Morgan formula can be approx-
imated pointwise by a low-degree polynomial:

(A) For every formula F (y1, . . . , ym) of size s, there is a polynomial p(y1, . . . , ym) ∈
R[y1, . . . , ym] of degree O(

√
s) such that |F (a)− p(a)| ≤ 1/10 on every a ∈ {0, 1}m.

The only known proof of this result [52] relies on a sequence of works [9, 40, 28, 20, 50, 4, 53]
on quantum query complexity, generalizing Grover’s search algorithm for the OR predicate
[25] to arbitrary formulas. The starting point of many of our results is a consequence of (A)
which is implicit in the work of Tal [61].
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(B) Let D be a distribution over {0, 1}m, and F ∈ FORMULA[s] ◦ G. Then, for every
function f ,

if Pr
x∼D

[F (x) = f(x)] ≥ 1/2 + ε, then Pr
x∼D

[h(x) = f(x)] ≥ 1/2 + exp(−t)

for some function h which is the XOR of at most t functions in G, where t = Θ̃(
√
s · log(1/ε)).

Intuitively, if we could understand well enough the XOR of any small collection of functions
in G, then we can translate this into results for FORMULA[s] ◦ G, as long as s � n2. We
adapt the techniques behind (B) to provide a general approach to constructing PRGs against
FORMULA ◦ G:

Main PRG Lemma. In order for a distribution D to ε-fool the class FORMULA[s] ◦ G, it is
enough for it to exp(−t)-fool the class XORt ◦ G, where t = Θ̃(

√
s · log(1/ε)).

Recall that, in Theorem 2 Item 2, we consider a class G of functions that admit two-party
randomized protocols of cost R = R

(2)
ε/6s(G). It is easy to see that the XOR of any t functions

from G is a function that can be computed by a protocol of cost at most t ·R. Thus the lemma
above shows that it is sufficient to fool, to exponentially small error, a class of functions of
bounded two-party randomized communication complexity. Moreover, since a randomized
protocol can be written as a convex combination of deterministic protocols, it is possible to
prove that fooling functions of bounded deterministic communication complexity is enough.

Pseudorandom generators in the two-party communication model have been known since
[31]. Their construction exploits that the Boolean matrix associated with a function of
small communication cost can be partitioned into a not too large number of monochromatic
rectangles. We provide in Appendix A.2 a slightly modified and self-contained construction
based on explicit extractors. It achieves the following parameters: There is an explicit
PRG that δ-fools any n-bit function of two-party communication cost D and that has seed
length n/2 +O(D + log(1/δ)). This PRG has non-trivial seed length even when the error is
exponentially small, as required by our techniques. One issue here is that the INW PRG
was only shown to fool functions with low deterministic communication complexity. To
obtain our PRGs for FORMULA ◦ G when G admits low-cost randomized protocols, we first
extend the analysis of the INW PRG to show that it also fools functions with low randomized
communication complexity. Combining this construction with the aforementioned discussion
completes the proof of Theorem 2 Item 2.

The argument just sketched reduces the construction of PRGs for FORMULA ◦ G when
functions in G admit low-cost randomized protocols to the analysis of PRGs for functions
that admit relatively low-cost deterministic protocols. Our lower bound proof for GIPkn in
Theorem 1 Item 1 proceeds in a similar fashion. We combine statement (B) described above
with other ideas to show:

Transfer Lemma (Informal). If a function correlates with some small formula whose leaf
gates have low-cost randomized k-party protocols, then it also non-trivially correlates with
some function that has relatively low-cost deterministic k-party protocols.

Given this result, we are able to rely on a strong average-case lower bound for GIPkn against
k-party deterministic protocols from [7] to conclude that GIPkn is hard for FORMULA ◦ G.

Our #SAT algorithms combine the polynomial representation of the top formula provided
by (A), for which we show that such a polynomial can be obtained explicitly, with a
decomposition of the Boolean matrix at each leaf that is induced by a corresponding low-
cost randomized or deterministic two-party protocol. A careful combination of these two
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representations allows us to adapt a standard technique employed in the design of non-trivial
SAT algorithms (fast rectangular matrix multiplication) to obtain non-trivial savings in the
running time.

Finally, our learning algorithm for FORMULA ◦ XOR is a consequence of statement (B)
above coupled with standard tools from learning theory. In a bit more detail, since a parity
of parities is just another parity function, (B) implies that, under any distribution, every
function in FORMULA[n1.99] ◦ XOR is weakly correlated with some parity function. Using
the agnostic learning algorithm for parity functions of [36], it is possible to weakly learn
FORMULA[n1.99] ◦ XOR in time 2O(n/ logn). This weak learner can then be transformed into
a (strong) PAC learner using standard boosting techniques [22], with only a polynomial
blow-up over its running time.

1.3 Concluding remarks
The main message of our results is that the computational power of a subquadratic-size top
formula is not significantly enhanced by leaf gates of low communication complexity. We
believe that the idea of decomposing a Boolean device into a computational part and a
layer of communication protocols will find further applications in lower bound proofs and
algorithm design.

One of our main open problems is to discover a method that can analyze FORMULA[s]◦G
when s� n2. For instance, is it possible to adapt existing techniques to show an explicit
lower bound against FORMULA[n2.01] ◦ G, or achieving this is just as hard as breaking the
cubic barrier for formula lower bounds? Results in this direction would be interesting even
for G = XOR.

Finally, we would like to mention a few questions connected to our results and their
applications. Is it possible to combine the techniques behind Corollary 3 and [44] to design
a PRG of seed length no(1) and error ε = 1/n for the intersection of n halfspaces? Can we
design a satisfiability algorithm for formulas over k-party number-on-forehead communication
protocols? Is it possible to learn FORMULA[s]◦XOR in time 2Õ(

√
s)? (The learning algorithm

for formulas from [52] relies on techniques from [35], and it is unclear how to extend them to
the case of FORMULA ◦ XOR.)

1.4 Organization
Theorem 1 Item 1 is proved in Section 3, while Items 2 and 3 rely on our PRG constructions
and are deferred to Section 4. The latter describes a general approach to constructing
PRGs for FORMULA ◦ G. It includes the proof of Theorem 2 and other applications. Our
satisfiability algorithms (Theorem 5) appear in Section 5. Finally, Section 6 discusses learning
results for FORMULA ◦ XOR and contains a proof of Theorem 7.

2 Preliminaries

2.1 Notation
Let n ∈ N; we denote {1, . . . , n} by [n], and denote by Un the uniform distribution over
{0, 1}n. We use Õ(·) (and Ω̃(·)) to hide polylogarithmic factors. That is, for any f : N→ N,
we have that Õ(f(n)) = O(f(n) · polylog(f(n))).

In this paper, we will mainly use {−1, 1} as the Boolean basis. In some parts of this
paper, we will use the {0, 1} basis for the simplicity of the presentation. This will be specified
in corresponding sections.
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2.2 De Morgan formulas and extensions
I Definition 8. An n-variate de Morgan formula is a directed rooted tree; its non-leaf vertices
(henceforth, internal gates) take labels from {AND,OR,NOT} = {∧,∨,¬} and its leaves
(henceforth, variable gates) take labels from the set of variables {x1, . . . , xn}. Each internal
gate has bounded in-degree (henceforth, fan-in); the NOT gate in particular has fan-in 1 and
every variable gate has fan-in 0. The size of a de Morgan formula is the number of its leaf
gates.

In this work, we denote by FORMULA[s] the class of Boolean functions computable by
size-s de Morgan formulas. Let G denote some class of Boolean functions; then, we denote
by FORMULA[s] ◦ G the class of functions computable by some size-s de Morgan formula
where its leaves are labelled by functions in G.

2.3 Approximating polynomials
I Definition 9 (Point-wise approximation). For a Boolean function f : {−1, 1}n → {−1, 1},
we say that the function f̃ : {−1, 1}n → R ε-approximates f if for every z ∈ {−1, 1}n,∣∣f(z)− f̃(z)

∣∣ ≤ ε.
We will need the following powerful result for the approximating degree of de Morgan

formulas.

I Theorem 10 ([52], see also [11]). Let s > 0 be an integer and 0 < ε < 1. Any de
Morgan formula F : {−1, 1}n → {−1, 1} of size s has a ε-approximating polynomial of degree
d = O(

√
s · log(1/ε)). That is, there exists a degree-d polynomial p : {−1, 1}n → R over the

reals such that for every z ∈ {−1, 1}n,

|p(z)− F (z)| ≤ ε.

Note that Theorem 10 still holds if we use {0, 1} as the Boolean basis.

2.4 Communication complexity
We use standard definitions from communication complexity. In this paper we consider the
standard two party model of Yao and its generalizations to multiparty setting. We denote
deterministic communication complexity of a Boolean function by D(f) in the two party
setting. We refer to [39] for standard definitions from communication complexity.

I Definition 11. Let f : {0, 1}n → {0, 1} be a Boolean function. The communication matrix
of f , namely Mf , is a 2n/2 × 2n/2 matrix defined by (Mf )x,y := f(x, y).

IDefinition 12. A rectangle is a set of the form A×B, for A,B ⊆ {0, 1}n. A monochromatic
rectangle is a rectangle S such that for all pairs (x, y) ∈ S the value f(x, y) is the same.

I Lemma 13. Let Π be a protocol that computes f : {0, 1}n → {0, 1} with at most D bits
of communication. Then, Π induces a partition of Mf into at most 2D monochromatic
rectangles.

Given a protocol, its transcript is the sequence of bits communicated.

I Lemma 14. For every transcript z of some communication protocol, the set of inputs (x, y)
that generate z is a rectangle.
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Below, we recount the definitions of two multiparty communication models used in this
work, namely the number-on-forehead and the number-in-hand models.

I Definition 15 (“Number-on-forehead” communication model; informal). In the k-party
“number-on-forehead” communication model, there are k players and k strings x1, . . . , xk ∈
{0, 1}n/k and player i gets all the strings except for xi. The players are interested in
computing a value f(x1, . . . , xk), where f : {0, 1}n → {0, 1} is some fixed function. We
denote by D(k)(f) the number of bits that must be exchanged by the best possible number on
forehead protocol solving f .

We also use the following weaker communication model.

I Definition 16 (“Number-in-hand” communication model; informal). In the k-party “number-
in-hand” communication model, there are k players and k strings x1, . . . , xk ∈ {0, 1}n/k and
player i gets only xi. The players are interested in computing a value f(x1, . . . , xk), where
f : {0, 1}n → {0, 1} is some fixed function. We denote by D(k-NIH)(f) the number of bits that
must be exchanged by the best possible communication protocol.

Note that D(k-NIH)(f) ≤ (1− 1/k) ·n+ 1, for any n-variate Boolean function f , as if k− 1
players write on the blackboard their string, then the player that did not reveal her input
may compute f(x1, . . . , xk) on her own and then publish it.

For the communication models mentioned above, there are also bounded-error randomized
versions, denoted by Rδ, R(k)

δ , and R(k-NIH)
δ , respectively, where 0 < δ < 1 is an upper bound

on the error probability of the protocol. In this setting, the players have access to some
shared random string, say r, and the aforementioned error probability of the protocol is
considered over the possible choices of r. Moreover, we require the error to be at most δ on
each fixed choice of inputs.

We can extend the definitions of the communication complexity measures, defined above,
to classes of Boolean functions, in a natural way. That is, for any communication complexity
measure M ∈

{
D,D(k), D(k-NIH), Rδ, R

(k)
δ , R

(k-NIH)
δ

}
and for any class of Boolean functions

G, we may define

M(G) := max
g∈G

M(g) .

We note that throughout this paper, we denote by n the number of input bits for the function
regardless the communication models. In the k-party communication setting (either NOF or
NIH), we assume without loss of generality that n is divisible by k.

2.5 Pseudorandomness
A PRG against a class of functions C is a deterministic procedure G mapping short Boolean
strings (seeds) to longer Boolean strings, so that G’s output “looks random” to every function
in C.

I Definition 17 (Pseudorandom generators). Let G : {−1, 1}` → {−1, 1}n be a function, C
be a class of Boolean functions, and 0 < ε < 1. We say that G is a pseudorandom generator
of seed length ` that ε-fools C if, for every function f ∈ C, it is the case that∣∣∣∣ E

z∼{−1,1}`
[f(G(z))]− E

x∼{−1,1}n
[f(x)]

∣∣∣∣ ≤ ε.
A PRG G outputting n bits is called explicit if G can be computed in poly(n) time. All

PRGs stated in this paper are explicit.
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2.6 Learning

For a function f : {0, 1}n → {0, 1} and a distribution D supported over {0, 1}n, we denote
by EX(f,D) a randomized oracle that outputs independent identically distributed labelled
examples of the form (x, f(x)), where x ∼ D.

I Definition 18 (PAC learning model [63]). Let C be a class of Boolean functions. We say
that a randomized algorithm A learns C if, when A is given oracle access to EX(f,D) and
inputs 1n, ε, and δ, the following holds. For every n-variate function f ∈ C, distribution
D supported over {0, 1}n, and real-valued parameters ε > 0 and δ > 0, AEX(f,D)(1n, ε, δ)
outputs with probability at least 1− δ over its internal randomness and the randomness of
the example oracle EX(f,D) a description of a hypothesis h : {0, 1}n → {0, 1} such that

Pr
x∼D

[f(x) = h(x)] ≥ 1− ε.

The sample complexity of a learning algorithm is the maximum number of random examples
from EX(f,D) requested during its execution.

3 Lower bounds

In this section, we prove an average-case lower bound for the generalized inner product
function against FORMULA◦G, where G is the set of functions that have low-cost randomized
communication protocols in the number-on-forehead setting. This corresponds to Item 1 of
Theorem 1. Items 2 and 3 rely on our PRG constructions, and the proofs are deferred to
Section 4.

I Theorem 19. For any integer k ≥ 2, s > 0 and any class of functions G, let C : {−1, 1}n →
{−1, 1} be a function in FORMULA[s] ◦ G such that

Pr
x∼{−1,1}n

[
C(x) = GIPkn(x)

]
≥ 1/2 + ε.

Then

s = Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)(G) + logn

)2
· log2(1/ε)

 .

We need a couple useful lemmas from [60], whose proofs are presented in Appendix A.1
(Lemma 50 and Lemma 51) for completeness.

I Lemma 20 ([60]). Let D be a distribution over {−1, 1}n, and let f, C : {−1, 1}n → {−1, 1}
be such that

Pr
x∼D

[C(x) = f(x)] ≥ 1/2 + ε.

Let C̃ : {−1, 1}n → R be a ε-approximating function of C, i.e., for every x ∈ {−1, 1}n,
|C(x)− C̃(x)| ≤ ε. Then,

E
x∼D

[C̃(x) · f(x)] ≥ ε.
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I Lemma 21 ([60]). Let D be a distribution over {−1, 1}n and let G be a class of functions.
For f : {−1, 1}n → {−1, 1}, suppose that D : {−1, 1}n → {−1, 1} ∈ FORMULA[s]◦G is such
that

Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε0.

Then there exists some h : {−1, 1}n → {−1, 1} ∈ XORO(√s·log(1/ε0)) ◦ G such that

E
x∼D

[h(x) · f(x)] ≥ 1
sO(√s·log(1/ε0)) .

We also need the following communication-complexity lower bound for GIP.

I Theorem 22 ([7, Theorem 2]). For any k ≥ 2, any function that computes GIPkn on
more than 1/2 + δ fraction of the inputs (over uniformly random inputs) must have k-party
deterministic communication complexity at least Ω

(
n/(k · 4k)− log(1/δ)

)
.

We first show that if a function correlates with some small formula, whose leaves are
functions with low randomized communication complexity, then it also correlates non-trivially
with some function of relatively low deterministic communication complexity.

I Lemma 23. For any distribution D over {−1, 1}n, and any class of functions G, let
f : {−1, 1}n → {−1, 1} and C : {−1, 1}n → {−1, 1} ∈ FORMULA[s] ◦ G be such that

Pr
x∼D

[C(x) = f(x)] ≥ 1/2 + ε.

Then there exists a function h, with k-party deterministic communication complexity at most

O
(
R

(k)
ε/(2s)(G) ·

√
s · log(1/ε)

)
,

such that

Pr
x∼D

[h(x) = f(x)] ≥ 1/2 + 1/sO(
√
s·log(1/ε)).

Proof. Let C = F (g1, g2 . . . , gs) be the function in FORMULA[s]◦G, where F is a formula and
g1, g2, . . . , gs are leaf functions from the class G. For each gi, consider a k-party randomized
protocol Πi of cost at most R = R

(k)
ε/(2s)(G) that has an error ε/(2s). Now consider the

following function

C̃(x) := E
Π1,Π2,...,Πs

[D(x)] ,

where

D(x) := F (Π1(x),Π2(x), . . . ,Πs(x)).

Note that for any fixed choice of (Π1,Π2, . . . ,Πs), D is a formula whose leaves are functions
with deterministic communication complexity at most R. Next, we show the following.

B Claim 24. The function C̃ ε-approximates C.

Proof. First note that since each Πi is a (ε/(2s))-error randomized protocol, by taking the
union bound over the s leaf functions, we have that for every input x ∈ {−1, 1}n,

Pr
Π1,Π2,...,Πs

[Π1(x) = g1(x) ∧Π2(x) = g2(x) ∧ · · · ∧Πs(x) = gs(x)] ≥ 1− ε/2.
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Denote by E the event Π1(x) = g1(x) ∧ Π2(x) = g2(x) ∧ · · · ∧ Πs(x) = gs(x). We have for
every x ∈ {−1, 1}n,

C̃(x) = E
Π1,Π2,...,Πs

[D(x)]

= E [D(x) | E ] ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ]
= C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ].

On the one hand, we have

C̃(x) = C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ] ≤ C(x) + ε/2.

On the other hand, we get

C̃(x) = C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ] ≥ C(x) · (1− ε/2) + (−1) · (ε/2) ≥ C(x)− ε.

This completes the proof of the claim. C

Now by Claim 24 and Lemma 20, we have

E
x∼D

[C̃(x) · f(x)] ≥ ε. (1)

By the definition of C̃, Equation (1) implies that there exists some D, which is a formula
whose leaves are functions with deterministic communication complexity at most R, such
that

E
x∼D

[D(x) · f(x)] ≥ ε,

which implies

Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε/2.

Then by Lemma 21, there exists a function h, which can be expressed as the XOR of at most
O(
√
s · log(1/ε)) leaf functions in D, such that

E
x∼D

[h(x) · f(x)] ≥ 1
sO(
√
s·log(1/ε)) ,

which again implies

Pr
x∼D

[h(x) = f(x)] ≥ 1
2 + 1

sO(√s·log(1/ε)) .

Finally, note that the k-party deterministic communication complexity of h is at most

O(R ·
√
s · log(1/ε)),

where R = R
(k)
ε/(2s)(G). J

We are now ready to show Theorem 19.

Proof of Theorem 19. Consider Lemma 23 with f being GIPkn and D being the uniform
distribution. Consider Theorem 22 with δ = 1/sO(

√
s·log(1/ε)). We have

O
(
R

(k)
ε/(2s)(G) ·

√
s · log(1/ε)

)
≥ n/(k4k)−O

(√
s · log(s) · log(1/ε))

)
,

which implies

s ≥ Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)(G) + logn

)2
· log2(1/ε)

 . J
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4 Pseudorandom generators

Some of our PRGs are obtained from a general framework that allows us to reduce the task
of fooling FORMULA ◦ G to the task of fooling the class of functions which are the parity or
conjunction of few functions from G.

4.1 The general framework
We show that in order to get a PRG for the class of subquadratic-size formulas with leaf
gates in G, it suffices to get a PRG for very simple sublinear-size formulas: either XOR ◦ G or
AND ◦ G.

I Theorem 25 (PRG for FORMULA ◦ G from PRG for XOR ◦ G or AND ◦ G). Let G be a class
of gates on n bits. For any integer s > 0 and any 0 < ε < 1, there exists a constant c > 0
such that the following holds. If a distribution D over {−1, 1}n

(
2−c·

√
s·log(s)·log(1/ε)

)
-fools

the XOR (parity) or the AND (conjunction) of c ·
√
s · log(1/ε) arbitrary functions from G,

then D also ε-fools FORMULA[s] ◦ G.

Proof. We first show the case where D fools the parity of a few functions from G. The proof
can be easily adapted to the case of conjunction.

Let C = F (g1, g2 . . . , gs) be a function in FORMULA[s] ◦ G, where F is a formula, and
g1, g2, . . . , gs are functions from the class G. Let U be the uniform distribution over {−1, 1}n.
We need to show

E[C(D)] ε
≈ E[C(U)]. (2)

Let p be a (ε/3)-approximating polynomial for F given by Theorem 10. Note that the degree
of p is

d = O(
√
s · log(1/ε)).

Let us replace F , the formula part of C, with p and let

C̃ := p(g1, g2 . . . , gs).

Since C̃ point-wisely approximates C, we have

E[C̃(U)]
ε/3
≈ E[C(U)],

and

E[C̃(D)]
ε/3
≈ E[C(D)].

Then to show Equation (2), it suffices to show

E[C̃(D)]
ε/3
≈ E[C̃(U)].

We have

E
x∼D

[C̃(x)] = E
x∼D

 ∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

gi(x)
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=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi(x)
]
. (3)

Now note that for each S ⊆ [s],
∏
i∈S gi(x) computes the XOR of at most d functions from G.

Using the fact the distribution D
(
δ = 1/2c·

√
s·log(s)·log(1/ε)

)
-fools the XOR of any d functions

from G, we get

E
x∼D

[C̃(x)] =
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi(x)
]

=
∑
S⊆[s]:
|S|≤d

p̂(S) ·
(

E
x∼U

[∏
i∈S

gi(x)
]

+ δS

)
(where |δS | ≤ δ)

=
∑
S⊆[s]:
|S|≤d

(
p̂(S) · E

x∼U

[∏
i∈S

gi(x)
]

+ p̂(S) · δS

)

=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼U

[∏
i∈S

gi(x)
]

+
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

= E
x∼U

[C̃(x)] +
∑
S⊆[s]:
|S|≤d

p̂(S) · δS .

It remains to show∣∣∣∣∣∣∣∣
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

∣∣∣∣∣∣∣∣ ≤ ε/3.
Note that because p(z) ∈ [1− ε/3, 1 + ε/3] for every z ∈ {−1, 1}s, we have

|p̂(S)| =

∣∣∣∣∣ E
z∼{−1,1}s

[
p(z) ·

∏
i∈S

zi

]∣∣∣∣∣ ≤ 1 + ε/3 < 2.

Then,∣∣∣∣∣∣∣∣
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

∣∣∣∣∣∣∣∣ ≤
∑
S⊆[s]:
|S|≤d

|p̂(S)| · |δS | ≤ δ ·
∑
S⊆[s]:
|S|≤d

|p̂(S)| ≤ δ · sO(
√
s·log(1/ε)) ≤ ε/3,

where the last inequality holds for some sufficiently large constant c.
To show the case of conjunction, we can write the approximating polynomial as the sum

of all degree-d monomials, each of which is the AND of at most d variables. One way to do
this is to use the domain {0, 1} instead of {−1, 1} in the above argument. We need to show
that the coefficients in this case still have small magnitude.

CCC 2020
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B Claim 26. Let p : {−1, 1}n → R be a degree-d polynomial of the form

p(x) =
∑
S⊆[n]:
|S|≤d

p̂(S) ·
∏
i∈S

xi,

and let q : {0, 1}n → R be the corresponding polynomial of p over the domain {0, 1}n, of the
form

q(y) =
∑
T⊆[n]:
|T |≤d

q̂(T ) ·
∏
i∈T

yi.

Then,

|q|1 =
∑
T⊆[n]:
|T |≤d

|q̂(T )| ≤ nO(d) · max
S⊆[n]:
|S|≤d

|p̂(S)|.

Proof. We have

q(y1, y2, . . . , yn) = p(1− 2y1, 1− 2y2, . . . , 1− 2yn)

=
∑
S⊆[n]:
|S|≤d

p̂(S) ·
∏
i∈S

(1− 2yi)

=
∑
S⊆[n]:
|S|≤d

p̂(S) ·

 ∑
`∈{0,1}|S|

∏
j∈S:
`j=1

−2yj


=
∑
S⊆[n]:
|S|≤d

∑
`∈{0,1}|S|

p̂(S) · (−2)|`| ·
∏
j∈S:
`j=1

yj . (where |`| =
∑|S|
i=1 `i)

For a pair (S, `) where S ⊆ [n], |S| ≤ d and ` ∈ {0, 1}|S|, let us define the polynomial q(S,`) as

q(S,`)(y) = p̂(S) · (−2)|`| ·
∏
j∈S:
`j=1

yj .

Note that there are at most nd · 2d many pairs of such (S, `)’s and for each (S, `), we have

|q(S,`)|1 =
∣∣∣p̂(S) · (−2)|`|

∣∣∣ ≤ 2d · |p̂(S)|.

Finally we have

|q|1 =

∣∣∣∣∣∣
∑
(S,`)

q(S,`)

∣∣∣∣∣∣
1

≤
∑
(S,`)

|q(S,`)|1 ≤ nd · 2d · 2d · max
S⊆[n]:
|S|≤d

|p̂(S)|,

as desired. C

This completes the proof of Theorem 25. J
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4.2 Formulas of low-communication functions in the number-in-hand
setting

In this subsection, we will use {0, 1} as the Boolean basis.

I Theorem 27. For any integers k ≥ 2, s > 0 and any 0 < ε < 1, let G be the class of
functions that have k-party number-in-hand (ε/6s)-error randomized communication protocols
of cost at most R. There exists a PRG that ε-fools FORMULA[s] ◦ G with seed length

n/k +O
(√
s · (R+ log(s)) · log(1/ε) + log(k)

)
· log(k).

We need the following PRG that fools single functions with low communication complexity
in the number-in-hand model. The proof is presented in Appendix A.2 (Theorem 52) for
completeness.

I Theorem 28 ([6, 31]). For any k ≥ 2, there exists a PRG that δ-fools any n-bits functions
with k-party number-in-hand deterministic communication complexity of at most D′, with
seed length

n/k +O (D′ + log(1/δ) + log(k)) · log(k).

Next, we show a PRG for FORMULA ◦ G, where G is the class of functions with low-cost
communication protocols in the number-in-hand setting. We first show for the case of
deterministic protocols.

I Theorem 29. For any integers k ≥ 2 and s > 0, let G be the class of functions whose
k-party number-in-hand deterministic communication complexity are at most D. There is a
PRG that ε-fools FORMULA[s] ◦ G of size s with seed length

n/k +O
(√
s · log(1/ε) · (D + log(s)) + log(k)

)
· log(k).

Proof. By Theorem 25, it suffices to show a PRG that
(
δ = 1/2c·

√
s·log(s)·log(1/ε)

)
-fools every

function that is the XOR of t = c ·
√
s · log(1/ε) arbitrary functions from G. Note that such a

function has deterministic communication complexity at most D′ = t ·D. Then Theorem 29
follows from Theorem 28. J

We now establish the randomized case.

Proof of Theorem 27. Let C be a function in FORMULA[s]◦G. For each of the leaf functions
in C, consider a k-party number-in-hand randomized protocol of cost at most R that has an
error at most ε/(6s). By taking a union bound over the s leaf functions and by viewing a
randomized protocol as a distribution of deterministic protocols (as shown in the proof of
Claim 24), we get the following which is a (point-wisely) (ε/3)-approximating function for C:

C̃(x) :=
∑
i

pi ·Di(x),

where each pi ∈ [0, 1] is some probability density value (so
∑
i pi = 1), and each Di is a

formula whose leaves are functions with deterministic communication complexity at most R.
Then to ε-fool C, it suffices to (ε/3)-fool its (ε/3)-approximating function C̃. Also, since C̃
is a convex combination of the Di’s, it suffices to (ε/3)-fools all the Di’s. We will do this
using the PRG form Theorem 29. We get that there exists a PRG that (ε/3)-fools each Di

with seed length

n/k +O
(√
s · (R+ log(s)) · log(1/ε) + log(k)

)
· log(k),

as desired. J

CCC 2020



15:22 Formulas of Low-Communication Leaf Gates

4.3 Applications: Fooling formulas of SYMs, LTFs, XORs, and AC0

circuits

4.3.1 FORMULA ◦ SYM and FORMULA ◦ LTF

Here, we show how the PRG in Theorem 27 implies PRGs for FORMULA◦LTF and FORMULA◦
SYM.

I Theorem 30. For any size s > 0 and 0 < ε < 1, there exists a PRG that ε-fools
FORMULA[s] ◦ LTF with seed length

O
(
n1/2 · s1/4 · log(n) · log(n/ε)

)
.

For FORMULA[s] ◦ SYM, the seed length is

O
(
n1/2 · s1/4 · log(n) · log(1/ε)

)
.

We need the fact that the class of LTF has low communication complexity in the number-
in-hand model. Consider the following k-party SUM-GREATERm problem where the i-th
party holds a m-bit number zi in hand and they want to determine whether

∑k
i=1 zi > θ,

where θ is a fixed number known to all the parties. Nisan [43] gave an efficient randomized
protocol (with public randomness) for this problem.7

I Theorem 31 ([43]). Let m > 0 be an integer. For any integer 2 ≤ k ≤ mO(1), and any
0 < δ < 1, there exists a δ-error randomized protocol of cost O(k · log(m) · log(m/δ)) for the
k-party SUM-GREATERm problem.

By Theorem 31 and the fact that every linear threshold function on n bits has a repres-
entation such that the weights are O(n log(n)) integers [41], we get the following.

I Corollary 32. For every k ≥ 2 and 0 < δ < 1, the k-party number-in-hand δ-error
randomized communication complexity of LTF is O(k · log(n) · log(n/δ)).

Proof of Theorem 30. By Corollary 32 and Theorem 27, for every k ≥ 2 we get a PRG for
FORMULA ◦ LTF of seed length

n/k +O
(√
s · k · log(n) · log(ns/ε) · log(1/ε) + log(k)

)
· log(k).

By choosing

k = n1/2

s1/4 · log(n) · log(n/ε)
,

the claimed seed length follows from a simple calculation.
For FORMULA ◦ SYM, note that every n-bit symmetric function has a deterministic

k-party number-in-hand communication protocol of cost at most k · log(n). Then the rest
can be shown using a similar argument as above (by choosing k = n1/2/

(
s1/4 · log(n)

)
). J

7 Viola [64] gave a δ-error randomized protocol for the k-party SUM-GREATERm problem of cost
O(k · log(k) · log(m/δ)), which is better than Nisan’s protocol when k = mo(1).
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4.3.2 FORMULA ◦ XOR

For the case of FORMULA ◦ XOR, we get a PRG with better seed length.

I Theorem 33. For any size s > 0 and 0 < ε < 1, there exists a PRG that ε-fools
FORMULA[s] ◦ XOR with seed length

O
(√
s · log(s) · log(1/ε) + log(n)

)
.

Proof. By Theorem 25, to fool FORMULA[s] ◦ G, it suffices to
(
δ = 1/2O(√s·log(s)·log(1/ε))

)
-

fool the XOR of a few functions from G, where G in this case is the set of all XOR functions.
Note that the XOR of any set of XOR functions simply computes some XOR function.
Therefore, we can use small-bias distribution, which fools every XOR function, to fool
FORMULA[s] ◦XOR. Finally, note that there are known constructions for δ-bias distributions
that use O(log(n/δ)) random bits (see e.g. [3]). J

Using the “locality” of this PRG for FORMULA ◦ XOR, we get a lower bound for MCSP
against subquadratic-size formulas of XORs.

I Theorem 34. For every integer s > 0, if MCSP on N-bit can be computed by some
function in FORMULA[s] ◦ XOR, then s = Ω̃(N2).

Proof sketch. There is a standard construction of δ-bias distributions that is local (see
e.g. [3, Construction 3] and [16, Fact 7]) in the following sense: There exists a circuit of size
at most Õ(log(n/δ) · log(n)) such that given a seed of length O(log(n/δ)) and a index j ∈ [n],
outputs the j-th bit of the distribution. Local PRGs imply MCSP lower bounds (see [16,
Section 3]). J

4.3.3 FORMULA ◦ AC0

Another application of Theorem 25 is to take G to be the set all functions that can be
computed by small constant-depth circuits (AC0). Note the state-of-the-art PRG against
size-M depth-d AC0 has a seed length of logd+O(1)(Mn) · log(1/ε) [56]. Below, let AC0

d,M

denote the class of depth-d circuits of size at most M .

I Theorem 35. For any size s,m > 0 and 0 < ε < 1, there exists a PRG that ε-fools
FORMULA ◦ AC0

d,M of size s with seed length

logd+O(1)(Mn) ·
√
s · log(s) · log(1/ε).

Moreover, by inspecting the construction of PRG in [56], it is not difficult to see that the
PRG is also local; there exists a circuit of size at most λ = logd+O(1)(Mn) · log(1/ε) such
that given a seed of length O

(
logd+O(1)(Mn) · log(1/ε)

)
and a index j ∈ [n], outputs the

j-th bit of the PRG. As a result, we get MCSP lower bounds from the this PRG.

I Theorem 36. For every s, d,M ∈ N, if MCSP on N -bit can be computed by some function
in FORMULA[s] ◦ AC0

d,M , then

s ≥ N2/ log2d+O(1)(Mn).
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4.4 Formulas of low number-on-forehead communication leaf gates
In this section, we show a PRG with mild seed length for formulas of functions with low
multi-party number-on-forehead communication complexity.

I Theorem 37. Let G be a class of n-bits functions. For any size s > 0, there exists a PRG
that ε-fools FORMULA[s] ◦ G, with seed length

n− n

O
(√

s · k · 4k ·
(
R

(k)
ε/(2s)(G) + log(n)

)
· log(n/ε)

) .
The PRG is constructed using the hardness vs. randomness paradigm.

4.4.1 Hardness based PRGs
We show how to construct the PRG using the average-case hardness result for formulas of
functions with low multi-party communication complexity (Theorem 19). We start with
some notations. For x ∈ {−1, 1}m and an integer k such that k divides m, we consider a
partition of x into k equal-sized consecutive blocks and write x = x(1), x(2), . . . , x(k), where
x(i) ∈ {−1, 1}m/k for each i ∈ [k].

I Lemma 38. For any integers m, t, k > 0 such that k divides m, t, let G be a class of
functions on mt+ t bits, and let G : {−1, 1}m×t → {−1, 1}mt+t be

G(x1, x2, . . . , xt) =
(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
t ,GIPkm

(
x(i−1)·(t/k)+1

)
,

GIPkm
(
x(i−1)·(t/k)+2

)
, . . . ,GIPkm

(
xi·(t/k)+1

))
i∈[k]

,

where x1, x2, . . . , xt ∈ {−1, 1}m. Then G is a PRG that (t · ε)-fools FORMULA ◦ G of size

s = Ω

 m2

k2 · 16k ·
(
R

(k)
ε/(2m2)(G) + logm

)2
· log2(1/ε)

 .

Proof. The high level idea is as follows. We argue that if there is a FORMULA ◦ G of the
claimed size that breaks the PRG, then there is a FORMULA ◦ G′ of the same size that
computes GIP on m bits, where G′ has a k-party communication complexity that is at most
that of G with respect to the m-bit input, and hence contradicts the FORMULA◦G′ complexity
of the generalized inner product function. The resulting formula is obtained by fixing some
input bits of the original FORMULA ◦ G which breaks the PRG.

We use a hybrid argument. First consider the distribution given by G, where we replace
each GIP(xj) (j ∈ [t]) with a uniformly random bit; let us denote those random bits as Uj for
j ∈ [t] (note that this is just the uniform distribution). Then for each j ∈ [t], define Hj to be
the distribution that we substitute back GIP(x1),GIP(x2), . . . ,GIP(xj) for the corresponding
uniform bits in the previous distribution.

For the sake of contradiction, suppose there exists a FORMULA ◦ G C of size s such that

|Pr[C(Ht) = 1]−Pr[F (H0) = 1]| > t · ε.

By the triangle inequality, there exists a 1 ≤ j ≤ k such that

|Pr[C(Hj) = 1]−Pr[C(Hj−1) = 1]| > ε.
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Then by averaging, there exist some fixings of x1, . . . , xj−1, xj+1, . . . , xt and Uj+1, . . . , Ut to
C such that the above inequality still holds. Let us denote by C ′ the circuit obtained by C
after such fixings and assume without loss of generality (k − 1)t/k ≤ j ≤ t. Then we have∣∣∣Pr

[
C ′
(
x

(1)
j , x

(2)
j , . . . , x

(k)
j ,GIP(xj)

)
= 1
]
−Pr

[
C ′
(
x

(1)
j , x

(2)
j , . . . , x

(k)
j , Uj

)
= 1
]∣∣∣ > ε. (4)

By a standard “unpredictability implies pseudorandomness” argument [66], we can show
that there is some circuit C ′′, obtained from C ′ by fixing some value for the last bit, that
computes the generalized inner product function on m bits with probability greater than
1/2 + ε over uniformly random inputs. Note that the size of C ′′ is the same as C ′ (hence
also C) , and also C ′′ can be computed by some FORMULA ◦ G′, where R(k)

δ (G′) ≤ R(k)
δ (G)

for every δ. This contradicts the hardness of GIP for such circuits (Theorem 19). J

We are now ready to prove Theorem 37.

Proof of Theorem 37. Consider Lemma 38. Let n = mt + t, and we have m =
(
n
t − 1

)
.

Then Lemma 38 gives a PRG that ε-fools FORMULA ◦ G of size

s = Ω

 m2

k2 · 16k ·
(
R

(k)
ε/(2m2)(G) + logm

)2
· log2(t/ε)


≥ Ω

((n
t

)2
/

(
k2 · 16k ·

(
R

(k)
ε/(2n2)(G) + logn

)2
· log2(n/ε)

))
,

which yields

t ≥ Ω

 n
√
s · k · 4k ·

(
R

(k)
ε/(2n2)(G) + logn

)
· log(n/ε)

 .

Note that the seed length in this case is n− t. J

4.4.2 MKtP lower bounds
The PRG in Theorem 37 is sufficient to give an MKtP lower bound for formulas of functions
with low multi-party communication complexity.

I Theorem 39. For any integer s > 0 and any class of N -bit function G, if MKtP on N -bit
can be computed by some function FORMULA[s] ◦ G, then

s = N2

k2 · 16k ·R(k)
1/3(G) · polylog(N)

.

Proof. Let C be a function in FORMULA ◦ G of size less than

N2

k2 · 16k ·R(k)
1/3(G) · logc(N)

where c > 0 is some sufficiently large constant. By Theorem 37, we have that there is a PRG
that (1/3)-fools C and its seed length is

N − polylog(N).
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Also, since the PRG is polynomial-time computable, we get that for every seed, the output
of the PRG has Kt complexity at most θ = N − polylog(N). However, consider the MKtP
function with a threshold parameter θ; this function is not fooled by such a PRG, since
it accepts every output of the PRG and rejects a uniformly random string with high
probability. J

5 Satisfiability algorithms

In this section, we will use {0, 1} as the Boolean basis.

5.1 Computational efficient communication protocols
I Definition 40 (Computational efficient communication protocols). Let t : N× N→ N. We
say that a two-party communication protocol is t-efficient if for each of the parties, given
an input x and some previously sent messages π ∈ {0, 1}∗, the next message to send can be
computed in time t(|x|, |π|) (⊥ is being output if there is no next message). We say that such
a protocol is explicit if t(|x|, |π|) = 2o(|x|+|π|).

I Lemma 41. Let f : {0, 1}n → 1 and let Π be a t-efficient communication protocol for
f with communication cost at most D. Then the protocol tree of Π can be output in time
O
(
D · t(n/2, D) · 2n/2 · 2D

)
. That is, there exists an algorithm that outputs a list of all

(partial and full) transcripts of length at most D and the rectangles associated with each of
the transcripts.

Proof. It suffices to show that, given an input x ∈ {0, 1}n/2 and a transcript ` ∈ {0, 1}≤D,
we can decide whether x belongs to the rectangle indexed by ` in time D · t(n/2, D). Suppose
x is the input for Alice (resp. Bob), and we want to decide whether x belongs to the rectangle
indexed by π. We can carry out the communication task by simulating the behavior of Alice
(resp. Bob) using the protocol Π and simulating Bob’s (resp. Alice’s) behavior using the
transcript π, and check whether the messages sent by Alice (resp. Bob) is consistent with
the transcript π. This takes time at most D · t(n/2, D). To construct the tree, we do the
above for every (partial and full) transcript π ∈ {0, 1}≤D and every input x ∈ {0, 1}n/2 for
Alice (resp. Bob). The total running time is O

(
D · t(n/2, D) · 2n/2 · 2D

)
. J

For a protocol Π, we denote by Leaves(Π) the set of full transcripts of Π.

I Remark. We note that, in the white-box context of the satisfiability problem, there is no
need to assume a canonical partition of the input variables among the players. For instance,
a helpful partition can either be given as part of the input, or computed by the algorithm. As
a consequence, in instantiations of Theorem 5 for a particular circuit class C, it is sufficient
to be able to convert the input circuit from C into some device from FORMULA ◦ G for which
protocols of bounded communication cost can be described.

5.2 Explicit approximating polynomials for formulas
From Theorem 10, we know that every size-s formula has a degree-O(

√
s) polynomial that

point-wisely approximates it. In our SAT algorithms, we will need to explicitly construct
such an approximating polynomial given a formula. One way to do this is to use an efficient
quantum query algorithm for formulas. It is known that a quantum query algorithm for a
function f using at most T queries implies an approximating polynomial for f of degree at
most 2T [9], and by classically simulating such an quantum algorithm, one can show that
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the approximating polynomial can be obtained in time that is polynomial in the number
of its monomials, in addition to the time for the classical simulation. For our task, we can
use the result of Reichardt [51] which showed an efficient quantum algorithm for evaluating
size-s formulas with O (

√
s · log s) queries.8 Here, we present an alternate way to construct

approximating polynomials for de Morgan formulas which rely only on the existence of
such polynomials, without requiring an efficient quantum query algorithm. This “black-box”
approach was suggested to us by an anonymous reviewer.

We first need the following structural lemma for formulas.

I Lemma 42 ([29, 58]). For every integer s > 0, there exists an algorithm such that given a
size-s de Morgan formula F , runs in poly(s) time and outputs a top formula F ′ with O(

√
s)

leaves and each leaf of F ′ is a sub-formula with O(
√
s) input leaves.

I Lemma 43. For any integer s > 0 and any 0 < ε < 1, there exists an algorithm of
running time sO(√s·log(s)·log(1/ε)) such that given a de Morgan formula F of size s, outputs
an ε-approximating polynomial of degree O(

√
s · log(s) · log(1/ε)) for F . That is, the algorithm

outputs a multi-linear polynomial (as sum of monomials) over the reals such that for every
x ∈ {0, 1}n,

|p(x)− F (x)| ≤ ε.

Proof. We first note that it suffices to construct a (1/3)-approximating polynomial for F with
degree D = O(

√
s · log(s)). This is because given a (1/3)-approximating polynomial one can

obtain explicitly an ε-approximating polynomial of degree D ·O(log(1/ε)), by feeding O(1/ε)
copies of the (1/3)-approximating polynomial to the polynomial computing MAJORITY on
O(1/ε) bits [11] (see also [58, Appendix B]).

We first invoke Lemma 42 on F to obtain a top formula F ′ with t = O(
√
s) leaves, each

of which is a sub-formula of size O(
√
s). We construct a (1/20)-approximating (multi-linear)

polynomial P for the top formula F ′, which has degree d1 = O(s1/4) by Theorem 10. Note
that P can be constructed in time 2O(

√
s) because F ′ has at most O(

√
s) leaves. Next, for

each of the t sub-formulas, denoted as F1, F2, . . . , Ft, we construct a (1/(20t))-approximating
polynomial. Note that these polynomials have degree d1 = O(s1/4 · log(s)) and can be
constructed in time 2O(

√
s). Let’s denote these t polynomials as Q1, Q2, . . . , Qt. Now for

each Qi (i ∈ [t]), we define

qi(x) = Qi(x) + 1/(20t)
1 + 1/(10t) .

The final approximating polynomial for F is given as

p(x) = P (q1(x), q2(x), . . . , qt(x)) .

Note that p has degree d1 ·d2 = O(
√
s · log(s)) and can be constructed (as sum of monomials)

in time sO(
√
s·log(s)). It remains to show that p (1/3)-approximates F .

8 It is also known that there exists a quantum query algorithm for evaluating size-s formulas with O
(√

s
)

queries [52], which implies the existence of an approximating polynomial for size-s formulas of degree
O
(√

s
)
(see Theorem 10). However, because this algorithm is not known to be efficient, it is unclear

whether such an approximating polynomial can be constructed efficiently with respect to the number of
monomials.
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For 0 ≤ q ≤ 1, let Nq be the distribution over {0, 1} such that Pry∼Nq [y = 1] = q. Then
for an fixed input x ∈ {0, 1}s, we have

p(x) = E
yi∼Nqi(x)

[P (y1, y2, . . . , yt)]. (5)

Let E be the event that yi = Fi(x) for all i ∈ [t]. Note that

δ := Pr
yi∼Nqi(x)

[¬E ] ≤ 1/10. (6)

To see Equation (6), note that for every i ∈ [t], if Fi(x) = 0, then 0 ≤ qi(x) ≤ 1/(10t), which
implies

Pr
yi∼Nqi(x)

[yi 6= Fi(x)] ≤ 1/(10t).

Similar for the case when Fi(x) = 1 (which implies 1 − 1/(10t) < qi(x) ≤ 1). Then
Equation (6) follows from a union bound. Now we can re-write Equation (5) as

p(x) = E[P (y1, y2, . . . , yt) | E ] ·Pr[E ] + E[P (y1, y2, . . . , yt) | ¬E ] ·Pr[¬E ]
= (F ′(F1(x), F2(x), . . . , Ft(x))± 1/20) · (1− δ) + E[P (y1, y2, . . . , yt) | ¬E ] · δ.

Note that P (y) ∈ [−1/(20t), 1 + 1/(20t)] for every y ∈ {0, 1}t, and that δ ≤ 1/10. A simple
calculation shows that

p(x) = F ′(F1(x), F2(x), . . . , Ft(x))± 1
3 ,

as desired. J

5.3 The #SAT algorithm
In this subsection, we present our #SAT algorithm.

I Theorem 44. For any integer s > 0, there exists a deterministic #SAT algorithm for
FORMULA[s] ◦ G, where G is the class of functions with explicit two-party deterministic
protocols of communication cost at most D, that runs in time

2n−
n√

s·log(s)·(log(s)+D) .

In the case G is the class of functions with explicit randomized protocols of communication
cost at most R, there exists an analogous randomized algorithm with a running time

2n−
(

n√
s·log2(s)·R

)1/2

.

The algorithm is based on the framework for designing satisfiability algorithms developed
by Williams [65]. The idea is to transform a given circuit into a “sparse polynomial” and
solve satisfiability by evaluating the polynomial on all points in a faster-than-brute-force
manner.

We first need the following fast matrix multiplication algorithm for “narrow” matrices.

I Theorem 45 ([17]). Multiplication of an N ×N .172 matrix with an N .172 ×N matrix can
be done in O(N2 log2N) arithmetic operations over any field.

For an even number n > 0, and x ∈ {0, 1}n, we denote by xL (resp. xR) the first half of
x and xR ∈ {0, 1}n/2 the second half. We now prove Theorem 44.
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Proof of Theorem 44. We first prove the deterministic case.
Let C = F (g1, g2 . . . , gs) be a device in FORMULA ◦ G where F is a formula and

g1, g2, . . . , gs are functions that have a explicit communication protocol of cost at most
D. The first step is to output the protocol tree for each gi (i ∈ [s]). Since each gi has
explicit protocol of cost at most D, by Lemma 41, these protocol trees can be output in time
s · 2n/2+D+o(n) ≤ 2n/1.9 (here we assume D = o(n) otherwise the theorem holds trivially).

Let n′ be an integer whose value is determined later. Let T be a set of n′ variables such
that T contains n′/2 variables from the first half of the n variables and the rest are from the
second half. For a partial assignment z ∈ {0, 1}n

′
to T , denote by Cz the restricted function

of C where the variables in T are fixed according to z. To count the number of satisfying
assignments of C, we need to compute the following quantity:∑

x∈{0,1}n−n′

∑
z∈{0,1}n′

Cz(x). (7)

Now consider

Q(x) =
∑

z∈{0,1}n′
Cz(x).

We will try to obtain the value of Q(x) for every x ∈ {0, 1}n−n
′
, in time about 2n−n′ , which

will allow us to compute the quantity in Equation (7) in time O(2n−n′) by summing Q(x)
over all the x’s. We do this by first transforming Q into an approximating polynomial
with not-too-many monomials, and each monomial is a product of functions that only rely
on either the first or the second half of x. With such a polynomial, we can perform fast
multipoint evaluation using the fast matrix multiplication algorithm in Theorem 45.

For each z ∈ {0, 1}n
′
, we view the formula Cz as F (g1

z , g
2
z , . . . , g

s
z), where F is the de

Morgan formula part of Cz and g1
z , g

2
z , . . . , g

s
z are the leaf gates. Let us now replace F by

a ε-approximating polynomial p, where ε = 1/
(

3 · 2n′
)
, using Lemma 43. Note that the

degree of p is at most

d ≤ O(
√
s · log(s) · log(1/ε)) ≤ O(

√
s · log(s) · n′).

Now consider the following

Q′(x) =
∑

z∈{0,1}n′
p(g1

z(x), g2
z(x), . . . , gsz(x)).

First, note that by the value that we’ve chosen for the approximating error ε, we have that,
for every x,

|Q′(x)−Q(x)| ≤ 2n
′
· ε = 1/3.

In other words, given Q′(x), we can recover the value of Q(x), which is supposed to be an
integer.

Next, we perform fast multipoint evaluation on Q′. First of all, we re-write Q′ as follows:

Q′(x) =
∑

z∈{0,1}n′

∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

giz(x). (8)
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Now let Πi be the protocol of gi, we can re-write giz as follows:

giz(x) =
∑

πi∈Leaves(Πi)

αi
(
zLxL, πi

)
· βi

(
zRxR, πi

)
, (9)

where αi
(
zLxL, πi

)
(resp. βi

(
zRxR, πi

)
) is 1 if and only if

(
zLxL) (resp. (zRxR)) belongs

to the rectangle indexed by πi and the function value of that rectangle is 1. Note that for
each i ∈ [s], given the pre-computed protocol tree of the Πi, αi and βi can be computed
in polynomial time (for example, using binary search). After plugging Equation (9) into
Equation (8) for every i ∈ [s] and rearranging, we get

Q′(x) =
∑

z∈{0,1}n′

∑
S⊆[s]:
|S|≤d

∑
~π=(πi)i∈S :

πi∈Leaves(Πi)

p̂(S) ·
∏
i∈S

αi
(
zLxL, πi

)
·
∏
i∈S

βi
(
zRxR, πi

)
. (10)

Note that Q′ can be expressed as the sum of at most m terms, where

m ≤ 2n
′
· sO(

√
s·log(s)·n′) · 2O(

√
s·log(s)·n′·D) ≤ 2O(

√
s·log(s)·(log(s)+D)·n′).

Note that given Lemma 43, we can obtain Q′ in time

2O(
√
s·log2(s)·D·n′). (11)

Next, we construct a 2(n−n′)/2 ×m matrix A and a m× 2(n−n′)/2 matrix B as follows:

AxL,(z,S,~π) = p̂(S) ·
∏
i∈S

αi
(
zLxL, πi

)
,

and

B(z,S,~π),xR =
∏
i∈S

βi
(
zRxR, πi

)
.

It is easy to see that for each x ∈ {0, 1}n−n
′
,

Q′(x) = (A ·B)xL,xR .

We now want to compute A · B. Therefore, we want m ≤ 2.172(n−n′)/2 so that computing
A ·B can be done in time Õ(2n−n′) using Theorem 45. For this we can set n′ to be

n′ = n

c ·
√
s · log(s) · (log(s) +D)

,

where c > 0 is some sufficiently large constant. Together with the running time in Equa-
tion (11), The total running time of the algorithm is therefore

2n−
n√

s·log(s)·(log(s)+D) .

For the randomized case, for each gi (i ∈ [s]), we consider a randomized protocol Πi

that has error ε′ ≤ 1/(3 · s · 2n′), and replace gi with a randomly picked protocol from
Πi, so we can say that for every x ∈ n− n′, the algorithm computes Q(x) (or Q′(x)) with
probability at least 2/3 (via a union bound over all the gi’s and a union bound over all
the z’s in {0, 1}n

′
). Then we can repeat the above algorithm poly(n) times and obtain

Q(x) for all x ∈ {0, 1}n−n
′
correctly with high probability. Note that the error of any
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randomized protocol with communication complexity R can be reduced to ε′ by blowing
up the communication complexity by a factor of O(log(1/ε′)). In this case the, (as we are
considering longer transcripts) the number of terms in Q′ (as in Equation (10)) will be

2O(
√
s·log2(s)·R·(n′)2),

and we need to set accordingly

n′ = Ω
(

n
√
s · log2(s) ·R

)1/2
,

which gives the claimed running time for the randomized case. J

In fact, using the ideas above we can also get a randomized #SAT algorithm for the more
expressive class FORMULA ◦ AC0

d,M ◦ G, where AC0
d,M is the class of depth-d size-M circuits

and G is the class of functions that have low-communication complexity9, by combining
with the fact that AC0 circuits have low-degree probabilistic polynomials over the reals (a
probabilistic polynomial of a function f is a distribution on polynomials such that for every
input x, a randomly picked polynomial from the distribution agrees with f on the input x).
More specifically, we have the following.

I Theorem 46. For any integers s, d,M > 0, there exists a randomized #SAT algorithm for
FORMULA[s]◦AC0

d,M ◦G, where G is the class of functions with explicit two-party deterministic
protocols of communication cost at most D, the algorithm outputs the number of satisfying
assignments in time

2
n−
(

n√
s·log2(s)·(logM)O(d)·D

)1/2

.

In the case G is the class of functions with explicit randomized protocols of communication
cost at most R, there exists an analogous randomized algorithm with a running time

2
n−
(

n√
s·log2(s)·(logM)O(d)·R

)1/3

.

Proof sketch. We show the case where G has low randomized communication complexity.
Let

ε1 = 1/
(

3 · 2n′
)
,

ε2 = 1/
(

6 · s · 2n′
)
and

ε3 = 1/
(

6 ·M · 2n′
)
.

As in the proof of Theorem 44, we can replace the formula part of FORMULA[s] ◦ AC0
d,M ◦ G

with a ε1-approximating polynomial of degree

O(
√
s · log(s) · log(1/ε1)) = O(

√
s · log(s) · n′).

Then we replace the AC0
d,M circuit with a randomly picked polynomial from a ε2-error

probabilistic polynomial. By [26], such a probabilistic polynomial is constructive and has
degree at most

(logM)O(d) · log(1/ε2) = (logM)O(d) · (n′ + log(s)).

9 Here we define the size of a AC0
d,M circuit to be the number of wires. Note that a circuit in FORMULA ◦

AC0
d,M ◦ G can have M functions from G at the bottom.
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Finally, we replace each of the bottom functions, which is from G, with a randomly picked
protocol from a randomized protocol with error ε3, and hence has cost at most

R ·O(log(1/ε3)) = O(R · (n′ + log(M))).

As a result, we can express Q′ as a polynomial with at most

2O(√s·log2(s)·(logM)O(d)·R·(n′)3)

monomials, whose variables are functions that depend on either the first half or the second
half of x. Note that with our choices of ε2 and ε3, for every x ∈ {0, 1}n−n

′
, the algorithm

computes Q(x) correctly that with probability at least 2/3 (by union bounds). By the same
reasoning as in the proof of Theorem 44, we get a randomized #SAT algorithm with running
time

2
n−
(

n√
s·log2(s)·(logM)O(d)·R

)1/3

,

as desired. J

It is worth noting that unlike Theorem 44, the algorithm in Theorem 46 is randomized
even if G is the class of functions with low deterministic communication complexity, because
of the use of probabilistic polynomials for the AC0 circuits.

6 Learning algorithms

In this section, we prove the following learning result for the FORMULA ◦ XOR model.

I Theorem 47. For every constant γ > 0, there is an algorithm that PAC learns the class
of n-variate Boolean functions FORMULA[n2−γ ] ◦ XOR to accuracy ε and with confidence δ
in time poly

(
2n/ logn, 1/ε, log(1/δ)

)
.

We first review some useful results that pertain to agnostically learning parities as well
as boosting of learning algorithms.

6.1 Agnostically learning parities and boosting
For a parameter n ≥ 1, let ∆ be a distribution on labelled examples (x, y) supported over
{0, 1}n × {0, 1}, and assume that for each x there is at most one y such that (x, y) ∈
Support(∆). For a function h : {0, 1}n → {0, 1}, we denote by err∆(h) the error of h under
this distribution:

err
∆

(h) = Pr
(x,y)∼∆

[h(x) 6= y] .

Similarly, for a class of functions C, we let opt∆(C) be the error of the best function in the
class:

opt
∆

(C) = min
h∈C

err
∆

(h) .

We will need a result established by Kalai, Mansour, and Verbin [36], which gives a non-trivial
time agnostic learning algorithm for the class of parities.
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I Lemma 48 ([36]). Let XOR be the class of parity functions on n variables. Then, for
any constant ζ > 0, there is a randomized learning algorithm W such that, for every
parameter n ≥ 1 and distribution ∆ over labelled examples, when W is given access to
independent samples from ∆ it outputs with high probability a circuit computing a hypothesis
h : {0, 1}n → {0, 1} such that

err
∆

(h) ≤ opt
∆

(XOR) + 2−n
1−ζ

.

The sample complexity and running time of W is 2O(n/ logn).

Recall that a boosting procedure for learning algorithms transforms a weak learner that
outputs a hypothesis that is just weakly correlated with the unknown function into a (strong)
PAC learning algorithm for the same class (i.e., a learner in the sense of Definition 18). We
refer for instance to [37] for more information about boosting in learning theory. We shall
make use of the following boosting result by Freund [22].

I Lemma 49 ([22]). Let W be a (weak) learner for a class C that runs in time t(n) and
outputs (under any distribution) a hypothesis of error up to 1/2− β, for some constructive
function β(n) > 0. Then, there exists a PAC learning algorithm for C that runs in time
poly(n, t, 1/ε, 1/β, log(1/δ)).

6.2 PAC-learning small formulas of parities
We are ready to show that sub-quadratic size formulas over parity functions can be learned
in time 2O(n/ logn). First, we argue that Lemma 48 provides a weak learner that works under
any distribution D supported over {0, 1}n. This will follow from Lemma 21, which shows
that any function in FORMULA[s] ◦XOR is correlated with some parity function with respect
to D. We then obtain a standard PAC learner via the boosting procedure from Lemma 49.

Proof of Theorem 47. Let C = FORMULA ◦ XOR, where s = n2−γ for some constant γ > 0.
For any function f ∈ FORMULA[s] ◦XOR and distribution D supported over {0, 1}n, Lemma
21 shows that there exists a parity function χ = χ(f,D) such that

Pr
x∼D

[f(x) = χ(x)] ≥ 1
2 + 1

2n1−λ ,

for some λ = λ(γ) > 0 independent of n, under the assumption that n is sufficiently large.
Let ∆ = ∆(D, f) be the distribution over labelled examples induced by D and f . Note
that opt∆(XOR) ≤ 1/2− exp(n1−λ). Consequently, by invoking Lemma 48 with parameter
ζ = λ, it follows that FORMULA[n2−γ ] ◦ XOR can be learned under an arbitrary distribution
to error β(n) ≤ 1/2 − exp(n1−Ω(1)) in time t(n) = 2O(n/ logn). Consequently, we can
obtain a PAC learner algorithm for FORMULA[n2−γ ] ◦ XOR via Lemma 49 that runs in time
poly(n, t(n), 1/ε, 1/β, log(1/δ)) = poly(2n/ logn, 1/ε, log(1/δ)). J
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Let C̃ : {−1, 1}n → R be a ε-approximating function of C, i.e., for every x ∈ {−1, 1}n,
|C(x)− C̃(x)| ≤ ε. Then,

E
x∼D

[C̃(x) · f(x)] ≥ ε.

Proof. Note that since C̃ ε-approximate C, we have for every x ∈ {−1, 1}n

C̃ · C(x) ≥ 1− ε,

and

C̃ · (1− C(x)) ≥ −1− ε.

Then,

E
x∼D

[C̃(x) · f(x)] = E
x∼D

[C̃(x) · f(x) | C(x) = f(x)] · Pr
x∼D

[C(x) = f(x)]

+ E
x∼D

[C̃(x) · f(x) | C(x) 6= f(x)] · Pr
x∼D

[C(x) 6= f(x)]

≥ (1− ε) · Pr
x∼D

[C(x) = f(x)] + (−1− ε) ·
(

1− Pr
x∼D

[C(x) = f(x)]
)

= 2 · Pr
x∼D

[C(x) = f(x)]− 1− ε

≥ 2 · (1/2 + ε)− 1− ε
≥ ε,

as desired. J

I Lemma 51 ([60], Lemma 21 restated). Let D be a distribution over {−1, 1}n and let G
be a class of functions. For f : {−1, 1}n → {−1, 1}, suppose that D : {−1, 1}n → {−1, 1} ∈
FORMULA[s] ◦ G is such that

Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε0.

Then there exists some h : {−1, 1}n → {−1, 1} ∈ XORO(√s·log(1/ε0)) ◦ G such that

E
x∼D

[h(x) · f(x)] ≥ 1
sO(√s·log(1/ε0)) .

Proof. Let

D = F (g1, g2 . . . , gs)

be a device in FORMULA ◦ G where F is a formula and g1, g2, . . . , gs are function from G.
Let p : {−1, 1}s → R be a ε0-approximating polynomial for F of degree d = O(

√
s ·

log(1/ε0)). Note that we can write

p(z) =
∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

zi.

Also, for each S ⊆ [s], we have

|p̂(S)| =

∣∣∣∣∣ E
z∈{−1,1}s

[p(z) ·
∏
i∈S

zi]

∣∣∣∣∣ ≤ 1 + ε0.
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Now let

D̃ := p(g1, g2 . . . , gs).

Note that D̃ is a ε0-approximating function for D. Therefore, by Lemma 50, we have

ε0 ≤ E
x∼D

[D(x) · f(x)]

= E
x∼D


 ∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

gi

 · f(x)


=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi · f(x)
]

≤
∑
S⊆[s]:
|S|≤d

(1 + ε0) ·

∣∣∣∣∣ E
x∼D

[∏
i∈S

gi · f(x)
]∣∣∣∣∣ .

The above equation is the sum of at most sO(d) summands. Therefore, there exists some
S ⊆ [s] such that∣∣∣∣∣ E

x∼D

[∏
i∈S

gi · f(x)
]∣∣∣∣∣ ≥ ε0

(1 + ε0) · sO(d) ≥
1

sO(√s·log(1/ε0)) ,

which implies that there exists some h, such that either h =
∏
i∈S gi or h = −

∏
i∈S gi, and

E
x∼D

[h(x) · f(x)] ≥ 1
sO(√s·log(1/ε0)) .

Finally, note that such h can be expressed as the XOR of at most d functions from G. J

A.2 PRG for low-communication functions in the number-in-hand
setting

In this subsection, we show how to fool functions with low communication complexity in the
number-in-hand model.

I Theorem 52 ([6, 31], Theorem 28 restated). For any k ≥ 2, there exists a PRG that δ-fools
any n-bits functions with k-party number-in-hand deterministic communication complexity at
most D′, with seed length

n/k +O (D′ + log(1/δ) + log(k)) · log(k).

The PRG in Theorem 28 is based on the PRG by Impagliazzo, Nisan and Wigderson [31]
that is used to derandomize “network algorithms” and space-bounded computation. We will
need to use randomness extractors, which we review below.

I Definition 53 (Min-entropy). Let X be a random variable. The min-entropy of X, denoted
by H∞(X), is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range
of X. If X is a distribution over {−1, 1}ℵ with H∞(X) ≥ k, then X is called a (ℵ, k)-source.
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I Definition 54 (Extractors). A function Ext: {−1, 1}ℵ ×{−1, 1}d → {−1, 1}m is an (k, ε)-
extractor if, for any (ℵ, k)-source X, and any test T : {−1, 1}m → {−1, 1}, it is the case
that

|Pr[T (Ext(X,Ud)X) = 1]−Pr[T (Um) = 1]| ≤ ε.

I Theorem 55 ([62, Theorem 6.22]). For any integer m,κ > 0 and 0 < δ′ < 0, there exists
an explicit (κ, δ′) extractor Ext: {0, 1}m × {0, 1}d → {0, 1}m with d = O(m− k + log(1/δ′)).

We are now ready to show Theorem 52.

Proof of Theorem 52. We first describe the construction of the PRG. In fact, we will
construct a sequence of PRGs G0, G1, . . . , Glog(k). We begin by specifying the parameters of
these PRGs. Let t = log(k), and let

d = O (D′ + log(1/δ) + t) .

For i = 0, 1, . . . , t, let
r0 = n/k,
ri = ri−1 + d.

Note that we have ri = n/k + i · d. Also, let

Exti : {0, 1}ri × {0, 1}d → {0, 1}ri

be a (κi, δ′)-extractor from Theorem 55, where

κi = ri −D′ − 2t− log(1/δ)

and

δ′ = δ/
(

3t · 2D
′
)
.

Note that the seed length of the extractors is d = O (D′ + log(1/δ) + t). Finally, define
Gi : {0, 1}ri → {0, 1}n/2

t−i
recursively as follows

G0(a) = a, where a ∈ {0, 1}n/k.
Gi(a, z) = Gi−1(a) ◦Gi−1(Exti−1(a, z)), where a ∈ {0, 1}ri−1 and z ∈ {0, 1}d.

We will show that Gt : {0, 1}rt=n/k+t·d → {0, 1}n fools any functions f with k-party number-
in-hand deterministic communication complexity at most D′. First, note that such f can be
written as

f(x1, x2, . . . , xk) =
2D
′∑

i=1
h

(i)
1 (x1) · h(i)

2 (x2) · . . . · h(i)
k (xk),

for some h(i)
j : {0, 1}n/k → {0, 1} (i ∈

[
2D′
]
, j ∈ [k]). Therefore, to show that the PRG Gt

δ-fool f , it suffices to show that Gt
(
δ/2D′

)
-fools every function g of the form

g(x1, x2, . . . , xk) = h1(x1) · h2(x2) · . . . · hk(xk).

More specifically we show the following.
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B Claim 56. For every k ≥ 2 and 0 ≤ i ≤ t, the generator Gi defined above
(
3i · δ′

)
-fools

every function gi : {0, 1}n/2
t−i
→ {0, 1} of the form

gi(x1, x2, . . . , xk/2t−i) = h1(x1) · h2(x2) · . . . · hk/2t−i(xk/2t−i),

where x1, x2, . . . , xk/2t−i ∈ {0, 1}
n/k.

Proof. The proof is by induction on i. The base case is i = 0, which is trivial given the
definition of G0. Now suppose the claim holds for i− 1, we show the case for i. This is done
using a hybrid argument. Consider the following four distributions
D1 = Un/2t−i ,
D2 = Un/2t−i+1 ◦Gi−1(Uri−1),
D3 = Gi−1(Uri−1) ◦Gi−1(U ′ri−1

) (U and U ′ are two independent uniform distributions),
D4 = Gi(Uri).

We want show show that

|E[gi(D1)]−E[gi(D4)]| ≤ 3i · δ′.

By the triangle inequality, it suffices to show that

|E[gi(D1)]−E[gi(D2)]|+ |E[gi(D2)]−E[gi(D3)]|+ |E[gi(D3)]−E[gi(D4)]| ≤ 3i · δ′. (12)

We show Equation (12) by upper bounding each of the three summands.

First summand. We show that

|E[gi(D1)]−E[gi(D2)]| ≤ 3i−1 · δ′. (13)

Let us re-write gi as

gi(x1, x2, . . . , xk/2t−i) = hL(x1, x2, . . . , xk/2t−i+1) ·hR(xk/2t−i+1+1, xk/2t−i+1+2, . . . , xk/2t−i),

where

hL(y) :=
k/2t−i+1∏
j=1

hi(y) and hR(y) :=
k/2t−1∏

j=k/2t−i+1

hi(y).

Then,

E[gi(D2)] = E
[
hL(Un/2t−i+1) · hR(Gi−1(Uri−1))

]
= E

[
hL(Un/2t−i+1)

]
·E
[
hR(Gi−1(Uri−1))

]
= E

[
hL(Un/2t−i+1)

]
·
(
E
[
hR(Un/2t−i+1)

]
± 3i−1 · δ′

)
(by the induction hypothesis)

= E
[
hL(Un/2t−i+1)

]
·E
[
hR(Un/2t−i+1)

]
± 3i−1 · δ′

= E[gi(D1)]± 3i−1 · δ′,

as desired.

Second summand. By a similar argument, it can be shown that

|E[gi(D2)]−E[gi(D3)]| ≤ 3i−1 · δ′. (14)

We omit the details here.
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Third summand. We show that

|E[gi(D3)]−E[gi(D4)]| ≤ δ′. (15)

We have

E[gi(D4)] = E[gi(Gi(Uri))]
= E

[
hL(Gi−1(X)) · hR(Gi−1(Exti−1(X,Z)))

]
(where X ∼ {0, 1}ri−1 and Z ∼ {0, 1}d)

= E[A(X) ·B(Exti−1(X,Z))]
(where A(·) = hL(Gi−1(·)) and B(·) = hR(Gi−1(·)))

= E[B(Exti−1(X,Z)) | A(X) = 1] ·Pr[A(X) = 1].

Similarly, we get

E[gi(D3)] = E[B(Uri−1) | A(X) = 1] ·Pr[A(X) = 1].

As a result, we have

|E[gi(D4)]−E[gi(D3)]|
=
∣∣(E[B(Exti−1(X,Z)) | A(X) = 1]−E[B(Uri−1) | A(X) = 1]

)
·Pr[A(X) = 1]

∣∣ . (16)

On the one hand, if Pr[A(X) = 1] ≤ δ′, then Equation (16) is at most δ′. On the other hand,
if Pr[A(X) = 1] > δ′, then

H∞(X | A(X) = 1) > ri−1 − log(1/δ′) > ri−1 −D′ − 2t− log(1/δ) = κi−1.

Then by the fact that Exti−1 is a (κi−1, δ
′)-extractor, we have∣∣E[B(Exti−1(X,Z)) | A(X) = 1]−E[B(Uri−1) | A(X) = 1]

∣∣ ≤ δ′.
Therefore, Equation (16) is at most δ′ and this complete the proof of Equation (15). Finally,
note that Equation (12) follows from Equation (13), Equation (14) and Equation (15). This
completes the proof of Claim 56. C

Given Claim 56, Theorem 28 now follows by letting i = t. J
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16:2 On the Quantum Complexity of Closest Pair and Related Problems

1 Introduction

In the closest pair problem (CP), we are given a list of points in Rd, and asked to find two that
are closest. (See Figure 1 for an illustration of this problem.) This is a fundamental problem
in computational geometry and has been extensively studied. Indeed, CP is one of the
standard examples in textbooks (such as [20] and [32]) to introduce the divide-and-conquer
technique. Moreover, CP relates to problems that have critical applications in spatial data
analysis and machine learning, such as empirical risk minimization [7], point location [44, 13],
time series motif mining [35], spatial matching problems [51], and clustering [36]. Therefore,
any improvement on CP may imply new efficient algorithms for related applications.

Figure 1 An instance of the CP, where the the closest pair is labeled in the circle.

Like with many other geometric problems, the hardness of CP rises as the dimension
d increases. Shamos and Hoey gave the first O(n logn) deterministic algorithm in R2 by
using Voronoi diagrams [44], improving on the trivial O(n2d) upper bound. Then, Bentley
and Shamos gave an algorithm with 2O(d)n logn running time via a divide-and-conquer
approach [10]. A randomized algorithm by Khuller and Matias [30, 40] takes 2O(d)n expected
running time. A trivial lower bound for CP is Ω(n), since one must read all points to find the
closest pair in the worst case. Yao showed an Ω(n logn) lower bound for CP on the algebraic
decision tree model [52].

When we consider CP in polylog(n) dimensions, the running time of all existing algorithms
blows up to Ω(n2), and thus it is unknown if there exists an algorithm matching the
unconditional lower bounds. Nevertheless, under the Strong Exponential Time Hypothesis
(SETH), Karthik and Manurangsi [29], and David et al. [22], recently proved a conditional
lower bound of n2−o(1) for CP in polylog(n) dimensions. This implies that the brute force
approach is nearly optimal in polylog(n) dimensions unless SETH is false. SETH was
introduced by Impagliazzo and Paturi [26], and is the assumption that for all ε > 0, there
exists an integer k > 2 such that no algorithm can solve k-SAT in time O(2(1−ε)n).

The main idea behind the results of [29, 22] is to prove a “fine-grained” reduction from
CNF-SAT to CP in polylog(n) dimensions. Fine-grained reductions are reductions between
computational problems that keep track of the exact polynomial exponents. For instance,
[29] showed that CNF-SAT with 2n(1−o(1)) time is reducible to CP in polylogn dimensions
with n2−o(1) time, and thus the lower bound for CP in polylogn dimensions is n2−o(1) unless
SETH is false.

Surprisingly, to our knowledge, the quantum time complexity of CP was hardly investigated
before. The trivial quantum algorithm for CP is to use Grover’s search algorithm on all
n2 pairs, which takes O(nd) time. Sadakane et al. [41] sketched a quantum algorithm that
runs in O(n1−1/(4dd/2e)) time. Volpato and Moura [47] claimed a quantum algorithm that
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uses O(n2/3) queries, but no analysis was given of the running time, and as we will see, the
conversion from the query-efficient algorithm to a time-efficient algorithm is nontrivial. As
for the lower bound, any quantum algorithm for CP needs Ω(n2/3) time, since Aaronson
and Shi [1] proved such a lower bound for element distinctness, and CP contains element
distinctness as a special case, where a closest pair has distance 0.

In this work, we resolve the quantum time complexity of CP. In constant dimensions, we
observe that by using a quantum walk for element distinctness [5, 33], we can achieve O(n2/3)
queries for CP. However, to obtain the same time complexity, the algorithm needs some
geometric data structure that supports fast updates and checking, and that – crucially – is
“history-independent”, i.e., the data structure is uniquely represented, disregarding the order
of insertion and deletion. History-independence is essential since different representations of
the same data would destroy quantum interference between basis states.

We propose a geometric data structure that is history-independent and that supports
fast checking and updates. Our data structure works by discretizing Rd into hypercubes
with length ε/

√
d. Then, we use a hash table, skip lists, and a radix tree to maintain the

locations of the points and hypercubes. This data structure is history-independent, and we
can easily find pairs with distance at most ε with it. We then find the closest pair by a
binary search. By using our data structure and a quantum walk [5, 33], we achieve quantum
time complexity Õ(n2/3).

For CP in polylog(n) dimensions, one may expect a conditional lower bound under SETH.
However, SETH fails when quantum algorithms are considered since a simple application of
Grover’s search algorithm on all assignments solves CNF-SAT in time Õ(2n/2). Furthermore,
existing fine-grained reductions may require time greater than O(2n/2).

In this paper, we introduce the Quantum Strong Exponential Time Hypothesis (QSETH)
and quantum fine-grained reductions. We define QSETH as follows.

I Definition 1 (QSETH). For all ε > 0, there exists some k ∈ N such that there is no
quantum algorithm solving k-SAT in time O(2(1−ε)n2 ).

We then observe that the classical definition of fine-grained reductions cannot capture
the features of quantum reductions such as superposed queries and speedups from quantum
algorithms. For instance, a fine-grained reduction may reduce problem A to solving many
instances of problem B and then output the best solution; in this case, one can use Grover’s
search algorithm to achieve a quadratic speedup. Therefore, instead of summing the running
time over all instances as in Definition 16, we use a quantum algorithm which solves all
instances in superposition and outputs the answer. We give a formal definition of quantum
fine-grained reductions in Definition 25 and show that under QSETH, any quantum algorithm
for CP in polylog(n) dimensions requires n1−o(1) time. This implies that Grover’s algorithm
is optimal for the problem up to an no(1) factor.

Intuitively, QSETH is the conjecture that applying Grover’s search algorithm over all
assignments in superposition is the optimal quantum algorithm for CNF-SAT. This is similar
to SETH, which says that a brute force search is optimal for CNF-SAT. A series of works on
CNF-SAT [43, 39, 38, 25, 42] shows that for some constant c ∈ [1, 2], there exist (randomized)
algorithms for n-variable k-SAT that run in time 2n(1−c/k). As k grows, the running time of
these algorithms approach 2n. When k is small, however, there are algorithms with better
running times. For instance, when k = 3, Schöning [43] obtained an algorithm with O(1.334n)
running time, which was later improved to O(1.308n) by Paturi et al. [39]. However, none of
the above mentioned algorithms have good running time on larger k’s, so SETH remains a
plausible conjecture.

CCC 2020
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When k is small enough, there are also quantum algorithms for k-SAT [4, 21] running in
time much less than O(2n/2). However, these quantum algorithms mainly use Grover search
to speed up the classical algorithms of [43, 39], and thus do not perform well for large k,
either. Therefore, we conjecture that for large enough k, no quantum algorithm can do much
better than Grover search.

Finally, we study the bichromatic closest pair problem (BCP) and the orthogonal vector
problem (OV). Briefly, OV is to find a pair of vectors that are orthogonal given a set of
vectors in {0, 1}d ∈ Rd, and BCP is, given two sets A,B (representing two colors) of n points
in Rd, to find the pair (a, b) of minimum distance with a ∈ A and b ∈ B.

We can summarize all of our results as follows.

I Theorem 2 (Informal). Assuming QSETH, there is no quantum algorithm running in time
n1−o(1) for OV, CP, and BCP when d = polylog(n).

I Theorem 3 (Informal). The quantum time complexity of CP in O(1) dimensionsI is
Θ̃(n2/3)II.

I Theorem 4 (Informal). For any δ > 0, there exists a quantum algorithm for BCP with
Õ(n1− 1

2d+δ) running time. There exists a quantum algorithm which solves (1+ξ)-approximate
BCP in time Õ(ξ−dn2/3).

I Theorem 5 (Informal). The quantum time complexity of OV in O(1) dimensionsIII is
Θ(n1/2).

Table 1 also summarizes what is known about upper and lower bounds on the classical
and quantum time complexities of all of these problems.

Table 1 A summary of our quantum complexity results and comparison to classical results. The
bold entries highlight our contributions in this paper.

Dimension Lower Bound Upper Bound

CP

Θ(1) Classical Ω̃(n) [52] Õ(n) [44, 10, 30]

Quantum Ω(n2/3) Theorem 56 Õ(n2/3) Corollary 55

polylogn Classical n2−o(1) (Under SETH) [29] O(n2)

Quantum n1−o(1) (Under QSETH) Theorem 26 Õ(n) Theorem 15

OV

Θ(1) Classical Ω(n) O(n) [48]

Quantum Ω(n1/2) Theorem 68 O(n1/2) Theorem 68

polylogn Classical n2−o(1) (Under SETH) [49] n2−o(1) [2, 16]

Quantum n1−o(1) (Under QSETH) Theorem 26 Õ(n) Theorem 15

BCP

Θ(1)
Classical Ω(n) O

(
n

2− 2
dd/2e+1 +δ) [3]

Quantum Ω(n2/3) Theorem 67 Õ(n1− 1
2d +δ) for BCP Theorem 66

Õ(ξ−dn2/3) for (1 + ξ)-BCP Theorem 64

2O(log∗(n))IV Classical n2−o(1) (Under SETH) [17] n2−o(1) [2, 16]

Quantum n1−o(1) (Under QSETH) Theorem 35 Õ(n) Theorem 15

I We actually give a slightly stronger result: the same time complexities still hold when d = O
( log logn

log log logn

)
.

II The Θ̃ notation is Θ with logarithmic factors hidden in both upper and lower bounds.
IIIThe same time complexities still hold when d = O(log logn).
IV log∗(n) := log∗(logn) + 1 for n > 1 and log∗(1) := 0. Hence, 2O(log∗ n) is an extremely slow-growing
function.
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Related work

A recent independent work by Buhrman, Patro and Speelman [15] also studied quantum
strong exponential time hypothesis. They defined (a variant of) QSETH based on the
hardness of testing properties on the set of satisfying assignments of a SAT formula, e.g.,
the parity of the satisfying assignments. Based on these hardness assumptions extended
from the original QSETH, they gave conditional quantum lower bounds for OV, the Proofs
of Useful Work [8] and the edit distance problem. In comparison, we formally define the
quantum fine-grained reductions and prove lower bounds for CP, OV, and BCP under the
original form of QSETH by showing the existence of quantum fine-grained reductions from
CNF-SAT to the these problems.

1.1 Proof overview

For ease of presentation, some notations and descriptions will be informal here. Formal
definitions and proofs will be given in subsequent sections.

We give an optimal (up to a polylogarithmic factor) quantum algorithm that solves
CP for constant dimensions in time Õ(n2/3). First note that there exists a Johnson graph
corresponding to an instance of CP, where each vertex corresponds to a subset of n2/3 points
of the input of CP, and two vertices are connected when the intersection of the two subsets
(they are corresponding to) has size n2/3 − 1. A vertex is marked if the subset it corresponds
to contains a pair with distance at most ε. Then, the goal is to find a marked vertex on this
Johnson graph and use binary search over ε to find the closest pair. Our algorithm for finding
a marked vertex is based on the quantum walk search framework by Magniez et al. [33], which
can be viewed as the quantum version of the Markov chain search on a graph (in our case, a
Johnson graph). The complexity of this quantum walk algorithm is O(S + 1√

λ
( 1√

δ
U + C)),

where λ is the fraction of marked states in the Johnson graph, δ is its spectral gap, S is the
cost for preparing the algorithm’s initial state, U is the cost for implementing one step of the
quantum walk, and C is the cost for checking the solution. For our Johnson graph, λ = n−2/3

and δ = n−2/3. If we consider only the query complexity, S = n2/3, U = O(1), and C = 0.
However, the time complexity for C is huge in the straightforward implementation, e.g.,
storing all points in an array according to the index order, as we need to check all the pairs
from the n2/3 points, which will kill the quantum speedup. To tackle this, we discretize the
space into small hypercubes. With this discretization, it suffices to check O((

√
d)d) neighbor

hypercubes to find a pair with distance at most ε. To support the efficient neighborhood
search, we need an efficient data structure.

Existing data structures do not meet our need. They either have prohibitive dependence
on the dimension, such as Ω(ndd/2e) time for constructing and storing Voronoi diagrams [31],
or do not have unique representation (i.e., they are history-dependent), such as fair-split
trees and dynamic trees [13]. Note that the requirement of unique representation is due to
the fact that different representations of the same data would destroy the interference that
quantum computation relies on. To solve this problem, we propose a uniquely represented
data structure that can answer queries about ε-close pairs and insert/delete points efficiently.
This data structure is based on a hash table, skip lists, and a radix tree. With this data
structure, U = O(logn) and C = O(1). Hence, we have the desired time complexity (see
Section 4.2). We give another method for solving CP that only uses a radix tree as the data
structure. With only a radix tree, the algorithm cannot handle cases with multiple solutions,
and we need to subsequently reduce the size of the problem until there is at most one solution
(see Section 4.3). These two quantum algorithms have the same time complexity.
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Our quantum algorithm for solving approximate BCP follows the same spirit as that for
CP, except that we use a finer discritization of the space (see Section 5.1). To solve BCP
exactly, we need a history-independent data structure for nearest-neighbor search, but no
such data structure is known. Instead, we adapt the nearest-neighbor search data structure
by Clarkson [19] to the quantum algorithm proposed by Buhrman et al. [14] for element
distinctness, which does not require history-independence of the data structure because in
the algorithm of [14], no insertions and deletions are performed once the data structure for a
set of points is constructed (see Section 5.2). Sadakane et al. [41] sketched an algorithm for
BCP with similar ideas and running time, but we give the first rigorous analysis.

To derive our quantum fine-grained complexity results for OV and CP when d = polylogn
under QSETH, we first define quantum fine-grained reductions. In our definition, we consider
problems whose input is given in the quantum query model, and allow the reduction to
perform superposed queries and run quantum algorithms, e.g., amplitude amplification. The
classical reductions from CNF-SAT to CP [29, 22] and OV [50] are not “quantum fine-grained”
under QSETH. These reductions fail because their running time exceeds 2n/2(1−ε), which is
the conjectured time complexity for CNF-SAT under QSETH. Therefore, we cannot derive
from them any non-trivial lower bounds for CP or OV based on QSETH. In the following, we
use the advantages of quantum algorithms to make these reductions work.

There are two main obstacles in “quantizing” the fine-grained reductions under QSETH.
The first obstacle is that the time cost for preparing the input of the problem we reduce
to is already beyond the required running time. For instance, consider the reduction from
CNF-SAT to OV. Let ϕ be a CNF-SAT instance on n variables and m clauses. The classical
fine-grained reduction divides all n variables into two sets A and B of size n/2, and then
maps all assignments for variables in A and B to two sets VA and VB of 2n/2 vectors each. It
is obvious that the time for writing down VA and VB is already Θ(2n/2). Nevertheless, many
quantum algorithms achieve sublinear query complexities by querying the input oracle in
superposition. Hence, instead of first constructing the input of OV at once and then running
the algorithm, we can simulate it “on-the-fly”: whenever the OV’s algorithm queries the
input oracle with some superposition of indices, we use a quantum subroutine to realize the
input oracle by mapping the query indices to the corresponding assignments in CNF-SAT,
and then to the corresponding vectors in VA and VB . This subroutine takes only O(n) time,
and therefore the quantum reduction, which has running time O(n) times the running time
of the OV algorithm, is quantum fine-grained.

Another difficulty in quantizing the fine-grained reductions is that some reduction needs
to call the oracle multiple times, and the number of calls exceeds the required running time.
However, it is possible to achieve quadratic speedup if these oracle calls are non-adaptive.
For the reduction from BCP to CP, we can reduce a BCP instance to n1.8+o(1) logn instances
of CP, which is already larger than the conjectured Ω(n) quantum lower bound of BCP.
By further studying the reduction, we find that the solution to BCP is the minimum of
the solutions to the the constructed CP instances. Therefore, we can use the quantum
minimum-finding algorithm to reduce the total time complexity to Õ(

√
n1.8+ε · tCP), which is

enough to show that BCP is quantum fine-grained reducible to CP.

With the above-mentioned techniques, we quantize the classical fine-grained reductions,
and show that CNF-SAT, with conjectured lower bound Ω(2n/2), is quantum fine-grained
reducible to OV and CP with lower bound Ω(n′)V, when the dimension d is polylog(n′).

V n is the input size of CNF-SAT, and n′ is the input size of OV and CP.
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2 Preliminaries

I Definition 6 (Distance measure). For any two vectors a, b ∈ Rd, the distance between

them in the `2-metric is denoted by ‖a − b‖ =
(∑d

i=1 |ai − bi|2
)1/2

. Their distance in the
`0-metric (Hamming distance) is denoted by ‖a− b‖0 = |{i ∈ [d] : ai 6= bi}|, i.e., the number
of coordinates on which a and b differ.

2.1 Quantum query model
We consider the quantum query model in this work. Let X := {x1, . . . , xn} be a set of n
input points and OX be the corresponding oracle. We can access the i-th data point xi by
making the query

|i〉 |0〉 OX−−→ |i〉 |xi〉 , (1)

and we can make queries to elements in X in superposition. Note that OX is an unitary
transformation in the formula above. Hence, a quantum algorithm with access to OX can be
represented as a sequence of unitary transformations.

Consider a quantum algorithm A with access to an oracle O and a initial state |0〉 :=
|0〉Q |0〉A |0〉W , where the registers Q and A are for the queries and the answers from the
oracle, and the register W is the working space which is always hold by A. Then, we can
represent the algorithm as

UTOUT−1 · · · OU1 |0〉 . (2)

Let |ψ〉i = UiO · · ·OU1 |0〉 :=
∑
i,z |i〉Q |0〉A |z〉W be the state right before applying the i-th

O, then

O |ψ〉i :=
∑
i,z

|i〉Q |xi〉A |z〉W . (3)

2.2 Quantum subroutine for unstructured searching and minimum
finding

I Definition 7 (Unstructured search). Given a set P of n elements in {0, 1}, decide whether
there exists a 1 in P .

I Theorem 8 (Grover’s search algorithm [24, 37]). There is a quantum algorithm for unstruc-
tured search with running time O(

√
n).

By Theorem 8 and BBBV’s argument [9], the quantum time complexity of unstructured
search is Θ(

√
n). We can also get a Õ(

√
n) quantum algorithm for minimum finding by

combining Grover’s search algorithm and binary search.

I Theorem 9 (Quantum minimum finding [23]). There is a quantum algorithm that finds
from a set of n elements with values in R, the index of the minimum element of the set, with
success probability 1

2 and run time Õ(
√
n)

2.3 Problem definitions
In this subsection, we first formally define OV, CP, and BCP. Then we show the folklore
algorithms for CP, BCP, and OV by Grover’s algorithm, which run in time Õ(n).

CCC 2020



16:8 On the Quantum Complexity of Closest Pair and Related Problems

I Definition 10 (Orthogonal Vectors, OV). Given two sets A,B of n vectors in {0, 1}d as
input, find a pair of vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0, where the inner product is
taken in Z.VI

We denote OV with input length n and dimension d as OVn,d. We will use this notation
when we need to specify the parameters in the following sections.

I Definition 11 (Closest Pair Problem, CP). Given a set P of n points in Rd and a distance
measure ∆, find a pair of distinct points a, b ∈ P such that ∆(a, b) is the smallest among all
distinct pairs in P .

Similar to OV, we denote CP with input length n and dimension d as CPn,d. We will use this
notation when the parameters in the following sections are required to be specified. Note
that in this work, we consider ∆(a, b) = ‖a− b‖ as the distance measure for CP and BCP.

I Definition 12 (Bichromatic Closest Pair Problem, BCP). Given two sets A,B of n points
in Rd and a distance measure ∆, find a pair of points a ∈ A, b ∈ B such that

∆(a, b) = min
a∈A,b∈B

∆(a, b). (4)

We also define an approximate version of BCP as follows.

I Definition 13 ((1 + ξ)-approximate Bichromatic Closest Pair Problem, (1 + ξ)-BCP). Given
two sets A,B of n points ∈ Rd and a distance measure ∆, find a pair of points a ∈ A, b ∈ B
such that

∆(a, b) ≤ (1 + ξ) min
a∈A,b∈B

∆(a, b). (5)

Same as CP, we use BCPn,d and (1 + ξ)-BCPn,d to specify the parameters.

I Definition 14 (Element Distinctness Problem, ED). Let f : [n]→ [m] be a given function.
Decide whether there exist distinct i, j ∈ [n] such that f(i) = f(j).

For this problem, Ambainis [5] gave a quantum algorithm with time complexity Õ(n2/3),
which matches the lower bound proved by Aaronson and Shi [1] up to a polylogarithmic
factor.

I Theorem 15. There are Õ(n)-time quantum algorithms for CP and BCP when d =
O(poly logn).

Proof. We can solve CP and BCP by searching the minimum distance through all pairs by
the algorithm of Theorem 9. There are O(n2) pairs and checking each pair took O(d) time,
so the total running time is O(nd). For d = O(poly logn), the time complexity equals to
Õ(n). J

2.4 Fine-grained complexity
As we have mentioned earlier in the introduction, a fine-grained reduction from problem P
to Q with conjectured lower bounds p(n) and q(n), respectively, has the property that if we
can improve the q(n) time for Q, then we can also improve the p(n) time for P. We give the
formal definition by Williams [46] in below.

VIOur definition is slightly different than some of the literature, for example, [18], which is searching
among pairs inside one set. Those two definitions are equivalent up to constant in complexities.
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I Definition 16 (Fine-grained reduction, [46]). Let p(n) and q(n) be non-decreasing functions
of n. Problem P is (p, q)-reducible to problem Q, denoted as (P, p) ≤FG (Q, q), if for every ε,
there exist δ > 0, an algorithm R for solving P with access to an oracle for Q, a constant d,
and an integer k(n), such that for every n ≥ 1, the algorithm R takes any instance of P of
size n and

R runs in at most d · (p(n))1−δ-time,
R produces at most k(n) instances of Q adaptively, that is, the jth instance Xj is a
function of {(Xi, yi)}1≤i<j where Xi is the ith instance produced and yi is the answer of
the oracle for Q on instance Xi, and
the sizes ni of the instances Xi for any choice of oracle answers yi obeys the inequality

k(n)∑
i=1

(q(ni))1−ε ≤ d · (p(n))1−δ. (6)

Let (P, p) ≤FG (Q, q) for some non-decreasing function p(n) and q(n). If for every ε > 0,
we can solve problem Q in time q(n)1−ε with probability 1 for all input length n, then there
exists a δ > 0 such that we can solve the problem P in time p(n)1−δ by Equation (6).

Here are some known results about fine-grained reductions.

I Theorem 17 ([29, 49]).

(CNF-SATn, 2n) ≤FG (OVn1,d1 , n
2
1) ≤FG (BCPn2,d2 , n

2
2) ≤FG (CPn3,d3 , n

2
3), (7)

where d1 = Θ(logn1), d2 = Θ(logn2) and d3 = (logn3)Ω(1).

I Remark 18. The second reduction from OV to BCP has been improved to d2 = 2O(log∗ n)

by Chen [17].

There are several plausible hypotheses in fine-grained complexity, which can imply
conditional hardness results for many interesting problems. We first give the definition of
the strong exponential time hypothesis (SETH).

I Hypothesis 19 (Strong Exponential Time Hypothesis, SETH). For every ε > 0, there exists
a k = k(ε) ∈ N such that no algorithm can solve k-SAT (i.e., satisfiability on a CNF of width
k) in O(2(1−ε)m) time where m is the number of variables. Moreover, this holds even when
the number of clauses is at most c(ε) ·m where c(ε) denotes a constant that depends only
on ε.

Another popular conjecture is the orthogonal vector hypothesis (OVH):

I Definition 20 (Orthogonal Vector Hypothesis, OVH). For every ε > 0, there exists a c ≥ 1
such that OVn,d requires n2−ε time when d = c logn.

I Remark 21. Under SETH, we can have the following conclusions from Theorem 17:
OVH is true.
For all ε > 0, there exists a c > 0 such that BCPn,c logn cannot be solved by any
randomized algorithm in time O(n2−ε).
For all ε > 0, there exists a c > 0 such that CPn,(logn)c cannot be solved by any randomized
algorithm in time O(n2−ε).

CCC 2020
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2.5 The framework for quantum walk search

In this subsection, we review the quantum walk framework for the Markov chain search
problem and demonstrate how to use it to solve the element distinctness problem. For
simplicity, we use the transition matrix P to refer to a Markov chain, where P = (pxy)x,y∈X
for X being the state space of P and pxy being the transition probability from x to y. An
irreducible and ergodic Markov chain has a unique stationary distribution π, which is also
the unique eigenvector of P with eigenvalue 1. Let M ⊆ X be a set of marked elements. In
the Markov chain search problem, the objective is to find an x ∈M . We can perform the
following actions: setup, sampling from the π with cost S; update, making a transition with
cost U, and checking whether the current state is marked or not with cost C. To solve the
search problem classically, we perform a random walk as follows. Start from a point sampled
from π and check if it is marked. If not, make a number of transitions on P until it mixes,
and then check again. We then repeat this process until a marked state is found. The cost of
this random walk algorithm is O(S + 1

λ ( 1
δU + C)), where λ := |M |/|X| and δ is the spectral

gap of P .
Quantum analogues of random walks, namely, quantum walks, have been developed for

solving different problems. In 2003, Ambainis [5] proposed a quantum walk algorithm for
solving the element distinctness problem. His algorithm also solves the Markov chain search
problem on the Johnson graph with cost O(S + 1√

λ
( 1√

δ
U + C)). In 2004, Szegedy [45] gave a

quantum walk algorithm for more generalized Markov chains with cost O(S + 1√
λδ

(U + C)).
We can view Szegedy’s quantum walk as a quantum counterpart of a random walk, where one
checks the state after each transition. Szegedy’s quantum walk only detects the presence of a
marked state, but cannot find one without extra costs. In 2006, Magniez et al. [33] proposed
a quantum walk search framework that unified the advantages of the quantum walks in [5]
and [45]. In this quantum walk framework, we can perform the following operations:

Setup: with cost S. preparing the initial state |π〉 = 1√
|X|

∑
x

√
πx |x〉.

Update: with cost U. applying the transformation |x〉 |0〉 7→ |x〉
∑
y∈X
√
pxy |y〉.

Checking: with cost C, applying the transformation: |x〉 7→
{−|x〉 if x ∈M
|x〉 otherwise.

The main result of [33] is summarized as follows.

I Lemma 22 ([33]). Let P be an irreducible and ergodic Markov chain P on X. Let M ⊆ X
be a subset of marked elements. Let λ := |M |/|X| and δ be the spectral gap of P . Then,
there exists a quantum algorithm that with high probability, determines M is empty or finds
an x ∈M with cost O(S + 1√

λ
( 1√

δ
U + C)).

To solve the element distinctness problem, we define a Markov chain, following the
work [5, 11, 28]. The state space X is all subsets of [n] with size r. The Markov chain
is based on the Johnson graph on X, where an edge is connecting S and S′ if and only
if |S ∩ S′| = r − 1. The transition probability on each edge is hence 1

r(n−r) . A state
S is marked when there exist distinct i, j ∈ S such the ith and the jth items are the
same. The Markov chain has spectral gap δ ≥ 1/r (see [28]) and it is easy to verify that
λ ≥

(
n−2
r−2
)
/
(
n
r

)
= O(r2/n2). If we only consider the query complexity, the setup procedure

costs r queries, the update procedure costs one query, and the checking procedure does not
cost any query. Choosing r = n2/3 yields the optimal query complexity O(n2/3).
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3 Quantum fine-grained complexity

In this section, we give the formal definitions of the quantum fine-grained reduction and
quantum strong exponential time hypothesis (QSETH). Moreover, we show that under
QSETH, for d = polylog(n), the lower bounds for CPn,d and OVn,d are n1−o(1), which nearly
matches the upper bounds given in Theorem 15.

3.1 Quantum fine-grained reduction and QSETH
QSETH is defined based on the assumption that the best quantum algorithm for CNF-SAT
is Grover search when the clause width k is large enough.

I Hypothesis 23 (QSETH). For every ε > 0, there exists a k = k(ε) ∈ N such that no
quantum algorithm can solve k-SAT (i.e., satisfiability on a CNF of width k) in O(2(1/2−ε)n)
time where n is the number of variables. Moreover, this holds even when the number of
clauses is at most c(ε)n where c(ε) denotes a constant that depends only on ε.

Obviously, the Grover search can solve CNF-SAT in Õ(2n/2). To the best of the our
knowledge, there is no quantum algorithm that can do better than O(2n/2) for any k.

We recall that in the quantum query model, the input of a problem is given by a quantum
oracle. Specifically, let P be a problem, and X be an instance of P in the classical setting.
Then, in the quantum query model, X will be given by an oracle OX . We will denote an
algorithm or an oracle A with access to OX by A(OX).

We say Aε is an ε-oracle for problem P, if for every instance OX , it holds that

Pr[Aε(OX) = P(X)] ≥ 1− ε, (8)

and the running time is O(1), where P(X) is the answer of X for problem P.

I Definition 24 (Quantum oracles). Let X := {x1, . . . , xn} be an instance of some problem
and OX be the corresponding quantum oracle. To realize OX , we do not need to write down
the whole X; instead, we can just design a quantum circuit to realize the mapping

|i〉 |0〉 OX−−→ |i〉 |xi〉 . (9)

I Definition 25 (Quantum fine-grained reduction). Let p(n) and q(n) be nondecreasing
functions of n. Let P and Q be two problems in the quantum query model and Aε be an
ε-oracle for Q with error probability ε ≤ 1/3. P is quantum (p, q)-reducible to Q, denoted
as (P, p) ≤QFG (Q, q), if for every ε, there exits a δ > 0, and algorithm R with access to Aε,
a constant d, and an integer k(n), such that for every n ≥ 1, the algorithm R takes any
instance of P of size n and satisfies the following:

R can solve P with success probability at least 2/3 in time at most d · p(n)1−δ.
R performs at most k(n) quantum queries to Aε. Specifically, in the jth query, let Xj :=
{X1,j , X2,j , . . . } be a set instances of Q. Then, R realizes the oracles {OX1,j ,OX2,j , . . . }
in superposition and applies Aε to solve the instances.
The following inequality holds.

k(n)∑
j=1

c(Xj) · q(nj)1−ε ≤ d · p(n)1−δ,

where c(Xj) is the time required for R to realize the oracles {OX1,j ,OX2,j , . . . } in super-
position and nj := maxi |Xi,j |.

CCC 2020
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In Definition 25, the input of Aε is given as a quantum oracle such that Aε can be a
quantum query algorithm with running time strictly less than the input size. Moreover, the
quantum reduction R can realize quantum oracles {OX1,j ,OX2,j , . . . } in superposition, and
thus the time required is maxi c(Xi,j) (where c(Xi,j) is the time required to realize OXi,j )
instead of

∑
i c(Xi,j). This also allows R to use fast quantum algorithms to process the

information of A′εs output (e.g., amplitude amplification).

3.2 Lower bounds for CP, OV, and BCP in higher dimensions under
QSETH

Here, we give nearly linear lower bounds for OV and CP under QSETH by showing that
there exist quantum fine-grained reductions from SAT to these problems.

I Theorem 26. Assuming QSETH, for all ε > 0, there exists a c such that OVn,c logn and
CPn,(logn)c cannot be solved by any quantum algorithm in time O(n1−ε).

We prove Theorem 26 by showing that there exist quantum fine-grained reductions from
CNF-SAT to OV, OV to BCP, and BCP to CP with desired parameters. We first give the
reduction from CNF-SAT to OV as a warm-up.

I Lemma 27.

(CNF-SATn, 2n/2) ≤QFG (OVn1,d1 , n1), (10)

where n1 = 2n/2 and d1 = Θ(n).

Proof. Let φ be a CNF formula with n variables and m = Θ(n) clauses. Let A be an
algorithm for OV. We first recall the classical reduction. Let φ := φ1 ∧ · · · ∧ φm. We
divide the n variables into two sets A and B with |A| = |B| = n

2 . Let A := {x1, . . . , xn/2}
and B := {xn/2+1, . . . , xn}. We let SA := {a1, . . . , a2n/2} be all assignments to A and
SB := {b1, . . . , b2n/2} be all assignments to B. We describe two mappings fA : SA → {0, 1}m
and fB : SB → {0, 1}m as follows:

fA(ai) = [φ1(ai), . . . , φm(ai)]T , and (11)
fB(bi) = [φ1(bi), . . . , φm(bi)]T , (12)

where φj(ai) = 0 if ai is a satisfied assignment for φj , and φj(ai) = 1 otherwise; we define
φi(bi) in the same way. Let FA := {fA(ai) : i ∈ [2n/2]} and FB := {fB(bi) : i ∈ [2n/2]}.
Then, it is obvious that if there exist v ∈ FA and u ∈ FB such that 〈v, u〉 = 0, then φ

is satisfiable. However, at first glance, this reduction with O(2n/2) running time is not
fine-grained since we require the cost of the reduction to be at most 2n(1−δ)/2 for some δ > 0
by Definition 25, but writing down elements in FA and FB already takes Ω(2n/2).

Nevertheless, as in Definition 24, a quantum fine-grained reduction only needs to realize
the functions fA and fB , which takes O(mkn) time where k is the width of clauses. This is
much less than O(2n(1−δ)/2). More specifically, fA and fB are oracles for FA and FB, and
for any quantum query to elements in FA or FB, the reduction can implement oracles fA
and fB :

|e, x〉 |0〉 fe−→ |e, x〉 |fe(x)〉 , (13)

where e ∈ {A,B}, and the time c(fe) for the reduction to implement fe for one quantum
query is at most O(kmn). Finally, this reduction only uses one oracle (FA, FB). If there
is an algorithm for OV which succeeds with probability 2/3, we can boost the success
probability of the reduction by repetition. Therefore, (CNF-SAT, 2n/2) is quantum reducible
to (OVn1,d1 , n1). J
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Then, to prove (CNF-SAT, 2n/2) ≤QFG (CPn3,d3 , n3), we show that (BCPn2,d2 , n2) ≤QFG
(CPn3,d3 , n3) and (OVn1,d1 , n1) ≤QFG (BCPn2,d2 , n2), where n2, n3, d2, d3 are some functions
of n specified in the following lemmas.

I Lemma 28. For d = Θ(logn),

(BCPn,d, n) ≤QFG (CPn′,d′ , n′), (14)

where n′ = nO(1) and d′ = (logn)c for some constant c and all points have {0, 1} entries
with the Hamming metric.

I Remark 29. The points have coordinate entries in {0, 1}, and the Hamming metric is
equivalent to distance in `2-metric (up to power of 2) in this case. Therefore, in the proof of
Lemma 28, we can consider the Hamming distance between points instead of `2 distance
without loss of generality.

We first introduce the classical reductions in [29] and some results we will use to prove
Lemma 28.

Classical reduction

We can consider an instance of BCP with two sets of points A and B as a weighted complete
bipartite graph Kn,n, where the vertices are the points in these two sets and edges’ weights
are equal to the distances between the corresponding points. Then, solving BCP is equivalent
to find an edge with the minimum weight in this graph. However, we cannot directly apply
the algorithm for CP on this graph since there could be two points in the same set (no edge
connecting them) that have a smaller distance than any pairs of points in two sets (connected
by an edge). To overcome this difficulty, we can “stretch” the points to make the points in
the same set far from each other, which is characterized by the contact dimension of a graph:

I Definition 30 (Contact Dimension). For any graph G = (V,E), a mapping τ : V → Rd is
said to realize G if for some β > 0, the following holds for every distinct vertices u, v:

‖τ(u)− τ(v)‖2 = β if {u, v} ∈ E, (15)
‖τ(u)− τ(v)‖2 > β otherwise.

The contact dimension of G, denoted by cd(G), is the minimum d ∈ N such that there exists
τ : V → Rd realizing G.

That is, with the help of τ , we can restrict the optimal solution of CP to be the points
connected by an edge in G. But we cannot realize the whole complete bipartite graph since
cd(Kn,n) = Θ(n), which makes the dimension of the CP instance too large. [29] showed that
we can realize a subgraph of Kn,n and apply permutations to its vertices such that the union
of these subgraphs cover Kn,n. In this way, BCP can be computed by solving CP on each
subgraph and outputting the best solution. More specifically, the reduction in [29] relies on
the following theorem:

I Theorem 31 (Theorem 4.2 in [29]). For every 0 < δ < 1, there exists a log-dense sequence
(ni)i∈N such that, for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where
|Ai| = |Bi| = ni and |Ei| ≥ Ω(n2−δ

i ), such that cd(Gi) = (logni)O(1/δ). Moreover, for all
i ∈ N, a realization τ : Ai∪̇Bi → {0, 1}(logni)O(1/δ) of Gi can be constructed in n2+o(1)

i time.
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The log-dense sequence is defined as follows:

I Definition 32. A sequence (ni)i∈N of increasing positive integers is log-dense if there exists
a constant c ≥ 1 such that logni+1 ≤ c · logni for all i ∈ N.

They also showed that, the permutations for covering the complete bipartite graph can be
efficiently found, as shown in the following lemma.

I Lemma 33 (Lemma 3.11 in [29]). For any bipartite graph G(A∪̇B,EG) where |A| = |B| = n

and EG 6= ∅, there exist side-preserving permutations π1, . . . , πk : A ∪ B → A ∪ B where
k ≤ 2n2 lnn

|EG| + 1 such that⋃
i∈[k]

EGπi = EKn,n . (16)

Moreover, such permutations can be found in O(n6 logn) time.

Now, we are ready to state the quantum fine-grained reduction by “quantizing” the
classical reduction.

Proof of Lemma 28. Let A,B be the two sets of input points of BCP. Suppose for BCP,
there is an input oracle OBCP which, given an index, returns the corresponding point:

|b〉 |i〉 |0〉 OBCP−−−→

|b〉 |i〉 |xi〉 if b = 0,

|b〉 |i〉 |yi〉 if b = 1,
(17)

where xi is the i-th point in the set A and yi is the i-th point in the set B. The sizes of A
and B are both equal to n and each point is in {0, 1}d1 , where d1 = Θ(logn) is the dimension
of BCP.

For CP, suppose there is a quantum algorithm A such that for m points in {0, 1}d2 given
by an oracle MCP , AMCP returns the closest pair of these n points with probability at
least 2/3.

Then we need to transform OBCP to some oraclesMi for CP, such that by running A
withMi as input oracles, we can get the bichromatic closest pair between A and B. The
reduction has four steps:

1. Pre-processing

We first follow the classical reduction to pre-process the input points of BCP. For some
integer n′ ≤ n0.1, we can partition A and B into n′-size subsets:

A = A1 ∪̇ · · · ∪̇ Ar, (18)
B = B1 ∪̇ · · · ∪̇ Br,

where r = bn/n′c. Here, we assume that n is divisible by n′. It follows that

BCP(A,B) = min
i,j∈[r]

BCP(Ai, Bj). (19)

Then, we use the algorithm in [29] to construct k mappings f1, . . . , fk : [2n′]→ {0, 1}d′

such that

BCP(Ai, Bj) = min
t∈[k]

CP(ft(Ai) ∪ ft(Bj)) ∀i, j ∈ [bn/n′c]. (20)
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More specifically, we pick n′ to be the largest number in a log-dense sequence that is
smaller than n0.1. Then, we apply Theorem 31 to classically construct a bipartite graph
G(A ∪ B,E) with n′ vertices in each side and a realization τ . By choosing δ = ε/2 in
Theorem 31, the graph G has |E| = Ω(n′2−ε/2) edges. And we can get 2n′ 0/1-strings of
length (logn′)O(2/ε):

τAi = τ(ui) ∀ui ∈ A, and τBi = τ(vi) ∀vi ∈ B. (21)

In order to cover the complete bipartite graph, we run the classical algorithm (Lemma 33)
to find k permutations π1, . . . , πk : [n′]→ [n′], where k is a parameter to be chosen later.

Then, we can define the mappings as follows:

ft(u) =

xv ◦
(
τAπt(w)

)d+1
if 1 ≤ u ≤ n′

yv ◦
(
τBπt(w)

)d+1
if n′ < u ≤ 2n′

∀t ∈ [k], u ∈ [2n′], (22)

where ◦ means string concatenation and (s)d+1 denotes d+ 1 copies of the string s. For a
point p ∈ Ai ∪Bj , u ∈ [2n′] is the index in this union-set, v ∈ [n] is the index in the ground
set A or B, and w ∈ [n′] is the index in the subset Ai or Bj . Further, if 1 ≤ u ≤ n′, then
w := u; otherwise, w := u− n′.

2. Oracle construction

For i, j ∈ [r], t ∈ [k], we then construct the input oracleMi,j,t for the problem CP(ft(Ai) ∪
ft(Bj)). For a query index u ∈ [2n′],

Mi,j,t |u〉 |0〉 = |u〉 |ft(u)〉 . (23)

With the help of the input oracle OBCP, we can implementMi,j,t in the following way:
1. Prepare an ancilla qubit |b〉 such that b = 1 if u > n′.
2. Transform |u〉 to |v〉, the index of the point in A or B, based on the value of b. Note that

the index is unique. Hence, this transformation is unitary and can be easily achieved by
a small quantum circuit.

3. Query OBCP with input |b〉 |v〉. Assume b = 0. Then,

|b〉 |v〉 |0〉 OBCP7−−−→ |b〉 |v〉 |xv〉 . (24)

4. Similar to the second step, the index w of the point in Ai and Bj can be computed from
v by a unitary transformation:

|b〉 |v〉 |xv〉 7→ |b〉 |w〉 |xv〉 (25)

5. Since each w corresponds to a unique string τAπt(w), we can attach d + 1 copies of this
string to the remaining quantum registers:

|b〉 |w〉 |xv〉 7→ |b〉 |w〉 |xv〉
∣∣∣∣(τAπt(w)

)d+1
〉
. (26)

6. By recovering u from w, we get the final state:

|u〉 |ft(u)〉 = |u〉
∣∣∣∣xv,(τAπt(w)

)d+1
〉
. (27)
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3. Query process

By Equations (19) and (20), we have

BCP(A,B) = min
i,j∈[r],t∈[k]

CP(ft(Ai) ∪ ft(Bj)). (28)

Hence, we can use quantum minimum-finding algorithm in Theorem 15 over the sub-problems
to find the minimum solution. For each sub-problem, we can run the algorithm for CP with
Mi,j,t as the input oracle.

4. Post-processing

In case that n is not divisible by n′, let the remaining points in A and B be Ares, Bres,
respectively. Then, we can use Grover search to find the closest pair between Ares and B,
and between Bres and A. Then, compare the answer to the previously computed result and
pick the smaller one.

Correctness

In this reduction, we do not change the constructions of the mappings {fi}i∈[k]. By [29],
Equation (28) is correct in the classical setting. Hence, it also holds in the quantum setting,
and we can use Grover search to find the minimum solution. However, since the algorithm
A for CP has success probability 2/3, for each tuple (i, j, t) ∈ [r]× [r]× [k], we need to run
AMi,j,t O(logn) times to boost the success probability to at least 1− 1

n . Then, by the union
bound, the probability that all queries in the Grover search are correct is at least 99/100.
Hence, by Theorem 9, the overall success probability is at least 2/3.

Running Time of the Reduction

The running time of the pre-processing step consists of two parts: (1) constructing the graph
G and its realization τ ; (2) finding k permutations. For the first part, by Theorem 31, it can
be done in n′2+o(1) time. For the second part, we pick k = O( 2n′2 logn′

n′2−ε/2 ) = O(n′ε/2 logn′),
and by Lemma 33, it can be done in O(n′6 logn′) time. Hence, the total running time of
pre-processing step is n′2+o(1) +O(n′6 logn′) = Õ(n0.6).

The oracle construction can be done “on-the-fly”. More specifically, given the strings
{τAi , τBi }i∈[n′], and permutations {πi}i∈[k], for each query index u, we can simulate the oracle
Mi,j,t defined in Equation (23) in c(Mi,j,t) = O(d2) = (logn′)Ω(1) = Õ(1) time.

In the query process, for each CP instance indexed by (i, j, t), suppose AMi,j,t gets the
answer in time q(n′) = n′. Moreover, for each time A querying the input oracleMi,j,t, we
need to spend c(Mi,j,t) time to simulate the oracle. And we also have O(logn) runs for each
instance. Hence, the total running time for each CP is at most

n′1−ε · Õ(1) ·O(logn) = Õ(n′1−ε). (29)

Then, we use Grover’s search algorithm over r2 · k instances, which can be done by querying
Õ(
√
r2 · k) instances by Theorem 9. Therefore, for any ε > 0, we have

Õ(
√
r2k) · q(n′)1−ε · c(Mi,j,t) ·O(logn) = Õ(

√
(n/n′)2k · (n′)1−ε) (30)

≤ Õ(n · (n′)−ε) ≤ Õ(n · n−ε/2) ≤ n1−δ, (31)

where the first inequality follows from k = O(n′ε/2 logn′) as shown in [29] and the last
inequality follows by setting δ = ε/10.



S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:17

For the post-processing step, the sizes of Ares and Bres are at most n′. The running
time is

O(
√
n · n′ · logn) ≤ Õ(n0.55). (32)

Therefore, for any ε > 0, there exists a δ > 0 such that the Equation (30) holds and the
total reduction time is O(n1−δ). By Definition 25, BCPn,d1 can be quantum fine-grained
reduced to CPn,d2 . This completes the proof of this lemma. J

Finally, we show that (OVn,d, n) ≤QFG (BCPn,d′ , n) by quantizing the reduction in [29]
following the same idea.

I Lemma 34. For d = Θ(logn),

(OVn,d, n) ≤QFG (BCPn,d′ , n), (33)

where d′ = Θ(logn).

Proof. For an OV instance with sets of vectors A and B, let OOV be the input oracle such
that:

OOV |i〉 |0〉 =

|i〉 |ai〉 if i ∈ A,

|i〉 |bi〉 if i ∈ B.
(34)

where ai, bi ∈ {0, 1}d.
Then, similar to the classical reduction, we can construct mappings fA, fB : {0, 1}d →

{0, 1}5d such that

fA(ai)5j−4:5j =

11000 if ai(j) = 0

00110 if ai(j) = 1
∀j ∈ [d], (35)

and

fB(bi)5j−4:5j =

10100 if bi(j) = 0,

01001 if bi(j) = 1.
∀j ∈ [d]. (36)

By the classical reduction, we have

OV(A,B) = 1 if and only if BCP(fA(A), fB(B)) = 2d (37)

under Hamming distance.
Also, note that we can simulate the input oracle OBCP by first querying the oracle OOV

to get the vector, then applying the corresponding mapping fA or fB , which can be done in
c(OBCP) = O(d) time. Let the running time of the algorithm for BCP be q(n) = n. Then for
any ε > 0,

q(n)1−ε · c(OBCP) = n1−ε ·Θ(logn) ≤ n1−δ (38)

for some small δ > 0. Hence, by Definition 25, (OVn,d, n) ≤QFG (BCPn,d′ , n). J

Proof of Theorem 26. We can prove the theorem by contradiction following Lemma 27,
Lemma 34, and Lemma 28. Specifically, suppose that there exists an ε > 0, for all d = Θ(logn),
there exists a quantum algorithm which can solve OV in time O(n1−ε). Then, we can obtain
a quantum algorithm for CNF-SAT, which runs in time O(2n/2(1−ε)) by Lemma 27. This
contradicts QSETH. The proof for CP is the same. J

CCC 2020



16:18 On the Quantum Complexity of Closest Pair and Related Problems

3.3 Quantum lower bound for BCP in nearly-constant dimensions
under QSETH

A byproduct of the previous subsection is a quantum lower bound for BCP in higher dimensions
(i.e., d = polylog(n)) under QSETH (Lemma 34). In this subsection, we show that this
quantum lower bound for BCP even holds for nearly-constant dimensions (i.e., d = clog∗(n)).
The main result of this subsection is the following theorem.

I Theorem 35. Assuming QSETH, there is a constant c such that BCP in clog∗(n) dimensions
requires n1−o(1) time for any quantum algorithm.

We will “quantize” the results by Chen [17] to prove this theorem. More specifically, we
first show a quantum fine-grained self-reduction of OV from logn dimensions with binary
entries to 2log∗(n) dimensions with integer entries (Z -OV). Then, we give a quantum fine-
grained reduction from Z -OV to BCP in nearly-constant dimensions.

I Definition 36 (Integral Orthogonal Vector, Z -OV). Given two sets A,B of n vectors in Zd,
find a pair of vectors a ∈ A and b ∈ B such that 〈a, b〉 = 0, where the inner product is taken
in Z.

We use Z -OVn,d to denote Z -OV with n vectors of d dimension in each set. We then
recap a theorem in [17]:

I Theorem 37 ([17, Theorem 4.1]). Let b, ` be two sufficiently large integers. There is a
classical reduction ψb,` : {0, 1}b·` → Z` and a set Vb,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

〈x, y〉 = 0 ⇔ 〈ψb,`(x), ψb,`(y)〉 ∈ Vb,` (39)

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b (40)

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the set Vb,` can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

Note that the size of Vb,` is at most `2·6log∗(b)·b+1. The following lemma gives a quantum
fine-grained reduction from OV to Z -OV:

I Lemma 38. For d = Θ(logn),

(OVn,d, n) ≤QFG (Z -OVn,d′ , n). (41)

where d′ = 2O(log∗ n2).

Proof. Consider an OVn,d with d = c · logn, where c is an arbitrary constant. We choose
` := 7log∗ n and b := d/`. Then, we can apply Theorem 37 to get the mapping function ψb,`
and the set Vb,`. For each v ∈ Vb,`, we’ll construct an instance of Z -OVn,`+1 as follows:
1. Let |i〉 be the input query index of Z -OVn,`+1.
2. Query OVn,d’s input oracle OOV and get the vector |i, x〉.
3. Compute the mapping ψb,` and get |i, x〉 |ψb,`(x)〉.
4. If x ∈ A, then attach 1 to the end of the register: |i, x〉 |ψb,`(x), 1〉. If x ∈ B, then attach
−v to the end: |i, x〉 |ψb,`(x),−v〉.

5. Use OOV to erase x and return the final input state |i〉 |ψb,`(x), 1〉 or |i〉 |ψb,`(x),−v〉.
For each instance, we can use the quantum oracle for Z -OVn,`+1 to check the orthogonality.
OVn,d is YES if and only if there exists a YES-instance of Z -OVn,`+1.
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Correctness

The correctness follows from Equation (39):

〈x, y〉 = 0⇔ 〈ψb,`(x), ψb,`(y)〉 = v ∈ Vb,` ⇔ 〈[ψb,`(x), 1], [ψb,`(y), −v]〉 = 0. (42)

Reduction time

Note that for ` = 7log∗ n and b = d/`, we have:

log
(
`O(6log∗(d)·b)

)
= log ` ·O

(
6log∗(d) · (d/`)

)
(43)

= O
(

log∗(n) · 6log∗ n · c logn/7log∗ n
)

(44)

= o(logn). (45)

This implies that |Vb,`| ≤ `2·6
log∗(b)·b+1 ≤ no(1). Hence, the number of Z -OVn,`+1 instances

is no(1) and the running time for compute Vb,` is no(1). And for each input query, the oracle
for Z -OVn,`+1 can be simulated in c(OZ -OV) = poly(d) = poly(logn) time. We can show
that for every ε > 0, if Z -OVn,`+1 can be decided in n1−ε time, then∑

v∈Vb,`

n1−ε · c(OZ -OV) = no(1) · n1−ε · poly(logn) ≤ n1−δ (46)

for some δ > 0, which satisfies the definition of quantum fine-grained reduction (Definition 25).
Therefore, OVn,O(logn) is quantum fine-grained reducible to Z -OVn,2O(log∗(n)) . J

Then, we give a quantum fine-grained reduction from Z -OV to BCP:

I Lemma 39. For d = 2O(log∗ n),

(Z -OVn,d, n) ≤QFG (BCPn,d′). (47)

where d′ = d2 + 2.

Proof. We remark here that this proof closely follows that for Theorem 4.3 in [17]. We
nonetheless give it here as some details are different.

For an Z -OVn,d instance with (k · logn)-bit entries, we construct a BCP instance as
follows:
1. For x ∈ A, construct a vector x′ ∈ Zd

2
such that x′i,j = xi · xj . Here, we index a

d2-dimensional vector by [d]× [d]. Similarly, for y ∈ B, construct a vector y′ ∈ Zd
2
such

that y′i,j = −yi · yj .
2. Choose W := (d2 + 1) · n4k. For each x′, construct a vector x′′ ∈ Rd2+2 such that

x′′ =
[
x′,

√
W − ‖x′‖22, 0

]
. (48)

For each y′, construct a vector y′′ ∈ Rd2+2 such that

y′′ =
[
y′, 0,

√
W − ‖y′‖22

]
. (49)

Then, we claim that the Z -OV instance is YES if and only if the BCP instance has the
minimum distance ≤

√
2W .
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Correctness

First note that ‖x′‖22 ≤ d2 · (2k logn)4 = d2 · n4k. Hence, W − ‖x′‖22 > 0 and W − ‖y′‖22 > 0.
For any x′′ and y′′ in the new constructed instance of BCP, we have

‖x′′ − y′′‖22 = ‖x′′‖22 + ‖y′′‖22 − 2 · 〈x′′, y′′〉 (50)
= 2 ·W − 2 · 〈x′, y′〉 (51)

= 2 ·W − 2 ·
∑

(i,j)∈[d]×[d]

xi · xj · (−yj · yj) (52)

= 2 ·W + 2 · (〈x, y〉)2. (53)

Hence,

〈x, y〉 = 0 ⇔ ‖x′′ − y′′‖22 = 2W. (54)

Reduction time

We can see from the above description that the input mapping function is simple and can
be computed by a small quantum circuit in O(d2) = O(2O(log∗(n))) time. Hence, we have
c(OBCP) = O(2O(log∗(n))). Also, by Definition 25, it’s easy to check that this is indeed a
quantum fine-grained reduction from Z -OV to BCP. J

Now Theorem 35 follows immediately from Lemma 38 and Lemma 39:

Proof of Theorem 35. Let ε > 0 be some constant. Suppose we can solve BCPn,clog∗(n) in
n1−ε time for all constant c > 0. Then, by Lemma 38 and Lemma 39, we can also solve
OVn,c′ logn in n1−δ time for some δ > 0 and any c′ > 0. However, this contradicts QSETH
by Theorem 26. Therefore, assuming QSETH, there exists a constant c such that BCPn,clog∗(n)

requires n1−o(1) time. J

4 Closest pair in constant dimension

In this section, we show that there exist almost-optimal quantum algorithms for CP in
constant dimension. The main result is the following theorem, which is a direct consequence
of Corollary 55 and Theorem 56.

I Theorem 40. For any constant dimension, the quantum time complexity for CP is Θ̃(n2/3).

Our approach to solve CP is first reducing to the decision version of the problem, and
then apply quantum walk algorithms to solve the decision version. We define the decision
version of CP, CPε, as follows.

I Definition 41 (CPε). Given a set of points P ⊂ Rd and ε ∈ R, find a pair a, b ∈ P such
that ‖a− b‖ ≤ ε if there is one and returns no is no such pair exists.

The reduction from CP to CPε is given by the following lemma.

I Lemma 42. Let m be the number of bits needed to encode each coordinate as a bit string
and d be the dimension. Given an oracle O for CPε, there exists an algorithm AO that runs
in time and query complexity O(m+ log d) that solves the CP.



S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:21

Proof. Let (P, δ) be an instance of the CP. We first pick an arbitrary pair a0, b0 ∈ P and
compute ∆(a0, b0). Then, we set ε to be ∆(a0, b0)/2 and run the oracle O to check whether
there exists a distinct pair with distance less than ∆(a0, b0)/2 or not. If there exists such a
pair, which we denote as (a1, b1), then we set ε = ∆(a1, b1) and call O to check again. If
there is no such pair, then we set ε = 3∆(a0, b0)/4 and call O. We run this binary search for
m+ log d iterations. Finally, the algorithm outputs the closest pair. J

In classical setting, point location is an important step in solving the closest-pair problem,
especially the dynamic version. For the quantum algorithm, as walking on the Markov chain,
we repeatedly delete a point and add a new point. Hence, in each step, the first thing is to
determine the location of the new added point.

For simplicity, we assume that m = O(logn), which is the number of digits of each
coordinate of the points. By translation, we can further assume that all the points are lying
in [0, L]d, where L = O(2m) = poly(n).

Since we are considering CPε, one simple way of point location is to discretize the whole
space into a hypergrid, which is defined as follows:

I Definition 43. Let d, ε, L > 0. A hypergrid Gd,ε,L in the space [0, L]d consists of all ε-boxes

g := [a1, b1)× [a2, b2)× · · · × [ad, bd), (55)

such that b1 − a1 = · · · = bd − ad = ε/
√
d VII, and ai is divisible by ε for all i ∈ [d].

For each point pi ∈ [0, L]d, we can identify the ε-box that contains it using the function
id(pi) : [0, L]d → {0, 1}d log(L/ε):

id(pi) =
(
bpi(1)/wc , bpi(2)/wc , . . . , bpi(d)/wc

)
, (56)

where w = ε√
d
is the width of the ε-box. The number of bits to store id(pi) is d · log(L/w) =

O(d · log(L)). Since all the points in an ε-box have the same id, we also use this g(id(p)) to
denote this ε-box containing p.

For the ease of our analysis, we define the neighbors of a hypergrid.

I Definition 44. Let ε ∈ R. Let g1, g2 be two ε-boxes in a hypergrid where id(g1) =
(x1, . . . , xd) and id(g2) = (x′1, . . . , x′d). We say that g1 and g2 are each other’s ε-neighbor if√√√√ d∑

i=1
‖xi − x′i‖2 ≤ ε (57)

Note that the number of ε-neighbors of a ε-box is at most (2
√
d+ 1)d. We also have the

following observation:

I Observation 45. Let p1, p2 ∈ [0, L]d be any two distinct points.
If p1 and p2 are in the same ε-box, then ∆(p1, p2) ≤ ε.
If ∆(p1, p2) ≤ ε, then g(id(p1)) must be an ε-neighbor of g(id(p2)).

To solve CPε with quantum walk, we need data structures to keep track of the pairs that
have distance at most ε. The desired data structure should have size Õ(n2/3), insertion/dele-
tion time O(logn), and one should be able to check whether there exist pairs of distance at
most ε in time O(logn). In addition, as pointed out in [5], the data structure should have
the following two properties:

VIIThe diagonal length of an ε-box is ε.
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Figure 2 The uniquely represented radix tree that stores the keys {0011, 0101, 1100, 1101}.

the data structure should have the bounded worst-case performance rather than average-
case performance;
the representation of the data structure should be history-independent, i.e., the data is
uniquely represented regardless of the order of insertions and deletions.

We need the first property since the data structure may take too long for some operations,
and this is not acceptable. The second property is required because, otherwise, the interference
of quantum states would be messed up. In [5], a hash table and a skip list is used to for
solving the element distinctness problem using quantum walks. In [11], a simpler data
structure, namely, a radix tree, is used to achieve the same performance. More details of
using a radix tree to solve the element distinctness can be found in [28]. Similar to the
quantum data structure model in [5, 11, 28], we need the quantum random access gate to
efficiently access data from a quantum memory, whose operation is defined as:

|i, b, z1, . . . , zm〉 7→ |i, zi, z1, . . . , zi−1, b, zi+1, zm〉 , (58)

where |z1, . . . , zm〉 is some data in a quantum memory with m qubits. We assume this
operation takes O(logm) time.

In the remainder of this section, we present two quantum algorithms for solving CPε.
The data structures of both versions are based on the augmented radix tree, which we discuss
in detail in the following subsection.

4.1 Radix tree for at most one solution
The purpose of the augmented radix tree is to quickly locate the points in an ε-box given its
id. An ordinary radix tree is a binary tree that organizes a set of keys which are represented
as binary strings. Each edge is labeled by a substring of a key and each leaf is labeled by
a key such that concatenating all the labels on the path from the root to a leaf yields the
key for this leaf. In addition, for each internal node, the labels of the two edges connecting
to two children start with different bit. Note that in this definition, we implicitly merge all
internal nodes that have only one child. The radix tree is uniquely represented for any set of
keys. An example of a radix tree is shown as Figure 2.

Our basic radix tree is essentially the one in [11, 28] with modification on the nodes’
internal structure. We highlight the extra information stored in the radix tree. First we use
a local counter to store the number of points in this ε-box; second, we use a flag in each leaf
node to indicate whether there is a point in this ε-box that is in some pair with distance
at most ε. The flag bit in an internal node is the OR of the ones in its children. The local
counter in each internal node is the sum of the local counters in its children. We also store at
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most two points that are in the ε-box corresponding to this node. More precisely, let S be a
subset of indices of the input points. We use τ(S) to denote the radix tree associated with S.
Then, τ(S) consists of at most rdlog re nodes. Each node consists of the following registers:

D ×M1 ×M2 ×M3 × C × F × P1 × P2, (59)

where D stores the id of an ε-box for a leaf (and a substring of an id for an internal node) using
O(d log(L/ε)) bits. M1,M2, andM3 use O(logn) bits to store the pointers to its parent,
left child, and right child, respectively as well as the labels of the three edges connecting them
to this node, O(logn) bits to store the labels of the three edges incident to it. C uses O(logn)
bits to store the local counter. F stores the flag bit. P1 and P2 stores the coordinates of
at most two points in this ε-box, which takes O(d logL) bits. The two points are stored in
ascending order of their indices.

We need to pay attention to the layout of τ(S) in memory. We use three times more bits
than needed to store τ(S), this will ensure that there are always more than 1/3 of the bits
that are free. We divide the memory into cells where each cell is large enough to store one leaf
node of τ(S). Besides τ(S), we also store a bitmap B, which takes O(logn) bits to encode
the current free cells (with “1” indicating occupied and “0” indicating free). To make the
radix tree history-independent, we use a quantum state which is the uniform superposition of
basis states |τ(S), B〉 for all possible valid layout of τ(S) and it corresponds to the bitmap B.

Insertion and deletion from τ(S) takes O(logn) time. Checking the presence of an ε-close
pair takes constant time – we just need to read the flag bit in the root. Preparing the uniform
superposition of all i ∈ S can be done in O(logn) time by performing a controlled-rotation
on each level of the radix tree where the angles are determined by the local counters in the
two children of a node.

In the following subsections, we present the two versions of our algorithms. The first
version invokes the quantum walk framework only once and its data structure maintains the
existence of an ε-close pair. The second version uses a much simpler data structure, but it is
only capable of handling CPε with a unique solution. Hence it requires invoking the quantum
walk framework multiple times to solve the general CPε. These two quantum algorithms
have almost the same time complexity.

4.2 Single-shot quantum walk with complicated data structure

To handle multiple solutions, our data structure is a composition of an augmented radix
tree, a hash table, and a skip list. We give a high-level overview of our data structure as
follows. Recall that by the discretization of the space into ε-boxes, it is possible that a pair
of points in different ε-boxes have distance at most ε, but one only needs to check (2

√
d+ 1)d

ε-neighbors to detect such a case. We maintain a list of points for each nonempty ε-box in
an efficient way. A hash table is used to store the tuple (i, pi) which is used to quickly find
the point pi, given its index i. The points are also stored in a skip list for each nonempty
ε-box, ordered by its index i, which allows for quick insertion and deletion of points. Each
ε-box is encoded into a unique key, and a radix tree is used to store such key-value pairs,
where the value is associated with a skip list. The flag bits in this radix tree maintain the
presence of an ε-close pair.

In the following, we present the details of the data structure and show it has all the
desired properties.
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Figure 3 An example of a skip list that stores {1, 2, 3, 4}.

Hash table

The hash table we use is almost the same as the one used in [5], except that we do not
store the blog rc counters in each bucket to facilitate the diffusion operator (which is handled
easily here in the quantum walk on a Johnson graph). Our hash table has r buckets, where
each bucket contains dlogne entries. We use a fixed hash function h(i) = bir/nc+ 1 to hash
{1, . . . , n} to {1, . . . , r}. That is, for j ∈ [r], the j-th bucket contains the entries for (i, pi) in
ascending order of i, where i ∈ S and h(i) = j.

The entry for (i, pi) contains the tuple (i, pi) and dlogne + 1 pointers to other entries.
These pointers are used in the skip list which we will describe below. The memory size of
each entry is hence O(log2 n+ d logL) and there are O(r logn) entries. Therefore, the hash
table uses O(rd log3(n+ dL)) qubits.

It is possible that more than dlogne points are hashed into the same bucket. However, as
shown in [5], this probability is small.

Skip list

The skip list we use closely follows that in [5], except that the elements pi in our skip list is
ordered by its index i. We construct a skip list for each ε-box containing at least one point
to store the points in it. For each i ∈ S, pi belongs to exactly one skip list. Also, for i ∈ S,
we randomly assign a level `i ∈ [0, . . . , `max] where `max = dlogne. The skip list associated
with a ε-box has `max + 1 lists, where the level-` list consists of all i ∈ S such that `i ≥ `

and pi is in this ε-box. Hence, the level-0 list consists of all i ∈ S for pi in this ε-box. Each
element of the level-` list has a specific pointer to the next element in this level, or to 0 if
there is no next element. Each skip list contains a start entry that does not contain any
(i, pi) information but `max + 1 pointers to the first element of the each level. This start
entry is stored in a leaf node of the augmented radix tree (which we will describe below)
corresponding to this ε-box. In each skip list, we do not allocate memory for each node.
Instead, each pointer is pointing to an entry of the hash table. The pointers are stored in the
hash table (for the internal entries of each level) and in the radix tree (for the start entry).
An example of a skip list is shown in Figure 3.

Given i ∈ S, we can search for pi as follows. We start from the start entry of the level-`max
list and traverse each element until we find the last element j`max such that j`max < i. Repeat
this for levels ``max−1, . . . , `0 and at each level start from the element that ended the previous
level. At level-0, we obtain the element j0. Then, the next element of j0 is where pi should
be located (if it is stored in this skip list) or be inserted.

Each i ∈ S is randomly assigned a level `i at the beginning of computation that does
not change during the computation. More specifically, `i = ` with probability 1/2`+1 for
` < `max and with probability 1/2`max for ` = `max. This can be achieved using `max
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hash functions h1, . . . , h`max : [n] → {0, 1}. In this way, each i ∈ [n] has level ` < `max if
h1(i) = · · · = h`(i) = 1 but h`+1(i) = 0; and it has level `max if h(i) = · · · = h`max(i) = 1. In
this quantum algorithm, we use an extra register to hold the state |h1, . . . , h`max〉 which is
initialized to a uniform superposition of all possible such functions from a d-wise independent
family of hash functions (see [5, Theorem 1]) for d = d4 logn+ 1e. During the execution of
the quantum algorithm, a hash function from the hashing family is chosen depending on the
state in this register.

At first glance, the skip list has the same role as the hash table – finding pi given index i.
However, they have very different purposes in our algorithm. Recall that each nonempty
ε-box is associated with a skip list, which is used to quickly insert and delete a point in this
ε-box. The number of points in this ε-box can be as small as one and as large as r (in the
extreme case where all the points are in the same ε-box). Hence, we cannot afford to have a
fixed length data structure (such as a hash table or a sorted array) to store these points. In
addition, to support quick insertion and deletion, a skip list is a reasonable choice (against
an ordinary list). The purpose of the hash table can be viewed as a uniquely represented
memory storing all the r points that can be referred to by the skip lists.

Augmented radix tree

We augment the radix tree described in Section 4.1 to handle multiple solution. In this
augmented radix tree, we do not need the registers P1 and P2. Instead, we use dlogne
pointers L1, . . . ,Ldlogne as the start entry of a skip list. These pointers uses O(log2 n) bits.
In addition, we use an external counter in the leaf nodes to record whether there is a point
in other ε-boxes that is at most ε-away from a point in this ε-box, which uses O(logn) bits.
More formally, let τ ′(S) be the augmented radix tree associated with S. Each node of τ ′(S)
consists of the following registers

D ×M1 ×M2 ×M3 × E × C × F × E × L1 × · · · × Ldlogne. (60)

Next, we present how to perform the required operations on S with our data structure.

Checking for ε-close pairs

To check the existence of an ε-close pair, we just read the flag in the root of the radix tree.
If the flag is set, there is at most one ε-close pair in S, and no such pairs otherwise. This
operation takes O(1) time.

Insertion

Given (i, pi), we perform the insertion with the following steps:
1. Insert this tuple into the hash table.
2. Compute the id, id(pi), of the ε-box which pi belongs to. Denote this ε-box by g(id(pi)).
3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i into the skip list

corresponding to g(id(pi)); otherwise, first create a uniform superposition of the addresses
of all free cells into another register, then create a new tree node in the cell determined
by this address register and insert it into the tree. The pointers for the start entry of the
skip list is initially set to 0. Insert i into this skip list. Let τ ′(S, g(id(pi)) denote the leaf
node in τ ′(S) corresponding to g(id(pi)).

4. Increase the local counter C in τ ′(S, g(id(pi))) by 1.
5. Use Procedure 1 to update the external counters E and flags F in τ ′(S, g(id(pi))) as well

as in the leaf nodes corresponding to the neighbor ε-boxes of g(id(pi)).
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Note that the first step takes at most O(logn) time. The second step can be done in
O(d) time. In Procedure 1, the number of ε-neighbors to check is at most (2

√
d+ 1)d.

Procedure 1 Updating nodes for insertion.

input : (i, pi), The leaf node in τ ′(S) corresponding to the ε-box g(id(pi)), denoted
by, τ ′(S, g(id(pi))).

1 if the local counter C = 1 in τ ′(S, id(pi)) then
2 for all ε-box g′ that is a ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter C = 1 in τ ′(S, g′) and the distance between pi and the point in g′ is at
most ε do

3 Increase the external counter E of τ ′(S, g′) by 1;
4 Increase the external counter E of τ ′(S, g(id(pi))) by 1;
5 if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
6 Set the flag F in τ ′(S, g′) ;
7 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
8 end
9 end

10 if the external counter E > 1 in τ ′(S, g(id(pi))) then
11 Set the flag F in τ ′(S, g(id(pi))) ;
12 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
13 end
14 else if the local counter C = 2 in τ ′(S, id(pi)) then
15 Set the flag F in τ ′(S, g(id(pi))) ;
16 Update the flag F in the nodes along the path from τ ′(S, g(id(pi))) to the root of

τ ′(S) ;
17 Set the external counter E = 0 in τ ′(S, id(pi)) ;
18 Let i′ be the other index (than i) stored in the skip list corresponding to g(id(pi))

;
19 for all ε-box g′ that is a ε-neighbor of g(id(pi)) where the local counter C = 1 in

τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ε do
20 Decrease the external counter of τ ′(S, g′) by 1;
21 if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
22 Unset the flag F in τ ′(S, g′) ;
23 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
24 end
25 end
26 end

To obtain a uniform superposition of the addresses of all free cells, we first create a
uniform superposition of all possible addresses to access to the bitmap |B〉. We also use an
auxiliary register that is initialized to |0〉. Then, the quantum random access gate defined in
Equation (58) is applied on the register holding the uniform superposition of all addresses,
the auxiliary register, and the bitmap register, which is effectively a SWAP operation on the
second register and the corresponding bit in |B〉. The auxiliary register remains |0〉 if and
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only if the address in the first register is free. Since the size of memory space is chosen so
that the probability of seeing a free cell is at least 1/3 (and we know exactly this probability
based on how many cells have already been used), we can add an extra register and apply a
one-qubit rotation to make the amplitude of the second register being |0〉 exactly 1/2. Hence,
using one iteration of the oblivious amplitude amplification (which is a generalized version
of Grover’s search algorithm. See [12] and [34]) with the second register being the indicator,
we obtain the uniform superposition of the addresses of all free cells. This cost if O(logn).

In [5], it was shown that with high probability, insertion into the skip list can be done in
O(d+ log4(n+ L)) time. Hence, with high probability, the insertion costs O(d+ log4(n+
L) + d(2

√
d+ 1)d) time, where O(d(2

√
d+ 1)d) is the time for checking neighbors. To further

reduce the running time, we can just stop the skip list’s insertion and deletion procedures
after O(d+ log4(n+ L)) time, which only causes little error (see Lemma 47).

Deletion

Given (i, pi), we perform the following steps to delete this tuple from our data structure.
1. Compute the id, id(pi), of the ε-box which pi belongs to, and denote this ε-box by

g(id(pi)).
2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to g(id(pi)).
3. Remove i from the skip list, and decrease the local counter C in τ ′(S, g(id(pi))) by 1.
4. Use Procedure 2 to update the external counters E and flags F in τ ′(S, g(id(pi))) as well

as in leaf nodes corresponding to the neighbor ε-boxes of g(id(pi)).
5. If the local counter C = 0 in this leaf node, remove τ ′(S, g(id(pi))) from τ ′(S), and update

the bitmap B in τ ′(S) that keeps track of all free memory cells.
6. Remove (i, pi) from the hash table.

Note that the first step can be done in O(d) time. The second step can be done in
O(logn) time. Procedure 2 has the same time complexity with Procedure 1. Hence, the cost
for the deletion procedure is the same as that for insertion.

Finding a ε-close pair

We just read the flag in the root of the radix tree and then go to a leaf whose flag is 1. Check
the local counter C of the node. if it is at least 2, output the first two elements in skip list.
Otherwise, we find the ε-neighbor of the current node whose C = 1 and then output the
points in that ε-neighbor and the current node.

Uniqueness

The uniqueness of our data structure follows from the analysis of [5, 11, 28]. More specifically,
the hash table is always stored in the same way, as each i ∈ S is stored in the same bucket
for the fixed hash function and in each bucket, elements are stored in ascending order of i.
The skip list is uniquely stored once the hash functions h1, . . . , h`max is determined. The
shape of the radix tree is unique for S, but each node can be stored in different locations in
memory. We use a uniform superposition of all possible memory organizations (by keeping
track of the bitmap for free cells) to keep the quantum state uniquely determined by S.

Correctness

In the following, we argue that our data structure has the desired properties. First, we prove
the correctness.

CCC 2020



16:28 On the Quantum Complexity of Closest Pair and Related Problems

Procedure 2 Updating nodes for deletion.

input : (i, pi), The leaf node in τ ′(S) corresponding to the ε-box g(id(pi)), denoted
by, τ ′(S, g(id(pi))).

1 if the local counter C = 0 in τ ′(S, id(pi)) then
2 Unset the flag F in τ ′(S, g(id(pi))) ;
3 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
4 Set the external counter E = 0 in τ ′(S, id(pi)) ;
5 for all ε-box g′ that is a ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter C = 1 in τ ′(S, g′) and the distance between pi and the point in g′ is at
most ε do

6 Decrease the external counter E of τ ′(S, g′) by 1;
7 if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
8 Unset the flag F in τ ′(S, g′) ;
9 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
10 end
11 end
12 else if the local counter C = 1 in τ ′(S, id(pi)) then
13 Let i′ be the only index stored in the skip list corresponding to g(id(pi)) ;
14 for all ε-box g′ that is a ε-neighbor of g(id(pi)) where the local counter C = 1 in

τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ε do
15 Increase the external counter E of τ ′(S, g′) by 1;
16 Increase the external counter E of τ ′(S, g(id(pi))) by 1;
17 if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
18 Set the flag F in τ ′(S, g′) ;
19 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
20 end
21 end
22 if the external counter E = 0 in τ ′(S, g(id(pi))) then
23 Unset the flag F in τ ′(S, g(id(pi))) ;
24 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
25 end
26 end

I Lemma 46. The flag bit in the root of τ ′(S) is set if and only if there exist distinct i, j ∈ S
such that |pi − pj | ≤ ε.

Proof. We show that after each insertion and deletion, the data structure maintains the
following conditions, and then lemma follows.
1. The flag bit of each leaf node of τ ′(S) is set if and only if either its local counter is at

least 2, or its external counter is at least 1.
2. The external counter of a leaf node τ ′(S, g′) is nonzero if and only if g′ contains only one

point p, and there exists another p′ in another ε-box g′′ such that |p− p′| ≤ ε.
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It is easy to check that the first condition is maintained for each insertion and deletion. We
show the second condition holds during insertions and deletion. For insertions, we consider
the first case where a point p is just inserted into the ε-grid g′, and p is its only point. The
first for-loop in Procedure 1 updates other ε-boxes that have only one point to maintain the
second condition. We consider the second case where g′ already contains p′ and p is just
inserted, then the external counter in g′ should be 0, and the second for-loop in Procedure 1
updates other ε-boxes that have only one point using the information of p′. This maintains
the second condition. For deletions, there are also two cases. First, consider p is the only
one point in g′ and it is just deleted. We use the first for-loop in Procedure 2 to update the
ε-boxes that has only one point using the information of p to maintain the second condition.
Second, there is another point p′ left in g′ after deleting p. In this case, we start to check the
external counter in g′. We use the second for-loop in Procedure 2 to check other ε-boxes
that have only one point using the information of p′ and update the corresponding external
counter to maintain the second condition. J

Imperfection of the data structures and error analysis

Our data structure is not perfect. As indicated by Ambainis [5], there are two possibilities
that it will fail. First, the hash table might overflow. Second, it might take more that dlogne
time to search in a skip list. To resolve the first problem, we fix the number of entries in each
bucket to be dlogne and treat any overflow as a failure. For the second problem, we stop
the subroutine for accessing the skip list after O(logn) steps, and it causes an error in some
cases. The original error analysis can be directly used in our case, as our hash table doesn’t
change the structure or the hash function, and our skip lists can be viewed as breaking the
skip list in [5] into several pieces (one for each nonempty ε-box), and each insertion/deletion
only involves one of them. Hence, the discussion in [5, Section 6] can be directly adapted to
our case:

I Lemma 47 (Adapted from [5]). Let |ψ〉 be the final state of our algorithm (with imperfect
data structures) and |ψ′〉 be the final state with the perfect data structure. Then ‖ |ψ〉−|ψ′〉 ‖ ≤
O(1/

√
n).

Sketch of proof. There are two places where the data structure may give error: first, the
hash table may have overflow, and second, the algorithm cannot find the required element
in the skip lists in the desired time. The original proof showed that the probability that
any of these errors happens is negligible, and thus the two-norm distance between |ψ〉 and
|ψ′〉 can be bounded. Here, our data structure combining hash table, skip list, and radix
tree, only has errors from hash tables and skip lists. The radix tree which has no error can
be viewed as applying additional unitaries on |ψ〉 and |ψ′〉, and this does not change the
distance between the two states. Since the probability that the errors from hash tables and
skip lists happen are negligible by following the same analysis in [5], we can conclude that
the two-norm distance between |ψ〉 and |ψ′〉 is small. J

Time complexity for CPε

We use the quantum walk framework reviewed in Section 2.5 to solve CPε. We first build the
Johnson graph for CPε, which is similar to that for ED in Section 2.5. The vertices of the
Johnson graph are S ⊆ [n] with |S| = n2/3 and S is marked if there exist distinct i, j ∈ S
such that ∆(pi, pj) ≤ ε. We use |S, d(S)〉 to represent the quantum state corresponding to S,
where d(S) is the data structure of S defined in Section 4.1. Consider the three operations:
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Steup: with cost S, preparing the initial state

|π〉 = 1√(
n

n2/3

) ∑
S⊆[n]:|S|=n2/3

√
πS |S, d(S)〉 . (61)

Update: with cost U, applying the transformation

|S, d(S)〉 |0〉 7→ |S, d(S)〉
∑

S′⊆[n]:|S∩S′|=n2/3−1

√
pSS′ |S′, d(S′)〉 , (62)

where pSS′ = 1
n2/3(n−n2/3) .

Checking: with cost C, applying the transformation:

|S, d(S)〉 7→

− |S, d(S)〉 if S ∈M

|S, d(S)〉 otherwise,
(63)

where M is the set of marked states.

We have the following result.

I Theorem 48. There exists a quantum algorithm that with high probability solves CPε with
time complexity O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)).

Proof. The Johnson graph has λ ≥ 1/n2/3 and the Markov chain has spectral gap δ ≥ 1/n2/3.
For the setup operation, S = O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)), since preparing the

uniform superposition for all |S〉 costs O(logn) Hadamard gates and we need to do n2/3

insertions to prepare the data structure. Each insertion costs O(d+log4(n+L)+d(2
√
d+1)d).

For the update operation, we can implement the quantum walk operator as described in [28]:
we use |S, d(S)〉 |i, j〉 to represent |S, d(S)〉 |S′, d(S′)〉 where S′ is obtained from S by adding
index i and removing index j. Then the diffusion can be implemented by preparing a uniform
superposition of all i ∈ S and a uniform superposition of all j 6∈ S, which takes time O(logn),
and the “SWAP” operation can be implemented by a unitary that maps |S, d(S)〉 |i, j〉
to |S′, d(S′)〉 |j, i〉. In this way, the update operation uses O(1) insertion and deletion to
construct d(S′) from d(S), and hence U = O(d+ log4(n+ L) + d(2

√
d+ 1)d). The checking

operation can be done in O(1) time with the data structure. Therefore, by Lemma 22, the
time complexity is O(S + 1√

λ
( 1√

δ
U + C)) = O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)). J

By Lemma 42, we have the following corollary.

I Corollary 49. There exists a quantum algorithm that with high probability solves CP with
time complexity O(n2/3 · (d+ log4(n+ L) + d(2

√
d+ 1)d) · (m+ log d)).

I Remark 50. For d = O(1) dimension and m = O(logn) digits of each coordinate of the
points, the running time of the single-shot quantum algorithm is O(n2/3 · log5 n).

4.3 Multiple-trial quantum walks with simple data structure
In the previous subsection, we provide a quantum algorithm which solves CPε in time
O(n2/3(d + log4 n + d(2

√
d + 1)d)), where the logarithmic cost is mainly from the cost of

the skip list. In this section we present a quantum algorithm which only requires the radix
tree, and thus improve the running time. The caveat is that, with only the radix tree data
structure, the insertion would fail if there are more than one ε-close pairs. As a result,
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we need to keep shrinking the size of the problem using [5, Algorithm 3] until there is a
unique solution with high probability, and then run the Õ(n2/3) quantum algorithm for this
unique-solution case.

In the following, we first show how to solve the unique-solution CPε, and then show the
reduction from the multiple-solution case to the unique-solution case.

I Lemma 51. There exists a quantum algorithm that with high probability solves the unique-
solution CPε with time complexity O(n2/3(logn+ d(2

√
d+ 1)d)).

Data structure for unique-solution

We use the radix tree τ(S) for S defined in Section 4.1. In the following, we describe the
necessary operations on τ(S).

Checking for ε-close pair

To check the existence of an ε-close pair, we just read the flag bit in the root of τ(S), which
takes O(1) time.

Insertion

Given (i, pi), we perform the following steps for insertion. First compute the id, id(pi), of
the ε-box which pi belongs to. Denote this ε-box by g(id(pi)). Using id(pi) as the key, check
if this key is already in τ(S). There are two cases:

id(pi) is already in τ(S): insert pi into τ(S, g(id(pi))), increase the local counter in
τ(S, g(id(pi))) by 1 and also set the flag. Then update the flag and local counter of the
nodes along the path from τ(S, g(id(pi))) to the root.
id(pi) is not in τ(S): create a new leaf node for id(pi) and insert it into τ(S). Insert
pi into this new leaf node, and increase the local counter in τ(S, g(id(pi))) by 1. Then,
check the ε-neighbors g′ of τ(S, g(id(pi))) that contains only one point p′ and set both
flags if pi is ε-close to p′, and in this case, update the flag bit and local counter on the
nodes along the paths from τ(S, g(id(pi))) and g′.

Deletion

Given (i, pi), we first compute the id, id(pi) of the ε-box that pi belongs to, and locate the
corresponding leaf node τ(S, g(id(pi))). Decrease the local counter in τ(S, g(id(pi))) by 1
and update the local counter in the nodes along the path from τ(S, g(id(pi))) to the root.
Check the number of points stored in τ(S, g(id(pi))). There are two possibilities:

There are two points in τ(S, g(id(pi))): unset the flag in τ(S, g(id(pi))) and update the
flag bit in the nodes along the path to the root and delete pi from τ(S, g(id(pi))).
pi is the only point in τ(S, g(id(pi))): check the ε-neighbors g′ of τ(S, g(id(pi))) that
contains only one point p′ and unset both flags if pi is ε-close to p′, and in this case,
update the flag bit on the nodes along the path from τ(S, g(id(pi))) and g′ to the root.
Delete pi from τ(S, g(id(pi))) and delete τ(S, g(id(pi))) from τ(S).

As in Section 4.2, we use a bitmap register |B〉 to keep track of the free cells in τ(S). For
insertion, we maintain a uniform superposition of all possible free cells to insert a new radix
tree node. For deletion, we update the bitmap |B〉 accordingly. This ensures the uniqueness
of the quantum data structure.

CCC 2020



16:32 On the Quantum Complexity of Closest Pair and Related Problems

The correctness of the data structure is straightforward, and the time complexity is
O(logn+d(2

√
d+1)d) for both insertion and deletion. Also, preparing a uniform superposition

for all i ∈ S costs O(logn) using the local counter in each node. By a similar analysis of
Theorem 48, we prove Lemma 51 as follows.

Proof of Lemma 51. The algorithm uses the framework in Lemma 22 with the data structure
we just described in this subsection, where U = O(logn + d(2

√
d + 1)d)), C = O(1) and

S = O(n2/3(logn + d(2
√
d + 1)d)). Therefore, the running time of the algorithm is as

claimed. J

Next, we show how to reduce multiple-solution CPε to unique-solution CPε. A high-level
overview of Ambainis’s reduction in [5] is the following. We run the algorithm for unique-
solution CPε several times on some random subsets of the given input. If the given subset
contains solutions, then with constant probability there exists a subset which contains exactly
one solution.

I Definition 52 ([5, 27]). Let F be a family of permutations on f : [n] → [n]. F is
ε-approximate d-wise independent if for any x1, . . . , xd ∈ [n] and for all y1, . . . , yd ∈ [n],

1− ε
n · (n− 1) · (n− d+ 1) ≤ Pr

[
n∧
i=1

fi(xi) = yi

]
≤ 1 + ε

n · (n− 1) · (n− d+ 1) . (64)

I Lemma 53 ([5, 27]). Let n be an even power of a prime number. For any t ≤ n, ε > 0,
there exists an ε-approximate t-wise independent family F = {πj |j ∈ [R]} of permutations
πj : [n]→ [n] such that:

R = O

((
nt

2 · ε−t
)3+o(1)

)
;

given i, j, πj(i) can be computed in time O(t log2 n).

The multiple-solution algorithm from [5] is as follows:

Algorithm 3 The algorithm for multiple ε-close pair.

input :Let (S, ε) be the input, and |S| = n.
1 Let T1 = S and j = 1;
2 while |Tj | > n2/3 do
3 Run the algorithm described in Lemma 51 on Tj , and Measure the final state. If

there is a pair with distance less than ε, output the pair and stop ;
4 Let qj be an even power of a prime with |Tj | ≤ qj ≤ (1 + 1

8 )|Tj |. Select a random
permutation πj on [qj ] from the 1

n -approximately 4 logn-wise independent
family of permutations as in Lemma 53 ;

5 Let

Tj+1 :=
{
π−1

1 · π−1
2 · · ·π

−1
j (i), i ∈

[⌈
4qj
5

⌉]}
. (65)

j ← j + 1 ;
6 end
7 If |Tj | ≤ n

2
3 , then run Grover’s search algorithm on Tj for a pair with distance at

most ε ;

We have the main result of this subsection:
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I Theorem 54. There exists a quantum algorithm that with high probability solves CPε with
time complexity O(n2/3 · (logn+ d(2

√
d+ 1)d) · log3 n) = O(n2/3 · log4 n) for d = O(1).

Proof. We prove the running time of the algorithm here. For the correctness, one can
check [5] for the detail.

By Equation (65), the size of Tj+1 will be at most

4
5 · (1 + 1

8)|Tj | =
9
10 |Tj |. (66)

Therefore, the while-loop takes at most O(logn) iterations in the worst case. Let nj = |Tj |
be the size of the instance in the j-th iteration. Then, the unique-solution algorithm in
Procedure 3 runs in O(n2/3

j · (lognj + d(2
√
d+ 1)d))-time (Lemma 51), given an O(1)-time

access to the set Tj . However, in Procedure 3 each element of the random permutation can
be computed in time O(log3 n) according to Lemma 53 with t = 4 logn, which means the
unique-solution algorithm will take O(log3 n) time for each query to Tj . Note that we will
not actually compute the whole set Tj+1, as shown in Procedure 3, which takes too much
time. Hence, the running time for the j-th iteration is O(n2/3

j · (lognj +d(2
√
d+ 1)d) · log3 n).

And the total running time for the while-loop is

O(logn)∑
j=1

O(n2/3
j · (lognj + d(2

√
d+ 1)d) · log3 n) (67)

≤ O(n2/3 · (logn+ d(2
√
d+ 1)d) · log3 n) ·

O(logn)∑
j=0

(
9
10

)2j/3
(68)

= O(n2/3 · (logn+ d(2
√
d+ 1)d) · log3 n), (69)

where the first inequality follows from nj ≤ ( 9
10 )j−1 · n. Finally, Procedure 3 runs in time

O(n2/3 logn). This completes the proof of the running time. J

To conclude the quantum algorithms for solving CP in constant dimension, we have the
following corollary that is a direct consequence of either Theorem 48 or Theorem 54.

I Corollary 55. For any d = O(1), there exists a quantum algorithm that, with high probability,
solves CPn,d in time Õ(n2/3).

4.4 Quantum lower bound for CP in constant dimensions

We can easily get an Ω(n2/3) lower bound for the quantum time complexity of CP in constant
dimension by reducing the element distinctness problem (ED) to CP.

I Theorem 56 (Folklore). The quantum time complexity of CP is Ω(n2/3).

Proof. We reduce ED to one dimensional CP by mapping the point i with value f(i) in ED
the point f(i) ∈ R in CP. If the closest pair has distance zero, we know there is a collision
f(i) = f(j). If the closest pair has distance greater or equal to one, we know there is no
collision. Therefore, ED’s Ω(n2/3) query lower bound by [1] translates into Ω(n2/3) time
lower bound for CP. J
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5 Bichromatic closest pair in constant dimensions

Classically, bichromatic closest pair problem is harder than the closest pair problem. In
constant dimension, the best algorithms for the closest pair problem are “nearly linear”,
while the algorithm by [3] for bichromatic closest pair problem is “barely subquadratic”,
running in O(n2−1/Θ(d))-time. In quantum, we found that BCP is still harder than CP in
constant dimension. In particular, we cannot adapt the quantum algorithm in previous
section for solving BCP because the data structure cannot distinguish the points from two
sets efficiently. We can only get a sub-linear time quantum algorithm for BCP using different
approach, which is a quadratic speed-up for the classical algorithm.

Nevertheless, we show that we can find an approximate solution for BCP with multiplic-
ative error 1 + ξ with quantum time complexity Θ̃(n2/3). The following theorem is a direct
consequence of Theorems 64 and 67.

I Theorem 57. For any fixed dimension and error ξ, there is a quantum algorithm which
can find an approximate solution for BCP with multiplicative error 1 + ξ in time Õ(n2/3).
Moreover, all quantum algorithms which can find an approximate solution for BCP with
arbitrary multiplicative error requires time Ω(n2/3).

Similar to solving CP, we reduce BCP to its decision version of the problem, and then
apply quantum algorithms to solve the decision problem. We define the decision problem as
BCPε.

I Definition 58 (BCPε). In BCPε, we are given two sets A,B of n points ∈ Rd and a
distance measure ∆. The goal is to find a pair of points a ∈ A, b ∈ B such that ∆(a, b) ≤ ε
if it exists and returns no if no such pair exists.

To address the approximate version of BCP, we also define the approximation version of
BCPε as follows:

I Definition 59 ((1 + ξ)-BCPε). In (1 + ξ)-BCPε, we are given two sets A,B of n points
∈ Rd, a distance measure ∆, and ξ. The goal is to do the following
1. If there exists a pair of points a ∈ A, b ∈ B such that ∆(a, b) ≤ ε, output the pair (a, b).
2. If for all pairs of points a ∈ A, b ∈ B, ∆(a, b) > (1 + ξ)ε, returns no.

Again, we consider ∆(a, b) = ‖a − b‖ as the distance measure in this work. We show
that BCP reduce to BCPε in time O(m + log d), where m is the number of digits of each
coordinate and d is the dimension.

I Lemma 60. Given an oracle O for (1 + ξ)-BCPε, there exists an algorithm AO that runs
in time and query complexity O(m+ log d) solves the (1 + ξ)-BCP.

Proof. Let (A,B, δ) be an instance of the (1 + ξ)-BCP. We first pick an arbitrary pair
a0 ∈ A, b0 ∈ B and computes ∆(a0, b0). Then, we set ε to be ∆(a0, b0)/2 and run the oracle
O to check whether there exists a distinct pair which distance is less than ∆(a0, b0)/2 or not.
If there exists such a pair, which we denote as (a1, b1), then we set ε = ∆(a1, b1) and call
O to check again. If there is no such a pair, then we set ε = 3∆(a0, b0)/4 and call O. We
continuously run this binary search for m+ log d iterations. Finally, the algorithm outputs
the bichromatic closest pair. J

In the subsections, we present a quantum algorithm for solving (1+ξ)-BCP and a quantum
algorithm for exact BCP. To complement the algorithmic results, we also give quantum lower
bound for BCP.
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5.1 Quantum algorithm for (1 + ξ)-BCP
The quantum algorithm is based on the quantum walk framework on a tensor product of
Johnson graphs. To begin with, we define the Johnson graphs JA and JB for A and B,
respectively. The vertices of JA, denoted by XA, is defined as the set {S ⊆ A : |S| = n2/3}.
There is an edge connecting S and S′ if and only if |S ∩ S′| = n2/3 − 1. The Markov chain
MA is defined on XA with pSS′ = 1

n2/3(n−n2/3) when S and S′ are connected by an edge.
The Johnson graph for JB for B and its corresponding Markov chain can be defined similarly.
The tensor product MA ⊗MB is defined as the Markov chain based on XA ×XB defined as

XA ×XB := {(SA, SB) : SA ∈ XA, SB ∈ XB}, (70)

with transition probability

p(SA,SB)(S′
A
,S′
B

) = pSAS′A · pSBS′B . (71)

A state (SA, SB) is marked if there exists a pair a ∈ SA and b ∈ SB such that ∆(a, b) ≤ ε.

Now, we examine the properties of MA ⊗MB . It is easy to see that λ = ( n−1
n2/3−1)

2

( n

n2/3)2 = 1
n2/3 .

Let δA and δB be the spectral gap of MA and MB respectively. As a result of [6, Lemma
21.17], δ ≥ min{δA, δB} = 1

n2/3 . By Lemma 22, the cost for solving (1 + ξ)-BCPε is
O(S + n1/3(n1/3U + C)), where S, U and C are the cost of quantum operations defined in
Section 4.2. Before describing the data structure to achieve meaningful S,U, and C, we
first introduce a finer discretization scheme. In Section 4, we used a hypergrid consisting of
ε-boxes. Here, we discretize the space [0, L]d as a hypergrid consisting of ξε

2
√
d
-boxes. The

following lemma guarantees that distance between a ξε

2
√
d
-box and its ε-neighbor is at most

(1 + ξ)ε.

I Lemma 61. Let g and g′ be ξε

2
√
d
-boxes. If g and g′ are ε-neighbors, then for all p ∈ g and

p′ ∈ g′, ∆(p, p′) ≤ (1 + ξ)ε.

Proof. Recall the definition of the id function in Equation (56). id(g) can be treated as a
point, and we can measure the distance between id(g) and other points. The lemma can be
proven via the triangle inequality:

∆(p, p′) ≤ ∆(p, id(g)) + ∆(id(g), id(g′)) + ∆(p′, id(g′) ≤ ξε

2 + ε+ ξε

2 ≤ (1 + ξ)ε. (72)

J

In our algorithm, we need to search for all ε-neighbors that contain the other color to
report an ε-close pair (with an multiplicative error ξ). It’s easy to see that the number of
neighbors of a box is bounded in terms of d and ξ:

B Claim 62. For each ξε

2
√
d
-box, the number of ε-neighbors is at most

(
4
√
d/ξ + 1

)d.
Based on this finer discretization scheme, we use the data structure defined in Section 4.2

but with simple modifications on the radix tree. Instead of using L1, . . . ,Ldlogne as the start
entry of the skip list, we use dlogne pointers for both sets A and B. We also need local
counters CA and CB for both colors. Now, each node in the radix tree has the following
registers:

D ×M1 ×M2 ×M3 × EA × EB × CA × CB×
F × LA1 × · · · × LAdlogne × L

B
1 × · · · × LBdlogne. (73)
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The points in A (or B, respectively) is organized by the skip list for A (or B, respectively).
The insertion and deletion operations are similar to the data structure in Section 4.2, but in
the procedure for updating the local and external counters and checking ε-neighbors, we need
to consider points of the other color. We formally describe the two procedures as follows.

Insertion

Given a point (i, pi, x), where x ∈ {A,B} denotes the color. We perform the insertion with
the following steps:
1. Insert this tuple into the hash table corresponding to x.
2. Compute the id, id(pi), of the ξε√

d
-box which pi belongs to and denote it by g(id(pi)).

3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i into the skip list
for color x corresponding to g(id(pi)); otherwise, first create a uniform superposition of
the addresses of all free cells into another register, then create a new tree node in the cell
determined by this address register and insert it into the tree. The pointer for the start
entry of the skip list is initially set to 0. Insert i into this skip list. Let τ ′(S, g(id(pi))
denote the leaf node in τ ′(S) corresponding to g(id(pi)).

4. Increase the local counter Cx in τ ′(S, g(id(pi))) by 1.
5. Use Procedure 4 to update the external counters Ex, E x̄ (here x̄ denotes the other color

than x) and flags F in τ ′(S, g(id(pi))), the leaf nodes which are corresponding to the
ε-neighbors of g(id(pi)), and their parent nodes.

Note that the first step takes at most O(logn) time. The second step can be done in O(d)
time. In Procedure 4, the number of ε-neighbors to check is at most ( 4

√
d
ξ + 1)d by Claim 62.

Deletion

Given (i, pi, x), we perform the following steps to delete this tuple from our data structure.
1. Compute the id, id(pi), of the εξ√

d
-box which pi belongs to and denote it by g(id(pi)).

2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to g(id(pi)).
3. Remove i from the skip list for color x, and decrease the local counter Cx in τ ′(S, g(id(pi)))

by 1.
4. Use Procedure 2 to update the external counters Ex and E x̄ (here x̄ denote the other

color than x) and flags F in τ ′(S, g(id(pi))) as well as in leaf nodes corresponding to the
ε-neighbors of g(id(pi)).

5. If both local counters Cx, Cx̄ in this leaf node are 0, remove τ ′(S, g(id(pi))) from τ ′(S),
and update the bitmap B in τ ′(S) that keeps track of all free memory cells.

6. Remove (i, pi, x) from the hash table.

Note that the first step can be done in O(d) time. The second step can be done in
O(logn) time. Procedure 5 has the same time complexity with Procedure 4. Hence, the cost
for the deletion procedure is the same with that for insertion.

Checking for (1 + ξ)ε-close pairs

To check the existence of an (1 + ξ)ε-close pair, we just read the flag in the root of the radix
tree. If the flag is set, there is at most one ε-close pair in S, and no such pairs otherwise.
This operation takes O(1) time.
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Procedure 4 Updating nodes for insertion for the bichromatic case.

input : (i, pi, x), the leaf node in τ ′(S) corresponding to g(id(pi)), denoted by
τ ′(S, g(id(pi))).

1 Let x̄ ∈ {A,B} and x̄ 6= x;
2 if Cx = 1 in τ ′(S, id(pi)) and Cx̄ = 0 then
3 for all ε-neighbor g′ (see Definition 44) of g(id(pi)) where Cx̄ ≥ 1 in τ ′(S, g′) do
4 Increase Ex of τ ′(S, g′) by 1;
5 Increase E x̄ of τ ′(S, g(id(pi))) by 1;
6 if Ex in τ ′(S, g′) was increased from 0 to 1 then
7 Set the flag F in τ ′(S, g′) ;
8 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
9 end

10 end
11 if E x̄ ≥ 1 in τ ′(S, g(id(pi))) then
12 Set the flag F in τ ′(S, g(id(pi))) ;
13 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root

of τ ′(S) ;
14 end
15 else if Cx = 1 and Cx̄ ≥ 1 in τ ′(S, g(id(pi))) then
16 Set the flag F in τ ′(S, g(id(pi))) ;
17 Update the flags F in the nodes along the path from τ ′(S, g(id(pi))) to the root

of τ ′(S) ;
18 Set E x̄ = 0 in τ ′(S, id(pi)) ;
19 for all g′ that is an ε-neighbor of g(id(pi)) where the the local counter Cx̄ ≥ 1 in

τ ′(S, g′) do
20 Decrease Ex of τ ′(S, g′) by 1;
21 if Ex in τ ′(S, g′) was decreased from 1 to 0 then
22 Unset the flag F in τ ′(S, g′) ;
23 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
24 end
25 end
26 end

Finding a (1 + ξ)ε-close pair

We just read the flag in the root of the radix tree and then go to a leaf which flag is 1. Check
the local counters of the node. If both local counters are at least 1, output the first elements
in skip lists for A and the first element in the skip list for B. Otherwise, check the external
counters. Suppose EA is non-zero. Then we find the ε-neighbor of the current node whose
CB > 0 and output the first point in the skip list of A of the current node and the first
element in the skip list of B of the ε-neighbor.

We have the following result.

I Theorem 63. For any fixed dimension and fixed ξ, there exists a quantum algorithm that,
with high probability, can solve (1 + ξ)-BCPε in time O(n2/3(d+ log4(n+L) + d( 4

√
d
ξ + 1)d)).
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Procedure 5 Updating nodes for deletion for the bichromatic case.

input : (i, pi, x) from A, the leaf node in τ ′(S) corresponding to g(id(pi)), which we
denote as τ ′(S, g(id(pi))).

1 Let x̄ ∈ {A,B} and x̄ 6= x;
2 if Cx and Cx̄ in τ ′(S, id(pi)) = 0 then
3 Unset the flag F in τ ′(S, g(id(pi))) ;
4 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
5 Set Ex = 0 and E x̄ = 0 in τ ′(S, id(pi)) ;
6 for all g′ that is an ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter Cx̄ ≥ 1 in τ ′(S, g′) do
7 Decrease Ex of τ ′(S, g′) by 1;
8 if Ex in τ ′(S, g′) was decreased from 1 to 0 then
9 Unset the flag F in τ ′(S, g′) ;

10 Update the flags F in the nodes along the path from τ ′(S, g′) to the root
of τ ′(S) ;

11 end
12 end
13 else if Cx = 0 and Cx̄ ≥ 1 then
14 for all g′ that is an ε-neighbor of g(id(pi)) where the local counter Cx ≥ 1 in

τ ′(S, g′) do
15 Increase E x̄ of τ ′(S, g′) by 1;
16 Increase Ex of τ ′(S, g(id(pi))) by 1;
17 if E x̄ in τ ′(S, g′) was increased from 0 to 1 then
18 Set the flag F in τ ′(S, g′) ;
19 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
20 end
21 end
22 if Ex = 0 in τ ′(S, g(id(pi))) then
23 Unset the flag F in τ ′(S, g(id(pi))) ;
24 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root

of τ ′(S) ;
25 end
26 end

Proof. The proof closely follows the analysis for Theorem 48, and the correctness of the data
structure and the time complexity of its operations follow from the discussion in Section 4.2.
Note that our algorithm will output a pair which belong to the same ξε

2
√
d
-box or two of

them that are ε-neighbors. Based on Lemma 61, two points which corresponding hyercubes
are ε-neighbors have distance at most (1 + ξ)ε. Therefore, our algorithm could output a
pair of points which distance is at most (1 + ξ)ε. Another difference is that here we need
to search at most (4

√
d/ξ + 1)d neighbors during insertions and deletions. As a result,

U = O(d+ log4(n+L) + d(4
√
d/ξ + 1)d), and S = O(n2/3(d+ log4(n+L) + d(4

√
d/ξ + 1)d).

Again, C = O(1), δ ≥ 1/n2/3, and λ ≥ 1/n2/3. Therefore, by Lemma 22, the total cost is
O(S + 1√

λ
( 1√

δ
U + C)) = O(n2/3(d+ log4(n+ L) + (4

√
d/ξ + 1)d)). J
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By Lemma 60 and the above Theorem 63, we have the following theorem:

I Theorem 64. For an fixed dimension and fixed ξ, there exists a quantum algorithm that,
with high probability, can solve (1 + ξ)-BCP in time Õ(n2/3).

5.2 Quantum algorithm for solving BCP exactly
In this subsection, we present a quantum algorithm for solving BCP exactly. The main
idea of this algorithm is to partition A into smaller subsets. Then we build data structures
which support nearest-neighbor search on all subsets in superposition. We use the quantum
minimum finding algorithm to find the smallest distances from B to each subset, among
which we use the quantum minimum finding algorithm again to find the smallest distance.

Unlike the data structure for solving CP, the data structure for BCP does not have to
be uniquely represented, as no insertion and deletion are performed in this algorithm. The
data structure can have expected running time instead of the worst-case running time. The
total worst-case running time can be bounded by standard techniques. The nearest-neighbor
search data structure we use is from [19], and is reformulated in the following lemma.

I Lemma 65 ([19]). For any fixed dimension, there exists a data structure for n points in
Rd that can be built in expected time complexity O(ndd/2e+δ) for arbitrarily small δ and the
nearest-neighbor search can be performed in worst-case time complexity O(logn).

This data structure is based on the Voronoi diagram and its triangulation in higher
dimensions. Using this data structure, we have a quantum algorithm for solving BCP exactly,
which yields the following theorem.

I Theorem 66. There exists a quantum algorithm that, with high probability, solves BCP
for dimension d with time complexity Õ

(
n1− 1

2d+δ
)
for arbitrarily small δ.

Proof. We first partition A into dn/re subsets S1, . . . , Sdn/re, where |Si| = r for i ∈
[
dn/re

]
.

(The value of r will be determined later). For all i ∈
[
dn/re

]
, we can find a closest pair

between Si and B as follows. First, a data structure as in Lemma 65 for Si is built in expected
time O

(
rdd/2e+δ

)
, which supports nearest-neighbor search in time O(logn). Then, we use

the quantum minimum finding subroutine (Theorem 9) which uses the distance reported by
the nearest-neighbor search as the oracle. The closest pair between Si and B can be found
in time complexity Õ(

√
n). Note that the time complexity for building the data structure is

not bounded for the worst case. However, using Markov’s inequality, we know that with high
probability, say, at least 9/10, the time complexity is bounded by O

(
rdd/2e+δ

)
. Hence, fixing

a constant c ≥ 10, and stop the data structure construction after c · rdd/2e+δ steps. With at
most 1/10 probability, the construction will fail and this event can be detected by checking the
solution returned by the quantum minimum finding subroutine. We run O(logn) instances
of above procedure in parallel and use take the quantum minimum of all the O(logn) results.
The probability that all these instances fail is at most (1/10)O(logn) = O(1/n). We refer to
the above procedure as the “inner search”, and its time complexity is O

(
rdd/2e+δ +

√
n
)
.

Next, we use the distance of the output of the inner search as the oracle and perform
another quantum minimum finding subroutine for i ∈

[
dn/re

]
. We refer to this procedure

as the “outer search”. The probability that the closest pair between A and B lies in Si and
B is r/n. As a result, the number of the oracle queries for the quantum minimum finding
subroutine is Õ(

√
n/r). The time complexity for each query is O

(
rdd/2e+δ +

√
n
)
. Therefore,
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the total time complexity is Õ
(
(rdd/2e+δ +

√
n) ·

√
n/r
)
. A simple calculation shows that

this achieves the minimum (ignoring the δ term in the exponent) when r = n1/d/(d− 1)2/d,
which yields the total time complexity

Õ
(
n1− 1

2d+δ
)
. (74)

The failure probability for each query is at most O(1/n). Therefore, the total failure
probability is at most O(

√
n/r/n) = O(n−(1/2−1/2d)) for d > 1, which can be smaller than

any constant. J

5.3 Quantum lower bound for BCP in constant dimensions
Now, we give a lower bound for (1 + ξ)-BCP, which trivially holds for BCP.

I Theorem 67. The quantum query complexity for solving BCP is Ω(n2/3). Furthermore,
the quantum query complexity for solving (1 + ξ)-BCP with an arbitrary ξ is also Ω(n2/3).

Proof. Recall that we have shown in Section 4.4 that ED reduces to CP by viewing ED as
one-dimensional CP with the minimum distance 0. It is not hard to see that ED also reduces
to approximate CP with multiplicative error 1 + ξ since 0 times 1 + ξ is still 0. For simplicity,
we denote approximate CP with multiplicative error 1 + ξ as (1 + ξ)-CP. Given a set S as
a (1 + ξ)-CP instance, we choose A,B ⊂ S uniformly at random such that A = S \B and
|A| = |B|. Then, with 1/2 probability, a closest pair in S has one point in A and another in
B. Therefore, if (a, b) be a valid solution for (1 + ξ)-BCP on (A,B), (a, b) is also a a valid
solution for (1 + ξ)-CP on S with probability 1/2.

It is obvious that following the same proof, CP reduces to BCP. Hence, the quantum
query complexity for BCP and (1 + ξ)-BCP are both Ω(n2/3). This completes the proof. J

6 Orthogonal vectors in constant dimensions

I Theorem 68. The time complexity of OVn,d (Definition 10) in quantum query model is
Θ(
√
n) when the dimension d is constant .

Proof. We show lower and upper bounds for OVn,d:

Lower bound

We reduce the search problem to an instance of 2-dimensional OV. Let all vectors in A be
(0, 1). We map an element of the search instance with value 0 as a vector in B with value
(0, 1) in OVn,2, and 1 as (1, 0). An orthogonal pair must contain the vector in B with value
(1, 0) in this construction. Therefore, if we find an orthogonal pair, we find the corresponding
marked (value 1) element in the search instance. The Ω(

√
n) lower bound of Grover’s search

algorithm gives an Ω(
√
n) lower bound to OVn,d.

Upper bound

The vectors only have 2d possible values, {0, 1}d, in the d-dimensional OV. For a particular
value v ∈ {0, 1}d, we can use Grover search to check whether there exist vector a ∈ A

such that a = v in time O(
√
n), and similarly for vectors in B. Therefore we can, for all

v ∈ {0, 1}d, check whether there exist a ∈ A such that a = v and b ∈ B such that b = v in
O(2d+1√n) time, recording the results as two 2d bit strings SA and SB . Then we check all
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22d pairs of values (v, w) whether 〈v, w〉 = 0 , SA(v) = 1, and SB(w) = 1. When we found
such a pair (v, w), we use Grover’s search algorithm again to output a corresponding pair of
vectors. The total running time is O(2d+1√n+ 22d + 2

√
n) = Õ(

√
n). J
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1 Introduction

Can preprocessing help in computation? This question, which arises in several areas of
complexity theory, can be formalized in many ways. We consider the following version:

Suppose that f(x, y) : {0, 1}n × {0, 1}n → {0, 1} is a function hard for AC0. Are there
functions α, β : {0, 1}n → {0, 1}poly(n) such that f(x, y) can be computed from α(x), β(y)
using an AC0 circuit?
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17:2 Limits of Preprocessing

We think of α, β as functions that preprocess the inputs x, y in order to make the
computation of f easier. Alternatively, one can think of α(x) and β(y) as messages sent
simultaneously by two parties to an AC0 referee, whose goal is to compute f(x, y). An
alternative formulation is:

Let F be a collection of hard functions fx : {0, 1}n → {0, 1} indexed by x ∈ {0, 1}n. Is
there a function β : {0, 1}n → {0, 1}poly(n) such that each fx(y) ∈ F can be computed
from β(y) using an AC0 circuit?

The two formulations are equivalent due to the completeness of circuit evaluation: if fx
can be computed efficiently from β(y), then the function f(x, y) = fx(y) can be computed
efficiently from β(y) and the description of the circuit for fx.

A simple example where preprocessing does help is when the function f(x, y) depends
only on the Hamming weights of x and y (e.g., |x| > |y|). Another simple example is any
equivalence relation (e.g., graph isomorphism), where the two parties can send to the referee
canonical representatives of the equivalence class of their respective inputs.

In contrast to the above examples, it is widely believed that for f(x, y) =
∑n
i=1 xiyi

mod 2 (also known as mod-2 inner product) the answer to the above questions is negative.
Following Rothblum [27], we refer to this as the inner product with preprocessing (IPPP)
conjecture. Our main result proves a weak version of the IPPP conjecture, ruling out the
utility of preprocessing when the output of β is short:
I Theorem 1 (Main theorem, informal). Let f be the mod-2 inner product function, or
alternatively any exponentially-secure cryptographic pseudorandom function, and let m =
n+n/(logω(1) n). There are no functions α : {0, 1}n → {0, 1}poly(n) and β : {0, 1}n → {0, 1}m
for which f(x, y) can be computed from α(x), β(y) using an AC0 circuit.

Our result is in fact more general, applying to a broad class of other functions, and
ruling out not only AC0 circuits, but also bounded depth circuits of subexponential size. In
particular, it applies to any function with large statistical query dimension [23, 7].

Our main theorem implies a modest but meaningful limitation on the power of prepro-
cessing in low-complexity cryptography. There is a large body of work on minimizing the
complexity of pseudorandom functions (PRFs) [19]; see [9] for a survey. A recent work of
Boneh et al. [10] proposed a relaxed notion of PRF, dubbed “encoded-input PRF”, that
allows an arbitrary polynomial-time encoding of the input. This is motivated by several
applications of low-complexity PRFs for which the relaxed notion suffices. The result of Linial
et al. [24] rules out the existence of PRFs (with better than quasipolynomial security) in the
complexity class AC0. A natural question is whether one can circumvent this impossibility
by encoding the input. We show that such an encoding (if it exists) must have a nontrivial
stretch.

As a final contribution, we relate the question of fully settling variants of the IPPP
conjecture to another wide-open question: learning AC0 under “simple” input distributions,
such as polynomial-time samplable distributions, or uniform distributions over linear sub-
spaces of Fn2 . Under cryptographic assumptions from [6, 10], we show that either (1) the
known quasipolynomial time learning algorithm for AC0 under the uniform distribution [24]
cannot be extended to other simple distributions, even with subexponential time; or (2)
IPPP-style hardness conjectures are true. Put differently, progress on learning AC0 (even
under simple distributions and in subexponential time) would lead to proving IPPP-style
conjectures under cryptographic assumptions. The latter currently seems difficult. The idea
behind this connection is that the functions α and β corresponding to a refutation of an
IPPP-style conjecture define a reduction from breaking “rounded inner-product” style (weak)
PRF candidates to learning AC0 under simple distributions.
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1.1 Related Work
The power of preprocessing is relevant to many problems in computer science. For instance,
the broad goal of data structures is to preprocess x into a polynomially longer ŷ = β(y),
such that queries of the form f(x, y) can be answered by reading few bits of ŷ. In our case,
we replace “reading few bits of ŷ” by “computing an AC0 function of ŷ”. Below we survey
several settings in complexity theory and cryptography that motivate this kind of questions.

Communication complexity – Polynomial hierarchy

Communication complexity contains analogs of the familiar complexity classes of computa-
tional complexity. For example, Pcc consists of all two-party functions which can be computed
by exchanging polylogarithmically many bits, and NPcc consists of all two-party functions
which can be verified using polylogarithmically many bits.

An NPcc protocol for a function f : {0, 1}n × {0, 1}n → {0, 1} proceeds as follows: an
oracle sends the two parties the index of a combinatorial rectangle X ×Y ⊆ {0, 1}n×{0, 1}n
on which f = 1, and the two parties verify that their inputs x, y belong to the rectangle:
x ∈ X and y ∈ Y ; the complexity of the protocol is the length of the index. Equivalently,
f ∈ NPcc if it can be written as a disjunction of 2polylog(n) combinatorial rectangles, that is,
functions of the form “x ∈ A and y ∈ B”.

Babai, Frankl and Simon [4] extended this by defining an analog of the polynomial
hierarchy, PHcc. A function f : {0, 1}n × {0, 1}n → {0, 1} belongs to PHcc if it can be
expressed as a constant depth circuit of quasipolynomial size 2polylog(n) whose leaves are
combinatorial rectangles. Equivalently, f ∈ PHcc if it can be expressed as a constant depth
circuits of quasipolynomial size whose leaves are arbitrary functions depending arbitrarily on
one of the inputs. This is an instance of our main question, with a slight difference: PHcc

allows the circuits to have quasipolynomial size.
Existing lower bound methods in communication complexity only go as far as PNPcc [20].

Nevertheless, it is a folklore conjecture that the inner product function IP lies outside PHcc.
This is considered as one of the most important outstanding open problems in the field.

Razborov [26] showed that a function whose matrix representation is rigid enough doesn’t
belong to PHcc (see also [35]), thus giving one potential avenue to prove lower bounds against
PHcc. Recently, in a surprising result, Alman and Williams [3] (see also [16]) showed that
the inner product (or Hadamard) matrix isn’t as rigid as was previously believed; however,
their result doesn’t rule out the use of Razborov’s approach for proving the IPPP conjecture.

Communication complexity – Simultaneous messages and compression

As noted above, the question we study can be naturally cast as a computationally bounded
variant of the simultaneous messages (SM) model in communication complexity [36, 5]. In
this model, k ≥ 2 parties send their messages to a referee, who should immediately output
the value of the function. In our case, k = 2 and the referee is limited to be an AC0 circuit.
On the other hand, the two parties are computationally unbounded, and the message sent
by each party can be longer than its input.

A different communication complexity model that considers AC0-bounded parties is the
compression model from [15, 11]. In this model, there is an AC0 party whose goal is to
compute the parity of its n-bit input x using the help of a computationally unbounded party,
while minimizing the communication. This model is very different from ours; in particular,
the model is trivialized if one allows n bits of communication.
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Circuit complexity – Graph complexity

Pudlák, Rödl and Savický [25] developed the concept of graph complexity as a new approach
to circuit lower bounds. Given a graph, we attempt to build it up from “axioms” using union,
intersection, and complementation. In the particular case of bipartite complexity, the graph
to be constructed is bipartite, and the axioms are complete bipartite graphs respecting the
bipartition of the target graph.

A bipartite graph naturally defines a Boolean function with two inputs: the inputs are
one vertex from each side, and the output is whether the edge exists. This correspondence
shows that bipartite complexity is the same as a circuit whose leaves are combinatorial
rectangles. Alternatively, we can allow each leaf to depend arbitrarily on one of the inputs,
thus recovering our model of study.

Bipartite complexity can be studied for various circuit classes. One recent highlight is
the work of Tal [29], in which he shows that bipartite formulas computing IP must have
quadratic size.

Circuit complexity – AC0 ◦ MOD2

Our understanding of AC0[p] circuits lacks compared to AC0 circuits. While we have strong
lower bounds against AC0[p] circuits, the existing correlation bounds are significantly weaker,
and this is a barrier for constructing pseudorandom generators for AC0[p]. Observing all
of this, Servedio and Viola [28] suggest considering a weakening of AC0[2], in which all
parity gates appear in the bottom layer. They conjecture that inner product cannot be
computed by such circuits, and prove their conjecture for depth-3 circuits. Akavia et al. [2]
give cryptographic applications for lower bounds against this class, and Cheragchi et al. [12]
give superlinear lower bounds for inner product.

AC0 circuits with parity gates at the bottom are the same as AC0 circuits with linear
preprocessing, namely where the preprocessing functions α, β are linear over F2. In other
words, the conjecture of Serverdio and Viola is a special case of our conjecture, in which it
suffices to rule out linear α, β.

Cryptography

Our formulation of the IPPP conjecture is a close variant of the IPPP conjecture made
by Rothblum [27], where it was used to construct circuits resilient to AC0 leakage. (The
flavor of IPPP from [27] is different from ours in that it restricts α, β to be polynomial-time
computable and assumes hardness of approximation as opposed to just worst-case hardness.)
In a recent work of Bogdanov et al. [8], a similar result was obtained unconditionally.

As discussed above, our main question is strongly relevant to the goal of implementing
cryptographic primitives in AC0. The work of Boneh et al. [10] poses the question of
implementing an “encoded-input pseudorandom function” in AC0, namely a pseudorandom
function family fk(x), where each function fk can be computed in AC0 given an encoding
of the input x. This is essentially the same as asking whether our main question can be
answered affirmatively for some f(k, x) such that fk(x) is a pseudorandom function family.

Extractors

As part of his study of extractors for NC0 and AC0 sources, Viola [34] constructed a function
f : {0, 1}n → {0, 1} such that the distribution (x, f(x)) (with x uniform) is hard for AC0 to
sample, even approximately. In particular, his results imply that the function F : [n+ 1]×
{0, 1}n → {0, 1} given by
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F (i, y) =
{
yi i ∈ [n],
f(y) i = n+ 1,

cannot be computed by an AC0 circuit from α(x), β(y), where α : [n+ 1]→ {0, 1}poly(n) and
β : {0, 1}n → {0, 1}n. Therefore F (x, y) requires exactly n+ 1 bits of preprocessing of y.

1.2 Overview of techniques
We outline the technique used for proving Theorem 1. The main tool we use is the LMN
inequality [24, 30], which states that AC0 functions can be approximated by low degree
functions. Let us illustrate the main idea behind the proof by sketching the proof of the
following special case.

I Theorem 2. Let α : {0, 1}n → {0, 1}∗ and let β : {0, 1}n → {0, 1}n, and suppose that C is
a bounded-depth circuit satisfying C(α(x), β(y)) = IP(x, y) for all x, y ∈ {0, 1}n. Then C has
exponential size.

Since the inner product function is injective in each of its inputs, the preprocessing
function β must be bijective.

For each x ∈ {0, 1}n, we can plug in the values α(x) to obtain constant-depth circuit Cx,
of size at most that of C, satisfying Cx(y) = IP(x, β−1(y)) for all y ∈ {0, 1}n.

For any two x 6= z, the functions fx(y) = IP(x, y) and fz(y) = IP(z, y) are orthogonal
(this is the well-known orthogonality of the Fourier characters). This property is crucially
maintained by the functions Cx, Cz, which are also orthogonal.

Suppose that C has small size. We are thus in the following situation: we have 2n
orthogonal functions Cx, each of which can be approximated by a low degree function
(by LMN), and so close to a low-dimensional subspace x of R[{0, 1}n]. This is, however,
impossible.

The argument works in much the same way for any function f(x, y) which is injective in
its first input and whose “slices” fx(y) = f(x, y) are approximately orthogonal on average.
A short hybrid argument shows that PRFs fit the bill.

It is more challenging to extend the argument to functions β with larger output {0, 1}m.
The basic idea is to complete the functions Cx, which are a priori defined only on 2n of the
2m possible inputs, to total functions which are still approximately orthogonal. Therefore if
C has small size then one of the functions Cx will be far from V . On the other hand, since
Cx agrees with a function computed by an AC0 circuit on a 2n−m fraction of the input, and
that function is close to V . These two properties contradict each other.

This sketch explains why we can only expect to handle this way m = n+ o(n): if m is
any larger, then the correlation of Cx with the output of the circuit is too small, and so we
cannot reach any contradiction.

Organization

After brief preliminaries (Section 2), we state our main results in Section 3, including
Theorem 1 above. The connection to learning AC0 functions under simple input distributions
appears in Section 4. We prove our main technical theorem in Section 5, which is followed
by applications to encoded-input PRFs (Section 6) and rounded inner product (Section 7).
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2 Preliminaries

2.1 Definitions and notation
Simultaneous messages protocols

A (two-party) simultaneous messages (SM) protocol consists of two players, which we refer
to as Alice and Bob, and a referee, which we refer to as Carol, that together compute a
function. Alice and Bob each send a message, which is based on the input, to Carol, who
then computes a function of the two messages received. Formally, we have the following
definitions:

I Definition 3 (Simultaneous messages protocols). Let X,Y, X̂, Ŷ , Z be finite nonempty sets.
A simultaneous messages protocol (shortly, SM protocol or SMP) P is a triplet of functions
(A,B,C), where A : X → X̂, B : Y → Ŷ , and C : X̂ × Ŷ → Z. We call C the referee
function.

I Definition 4 (SM protocol admittance). Let f : X × Y → Z be a function. We say that f
admits an SM protocol (A,B,C) if f(x, y) = C(A(x), B(y)) for every (x, y) ∈ X × Y . In
that case, we also say that (A,B,C) computes f .

Inner product space of Boolean functions

For the purpose of utilizing Fourier analysis, we will consider the inner product space of all
functions {−1, 1}n → R with the following inner product:

〈f, g〉 = E
x∼{−1,1}n

[f(x)g(x)] = 1
2n

∑
x∈{−1,1}n

f(x) · g(x).

It is a known fact that the aforementioned inner product space has as orthonormal basis
the set of all parity functions {χS}S⊆[n], defined by χS(x) =

∏
i∈S xi.

The Inner Product function

The inner product modulo 2 function IP : {0, 1}n × {0, 1}n → {0, 1} is defined by

IP(x, y) =
n∑
i=1

xiyi (mod 2).

Note that each x, when fixed, corresponds to a parity function on a subset S of y’s
coordinates, a subset which is determined by x. This correspondence is actually a bijection
mapping elements of {0, 1}n to subsets of 2[n]. Thus, when we switch to ±1 notation, we
can identify each x ∈ {−1, 1}n with the parity function χS(x)(y) that results when fixing x
in IP(x, y).

One-to-one condition

Some functions have a certain property, formally defined below, rendering them harder
to compute with preprocessing. Restricting attention to these functions seems to help in
obtaining lower bounds.

I Definition 5 (One-to-one condition). Let f : X × Y → Z be a function. We say that f
satisfies the left one-to-one condition if for every x 6= x′ ∈ X there exists y ∈ Y such that
f(x, y) 6= f(x′, y). Similarly, we say that f satisfies the right one-to-one condition if for
every y 6= y′ ∈ Y there exists x ∈ X such that f(x, y) 6= f(x, y′). Finally, we say that f
satisfies the one-to-one condition if f satisfies both the left and right one-to-one conditions.
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I Proposition 6 (One-to-one preprocessing). Let f : X × Y → Z be a function. Then:
If f satisfies the left one-to-one condition, then for every SM protocol (A,B,C) that f
admits, A computes a one-to-one mapping.
If f satisfies the right one-to-one condition, then for every SM protocol (A,B,C) that f
admits, B computes a one-to-one mapping.

2.2 Known facts
The following are known facts we will need later.

I Theorem 7 (Tal’s LMN improvement (LMNT) [24, 30]). Let f be a Boolean function with
n variables computable by an unbounded fan-in circuit of depth h and size M , and let t be
any integer. Then,

‖f≥t‖2 ≤ 2 · 2−t/Oh(logM)h−1
.

I Lemma 8 (Lemma 3.6 in [21]). Let H: [0, 1]→ R be the binary entropy function defined by

H(p) = −p log p− (1− p) log(1− p).

Then, for any 0 < a ≤ 1/2 and n ∈ N,(
n

≤ an

)
≤ 2H(a)n.

3 Main results

Our main technical result, proved in Section 5, states that a “large” collection of functions
that are “close” to being orthonormal, is computationally hard for SM protocols in which
the referee is an unbounded fan-in circuit of constant depth, and one player is limited to
“short” preprocessing output length.

I Theorem 9 (Main Theorem). Let f : {−1, 1}n×{−1, 1}n → {−1, 1} be a Boolean function,
let 0 ≤ k ≤ n/2− 1, and let 0 ≤ t ≤ n+ k be an integer. Denote fx(y) , f(x, y). Suppose
the following hold:

f satisfies the right one-to-one condition.
There exists a subset X ⊆ {−1, 1}n of size |X| ≥ 13 · 22(k+1) ·

(
n+k
≤t
)
such that

E
x6=x′∼X

[
〈fx, fx′〉2

]
≤ 22k

36|X|2 .

f admits an SM protocol P = (A,B,C) such that B : {−1, 1}n → {−1, 1}n+k and C is
an unbounded fan-in circuit of depth h and size M .

Then:

M ≥ 2Ωh
(
[ tk ]1/(h−1))

.

One may wonder about the necessity of satisfying the one-to-one condition. While it may
still be the case that the same result (or even better) follows without this assumption, if we
could obtain it that way, then we could easily exhibit a function with stronger lower bounds.
As an example, consider taking the inner product function and computing it only on a prefix
of the input while ignoring other bits – relying on the main theorem’s consequence, we could
extend it to an arbitrary Ω(n) lower bound on the preprocessing output length.
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The (somewhat cumbersome) second requirement on a function f : {−1, 1}n×{−1, 1}n →
{−1, 1} specified in Theorem 9 can be replaced by a slightly stronger requirement, yet one
involving the more familiar measure borrowed from the study of learning by statistical quer-
ies [23]. Define the statistical query dimension of f with respect to the uniform distribution to
be the size of the largest set D ⊆ {−1, 1}n such that |〈fx, fx′〉| ≤ 1/|D| for every x 6= x′ ∈ D.
More details on statistical query dimension can be found in [7].

A simple consequence of Theorem 9 is Theorem 1. Here we state a more general version
that refers to statistical query dimension. At a high level, the theorem says that computing
with preprocessing a function having exponential statistical query dimension remains as hard
for AC0 as without, given that one player is limited to output a string whose length stretches
the input length by an additive sublinear term:

I Proposition 10 (Formal version of Theorem 1). Let k = o(n), and suppose that a function
f : {−1, 1}n ×{−1, 1}n → {−1, 1} satisfies the one-to-one condition and has statistical query
dimension of 2Ω(n). If f admits an SM protocol (A,B,C) such that B : {0, 1}n → {0, 1}n+k

and C is an unbounded fan-in circuit of depth h and size M , then:

M ≥ 2Ωh
(
[nk ]1/(h−1))

.

Proof. Let D ⊆ {−1, 1}n be a set of size 2Ω(n) such that |〈fx, fx′〉| ≤ 1/|D| for every
x 6= x′ ∈ D. One can easily find an 0 < α ≤ 1/2 for which H(α) is small enough, such that
setting t = α(n+ k) gives

13 · 22(k+1) ·
(

n+ k

≤ α(n+ k)

)
≤

Lemma 8
13 · 22(k+1) · 2H(α)(n+k) ≤ |D|/6.

Now, let X ⊆ D of size |X| = 13 · 22(k+1) ·
(
n+k
≤t
)
. We have:

E
x6=x′∼X

[
〈fx, fx′〉2

]
≤ E

x 6=x′∼D

[
〈fx, fx′〉2

]
≤ E

x 6=x′∼D

[∣∣〈fx, fx′〉
∣∣]2

≤ 1
|D|2

≤ 1
36|X|2 ≤

22k

36|X|2 .

Thus, by Theorem 9,

M ≥ 2Ωh
(
[ tk ]1/(h−1))

= 2
Ωh
([

α(n+k)
k

]1/(h−1)
)

= 2Ωh
(
[nk ]1/(h−1))

. J

Since IP satisfies the one-to-one condition and has the largest possible statistical query
dimension of 2n, we get the following corollary.

I Corollary 11. Let k ≤ nα for some 0 ≤ α < 1, and suppose that IP admits an SM protocol
(A,B,C) such that B : {0, 1}n → {0, 1}n+k and C is an unbounded fan-in circuit of depth h
and size M . Then:

M ≥ 2
Ωh
(
n

1−α
h−1

)
.

I Corollary 12. Let k ≤ n
logβ n for every β > 0 (for large enough n), and suppose that IP

admits an SM protocol (A,B,C) such that B : {0, 1}n → {0, 1}n+k and C is an unbounded
fan-in circuit of depth h and size M . Then:

M ≥ 2Ωh(logc n) for every c > 0.
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We now present an application of our main theorem to cryptography. We show that
exponentially secure PRFs (in fact, even weak PRFs) are not computable in AC0, even if one
allows an arbitrary sublinear-stretch encoding of the input. This implies a limitation on the
power of encoded-input PRFs in AC0 [10].

I Definition 13 (pseudorandom functions). Let K be a keys domain, and let F : K×{0, 1}n →
{0, 1} be a family of functions; denote Fk(x) , F (k, x). For integer m and ε ∈ [0, 1], we say
that F is a (strong) (ε,m)-pseudorandom function function family (shortly (ε,m)-PRF) if
for every (non-uniform) circuit distinguisher Df of size at most m, the following holds:∣∣∣ Pr

k∼K

[
DFk(1n) = 1

]
− Pr

f

[
Df (1n) = 1

]∣∣∣ ≤ ε.
If the distinguisher is limited to querying the oracle on random and independent inputs, then
we say that F is a weak (ε,m)-PRF.

For simplicity, we will consider the case in which K = {0, 1}n (under the uniform distribution).
We prove the following result in Section 6:

I Theorem 14 (Lower bound for exponentially secure weak PRFs). Let k ≤ nα for some
0 ≤ α < 1, and suppose that F : {0, 1}n × {0, 1}n → {0, 1} is a strong 2Ω(n)-PRF, or
alternatively a weak 2Ω(n)-PRF satisfying the right one-to-one condition. If F admits an SM
protocol (A,B,C) such that B : {0, 1}n → {0, 1}n+k and C is an unbounded fan-in circuit of
depth h and size M , then:

M ≥ 2
Ωh
(
n

1−α
h−1

)
.

(Similar results hold for 2nΩ(1) -PRFs, with slightly worse bounds on M .)
As before, the reason we require a weak PRF to satisfy the right one-to-one condition is

that its “effective” input size could be much smaller than n. For example, imagine a weak
PRF which ignores the right half of its input. A distinguisher would need 2Ω(n) random
samples to notice this. The right one-to-one condition is automatically satisfied by strong
PRFs: if fk(x) = fk(x′) for all (or even most) keys k, then it is easy to distinguish fk from a
random function by querying the input function at x, x′.

We prove similar results for a class of functions obtained by applying a “rounding predicate”
to inner-product modulo q.

I Definition 15 (Rounded inner product). For an integer q ≥ 2 and a set R ⊆ {0, 1, . . . , q−1}
we define the (q,R)-rounded inner product function IP[q,R] : {0, 1}n × {0, 1}n → {0, 1} by

IP[q,R](x, y) =
{

0
∑n
i=1 xiyi (mod q) ∈ R,

1 otherwise.

One reason for our interest in this class is that some instances, such as rounded in-
ner product modulo 6, are conjectured to be (weak) pseudorandom functions with near-
exponential security [10]. Under such a conjecture, the desired negative result would follow
from our results on (weak) PRFs. However, the results about rounded inner product functions
are unconditional, and apply also to instances that are provably not (weak) PRFs.

We prove the following result in Section 7:
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I Theorem 16 (Lower bound for rounded inner product). Let q ≥ 2 be even, and let R ⊆
{0, 1, . . . , q−1} such that |R| = q/2. Let k ≤ nα for some 0 ≤ α < 1, and suppose that IP[q,R]

admits an SM protocol (A,B,C) such that B : {0, 1}n → {0, 1}n+k and C is an unbounded
fan-in circuit of depth h and size M . Then:

M ≥ 2
Ωh
(
n

1−α
h−1

)
.

4 Conditional Limits of Preprocessing and Learning AC0

We were unable to settle the main IPPP conjecture or prove similar results on the limits of
preprocessing for other explicit functions. Moreover, our current techniques seems insufficient.
A second-best alternative is to settle such questions under widely believed conjectures from
complexity theory or cryptography. While we are also unable to show such a conditional
result (and view this as an interesting goal), we can relate this challenge to another intriguing
question: learning AC0 under “simple” distributions.

The work of Linial et al. [24] shows that AC0 can be learned in quasipolynomial time under
the uniform distribution. It is open whether the same holds for PAC learning under arbitrary
distributions. The question is still open even when restricted to simple input distributions,
such as uniform distributions over linear subspaces of Fn2 , and even if “quasipolynomial” is
relaxed to “subexponential.” In fact, we are not aware of hardness results that apply to any
simple distributions or beyond quasipolynomial time. See [13, 31] for weaker conditional
hardness results, and [14] for a survey of known learning algorithms for AC0.

We observe that positive results on learning AC0 under simple distributions can be
used to base hardness of IPPP-style problems on cryptographic assumptions from [6, 10].
Equivalently, cryptographic assumptions imply that either (1) AC0 cannot be learned under
simple distributions in subexponential time, or (2) IPPP-style hardness conjectures are true.
While both (1) and (2) seem highly plausible, strong versions of them may turn out to be
false. Moreover, to the best of our knowledge, neither (1) nor (2) are known to be implied by
standard conjectures in cryptography or complexity theory. A direct proof that either (1)
or (2) hold also seems unlikely. For these reasons, we believe that the above connection is
meaningful, and can potentially lead to future progress on either IPPP-style questions or
learning AC0 under simple distributions.

4.1 The conjectures
We will show connections between the following types of conjectures:

Cryptographic assumptions:
(C1) Subexponential hardness of Learning With Rounding (LWR) [6]: for some ε > 0
and polynomials p = p(n), q = q(n), the function fk(x) = Round(〈k, x〉 (mod 2q)) is a
2Ω(nε)-secure weak PRF, where k ∈ {0, 1, . . . , p− 1}n and x ∈ {0, 1}n. Here, Round(y)
returns 0 or 1 depending on whether y is closer to 0 or to the modulus 2q.
(C2) Subexponential hardness of LWR mod 6 [10]: for some ε > 0, fk(x) = Round(〈k, x〉
(mod 6)) is a 2Ω(nε)-secure weak PRF, where k, x ∈ {0, 1}n.

Hardness of learning conjectures:
(L1) AC0 cannot be learned in subexponential time under all polynomial-time samplable
input distributions.
(L2) AC0 cannot be learned in subexponential time under all F2-linear input distribu-
tions.

Here, learning in subexponential time refers to a 2no(1)-time learning algorithm in the
standard PAC model [32].
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IPPP-style conjectures:
(P1) Integer-IP does not admit an SM protocol (A,B,C) where the referee C is in AC0

and the parties A and B are polynomial-time. Here Integer-IP is the (non-boolean)
inner product of two n-bit vectors over the integers.
(P2) Integer-IP is not in AC0 ◦MOD2.

Similarly, we define (P1)m and (P2)m as variants where Integer-IP is replaced by inner
product modulo m. Note that (P1)2 is the worst-case variant of Rothblum’s IPPP
conjecture [27] and (P2)2 is the IPPP with linear preprocessing conjecture made by
Servedio and Viola [28].

4.2 The connections
We now establish simple connections between the previous conjectures.

I Theorem 17. The following implications hold:
1. (C1)⇒ (L1) ∨ (P1)
2. (C1)⇒ (L2) ∨ (P2)
3. (C2)⇒ (L1) ∨ (P1)2 ∨ (P1)3

4. (C2)⇒ (L2) ∨ (P2)2 ∨ (P2)3

Proof. To prove (1), suppose that both (L1) and (P1) are false. We use the SM protocol
implied by ¬(P1) to convert the learning algorithm implied by ¬(L1) into an attack against
the LWR assumption in (C1). Let f(a, b) be the Integer-IP function. By ¬(P1), there is an
SM protocol (A,B,C) for f where C is in AC0 and the parties A and B are polynomial-time.
Letting f ′(k, x) be the rounded inner product function defined by polynomials p, q as in (C1),
we get a similar SM protocol (A′, B′, C ′) for f ′ in the following natural way: A′ expands each
ki ∈ {0, 1, . . . , p− 1} to a binary length-p vector of weight ki and invokes A; B′ expands each
xi ∈ {0, 1} to the length-p vector (xi, . . . , xi) and invokes B; and C ′ invokes C to compute
the integer inner product 〈k, x〉, reduces the result modulo q, and rounds. Since p and q are
polynomials, C ′ can indeed be implemented in AC0. Now consider the message k̂ sent by
A′ on a uniformly random input k, and let C ′

k̂
be the AC0 circuit obtained by restricting

C ′ to this first message. Let X be the (polynomial-time samplable) input distribution
defined by the message sent by B′ on a uniformly random input x. Using the subexponential
time learning algorithm implied by ¬(L1) to learn C ′

k̂
on input distribution X, we get a

subexponential time algorithm breaking (C1) as required.
The proofs of the other parts of the theorem follow similarly, noting that if neither

(P1)2 nor (P1)3 hold (resp., neither (P2)2 nor (P2)3 hold), then f ′ computing rounded inner
product modulo 6 admits an SM protocol with referee in AC0 and polynomial-time parties
(resp., parties computing an F2-linear function with polynomial stretch). J

5 Proof of Main Theorem

The following two results will be needed for proving the main theorem, Theorem 9.

I Proposition 18 (High-degree spectral concentration bound). Let f : {−1, 1}n → {−1, 1}
be a Boolean function, and let 0 ≤ ε ≤ 1/2. Then, for every integer 0 ≤ t ≤ n such that
‖f≤t‖ ≤ ε, if an unbounded fan-in circuit of depth h and size M agrees with f on at least
1/2 + ε fraction of inputs, then

M ≥ 2Ωh
(
[ t
1−2 log ε ]1/(h−1))

.
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Proof. Let 0 ≤ t ≤ n be an integer such that ‖f≤t‖ ≤ ε, and suppose that an unbounded
fan-in circuit of depth h and size M computes a function F that agrees with f on at least
1/2 + ε fraction of inputs.

On one hand, we have

〈F, f〉 = 2 Pr[F = f ]− 1 ≥
assumption

2(1/2 + ε)− 1 = 2ε.

On the other hand, we have

〈F, f〉 = 〈F≤t, f≤t〉+〈F>t, f>t〉 ≤
Cauchy–Schwarz

‖f≤t‖+‖F>t‖ ≤
LMNT

ε+
√

2 · 2−t/Oh(logM)h−1 .

Thus,

2ε ≤ ε+
√

2 · 2−t/Oh(logM)h−1 =⇒ M ≥ 2Ωh
(
[ t
1−2 log ε ]1/(h−1))

. J

In what follows, we will use the following notation:
For a set X, we write i 6= j ∼ X to mean that (i, j) is chosen uniformly at random from
the set {(i, j) ∈ X ×X : i 6= j}.
Given an inner product space V , a subspace U ≤ V , and a vector v ∈ V , we denote the
projection of v onto U by projU (v).

I Lemma 19 (The Projection Lemma). Let V be an inner product space over R. Let
{vi}i∈X ⊆ V be a set of unit vectors indexed by X, and suppose that

E
i6=j∼X

[
〈vi, vj〉2

]
≤ 1

36|X|2 .

Then, for every subspace U ≤ V , there exists i ∈ X such that ‖projU (vi)‖2 = O
(

dimU
|X|

)
.

Proof. Let U ≤ V be a subspace, and denote D , dimU .
By Cauchy–Schwartz,

E
i6=j∼X

[
|〈vi, vj〉|

]
≤ E

i 6=j∼X

[
〈vi, vj〉2

]1/2
≤ 1

6|X| .

By Markov’s inequality,

Pr
i∼X

[
E

j∼X\{i}

[
〈vi, vj〉2

]
>

1
12|X|2

]
≤ 12|X|2 · E

i6=j

[
〈vi, vj〉2

]
≤ 1

3 .

and similarly,

Pr
i∼X

[
E

j∼X\{i}

[
|〈vi, vj〉|

]
>

1
2|X|

]
≤ 2|X| · E

i 6=j

[
|〈vi, vj〉|

]
≤ 1

3 ,

which implies that at least 1/3 of the indices i ∈ X satisfy

E
j∼X\{i}

[
〈vi, vj〉2

]
≤ 1

12|X|2 and E
j∼X\{i}

[
|〈vi, vj〉|

]
≤ 1

2|X| ,

or equivalently,∑
j∈X\{i}

〈vi, vj〉2 ≤
1

12|X| and
∑

j∈X\{i}

|〈vi, vj〉| ≤
1
2 . (1)
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Put these indices in a set Y , and let W , span({vi : i ∈ Y }).
Let w ∈W such that ‖w‖ ≤ 1, and write w =

∑
i∈Y civi with ci ∈ R. Then for i ∈ Y ,

〈w, vi〉 =
∑
j∈Y

cj〈vi, vj〉 = ci +
∑

j∈Y \{i}

cj〈vi, vj〉.

Multiply this by ci, and sum over all i ∈ Y to obtain

1 ≥ ‖w‖2 =
∑
i∈Y

c2i +
∑
i6=j

cicj〈vi, vj〉.

Since 2|cicj | ≤ c2i + c2j , it follows that

1 ≥
∑
i∈Y

c2i −
1
2
∑
i 6=j

(c2i + c2j )|〈vi, vj〉| =
∑
i∈Y

c2i

(
1−

∑
j∈Y \{i}

|〈vi, vj〉|
)
≥

Eq. (1)

1
2
∑
i∈Y

c2i ,

which implies
∑
i∈Y c

2
i ≤ 2.1 Since (a+ b)2 ≤ 2a2 + 2b2, for every i ∈ Y we have

〈w, vi〉2 ≤ 2c2i + 2
( ∑
j∈Y \{i}

cj〈vi, vj〉
)2

≤
Cauchy–Schwarz

2c2i + 2
∑

j∈Y \{i}

c2j ·
∑

j∈Y \{i}

〈vi, vj〉2

≤ 2c2i + 4
∑

j∈Y \{i}

〈vi, vj〉2 ≤
Eq. (1)

2c2i + 1
3|X| .

Taking expectation over i ∈ Y , we deduce

E
i∼Y

[
〈w, vi〉2

]
≤ E

i∼Y

[
2c2i + 1

3|X|

]
= 2
|Y |

∑
i∈Y

c2i + 1
3|X| ≤

4
|Y |

+ 1
3|X|

≤
|Y |≥|X|/3

12
|X|

+ 1
3|X| ≤

13
|X|

.

Now let u1, . . . , uD be an orthonormal basis for U , and for every k ∈ [D], let wk ∈W be
the projection of uk onto W (notice that ‖wk‖ ≤ 1). We have

E
i∼Y

[
‖projU (vi)‖2

]
= E

i∼Y

 ∑
k∈[D]

〈vi, uk〉2
 = E

i∼Y

 ∑
k∈[D]

〈vi, wk〉2


=
∑
k∈[D]

E
i∼Y

[
〈vi, wk〉2

]
≤ 13D
|X|

,

which implies there exists i ∈ Y such that ‖ projU (vi)‖2 ≤ 13D
|X| = O

(
D
|X|

)
, as desired. J

We can now prove our main theorem.

Proof of Theorem 9. The proof follows several steps.

1 Note that the argument implies that the vectors {vi}i∈Y are linearly independent; otherwise, we can
find representations of w for which

∑
i∈Y

c2
i is arbitrary large.
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STEP 1: Since f satisfies the left one-to-one condition, by Proposition 6, B computes a one-
to-one mapping; hence, we can extend it to a permutation τ : {−1, 1}n+k → {−1, 1}n+k

as follows:

τ(y1, . . . , yn+k) =
{
B(y1, . . . , yn) if yn+1 = · · · = yn+k = 1,
arbitrary choice otherwise,

where by arbitrary choice we mean one of the (2n+k−2n)! possible ways of completing the
definition so as to yield a permutation. Define σ = τ−1 and note that σ is a permutation
as well.

STEP 2: For every x ∈ {−1, 1}n and R ⊆ {n + 1, . . . , n + k}, define fRx : {−1, 1}n+k →
{−1, 1}n+k by

fRx (y1, . . . , yn+k) =
{
fx(y1, . . . , yn) if yn+1 = · · · = yn+k = 1,
χS(x)(y1, . . . , yn) · χR(yn+1, . . . , yn+k) otherwise.

What can we say about these functions?
Fix x ∈ {−1, 1}n, and denote by Cx the circuit obtained from C when Alice is given x
as input. Now, consider y ∈ {−1, 1}n+k.

If yn+1 = · · · = yn+k = 1, then fRx (y) = fx(y) by definition; hence, by the
correctness of P and the definition of σ, we have that fRx agrees with Cx ◦ σ−1 on
all such y’s.
Otherwise, let i ∈ {n + 1, . . . , n + k} such that yi = −1. For every R ⊆ {n +
1, . . . , n + k} that contains i, we have that Cx ◦ σ−1 agrees with exactly one of
fRx , f

R\{i}
x on the input (y1, . . . , yn+i−1,−1, yn+i+1, . . . , yn+k); thus, for exactly half

the subsets R ⊆ {n+ 1, . . . , n+ k}, fRx agrees with Cx ◦ σ−1 on y. Therefore,

Pr
R∼2[n+k]\[n]

[
fR
x (y) = Cx(σ−1(y))

]
= 1

2 .

This holds for any y such that (yn+1, . . . , yn+k) 6= (1, . . . , 1); hence,

E
y∼{−1,1}n+k

∃j∈[k] : yn+j=−1

[
Pr

R∼2[n+k]\[n]
[fR
x (y) = Cx(σ−1(y))]

]
= 1

2 ,

which implies there exists R(x) ⊆ [n+ k] \ [n] such that

Pr
y∼{−1,1}n+k

∃j∈[k] : yn+j=−1

[
fR(x)
x (y) = Cx(σ−1(y))

]
≥ 1

2 ,

It follows that the fraction of inputs on which fR(x)
x and Cx ◦ σ−1 agree is at least

2n + (1/2) ·
(
2n+k − 2n

)
2n+k = 1

2 + 1
2k+1 ,

which is also the fraction of inputs on which FR(x)
x , f

R(x)
x ◦ σ and Cx agree.
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The second thing we observe is that for any x 6= x′ ∈ X,〈
FR(x)
x ,F

R(x′)
x′

〉
=
〈
fR(x)
x ◦ σ, fR(x′)

x′ ◦ σ
〉

=
〈
fR(x)
x , f

R(x′)
x′

〉
= E

y∼{−1,1}n+k

[
fR(x)
x (y) · fR(x′)

x′ (y)
]

= E
y∼{−1,1}n

[
fx(y) · fx′(y)

]
· 2−k

+
∑

z∈{−1,1}k
∃j∈[k] : zj=−1

χR(x)(z) · χR(x′)(z) · E
y∼{−1,1}n

[
χS(x)(y) · χS(x′)(y)

]
· 2−k

= 〈fx, fx′〉 · 2−k +
∑

z∈{−1,1}k
∃j∈[k] : zj=−1

χR(x)(z) · χR(x′)(z) · 〈χS(x), χS(x′)〉︸ ︷︷ ︸
0

·2−k

= 〈fx, fx′〉 · 2−k,

which implies

E
x 6=x′∼X

[〈
FR(x)

x , F
R(x′)
x′

〉2
]
≤ 2−2k · E

x6=x′∼X

[
〈fx, fx′〉2

]
≤

assumption
2−2k · 22k

36|X|2 = 1
36|X|2 .

STEP 3: Let V be the inner product space of all functions {−1, 1}n+k → R, and let U ≤ V
be the subspace of all functions of degree up to t, which is spanned by {χT }|T |≤t and has
dimension dimU =

(
n+k
≤t
)
. By the Projection Lemma, there exists x∗ ∈ X such that∥∥∥∥FR(x∗)

x∗
≤t
∥∥∥∥2
≤

13
(
n+k
≤t
)

|X|
≤

assumption

1
22(k+1) =⇒

∥∥∥∥FR(x∗)
x∗

≤t
∥∥∥∥ ≤ 1

2k+1 .

Since
∥∥∥∥FR(x∗)

x∗
≤t
∥∥∥∥ ≤ 1

2k+1 and Cx∗ is an unbounded fan-in circuit of depth h and size

≤M that agrees with FR(x∗)
x∗ on at least 1

2 + 1
2k+1 fraction of inputs, by Proposition 18,

M ≥ 2
Ωh

([
t

1−2 log(2−(k+1))

]1/(h−1))
= 2Ωh

(
[ t

2k+3 ]1/(h−1))
= 2Ωh

(
[ tk ]1/(h−1))

. J

6 Encoded-input pseudorandom functions

The goal of this section is to prove Theorem 14, which shows that weak PRFs are hard for
our model.

I Proposition 20 (Expected inner product bound for weak PRFs). Let δ ∈ (0, 1], and suppose
that F : {0, 1}n × {0, 1}n → {0, 1} is a weak (m, 1

m )-PRF for m = Ω
(
(1/δ)2 ln(4/δ) · n

)
.

Then:

E
k,k′∼K

[
〈Fk, Fk′〉2

]
≤ 4δ.

Proof. We switch notation to F : {−1, 1}n×{−1, 1}n → {−1, 1}. The proof follows a hybrid
argument.

Consider the following algorithm M(f, g) which is given access to a pair of functions f, g
and operates as follows:
1. M chooses uniformly and independently N = 32(1/δ)2 ln(4/δ) random inputs ~x =

(x(1), . . . ,x(N)).
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2. M estimates 〈f, g〉 with the following estimator:

θ̂ = 1
N

∑
i∈[N ]

f(x(i))g(x(i)).

3. M outputs 1 if θ̂
2
> δ/2, and 0 otherwise.

Suppose that f, g are randomly chosen. Denote Zi = f(x(i))g(x(i)) for every i ∈ [N ],
and Z =

∑
i∈[N ]Zi. We have Ef ,g[Zi] = 0 for every i ∈ [N ], implying Ef ,g[Z] = 0.2 Thus,

Pr
f ,g

[M(f , g) = 1] = Pr
f ,g

[∣∣θ̂∣∣ >√δ/2] = Pr
[
|Z − E[Z]| > N

√
δ/2
]

≤
Hoeffding

2e−Nδ/4.

To establish the hybrid argument, we define two distinguishers:
Algorithm Af (1n): runs M(f, g), where g is chosen uniformly at random by A. This
means that whenever M wishes to access g, A chooses a random answer and passes it to
M ; to be consistent, A records past answers.
Algorithm Bg(1n): runs M(Fk′ , g), where k′ is chosen uniformly at random by B. This
means that B draws k′ once at the beginning, and that F is accessible.

Observe that Prk[AFk(1n) = 1] = Prg[Bg(1n) = 1]. Thus,∣∣∣Pr
f ,g

[M(f , g) = 1]− Pr
k,k′

[M(Fk, Fk′) = 1]
∣∣∣

=
∣∣∣Pr

f
[Af (1n) = 1]− Pr

k
[BFk(1n) = 1]

∣∣∣
≤
∣∣∣Pr

f
[Af (1n) = 1]− Pr

k
[AFk(1n) = 1]

∣∣∣+
∣∣∣Pr

k
[BFk(1n) = 1]− Pr

g
[Bg(1n) = 1]

∣∣∣.
Both Af and Bg require circuits of size m = O(Nn) = O

(
(1/δ)2 ln(4/δ) · n

)
. Thus, by

definition,∣∣∣Pr
f ,g

[M(f , g) = 1]− Pr
k,k′

[M(Fk, Fk′) = 1]
∣∣∣ ≤ 2

m ≤
2
N ,

which implies

Pr
k,k′

[M(Fk, Fk′) = 1] ≤ Pr
f ,g

[M(f , g) = 1] + 2
N ≤ 2e−Nδ/4 + 2

N .

Consider now running M(Fk, Fk′) with k,k′ chosen uniformly at random.
By the analysis above: Prk,k′

[
θ̂

2
> δ/2

]
≤ 2e−Nδ/4 + 2

N .
Applying Hoeffding’s inequality once more,

Pr
k,k′

[∣∣∣θ̂2
− 〈Fk, Fk′〉2

∣∣∣ > δ/2
]

= Pr
k,k′

[∣∣θ̂ − 〈Fk, Fk′〉
∣∣ > δ/2∣∣θ̂ + 〈Fk, Fk′〉

∣∣
]

≤ Pr
k,k′

[∣∣θ̂ − 〈Fk, Fk′〉
∣∣ > δ/4

]
≤ 2e−Nδ

2/32.

2 To ease notation, we shall omit references to ~x when writing probabilities and expectations, yet we
should keep in mind that these are taken with respect to the random choice of ~x as well.
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Thus,

Pr
k,k′

[
〈Fk, Fk′〉2 > δ

]
= Pr

k,k′

[
〈Fk, Fk′〉2 − θ̂

2
+ θ̂

2
> δ
]

≤ Pr
k,k′

[
〈Fk, Fk′〉2 − θ̂

2
> δ/2

]
+ Pr

k,k′

[
θ̂

2
> δ/2

]
≤ 2e−Nδ

2/32 + 2e−Nδ/4 + 2
N

≤
δ∈(0,1]

4e−Nδ
2/32 + 2

N .

Therefore,

E
k,k′

[
〈Fk, Fk′〉2

]
= E

k,k′

[
〈Fk, Fk′〉2

∣∣∣ 〈Fk, Fk′〉2 > δ
]
· Pr

k,k′

[
〈Fk, Fk′〉2 > δ

]
+ E

k,k′

[
〈Fk, Fk′〉2

∣∣∣ 〈Fk, Fk′〉2 ≤ δ
]
· Pr

k,k′

[
〈Fk, Fk′〉2 ≤ δ

]
≤ 1 · (4e−Nδ

2/32 + 2
N ) + δ · 1

= δ + 4e−Nδ
2/32 + 2

N

≤ 2δ + 2δ = 4δ,

the last inequality holding since N = 32(1/δ)2 ln(4/δ) ≥ 1/δ. J

I Proposition 21 (General lower bound for weak PRFs). There exist a constant 0 < a ≤ 1/2
such that for every 0 ≤ r ≤ n/2 − 1 and integer 0 ≤ t ≤ a(n + r) the following holds: If
F : {0, 1}n × {0, 1}n → {0, 1} satisfies the right one-to-one condition and is a weak (m, 1

m )-
PRF for

m = Ω
(
n · 24r ·

(
n+ r

t

)4 [
r + log

(
n+ r

t

)])
,

and F admits an SM protocol (A,B,C) such that B : {0, 1}n → {0, 1}n+r and C is an
unbounded fan-in circuit of depth h and size M , then

M ≥ 2Ωh
(
[ tr ]1/(h−1))

.

Proof. Let us define:

s , 13 · 22(r+1) ·
(
n+ r

t

)
, δ ,

22r−2

36s2 = 1
36 · 169 · 22r+6 ·

(
n+r
t

)2 .
We have:

(1/δ)2 ln(1/δ) = Θ
(

24r ·
(
n+ r

t

)4 [
r + log

(
n+ r

t

)])
.

Thus, assuming m = Ω
(
(1/δ)2 ln(4/δ) · n

)
, by assumption and Proposition 20, we get

E
k 6=k′∼{0,1}n

[
〈Fk, Fk′〉2

]
≤ 4δ = 22r

36s2 .

In particular, there exists a set X ⊆ {0, 1}n of size |X| = s such that

E
k 6=k′∼X

[
〈Fk, Fk′〉2

]
≤ 22r

36s2 .
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We need to justify why s ≤ 2n. As shown in the proof of Proposition 10, there exists
0 < a ≤ 1/2 such that

13 · 22(r+1) ·
(

n+ r

≤ a(n+ r)

)
≤ 2n;

hence, for t = a(n+ r) we have s ≤ 2n.3 Thus, by Theorem 9,

M ≥ 2Ωh
(
[ tr ]1/(h−1))

. J

Theorem 14 is an immediate corollary.

7 Rounded inner product

In this section we prove Theorem 16, an IPPP-style theorem (with sublinear stretch) for a
class of functions obtained by applying a “rounding predicate” to an inner product modulo q.
We remind the reader that these functions are given in Definition 15.

The following proposition will be useful.

I Proposition 22 (Inner product convergence). Let q ≥ 2 be an integer. Then, for every
r ∈ {0, . . . , q − 1},

Pr
(x,y)∼{0,1}2n

[
n∑
i=1

xiyi (mod q) = r

]
−−−−→
n→∞

1
q
.

Moreover, there exists 0 < c < 1 such that for every r ∈ {0, . . . , q − 1}, for large enough n,

Pr
(x,y)∼{0,1}2n

[
n∑
i=1

xiyi (mod q) = r

]
= 1
q
±O(cn).

Proof. For the finite state space Q = {0, . . . , q − 1} of remainders modulo q, we define a
sequence of random variables Z0,Z1, . . . ,Zn by

Zi =
{

0 i = 0,
Zi−1 + xiyi (mod q) i ∈ [n],

where (x,y) ∼ {0, 1}2n. We are interested in limn→∞ Pr[Zn = r | Z0 = 0] . For every
i ∈ [n], we have

Pr[Zi | Zi−1] = Pr[Zi | Zi−1, . . . ,Z0],

and for every i ∈ [n] and u ∈ Q, we have

Pr[Zi = u | Zi−1 = u] = 3/4,
Pr[Zi = u+ 1 (mod q) | Zi−1 = u] = 1/4.

Thus, the sequence (Zi) forms a Markov chain, which we claim is ergodic. To see that,
consider a walk of q steps; then, for every u, v ∈ Q, we have Pr[Zi+q = u | Zi = v] ≥ ( 1

4 )q > 0.
Since (Zi) is a finite ergodic Markov chain, it follows that there exists a unique stationary

3 Note that for a ≤ 1/2, the function t 7→
(

n+r
≤t

)
is monotone on [0, a(n + r)].
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distribution π over Q such that for every r ∈ Q, we have limn→∞ Pr[Zn = r | Z0 = 0] = π(r).
It is easy to verify that π∗ = ( 1

q , . . . ,
1
q ) is a distribution over Q which satisfies π∗ = π∗P ,

where P is the transition matrix of the Markov chain, given by

P =


3/4 1/4 0 . . . 0
0 3/4 1/4 . . . 0
0 0 3/4 . . . 0
...

...
...

. . .
...

1/4 0 0 . . . 3/4

 .

It follows that π = π∗, hence

lim
n→∞

Pr
(x,y)∼{0,1}2n

[
n∑
i=1

xiyi (mod q) = r

]
= lim
n→∞

Pr[Zn = r | Z0 = 0] = 1
q
.

The second part of the claim follows from known properties of convergence to a stationary
distribution. J

We are now ready to prove the lower bound for computing rounded inner products in our
setting.

Proof of Theorem 16. Let y, z ∈ {0, 1}n be such that the Hamming distance between y

and z is at least n/3, and let Sy and Sz be the subsets of [n] characterized by y and z,
respectively. Without loss of generality, we may assume that |Sy \ Sz| ≥ n/6, and let us
denote J , Sy \ Sz.

For x ∈ {0, 1}n, let us write x = (u, v) with u ∈ {0, 1}J and v ∈ {0, 1}[n]\J . Fix a v now.
Define

av ,
∑

i∈[n]\J

viyi , bv ,
∑

i∈[n]\J

vizi,

and observe that av, bv are also fixed. We have

n∑
i=1

xiyi (mod q) =

∑
i∈J

ui +
∑

i∈[n]\J

viyi

 (mod q) =
(∑
i∈J

ui + av

)
(mod q),

n∑
i=1

xizi (mod q) =
∑

i∈[n]\J

vizi (mod q) = bv (mod q).

It follows that there exists a subset Rv ⊆ {0, 1, . . . , q − 1} of size q/2 such that

IP[q,R]((u, v), y) = IP[q,R]((u, v), z) ⇐⇒
∑
i∈J

ui (mod q) ∈ Rv.

Therefore, by Proposition 22, for any fixed v and large enough n,

Pr
u∼{0,1}J

[
IP[q,R]((u, v), y) = IP[q,R]((u, v), z)

]
= Pr

u∼{0,1}J

[∑
i∈J

ui (mod q) ∈ Rv

]

= |Rv| ·
(

1
q
±O(cn)

)
= 1

2 ±O(cn),

which implies

Pr
x

[
IP[q,R](x, y) = IP[q,R](x, z)

]
= E

v

[
Pr
u

[
IP[q,R]((u, v), y) = IP[q,R]((u, v), z)

]]
= 1

2±O(cn).
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Considering IP[q,R](x, y) and IP[q,R](x, z) as functions of x, and switching to {0, 1}n → {−1, 1}
notation, we get〈

IP[q,R](·, y), IP[q,R](·, z)
〉

= 2 Pr
x

[
IP[q,R](x, y) = IP[q,R](x, z)

]
− 1 = ±O(cn).

Finally, we have:
IP[q,R] satisfies the right one-to-one condition.
The Gilbert–Varshamov bound [18, 33] tells us there exists C ⊆ {0, 1}n of size 2Ω(n)

and minimal Hamming distance n/3. By the analysis above, there exists a constant
K > 0 such that (for large enough n) |〈fx, fx′〉| ≤ Kcn for every x 6= x′ ∈ C. Define
s = min

{
|C|, 1

6K 2log(1/c)n}, and let 0 < α ≤ 1/2 be such that H(α) is small enough so
setting t = α(n+ k) gives us

13 · 22(k+1) ·
(

n+ k

≤ α(n+ k)

)
≤

Lemma 8
2H(α)(n+k)+2(k+1)+4 ≤ s.

It follows that any set X ⊆ C of size s satisfies both 13 · 22(k+1) ·
(

n+k
≤α(n+k)

)
≤ |X| and

|X| ≤ 1
6K 2log(1/c)n =⇒ Kcn ≤ 1

6|X| ,

which implies

E
x6=x′∼X

[
〈fx, fx′〉2

]
≤ K2c2n ≤ 1

36|X|2 ≤
22k

36|X|2 .

Thus, by Theorem 9,

M ≥ 2Ωh
(
[ tk ]1/(h−1))

= 2
Ωh
(
n

1−α
h−1

)
. J
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Abstract
Sign-rank and discrepancy are two central notions in communication complexity. The seminal work
of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the
gap between these two notions. In this article, we establish the strongest possible separation by
constructing a boolean matrix whose sign-rank is only 3, and yet its discrepancy is 2−Ω(n). We note
that every matrix of sign-rank 2 has discrepancy n−O(1).

Our result in particular implies that there are boolean functions with O(1) unbounded error
randomized communication complexity while having Ω(n) weakly unbounded error randomized
communication complexity.
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1 Introduction

Sign-rank and discrepancy are arguably the most important analytic notions in the area
of communication complexity. Let A be a matrix with {−1, 1} entries (we refer to these
matrices as boolean matrices in this paper). The discrepancy of A is the minimum over all
input distribution of the maximum correlation that A has with a rectangle (for a formal
definition see Section 2). It was introduced by Chor and Goldreich [8], and has become one
of the most commonly used measures in communication complexity to prove lower bounds
for randomized protocols. The sign-rank of A is the minimal rank of a real matrix whose
entries have the same sign pattern as A. This natural and fundamental notion was first
introduced by Paturi and Simon [16] in the context of the unbounded error communication
complexity. Since then, its applications have extended beyond communication complexity to
areas such as circuit complexity [17, 6], learning theory [12, 13, 10], and even connections to
algebraic geometry [23].

Boolean matrices in communication complexity correspond to boolean functions: give
an n-bits two player function f : {0, 1}n × {0, 1}n → {−1, 1}, it corresponds to the 2n × 2n
matrix Ax,y = f(x, y). The notions of discrepancy and sign-rank for f correspond to its
respective matrix. The main informal question motivating this work is:

I Problem 1. Does every function of low sign-rank have an efficient randomized protocol?
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18:2 Sign Rank vs Discrepancy

If the answer is negative, then the next question is, does it at least have large discrepancy
(small discrepancy is one technique to prove randomized communication complexity lower
bounds, but there are functions showing separations between the two measures, for example
set-disjointness [7]).

I Problem 2. Does every function of low sign-rank have large discrepancy?

In order to build some intuition towards more quantitative questions, lets consider some
well-known examples:

Greater-than: we interpret x, y as integers in {1, . . . , 2n} and define f(x, y) = 1 if x ≤ y
and f(x, y) = −1 otherwise. This function has sign-rank 2 and requires Θ(logn) bits of
randomized communication [15]. Moreover, its discrepancy is n−Θ(1), which proves the
communication lower bound.
Set-disjointness: we interpret x, y as subsets of [n], and define f(x, y) = 1 if x, y are
disjoint and f(x, y) = −1 otherwise. This function has sign-rank O(n) and requires
communication complexity of Θ(n) bits. However, this cannot be shown using discrepancy,
as the discrepancy of set-disjointness is n−O(1) [7].
Sherstov [21] constructed a function with sign-rank O(n) and discrepancy 2−Ω(n).

Thus, it seems that functions with logarithmic sign-rank can already be very complicated,
both in terms of their randomized communication complexity and also in terms of their
discrepancy. However, the situation is less clear for functions of constant sign-rank.

I Problem 3. Does every function of constant sign-rank have an efficient randomized
protocol? in particular, does it have large discrepancy?

Our main result is a sounding no, already for sign-rank 3.

I Theorem 4 (Main Theorem; informal version). There exists a function f : {0, 1}n×{0, 1}n →
{−1, 1} of sign-rank 3 and discrepancy 2−Ω(n). In particular, f has Ω(n) randomized
communication complexity.

The sign-rank 3 in Theorem 4 is tight. We show in Section 3 that functions of sign-rank 1 or
2 are very simple combinatorially, and in particular have discrepancy n−O(1) and randomized
communication complexity O(logn).

The function f in Theorem 4 is simple to define: the sign on an inner product in
dimension 3. Concretely, let M ≈ 2n/3. Alice gets a vector a ∈ [−M,M ]3 and Bob gets a
vector b ∈ [−M,M ]3. Define

f(a,b) = sign〈a,b〉,

where sign : R → {−1, 1} is the sign function, mapping positive inputs to 1 and zero or
negative inputs to −1; and 〈·, ·〉 is inner product over the integers. It is obvious from the
definition that f has sign-rank 3. We prove that its discrepancy is exponentially small. The
actual function we study is a mild restriction of this function, convenient for the proof. See
Theorem 7 for details.

1.1 Connections to communication complexity
Theorem 4 is motivated by its applications in communication complexity. Consider a
communication problem f : {0, 1}n × {0, 1}n → {−1, 1} in Yao’s two party model. Given an
error parameter ε ∈ [0, 1/2], let Rε(f) be the smallest communication cost of a private-coin
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randomized communication protocol that on every input produces the correct answer with
probability at least 1− ε. Here private-coin refers to the assumption that players each have
their own unlimited private source of randomness. Three natural complexity measures arise
from Rε(f).

1. The quantity R1/3(f) is called the bounded-error randomized communication complexity
of f . The particular choice of 1/3 is not important as long as one is concerned with
an error that is bounded away from both 0 and 1/2 since in this case the error can be
reduced by running the protocol constantly many times and outputting the majority
answer.

2. The weakly unbounded error randomized communication complexity of f is defined as

PP(f) = inf
0≤ε≤1/2

{
Rε(f) + log 1

1− 2ε

}
,

that includes an additional penalty term, which increases as ε approaches 1
2 . The purpose

of this error term is to capture the range where ε is “moderately” bounded away from 1
2 .

3. Finally the unbounded error communication complexity of f is defined as the smallest
communication cost of a private-coin randomized communication protocol that computes
every entry of f with an error probability that is strictly smaller than 1

2 . In other
words, the protocol only needs to outdo a random guess, which is always correct with
probability 1

2 . We have

UPP(f) = lim
ε↗ 1

2

Rε(f).

In their seminal paper, Babai, Frankl and Simon [2] associated a complexity class to
each measure of communication complexity. While in the theory of Turing machines, a
complexity that is polynomial in the size of input bits is considered efficient, in the realm of
communication complexity, poly-logarithmic complexity plays this role, and communication
complexity classes are defined accordingly. Here, the communication complexity classes
BPPcc, PPcc, and UPPcc correspond to the class of communication problems {fn}∞n=0 with
polylogarithmic R1/3(fn), PP(fn), and UPP(fn), respectively.

Note that while BPPcc requires a strong bound on the error probability, and UPPcc only
requires an error that beats the random guess, PPcc corresponds to the natural requirement
that the protocol beats the 1

2 bound by a margin that is quasi-polynomially large. That is,
PPcc is the class of communication problems fn that satisfy R 1

2−2− logc(n)(fn) ≤ logc(n) for
some positive constant c. We have the containment BPPcc ⊆ PPcc ⊆ UPPcc.

It turns out that both UPP(f) and PP(f) have elegant algebraic formulations. Paturi
and Simon [16] proved that UPP essentially coincides with the sign-rank of f :

log rk±(f) ≤ UPP(f) ≤ log rk±(f) + 2.

Similar to the way that sign-rank captures the complexity measure UPP(f), discrepancy
captures PP(f). The classical result relating randomized communication complexity and
discrepancy, due to Chor and Goldreich [8], is the inequality

Rε(f) ≥ log 1− 2ε
Disc(f) .

This in particular implies PP(f) ≥ − log Disc(f). Klauck [9] showed that the opposite is
also true; more precisely, that

PP(f) = O (− log Disc(f) + log(n)) .

Thus, a direct corollary of Theorem 4 is the following separation between unbounded error
and weakly bounded error communication complexity.

CCC 2020



18:4 Sign Rank vs Discrepancy

I Corollary 5. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with UPP(f) = O(1)
and PP(f) = Ω(n).

Another closely related notion to sign-rank is approximate rank. Given α > 1, the
α-approximate rank of a boolean matrix A is the minimal rank of a real matrix B, of the
same dimensions as A, that satisfies 1 ≤ Ai,jBi,j ≤ α for all i, j. The α-approximate rank
of a boolean function f : {0, 1}n × {0, 1}n → {−1, 1} is the α-approximate rank of the
associated 2n × 2n boolean matrix. Observe that

rk±(f) = lim
α→∞

rkα(f).

Given this, a natural question is whether sign-rank can be separated from α-approximate
rank. This is also a consequence of Theorem 4(in fact to be precise, this is rather a corollary
of Theorem 7 which is the formal version of Theorem 4).

I Corollary 6. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with rk±(f) = 3 and
rkα(f) = Ω(2n/4/(αn)2) for any α > 1.

Corollary 6 follows from Theorem 4 and the fact that

rkα(f) ≥ Ω
(
α−2Disc(f)−2) ,

which is a combination of the results of Linial and Shraibman [14, Theorem 18] and Lee and
Shraibman [11, Theorem 1].

1.2 Related works
The question of separating sign-rank from discrepancy (or equivalently, separating unbounded
from weakly unbounded communication complexity) has been studied in a number of papers.

When Babai et al. [2] introduced the complexity classes BPPcc ⊆ PPcc ⊆ UPPcc, they
noticed that the set-disjointness problem separates BPPcc from PPcc, but they left open the
question of separating UPPcc from PPcc, or equivalently sign-rank from discrepancy. This
question remained unanswered for more than two decades until finally Buhrman et al. [5]
and independently Sherstov [18] showed that there are n-bit boolean function f such that
UPP(f) = O(logn) but PP(f) = Ω(n1/3) and PP(f) = Ω(

√
n), respectively. The bounds on

PP(f) were strengthened in subsequent works [19, 20, 22, 21] with the final recent separation
from [21] giving a function f with UPP(f) = O(logn) and maximal possible PP(f) = Ω(n).
Despite this line of work, no improvement was made on the O(log(n)) bound on UPP(f). In
fact, to the best of our knowledge, prior to this work, it was not even known whether there
are functions with UPP(f) = O(1) and R1/3(f) = ω(log(n)). To recall, Corollary 5 gives a
function f with UPP(f) = O(1) and PP(f) = Ω(n).

A different aspect is the study of sign-rank of matrices. Matrices of sign-rank 1 and 2
are simple combinatorially, while matrices with sign-rank 3 seem to be much more complex.
First, it turns out that deciding whether a matrix has sign-rank 3 is NP-hard, a result that
was shown by Basri et al. [3] and independently by Bhangale and Kopparty [4]. In fact,
deciding if a matrix has sign-rank 3 is ∃R-complete, where ∃R is the existential first-order
theory of the reals, a complexity class lying between NP and PSPACE. This ∃R-completeness
result is implicit in both [3] and [4], as observed by [1].

1.3 Proof overview
We give a proof overview of Theorem 4. Let us first slightly modify f in a way that will
convenient for the proof.
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Let N ≈ 2n/4. Alice gets three integers x1, x2, z and Bob gets two integers y1, y2, where
x1, x2, y1, y2 ∈ [N ] and z ∈ [−3N2, 3N2]. We shorthand x = [x1, x2] and y = [y1, y2], so that
Alice’s input is [x, z] and Bob’s input is y. Note that x, y ∈ [N ]2. Define

f([x, z], y) = sign(z − 〈x, y〉) = sign(z − x1y1 − x2y2).

The following is our main technical result.

I Theorem 7 (Main result; formal version). Let f be as above. Then Disc(f) = O(n · 2−n/8).

We remark that the function f here is a restriction of the function f described before
Theorem 4, and therefore, Theorem 7 implies Theorem 4.

To prove Theorem 7, it is useful to think about our discrepancy bound in the language of
communication complexity. We prove Theorem 7 in two steps. Below we denote random
variables with bold letters.

Step 1: constructing a hard distribution

First, we define a hard distribution ν. Alice and Bob receive uniformly random integers
x,y ∈ [N ]2 respectively where N ≈ 2n/4. The inner product 〈x,y〉 is a random variable over
[2N2]. Alice also receives another random variable z over [−3N2, 3N2], whose distribution
we will explain shortly. The players want to decide whether 〈x,y〉 ≥ z. We define z in such
a way that
〈x,y〉 − z ∈ [−2N, 2N),
〈x,y〉 ≥ z happens with probability 1

2 ,
〈x,y〉− z is extremely close in total variation distance to 〈x,y〉− z− 2N (which is always
negative), even when restricted to arbitrary large combinatorial rectangles.

To construct z, we first define another independent random variable k and then let z =
〈x,y〉+ k, or z = 〈x,y〉+ k− 2N , with equal probabilities. We choose k = k1 + k2 for k1,k2
independent uniform elements from [N ] so that k is smooth enough for the analysis to go
through. Note that the range of z is really just [−2N, 2N2 + 2N ], and we picked the range
of z in the definition of f as z ∈ [−3N2, 3N2] for its simpler shape.

Step 2: translation invariance of k

We bound the discrepancy Discν(f) as follows. Fix a combinatorial rectangle A × B ⊂
([N ]2 × [−3N2, 3N2])× [N ]2. We want to bound the correlation of f with 1A1B under the
distribution ν. This boils down to showing that after conditioning on the input being in
A×B, the distribution (〈x,y〉− z)|A,B has small total variation distance with its translation
by 2N . We prove a stronger statement, and show that in fact this is true even if we fix x = x

to a typical x (and therefore choosing A ⊂ {x} × [−3N2, 3N2]), namely, after conditioning
x = x, and y ∈ B, the distribution of (〈x,y〉 − z)|y∈B has small total variation distance with
its translation by 2N . To prove the claim we appeal to Fourier analysis and estimate the
Fourier coefficients of the random variable, and verify that the only potentially large Fourier
coefficients correspond to Fourier characters that are almost invariant under translations by
2N . Computing these Fourier coefficients involves computing some partial exponential sums
whose details may be seen in Lemma 10 and Lemma 11. At a high level, these boils down
to showing that if x,y ∈ Z2

p are two random independent variables, uniform over large sets,
then their inner product 〈x,y〉 has well-behaved spectral properties.

CCC 2020
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Paper organization

We give preliminary definitions need for the proof in Section 2. We discuss the structure of
matrices of sign-rank 1 and 2 in Section 3. We prove or main result, Theorem 7, in Section 4.

2 Preliminaries

Notations

To simplify the presentation, we often use . or ≈ instead of the big-O notation. That
is, x . y means x = O(y), and x ≈ y means x = Θ(y). For integers N ≤ M we denote
[N,M ] = {N, . . . ,M}, and we shorthand [N ] = [1, N ].

Discrepancy

Let X ,Y be finite sets, and ν be a probability distribution on X × Y. The discrepancy of a
function f : X ×Y → {−1, 1} with respect to ν and a combinatorial rectangle A×B ⊆ X ×Y
is defined as

DiscA×Bν (f) = E(x,y)∼ν [f(x,y)1A(x)1B(y)] .

The discrepancy of f with respect to ν is defined as

Discν(f) = max
A,B

DiscA×Bν (f),

and finally the discrepancy of f is defined as

Disc(f) = min
ν

Discν(f).

Probability

We denote random variables with bold letters. Given a random variable r, let µ = µr denote
its distribution. The conditional distribution of r, conditioned on r ∈ S for some set S, is
denoted by µ|S . Given a finite set S, we denote the uniform measure on S by µS . If r is
uniformly sampled from S, we denote it by r ∼ S.

Fourier analysis

The proof of Theorem 7 is based on Fourier analysis over cyclic groups. We introduce the
relevant notation in the following. Let p be a prime. For f, g : Zp → C define

〈f, g〉 = 1
p

∑
x∈Zp

f(x)g(x),

and

f ∗ g(z) = 1
p

∑
x∈Zp

f(x)g(z − x).

Let ep : Zp → C denote the function ep : x 7→ e2πix/p. For a ∈ Zp define the character
χa : x 7→ ep(−ax). The Fourier expansion of f : Zp → C is the sum

f(x) =
∑
x∈Zp

f̂(a)χa(x),
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where f̂(a) = 〈f, χa〉. Note that by definition,

f̂(a) = 1
p

∑
x∈Zp

f(x)ep(ax).

It follows from the properties of the characters that

f ∗ g(z) =
∑
a∈Zp

f̂(a)ĝ(a)χa(z),

showing that f̂ ∗ g(a) = f̂(a)ĝ(a). In particular, if x1, . . . ,xk are independent random
variables taking values in Zp, and if x = x1 + . . .+ xk, then

µ̂x(a) = pk−1
k∏
i=1

µ̂xi
(a).

Number theory estimates

Fix a prime p. Given an integer x, we denote the distance of x to the closest multiple of p
(and abusing standard notation) by

‖x‖p = min{|x− zp| : z ∈ Z}.

We will often use the estimate

|ep(x)− 1| ≈
‖x‖p
p

,

which follows from the easy estimate that 4|y| ≤ |e2πiy − 1| ≤ 8|y| for y ∈ [−1/2, 1/2], and
taking y = sign(x)‖x‖p

p .

3 Sign-rank 1 and 2

In this section we demonstrate that boolean matrices with sign-rank 1 or 2 are very simple
combinatorially. Let A be an N × N boolean matrix for N = 2n. If A has sign-rank 1,
then there exist nonzero numbers a1, . . . , aN , b1, . . . , bN ∈ R such that Ai,j = sign(aibj). In
particular, if we partition the ai and the bj to the positive and negative numbers, we see that
A can be partitioned into 4 monochromatic sub-matrices. This implies that Disc(A) = Ω(1).

Assume next that A has sign-rank 2. Then there exist vectors u1, . . . , uN , v1, . . . , vN ∈ R2

such that Ai,j = sign(〈ui, vj〉). By applying a rotation to the vectors, we may assume
that their coordinates are all nonzero. Next, by scaling the vectors, we may assume that
ui = (±1, ai) and vj = (bj ,±1) for all i, j. Next, partition the ai and the bj to the positive and
negative numbers. Consider without loss of generality the sub-matrix in which ui = (1, ai)
and vj = (bj ,−1) for all i, j (the other three cases are equivalent). In this sub-matrix,
Ai,j = sign(ai − bj). By removing repeated rows and columns, we get that the sub-matrix
is an upper triangular matrix, with 1 on or above the diagonal and −1 below the diagonal.
That is, the sub-matrix is equivalent to the matrix corresponding to the Greater-Than
boolean function on at most n bits. Nisan [15] showed that the bounded-error communication
complexity of this matrix is O(logn), which in particular implies that the discrepancy is at
least n−O(1). This implies that also Disc(A) ≥ n−O(1).

CCC 2020
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4 Sign-rank 3 vs. discrepancy

We now turn to prove Theorem 7. To recall, Alice’s input is the pair [x, z] with x ∈ [N ]2, z ∈
[−3N2, 3N2], and Bob’s input is y ∈ [N ]2. The hard distribution ν is defined as follows. First,
sample x,y uniformly and independently from [N ]2. Next, sample k1,k2 ∈ [N ] uniformly
and independently, and let k = k1 + k2. Define z as follows: choose z = 〈x,y〉 + k or
z = 〈x,y〉+ k− 2N , each with probability 1/2. Observe that in the former case 〈x,y〉 < z
and hence f([x, z],y) = 1; and in the latter case 〈x,y〉 ≥ z and hence f([x, z],y) = −1.
Thus f is balanced:

Pr[f([x, z],y) = 1] = Pr[f([x, z],y) = −1] = 1/2.

In order to prove the theorem, we bound the correlation of f with a rectangle A × B,
where A ⊆ [N ]2 × [−3N2, 3N2] and B ⊆ [N ]2. For x ∈ [N ]2, let

Ax = {z : [x, z] ∈ A}.

We have

DiscA×Bν (f) = E([x,z],y)∼ν [f([x, z],y)1A(x, z)1B(y)]
= Ex,y∼[N ]21B(y)Ez|x,y [f([x, z],y)1Ax(z)] .

Recall the definition of f and that z = 〈x,y〉 + k or z = 〈x,y〉 + k − 2N with equal
probabilities. In the former case f evaluates to 1, and it the latter case it evaluates to −1.
We thus have

DiscA×Bν (f) = 1
2Ex,y,k [f([x, 〈x,y〉+ k],y)1B(y)1Ax(〈x,y〉+ k)]

+1
2Ex,y,k [f([x, 〈x,y〉+ k− 2N ],y))1B(y)1Ax(〈x,y〉+ k− 2N)]

= 1
2Ex,y,k [1B(y)1Ax(〈x,y〉+ k)− 1B(y)1Ax(〈x,y〉+ k− 2N)]

= |B|
2N2ExEy∼BEk [1Ax(〈x,y〉+ k)− 1Ax(〈x,y〉+ k− 2N)] .

For x ∈ [N ]2 let νBx denote the distribution of 〈x,y〉+ k conditioned on x = x,y ∈ B. With
this notation,

DiscA×Bν (f) = |B|
2N2ExEw∼νB

x
[1Ax(w)− 1Ax(w− 2N)]

= |B|
2N2Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w − 2N)νBx (w)

= |B|
2N2Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w)νBx (w + 2N)

≤ |B|
2N2Ex

∑
w∈Z

∣∣νBx (w)− νBx (w + 2N)
∣∣ ,

which no longer depends on A. The random variable 〈x,y〉+ k is in the range [−3N2, 3N2]
so we embed [−3N2, 3N2] into Zp for some prime p ∈ [6N2 + 1, 12N2]. We consider νBx as a
distribution over Zp, and thus we can rewrite

DiscA×Bν (f) ≤ p|B|
2N2ExEw∼Zp

|νBx (w)− νBx (w + 2N)|

. |B| · ExEw∼Zp
|νBx (w)− νBx (w + 2N)|.

The following lemma, whose proof is deferred to the next section, completes the proof.
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I Lemma 8. Let Ñ ≈ N . Then ExEw∼Zp
|νBx (w)− νBx (w + Ñ)| . logN√

|B|N3
.

By invoking Lemma 8 for Ñ = 2N we obtain

Disc(f) ≤ DiscA×Bν (f) . |B| logN√
|B|N3

≤
√
|B|
N3 logN ≤ N− 1

2 logN . n2−n/8.

4.1 Invariance of νBx under translation
The goal of this section is to prove Lemma 8. We will prove that for a typical x, the measure
νBx is almost invariant under the translations by Ñ ≈ N . First we compute the Fourier
expansion of this measure.

I Lemma 9. For all x ∈ [N ]2 and a ∈ Zp, we have

ν̂Bx (a) = 1
p

ep(2a)
(

1
N

ep(Na)− 1
ep(a)− 1

)2
Ey∼B [ep(a〈x,y〉)] .

Proof. Recall that νBx is the distribution of 〈x,y〉+ k1 + k2 where y ∼ B and k1,k2 ∼ [N ].
Therefore for all a ∈ Zp,

ν̂Bx (a) = p2µ̂〈x,y〉(a)µ̂k1(a)µ̂k2(a) = p2µ̂〈x,y〉(a)µ̂[N ](a)2,

where to recall µ[N ] is the uniform distribution on [N ]. First, we compute the Fourier
coefficients of µ〈x,y〉:

µ̂〈x,y〉(a) = 1
p

∑
t∈Zp

µ〈x,y〉(t)ep(at) = 1
p
Ey∼B [ep(a〈x, y〉)] .

Next, we compute the Fourier coefficients of µ[N ]:

µ̂[N ](a) = 1
p

N∑
t=1

1
N

ep(at) = ep(a)
pN

· ep(Na)− 1
ep(a)− 1 ,

where we have computed the partial sum of the geometric series {ep(at)}t=1,...,N . The lemma
follows. J

With the Fourier coefficients ν̂Bx (a) computed in Lemma 9, we can analyze the distance
of νBx from its translation by Ñ ≈ N .

Proof of Lemma 8. Let w ∼ Zp. Recall that x ∼ [N ]2 and that Ñ ≈ N . Using the Fourier
expansion of νBx we can write

s := Ex,w|νBx (w)− νBx (w + Ñ)| = Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ν̂Bx (a)
(
χa(w)− χa(w + Ñ)

)∣∣∣∣∣∣ .
We may now use Lemma 9 and substitute the Fourier coefficient ν̂Bx (a),

s = 1
p
Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)
(

1
N

ep(Na)− 1
ep(a)− 1

)2
Ey∼B [ep(a〈x,y〉)] (1− ep(−Ña))χa(w)

∣∣∣∣∣∣ .
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Squaring both sides, and applying Cauchy-Schwarz and then Parseval’s identity, we get

s2p2 ≤ Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)Ey∼B [ep(a〈x,y〉)]
(

1
N

ep(Na)− 1
ep(a)− 1

)2
(1− ep(−Ña))χa(w)

∣∣∣∣∣∣
2

= Ex
∑
a∈Zp

|Ey∼B [ep(a〈x,y〉)]|2
∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4 |1− ep(−Ña)|2

=
∑
a∈Zp

(
Ex |Ey∼B [ep(a〈x,y〉)]|2

) ∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4 |1− ep(Ña)|2.

Recalling that p ≈ N2, note that for a 6= 0 it holds that∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣ ≈ ‖Na‖pN ‖a‖p
. min

(
1, N

‖a‖p

)

and

|ep(Ña)− 1| ≈

∥∥Ña∥∥
p

p
. min

(
1,
‖a‖p
N

)
,

both of which follow from trivial upper bounds ‖Na‖p ≤ N ‖a‖p and ‖x‖p ≤ p ≈ N
1
2 . Let

us denote Ea(B) := Ex |Ey∼B [ep(a〈x,y〉)]|2. We break the sum into two parts and for each
part use a different estimate for Ea(B) using Lemma 10 below.

s2 .
1
p2

∑
‖a‖p<N

Ea(B)|ep(Ña)− 1|2 + 1
p2

∑
‖a‖p≥N

Ea(B)
∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4

.
1
p2

∑
‖a‖p<N

Ea(B)
(‖a‖p

N

)2

+ 1
p2

∑
‖a‖p≥N

Ea(B)
(

N

‖a‖p

)4

.
1
p2

∑
‖a‖p<N

N2

‖a‖2p
· log2N

|B|

(‖a‖p
N

)2

+ 1
p2

∑
‖a‖p≥N

‖a‖2p
N2 ·

log2N

|B|

(
N

‖a‖p

)4

.
log2N

N2|B|

 ∑
‖a‖p<N

1
N2 +

∑
‖a‖p≥N

1
‖a‖2p


.

log2N

N2|B|

N · 1
N2 +

∑
t≥N

1
t2


.

log2N

N2|B|
1
N

= log2N

|B|N3 . J

4.2 Uniformity of product sets over Zp
Recall that Ea(B) := Ex∼[N ]2 |Ey∼B [χa(〈x,y〉)]|2. The following lemma provides estimates
for it.

I Lemma 10. Ea(B) . max
(‖a‖2

p

N2 ,
N2

‖a‖2
p

)
· log2 N
|B| .
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Proof. We have

Ea(B) = 1
|B|2

Ex∼[N ]2

∣∣∣∣∣∣
∑
y∈B

χa(〈x, y〉)

∣∣∣∣∣∣
2

= 1
|B|2

∑
y′,y′′∈B

Ex∼[N ]2χa(〈x, y′ − y′′〉)

≤ 1
|B|2

∑
y′,y′′∈B

∣∣Ex∼[N ]2χa(〈x, y′ − y′′〉)
∣∣ .

Let B − B = {y′ − y′′ : y′, y′′ ∈ B} ⊂ Z2
p. Any element y ∈ B − B can be expressed as

y = y′ − y′′ for y′, y′′ ∈ B in at most |B| ways. Thus we can bound

Ea(B) ≤ 1
|B|

∑
y∈B−B

∣∣Ex∼[N ]2χa(〈x, y〉)
∣∣ .

Since B −B ⊆ [N ]2 − [N ]2 ⊆ [−N,N ]2, we can simplify the above to

Ea(B) ≤ 1
N2|B|

∑
y∈[−N,N ]2

∣∣∣∣∣∣
∑

x∈[N ]2
χa(〈x, y〉)

∣∣∣∣∣∣
= 1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1,x2∈[N ]

χa(x1y1) · χa(x2y2)

∣∣∣∣∣∣
= 1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1∈[N ]

χa(x1y1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

x2∈[N ]

χa(x2y2)

∣∣∣∣∣∣
= 1

N2|B|

 ∑
y∈[−N,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.
1

N2|B|

 ∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.

Note that for a fixed y 6= 0,
∑
x∈[N ] χa(xy) is a sum of a geometric series which satisfies∣∣∣∑x∈[N ] χa(xy)

∣∣∣ =
∣∣∣ ep(Nay)−1

ep(ay)−1

∣∣∣, and hence

∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣ ≤ N +
∑
y∈[N ]

∣∣∣∣ep(Nay)− 1
ep(ay)− 1

∣∣∣∣ . N +
∑
y∈[N ]

‖Nay‖p
‖ay‖p

.

Invoking Lemma 11 below finishes the proof. J

I Lemma 11. Let p ≥ N2 be prime and let a ∈ Zp \ {0}. Then

∑
y∈[N ]

‖Nay‖p
‖ay‖p

. max
(
‖a‖p + p

N
,

p

‖a‖p

)
· log p.

We need the following simple claim in the proof of Lemma 11.

B Claim 12. Let r be a random variable which takes values in [K]. Let g : [K]→ R. Then

Erg(r) = g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i].

CCC 2020



18:12 Sign Rank vs Discrepancy

Proof.

Erg(r) =
K∑
i=1

g(i)Pr[r = i]

=
K∑
i=1

g(i) (Pr[r ≤ i]− Pr[r ≤ i− 1])

= g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]. C

Proof of Lemma 11. We separate the proof to two cases of ‖a‖p < N and ‖a‖p ≥ N .
Consider an integer k with ‖a‖p ≤ k ≤ p. We start by estimating the size of the set

Sk = {y ∈ [N ] : ‖ya‖p ≤ k}.

Note that if y ∈ Sk, then ya ∈ ph+ [−k, k] for some integer h ≥ 0. Since y ∈ [N ], we have
h ≤ N‖a‖p+k

p , and hence there are at most N‖a‖p

p + 1 such values of h. Fixing h, we have
y ∈ ph

‖a‖p
+ [−k/ ‖a‖p , k/ ‖a‖p], and there are at most 2k

‖a‖p
+ 1 ≤ 3k

‖a‖p
such values of y. We

conclude that

|Sk| ≤
(
N ‖a‖p
p

+ 1
)
× 3k
‖a‖p

≤ 3Nk
p

+ 3k
‖a‖p

.
k

N
+ k

‖a‖p
.

Note that this bound obviously holds also for k ≥ p.
Now to compute

∑
y∈[N ]

‖Nay‖p

‖ay‖p
we separate to two cases depending on whether ‖a‖p ≥ N

or not, and then use Claim 12.

The case ‖a‖p ≥ N . First, note that in this case we can bound |Sk| . k
N . Also to

bound ‖Nay‖p

‖ay‖p
, for y ∈ S‖a‖p

, we use the bound ‖Nay‖p

‖ay‖p
≤ N , otherwise we use the bound

‖Nay‖p ≤ p. We get

∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑

y∈S‖a‖p

N + p
∑
y∈[N ]

1
‖ay‖p

.

To compute
∑
y∈[N ]

1
‖ay‖p

we use Claim 12. Let u ∼ [N ] be uniformly chosen, and set the
random variable r to be r = ‖au‖p. Set g(x) = 1

x . Then we have

1
N

∑
y∈[N ]

1
‖ay‖p

= Erg(r)

= g(p) +
p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

= 1
p

+
p−1∑
i=1

(
1
i
− 1
i+ 1

)
|Si|
N

.
1
p

+
p−1∑
i=1

1
i2
· i

N2

.
log p
N2 .
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Overall we get∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑

y∈S‖a‖p

N + p
∑
y∈[N ]

1
‖ay‖p

. ‖a‖p + p log p
N

.

The case ‖a‖p < N . Here we use the estimate |Sk| . k
‖a‖p

. Also similar to the previous

case, for y ∈ SN we use the bound ‖Nay‖p

‖ay‖p
≤ N , otherwise we use the bound ‖Nay‖p

‖ay‖p
≤ p
‖ay‖p

.
Similar to the previous case, we have

1
N

∑
y∈[N ]

1
‖ay‖p

= g(p) +
p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

= 1
p

+
p−1∑
i=1

(
1
i
− 1
i+ 1

)
|Si|
N

.
1
p

+
p−1∑
i=1

1
i2
· i

‖a‖pN

.
log p
‖a‖pN

.

So we have∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑
y∈SN

N + p
∑
y∈[N ]

1
‖ay‖p

.
N2

‖a‖p
+ p log p
‖a‖p

.
p log p
‖a‖p

.

The lemma follows. J

We remark that the following more general statement regarding uniformity of product
sets follows by a similar proof to Lemma 10 which we record here as it may be of independent
interest.

I Lemma 13. Let p ≥ N2 be prime, and let B ⊆ [N ]d for some positive integer d. Then

Ex∼[N ]d |Ey∼Bχa(〈x,y〉)|2 . max
(
‖a‖dp ,

pd

‖a‖dp

)
· logd p
|B|Nd

.
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Abstract

We study the search problem class PPAq defined as a modulo-q analog of the well-known polynomial
parity argument class PPA introduced by Papadimitriou (JCSS 1994). Our first result shows that
this class can be characterized in terms of PPAp for prime p.

Our main result is to establish that an explicit version of a search problem associated to the
Chevalley–Warning theorem is complete for PPAp for prime p. This problem is natural in that it
does not explicitly involve circuits as part of the input. It is the first such complete problem for
PPAp when p ≥ 3.

Finally we discuss connections between Chevalley-Warning theorem and the well-studied short
integer solution problem and survey the structural properties of PPAq.
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19:2 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

1 Introduction

The study of total NP search problems (TFNP) was initiated by Megiddo and Papadimitriou
[32] and Papadimitriou [33] to characterize the complexity of search problems that have a
solution for every input and where a given solution can be efficiently checked for validity.
Meggido and Papadimitriou [32] showed that the notion of NP-hardness is inadequate to
capture the complexity of total NP search problems. By now, this theory has flowered
into a sprawling jungle of widely-studied syntactic complexity classes (such as PLS [28],
PPA/PPAD/PPP [33], CLS [18]) that serve to classify the complexities of many relevant
search problems.

The goal of identifying natural1 complete problems for these complexity classes lies in the
foundation of this sub-field of complexity theory and not only gives a complete picture of the
computational complexity of the corresponding search problems, but also provides a better
understanding of the complexity classes. Such natural complete problems have also been
an essential middle-step for proving the completeness of other important search problems,
the same way that the NP-completeness of Sat is an essential middle step in showing the
NP-completeness of many other natural problems. Some known natural complete problems
for TFNP subclasses are: the PPAD-completeness of NashEquilibrium [17], the PPA-
completeness of ConsensusHalving, NecklaceSplitting and HamSandwich problems
[20, 21] and the PPP-completeness of natural problems related to lattice-based cryptography
[36]. Finally, the theory of total search problems has found connections beyond its original
scope to areas like communication complexity and circuit lower bounds [23], cryptography
[9, 29, 16] and the Sum-of-Squares hierarchy [30].

Our main result is to identify the first natural complete problem for the classes PPAq, a
variant of the class PPA. We also illustrate the relevance of these classes through connections
with important search problems from combinatorics and cryptography.

Class PPAq. The class PPAq was defined, in passing, by Papadimitriou [33, p. 520]. It is a
modulo-q analog of the well-studied polynomial parity argument class PPA (which corresponds
to q = 2). The class embodies the following combinatorial principle:

If a bipartite graph has a node of degree not a multiple of q,
then there is another such node.

In more detail, PPAq consists of all total NP search problems reducible2 to the problem
Bipartiteq defined as follows. An instance of this problem is a balanced bipartite graph
G = (V ∪ U,E), where V ∪ U = {0, 1}n together with a designated vertex v? ∈ V ∪ U . The
graph G is implicitly given via a circuit C that computes the neighborhood of every node in
G. Let deg(v) be the degree of the node v in G. A valid solution is a node v ∈ {0, 1}n such
that, either
. v = v? satisfying deg(v) ≡ 0 (mod q) [Trivial Solution] ; or
. v 6= v? satisfying deg(v) 6≡ 0 (mod q).
In Section 2 we provide some other total search problems (Lonelyq, Leafq) that are
reducible to and from Bipartiteq. Any one of these problems could be used to define PPAq.
In fact, Lonelyq and Leafq are natural variants of the standard problems Lonely and
Leaf which are used to define the class PPA.

1 Following the terminology of many TFNP papers, including [24, 20, 21, 36], a natural problem is one
that does not have explicitly a circuit or a Turing machine as part of the input.

2 Here, we consider a many-one reduction, which is a polynomial time algorithm with one oracle query
to the said problem. In contrast, a Turing reduction allows polynomially many oracle queries. See
Subsection 1.5 for a comparison.
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Our contributions. We illustrate the importance of the complexity classes PPAq by showing
that many important search problems whose computational complexity is not well understood
belong to PPAq (see §1.6 for details). These problems span a wide range of scientific areas,
from algebraic topology to cryptography. For some of these problems we conjecture that
PPAq-completeness is the right notion to characterize their computational complexity. The
study of PPAq is also motivated from the connections to other important and well-studied
classes like PPAD.

In this paper, we provide a systematic study of the complexity classes PPAq. Our main
result is the identification of the first natural complete problem for PPAq together with some
structural results. Below we give a more precise overview of our results.

§1.1 (Details in Section 3): We characterize PPAq in terms of PPAp for prime p.
§1.2 (Details in Section 4): Our main result is that an explicit3 version of the Chevalley-

Warning theorem is complete for PPAp for prime p. This problem is natural in that it
does not involve circuits as part of the input and is the first known natural complete
problem for PPAp when p ≥ 3.

§1.3 (Details in Section 5): As a consequence of the PPAp-completeness of our natural
problem, we show that restricting the input circuits in the definition of PPAp to just
constant depth arithmetic formulas doesn’t change the power of the class.

§1.4 (Details in Section 6): We show a connection between PPAq and the Short Integer
Solution (SIS) problem from the theory of lattices. This connection implies that SIS
with constant modulus q belongs to PPAq ∩ PPP, but also provides a polynomial time
algorithm for solving SIS when the modulus q is constant and has only 2 and 3 as prime
factors.

§1.5 (Details in Section 7): We sketch how existing results already paint a near-complete
picture of the relative power of PPAp relative to other TFNP subclasses (via inclusions
and oracle separations). We also show that PPAq is closed under Turing reductions.

In §1.6, we include a list of open problems that illustrate the broader relevance of PPAq. We
note that a concurrent and independent work by Hollender [25] also establishes the structural
properties of PPAq corresponding to §1.1 and §1.5.

1.1 Characterization via Prime Modulus
We show, in Section 3, that every class PPAq is built out of the classes PPAp for p a prime.
To formalize this result, we recall the operator “&” defined by Buss and Johnson [13, §6].
For any two syntactic complexity classes M0, M1 with complete problems S0, S1, the class
M0 & M1 is defined via its complete problem S0 & S1 where, on input (x, b) ∈ {0, 1}∗×{0, 1},
the goal is to find a solution for x interpreted as an instance of problem Sb. Namely, if b = 0
then the output has to be a solution of S0 with input x, and otherwise it has to be a solution
of S1 with input x. Intuitively speaking, M1 & M2 combines the powers of both M1 and M2.
Note that M1 ∪M2 ⊆ M1 & M2. We can now formally express our characterization result
(where p|q is the set of primes p dividing q).

I Theorem 1. PPAq = &p|q PPAp.

3 Following the terminology in [8], by explicit we mean that the system of polynomials, which is the input
of the computational problems we define, are given as a sum of monic monomials.
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A special case of Theorem 1 is that PPApk = PPAp for every prime power pk. Showing the
inclusion PPApk ⊆ PPAp is the crux of our proof. This part of the theorem can be viewed as
a total search problem analog of the counting class result of Beigel and Gill [7] stating that
ModpkP = ModpP; “an unexpected result”, they wrote at the time. Throughout this paper,
we use q to denote any integer ≥ 2 and p to denote a prime integer.

1.2 A Natural Complete Problem via Chevalley-Warning Theorem
There have been several works focusing on completeness results for the class PPA (i.e.
PPA2). Initial works showed the PPA-completeness of (non-natural) total search problems
corresponding to topological fixed point theorems [24, 1, 19]. Closer to our paper, Belovs et al.
[8] show the PPA-completeness of computational analogs of Combinatorial Nullstellensatz and
the Chevalley–Warning Theorem, but which explicitly involve a circuit as part of the input.
More recently, breakthrough results showed PPA-completeness of problems without a circuit
or a Turing Machine in the input such as Consensus-Halving, Necklace-Splitting and
Ham-Sandwich [20, 21] resolving an open problem since the definition of PPA in [33].

Our main contribution is to provide a natural complete problem for PPAp, for every
prime p; thereby also yielding a new complete problem for PPA. Our complete problem is
an extension of the problem Chevalleyp, defined by Papadimitriou [33], which is a search
problem associated to the celebrated Chevalley-Warning Theorem. We first present an
abstract way to understand the proof of the Chevalley-Warning Theorem that motivates the
definition of our natural complete problem for PPAp.

1.2.1 Max-Degree Monic Monomials and Proof of Chevalley-Warning
Theorem

In 1935, Claude Chevalley [15] resolved a hypothesis stated by Emil Artin, that all finite
fields are quasi-algebraically closed. Later, Ewald Warning [37] proved a slight generalization
of Chevalley’s theorem. This generalized statement is usually referred to as the Chevalley-
Warning Theorem (CWT, for short). Despite its initial algebraic motivation, CWT has
found profound applications in combinatorics and number theory as we discuss in §1.4 (and
Section 6).

We now explain the statement of the Chevalley-Warning Theorem, starting with some
notations. For any field F and any polynomial f in a polynomial ring F[x1, . . . , xn] we use
deg(f) to represent the degree of f . We use x to succinctly denote the set of all variables
(x1, . . . , xn) (the number of variables will always be n) and f to succinctly denote a system
of polynomials f = (f1, . . . , fm) ∈ F[x]m. We will often abuse notations to use x to also
denote assignments over Fnp . For instance, let Vf :=

{
x ∈ Fnp : fi(x) = 0 for all i ∈ [m]

}
be

the set of all common roots of f .

I Chevalley-Warning Theorem ([15, 37]). For any prime4 p and polynomial system f ∈
Fp[x]m satisfying

m∑
i=1

deg(fi) < n, (CW Condition)

it holds that |Vf | ≡ 0 (mod p).

4 While most of the results in this section generalize to prime powers, we only consider prime fields for
simplicity.
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Given a polynomial system f ∈ Fp[x]m, the key idea in the proof of the Chevalley-Warning
Theorem is the polynomial

CWf (x) :=
m∏
i=1

(
1− fi(x)p−1) (mod {xpi − xi}i

)
.

Note that CWf (x) = 1 if x ∈ Vf and is 0 otherwise. Thus, |Vf | ≡
∑

x∈Fn
p

CWf (x) (mod p).
The following definition informally describes a special type of monomial of CWf that is of
particular interest in the proof. For the precise definition, we refer to Section 4.

I Definition 2 (Max-Degree Monic Monomials (Informal)). Let f ∈ Fp[x]m. A monic
monomial of CWf refers to a monic monomial obtained when symbolically expanding CWf as
a sum of monic monomials. A monic monomial is said to be of max-degree if it is

∏n
j=1 x

p−1
j .

In the above definition, it is important to consider the symbolic expansion of CWf and
ignore any cancellation of coefficients that might occur. Observe that, although the expansion
of CWf is exponentially large in the description size of f , each monic monomial of CWf can
be succinctly described as a combination of monic monomials of the polynomials f1, . . . , fm.
We formally discuss this in Section 4.

Using the definition of max-degree monic monomials, we state the main technical lemma
underlying the proof of CWT (with proof in Section 4).

I Chevalley–Warning Lemma. For any prime p and f ∈ Fp[x]m,

|Vf | ≡ (−1)n · | {max-degree monic monomials of CWf} | (mod p) (CW Lemma)

The Chevalley-Warning Theorem now follows by observing that if
∑m
i=1 deg(fi) < n then the

number of max-degree monic monomials of CWf is zero. Hence, we get that |Vf | ≡ 0 (mod p).

1.2.2 Proofs of Cancellation
From the proof sketch of CWT in the previous section, a slight generalization of CWT follows.
In particular, |Vf | ≡ 0 (mod p) if and only if∣∣{max-degree monic monomials of CWf}

∣∣ ≡ 0 (mod p) , (Extended CW Condition)

Any condition on f that implies the (Extended CW Condition) can replace (CW Condition)
in the Chevalley-Warning Theorem. Note that the (Extended CW Condition) is equivalent
to all the max-degree monic monomials in CWf cancelling out. Thus, we call any such
condition on f that implies (Extended CW Condition) to be a “proof of cancellation” for
the system f .

We can now reinterpret the result of Belovs et al. [8] in this framework of “proof of
cancellation” conditions. In particular, [8] considers the case p = 2 and defines the problem
PPA-Circuit-Chevalley, in which a “proof of cancellation” is given in a specific form of
circuits. These circuits describe the system (f1, . . . , fm) in the PPA-Circuit-Chevalley
problem. It is then shown that PPA-Circuit-Chevalley is PPA2-complete.

1.2.3 Computational Problems Based on Chevalley-Warning Theorem
Every “proof of cancellation” that is syntactically refutable can be used to define a total
search problem that lies in PPAp. By syntactically refutable we mean that whenever the
“proof of cancellation” is false, there exists a small witness that certifies so. In this section,
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we define three computational problems with their corresponding “proof of cancellation”: (1)
the Chevalleyp problem defined by [33], (2) the GeneralChevalleyp problem that is a
generalization of Chevalleyp, and (3) the problem ChevalleyWithSymmetryp that we
show to be PPAp-complete. All these problems are defined for every prime modulus p and
are natural in the sense that they do not explicitly involve a circuit or a Turing Machine in
their input. In particular, the polynomial systems in the input are explicit in that they are
given as a sum of monic monomials.

1.2.3.1 Chevalley

This is the direct computational analog of the Chevalley-Warning Theorem and was defined
by Papadimitriou [33] as the following total search problem:

Chevalleyp
Given an explicit polynomial system f ∈ Fp[x]m, and an x? ∈ Vf , output one of the
following:
. [Refuting witness] (CW Condition) is not satisfied.
. x ∈ Vf r {x?}.
We will particularly consider a special case where all the fi’s have zero constant term (zecote,
for short). In this case, x? = 0 ∈ Vf , so there is no need to explicitly include x∗ in the input.

1.2.3.2 General Chevalley

As mentioned already, we can define a search problem corresponding to any syntactically
refutable condition that implies the (Extended CW Condition). One such condition is to
directly assert that

{max-degree monic monomials of CWf} = ∅. (General CW Condition)

In particular, note that (CW Condition) implies this condition. Moreover, this condition is
syntactically refutable by a max-degree monic monomial, which is efficiently representable as
a combination of at most m(p− 1) monomials of the fi’s. Thus, we can define the following
total search problem generalizing Chevalleyp.

GeneralChevalleyp
Given an explicit polynomial system f ∈ Fp[x]m and an x? ∈ Vf , output one of the following:
. [Refuting Witness] A max-degree monic monomial of CWf .
. x ∈ Vf r {x?}.

While GeneralChevalleyp generalizes Chevalleyp, it does not capture the full general-
ity of (Extended CW Condition). However (Extended CW Condition) is not syntactically
refutable (in fact, it is ModpP–complete to decide5 if the final coefficient of the max-degree
monomial is 0).

A natural question then is whether GeneralChevalleyp, or even Chevalleyp, could
already be PPAp–complete. We believe this to be unlikely because (General CW Condition)
seems to fail in capturing other simple conditions that are syntactically refutable and yet
imply (Extended CW Condition). Namely, consider a permutation permutation σ ∈ Sn of

5 Circuit-SAT can be encoded as satisfiability of a polynomial system f ∈ Fp[x]m by including a
polynomial for each gate along with

{
x2

i − xi = 0
}
to ensure Booleanity. Thus, number of satisfiable

assignments to the Circuit-SAT is ≡ |Vf | (mod p), which is 0 (mod p) iff the final coefficient of the
max-degree monomial is 0.
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the variables x1, . . . , xn of order p (i.e. σp is the identity permutation). Suppose that for every
x ∈ Vf , it holds that σ(x) ∈ Vf r {x}; in other words x, σ(x), σ2(x), . . . , σp−1(x) are all
distinct and in Vf (where, σ(x) denotes the assignment obtained by permutating the variables
of the assignment x according to σ). This implies that the elements of Vf can be partitioned
into groups of size p (given by the orbits of the action σ) and hence |Vf | ≡ 0 (mod p). Hence,
such a σ provides a syntactically refutable proof that |Vf | ≡ 0 (mod p) and hence that
(Extended CW Condition) hold.

Hence, we further generalize GeneralChevalleyp into a problem that incorporates
this additional “proof of cancellation” in the form of a permutation σ ∈ Sn.

1.2.3.3 Chevalley with Symmetry

We consider a union of two polynomial systems g ∈ Fp[x]mg and h ∈ Fp[x]mh . Even if both
g and h satisfy (CW Condition), the combined system f := (g1, . . . , gmg

, h1, . . . , hmh
) might

not satisfy (CW Condition) and it might even be the case that |Vf | is not a multiple of p.
Thus, we need to bring in some additional conditions.

We start by observing that since |Vf |+ |Vf | = pn, it holds that |Vf | ≡ 0 (mod p) if and
only if |Vf | ≡ 0 (mod p). Also note that, |Vf | = |Vg|+ |(Vg ∩ Vh)|.

If g satisfies the (General CW Condition) then we have that |Vg| ≡ |Vg| ≡ 0 (mod p).
A simple way to enforce that |Vg ∩ Vh| ≡ 0 (mod p) is to enforce a “symmetry”, namely
that its elements can be grouped into groups of size p each. We impose this grouping with a
permutation σ ∈ Sn of the variables x1, . . . , xn of order p such that for any x ∈ Vg ∩ Vh, it
holds that σ(x) ∈ (Vg ∩ Vh) r {x}; or in other words that x, σ(x), σ2(x), . . . , σp−1(x) are
all distinct and contained in Vg ∩ Vh.

We now define the following natural total search problem.

ChevalleyWithSymmetryp
Given two explicit polynomial systems g ∈ Fp[x]mg and h ∈ Fp[x]mh , and an x? ∈ Vf (where
f := (g,h)) and a permutation σ ∈ Sn of order p, output one of the following:
. [Refuting Witness – 1] A max-degree monic monomial of CWg.
. [Refuting Witness – 2] x ∈ Vg ∩ Vh such that σ(x) /∈ (Vg ∩ Vh) r {x}.
. x ∈ Vf r {x?}.

The above problem is natural, because the input consists of a system of polynomial in an
explicit form, i.e. as a sum of monic monomials, together with a permutation in Sn given say
in one-line notation. Also, observe that when h is empty, the above problem coincides with
GeneralChevalleyp (since Vh = ∅ when h is empty). Our main result is the following
(proved in Section 4).

I Theorem 3. For any prime p, ChevalleyWithSymmetryp is PPAp-complete.

1.3 Complete Problems via Small Depth Arithmetic Formulas
While the ChevalleyWithSymmetryp problem may seem somewhat contrived, the im-
portance of its PPAp-completeness is illustrated by our next result (proved in Section 5)
showing that we can reformulate any of the proposed definitions of PPAp, by restricting the
circuit in the input to be just constant depth arithmetic formulas with gates × (mod p) and
+ (mod p) (we call this class AC0

Fp
). This result is analogous to the NP-completeness of SAT

which basically shows that CircuitSAT remains NP-complete even if we restrict the input
circuit to be a (CNF) formula of depth 2.

CCC 2020
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I Theorem 4. Lonelyp/Bipartitep/Leafp with AC0
Fp

input circuits are PPAp–complete.

We hope that this theorem will be helpful in the context of proving PPAp-hardness of other
problems. There it would be enough to consider only constant depth arithmetic formulas
(and hence NC1 Boolean formulas) in the definitions of PPAp as opposed to unbounded depth
circuits. Such a simplification has been a key-step for proving hardness results for other
TFNP subclasses, e.g. in the PPAD-hardness proofs of approximate-Nash (cf. [35]).

1.4 Applications of Chevalley-Warning
Apart from its initial algebraic motivation, the Chevalley-Warning theorem has been used to
derive several non-trivial combinatorial results. Alon et al. [3] show that adding an extra
edge to any 4-regular graph forces it to contain a 3-regular subgraph. More generally, they
prove that certain types of “almost” regular graphs contain regular subgraphs. Another
application of CWT is in proving zero-sum theorems similar to the Erdös-Ginzburg-Ziv
Theorem. A famous such application is the proof of Kemnitz’s conjecture by Reiher [34].

We define two computational problems that we show are reducible to Chevalleyp and
suffice for proving most of the combinatorial applications of the Chevalley-Warning Theorem
mentioned above (for a certain range of parameters n and m). Both involve finding solutions
to a system of linear equations modulo q, given as Ax ≡ 0 (mod q) for A ∈ Zm×n.

. BISq: Find x ∈ {0, 1}n satisfying x 6= 0 and Ax ≡ 0 (mod q).

. SISq: Find x ∈ {−1, 0, 1}n satisfying x 6= 0 and Ax ≡ 0 (mod q).
The second problem is a special case of the well-known short integer solution problem in
`∞ norm. Note that, when n > m · log2 q, the totality of SISq is guaranteed by pigeonhole
principle; that is, SISq is in PPP in this range of parameters. We are interested in identifying
the range of parameters that places this problem in PPAq – see Definitions 40 and 41 for the
precise range of parameters n and m that we consider. In Theorem 42, we prove a formal
version of the following:

I Theorem (Informal). For a certain range of parameters n,m, it holds that
1. For all primes p : BISp and SISp are Karp-reducible to Chevalleyp, hence are in PPAp.
2. For all q : BISq and SISq are Turing-reducible to any PPAq–complete problem.
3. For all k : BIS2k is solvable in polynomial time.
4. For k and ` : SIS2k3` is solvable in polynomial time.
Even though the SISq problem is well-studied in lattice theory, not many results are known
in the regime where q is a constant and the number of variables depends linearly on the
number of equations. Part (1) of the above theorem establishes a reduction from SISp to
Chevalleyp for prime p. Part (2) follows by a bootstrapping method that allows us to
combine algorithms for SISq1 and SISq2 to give an algorithm for SISq1q2 (for a certain regime
for parameters n and m). Finally Parts (3) and (4) results follow by using this bootstrapping
method along with the observation that Gaussian elimination provides valid solutions for
BIS2 (hence also SIS2) and for SIS3.

1.5 Structural properties
Relation to other classes

Buss and Johnson [13, 27] had defined a class PMODq which turns out to be slightly weaker
than PPAq (refer to Section 7). Despite this slight difference between the definitions of PPAq
and PMODq, we can still deduce statements about PPAq from the work of [27]. In particular,
it follows that PPAD ⊆ PPAq (refer to Subsection 7.1).
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FP

CLS

PPAD

PPADS

PLSPPP PPA · · · PPAp

⋂
p PPAp

TFNP

Figure 1 The landscape of TFNP subclasses. A solid arrow M1 → M2 denotes M1 ⊆ M2, and a
dashed arrow M1 99K M2 denotes an oracle separation: MO1 * MO2 relative to some oracle O. The
relationships involving PPAp are highlighted in yellow. See Section 7 for details.

More broadly, a near-complete picture of the power of PPAq relative to other subclasses
of TFNP is summarized in Figure 1. These relationships (inclusions and oracle separations)
mostly follow from prior work in proof complexity [6, 12, 27, 23] (refer to Subsection 7.2).

Closure under Turing reductions

Recall that TFNP subclasses are defined as the set of all total search problems that are
many-one reducible (aka Karp–reducible) to the corresponding complete problems. One can
ask whether more power is gained by allowing Turing reductions, that is, polynomially many
oracle queries to the corresponding complete problem. Buss and Johnson [13] showed that
PLS, PPAD, PPADS, PPA are closed under Turing reductions (with a notable exception of
PPP, which remains open). We show this for PPAp when p is a prime.

I Theorem 5. FPPPAp = PPAp for every prime p.

By contrast, it follows from [13, §6] that PPAq is not closed under black-box Turing reductions
for non-prime powers q. See Subsection 7.3 for details.

1.6 Open questions
Factoring

It has been shown that Factoring reduces to PPP-complete problems as well as to PPA-
complete problems [11, 26], albeit under randomized reductions (which can be derandom-
ized assuming the Generalized Reimann Hypothesis). It has been asked whether in fact
Factoring could be reduced to PPAD-complete problems [26]. As a step towards this
problem, we propose the following question.

I Open Problem 1. Is Factoring in PPAp for all primes p (perhaps under randomized
reductions)?

CCC 2020



19:10 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

This is clearly an easier problem since PPAD ⊆ PPAp. Interestingly, note that there exists an
oracle O relative to which

⋂
p PPAOp * PPADO. Thus, the above problem, even if established

for all prime p, is still weaker than showing that Factoring reduces to PPAD-complete
problems.

Necklace Splitting

The q-Necklace-Splitting problem is defined as follows: There is an open necklace6 with
q · ai beads of color i, for i ∈ [n]. The goal is to cut the necklace in (q − 1) · n places and
partition the resulting substrings into k collections, each containing precisely ai beads of
color i for each i ∈ [n].

The fact that such a partition exists was first shown in the case of q = 2 by Goldberg and
West [22] and by Alon and West [4]. Later, Alon [2] proved it for all q ≥ 2. As mentioned
before, Filos-Ratsikas and Goldberg [21] showed that the 2-Necklace-Splitting problem
is PPA-complete. Moreover, they put forth the following question (which we strengthen
further).

I Open Problem 2. Is q-Necklace-Splitting in PPAq? More strongly, is it PPAq-
complete?

While we do not know how to prove/disprove this yet, we point out that it was also shown
in [21] that 2k-Necklace-Splitting is in fact in PPA2. This is actually well aligned with
this conjecture since we showed that PPA2k = PPA2 (Theorem 1).

Bárány-Shlosman-Szücs theorem

Alon’s proof of the q-Necklace-Splitting theorem [2] was topological and used a certain
generalization of the Borsuk-Ulam theorem due to Bárány, Shlosman and Szücs [14]. Since
the computational Borsuk-Ulam problem is PPA-complete, we could ask a similar question
about this generalization.

I Open Problem 3. Is Bárány-Shlosman-Szücsp problem in PPAp (perhaps even PPAp-
complete)?

Applications of Chevalley-Warning Theorem

We conclude with some interesting directions for further exploring the connections of
Chevalley with other computational problems.

I Open Problem 4. Does SISq admit worst-to-average case reductions to other lattice prob-
lems in our range of parameters? Or is it average-case hard assuming standard cryptographic
assumptions, e.g. the “learning with errors” assumption?

If resolved positively, the above would serve as evidence of the average-case hardness for the
class PPAp, similar to the evidence that we have for PPA by reduction from Factoring.

I Open Problem 5. For all primes p, is Chevalleyp reducible to BISp?

I Open Problem 6. For all q, is there a non-trivial regime of parameters n, m where BISq
is solvable in polynomial time?

6 an “open necklace” means that the beads form a string, not a cycle
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2 The class PPAq

Search Problems in FNP and TFNP

A search problem in FNP is defined by a polynomial time computable relation R ⊆ {0, 1}∗ ×
{0, 1}∗, that is, for every (x, y), it is possible to decide whether (x, y) ∈ R in poly(|x|, |y|)
time. A solution to the search problem on input x is a y such that |y| = poly(|x|) and
(x, y) ∈ R. For convenience, define R(x) := {y : (x, y) ∈ R}. A search problem is total if for
every input x ∈ {0, 1}∗, there exists y ∈ R(x) such that |y| ≤ poly(|x|). TFNP is the class of
all total search problems in FNP.

Reducibility among search problems

A search problem R1 is Karp-reducible (or many-one reducible) to a search problem R2, or
R1 � R2 for short, if there exist polynomial-time computable functions f and g such that
given any instance x of R1, f(x) is an instance of R2 such that for any y ∈ R2(f(x)), it
holds that g(x, f(x), y) ∈ R1(x).

On the other hand, we say that R1 is Turing-reducible to R2, or R1 �T R2 for short, if
there exists a polynomial-time oracle Turing machine that on input x to R1, makes oracle
queries toR2, and outputs a y ∈ R1(x). In this paper, we primarly deal with Karp-reductions,
except in Subsection 7.3, where we compare the two different notions of reductions in the
context of PPAq.

PPAq via complete problems

We describe several total search problems (parameterized by q) that we show to be inter-
reducible. PPAq is then defined as the set of all search problems reducible to either one of
the search problems defined below.

Recall that Boolean circuits take inputs of the form {0, 1}n and operate using (∧, ∨, ¬)
gates. In addition, we’ll also consider circuits acting on inputs in [q]n. We interpret the input
to be of the form ({0, 1}dlog qe)n, where the circuit will be evaluated only on inputs where
each block of dlog qe bits represents a element in [q]. In the case where q is a prime, we
could also represent the circuit as C : Fnq → Fnq with arbitrary gates of the form g : F2

q → Fq.
However, we can simulate any such gate with poly(q) many + and × operations (over Fq)
along with a constant (1) gate. Hence, in the case of prime q, we’ll assume that such circuits
are composed of only (+,×, 1) gates.

I Definition 6 (Bipartiteq).
Principle: A bipartite graph with a non-multiple-of-q degree node has another such node.
Object: Bipartite graph G = (V ∪ U,E). Designated vertex v∗ ∈ V
Inputs: . C : {0, 1}n → ({0, 1}n)k, with ({0, 1}n)k interpreted as a k-subset of {0, 1}n

. v∗ ∈ {0} × {0, 1}n−1 (usually 0n)
Encoding: V := {0} × {0, 1}n−1, U := {1} × {0, 1}n−1,

E := {(v, u) : v ∈ V ∩ C(u) and u ∈ U ∩ C(v)}
Solutions: v∗ if deg(v∗) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)
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I Definition 7 (Lonelyq).
Principle: A q-dimensional matching on a non-multiple-of-q many vertices has an isolated

node.
Object: q-dimensional matching G = (V,E).

Designated vertices V ∗ ⊆ V with |V ∗| ≤ q − 1
Inputs: . C : [q]n → [q]n

. V ∗ ⊆ [q]n with |V ∗| ≤ q − 1
Encoding: V := [q]n. For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if C(vi) = vi+1,

C(vq) = v1
Solutions: v ∈ V ∗ if deg(v) = 1 and

v /∈ V ∗ if deg(v) = 0

I Definition 8 (Leafq).
Principle: A q-uniform hypergraph with a non-multiple-of-q degree node has another such

node.
Object: q-uniform hypergraph G = (V,E). Designated vertex v∗ ∈ V
Inputs: . C : {0, 1}n → ({0, 1}nq)q; Interpret ({0, 1}nq)q as q many q-subsets of {0, 1}n

. v∗ ∈ {0, 1}n (usually 0n)
Encoding: V := {0, 1}n. For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if e ∈ C(v) for

all v ∈ e
Solutions: v∗ if deg(v) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)

We remark that Lonelyq and Leafq are modulo-q analogs of the PPA-complete problems
Lonely and Leaf [33, 5]. We prove the following theorem in Appendix A.

I Theorem 9. The problems Bipartiteq, Lonelyq and Leafq are inter-reducible.

I Remark 10 (Simplifications in describing reductions.). We will use the following simple
conventions repeatedly, in order to simplify the descriptions of reductions between different
search problems.
1. We will often use “algorithms”, instead of “circuits” to encode our hypergraphs. It is

standard to simulate polynomial-time algorithms by polynomial sized circuits.
2. While our definitions require vertex sets to be of a very special form, e.g. {0, 1}n or [q]n,

it will hugely simplify the description of our reductions to let vertex sets be of arbitrary
sizes. This is not a problem as long as the vertex set is efficiently indexable, that is,
elements of V must have a poly(n) length representation and we must have a poly-time
computable bijective map ϕ : V → [|V |], whose inverse is also poly-time computable. We
could then use ϕ to interpret the first |V | elements of {0, 1}n (or [q]n) as vertices in V .
Note that, we need to ensure that no new solutions are introduced in this process. In
the case of Bipartiteq or Leafq, we simply leave the additional vertices isolated and
they don’t contribute any new solutions. In the case of Lonelyq we need to additionally
ensure that |V | ≡ 0 (mod q), so that we can easily partition the remaining vertices into
q-uniform hyperedges thereby not introducing any new solutions.

3. The above simplification gives us that all our problems have an instance-extension property
(cf. [10]) – this will be helpful in proving Theorem 5.

4. To simplify our reductions even further, we’ll often describe the edges/hyperdges directly
instead of specifying how to compute the neighbors of a given vertex. This is only for
simplicity and it will be easy to see how to compute the neighbors of any vertex locally.
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Bipartitep

Leafp

Leaf′p

Lonelyp

SuccinctBipartitep

TwoMatchingsp

ChevalleyWithSymmetryp

GeneralChevalleyp

Chevalleyp

SISp

Figure 2 Total search problems studied in this work. An arrow A→ B denotes a reduction A � B

that we establish. Problems in the blue region are non-natural problems, which are all complete for
PPAp. Problems in the green region are natural problems of which ChevalleyWithSymmetryp is
the one we show to be PPAp–complete. The problem in the orange region is a cryptographically
relevant problem.

3 Characterization via Primes

In this section we prove Theorem 1, namely PPAq = &p|q PPAp. The theorem follows by
combining the following two ingredients.
§3.1: PPAqr = PPAq & PPAr for any coprime q and r.
§3.2: PPApk = PPAp for any prime power pk.

3.1 Coprime case

PPAqr ⊇ PPAq & PPAr

We show that Lonelyq & Lonelyr reduces to Lonelyqr. Recall that an instance of
Lonelyq & Lonelyr is a tuple (C, V ∗, b) where (C, V ∗) describes an instance of either
Lonelyq or Lonelyr as chosen by b ∈ {0, 1}. Suppose wlog that b = 0, so the input
encodes a q-dimensional matching G = (V,E) over V = [q]n with designated vertices
V ∗ ⊆ V , |V ∗| 6≡ 0 (mod q). We can construct a qr-dimensional matching G = (V ,E) on
vertices V := V × [r] as follows: For every hyperedge e := {v1, . . . , vq} ∈ E, we include the
hyperedge e × [r] in E. We let the designated vertices of G be V ∗ := V ∗ × [r]. Note that
|V ∗| 6≡ 0 (mod qr). It is easy to see that a vertex (v, i) is isolated in G′ iff v is isolated in G.
This completes the reduction since V is efficiently indexable, and the neighbors of any vertex
in V are locally computable using black-box access to C.

PPAqr ⊆ PPAq & PPAr

We show that Bipartiteqr reduces to Bipartiteq & Bipartiter. Our input instance of
Bipartiteqr is a circuit C : {0, 1}n → ({0, 1}n)k that encodes a bipartite graph G = (V ∪
U,E) with a designated node v∗ ∈ V . If deg(v∗) ≡ 0 (mod qr), then we already have solved
the problem and no further reduction is necessary. Otherwise, if deg(v∗) 6≡ 0 (mod qr), we
have, by the coprime-ness of q and r, that either deg(v∗) 6≡ 0 (mod q) or deg(v∗) 6≡ 0 (mod r).
In the first case (the second case is analogous), we can simply view (G, v∗) as an instance of
Bipartiteq, since vertices with degree 6≡ 0 (mod q) in G are also solutions to Bipartiteqr.

CCC 2020
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V ∗

Figure 3 Illustration of the proof of PPApk ⊆ PPAp for p = 2, k = 2, n = 2, t = 1. In black,
we indicate the 4-dimensional matching G. In color, we highlight some of the vertices of G and
the edges between them. The vertices of G in red, blue and green are paired up and hence are
non-solutions; whereas the vertex in yellow is isolated and not in V

∗ and hence a solution.

3.2 Prime power case
PPApk ⊇ PPAp follows immediately from our proof of PPAqr ⊇ PPAq & PPAr, which didn’t
require that q and r be coprime. It remains to show PPApk ⊆ PPAp. We exploit the following
easy fact.

I Fact 11. For all primes p, it holds that,

for integers t, c > 0 :
(
c · pt

pt

)
≡ 0 (mod p) if and only if c ≡ 0 (mod p) (3.1)

for integer k > 0 :
(
pk

i

)
≡ 0 (mod p) for all 0 < i < pk (3.2)

We reduce Lonelypk to Lonelyp. Our instance of Lonelypk is (C, V ∗) where C implicitly
encodes a pk-dimensional matching G = (V = [pk]n, E) and a designated vertex set V ∗ ⊆ V
such that |V ∗| 6≡ 0

(
mod pk

)
.

Let pt, 0 ≤ t < k, be the largest power of p that divides |V ∗|. Through local operations
we construct a p-dimensional matching hypergraph G = (V ,E) over vertices V :=

(
V
pt

)
(set

of all size-pt subsets of V ) with designated vertices V ∗ :=
(
V ∗

pt

)
. From Eq. 3.1, we get that

|V | ≡ 0 (mod p) and |V ∗| 6≡ 0 (mod p).
We will describe an algorithm that on vertex v ∈ V outputs a hyperedge of p vertices that

contains v (if any). To this end, first fix an algorithm that for any set e :=
{
u1, . . . , upk

}
⊆ V

and for any 1 ≤ i ≤ pt, computes some “canonical” partition of the set
(
e
i

)
into subsets of

size p, and moreover assigns a canonical cyclic order within each such subset. This is indeed
possible because of Eq. 3.2, since t < k.

Given a vertex v := {v1, . . . , vpt} ∈ V ,
. Compute all edges e1, . . . , e` ∈ E that include some v ∈ v.
. For edge ej , define Sj := ej ∩ v and let S1

j , . . . , S
p−1
j be the remaining subsets in the

same partition as Sj in the canonical partition of
( ej

|Sj |
)
, listed in the canonical cyclic

order starting at Sj . Also, let S0 be the set of untouched vertices in v. Observe that
v = S0 ∪ S1 ∪ . . . ∪ S`.

. Output neighbors of v as the vertices v1, . . . , vp−1 where vi := S0 ∪ Si1 ∪ . . . ∪ Si`.
It is easy to see that v is isolated in G iff all v ∈ v are isolated in G. Moreover, any isolated
vertex in V r V

∗ contains at least one isolated vertex in V r V ∗; and a non-isolated vertex
in V ∗ contains at least one non-isolated vertex in V ∗ (in fact pt many).

The edges of G can indeed be computed efficiently with just black-box access to C. In
order to complete the reduction, we only need that V is efficiently indexable. This is indeed
standard; see [31, §2.3] for a reference. See Figure 3 for an illustration of the proof.
I Remark 12. Note that the size of the underlying graph blows up polynomially in our
reduction. We do not know whether a reduction exists that avoids such a blow-up, although
we suspect that the techniques of [6] can be used to show that some blow-up is necessary for
black-box reductions.
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4 A Natural Complete Problem

We start with some notations that will be useful for the presentation of our results.

Notations. For any polynomial g ∈ Fp[x], we define deg(g) to be the degree of g. We define
the expansion to monic monomials of g as

∑L
`=1 t`(x), where t`(x) is a monic monomial in

Fp[x], i.e. a monomial with coefficient 1. For example, the expansion of the polynomial
g(x1, x2) = x1 · (2x1 + 3x2) is given by x2

1 + x2
1 + x1x2 + x1x2 + x1x2.

For a polynomial system f := (f1, . . . , fm) ∈ Fp[x]m, its affine variety Vf ⊆ Fnp is defined
as Vf :=

{
x ∈ Fnp | f(x) = 0

}
. Let Vf := Fnp \ Vf . If the constant term of each fi is 0, we

say that f is zecote, standing for “Zero Constant Term” (owing to lack of known terminology
and creativity on our part).

4.1 The Chevalley-Warning Theorem
We repeat the formal statement of Chevalley-Warning Theorem together with its proof.

I Chevalley-Warning Theorem ([15, 37]). For any prime p and a polynomial system f ∈
Fp[x]m satisfying

∑m
i=1 deg(fi) < n (CW Condition), |Vf | ≡ 0 (mod p).

We describe the proof of CWT through Lemma 14. Even though there are direct
proofs, the following presentation helps motivate the generalizations we study in future
sections. Given a polynomial system f ∈ Fp[x]m, a key idea in the proof is the polynomial
CWf (x) :=

∏m
i=1 CWfi(x) where each CWfi(x) := (1−fi(x)p−1). Observe that CWf (x) = 1

if x ∈ Vf and is 0 otherwise. The following definition describes the notion of a max-degree
monomial of CWf that plays an important role in the proof.

I Definition 13 (Max-Degree Monic Monomials). For any prime p, let f ∈ Fp[x]m and
let the expansion into monic monomials of CWfi(x) be

∑ri

`=1 ti,`(x). Let also Ui = {(i, `) |
` ∈ [ri]} and U =×m

i=1 Ui, we define the following quantities.
1. A monic monomial of CWf is a product tS(x) =

∏m
i=1 tsi(x) for S = (s1, . . . , sm) ∈ U .

2. A max-degree monic monomial of CWf is any monic monomial tS(x), such that
tS(x) ≡

∏n
j=1 x

p−1
j

(
mod {xpi − xi}i∈[n]

)
.

3. We defineMf to be the set of max-degree monic monomials of CWf , i.e.
Mf := {S ∈ U | tS is a max-degree monic monomial of CWf}.

In words, the monomials t(S) are precisely the ones that arise when symbolically expanding
CWf (x). We illustrate this with an example: Let p = 3 and f1(x1, x2) = x1 + x2 and
f2(x1, x2) = x2

1. Then modulo
{
x3

1 − x1, x
3
2 − x2

}
, we have

CW(f1,f2)(x1, x2) = (1− (x1 + x2)2)(1− (x2
1)2)

= (1− x2
1 − 2x1x2 − x2

2) · (1− x2
1)

= (1 + x2
1 + x2

1 + x1x2 + x2
2 + x2

2) · (1 + x2
1 + x2

1)

Thus there are 18 (= 6 × 3) monic monomials in the system (f1, f2). The monomial
corresponding to S = ((1, 5), (2, 2)) is a maximal monomial since the 5-th term in CWf1 is x2

2
and 2-nd term in CWf2 is x2

1. Using the above definitions, we now state the main technical
lemma of the proof of CWT.

I Lemma 14 (Main Lemma in the proof of CWT). For any prime p and any system of
polynomials f ∈ Fp[x]m, it holds that |Vf | ≡ (−1)n |Mf | (mod p).
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Proof. As noted earlier, CWf (x) = 1 if x ∈ Vf and is 0 otherwise. Thus, it follows that
|Vf | ≡

∑
x∈Fn

p
CWf (x) (mod p). For any monic monomial m(x) =

∏n
j=1 x

dj

j , it holds that∑
x∈Fn

p
m(x) = 0 if dj < p− 1 for some xj . On the other hand, for the monic max-degree

monomialm(x) =
∏n
j=1 x

p−1
j , it holds that

∑
x∈Fn

p
m(x) = (p−1)n. Thus, we get that |Vf | ≡∑

x∈Fn
p

CWf (x) (mod p) ≡
∑
S∈U

∑
x∈Fn

p
tS(x) (mod p) ≡ (−1)n|Mf | (mod p). J

The proof of Chevalley-Warning Theorem follows easily from Lemma 14.

Proof of Chevalley-Warning Theorem. We have that deg(CWf ) ≤ (p − 1)
∑m
i=1 deg(fi).

Thus, if f satisfies (CW Condition), then deg(CWf ) < (p− 1)n and hence |Mf | = 0. CWT
now follows from Lemma 14. J

4.2 The Chevalley-Warning Theorem with Symmetry
In this section, we formalize the intuition that we built in Sections 1.2.2 and 1.2.3 to prove the
more general statements to lead to the same conclusion as the Chevalley-Warning Theorem.

First, we prove a theorem that argues about the cardinality of Vf directly using some
symmetry of the system of polynomials f . Then, combining this symmetry-based argu-
ment with the (General CW Condition) we get the generalization of the Chevalley-Warning
Theorem. Our natural PPAp-complete problem is based on this generalization.

The theorem statements are simplified using the definition of free action of a group. For
a permutation over n elements σ ∈ Sn, we define 〈σ〉 to be the sub-group generated by σ and
|σ| to be the order of 〈σ〉. For x ∈ Fnp , σ(x) denotes the assignment obtained by permutating
the variables of the assignment x according to σ.

I Definition 15 (Free Group Action). Let σ ∈ Sn and V ⊆ Fnp , then we say that 〈σ〉
acts freely on V if, for every x ∈ V, it holds that σ(x) ∈ V and x 6= σ(x).

Our first theorem highlights the use of symmetry in arguing about the size of |Vf |.

I Theorem 16. Let f ∈ Fp[x]m be a system of polynomials. If there exists a permutation
σ ∈ Sn with |σ| = p such that 〈σ〉 acts freely on Vf , then |Vf | ≡ 0 (mod p).

Proof. Since σ acts freely on Vf , we can partition Vf into orbits of any x ∈ Vf under
actions of 〈σ〉, namely sets of the type

{
σi(x)

}
i∈[p] for x ∈ Vf . Since 〈σ〉 acts freely on Vf ,

each such orbit has size p. Thus, we can conclude that
∣∣Vf

∣∣ ≡ 0 (mod p) from which the
theorem follows. J

I Remark 17. For any polynomial system f and any permutation σ, we can check in linear
time if |σ| = p and we can syntactically refute that 〈σ〉 acts freely on Vf with an x ∈ Fnpr{0}
such that f(σ(x)) = 0 or σ(x) = x.

We now state and prove an extension of CWT that captures both the argument from
Lemma 14 and the symmetry argument from Theorem 16.

I Theorem 18 (Chevalley-Warning with Symmetry Theorem). Let g ∈ Fp[x]mg and
h ∈ Fp[x]mh be two systems of polynomials, and f := (g,h). If there exists a permutation
σ ∈ Sn with |σ| = p such that (1) Mg = ∅ and (2) 〈σ〉 acts freely on Vg ∩ Vh, then
|Vf | = 0 (mod p).
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I Remark 19. We point to the special form of Condition 2. By definition, Vf = Vg∩Vh, hence
if 〈σ〉 were to act freely on Vg ∪ Vh (or even Vg ∩ Vh), then we could just use Theorem 16
to get that |Vf | ≡ 0 (mod p). In the above theorem, we only require that 〈σ〉 acts freely
on Vg ∩ Vh. Observe that Theorem 16 follows as a special case of CWT with Symmetry
by setting mg = 0. Additionally, by setting mh = 0 we get the generalization of CWT
corresponding to the (General CW Condition) as presented in Subsubsection 1.2.3.

Proof of Theorem 18. If CWg does not have any max- degree monic monomials, we have
|Vg| ≡ 0 (mod p) (similar to proof of CWT) and, since Vg = Fnp \ Vg, we have

∣∣Vg

∣∣ ≡
0 (mod p). Also, since 〈σ〉 acts freely on Vg ∩ Vh, we have

∣∣Vg ∩ Vh

∣∣ ≡ 0 (mod p) (similar
to the proof of Theorem 16). Hence,

∣∣Vf

∣∣ =
∣∣Vg ∩ Vh

∣∣ =
∣∣Vg ∪ Vh

∣∣ =
∣∣Vg

∣∣ +
∣∣Vg ∩ Vh

∣∣ ≡
0 (mod p). Thus, |Vf | ≡ 0 (mod p). J

4.3 Computational Problems Related to Chevalley-Warning Theorem
We now follow the intuition developed in the previous section and in Subsection 1.2 to
formally define the computational problems Chevalleyp, GeneralChevalleyp, and
ChevalleyWithSymmetryp.

I Definition 20 (Chevalleyp).
Principle: Chevalley-Warning Theorem.
Input: f ∈ Fp[x]m : an explicit zecote polynomial system.
Condition:

∑m
i=1 deg(fi) < n.

Output: x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Definition 21 (GeneralChevalleyp).
Principle: General Chevalley-Warning Theorem via (General CW Condition).
Input: f ∈ Fp[x]m : an explicit zecote polynomial system.
Output: 0. A max-degree monic monomial tS(x) of CWf , or

1. x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Definition 22 (ChevalleyWithSymmetryp).
Principle: Chevalley-Warning Theorem with Symmetry (Theorem 18).
Input: . g ∈ Fp[x]mg and h ∈ Fp[x]mh : explicit zecote polynomial systems

. σ ∈ Sn : a permutation over [n].
Condition: |σ| = p.
Output: 0. (a) A max-degree monic monomial tS(x) of CWg, or

(b) x ∈ Vg ∩ Vh such that σ(x) 6∈ (Vg ∩ Vh) r {x}, or
1. x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Remark 23. Some observations about the above computational problems follow:
1. In the problems GeneralChevalleyp and ChevalleyWithSymmetryp, we assume

that, if the output is a max-degree monic monomial, this is given via the multiset of
indices S that describes the monomial as formalized in Definition 13.

2. We have that Chevalleyp � GeneralChevalleyp � ChevalleyWithSymmetryp.
Thus, inclusion of ChevalleyWithSymmetryp in PPAp implies that both Chevalleyp
and GeneralChevalleyp are also in PPAp. Also, in Section 6 we prove that SISp
reduces to Chevalleyp, where SISp is a cryptographically relevant problem. This shows
that the problems GeneralChevalleyp and ChevalleyWithSymmetryp are at least
as hard as SISp.

We restate our main result.

I Theorem 3. For any prime p, ChevalleyWithSymmetryp is PPAp-complete.
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4.4 ChevalleyWithSymmetryp is PPAp–complete
4.4.1 ChevalleyWithSymmetryp is in PPAp

Even though Papadimitriou [33] provided a rough proof sketch of Chevalleyp ∈ PPAp, a
formal proof was not given. We show that ChevalleyWithSymmetryp is in PPAp (and
so are GeneralChevalleyp and Chevalleyp). In order to do so we extend the definition
of Bipartiteq to instances where the vertices might have exponential degree and edges
appear with multiplicity. The key here is to define a Bipartiteq instance with unbounded
(even exponential) degree, but with additional information that allows us to verify solutions
efficiently.

I Definition 24 (SuccinctBipartiteq).
Principle: Similar to Bipartiteq, but degrees are allowed to be exponentially large, edges

are allowed with multiplicities at most q − 1.
Object: Bipartite graph G = (V ∪ U,E) s.t. E ⊆ V × U × Zq. Designated edge e∗ ∈ E.
Inputs: Let V := {0} × {0, 1}n−1 and U := {1} × {0, 1}n−1:

. C : V × U → [q], edge counting circuit

. φV : V × U × [q]→ (U × [q])q, grouping pivoted at V

. φU : V × U × [q]→ (V × [q])q, grouping pivoted at U

. e∗ = (v∗, u∗, k∗), designated edge
Encoding: V := {0} × {0, 1}n−1, U := {1} × {0, 1}n−1,

E := {(v, u, k) : 1 ≤ k ≤ C(v, u), (v, u) ∈ V × U} (edges with multiplicities)
Edge (v, u, k) is grouped with {(v, u′, k′) : (u′, k′) ∈ φV (v, u, k)} (pivoting at v),
provided |φV (v, u, k)| = q, all (v, u′, k′) ∈ E and φV (v, u′, k′) = φV (v, u, k).

Edge (v, u, k) is grouped with {(v′, u, k′) : (v′, k′) ∈ φU (v, u, k)} (pivoting at u),
provided |φU (v, u, k)| = q, all (v, u′, k′) ∈ E and φU (v′, u, k′) = φV (v, u, k).

Solutions: e∗ if e∗ is grouped, pivoting at v∗, or if e∗ is not grouped pivoting at u∗, OR
e 6= e∗ if e is not grouped pivoting at one of its ends.

In words, SuccinctBipartitep encodes a bipartite graph with arbitrary degree. Instead of
listing the neighbors of a vertex using a circuit, we have a circuit that outputs the multiplicity
of edges between any two given vertices. We are therefore unable to efficiently count the
number of edges incident on any vertex. The grouping function φV aims to group edges
incident on any vertex v ∈ V into groups of size q. Similarly, φU aims to group edges incident
on any vertex u ∈ U . The underlying principle is that if we have an edge e∗ that is not
grouped pivoting at v∗ (one of its endpoints), then either e∗ is not pivoted at u∗ (its other
endpoint) or there exists another edge that is also not grouped pivoting at one of its ends.
Note that in contrast to the problems previously defined, v∗ might still be an endpoint of a
valid solution.

I Lemma 25. For all primes p, ChevalleyWithSymmetryp ∈ PPAp.

Proof. We reduce ChevalleyWithSymmetryp to SuccinctBipartitep, which we show
to be PPAp–complete in Subsection A.1. Given an instance of ChevalleyWithSymmetryp,
namely a zecote polynomial system f = (g,h) and a permutation σ, we construct a bipartite
graph G = (U ∪ V,E) encoded as an instance of SuccinctBipartitep as follows.

Description of vertices. U = Fnp , namely all possible assignments of x. The vertices of
V are divided into two parts V1 ∪ V2. The part V1 contains one vertex for each monomial
in the expansion of CWg =

∏mg

i=1(1 − gp−1
i ). Since p is constant, we can efficiently list

out the monomials of 1 − gp−1
i . For a fixed lexicographic ordering of the monomials of

each CWgi
:= 1− gp−1

i , a monomial of CWg is represented by a tuple (a1, a2, . . . , amg ) with
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0 ≤ ai < Li, where ai represents the index of a monomial of CWgi and Li is the number of
monomials of CWgi

, where ai = 0 corresponds to the constant term 1. The part V2 :=
(Fn

p
p

)
,

i.e. it contains a vertex for each subset of p distinct elements in Fnp .

Description of edges. We first describe the edges between U and V1, namely include an
edge between an assignment x and a monomial t with multiplicity t(x). With these edges in
place, the degree of vertices are as follows:
x = 0n has a single edge corresponding to the constant monomial 1, since f is zecote.
We let this be the designated edge e∗ in the final SuccinctBipartitep instance.
x /∈ Vg has 0 (mod p) edges (counting multiplicities). Since CWg(x) = 0, the sum over
all monomials of t(x) must be 0 (mod p).
x ∈ Vg has 1 (mod p) edges (counting multiplicities), since the sum over all t(x) monomi-
als gives CWg(x) ≡ 1 (mod p).

Thus with the edges so far, the vertices (excluding 0n), with degree 6≡ 0 (mod p) are precisely
vertices t ∈ V1 such that

∑
x t(x) 6≡ 0 (mod p) or x ∈ Vg r {0n}. For the former case, if t

contained a variable with degree less than p− 1, then
∑

x t(x) ≡ 0 (mod p). Hence, it must

be that t =
n∏
i=1

xp−1
i . In the later case, the degree of x is 1 (mod p) and hence x ∈ Vg.

However, there is no guarantee that a vertex x with degree 1 (mod p) is in Vh as well.
To argue about h, we add edges between U and V2 that exclude solutions x ∈ Vg ∩ Vh, on
which σ acts freely (that is, σ(x) = x). More specifically, for x ∈ Vg ∩ Vh, if σ(x) 6= x, we
add an edge with multiplicity p− 1 between x and Σx ∈ V2 where Σx := {σi(x)}i∈Zp

(note
that, in this case |Σx| = p since σ(x) 6= x and |σ| = p is prime). Observe that, if a vertex in
V2 corresponds to a Σx, it has p edges each with multiplicity p− 1, one for each x′ ∈ Σx only
if Σx ⊆ Vg ∩Vh. If a vertex in V2 does not correspond to a Σx, then it has no edges. Thus, a
vertex in V2 has degree 6≡ 0 (mod p) iff it contains an x ∈ Vg ∩Vh such that σ(x) /∈ Vg ∩Vh.

Thus, with all the edges added, vertices with degree 6≡ 0 (mod p) correspond to one of
x ∈ Vg ∩ Vh such that x 6= 0, or
t ∈ V1 such that t(x) is a max-degree monomial or
x ∈ Vg ∩ Vh such that σ(x) = x or
v ∈ V2 such that ∃x ∈ v satisfying x ∈ Vg ∩ Vh and σ(x) /∈ Vg ∩ Vh.

These correspond precisely to the solutions of ChevalleyWithSymmetryp. To summarize,
the edge counting circuit C on input (x, t) ∈ U×V1 outputs t(x) and on input (x, v) ∈ U×V2
outputs p− 1 if x ∈ Vg ∩ Vh, σ(x) 6= x and v = Σx and 0 otherwise.

Grouping Functions. The grouping functions φU and φV are defined as follows (analogous
to the so-called “chessplayer algorithm” in [33]):
. Grouping φU (corresponding to endpoint in U):

For x ∈ Vg: we have that there exists some i such that CWgi
(x) = 0. Consider

an edge of the form (x, (a1, a2, . . . , amg
), k). We can explicitly list out the multiset

containing the monomials tj = (a1, a2, . . . , ai ← j, . . . , amg ) with multiplicity tj(x),
for each 1 ≤ j ≤ Li. Since CWgi

(x) = 0, this multiset has size multiple of p. Hence,
we can canonically divide its elements into groups of size p, counting multiplicities and
φU returns the subset containing (t, k).
For x ∈ Vg ∩ Vh such that σ(x) 6= x: Note that gp−1

i (x) = 0 for all i ∈ [mg]. Let
v1 ∈ V1 be the vertex corresponding to the constant monomial 1. φU groups the edge
(x, v1, 1) (of multiplicity 1) with the p−1 edges (x,Σx, k) for k ∈ [p−1]. For any other
t ∈ V1 \ {v1} and an edge (x, t, k), we have that t = (a1, . . . , amg

) has ai 6= 0 for some
i. We define the multiset containing tj = (a1, . . . , ai ← j, . . . amg ) with multiplicity
tj(x) for each 1 ≤ j < Li. Since gp−1

i (x) = 0, this multiset has size which is a multiple
of p, which we can canonically partition into groups of size p. Thus, φU on input
(x, t, k) returns the group containing (t, k).
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. Grouping φV (corresponding to endpoint in V ):

For t ∈ V1 such that t 6=
n∏
i=1

xp−1
i : there exists a variable xi with degree less than

p − 1. For xj = (x1, . . . , xi−1, xi ← j, . . . , xn) with j ∈ Fp we define the multiset

{(xj , t(xj))}j∈Fp
. Since

p−1∑
j=0

t(xj) = 0, this multiset has size multiple of p, so we can

canonically partition it into groups of size p. Then, φV (x, t, k) returns the group
containing (x, k),
For v ∈ V2: if deg(v) = 0, then there is no grouping to be done. Else if deg(v) ≡
0 (mod p) then φV (x, t, k) returns {(x, k)}x∈v.

Thus, for any vertex with degree ≡ 0 (mod p), we have provided a grouping function for all
its edges. So, for any edge that is not grouped by grouping function at any of its endpoints,
then such an endpoint must have degree 6≡ 0 (mod p) and hence point to a valid solution of
the ChevalleyWithSymmetryp instance. J

4.4.2 ChevalleyWithSymmetryp is PPAp–hard
We show a reduction from Lonelyp to ChevalleyWithSymmetryp. In the instance of
ChevalleyWithSymmetryp that we create, we will ensure that there are no solutions of
type 0 (as in Definition 22) and thus, the only valid solutions will be of type 1. In order to
do so, we introduce the notions of labeling and proper labeling and prove a generalization of
CWT that we call Labeled CWT (Theorem 30).

As we will see, the Labeled CWT, is just a re-formulation of the original CWT rather
than a generalization. To understand the Labeled CWT we start with some examples that
do not seem to satisfy the Chevalley-Warning condition, but where a solution exists.

Example 1. Consider the case where p = 3 and f(x1, x2) = x2 − x2
1. In this case the

Chevalley-Warning condition is not met, since we have 2 variables and the total degree is also
2. But, let us consider a slightly different polynomial where we replace the variable x2 with
the product of two variables x21, x22 then we get the polynomial g(x1, x21, x22) = x21 ·x22−x2

1.
Now, g satisfies (CW Condition) and hence, we conclude that the number of roots of g is
a multiple of 3. Interestingly, from this fact we can argue that there exists a non-trivial
solution for f(x) = 0. In particular, the assignment x1 = 0, x2 = 0 corresponds to five
assignments of the variables x1, x21, x22. Hence, since |Vg| = 0 (mod 3), g has another root,
which corresponds to a non-trivial root of f . In this example, we applied the CWT on a
slightly different polynomial than f to argue about the existence of non-trivial solutions of f ,
even though f did not satisfy (CW Condition) itself.

Ignore Some Terms. The Labeled CWT formalizes the phenomenon observed in Example
1 and shows that under certain conditions we can ignore some terms when defining the
degree of each polynomial. For instance, in Example 1, we can ignore the term x2

1 when
computing the degree of f and treat f as a degree 1 polynomial of 2 variables, in which case
the condition of CWT is satisfied.

We describe which terms can be ignored by defining a labeling of the terms of each
polynomial in the system. The labels take values in {−1, 0,+1} and our final goal is to
ignore the terms with label +1. Of course, it should not be possible to define any labeling
that we want; for example we cannot ignore all the terms of a polynomial. Next, we describe
the rules of a proper labeling that will allow us to prove the Labeled CWT. We start with a
definition of a labeling.
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I Definition 26 (Monomial Labeling). Let f ∈ F[x]m and let tij be the j-th monomial of
the polynomial fi ∈ F[x] (written in some canonical sorted order). Let T be the set of all pairs
(i, j) such that tij is a monomial in f . A labeling of f is a function λ : T → {−1, 0,+1}
and we say that λ(i, j) is the label of tij according to λ.

I Definition 27 (Labeled Degree). For f ∈ F[x]m with a labeling λ, we define the
labeled degree of fi as, degλ(fi) := maxj :λ(i,j)6=+1 deg(tij), in words, maximum degree among
monomials of fi labeled either 0 or −1.

Example 1 (continued). According to the lexicographic ordering, f(x1, x2) = −x2
1 +x2 and

we have the monomials t11 = −x2
1 and t12 = x2. Hence, one possible labeling, which as we

will see later corresponds to the vanilla Chevalley-Warning Theorem, is λ(1, 1) = λ(1, 2) = 0.
According to this labeling, degλ(f) = 2. Another possible labeling, that, as we will see,
allows us to apply the Labeled CWT , is λ(1, 1) = +1 and λ(1, 2) = −1. In this case, the
labeled degree is degλ(f) = 1.

As we highlighted before, our goal is to prove the Chevalley-Warning Theorem, but with
the weaker condition that

∑m
i=1 degλ(fi) < n instead of

∑m
i=1 deg(fi) < n. Of course, we

first have to restrict the space of all possible labelings by defining proper labelings. In order
to make the condition of proper labelings easier to interpret we start by defining the notion
of a labeling graph.

I Definition 28 (Labeling Graph). For f ∈ F[x]m with a labeling λ, we define the
labeling graph Gλ = (U ∪ V,E) as a directed bipartite graph on vertices U = {x1, . . . , xn}
and V = {f1, . . . , fm}. The edge (xj → fi) belongs to E if xj appears in a monomial tir in
fi with label +1, i.e. λ(i, r) = +1. Symmetrically, the edge (fi → xj) belongs to E if the xj
appears in a monomial tir in fi with label −1, i.e. λ(i, r) = −1.

Example 2. Let p = 2 and f1(x1, x2, x3, x4) = x1x2 − x3, f2(x1, x2, x3, x4) = x1x3 − x4. In
this system, if we use the lexicographic monomial ordering we have the monomials t11 = x1x2,
t12 = −x3, t21 = x1x3, t22 = −x4. The following figure shows the graph Gλ for the labeling
λ(1, 1) = +1, λ(1, 2) = −1, λ(2, 1) = +1 and λ(2, 2) = −1.

f1 f2

x1 x2 x3 x4

I Definition 29 (Proper Labeling). Let f ∈ F[x]m with a labeling λ. We say that the
labeling λ is proper if the following conditions hold.
(1) For all i, either λ(i, j) ∈ {−1, 1} for all j, or λ(i, j) = 0 for all j.
(2) If two monomials tij, tij′ contain the same variable xk, then λ(i, j) = λ(i, j′).
(3) If λ(i, j) = −1, then tij is multilinear.
(4) If xk is a variable in the monomials tij, ti′j′ , with i 6= i′ and λ(i, j) = −1, then

λ(i′, j′) = +1.
(5) If λ(i, j) 6= 0, then there exists a j′ such that λ(i, j′) = −1.
(6) The labeling graph Gλ contains no directed cycles.
We give an equivalent way to understand the definition of a proper labeling.
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. Condition (1) : there is a partition of the polynomial system f into polynomial systems g
and h such that all monomials in g are labeled in {+1,−1} and all monomials in h are
labeled 0.

. Condition (2) : each polynomial gi in g can be written as gi = g+
i + g−i , such that g+

i and
g−i are polynomials on a disjoint set of variables.

. Condition (3) : Each g−i is multilinear.

. Condition (4) : Any variable xk can appear in at most one of the g−i . Moreover, if an xk
appears in some g−i , it does not appear in any hj in h.

. Condition (5) : Every g−i involves at least one variable.

. Condition (6) : The graph Gλ is essentially between polynomials in g and the variables
that appear in them, with an edge (gi → xk) if xk appears in g−i or an edge (xk → gi) if
xk appears in g+

i .
. Note that degλ(gi) = deg(g−i ), whereas degλ(hj) = deg(hj).
It is easy to see that the trivial labeling λ(i, j) = 0 is always proper. As we will see this
special case of the Labeled CWT corresponds to the original CWT . Note that in this case
the labeling graph Gλ is an empty graph. Also, given a system of polynomials f and a
labeling λ, it is possible to check in polynomial time whether the labeling λ is proper or not.

Example 2 (continued). It is an instructive exercise to verify that the labeling λ specified
was indeed a proper labeling of f .

I Theorem 30 (Labeled Chevalley-Warning Theorem). Let Fq be a finite field with
characteristic p and f ∈ Fq[x]m. If λ is a proper labeling of f with

∑m
i=1 degλ(fi) < n, then

|Mf | = 0. In particular, |Vf | ≡ 0 (mod p).

Proof. Note that CWf (x) =
∑
S⊆[m]

∏
i∈S(−1)|S|fp−1

i . We’ll show that every monomial
appearing in the expansion of

∏
i∈S f

p−1
i will have at least one variable with degree at most

p− 1. For simplicity, we focus on the case S = [m] and the other cases of S follow similarly.
We index a monomial of

∏
i∈[m] f

p−1
i with a tuple

((j11, j12, . . . , j1(p−1)), . . . , (jm1, . . . , jm(p−1)))

with 1 ≤ ji` ≤ Li where Li is the number of monomials in the explicit representation of fi.
The coordinates (ji1, . . . , ji(p−1)) represent the indices of the monomials chosen from each of
the p− 1 copies of fp−1

i . More succinctly, we have t =
∏m
i=1
∏p−1
`=1 ti,ji`

.

Case 1. λ(i, ji`) ∈ {0,−1}, for all (i, `):
Here, deg(t) ≤ (p− 1)

∑m
i=1 degλ(fi) which, by our assumption, is strictly less than (p− 1)n.

Hence, there is a variable with degree less than p− 1.

Case 2. There is a unique i with λ(i, ji`) = +1 for some `: (warmup for case 3)
That is, for all i′ 6= i, λ(i′, ji′`) ∈ {0,−1}. By condition (5) of proper labeling there exists a
j′ 6= ji` such that λ(i, j′) = −1. Let xk be a variable in the monomial tij′ . By condition (2),
xk is not present in the monomial ti,ji`

and by condition (3), its degree in (ti,ji,1 , . . . , ti,ji,p−1)
is at most p− 2. Additionally, by condition (4), any monomial of fi′ for i′ 6= i containing
xk must have label +1, but λ(i′, ji′,`) are all in {0,−1}. Hence, xk does not appear in any
other monomial of t and its degree on t is equal to its degree in (ti,ji,1 · · · ti,ji,p−1), which is
strictly less than p− 1.

Case 3. I = {i : λ(i, ji`) = +1 for some `}:
In the labeling graph Gλ, let i ∈ I be such that there is no path from fi to any other fi′
for i′ ∈ I. Such an i exists due to acyclicity of Gλ, i.e. condition (6). Let ` be such that
λ(i, ji`) = +1. Again, by condition (5) of proper labeling there exists a j′ 6= ji` such that
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λ(i, j′) = −1. Let xk be a variable in the monomial tij′ . By condition (2), xk is not present
in the monomial ti,ji`

and by condition (3), its degree in (ti,ji,1 , . . . , ti,ji,p−1) is at most p− 2.
Additionally, by condition (4), any monomial of fi′ for i′ 6= i containing xk must have label
+1. For i′ /∈ I, λ(i′, ji′,`) are all in {0,−1}. And for i′ ∈ I, variable xk cannot appear with
+1 label in fi′ by our choice of fi. Hence, xk does not appear in any other monomial of t
and its degree on t is equal to its degree on (ti,ji,1 · · · ti,ji,p−1), which is strictly less than
p− 1. J

We are now ready to prove the PPAp-hardness of ChevalleyWithSymmetryp.

I Lemma 31. For all primes p, ChevalleyWithSymmetryp is PPAp-hard.

Proof. We prove that Lonelyp � ChevalleyWithSymmetryp. Let us assume (without
loss of generality from Lemma 44) that the Lonelyp instance has a single distinguished
vertex represented by 0n. We’ll assume that 0n is isolated, otherwise, no further reduction is
necessary.

Pre-processing. We slightly modify the given circuit C by defining C′ : Fnp → Fnp as follows:

C′(v) =
{

v , if Cp(v) 6= v

C(v) , otherwise

Since p is a prime, a vertex v ∈ Fnp has deg(v) = 1 if and only if Cp(v) = v and C(v) 6= v.
By modifying the circuit, we changed this condition to just C′(v) 6= v, which facilitates our
reduction.

Circuit C′ is composed of the Fp-addition (+), Fp-multiplication (×) and the constant
(1) gates. However, we require the input of ChevalleyWithSymmetryp to be a zecote
polynomial system, and so we further modify the circuit C′ to eliminate all the constant (1)
gates, without changing it’s behavior – this is possible because we assume C′(0n) = 0n.

B Claim 32. Given circuit C′ with (+,×, 1) gates, there exists circuit C̄ with (+,×) gates
such that

C̄(v) =
{

0n , if v = 0n
C′(v) , otherwise

Proof of Claim 32. We replace all instances of the (1) gate by the function 1{v 6=0n}, which
we can compute using only (+,×) gates as follows: For any x, y ∈ Fp, observe that 1{x 6=0} ∨
1{y 6=0} = xp−1 + yp−1−xp−1yp−1. We can thus recursively compute

∨n
i=1 1{vi 6=0} using only

(+,×) gates. Thus, C̄(v) = C′(v) for all v 6= 0n. And C̄(0n) = 0n, since C̄ is computed with
only (+,×) gates. C

Thus, we can transform our original circuit C into a circuit C̄ with just (+,×) gates. For
simplicity, we’ll write C̄ as simply C from now on.

As an intermiate step in the reduction we describe a system of polynomials fC over 2n+ s

variables (x1, . . . , xn, z1, . . . , zs, y1, . . . , yn), where s is the size of the circuit C. The variables
x = (x1, . . . , xn) correspond to the input of C, the variables y = (y1, . . . , yn) correspond to
the output and the variables z = (z1, . . . , zs) correspond to the gates of C. For an addition
gate (+) we include a polynomial of the form

f(a1, a2, a3) = a2 + a3 − a1,
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where a1 is the variable corresponding to the output of the (+) gate and a2, a3 are the
variables corresponding to its two inputs. Similarly for a multiplication (×) gate, we include
a polynomial of the form

f(a1, a2, a3) = a2 · a3 − a1

Finally, for the output of the circuit, we include the polynomial

f(a, yi) = a− yi,

where a is the variable corresponding to the i-th output gate of C. It holds that

C(x) = y ⇐⇒ fC(x,y, z) = 0.

We now describe the reduction from Lonelyp to ChevalleyWithSymmetryp. In order
to do this, we need to specify a system of polynomials (g,h) and a permutation σ such that
|σ| = p. In addition, we will provide a proper labeling λ for g satisfying the degree condition.
We will also ensure that 〈σ〉 acts freely on Vg ∩ Vh. And hence, the only valid solutions for
the resulting ChevalleyWithSymmetryp instance will be x ∈ Vg ∩ Vh.

Definition of g. The polynomial system g contains the following systems of polynomials.

fC(x1,x2, z1,2)
x2 − x3

fC(x3,x4, z3,4)
x4 − x5

...
fC(x2p−1,x2p, z2p−1,2p)

Note that there are N = (2n+ s)p variables in total.

Labeling λ of g. For the polynomials belonging to a system of the form fC , the labeling is
equal to −1 for the monomials corresponding to the output of each gate and +1, otherwise.
For instance, let a2 + a3 − a1 be the i-th polynomial of g corresponding to a (+) gate and
let a1 ≺ a2 ≺ a3, then λ(i, 1) = −1 and λ(i, 2) = λ(i, 3) = +1.

For the polynomials belonging to a system of the form xi − xi+1, the labeling is equal to
−1 for the monomials with variables in xi+1 and +1 for the monomials with variables in xi.

B Claim 33. The labeling λ for g is proper.

Proof of Claim 33. By Definition 29, the labeling λ is proper if the following conditions hold.
Condition 1. For all i, either λ(i, j) ∈ {−1, 1} for all j, or λ(i, j) = 0 for all j.

In the labeling λ, there are no labels equal to 0, so this condition holds trivially.
Condition 2. If two monomials tij, tij′ contain the same variable xk, then λ(i, j) = λ(i, j′).

By construction of g, no variable appears twice in the same polynomial with a different
labeling. For polynomials of fC , this holds because the output variable of a gate is not
simultaneously an input variable and all input variables have the same labeling. For
polynomials in a system of the form xi − xi+1, each polynomial contains two different
variables.
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Condition 3. If λ(i, j) = −1, then tij is multilinear.
For polynomials of fC , only the output variable of a gate has label −1 and by definition
this monomial is linear. For polynomials in a system of the form xi−xi+1, all monomials
are linear, so the condition holds trivially.

Condition 4. If xk is a variable in the monomials tij, ti′j′ , with i 6= i′ and λ(i, j) = −1,
then λ(i′, j′) = +1.
Observe that all monomials with label −1 contain only a single variable, so we refer to
a monomial xk with label −1. For a polynomial in fC, a monomial xk with label −1
corresponds to the output of a gate. Hence, if xk appears in other monomials of fC , these
monomials correspond to inputs and have label +1. Also, if xk is an output variable of
fC , then it might appear in a polynomial of the form a1 − a2. However, by construction
the monomials of xi − xi+1 that correspond to output variables of fC have label +1.

Condition 5. If λ(i, j) 6= 0, then there exists a j′ such that λ(i, j′) = −1.
By the definition of λ, all polynomials of g have a monomial with label −1. These are
the monomials that correspond to the outputs of a gate for the systems of the form fC
and the monomials that correspond to xi+1 for the systems of the form xi − xi+1.

Condition 6. The labeling graph Gλ contains no cycles.
Each system of the form xi − xi+1 has incoming edges with variables appearing only in
the i-th copy of fC and outgoing edges with variables appearing only in the (i+ 1)-th
copy of fC . Also, the variables appearing on the i-th copy of fC might appear only in the
systems xi−1 − xi and xi − xi+1. Hence, Gλ has no cycles that contain vertices of two
different copies of fC or of a copy of fC and a system of the form xi−1 − xi.
It is left to argue that the labeling graph restricted to a copy of fC does not have any
cycles. Let the vertices of fC be ordered according to the topological ordering of C. This
restricted part of Gλ corresponds exactly to the graph of C, which by definition is a DAG.
Hence, Gλ contains no cycles. C

We also need to show that for this labeling g satisfies the labeled Chevalley condition.

B Claim 34. The labeled Chevalley condition
∑mg

i=1 degλ(gi) < N holds for g with labeling
λ.

Proof. Each polynomial of g has a unique monomial with λ(i, j) = −1 and this monomial
has degree 1. Thus,

∑mg

i=1 degλ(gi) = mg. On the other hand, the i-th polynomial of g
has exactly one variable that has not appeared in any of the previous polynomials. More
specifically, the number of variables is equal to mg + n, where n is the size of the input of C.
Hence, the labeled Chevalley condition holds for g. C

Definition of h. The system of polynomials g allows us to compute the p vertices given
by Ci(x) for i ∈ [p+ 1]. From the definition of Lonelyp and our pre-processing on C, this
group of p vertices is a hyperedge if and only if C(x) 6= x. Since solutions of Lonelyp are
lonely vertices, we define h to exclude x such that C(x) 6= x. Namely, we set h to be the
system of polynomials

x1 − x2.

Definition of permutation σ. In the description of f = (g,h), we have used the following
vector of variables:

x = (x1,x2, . . . ,x2p, z1,2, z3,4, . . . ,z2p−1,2p)
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We define the permutation σ such that

σ(x) = (x3,x4, . . . ,x2p,x1,x2, z3,4, z5,6, . . . ,z2p−1,2p, z1,2) ,

as illustrated in the following figure. The blue arrows indicate the polynomials g and the
green arrows indicate the permutation σ in the case of p = 3.

x1 x2
z1,2

x3

=

x4
z3,4

x5

=

x6
z5,6

B Claim 35. The group 〈σ〉 has order p and acts freely on Vg ∩ Vh.

Proof. In order to see that |σ| = p, note that the input of σ consists of 3p blocks of variables.
The permutation σ performs a rotation of the first 2p blocks by two positions and of the last
p blocks by one position.

All that remains is to show that 〈σ〉 acts freely on Vg ∩ Vh. First, we show that 〈σ〉
defines a group action on Vg ∩ Vh, that is for all x ∈ Vg ∩ Vh, it holds that σ(x) ∈ Vg ∩ Vh.
Let x = (x1,x2, . . . ,x2p−1,x2p, z1,2, z3,4, . . . ,z2p−1,2p) ∈ Vg ∩ Vh, then
x ∈ Vg implies that fC(x2i−1,x2i, z2i−1,2i) = 0 for i ∈ [p] and x2i = x2i+1 for i ∈ [p− 1]
x ∈ Vh implies that x1 6= x2, that is, C(x1) 6= x1 since fC(x1,x2, z1,2) = 0⇔ x2 = C(x1).

Now, σ(x) = (x3,x4, . . . ,x1,x2, z3,4, z5,6, . . . ,z1,2) ∈ Vg ∩ Vh holds because
fC(x2i−1,x2i, z2i−1,2i) = 0 for i ∈ [p] and x2i = x2i+1 for i ∈ [p− 1], which holds from
x ∈ Vg. Additionally, x1 = x2p holds because we pre-processed C such that Cp(x1) = x1,
x3 6= x4, which holds because x4 = C(x3) for i ∈ [p] and from the definition of C,
C(x1) 6= x1 implies that x2i 6= x2i−1 for all i ∈ [p].

Finally, if x ∈ Vg ∩ Vh, by construction of C, we have that x2k 6= x2j for k 6= j and thus
σ(x) 6= x simply because x3 6= x1. Thus, we conclude that 〈σ〉 acts freely on Vg ∩ Vh. C

Putting it all together. The solution of this instance of ChevalleyWithSymmetryp
cannot be a vector x ∈ Vg ∩ Vh with σ(x) 6∈ Vg ∩ Vh or σ(x) = x, since we know from
Claim 35 that 〈σ〉 acts freely on Vg ∩ Vh. We also have from Theorem 30 that the solution
also cannot be a max-degree monomial in the expansion of CWg(x) =

∏
(1− gp−1

i ). Thus,
the solution must be an x 6= 0 such that f(x) = 0. Let x1 denote the first n coordinates
of x, then f(x) = 0 implies that x1 = C(x1) and x 6= 0 implies that x1 6= 0. Hence, x1
corresponds to a lonely vertex of the Lonelyp instance. J
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5 Complete Problems via Small Depth Arithmetic Circuits

We now illustrate the significance of the PPAp-completeness of ChevalleyWithSymmetryp,
by showing that we can reformulate any of the proposed definitions of PPAp, by restricting
the circuit in the input to be just constant depth arithmetic formulas with gates × (mod p)
and + (mod p) (we call this class AC0

Fp

7). This result is analogous to the NP-completeness
of SAT which basically shows that CircuitSAT remains NP-complete even if we restrict
the input circuit to be a (CNF) formula of depth 2.

We define SuccinctBipartitep[AC0
Fp

] to be the same as SuccinctBipartitep but with
the input circuit being a formula in AC0

Fp
. Similarly, we define Lonelyp[AC0

Fp
], Leafp[AC0

Fp
],

etc.

I Theorem 36. For all primes p, SuccinctBipartitep[AC0
Fp

] is PPAp-complete.

I Remark 37. In [35], a similar simplification theorem was shown for PPAD. In fact, this
simplification involves only the End-of-Line problem and does not go through a natural
complete problem for PPAD (see Theorem 1.5 in [35]). A similar result can be shown for
other TFNP subclasses, including PPA. However, it is unclear if these techniques also apply
to PPAp classes.

Theorem 36 follows directly from the proof of Lemma 25 by observing that the reduction
can be perfomed by an AC0

Fp
circuit. For completeness, we include this proof in Appendix B.

Since the reductions between SuccinctBipartitep and other problems studied in this
work (refer to Appendix A) can also be implemented as AC0 circuits, we get the following
corollary.

I Corollary 38. For all primes p, Lonelyp[AC0
Fp

], Leafp[AC0
Fp

] and Bipartitep[AC0
Fp

] are
all PPAp-complete.

Since + (mod p) and × (mod p) can be simulated in NC1, we also get the following corollary.

I Corollary 39. For all primes p, Lonelyp[NC1], Leafp[NC1] and Bipartitep[NC1] are all
PPAp-complete.

Thus, Theorem 36 allows us to consider reductions from these PPAp-complete problems
with instances encoded by a shallow formulas rather than an arbitrary circuit. We believe
this could be a useful starting point for finding other PPAp-complete problems.

6 Applications of Chevalley-Warning

For most of the combinatorial applications mentioned in Subsection 1.4, the proofs utilize
restricted versions of the Chevalley-Warning Theorem that are related to finding binary or
short solutions in a system of modular equations. We define two computational problems to
capture these restricted cases. The first problem is about finding binary non-trivial solutions
in a modular linear system of equations, which we call BISq. The second is a special case of
the well-known short integer solution problem in `∞ norm, which we denote by SISq. The
computational problems are defined below, where N(q) denotes the sum of the exponents in
the canonical prime factorization of q, e.g. N(4) = N(6) = 2. In particular, N(p) = 1 for
prime p and N(q1q2) = N(q1) +N(q2) for all q1, q2.

7 Note that AC0
Fp

is strictly more powerful than AC0 since the Boolean operations of {∧,∨,¬} can be
implemented in AC0

Fp
, but + (mod p) cannot be implemented in AC0.
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I Definition 40 (BISq).
Input: A ∈ Zm×nq , a matrix over Z
Condition: n ≥ (m+ 1)N(q)(q − 1)
Output: x ∈ {0, 1}n such that x 6= 0 and Ax ≡ 0 (mod q)

I Definition 41 (SISq).
Input: A ∈ Zm×nq , a matrix over Z
Condition: n ≥ ((m+ 1)/2)N(q)(q − 1)
Output: x ∈ {−1, 0, 1}n such that x 6= 0 and Ax ≡ 0 (mod q)

SISq is a special case of the well-known short integer solution problem in `∞ norm from
the theory of lattices. The totality of this problem is guaranteed even when n > m log2 q

by pigeonhole principle; thus, SISq belongs also to PPP (for this regime of parameters).
However, for the parameters considered in above definitions, the existence of a solution in
the BISq and SISq is guaranteed through modulo q arguments, which we formally show in
the following theorem.

I Theorem 42. For the regime of parameters n, m as in Definitions 40 and 41,
1. For all primes p : BISp, SISp � Chevalleyp.
2. For all q : BISq, SISq ∈ FPPPAq ,
3. For all k : BIS2k ∈ FP,
4. For all k, ` : SIS2k3` ∈ FP.

Proof. Part 1. For all primes p, BISp, SISp � Chevalleyp.
Given an BISp instance A = (aij), we define a zecote polynomial system as follows

f :=

fi(x) =
n∑
j=1

aijx
p−1
j : i ∈ [m]


Clearly, deg(fi) = p− 1, so

∑m
i=1 deg(fi) = m(p− 1). Since n ≥ (m+ 1)(p− 1) > m(p− 1),

(CW Condition) is satisfied. Hence the output of Chevalleyp is a solution x 6= 0 such
that f(x) = 0. This gives us that xp−1 := (xp−1

1 , . . . , xp−1
n ) is binary and satisfies Ax ≡

0 (mod p).
The reduction SISp � Chevalleyp also follows in a similar fashion. Namely, we define

fi(x) :=
∑m
j=1 aijx

(p−1)/2
j . This satisfies the (CW Condition) because

∑
i deg(fi) = m(p−

1)/2 < ((m+ 1)/2)(p− 1) ≤ n. This ensures that any x ∈ Vf satisfies x(p−1)/2 ∈ {−1, 0, 1}n

and Ax ≡ 0 (mod p).

Part 2. For all q : BISq, SISq ∈ FPPPAq .
We show that BISq1q2 � BISq1 & BISq2 . Hence if BISq1 ∈ FPPPAq1 and BISq2 ∈ FPPPAq2 ,
then BISq1q2 ∈ FPPPAq1q2 . The proof of Part 2 now follows by induction.

Given a BISq1q2 instance A ∈ Zm×n, we divide A along the columns into n1 = (m +
1)N(q1)(q1 − 1) submatrices denoted by A1, . . . ,An1 , each of size at least m × n2, with
n2 = bn/n1c (if n/n1 is not an integer, then we let An1 has more than n2 columns). Each
Ai is an instance of BISq2 , since

n2 = bn/n1c ≥ (m+ 1)N(q2) b(q − 1)/(q1 − 1)c ≥ (m+ 1)N(q2)(q2 − 1).

Let yi ∈ {0, 1}n2 be any solution to Aiyi ≡ 0 (mod q2). We define the matrix B ∈ Zm×n1

where the i-th column is equal to Aiyi/q2; this has integer entries since Aiyi ≡ 0 (mod q2).
Now, by our choice of n1, we have that B is an instance of BISq1 . Let z = (z1, . . . , zn1) ∈
{0, 1}n1 be any solution to Bz = 0 (mod q1).
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Finally, we define x := (z1y1, . . . , zn1yn1) ∈ {0, 1}n. Observe that since yi and z are
binary, x is also binary. Additionally,

Ax =
n1∑
i=1

(Aiyi)zi = q2

n1∑
i=1

Aiyi
q2

zi = q2By ≡ 0 (mod q1q2) .

Hence, x is a solution of the original BISq1q2 instance Ax ≡ 0 (mod q1q2). This concludes
the proof of BISq ∈ FPPPAq . The proof of SISq ∈ FPPPAq follows similarly, by observing that
if yi and z have entries in {−1, 0, 1} then so does x.

Parts 3, 4. For all k, ` : BIS2k ∈ FP and SIS2k3` ∈ FP.
Observe that BIS2 (hence also SIS2) and SIS3 are solvable in polynomial time via Gaussian
elimination. Combining this with the reduction BISq1q2 � BISq1 & BISq2 completes the
proof (similarly for SIS). J

Note that for a prime p and any k, we have from Theorem 1, that PPApk = PPAp. Additionally,
Theorem 5 shows that PPAp is closed under Turing reductions, so we have the following
corollary.

I Corollary 43. For all primes p and all k : BISpk , SISpk ∈ PPAp.

Even though the SISq problem is well-studied in lattice theory, not many results are known
in the regime we consider where q is a constant. Our results show that solving Chevalleyp
is at least as hard as finding short integer solutions in p-ary lattices for a specific range of
parameters. More specifically, our reduction assumes that q is a constant and, thus, it does
not depend on the input lattice, and that the dimension n of lattice is related to the number
of constraints in the dual as n > ((m+ 1)/2)N(q)(q − 1). On the other hand, we showed (in
Parts 3, 4) that there are q-ary lattice for which finding short integer solutions is easy.

7 Structural Properties of PPAq

In this section, we prove the structural properties of PPAq outlined in Subsection 1.5.

Relation to PMODq

Buss and Johnson [13, 27] defined a problem Modq, which is almost identical to Lonelyq,
with the only difference being that the q-dimensional matching is over a power-of-2 many
vertices encoded by C : {0, 1}n → {0, 1}n, with no designated vertices, except when q is a
power of 2 in which case we have one designated vertex. The class PMODq is then defined as
the class of total search problems reducible to Modq. The restriction of number of vertices
to be a power of 2, which arises as an artifact of the binary encoding of circuit inputs, makes
the class PMODq slightly weaker than PPAq.

To compare PPAq and PMODq, we define a restricted version of Lonelyq, where the
number of designated vertices is exactly k; call this problem Lonelykq . Clearly, Lonelykq
reduces to Lonelyq. We show that a converse holds, but only for prime p; see Subsection A.2
for proof.

I Lemma 44. For all primes p and k ∈ {1, . . . , p− 1}, Lonelyp reduces to Lonelykp.

I Corollary 45. For all primes p, PPAp = PMODp.
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For composite q, however, the two classes are conceivably different. In contrast to
Theorem 1, it is shown in [27] that PMODq =

&

p|q PMODp, where the operator “

&

” is
defined as follows: For any two search problem classes M0, M1 with complete problems S0,
S1, the class M0

&

M1 is defined via the complete problem S0

&

S1 defined as follows: Given
(x0, x1) ∈ Σ∗ × Σ∗, find a solution to either x0 interpreted as an instance of S0 or to x1
interpreted as an instance of S1. In other words, M1

&

M2 is no more powerful than either
M1 or M2. In particular, it holds that M1

&

M2 = M1 ∩ M2, whereas M1 & M2 ⊇ M1 ∪ M2.
Because of this distinction, unlike Theorem 1, the proof of PMODpk = PMODp in [27] follows
much more easily since for any odd prime p it holds that 2n 6≡ 0 (mod p) and hence a
Lonelypk instance readily reduces to a Lonelyp instance.

7.1 PPAD ⊆ PPAq

Johnson [27] already showed that PPAD ⊆ PMODq which implies that PPAD ⊆ PPAq. We
present a simplified version of that proof.

We reduce the PPAD-complete problem End-of-Line to Lonelyq. An instance of
End-of-Line is a circuit C that implicitly encodes a directed graph G = (V,E), with in-
degree and out-degree at most 1 and a designated vertex v∗ with in-degree 0 and out-degree 1.

v∗

G = (V,E)

;

(v∗, 1) (v∗, 2)

G = (V ,E)

q = 3

We construct a q-dimensional matching G = (V ,E) on vertices V = V × [q], such that
for every edge (u → v) ∈ E, we include the hyperedge {(u, q), (v, 1), . . . , (v, q − 1)} in E.
The designated vertices are V ∗ = {(v∗, 1), . . . , (v∗, q − 1)}. Note that |V | ≡ 0 (mod q) and
|V ∗| = q − 1 6≡ 0 (mod q). It is easy to see that a vertex (v, i) is isolated in G if and only if
v is a source or a sink in G. This completes the reduction, since V is efficiently representable
and indexable and the neighbors of any vertex in V are locally computable using black-box
access to C (see Remark 10).

7.2 Oracle separations
Here we explain how PPAq can be separated from other TFNP classes relative to oracles, as
summarized in Figure 1. That is, for distinct primes p, p′, there exist oracles O1, . . . , O5 such
that

(1) PLSO1 * PPAO1
p (2) PPAO2

p * PPPO2 (3) PPAO3
p′ * PPAO3

p

(4) PPADSO4 * PPAO4
p (5)

⋂
p

PPAO5
p * PPADO5
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The usual technique for proving such oracle separations is propositional proof complexity
(together with standard diagonalization arguments) [5, 10, 13]. The main insight is that if a
problem S1 reduces to another problem S2 in a black-box manner, then there are “efficient
proofs” of the totality of S1 starting from the totality of S2. The discussion below assumes
some familiarity with these techniques.

PLSO1 * PPAO1
p , PPAO2

p * PPPO2 , PPAO3
p′ * PPAO3

p

Johnson [27] showed all the above separations with respect to PMODp. Since we showed
PPAp = PMODp (Corollary 45), the same oracle separations hold for PPAp.

PPADSO4 * PPAO4
p

Göös et al. [23, §4.3] building on [6] showed that the contradiction underlying the PPADS-
complete search problem Sink-of-Line requires Fp-Nullstellensatz refutations of high degree.
This yields the oracle separation.

⋂
p PPAO5

p * PPADO5

For a fixed k ≥ 1, consider the problem Sk :=

&

i∈[k] Lonelypi
where pi are the primes.

Buss et al. [12] showed that the principle underlying Si is incomparable with the principle
underlying Lonelypi+1 . This translates into an relativized separation

⋂
i∈[k] PPApi

* PPApi+1

which in particular implies
⋂
i∈[k] PPApi * PPAD. Finally, one can consider the problem

S := Sk(n) where k(n) is a slowly growing function of the input size n. This problem is
in
⋂
p PPAp since for each fixed p and for large enough input size, S reduces to the PPAp-

complete problem. On the other hand, the result of Buss et al. [12] is robust enough to
handle a slowly growing k(n); we omit the details.

7.3 Closure under Turing reductions
Theorem 5 says that for any prime p, the class PPAp is closed under Turing reductions. In
contrast, Buss and Johnson showed that PPAp1 & PPAp2 , for distinct primes p1 and p2, is not
closed under black-box Turing reductions [13, 27]. In particular, they define the ‘⊗’ operator
as follows. For two total search problems S1 and S2, the problem S1 ⊗ S2 is defined as:
Given (x0, x1) ∈ Σ∗ × Σ∗, find a solution to both x0 (instance of S0) and to x1 (instance of
S1). Clearly the problem Lonelyp1 ⊗ Lonelyp2 can be solved with two queries to the oracle
PPAp1 & PPAp2 . However, Buss and Johnson [13, 27] show that Lonelyp1 ⊗ Lonelyp2

cannot be solved with one oracle query to PPAp1 & PPAp2 under black-box reductions. In
particular, this implies that PPAq is not closed under black-box Turing reductions, when q is
not a prime power. We now prove Theorem 5, which is equivalent to the following.

I Theorem 46. For any prime p and total search problem S, if S �T Lonelyp, then
S �m Lonelyp.

Proof. The key reason why this theorem holds for prime p is Lemma 44: In a Lonelyp
instance, we can assume w.l.o.g. that there are exactly p− 1 distinguished vertices.

On instance x of the problem S, suppose the oracle algorithm sequentially makes at most
t = poly(|x|) queries to Lonelyp oracle. The i-th query consists of a tuple (Ci, V ∗i ) where
Ci encodes a p-dimensional matching graph Gi = (Vi, Ei) and V ∗i ⊆ Vi is the set of p − 1
designated vertices, and let yi ∈ Vi be the solution returned by the Lonelyp oracle. The
query (Ci, V ∗i ) is computable in polynomial time, given x and valid solutions to all previous
queries. Finally, after receiving all answers the algorithm returns L(x, y1, . . . , yt) that is a
valid solution for x in S.
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We make the following simplifying assumptions.
Each hypergraph Gi is on pn vertices, where n = poly(|x|) (thanks to instance extension
property – see Remark 10).
For any query the vertices V ∗i are always isolated in Gi (if some vertex in V ∗i were to not
be isolated, the algorithm could be modified to simply not make the query).
Exactly t queries are made irrespective of the oracle answers.

We reduce x to a single instance of Lonelyp as follows.

Vertices. The vertices of the Lonelyp instance will be V = [p]n ∪ [p]2n ∪ · · · ∪ [p]tn, which
we interpret as V = V1 ∪ (V1 × V2) ∪ (V1 × V2 × V3) ∪ · · · ∪ (V1 × · · · × Vt). The designated
vertices will be V ∗ := V ∗1 . Note that |V ∗| = |V ∗1 | 6≡ 0 (mod p).

Edges. We’ll define the hyperedge for vertex v = (v1, . . . , vk) for any k ≤ t. Let j ≤ k be
the last coordinate such that for all i < j, the vertex vi is a valid solution for the Lonelyp
instance (Ci, V ∗i ), which the algorithm creates on receiving v1, . . . , vi−1 as answers to previous
queries.
Case j < k: Let u1, . . . , up−1 be the neighbors of vk in a canonical trivial matching over

[p]n; e.g.
{

[p]× w : w ∈ [p]n−1}. The neighbors of v are {(v1, . . . , vk−1, ui)}i.
Case j = k: We consider three cases, depending on whether vk is designated, non-isolated

or isolated in the Lonelyp instance (Ck, V ∗k ).
Non-isolated vk: For u1, . . . , up−1 being the neighbors of vk in Gk, the neighbors of v

are {(v1, . . . , vk−1, ui)}i.
Isolated vk: Such a vk is a valid solution for (Ck, V ∗k ).

If k < t: the algorithm will have a next oracle query (Ck+1, V
∗
k+1). In this case,

for u1, . . . , up−1 being the designated vertices in V ∗k+1, the neighbors of v are
{(v1, . . . , vk−1, vk, ui)}i.

If k = t: there are no more queries, and we leave v isolated.
Designated vk: Let u1, . . . , up−2 be the other designated vertices in V ∗k . The neighbors

of v are {(v1, . . . , vk−1, ui)}i ∪ {(v1, . . . , vk−1)}.

V1

V1 × V2

· · · · · ·

It is easy to see that our definition of edges are consistent and the only vertices which are
isolated (apart from those in V ∗) are of the type (y1, . . . , yt) where each yi is a valid solution
for the Lonelyp instance (Ci, V ∗i ). Thus, given an isolated vertex y, we can immediately
infer a solution for x as L(x, y1, . . . , yt). This completes the reduction since V is efficiently
representable and indexable – see Remark 10. J
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A Appendix: Reductions Between Complete Problems

In order to prove Theorem 9, we introduce an additional problem that will serve as interme-
diate problem in our reductions.

I Definition 47 (Leaf′q).
Principle: Same as Leafq, but degrees are allowed to be larger (polynomially bounded).
Object: q-uniform hypergraph G = (V,E). Designated vertex v∗ ∈ V .
Inputs: . C : {0, 1}n → ({0, 1}nq)k

where ({0, 1}nq)k is interpreted as k many q-subsets of {0, 1}n

. v∗ ∈ {0, 1}n (usually 0n)
Encoding: V := {0, 1}n.

For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if e ∈ C(v) for all v ∈ e
Solutions: v∗ if deg(v) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)

Proof of Theorem 9. We show the following inter-reducibilities: (1) Leafq � Leaf′q, (2)
Leaf′q � Bipartiteq and (3) Leafq � Lonelyq.

(1a) Leafq � Leaf′
q.(1a) Leafq � Leaf′
q. Each instance of Leafq is trivially an instance of Leaf′q.

(1b) Leaf′
q � Leafq.(1b) Leaf′
q � Leafq. We start with a Leaf′q instance (C, v∗), where C encode a q-uniform

hypergraph G = (V,E) with degree at most k. Let t = dk/qe. We construct a Leafq instance
encoding a hypergraph G = (V ,E) on vertex set V := V × [t], intuitively making t copies of
each vertex.

In order to locally compute hyperedges, we first fix a canonical algorithm that for any
vertex v and any edge e ∈ E incident on v, assigns it a label `v(e) ∈ [t], with at most q edges
mapping to the same label – e.g. sort all edges incident on v in lexicographic order and
bucket them sequentially in at most t groups of at most q each. Note that we can ensure
that for any vertex v at most one label gets mapped to by a non-zero, non-q number of edges.
Moreover, if deg(v) ≡ 0 (mod q), then exactly q or 0 edges are assigned to any label.

We’ll assume that deg(v∗) 6≡ 0 (mod q), as otherwise, a reduction wouldn’t be necessary.
We let (v∗, `∗) be the designated vertex of the Leafq instance, where `∗ is the unique label
that gets mapped to by a non-zero, non-q number of edges incident on v∗.

For any vertex (v, i) ∈ V , we assign it at most q edges as follows: For each edge
e = {v1, . . . , vq} such that `v(e) = i, the corresponding hyperedge of (v, i) is

(v1, `v1(e)), . . . , (vq, `vq
(e)) .

It is easy to see that the designated vertex (v∗, `∗) indeed has non-zero, non-q degree.
Moreover, a vertex deg(v, i) /∈ {0, q} in G only if v has a non-multiple-of-q degree in G. Thus,
solutions to the Leafq instance naturally maps to solutions to the original Leaf′q instance.

By Remark 10, this completes the reduction since the edges are locally computable with
black-box access to C and V is efficiently indexable.

(2a) Leaf′
q � Bipartiteq.(2a) Leaf′
q � Bipartiteq. We start with a Leaf′q instance (C, v∗), where C encode a q-

uniform hypergraph G = (V,E). We construct a Bipartiteq instance encoding a graph
G = (V ∪ U,E) such that V = V and U =

(
V
q

)
, i.e. all q-sized subsets of V . We include the

edge (v, e) ∈ E if e ∈ E is incident on v. The designated vertex for the Bipartiteq instance
is v∗ in V .

Clearly, all vertices e ∈ U have degree either q or 0. For any v ∈ V , the degree of v in G
is same as its degree in G. Thus, any solution to the Bipartiteq instance immediately gives
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a solution to the original Leaf′q instance. By Remark 10, this completes the reduction since
the edges are locally computable with black-box access to C and V and U are efficiently
indexable (cf. [31, §2.3] for efficiently indexing U).

(2b) Bipartiteq � Leaf′
q.(2b) Bipartiteq � Leaf′
q. We start with a Bipartiteq instance (C, v∗) encoding a bipartite

graph G = (V ∪ U,E) with maximum degree of any vertex being at most k. We construct a
Leaf′q instance encoding a hypergraph G = (V ,E) such that V = V with designated vertex
v∗.

First, we fix a canonical algorithm that for any vertex u ∈ U with degG(u) ≡ 0 (mod q)
produces a partition of it’s neighbors with q vertices of V in each part. Now, the set of q-
uniform hyperedges incident on any vertex v ∈ V in E can be obtained as: for all neighbors u
of v, with degG(u) ≡ 0 (mod q), we include a hyperedge consisting of all vertices in the same
partition as v among the neighbors of u (we ignore neighbors u with deg(u) 6≡ 0 (mod q)).

Observe that degG(v) ≤ degG(v) and equality holds if and only if all neighbors of v
in G have degree ≡ 0 (mod q). Hence for any v ∈ V , if degG(v) 6= degG(v) (mod q),
then there exists a neighbor u ∈ U of v in G such that deg(u) 6≡ 0 (mod q). Thus, if
v = v∗ and degG(v∗) ≡ 0 (mod q), then either degG(v) ≡ 0 (mod q) or we can find a
neighbor u of v in G with deg(u) 6≡ 0 (mod q). Similarly if for some v 6= v∗, we have
degG(v∗) 6≡ 0 (mod q), then either degG(v) 6≡ 0 (mod q) or we can find a neighbor u of v in
G with deg(u) 6≡ 0 (mod q). Thus, any solution to the Leaf′q instance gives us a solution to
the original Bipartiteq instance. This completes the reduction since V = {0, 1}n and the
edges are locally computable with black-box access to C.

(3a) Leafq � Lonelyq.(3a) Leafq � Lonelyq. We start with a Leafq instance (C, v∗), where C encode a q-
uniform hypergraph G = (V,E) with degree at most q. If degG(v∗) = q or 0, then we
don’t need any further reduction. Else, we construct a Lonelyq instance encoding a q-
dimensional matching G = (V ,E) on vertex set V = V × [q]. The designated vertices
will be V ∗ = {(v, q − i) : 1 ≤ i ≤ q − deg(v∗)}. Note that, |V ∗| = q − degG(v∗) and hence
1 ≤ |V ∗| ≤ q − 1.

In order to locally compute hyperedges, we first fix a canonical algorithm that for any
vertex v and any edge e ∈ E incident on v, assigns it a unique label `v(e) ∈ [q] – e.g. sort all
edges incident on v in lexicographic order and label them sequentially in [q]. In fact, we can
ensure that an edge incident on v get labeled within {1, . . . ,degG(v)}.

For any vertex (v, i) ∈ V , we assign it at most one hyperedge as follows:
. If degG(v) = 0, we include the hyperedge {(v, i) : i ∈ [q]}.
. Else if degG(v) ≥ i, then for edge e = {v1, . . . , vq} incident on v such that `v(e) = i, the

corresponding hyperedge of (v, i) is (v1, `v1(e)), . . . , (vq, `vq (e)).
. Else if 0 < degG(v) < i, we leave it isolated.

It is easy to see that our definition of hyperedges is consistent and that the designated
vertices V ∗ are indeed isolated. Moreover, a vertex (v, i) is isolated in G only if 1 ≤ degG(v) ≤
q − 1. Thus, solutions to the Leafq instance naturally maps to solutions to the original
Leaf′q instance.

By Remark 10, this completes the reduction since the edges are locally computable with
black-box access to C and V is efficiently indexable.

(3b) Lonelyq � Leafq.(3b) Lonelyq � Leafq. We start with a Lonelyq instance (C, V ∗), where C encode a
q-dimensional matching G = (V,E). We construct a Leafq instance encoding a q-uniform
hypergraph G = (V ,E) on vertex set V that will be specified shortly. We describe the
hyperedges in G and it’ll be clear how to compute the hyperedges for any vertex locally with
just black-box access to C.
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We start with V = V . Our goal is to transform all vertices of degree 1 to degree q,
while ensuring that vertices of degree 0 are mapped to vertices of degree not a multiple
of q. Towards this goal we let E to be set of edges in E in addition to q − 1 canonical
q-dimensional matchings over V . For example, for a vertex v := (x1, . . . , xn) ∈ V = [q]n,
the corresponding edges in E include an edge in E (if any) and edges of the type ei =
{(x1, . . . , xi−1, j, xi+1, . . . , xn) : j ∈ [q]} for i ∈ [q − 1] (note, this requires us to assume
n ≥ q − 1). Adding the q − 1 matchings increases the degree of each vertex by q − 1.
Therefore, vertices with initial degree 1 now have degree q and vertices with initial degree 0
now have degree q− 1. However, a couple of issues remain in order to complete the reduction,
which we handle next.

Multiplicities. An edge e ∈ E might have gotten added twice, if it belonged to one of
the canonical matchings. To avoid this issue altogether, instead of adding edges directly
on V , we augment V to become V := V ∪

((
V
q

)
× [q − 1]

)
, i.e. in addition to V , we have

q− 1 vertices for every potential hyperedge of G. For any edge e := {v1, . . . , vq} ∈ E, instead
of adding it directly in G, we add hyperedge {v, (e, 1), (e, 2), . . . , (e, q − 1)} for each v ∈ e.
Note that, all vertices (e, i) ∈

(
V
q

)
× [q − 1] have degree q if e ∈ E and degree 0 if e /∈ E, so

they are non-solutions for the Leafq instance. For vertices in V , we still have as before that
vertices with initial degree 1 now have degree q and vertices with initial degree 0 now have
degree q − 1.

Designated vertex. In a Leafq instance, we need to specify a single designated vertex
v∗ ∈ V . If the Lonelyq instance had a single designated vertex then we would be done.
However, in general it is not possible to assume this (for non-prime q). Nevertheless, we
provide a way to get around this. We augment V with t = (q − 1)(q − k) + 1 additional
vertices to become V := V ∪

((
V
q

)
× [q − 1]

)
∪ {wi,j : i ∈ [q − k], j ∈ [q − 1]} ∪ {v∗}, where

v∗ will eventually be the single designated vertex for the Leafq instance.
Let V ∗ = {u1, . . . , uk} ⊆ V be the set of designated vertices in the Lonelyq instance

(note 1 ≤ k < q). So far, note that degG(ui) = q − 1. The only new hyperedges we add will
be among ui’s, wi,j ’s and v∗, in such a way that degG(ui) will become q, the degree of all
wi,j ’s will also be q and degree of v∗ will be q − k.
. For each u ∈ V ∗, include {u,w1,1, . . . , w1,q−1}. So far, degG(u) = q and degG(w1,j) = k.
. For each j ∈ [q − 1] and each i ∈ {2, . . . , q − k}, include {w1,j , wi,1, . . . , wi,q−1}.

So far, degG(wi,j) = q − 1 for all (i, j) ∈ [q − k]× [q − 1].
. Finally, for each (i, j) ∈ [q − k]× [q − 1], include {v∗, wi,1, . . . , wi,q−1}.

Now, degG(wi,j) = q for all (i, j) ∈ [q − k]× [q − 1] and degG(v∗) = q − k.

Thus, we have finally reduced to a Leafq instance encoding the graph G = (V ,E)
with V := V ∪

((
V
q

)
× [q − 1]

)
∪ {wi,j : i ∈ [q − k], j ∈ [q − 1]} ∪ {v∗}. By Remark 10, this

completes the reduction, since V is efficiently indexable (again, see [31] for a reference on
indexing

(
V
q

)
) and the edges are locally computable using black-box access to C. J

A.1 Completeness of Succinct Bipartite
We introduce an intermediate problem to show PPAp–completeness of SuccinctBipartitep.

I Definition 48 (TwoMatchingsp).
Principle: Two p-dimensional matchings over a common vertex set, with a vertex in exactly

one of the matchings, has another such vertex.
Object: Two p-dimensional matchings G0 = (V,E0), G1 = (V,E1).

Designated vertex v∗ ∈ V .
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Inputs: . C0 : {0, 1}n → ({0, 1}n)p and C1 : {0, 1}n → ({0, 1}n)p
. v∗ ∈ {0, 1}n

Encoding: V := {0, 1}n. For b ∈ {0, 1}, Eb := {e : Cb(v) = e for all v ∈ e}
Solutions: v∗ if degG0(v∗) 6= 1 or degG1(v∗) 6= 0 and

v 6= v∗ if degG0(v∗) 6= degG1(v∗)

Observe that in the case of p = 2, TwoMatchingsp can be readily seen as equivalent to
Leaf2.

I Theorem 49. For any prime p, SuccinctBipartitep and TwoMatchingsp are PPAp–
complete.

Proof. We show Bipartitep � SuccinctBipartitep � TwoMatchingsp � Lonelyp.

Bipartitep � SuccinctBipartitep.Bipartitep � SuccinctBipartitep. Since p is a prime, we can assume that the designated
vertex v∗ has degree 1 (mod p) (similar to Lemma 44). Since the number of neighbors in a
Bipartitep instance are polynomial, we can check if an edge exists and canonically group
them efficiently for all vertices with degree being a multiple of p. The designated edge e∗ is the
unique ungrouped edge incident on v∗. Thus, valid solution edges to SuccinctBipartitep
must have at least one endpoint which is a solution to the original Bipartitep instance.

SuccinctBipartitep � TwoMatchingsp.SuccinctBipartitep � TwoMatchingsp. We reduce to a TwoMatchingsp instance
encoding two p-dimensional matchings G0 = (V ,E0) and G1 = (V ,E1), over the vertex set
V = V × U × [p − 1], that is, all possible edges producible in the SuccinctBipartitep
instance. The designated vertex v∗ is the designated edge e∗ in the SuccinctBipartitep
instance.

For any edges e1, . . . , ep, which are grouped by φV pivoted at some v ∈ V , we include
the hyperedge {e1, . . . , ep} in E0. Similarly, for any edges e1, . . . , ep, which are grouped
by φU pivoted at some u ∈ U , we include the hyperedge {e1, . . . , ep} in E1. It is easy to
see that points in exactly one of the two matchings G0 or G1 correspond to edges of the
SuccinctBipartitep instance that are not grouped at exactly one end. Thus, we can derive
a solution to SuccinctBipartitep from a solution to TwoMatchingsp. (Remark: while
edges which are not grouped at either end are solutions to SuccinctBipartitep, they do
not correspond to a solution in the TwoMatchingsp instance.)

TwoMatchingsp � Lonelyp.TwoMatchingsp � Lonelyp. Given an instance of TwoMatchingsp that encodes two p-
dimensional matchings G0 = (V,E0) and G1 = (V,E1), we reduce to an instance of Lonelyp
encoding a p-dimensional matching G = (V ,E) such that V = V × [p]. The designated
vertex for the Lonelyp instance is (v∗, p).

For any hyperedge {v1, . . . , vp} in E0, we include the hyperedge {(v1, i), (v2, i), . . . , (vp, i)}
in G for each i ∈ {1, . . . , p− 1}. Similarly, for any hyperedge {v1, . . . , vp} in E1, we include
the hyperedge {(v1, p), (v2, p), . . . , (vp, p)} in G. If v ∈ V is isolated in both G0 and G1, then
we include the hyperedge {v} × [p].

Observe that, (v∗, p) is isolated by design. A vertex (v, i), for i < p is isolated only if
degG0(v) = 0 and deg(G1) = 1. Similarly, the vertex (v, p) is isolated only if degG0(v) = 1
and deg(G1) = 0. Thus, isolated vertices in the Lonelyp instance correspond to solutions of
the TwoMatchingsp instance. J

A.2 Equivalence with PMODp

Proof of Lemma 44. Consider any prime p. Consider a Lonelyp instance (C, V ∗), where
C encodes a p-dimensional matching G = (V,E) and |V ∗| = `. We wish to reduce to an
instance of Lonelykp, where the number of designated vertices is exactly k. First, we’ll
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assume that all vertices in V ∗ are indeed isolated in G, otherwise, no reduction would be
necessary. The key reason why this lemma holds for primes (and not for composites) is
because ` has a multiplicative inverse modulo p. In particular, let t ≡ `−1k (mod p).

We construct a Lonelykp instance encoding the p-dimensional matching G = (V ,E) over
V = V × [t]. We let V ∗ to be the lexicographically first k vertices in V ∗ × [t]. Note that
|V ∗ × [t]| = t.` ≡ k (mod p). Thus, we partition the remaining vertices of V ∗ × [t] into
p-uniform hyperedges. For any vertex v ∈ V r V ∗, with neighbors v1, . . . , vp−1 in G, the
neighbors of (v, i) in G are (v1, i), . . . , (vp−1, i) for any i ∈ [t]. Thus, a vertex (v, i) is isolated
only if it is in V ∗ or v is isolated in G. This completes the reduction since V is efficiently
indexable – see Remark 10. J

Proof of Corollary 45. It is easy to see that Modq ≤ Lonelyq with number of designated
vertices being k ≡ −2n (mod q), since {0, 1}n is efficiently indexable (Remark 10). Conversely,
using Lemma 44, we can reduce a Lonelyq instance to a Modq instance as follows: Let the
Lonelyq instance encode a q-dimensional matching over [q]n with k designated vertices. If
any of the designated vertices are not isolated, no further reduction is necessary. Otherwise,
we can embed the non-designated vertices of G into the first qn − k vertices of {0, 1}N for a
choice of N satisfying 2N > qn and 2N ≡ −k (mod q). Such an N is guaranteed to exist
(and can be efficiently found) when q is a prime. Since 2N − qn + k ≡ 0 (mod q), we can
partition the remaining vertices into q-uniform hyperedges, and thus, solutions to the Modq
instance readily map to solutions of the original Lonely′q instance. J

B Appendix: Proof of Theorem 36

Proof of Theorem 36. We show a reduction from ChevalleyWithSymmetryp to
SuccinctBipartitep[AC0

Fp
]; the theorem then follows by combining this reduction with

Theorem 3. Additionally from the proof of Theorem 3 we can assume without loss of
generality that the system of polynomials f = (g,h) of the ChevalleyWithSymmetryp
instance has the following properties.
a. Each polynomial fi has degree at most 2.
b. Each polynomial fi has at most 3 monomials.
c. Each polynomial fi has at most 3 variables.
Hence, we can compute each of the polynomials gp−1

i explicitly as a sum of monomials. The
degree of this polynomial is O(p) and the number of monomials is at most 3p. Observe that
since p is a constant, 3p is also a constant.

Now we follow the proof of Lemma 25 that reduces ChevalleyWithSymmetryp to
SuccinctBipartitep. Following this proof there are two circuits that we need to replace
with formulas in AC0

Fp
to reduce to SuccinctBipartitep. The first circuit is the edge

counting circuit C and the second is the grouping function φ. We remind that the bipartite
graph G(U, V ) of the SuccinctBipartitep instance has two parts U , V , where U is the set
of all possible assignments, i.e. Fnp , and V = V1 ∪ V2, where V1 in the set of all monomials
of the polynomial F =

∏m
i=1(1− gp−1

i ) and V2 is the set of all p-tuples of assignments, i.e.(
Fnp
)p.

From Edge Counting Circuit To Edge Counting Formula. As described in the proof
of Lemma 25 the edge counting circuit takes as input a vertex u ∈ U and a vertex v ∈ V and
outputs the multiplicity of the edge {u, v} in G. Hence, the edge counting formula C, that
we want to implement, takes as input a tuple (x, s,a,y). The vector x corresponds to the
assignment in U . The vector a corresponds to the description of a monomial of F , as the
product

∏m
i=1 t

′
iai

where t′iai
is the ai-th monomial of the polynomial 1− gp−1

i . The vector
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y = (y1,y2, . . . ,yp) and corresponds to a p-tuple in V2. Finally, s is a selector number to
distinguish between v ∈ V1 and v ∈ V2, namely if s = 1, we have v ∈ V1 and if s = 0, we
have that v ∈ V2. So, the edge counting formula can be written as follows

C(x, s,a,y) =

 ∏
i∈Fp,i6=1

(s− i)

 C1(x,a,y) +

 ∏
i∈Fp,i6=0

(s− i)

 C2(x,a,y). (B.1)

This way we can define the edge counting formula C1 for when v ∈ V1 and the edge counting
formula C2 for when v ∈ V2 separately and combine them by using at most two additional
layers in the arithmetic formula. Now, C1(x,y,a) = 1(y = 0) ·

∏m
i=1Qi(x, ai) where Qi(x, ai)

is the formula to compute the value ti,ai
(x). Observe that the factor 1(y = 0) can be easily

computed and is necessary since C1 should consider only neighbors between x and monomials
in V1. Hence, if y is not equal to 0, C1 should return 0. As we already explained the
number of monomials of 1− gp−1

i is constant, and hence the formula Qi(x, ai) can be easily
implemented in constant depth using a selector between all different monomials similarly to
Equation (B.1). Hence, C1 is implemented in constant depth.

The formula C2 has a factor 1(a = 0) to ensure only neighbors in V2 have non-zero
outputs. The main challenge in the description of C2 is that every distinct p-tuple y has
p! equivalent representations, but the modulo p argument of Lemma 25 applies only when
edges appear to precisely one of the equivalent copies of the p-tuple. Thus, we let C2 add
edges only to the lexicographically ordered version of y. It is a simple exercise to see that
sorting of p! numbers, when p is constant, is possible in constant depth. We leave this folklore
observation as an exercise to the reader. Once we make sure that y is lexicographically
sorted, we compute a sorted representation of the set Σx = {x, σ(x), . . . , σp−1(x)}, where
σ is the permutation in the input of the ChevalleyWithSymmetryp problem. Then, we
can easily check whether the p-tuple represented by y is the same as the sorted p-tuple Σx.
Finally, we observe that edges between x and Σx are only used when x ∈ Vg ∩ Vh which
again can be checked with constant depth formulas. If these checks pass, then C2 outputs
p− 1, otherwise it outputs 0.

From Grouping Circuit to Grouping Formula. For this step we use selectors similarly to
Equation (B.1) and sorting as in the description of C2. We consider two different cases for
the grouping formula φ. When the first argument is in U , i.e. grouping with respect to an
assignment, we call the formula ψ and when the first argument is in V , i.e. grouping with
respect to monomials/p-tuples, we call the formula χ. Then, φ selects between ψ and χ using
a selector. This adds at most two layers to φ.
Grouping formula for x ∈ U . First, we describe ψ with inputs x ∈ U , (s,a,y) ∈ V and r

be the copy of the input edge. We have two cases with respect to whether s = 1 or s = 0.
Let ψ1 be the formula for the first case and ψ2 be the formula for the second case. For
the case s = 1, we need again to consider two cases: (i) x ∈ Vg and (ii) x ∈ Vg. For case
(i) we describe the formula ψ1

1 and for case (ii) we define the formula ψ1
2 . It is easy to see

that computing 1(x ∈ Vg) can be done using a depth 3 formula since g is given in an
explicit form. Hence, once again, we can combine ψ1

1 and ψ1
2 using a selectors.

Case s = 1, x ∈ Vg. The formula ψ1
1 first computes i? = min

i:1−gp−1
i

(x)=0
i. This is doable

in constant depth, since we can compute in parallel the value 1(1− gp−1
i (x) = 0) for all

i ∈ [m1] and then in an extra layer compute for every i whether 1 − gp−1
i (x) = 0 and

1− gp−1
j (x) 6= 0 for all j < i, which requires just one multiplication gate per i.
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Next, we define a formula ψ1
1i for all i and we use a selector to output ψ1

1i∗ . In ψ1
1i, we

first compute the value Ci(x) =
∏
j 6=i tj,aj

(x). The output of ψ1
1i is a p-tuple, where each

of the p parts differs only on the coordinate ai of a, which corresponds to a monomial of
1− gp−1

i , and the value r. We need to determine p different values for the tuple (ai, r)
where ai ∈ [3p], r ∈ Zp. These values only depend on the evaluation of the polynomial gi
on the input x, on the value ai and on the value r.
Because of the properties of the input system of polynomials f , each polynomial gi
depends only on three variables in Zp, let these variables be x1, x2, x3 for simplicity.
Then, for every i the grouping function that we want to implement is a function with
input domain Z3

p × [3p]× Zp and output domain Z2
p. The truth-table of this function has

size that depends only on p and therefore we can explicitly implement this function using
its truth-table in constant depth. This finishes the construction of ψ1

1i.

Case s = 1, x ∈ Vg. We remind that a = 0 corresponds to the constant monomial 1
of the polynomial F . If a 6= 0, this case is similar to the previous, except that we use
the polynomials gp−1

i instead of 1− gp−1
i , see also the proof of Lemma 25. If a = 0, ψ1

2
outputs the input edge (1,a,0, 1) and p− 1 edges of the form (0,0,y, t), t ∈ [p− 1] where
y is the lexicographically ordered set Σx.

Case s = 0. In this case, the formula ψ2 checks whether the vector y is in lexicographic
order as described in the edge counting formula C and a = 0. It also checks if x ∈ Vf1∩Vf2

as described before. If any of these checks fails, the output is 0. Otherwise, if y = Σx,
then we output p − 1 copies of the edge (0,0,y, t), t ∈ [p − 1], that connects x with y,
and the edge (1,0,0, 1), that connects x with the constant term of F .

Grouping formula for vertices in V . We describe the grouping formula χ when the first
argument belongs to V , i.e. the grouping with respect to monomials or p-tuples. The
input again is a triple (s,a,y) representing a vertex in V , a vertex x ∈ U and a number
r ∈ Zp that denotes the index of the edge that we want to group, among its possible
multiple copies. Again we have two cases, s = 1 and s = 0, which correspond to the
formulas χ1 and χ2 respectively. In each case, we have to check that one of a, y is equal
to 0, which is done similarly to the previous formulas.

Case s = 1. In this case, the input is a monomial ta(x) =
∏m1
i=1 ti,ai

(x) and we have to
find a variable that appears with degree less than p− 1. We first construct a formula χ1

j

that computes zk, where k is the degree of xj in ta(x). This can be done with a constant
size formula that for a given index j multiplies the powers of xj in the monomials of
1− gp−1

i appearing in t.
Now, we compute all values χ1

j (1), . . . , χ1
j (p− 1) and we check in parallel if at least one

of them is different from 1. If this is the case, then the degree of xj in t(x) is less than
p− 1. Hence, we have computed the formula χ̄1

j (a) = 1(degree of xj in ta 6= p− 1). We
can find the smallest index j∗ such that χ̄1

j (a) = 1 using the same construction as in ψ1.
So, we can construct a formula for each j that is equal to 1 if and only if j = j∗ is the
smallest index such that xj∗ has degree less than p− 1 in ta. Finally, we use a selector to
find the value Cj∗(x) = x−kj∗ t(x), by computing Cj(x) for all j. This is done through the
product of all variables that appear in ta(x) excluding xj .
It is left to implement a formula that takes as input the value Cj∗(x) ∈ Zp, the value of
r ∈ Zp and the values χ1

j∗(0), χ1
j∗(1), . . . , χ1

j∗(p− 1) all in Zp and outputs a group of p
values in Z2

p, which corresponds to the values of xj and r in the output. Observe that
both the input and the output size of this formula are only a function of p and, hence,
constant. Therefore, we can explicitly construct a constant depth formula to capture this
grouping.
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Case s = 0. For constructing the formula χ2 we first check whether x ∈ Vf1 and
whether y is the lexicographically sorted version of Σx. These can both be done as we
have described in the construction of the formula ψ above. If all checks pass, then we
output the p edges of the form (z, r) for all z ∈ Σx, that correspond to the r-th copy of
the edge between z and y.

Combining the formulas ψ and χ through a selector concludes the construction of φ.
Hence, the theorem follows by observing that the instance of ChevalleyWithSymmetryp
that we get when reducing Lonelyp to ChevalleyWithSymmetryp in Theorem 3 reduces
to SuccinctBipartitep[AC0

Fp
]. J



Non-Disjoint Promise Problems from
Meta-Computational View of
Pseudorandom Generator Constructions
Shuichi Hirahara
National Institute of Informatics, Tokyo, Japan
s_hirahara@nii.ac.jp

Abstract
The standard notion of promise problem is a pair of disjoint sets of instances, each of which is
regarded as Yes and No instances, respectively, and the task of solving a promise problem is to
distinguish these two sets of instances. In this paper, we introduce a set of new promise problems
which are conjectured to be non-disjoint, and prove that hardness of these “non-disjoint” promise
problems gives rise to the existence of hitting set generators (and vice versa). We do this by presenting
a general principle which converts any black-box construction of a pseudorandom generator into
the existence of a hitting set generator whose security is based on hardness of some “non-disjoint”
promise problem (via a non-black-box security reduction).

Applying the principle to cryptographic pseudorandom generators, we introduce
The Gap(KSAT vs K) Problem: Given a string x and a parameter s, distinguish whether the

polynomial-time-bounded SAT-oracle Kolmogorov complexity of x is at most s, or the polynomial-
time-bounded Kolmogorov complexity of x (without SAT oracle) is at least s + O(log |x|).

If Gap(KSAT vs K) is NP-hard, then the worst-case and average-case complexity of PH is equivalent.
Under the plausible assumption that ENP 6= E, the promise problem is non-disjoint. These results
generalize the non-black-box worst-case to average-case reductions of Hirahara [31] and improve the
approximation error from Õ(

√
n) to O(log n).

Applying the principle to complexity-theoretic pseudorandom generators, we introduce a family of
Meta-computational Circuit Lower-bound Problems (MCLPs), which are problems of distinguishing
the truth tables of explicit functions from hard functions. Our results generalize the hardness versus
randomness framework and identify problems whose circuit lower bounds characterize the existence
of hitting set generators. For example, we introduce
The E vs SIZE(2o(n)) Problem: Given the truth table of a function f , distinguish whether f is

computable in exponential time or requires exponential-size circuits to compute.
A nearly-linear AC0 ◦ XOR circuit size lower bound for this promise problem is equivalent to the
existence of a logarithmic-seed-length hitting set generator for AC0 ◦ XOR. Under the plausible
assumption that E 6⊆ SIZE(2o(n)), the promise problem is non-disjoint (and thus the minimum
circuit size is infinity). This is the first result that provides the exact characterization of the
existence of a hitting set generator secure against C by the worst-case lower bound against C for
a circuit class C = AC0 ◦ XOR ⊆ TC0. In addition, we prove that a nearly-linear size lower bound
against co-nondeterministic read-once branching programs for some “non-disjoint” promise problem
is sufficient for resolving RL = L.

We also establish the equivalence between the existence of a derandomization algorithm for
uniform algorithms and a uniform lower bound for a problem of approximating Levin’s Kt-complexity.
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20:2 Meta-Computational View of PRG Constructions

1 Introduction

A promise problem, introduced by Even, Selman, and Yacobi [18], is a pair of disjoint sets
(ΠYes,ΠNo) that are regarded as the sets of Yes and No instances, respectively. The problem
is regarded as a problem whose instances are “promised” to come from ΠYes∪ΠNo. Specifically,
an algorithm A is said to solve a promise problem (ΠYes,ΠNo) if A accepts any instance
x ∈ ΠYes and rejects any instance x ∈ ΠNo; the behavior of A on any “unpromised” instance
x 6∈ ΠYes ∪ΠNo can be arbitrary. The notion of promise problem is crucial for formalizing
several important concepts and theorems in complexity theory. A canonical example is the
unique satisfiability problem (1SAT,UNSAT), where 1SAT is the set of formulas that has a
unique satisfying assignment, and UNSAT is the set of unsatisfiable formulas. The promise
problem is a standard Promise-UP-complete problem, and the celebrated theorem of Valiant
and Vazirani [70] states that it is in fact NP-hard under randomized reductions. The reader
is referred to the survey of Goldreich [23] for more background on promise problems.

Usually, it is required that ΠYes and ΠNo are disjoint, i.e., ΠYes ∩ΠNo = ∅. The reason
is that if there exists an instance x ∈ ΠYes ∩ΠNo, then no algorithm can solve the promise
problem (ΠYes,ΠNo). Indeed, if there were an algorithm A that solves (ΠYes,ΠNo), then
A must accept x and simultaneously reject x, which is impossible. For this reason, every
definition of promise problems considered before is, to the best of our knowledge, always
disjoint.

In this paper, we introduce a set of new promise problems which are conjectured to be
non-disjoint. We will demonstrate that these “non-disjoint” promise problems are worth
investigating, by showing that hardness results for our promise problems have important
consequences in complexity theory. The fact that the promise problems are conjectured to be
non-disjoint means that solving promise problems are conjectured to be impossible, no matter
how long an algorithm is allowed to run. Surprisingly, our results show that if one can prove
mild hardness results of computing “non-disjoint” promise problems, which is conjectured to
be impossible, then one can resolve important open questions of complexity theory.

To be more specific, we consider open questions of whether there exists an explicit hitting
set generator. A hitting set generator (HSG) G = {Gn : {0, 1}s(n) → {0, 1}n}n∈N secure
against a class C of algorithms is a family of functions Gn such that any algorithm A ∈ C

that accepts at least a half of the n-bit strings must accept a string Gn(z) for some seed
z ∈ {0, 1}s(n) for all large n ∈ N. The existence of a secure hitting set generator makes it
possible to derandomize any one-sided-error C-randomized algorithm, by simply trying all
possible s(n)-bit seeds z and using G(z) as a source of randomness. A stronger notion called
a pseudorandom generator (PRG) enables us to derandomize two-sided-error randomized
algorithms.

1.1 Meta-Computational View of PRG Constructions
A standard approach for constructing pseudorandom generators is to use the hardness
versus randomness framework developed in, e.g., [72, 8, 53, 7, 38, 40, 63, 44]. One of the
landmark results of Impagliazzo and Wigderson [40] states that if there exists a function
in E = DTIME(2O(n)) that is not computable by a circuit of size 2αn for some constant
α > 0, then there exists a logarithmic-seed-length pseudorandom generator secure against
linear-size circuits (and, in particular, P = BPP follows). In general, such a result is proved by
using a black-box pseudorandom generator construction G(-) that converts any hard function
f 6∈ SIZE(2o(n)) to a pseudorandom generator Gf : {0, 1}O(n) → {0, 1}2αn secure against
circuits of size 2αn, where α > 0 is some constant.
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The underlying theme of this paper is to view black-box PRG constructions from a
meta-computational perspective. Usually, f is regarded as a fixed hard function such as
f 6∈ SIZE(2o(n)). Instead, here we regard f as an input to some “non-disjoint” promise problem,
and regard a black-box PRG construction G(-) as a reduction that proves the security of
some (universal) hitting set generator based on the hardness of the “non-disjoint” promise
problem. This new perspective can be applied to arbitrary black-box PRG constructions,
and it gives rise to a “non-disjoint” promise problem associated with the black-box PRG
construction. For example, the pseudorandom generator construction of [40] induces the
E vs SIZE(2o(n)) problem, which is the problem of distinguishing whether f ∈ E/O(n) or
f 6∈ SIZE(2o(n)), given the truth table of a function f .

There are two types of a pseudorandom generator. One is a cryptographic PRG, which
is computable in polynomial time in its seed length. This notion is useful for building
secure cryptographic primitives. We present in Section 1.2 “non-disjoint” promise problems
whose hardness gives rise to a cryptographic hitting set generator. In particular, finding
a non-disjoint witness of the promise problem implies the average-case hardness of PH,
which provides a new approach for establishing the equivalence between the worst-case and
average-case complexity of PH. The other is a complexity-theoretic PRG, which is allowed
to be computed in time exponential in its seed length. This notion is sufficient for the
purpose of derandomizing randomized algorithms. In Section 1.3, we generalize the hardness
versus randomness framework by using the meta-computational view of black-box PRG
constructions, and establish the equivalence between circuit lower bounds for “non-disjoint”
promise problems and the existence of hitting set generators. Sections 1.2 and 1.3 can be
read independently.

1.2 Worst-Case versus Average-Case Complexity of PH
Understanding average-case complexity is a fundamental question in complexity theory.
Average-case hardness of NP is a prerequisite for building secure cryptographic primitives,
such as one-way functions and cryptographic pseudorandom generators. Indeed, it is not
hard to see that if there exists a polynomial-time-computable hitting set generator G, then
checking whether a given string is in the image of G is a problem in NP that is hard on
average (in the errorless sense). In this section, we present a new approach for proving the
average-case hardness of NP, by implicitly constructing a cryptographic hitting set generator.

A fundamental open question in the theory of average-case complexity, pioneered by [48],
is to establish the equivalence between the worst-case and average-case complexity of NP.

I Open Question 1. Does P 6= NP imply DistNP 6⊆ AvgP?

Here DistNP 6⊆ AvgP is an average-case analogue of NP 6= P. Open Question 1 asks whether
the worst-case hardness of NP implies that NP is hard on random instances generated
efficiently. The reader is referred to the survey of Bogdanov and Trevisan [9] for background
on average-case complexity.

For large enough complexity classes such as PSPACE and EXP, there is a general technique
for converting any worst-case hard function f to some two-sided-error average-case hard
function Enc(f) based on error-correcting codes [63, 66]. Here, the encoded function Enc(f)
is computable in PSPACE given oracle access to f ; thus, the worst-case and average-case
complexity of such large complexity classes are known to be equivalent. Viola [71] showed
limits of such an approach: Enc(f) cannot be computed in the polynomial-time hierarchy
PHf ; thus, the proof technique of using error-correcting codes is not sufficient to resolve
Open Question 1 as well as the following weaker open question:
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I Open Question 2. Does PH 6= P (or, equivalently, P 6= NP) imply DistPH 6⊆ AvgP?

Note that Open Question 2 is an easier question than Open Question 1, since PH = P is
known to be equivalent to NP = P.

There are significant obstacles for resolving Open Questions 1 and 2. One is the relativiz-
ation barrier due to Impagliazzo [39]. Another is the limits of black-box reductions due to
Feigenbaum and Fortnow [19] and Bogdanov and Trevisan [9].

Recently, a non-black-box worst-case to average-case reduction that is not subject to
the latter barrier was presented in [31]. The reduction shows that solving the problem
GapMINKT of approximating polynomial-time-bounded Kolmogorov complexity in the
worst-case sense can be reduced to solving MINKT on average. For an integer t ∈ N and
an oracle A, a t-time-bounded A-oracle Kolmogorov complexity Kt,A(x) of a finite string x
is defined as the shortest length of a program that prints x in t steps with oracle access to
A (see Section 2 for a precise definition). The promise problem GapMINKT = (ΠYes,ΠNo)
asks for approximating Kt(x) within an additive error of Õ(

√
Kt(x)), and is formally defined

as follows: ΠYes consists of (x, 1s, 1t) such that Kt(x) ≤ s; and ΠNo consists of (x, 1s, 1t)
such that Kpoly(|x|,t)(x) > s+ Õ(

√
s).

The result of [31] can be seen as providing an approach for establishing the equivalence
between worst-case and average-case complexity of NP; indeed, proving NP-hardness of
GapMINKT is sufficient for resolving Open Question 1. However, the approximation error
Õ(
√
s) caused by the reduction of [31] is not optimal, which makes the question of proving

NP-hardness of GapMINKT potentially harder.

1.2.1 Gap(KA vs K)
We herein introduce the following promise problem.

I Definition 3. For an oracle A and an approximation quality τ : N× N→ N, the problem
Gapτ (KA vs K) is defined as the following promise problem (ΠYes,ΠNo).

ΠYes := { (x, 1s, 1t) | Kt,A(x) ≤ s },

ΠNo := { (x, 1s, 1t) | Kτ(|x|,t)(x) > s+ log τ(|x|, t) }.

By default, we assume that τ is some polynomial and write Gap(KA vs K) ∈ P if there exists
some polynomial τ such that Gapτ (KA vs K) ∈ P.

In this paper, we prove

I Theorem 4. Let A be any oracle. If DistNPA ⊆ AvgP, then Gap(KA vs K) ∈ P.

An immediate corollary of Theorem 4 is an improvement of the reduction of [31], by
setting A := ∅. In particular, in order to resolve Open Question 1, it suffices to prove
NP-hardness of approximating Kt(x) within an additive error of log τ(|x|, t) given (x, 1t) as
input, for any polynomial τ . A key insight for reducing the approximation error is that
there are two main sources of the approximation error in the reduction of [31]: One comes
from fixing a random coin flip sequence, which we remove by using the pseudorandom
generator construction of Buhrman, Fortnow, and Pavan [11] under the assumption that
DistNP ⊆ AvgP. The other comes from the advice complexity of a black-box pseudorandom
generator construction, which we reduce by using a “k-wise direct product generator” whose
advice complexity is small [32].
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More surprisingly, the promise problem is conjectured to be non-disjoint for A := SAT.
That is, it is conjectured to be impossible for any algorithm to solve Gap(KSAT vs K)
– no matter how long the algorithm is allowed to run. Nevertheless, Theorem 4 shows
that under the assumption that PH is easy on average, there exists a polynomial-time
algorithm for solving Gap(KSAT vs K). Taking its contrapositive, this means that, in order to
resolve DistPH 6⊆ AvgP, it suffices to prove a super-polynomial time lower bound for solving
Gap(KSAT vs K), whose time complexity is conjectured to be infinity (in the sense that there
exists no algorithm that can compute the promise problem).

We now clarify why Gap(KSAT vs K) is conjectured to be non-disjoint. Under the plausible
assumption that ENP 6= E, it is not hard to see that there are infinitely many strings x such
that x is simultaneously a Yes and No instance; here, the string x is defined as the truth
table of the characteristic function of L ∈ ENP \ E/O(n) (see Proposition 24).

Another corollary of Theorem 4 is that under the assumption that DistPH ⊆ AvgP, any
string x that can be compressed with SAT oracle in polynomial time can be also compressed
without any oracle. Formally:

I Corollary 5. If DistPH ⊆ AvgP, then there exists a polynomial τ such that

Kτ(|x|,t)(x) ≤ Kt,SAT(x) + log τ(|x|, t)

for any x ∈ {0, 1}∗ and t ∈ N.

Proof. Under the assumption, Gap(KSAT vs K) can be solved by some algorithm. Thus
Gap(KSAT vs K) problem must be disjoint, from which the result follows immediately. J

Corollary 5 provides a new approach for resolving Open Question 2. In order to prove
DistPH 6⊆ AvgP under the assumption that P 6= NP, it suffices to find a string x that can
be compressed with SAT oracle but cannot be compressed without SAT oracle. In fact, it
suffices to find such a string x under the stronger assumption that NP 6⊆ P/poly. This is
because Pavan, Santhanam, and Vinodchandran [57] proved NP 6⊆ P/poly if Open Question 2
is negative.

More importantly, Theorem 4 suggests a more reasonable approach to Open Question 2.
Note that finding a string x compressible with SAT oracle but incompressible without any
oracle corresponds to proving the non-disjointness of Gap(KSAT vs K); this amounts to
proving the time complexity of solving Gap(KSAT vs K) is infinity. Theorem 4 suggests
that it suffices to prove that a polynomial-time algorithm cannot find a difference between
compressible strings under SAT oracle and incompressible strings without any oracle, under
the worst-case hardness assumption of NP. In particular, it suffices to prove NP-hardness of
Gap(KSAT vs K).

I Corollary 6 (A new approach for Open Question 2). Suppose that the Gap(KSAT vs K)
problem is “NP-hard under randomized reductions”1 in the sense that

NP 6⊆ BPP =⇒ Gap(KSAT vs K) 6∈ P.

Then, Open Question 2 is positive; that is,

DistPH 6⊆ AvgP ⇐⇒ PH 6= P.

1 Here we use the weak notion of “NP-hardness” in order to strengthen the result. Corollary 6 remains
true even if one interprets NP-hardness as a randomized reduction from NP.
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In a typical proof of NP-hardness of a disjoint promise problem Π = (ΠYes,ΠNo), one
needs to carefully design a reduction R from SAT to Π that “preserves” a structure of
SAT; i.e., any formula ϕ ∈ SAT is mapped to R(ϕ) ∈ ΠYes and any formula ϕ ∈ UNSAT is
mapped to R(ϕ) ∈ ΠNo. The task of proving NP-hardness of Gap(KSAT vs K) is potentially
much easier, because it suffices to find a reduction R that may not preserve a structure
of SAT; in principle, R(ϕ) can be a fixed input x that is in the intersection of Yes and
No instances of Gap(KSAT vs K) . It is worth mentioning that proving NP-hardness of
Gap(KSAT vs K) is easier than proving NP-hardness of GapMINKT since GapMINKT is
reducible to Gap(KSAT vs K) via an identity map.

1.2.2 Non-NP-Hardness Results Do Not Apply
A line of work presented evidence that NP-hardness of MINKT is not likely to be established
under deterministic reductions (e.g., [45, 51, 36, 35]). For example, it is not hard to see that
the proof technique of Murray and Williams [51] (who proved a similar result for MCSP)
can be extended to the case of GapMINKT.

I Theorem 7 (Essentially in [51]; cf. [32]). If GapMINKT is NP-hard under many-one
deterministic reductions, then EXP 6= ZPP.

This result suggests that establishing NP-hardness of GapMINKT under deterministic reduc-
tions is a challenging task. In contrast, we observe that a similar “non-NP-hardness” result
cannot be applied to a non-disjoint promise problem.

I Proposition 8. Assume that NP-hardness of Gap(KSAT vs K) under many-one reductions
implies EXP 6= ZPP. Then, EXP 6= ZPP holds unconditionally.

The reason is that Gap(KSAT vs K) is well defined only if EXP 6= ZPP. More formally:

Proof. There are two cases. Either Gap(KSAT vs K) is disjoint or not disjoint. In the former
case, by Proposition 24, we have ENP = E; thus EXP = EXPNP = ZPEXP 6= ZPP. In the
latter case, there exists a string x that is simultaneously a Yes and No instance. A reduction
that always maps to x defines a many-one reduction from any problem to Gap(KSAT vs K);
thus, EXP 6= ZPP follows from the assumption. J

In light of Proposition 8, we leave as an interesting open question whether there is any
barrier explaining the difficulty of proving NP-hardness of the non-disjoint promise problem.
We mention that GapMINKTSAT, which is equivalent to Gap(KSAT vs KSAT), is known to be
DistNP-hard [32]. In particular, since Gap(KSAT vs KSAT) is reducible to Gap(KSAT vs K)
via an identity map, the latter is also DistNP-hard. Therefore, in order to present a barrier
for proving NP-hardness of Gap(KSAT vs K), one must exploit a property that holds for NP
but does not hold for DistNP (unless the notion of reducibility is strong).

1.2.3 Gap(F vs F−1): Meta-Computational View of HILL’s PRG
We also propose another approach towards Open Question 1, by introducing a promise
problem which asks for distinguishing whether a given function is computable by small
circuits, or cannot be inverted by small circuits. Specifically, for an approximation quality τ ,
we define the promise problem Gapτ (F vs F−1) as follows. Given a size parameter s ∈ N
and an integer n ∈ N and random access to a function F : {0, 1}n → {0, 1}n, the task is to
distinguish the following two cases:
Yes: F is computable by a circuit of size s.
No: F cannot be inverted on average by any F -oracle circuit of size τ(n, s).
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We show that “NP-hardness” of Gapτ (F vs F−1) for every polynomial τ is enough for
resolving Open Question 1. More specifically, we prove

I Theorem 9. If DistNP ⊆ AvgP, then there exist a polynomial τ and a coRP-type randomized
algorithm that solves Gapτ (F vs F−1) on input (n, s) in time poly(n, s). In particular, Open
Question 1 is true if Gapτ (F vs F−1) is “NP-hard” for every polynomial τ in the following
sense: NP ⊆ BPP follows from the assumption that Gapτ (F vs F−1) admits a coRP-type
algorithm.

This is proved by viewing the black-box PRG construction based on any one-way function,
which is given by Håstad, Impagliazzo, Levin, and Luby [29], from the meta-computational
perspective.

It is easy to observe that Gap(F vs F−1) is non-disjoint under the existence of a one-
way function, which is one of the most standard cryptographic primitives. Thus, it is
widely believed that Gap(F vs F−1) is impossible to solve. Nevertheless, NP-hardness of
Gap(F vs F−1) is sufficient for resolving Open Question 1.

1.3 Meta-computational Circuit Lower-bound Problems; MCLPs
We now turn our attention to complexity-theoretic hitting set generators. A standard approach
for constructing complexity-theoretic pseudorandom generators is to use the hardness versus
randomness framework, which reduces the task of constructing a pseudorandom generator to
the task of finding an explicit hard function, such as f ∈ E \ SIZE(2o(n)).

It is, however, a widely accepted fact that proving a circuit size lower bound for an
explicit function is extremely hard. Here by an explicit function, we mean that a function is
computable in E = DTIME(2O(n)). It is an open question whether there exists an exponential-
time-computable function f ∈ E that cannot be computed by any circuit of size 4n (cf. [20]).
On the other hand, a simple counting argument shows that most functions f : {0, 1}n → {0, 1}
cannot be computed by circuits of size 2αn for any constant α < 1.

Why is it so difficult to prove a circuit lower bound for an explicit function? We propose
to view this question from a meta-computational perspective. The fact that it is difficult
for human beings to show that an explicit function cannot be computed by small circuits
suggests that it should be also difficult for algorithms to analyze a circuit lower bound. Our
results indicate that if we can make this intuition formal, then we get breakthrough results
in complexity theory.

Specifically, we herein introduce a family of new computational problems, which we
call Meta-computational Circuit Lower-bound Problems (MCLPs). These problems ask for
distinguishing the truth table of explicit functions from hard functions. For example, we
propose the following promise problem:
The E vs SIZE(2o(n)) Problem (informal)

Given the truth table of a function f : {0, 1}n → {0, 1}, distinguish whether f ∈ E/O(n)
or f 6∈ SIZE(2o(n)).

Before defining the problem formally, let us first observe that the E vs SIZE(2o(n)) problem
is closely related to the open question of whether E 6⊆ SIZE(2o(n)). Indeed, it is not hard
to show that E/O(n) 6⊆ SIZE(2o(n)) if and only if E 6⊆ SIZE(2o(n)) by regarding an advice
string as a part of input. Therefore, the E vs SIZE(2o(n)) problem is non-disjoint under the
standard circuit lower bound assumption that E 6⊆ SIZE(2o(n)).

We now define the problem formally. According to the standard notion of advice [42],
the complexity class E/O(n) is defined as a subset of functions f : {0, 1}∗ → {0, 1} that are
defined on all the strings of any length. Thus, “f ∈ E/O(n)” does not make sense for a
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function f : {0, 1}n → {0, 1}. Instead, we interpret advice by using the notion of Levin’s
resource-bounded Kolmogorov complexity [47] so that the notion of advice is meaningful
for a finite function f : {0, 1}n → {0, 1}. For a string x ∈ {0, 1}∗, let Kt(x) denote the
Kt-complexity of a string x, which is defined as the minimum of |M | + log t over all the
programs M that output x in time t; here, |M | denotes the description length of M . The
E vs SIZE(2o(n)) problem is formally defined as follows.

I Definition 10. For any functions t, s : N → N, let (ΠYes(t(n)),ΠNo(s(n))) denote the
promise problem defined as

Πt
Yes := { f ∈ {0, 1}2

n

| Kt(f) ≤ log t(n), n ∈ N },

Πs
No := { f ∈ {0, 1}2

n

| size(f) > s(n), n ∈ N }.

Here, we identity a function f : {0, 1}n → {0, 1} with its truth table representation f ∈
{0, 1}2n , and size(f) denotes the minimum size of a circuit that computes f .

The E vs SIZE(2o(n)) problem is defined as the family {(ΠYes(2cn),ΠNo(2αn))}c,α>0 of
the promise problems. A family {Π} of problems is said to be solved by a class C and denoted
by {Π} ∈ C if every problem in the family is solved by some algorithm in C.

The idea behind Definition 10 is that the complexity class E/O(n) can be characterized
as the class of the functions f = {fn : {0, 1}n → {0, 1}}n∈N such that, for some constant c,
for all large n ∈ N, Kt(fn) ≤ cn holds. Indeed, f ∈ E/O(n) means that the truth table of fn
can be described by a Turing machine of description length O(n) in time 2O(n) for all large n.
The relationship between complexity classes with advice and resource-bounded Kolmogorov
complexity will be explained in detail in Section 4.2, where we interpret “DTIME(t(n))/a(n)”
as a subset of functions f : {0, 1}n → {0, 1}.

1.3.1 Meta-Computational View of the Hardness vs Randomness
Framework

We show that a nearly-linear-size AC0 ◦ XOR circuit size lower bound for solving the E vs
SIZE(2o(n)) problem exactly characterizes the existence of a hitting set generator secure
against AC0 ◦ XOR.

I Theorem 11. The following (Items 1 to 4) are equivalent.
1. There exists a hitting set generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in

time nO(1) and secure against linear-size AC0 ◦ XOR circuits.
2. For all large N ∈ N, there exists no AC0 ◦ XOR circuit of size N1+o(1) that computes the

E vs SIZE(2o(n)) problem, where N = 2n denotes the input length.
The condition can be equivalently stated without referring to the “non-disjoint” promise prob-
lem. Let MKtP[O(logN),No(1)] denote the family of the promise problems MKtP[c logN,Nα]
for constants c, α > 0, where, for functions s, t : N→ N, MKtP[s(N), t(N)] denotes the prom-
ise problem of distinguishing strings x such that Kt(x) ≤ s(|x|) and strings x such that
Kt(x) > t(|x|). Then, the following are equivalent as well.
3. For all large N ∈ N, there exists no AC0 ◦ XOR circuit of size N1+o(1) that computes

MKtP[O(logN), No(1)].
4. For any constant k ∈ N, for all large N ∈ N, there exists no AC0 ◦ XOR circuit of size

Nk that computes MKtP[O(logN), No(1)].

Observe that Item 1 of Theorem 11 implies a strongly exponential AC0 circuit lower bound
for E, which also implies that EXP 6⊆ NC1 (see, e.g., [3, 55, 26]). These are long-standing
open questions with the state of the art being Håstad’s lower bounds [28]. Theorem 11
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shows that, in order to improve the state-of-the-art lower bound, it is sufficient to prove
a nearly-linear AC0 ◦ XOR lower bound for the E vs SIZE(2o(n)) problem. In contrast, the
minimum circuit for computing the E vs SIZE(2o(n)) problem is infinity under the standard
circuit lower bound assumption that E 6⊆ SIZE(2o(n)).

It is instructive to compare our results with the hardness versus randomness framework.
In order to obtain a hitting set generator in the latter framework, we need to find an explicit
function that is hard for small circuits to compute. In our framework, finding an explicit
hard function corresponds to proving that the minimum circuit size for computing MCLPs is
infinity (or, in other words, proving that there exists no circuit of any size that computes
MCLPs2). Our results significantly weaken the assumption needed to obtain a hitting set
generator: It suffices to show that a nearly-linear circuit cannot find the difference between
an explicit function and a hard function.

Our results can be also stated based on the case analysis. There are two cases. (1)
When the circuit lower bound that E 6⊆ SIZE(2o(n)) holds, the work of [40] already implies
the existence of a pseudorandom generator. (2) Even if the circuit lower bound does fail,
Theorem 11 shows that a very modest lower bound for the E vs SIZE(2o(n)) problem (which
is a disjoint promise problem under the assumption) implies the existence of a hitting set
generator. In either case, we obtain a hitting set generator. Our results generalize the
hardness versus randomness framework in this sense.

Previously, based on the hardness versus randomness framework, it is known that E 6⊆ C

is equivalent to the existence of a pseudorandom generator secure against C for a sufficiently
large class C (see, e.g., [22]). However, in the previous approach, one needs to transform a
worst-case C-circuit lower bound to an average-case C-circuit lower bound; thus C needs to
be a sufficiently large so that it can perform local decoding, which requires the majority gate
[61]. For any circuit class C smaller than TC0, it was not clear whether the existence of a
hitting set generator secure against C is equivalent to some worst-case C-circuit lower bound.
Theorem 11 establishes the first equivalence for the circuit class C = AC0 ◦ XOR, which is
smaller than TC0 [59].

Our results can be stated without the non-standard notion of promise problem,
as in Items 3 and 4 of Theorem 11. Indeed, any promise problem in the family
MKtP[O(logN), No(1)] asks for approximating the Kt-complexity of a given string, and
it is always a disjoint promise problem. In our terminology, MKtP[O(logN), No(1)] is equival-
ent to the E vs DTIME(22o(n))/2o(n) problem. Since SIZE(2o(n)) ⊆ DTIME(22o(n))/2o(n), one
can observe that the E vs DTIME(22o(n))/2o(n) problem is reducible to the E vs SIZE(2o(n))
problem via an identity map, which explains the implication from Item 3 to Item 2 in
Theorem 11.

We mention in passing that it is not hard to prove an AC0 lower bound for
MKtP[O(logN), No(1)] (i.e., without the bottom XOR gates) by using the pseudorandom
restriction method as in [34, 17, 14]. (See Appendix B for a proof.)

I Proposition 12. For any constants α < 1, k, d ∈ N, there exists a constant c such that

MKtP[c logN,Nα] 6∈ i.o.AC0
d(Nk).

2 This should be compared with the fact that any disjoint promise problem can be computed by a circuit
of size O(2n/n) on inputs of length n.
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For any classes C,D of functions, one can define the C vs D problem. A particularly
interesting problem is the E vs ÃC0(2o(n); 1

2 − 2−o(n)) problem, where D̃(s; δ) denotes the
class of functions that can be computed by a D-circuit of size s on at least a (1 − δ)
fraction of inputs. We prove that, if nearly-linear-size AC0 circuits cannot distinguish an
explicit function from a function that cannot be approximated by small AC0 circuits, then
a logarithmic-seed-length hitting set generator can be obtained. (Moreover, the converse
direction is easy to prove.)

I Theorem 13. The following are equivalent.
1. The E vs ÃC0(2o(n); 1

2 − 2−o(n)) problem cannot be computed by AC0 circuits of size
N1+o(1) for all large N = 2n.

2. There exists a hitting set generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in
time nO(1) and secure against linear-size AC0 circuits.

3. MKtP[O(logN), N − 1] 6∈ i.o.AC0(N1+β) for some constant β > 0.
4. MKtP[O(logN), N − 1] 6∈ i.o.AC0(Nk) for any constant k.

An interesting aspect of Theorem 13 is its self-referential nature; intuitively, Item 1
means that AC0 circuits cannot analyze AC0 circuits itself. Note that self-reference is crucial
for proving, e.g., time hierarchy theorems for uniform computational models. Theorem 13
provides an analogue in a non-uniform circuit model.

Why do we consider “non-disjoint” promise problems, despite the fact that Theorems 11
and 13 can be stated by using only the standard notions?3 First, Theorem 11 is obtained by
viewing (a variant of) the black-box PRG construction of Impagliazzo and Wigderson [40]
from a meta-computational perspective; thus, it is natural to state Theorem 11 as a connection
between the existence of a hitting set generator and a lower bound for the E vs SIZE(2o(n))
problem. Second, an identity map reduces MKtP[O(logN), No(1)] to the E vs SIZE(2o(n))
problem, and thus it is easier to prove a lower bound for the latter problem. Third, the known
worst-case-and-average-case equivalence between E ⊆ SIZE(2o(n)) and E ⊆ S̃IZE(2o(n); 1

2 −
2−o(n)) [63] can be naturally regarded as a reduction from the E vs SIZE(2o(n)) problem
to the E vs S̃IZE(2o(n); 1

2 − 2−o(n)) problem. Indeed, Theorem 13 is proved by viewing the
Nisan–Wigderson pseudorandom generator from a meta-computational perspective, and
then Theorem 13 is translated into Theorem 11 by using the worst-case-and-average-case
equivalence.

We also present a potential approach for resolving the RL = L question. Here, RL
is the complexity class of languages that can be solved by a one-sided-error randomized
O(logn)-space Turing machine that reads its random tape only once. A canonical approach
for proving RL = L is to construct a log-space-computable hitting set generator of seed length
O(logn) secure against O(n)-size read-once branching programs. A state-of-the-art result
is the pseudorandom generator of seed length O(log2 n) given by Nisan [52] for read-once
(known-order) oblivious branching programs, and the pseudorandom generator of seed length
O(log3 n) given by Forbes and Kelley [21] for read-once unknown-order oblivious branching
programs.4

3 We also mention that the non-disjointness itself can provide new consequences, such as Corollaries 5
and 16.

4 In the area of unconditional derandomization of space-bounded randomized algorithms, it is common to
assume that a branching program is oblivious and reads the input in the fixed order. Here, we do not
assume these properties.
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We show that a hitting set generator of seed length O(logn) can be constructed if
nearly-linear-size read-once co-nondeterministic branching programs cannot distinguish
linear-space-computable functions from hard functions.

ITheorem 62. Suppose that there exist some constants α, β > 0 such that the DSPACE(n) vs
S̃IZE(2O(αn); 2−αn) problem cannot be computed by read-once co-nondeterministic branching
programs of size N1+β for all large input lengths N = 2n ∈ N. Then there exists a hitting set
generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in O(logn) space and secure
against linear-size read-once branching programs (and, in particular, RL = L follows).

Theorem 62 can be compared with the result of Klivans and van Melkebeek [44], which
shows the existence of a pseudorandom generator secure against branching programs under
the assumption that DSPACE(n) requires a circuit of size 2Ω(n). Under the same assumption,
by using a worst-case-to-average-case reduction for DSPACE(n), it can be shown that the
DSPACE(n) vs S̃IZE(2αn; δ) problem is non-disjoint for any sufficiently small δ ≥ 0 (cf.
Proposition 43). In this case, the minimum size of a co-nondeterministic branching program
for computing the MCLP is infinity; thus, Theorem 62 generalizes the result of [44].

It should be noted that limits of the computational power of read-once non-deterministic
branching programs are well understood. For example, Borodin, Razborov, and Smolensky [10]
presented an explicit function that cannot be computed by any read-k-times nondeterministic
branching program of size 2o(n) for any constant k. Theorem 62 shows that, in order to resolve
RL = L, it suffices to similarly analyze the read-once co-nondeterministic branching program
size lower bound for computing the MCLP. This approach could be useful; by using the
Nechiporuck method, it can be shown that neither nondeterministic nor co-nondeterministic
branching programs of size o(N1.5/ logN) can compute MKtP [16], which is a much more
general lower bound than read-k-times nondeterministic branching programs.

We also mention that a partial converse of Theorem 62 is easy to prove: If there exists a log-
space-computable hitting set generator secure against linear-size read-once nondeterministic
branching programs, then the DSPACE(n) vs S̃IZE(2αn; δ) problem cannot be computed by
a read-once co-nondeterministic branching programs of size Nk, where N = 2n and k is
an arbitrary constant. More generally, any results showing the existence of a hitting set
generator secure against C must entail a coC-lower bound for MCLPs (cf. Proposition 54).

1.3.2 Non-trivial Derandomization and Lower Bounds for MKtP
Our proof techniques can be also applied to uniform algorithms. We consider the question
of whether one-sided-error uniform algorithms can be non-trivially derandomized in time
2n−ω(

√
n logn). We say that an algorithm A is a derandomization algorithm for DTIME(t(n))

if, for any machine M running in time t(n), A takes 1n and a description of M as in-
put and outputs y ∈ {0, 1}n such that M(y) = 1 for infinitely many n ∈ N such that
Prx∼{0,1}n [M(x) = 1] ≥ 1

2 . Unlike the standard notion of derandomization algorithm for
non-uniform computational models, the description length of M is at most a constant; thus,
our notion of derandomization algorithm is essentially equivalent to the existence of a hitting
set generator secure against DTIME(t(n)). Applying our proof techniques to this setting, we
establish the following equivalence between the existence of a derandomization algorithm for
uniform algorithms and a lower bound for approximating Kt complexity.

I Theorem 14. For any constant 0 < ε < 1, the following are equivalent:
1. There exists a derandomization algorithm for DTIME(2O(

√
N logN)) that runs in time

2N−ω(
√
N logN).

2. MKtP[N − ω(
√
N logN), N − 1] 6∈ DTIME(2O(

√
N logN)).

3. MKtP[N ε, N ε + ω(
√
N ε logN)] 6∈ DTIME(2O(

√
Nε logN)).

CCC 2020



20:12 Meta-Computational View of PRG Constructions

Usually, the time complexity is measured with respect to the input size. Our result,
however, suggests that the time complexity of MKtP[s(N), s(N) + ω̃(

√
N)] is well captured

by the size parameter s(N) rather than the input size N : Indeed, Theorem 14 implies that

MKtP[N ε, N ε + ω(
√
N ε logN)] ∈ DTIME(2O(

√
Nε logN))

is equivalent to

MKtP[Nδ, Nδ + ω(
√
Nδ logN)] ∈ DTIME(2O(

√
Nδ logN))

for any 0 < ε, δ < 1.
Theorem 14 highlights the importance of a lower bound for MKtP. In fact, it is a long-

standing open question whether MKtP 6∈ P, despite the fact that MKtP is an EXP-complete
problem under non-uniform reductions [2]. Towards resolving the open question, we show
that some promise problem can be solved in coRP under the assumption that MKtP ∈ P.

I Theorem 15. Assume that MKtP ∈ P. Then, there exists a coRP-algorithm that solves
the Kt vs Kt problem, which is defined as follows: Given a string x ∈ {0, 1}∗ of length n
and a parameter s ∈ N, distinguish whether Kt(x) ≤ s or Kt(x) ≥ s+O(

√
s logn+ log2 n),

where t = poly(n).

Using the disjointness of the Kt vs Kt problem and setting s := Kt(x), we obtain

I Corollary 16. If MKtP ∈ P, then Kt(x) ≤ Kt(x) + O(
√

Kt(x) logn + log2 n) for any
x ∈ {0, 1}n and any t ≥ poly(n).

Since Kt(x) ≤ Kpoly(n)(x) +O(logn) holds unconditionally, Corollary 16 shows that Kt(x)
and Kpoly(n)(x) are close to each other under the assumption that MKtP ∈ P. We mention
that the problem of computing Kt(n)(x) given x ∈ {0, 1}n cannot be computed in polynomial
time when t(n) = nω(1) [32].

1.3.3 Related Work: Minimum Circuit Size Problem
The definitions of MCLPs are inspired by the Minimum Circuit Size Problem (MCSP). While
the history of MCSP is said to date back to as early as 1950s [64], its importance was not
widely recognized until Kabanets and Cai [41] named the problem as MCSP and investigated
it based on the natural proof framework of Razborov and Rudich [60]. The task of MCSP is
to decide whether there exists a size-s circuit that computes f , given the truth table of a
function f : {0, 1}n → {0, 1} and a size parameter s ∈ N. It turned out that MCSP is one of
the central computational problems in relation to wide research areas of complexity theory,
including circuit lower bounds [60], learning theory [13], and cryptography [60, 2, 4, 31].

Over the last twenty years of the study of MCSP, it has been recognized that MCSP
lacks one desirable mathematical property – monotonicity with respect to an underlying
computational model. MCSP can be defined for any circuit classes C; for example, C-MCSP
stands for a version of MCSP where the task is to find the minimum C-circuit size; MCSPA

stands for the minimum A-oracle circuit size problem. We are tempted to conjecture
that, as a computational model becomes stronger, the corresponding minimization problem
becomes harder; e.g., MCSPA should be harder than MCSP for any oracle A. However,
this is not the case – Hirahara and Watanabe [35] showed that there exists an oracle
A such that MCSP 6≤pT MCSPA unless MCSP ∈ P. Moreover, DNF-MCSP [49, 3] and
(DNF ◦XOR)-MCSP [33] are known to be NP-complete, whereas NP-completeness of MCSP
is a long-standing open question.
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Why does the monotonicity of MCSP fail? C-MCSP can be regarded as a special case of
the C vs D problem where C = D. It is easy to observe that the C vs D problem is reducible
to the C′ vs D′ problem via an identity map if C ⊆ C′ and D ⊇ D′; thus, MCLPs have
monotonicity properties in this sense. In contrast, the monotonicity property of MCLPs fails
when C = D ⊆ C′ = D′, which corresponds to the case of MCSP.

In an attempt to remedy the monotonicity issue, Hirahara and Santhanam [34] observed
that average-case complexity of MCSP is monotone increasing. Carmosino, Impagliazzo,
Kabanets, and Kolokolova [13] implicitly showed that the complexity of MCSP is monotone
increasing under non-black-box reductions.

In contrast, MCLPs incorporate the monotonicity property in the definition itself, which
makes a mathematical theory cleaner. For example, recall that it can be shown that
E 6⊆ SIZE(2o(n)) if and only if E 6⊆ S̃IZE(2o(n); 1

2 − 2−o(n)) by using error-correcting codes [63].
Viewing this equivalence from a meta-computational perspective, it can be interpreted as
an efficient reduction from the E vs SIZE(2o(n)) problem to the E vs S̃IZE(2o(n); 1

2 − 2−o(n))
problem (cf. Theorem 59). A similar reduction was proved for MCSP under the assumption
that EXP ⊆ P/poly [14]; finding such a reduction for MCSP requires certain creativity,
whereas working with the definition of MCLPs makes it trivial to find the reduction.

1.3.4 Related Work: Hardness Magnification

A recent line of work [55, 54, 50, 15, 14] exhibit surprising phenomena, which are termed
as “hardness magnification phenomena.” Oliveira, Santhanam, and Pich [55, 54] showed
that very weak lower bounds for MCSP and related problems are sufficient for resolving
long-standing open questions about circuit lower bounds, such as EXP 6⊆ NC1. A surprising
aspect of hardness magnification phenomena is that, as argued in [6, 55], the argument does
not seem to be subject to the natural proof barrier of Razborov and Rudich [60], which is
one of the major obstacles of complexity theory. Our results provide an interpretation of
hardness magnification phenomena from the perspective of a construction of a hitting set
generator.

It is worthwhile to point out that our reductions have very similar structures to hardness
magnification phenomena. For example, it was shown in [55, 54] that, for a parameter
s = s(N), the problem MKtP[s, s+O(logN)] can be solved by an ANDO(N) ◦Dpoly(s) ◦XOR
circuit, whereDpoly(s) is an oracle gate computable in EXP that takes an input of length poly(s).
This reduction shows that EXP ⊆ P/poly implies MKtP[s, s+O(logN)] ∈ SIZE(N · poly(s)).
Taking its contrapositive, it can be interpreted as a hardness magnification phenomenon: for
s(N)� N , a (seemingly) weak lower bound MKtP[s, s+O(logN)] 6∈ SIZE(N · poly(s)) can
be “hardness magnified” to a strong circuit lower bound EXP 6⊆ P/poly.

Theorem 61 has exactly the same structure with the reduction mentioned above. Given a
circuit D that avoids a hitting set generator, we construct a nearly-linear-size ANDO(N) ◦
D ◦ XOR circuit that computes the E vs SIZE(2o(n)) problem. Thus, our reductions are as
efficient as the reductions presented in the line of work of hardness magnification phenomena.

More importantly, our results significantly strengthen the consequences of hardness
magnification: Not only circuit lower bounds, but also hitting set generators can be obtained.
This is especially significant for the case of read-once branching programs. Since there is
already an exponential size lower bound for read-once branching programs [10], it does not
make sense to try to hardness-magnify a lower bound for read-once branching programs.
In contrast, our results (Theorem 62) indicate that a nearly-linear lower bound for co-
nondeterministic read-once branching programs is enough for resolving RL = L.
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An intriguing question about hardness magnification is this: By using hardness magni-
fication phenomena, can we prove any new consequences, such as circuit lower bounds or
derandomization? Theorem 62 adds a new computational model, i.e., co-nondeterministic
read-once branching programs, for exploring this question.

Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [14] proposed a barrier for
the question, termed as a “locality barrier.” Briefly speaking, the idea there is to regard
hardness magnification phenomena as a (black-box) reduction to oracles with small fan-in,
and then to show that most circuit lower bound proofs can be extended to rule out such
a reduction; thus, such a circuit lower bound proof technique cannot be combined with
hardness magnification phenomena. A salient feature of our reductions is that our reductions
are non-black-box in the sense that we exploit the efficiency of oracles; the non-black-box
property appears in the definition of No instances of the C vs D problem. Therefore, our
results provide a potential approach for bypassing the locality barrier: Try to develop a
circuit lower bound proof technique that crucially exploits the structure of the No instances
of the C vs D problem. The existing circuit lower bound proof techniques for MCSP and
related problems fail to exploit such a structure.

1.4 Proof Techniques: Meta-Computational View of PRG
Constructions

All of our results are given by a single principle – that views any black-box pseudorandom
generator construction from a meta-computational perspective. The differences among our
theorems simply originate from the fact that we use a different black-box pseudorandom
generator construction. The underlying principle is this:

Any black-box construction of a pseudorandom generator Gf based on a hard function
f 6∈ R gives rise to a non-black-box security reduction for a hitting set generator
based on the hardness of a non-disjoint promise problem (e.g., the E vs R problem).

For the purpose of exposition, we take a specific PRG construction of Impagliazzo and
Wigderson [40], and explain the connection between the PRG construction and the E vs
SIZE(2o(n)) problem. The theorem of [40] states that E 6⊆ i.o.SIZE(2o(n)) implies the existence
of a pseudorandom generator. The PRG construction is a black-box pseudorandom generator
construction Gf based on a hard function f 6∈ SIZE(2o(n)) in the following sense.
Explicitness.Gf (z) is computable in polynomial time given the truth table of f and a seed z.
Security. If there exists a function D that distinguishes the output distribution of Gf (-)

from the uniform distribution, then f ∈ SIZED(2o(n)).
Here, by “black-box”, we mean that the security of the PRG is proved by a (black-box)
reduction, i.e., the security reduction works for every function D. In contrast, we say that a
reduction is non-black-box if the reduction may not be correct when an oracle is inefficient.
This is in the same spirit with the non-black-box reduction of [31], which overcomes the
black-box reduction barrier of Bogdanov and Trevisan [9]. We explain below how a black-box
PRG construction gives rise to a non-black-box security reduction of a hitting set generator.

The goal is to construct some secure hitting set generator H = {Hm : {0, 1}O(logm) →
{0, 1}m}m∈N. As a choice of H, we simply take a “universal” hitting set generator: Let U be
a universal Turing machine, i.e., a machine that simulates every Turing machine efficiently.
Then we define Hm(z) to be the output of U on input z if U halts in 2|z| steps, where
z ∈ {0, 1}O(logm). The choice of H is universal, in the sense that the existence of some
exponential-time computable HSG implies that H is also secure.
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The strategy for proving the security of a hitting set generator H is to regard f as an
input of the E vs SIZE(2o(n)) problem, and to view the black-box PRG construction Gf as a
(non-black-box) reduction from the E vs SIZE(2o(n)) problem to the task of avoiding H.

We claim that H is a hitting set generator secure against linear-size circuits, under the
assumption that the E vs SIZE(2o(n)) problem cannot be solved by small circuits. To this
end, we present a reduction from the task of solving the E vs SIZE(2o(n)) problem to the
task of “avoiding” H. That is, if H is not secure, then there exists a linear-size circuit D
that avoids H, i.e., every image of H is rejected by D whereas D accepts at least a half of
all inputs. A randomized reduction R for solving the E vs SIZE(2o(n)) problem is extremely
simple:
A randomized algorithm R for solving the E vs SIZE(2o(n)) problem with D oracle

Given f as an input, pick a random seed z of Gf , and accept if and only if D(Gf (z)) = 0.

The correctness of the reduction R can be proved as follows. Assume that f is a Yes
instance of the E vs SIZE(2o(n)) problem; in other words, this means that Kt(f) ≤ O(log |f |) =
O(n). Since Gf is efficiently computable, it follows that Kt(Gf (z)) ≤ O(n) for every seed
z ∈ {0, 1}O(n). By using the property of the universal hitting set generator Hm and choosing
m large enough, it can be observed that Gf (z) is in the image of Hm; thus Gf (z) is rejected
by D.

Conversely, we prove that any No instance of the E vs SIZE(2o(n)) problem is rejected
by the algorithm R with high probability. Intuitively, this is because of the fact that if f
is a hard function, then D cannot distinguish Gf (-) from the uniform distribution. More
formally, we claim the contrapositive. Assume that D rejects Gf (z) with high probability,
say, at least 3

4 . This means that

Pr
z

[D(Gf (z)) = 1] ≤ 1
4 .

On the other hand, sinceD avoidsH, we have Prw[D(w) = 1] ≥ 1
2 . Therefore, D distinguishes

the distribution of Gf from the uniform distribution with advantage 1
4 ; by the black-box

security proof of Gf , we obtain that f ∈ SIZED(2o(n)). Since D is a linear-size circuit,
we conclude that f ∈ SIZE(2o(n)), which means that f is not a No instance of the E vs
SIZE(2o(n)) problem. Note here that we rely on the efficiency of D, which makes the security
proof of the HSG H non-black-box.

We conclude that there exists a randomized circuit for computing the E vs SIZE(2o(n))
problem. By using a standard trick of Adleman [1], the randomness of the circuit can be
fixed, and obtain a deterministic circuit that computes the E vs SIZE(2o(n)) problem.

Note that the proof above shows a generic connection between a black-box pseudorandom
generator construction and a “non-disjoint” promise problem. The efficiency of the security
reduction depends on the choice of a black-box PRG construction. In the rest of this paper,
we present some of the instantiations of the proof ideas above based on several specific
constructions of PRGs; however, we emphasize that our reductions are not limited to those
specific instantiations, and new black-box PRG constructions can lead to a more efficient
reduction and a “non-disjoint” promise problem that is easy to analyze.

1.5 Perspective: Meta-Computational View of Complexity Theory
More broadly, we propose to view complexity theory from a meta-computational perspective.

In order to explain the view, it is helpful to regard an algorithm that tries to solve MCLPs
as a malicious prover that tries to falsify a circuit lower bound. To be more specific, consider
the E vs SIZE(2o(n)) problem. As we explained earlier, the existence of any algorithm (of
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any complexity) that solves the E vs SIZE(2o(n)) problem implies that E ⊆ SIZE(2o(n)), and
moreover the converse direction is also true. In this sense, any algorithm that solves an MCLP
can be regarded as an adversary that falsifies circuit lower bounds such as E 6⊆ SIZE(2o(n)).

Complexity theory can be regarded as a game between us (i.e., complexity theorists, who
try to prove circuit lower bounds) and provers (i.e., algorithms that solve MCLPs). We lose
the game if some prover can solve MCLPs (and hence circuit lower bounds fail). We win
the game if we find an explicit function whose circuit complexity is high. This is equivalent
to finding a witness for the non-disjointness of the E vs SIZE(2o(n)) problem, and thus it is
equivalent to showing that there exists no prover that can solve the MCLP. In other words,
prior to our work, we implicitly tried to fight against every prover without any restriction on
efficiency.

What we showed in this work is that we do not have to fight against every non-efficient
prover. Instead, in order to obtain a circuit lower bound (which is implied by the existence
of a hitting set generator), it suffices to show that no efficient algorithms such as nearly-
linear-size AC0 ◦ XOR circuits can find the difference between explicit functions and hard
functions. In principle, it should be easier to prove a nearly-linear circuit size lower bound
for some problem when we believe that the problem does not admit any algorithm (because
of the non-disjointness). While we have not found any existing method for proving such a
lower bound that is sufficient for breakthrough results, we believe that this is simply because
of the fact that MCLPs were not investigated explicitly. We leave as an important open
question to develop a proof technique to analyze MCLPs.

2 Preliminaries

2.1 Notation
For a Boolean function f : {0, 1}n → {0, 1}, we denote by tt(f) the truth table of f , i.e.,
the concatenation of f(x) for all x ∈ {0, 1}n in the lexicographical order. Conversely, for
a string y ∈ {0, 1}N , the function fn(y) : {0, 1}dlogNe → {0, 1} is defined as fn(y)(i) :=
(the ith bit of y) if i ≤ N and fn(y)(i) := 0 otherwise, where i ∈ [2dlogNe] is identified with
a binary representation in {0, 1}dlogNe. For a string x ∈ {0, 1}∗, we denote by size(x) the
minimum circuit size for computing the Boolean function fn(x) : {0, 1}dlog |x|e → {0, 1}. We
often identify a string x with its function version fn(x). For a parameter δ, we denote by
s̃ize(x; δ) the minimum size of a circuit C such that fn(x)(y) = C(y) on at least a (1 − δ)
fraction of inputs y.

For a function f : {0, 1}n → {0, 1} and an integer k ∈ N, we denote by fk : ({0, 1}n)k →
{0, 1}k the direct product of f . We denote by f⊕k : ({0, 1}n)k → {0, 1} the function ⊕k ◦ fk,
where ⊕k is the parity function on k-bit inputs.

2.2 Pseudorandomness
Let G : {0, 1}d → {0, 1}m and D : {0, 1}m → {0, 1} be functions. For an ε > 0, we say that
D ε-distinguishes the output distribution of G(-) from the uniform distribution if

Pr
z∼{0,1}d

[D(G(z)) = 1]− Pr
w∼{0,1}m

[D(w) = 1] ≥ ε

In this case, we refer D as a ε-distinguisher for G. Conversely, G is said to ε-fool D if D is not
an ε-distinguisher for G. Similarly, we say that D ε-avoids G if Prw∼{0,1}m [D(w) = 1] ≥ ε
and D(G(z)) = 0 for every z ∈ {0, 1}d. By default, we assume that ε := 1

2 .
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For a circuit class C and functions s : N → N and ε : N → [0, 1], a family of functions
G = {G : {0, 1}s(n) → {0, 1}n}n∈N is said to be a pseudorandom generator that ε-fools C if,
for all large n ∈ N and any circuit C ∈ C of n inputs, G ε(n)-fools C. We say that G is a
hitting set generator secure against C if for all large n ∈ N, there is no circuit D ∈ C on n
inputs that avoids Gn.

2.3 Circuits
We measure circuit size by the number of gates (except for the input gates). For a circuit type
C and s ∈ N and δ ∈ [0, 1], we denote by C̃(s; δ) the class of functions f : {0, 1}n → {0, 1}
such that there exists a circuit of size s such that Prx∼{0,1}n [f(x) = C(x)] ≥ 1 − δ. We
define C(s) := C̃(s; 0). For the standard circuit class, we use the notation S̃IZE(s; δ) and
SIZE(s).

2.4 Time-Bounded Kolmogorov Complexity
We fix an efficient universal Turing machine U . Time-bounded Kolmogorov complexity is
defined as follows.

I Definition 17 (Time-bounded Kolmogorov Complexity). The t-time-bounded A-oracle
Kolmogorov complexity of a string x ∈ {0, 1}∗ is defined as

Kt,A(x) := { |d| | UA outputs x in t steps on input d },

where A is an oracle and t ∈ N.

3 Meta-Computational View of Cryptographic PRG Constructions

In this section, we provide a meta-computational view of cryptographic pseudorandom
generator constructions.

3.1 Gap(KSAT vs K)
We present a proof of the following result.

I Reminder of Theorem 4. Let A be any oracle. If DistNPA⊆ AvgP, then Gap(KA vs K) ∈ P.

At the core of the proof of Theorem 4 is to use a black-box PRG construction whose
advice complexity is small. Following [32], we observe that a k-wise direct product generator,
which is one of the simplest constructions of pseudorandom generators, has small advice
complexity.

I Theorem 18 (Direct Product Generator [32]). For any parameters k, ` ∈ N and ε > 0, there
exist an oracle algorithm DP(-)

k : {0, 1}d → {0, 1}d+k that takes an oracle f : {0, 1}` → {0, 1}
and a reconstruction algorithm Rec such that, for any f : {0, 1}` → {0, 1} and any ε-
distinguisher D : {0, 1}d+k → {0, 1} for DPfk, there exists an advice function A : {0, 1}r →
{0, 1}a such that

Pr
s∼{0,1}r

[
∀z ∈ {0, 1}`, RecD(z; s,A(s)) = f(z)

]
≥ ε

2k ,

where A is computable by a D-oracle circuit of size poly(k/ε, 2`), the seed length d is at most
O((` + log(k/ε)) · k), the advice complexity a is at most k + O(log(k/ε)), the randomness
complexity r is at most O(d), and Rec is computable in time poly(k/ε, 2`).
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For the proof of Theorem 18, we make use of the following list-decodable error-correcting
code, which can be constructed by concatenating a Reed-Solomon code with an Hadamard
code.

I Lemma 19 (List-Decodable Error-Correcting Code; cf. [62, 46]). There exists a function
Enc such that:
1. Enc(x;N, ε) outputs a string of length N̂ = poly(N, 1/ε) for any x ∈ {0, 1}N , and is

computable in time poly(N, 1/ε).
2. There exists a deterministic algorithm Dec(-;N, ε) running in time poly(N, 1/ε) such

that, given any r ∈ {0, 1}N̂ , outputs a list of all the strings x ∈ {0, 1}N such that
Dist(r,Enc(x;N, ε)) ≤ 1

2 − ε, and the size of the list is at most poly(1/ε).

Proof Sketch of Theorem 18. We describe the pseudorandom generator construction DPfk ,
which we call a k-wise direct product generator. Let Enc denote the error-correcting code
of Lemma 19, and let f̂ : {0, 1}̂̀ → {0, 1} be the function specified by the truth table

Enc(f ; 2`, ε′ := ε/2k) ∈ {0, 1}2̂̀, where ̂̀= O(`+ log(k/ε)). The pseudorandom generator
construction Gfk : {0, 1}̂̀k → {0, 1}̂̀k+k is defined as

Gfk(z1, · · · , zk) := (z1, · · · , zk, f̂(z1), · · · , f̂(zk))

for (z1, · · · , zk) ∈
(
{0, 1}̂̀)k, and d := ̂̀k.

Since the security proof of DPfk can be proved by using a standard hybrid argument (see,
e.g, [53, 69]), we only provide a proof sketch. Assume that D satisfies

Pr̄
z

[
D(z1, · · · , zk, f̂(z1), · · · , f̂(zk)) = 1

]
− Pr
z̄,b

[
D(z1, · · · , zk, b1, · · · , bk) = 1

]
≥ ε.

For any i ∈ {0, · · · , k}, define the ith hybrid distribution Hi as the distribution of

(z1, · · · , zk, f̂(z1), · · · , f̂(zi), bi+1, · · · , bk),

where z̄ = (z1, · · · , zk) ∼
(
{0, 1}̂̀)k and bi+1, · · · , bk ∼ {0, 1}. By this definition, H0 is

identically distributed with the uniform distribution, and Hk is an identical distribution with
DPfk(x1, · · · , xk). Therefore,

E
i∼[k]
x̄,b

[D(Hi)−D(Hi−1)] ≥ ε

k
.

By an averaging argument, we obtain

Pr
i∼[k],b

z1,··· ,zi−1,zi+1,··· ,zk

[
E

zi∼{0,1}̂̀[D(Hi)−D(Hi−1)] ≥ ε

2k

]
≥ ε

2k . (1)

Consider the following deterministic algorithm RecD0 (z; s,A0(s)): The coin flip sequence
s is regarded as i ∼ [k], z1, · · · , zi−1, zi+1, · · · , zk ∼ {0, 1}̂̀, and b ∼ {0, 1}k. We set
zi := z and A0(s) := (f̂(z1), · · · , f̂(zi−1), bi, · · · , bk). Then, the output of RecD0 is defined as
D(z̄, A0(s))⊕ 1⊕ bi.

By a standard calculation, it follows from Equation (1) that

Pr
z

[
RecD0 (z, s, A0(s)) = f̂(z)

]
≥ 1

2 + ε

2k
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with probability at least ε/2k over the random choice of s = (i, z[k]\{i}, b). By evaluating

RecD0 (z, s, A0(s)) for every z ∈ {0, 1}̂̀, we obtain a string f ′ ∈ {0, 1}2̂̀ that encodes a
function that agrees with f̂ on at least a (1/2 + ε/2k)-fraction of inputs.

The final reconstruction algorithm RecD(z; s,A(s)) runs the decoding algorithm
Dec(f ′; 2`, ε/2k) of Lemma 19, and obtains a list of strings f1, · · · , fL. We define the
advice function A as A(s) := (A0(s), j), where j ∈ [L] is an index such that fj coincides with
the truth table of f . The algorithm RecD(z; s,A(s)) outputs the zth position of fj .

The advice complexity is at most |A0(-)|+ logL = k +O(log(k/ε)). Moreover, it is easy
to observe that the advice function A(s) can be computed in time poly(k/ε, 2`), given s as
input and oracle access to f and D. By hard-wiring f into a circuit, the advice function A
can be computed by a D-oracle circuit of size poly(k/ε, 2`). J

One of important ingredients of the proof for Theorem 4 is a pseudorandom generator
constructed by Buhrman, Fortnow, and Pavan [11].

I Lemma 20 (Buhrman, Fortnow, and Pavan [11]). If DistNP ⊆ AvgP, then there exist
a constant c and a pseudorandom generator G = {Gn : {0, 1}c logn → {0, 1}n}n∈N that
(1/n)-fools size-n circuits.

Another ingredient is the fact that DistNPA ⊆ AvgP implies that a dense subset of
A-oracle time-bounded Kolmogorov-random strings can be rejected in polynomial time.

I Lemma 21 ([31]). Assume that DistNPA ⊆ AvgP. Then, there exists a polynomial-time
algorithm M such that
1. M(x, 1t) = 1 for every x such that Kt,A(x) < |x| − 1, and
2. Prx∼{0,1}n [M(x, 1t) = 0] ≥ 1

4 for every n ∈ N and every t ∈ N.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Under the assumption that DistNPA ⊆ AvgP, we have the secure
pseudorandom generator G = {Gm : {0, 1}c0 logm → {0, 1}m}m∈N of Lemma 20. In partic-
ular, Promise-BPP = Promise-P; thus it suffices to present a randomized polynomial-time
algorithm M1 for computing Gapτ (KA vs K) for some polynomial τ .

Fix any input (x, 1s, 1t), where x ∈ {0, 1}∗ is a string of length n ∈ N and s, t ∈ N. Take
the k-wise direct product generator DPfn(x)

k : {0, 1}d → {0, 1}d+k of Theorem 18, where k is
some parameter chosen later and ε := 1

8 . Let M0 be the polynomial-time algorithm M of
Lemma 21. Let τ0 be some polynomial chosen later.

The randomized algorithm M1 operates as follows. On input (x, 1s, 1t), M1 samples a
string z̄ ∼ {0, 1}d uniformly at random. Then, M1 simulates M0 on input (DPfn(x)

k (z̄), 1t′),
where t′ := τ0(n, t), and accepts if and only if M0 accepts. (That is, M1(x, 1s, 1t) is defined
to be M0(DPfn(x)

k (z̄), 1t′) for a random z̄ ∼ {0, 1}d.)
We claim the correctness of the algorithm M1 below.

B Claim 22.
1. If Kt,A(x) ≤ s, then M1(x, 1s, 1t) accepts with probability 1.
2. If Kτ(n,t)(x) > s+ log τ(n, t), then M1(x, 1s, 1t) rejects with probability at least 1

8 .

We claim the first item. Fix any z̄ ∈ {0, 1}d. Since the output DPfn(x)
k (z̄) of the direct

product generator can be described by n, k ∈ N, the seed z̄ ∈ {0, 1}d and the program for
describing x of size Kt,A(x) in time t′ = τ0(n, t), where τ0 is some polynomial, it holds that

Kt′,A(DPfn(x)
k (z̄)) ≤ d+ Kt,A(x) + c1 logn, (2)
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for some constant c1. We set k := s + c1 logn + 2. Note that under the assumption that
Kt,A(x) ≤ s, Equation (2) is less than d+k−1. Therefore, by Lemma 21,M0(DPfn(x)

k (z̄)) = 1
for every z̄ ∈ {0, 1}d; thus M1 accepts.

We claim the second item, by proving its contrapositive. Assume thatM1(x, 1s, 1t) rejects
with probability less than 1

8 . This means that

Pr
z̄∼{0,1}d

[
M0(DPfn(x)

k (z̄), 1t) = 0
]
<

1
8 .

On the other hand, by Lemma 21, we also have

Pr
w∼{0,1}d+k

[
M0(w, 1t) = 0

]
≥ 1

4 .

Therefore,

Pr
w∼{0,1}d+k

[
M0(w, 1t) = 0

]
− Pr
z̄∼{0,1}d

[
M0(DPfn(x)

k (z̄), 1t) = 0
]
≥ 1

8 .

By the property of the reconstruction algorithm Rec of Theorem 18, there exists an advice
function A′ : {0, 1}r → {0, 1}a such that

Pr
ρ∼{0,1}r

[
∀z ∈ {0, 1}dlogne, Rec¬M0(-,1t)(z; ρ,A′(ρ)) = fn(x)(z)

]
≥ 1

16k , (3)

where the advice complexity a is at most k + O(log(k/ε)) = s + O(log(nk/ε)). Now we
derandomize the random choice of ρ of Equation (3) by using the secure pseudorandom
generator G. That is, we argue that ρ can be replaced with G(ρ0) for some short ρ0, which
enables us to obtain a short description for x. To this end, we define a statistical test
T : {0, 1}r → {0, 1} that checks the condition of Equation (3) as follows:

T (ρ) = 1 ⇐⇒ ∀z ∈ {0, 1}dlogne, Rec¬M0(-,1t)(z; ρ,A′(ρ)) = fn(x)(z),

for each ρ ∈ {0, 1}r.
We claim that T can be computed by a small circuit. Indeed, by Theorem 18, the advice

function A′ can be computed by a M0(-, 1t)-oracle circuit of size poly(k, n), and Rec can be
computed in time poly(k, n) ≤ poly(n) with oracle access to M0(-, 1t).5 The oracle M0(-, 1t)
can be simulated by a circuit of size poly(d+ k, t) ≤ poly(n, t). Overall, T is computable by
a circuit of size m := poly(n, t); here we take m large enough so that m ≥ r and m > 16k.

Now we replace the random bits ρ ∈ {0, 1}r with the first r bits of the pseudorandom
sequence Gm(ρ0). By Equation (3), we have Prρ∼{0,1}r [T (ρ) = 1] ≥ 1

16k . It follows from the
property of Gm that

Pr
ρ0∼{0,1}c0 logm

[T (G(ρ0)) = 1] > 0.

In particular, there exists a seed ρ0 ∈ {0, 1}c0 logm such that T (G(ρ0)) = 1.
We are ready to present the algorithm for describing x. In order to describe x, it takes as

a description n, t,m ∈ N, the seed ρ0 ∈ {0, 1}c0 logm, and the advice string α := A′(G(ρ0)) ∈
{0, 1}a. Since T (G(ρ0)) = 1, the string x can be obtained by concatenating the output of
Rec¬M0(-,1t)(z;G(ρ0), α) for all z ∈ [n]. The running time of this procedure can be bounded
by τ1(n, t) for some polynomial τ1. Therefore,

Kτ1(n,t)(x) ≤ a+ c0 logm+O(lognt) ≤ s+O(lognt).

5 We may assume without loss of generality that k := s + O(log n) = O(n), as otherwise we trivially have
Kt,A(x) ≤ s.
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In particular, by choosing a polynomial τ large enough, we have

Kτ(n,t)(x) ≤ Kτ1(n,t)(x) ≤ s+ log τ(n, t).

This completes the proof of Claim 22.
Since M1 is a one-sided-error algorithm, the success probability can be amplified by

repeating the computation of M1 for independent random coin flips. We thus conclude that
Gapτ (KA vs K) is in Promise-BPP = Promise-P. J

Let ΣkSAT denote the canonical Σp
k-complete problem. By using the disjointness of

Gap(KΣkSAT vs K), we immediately obtain the following.

I Corollary 23. If DistPH ⊆ AvgP, then for any constant k ∈ N, there exists a polynomial τ
such that Kτ(|x|,t)(x) ≤ Kt,ΣkSAT(x) + log τ(|x|, t) for any x ∈ {0, 1}∗ and t ∈ N.

Proof. Let A := ΣkSAT. By Theorem 4, under the assumption that DistNPA ⊆ DistPH ⊆
AvgP, there exists an algorithmM such thatM(x, 1s, 1t) = 1 for every x such that Kt,A(x) ≤ s
and M(x, 1s, 1t) = 0 for every x such that Kτ(|x|,t)(x) > s + c log |x|, for any s ∈ N and
t ∈ N. In particular, the set of Yes and that of No instances are disjoint, as otherwise we
have 0 = M(x, 1s, 1t) = 1 for some instance (x, 1s, 1t), which is a contradiction. For any
x ∈ {0, 1}∗ and t ∈ N, define s := Kt,A(x); then we obtain that Kpoly(|x|,t)(x) ≤ s+log τ(|x|, t)
by the disjointness. J

An important corollary is that NP-hardness of Gap(KΣkSAT vs K) is sufficient for proving
an equivalence between worst-case and average-case complexity of PH.

I Restatement of Corollary 6. Assume that Gap(KΣkSAT vs K) is “NP-hard” for some
k ∈ N in the sense that

NP 6⊆ BPP =⇒ Gap(KΣkSAT vs K) 6∈ P.

Then,

DistPH 6⊆ AvgP ⇐⇒ PH 6= P.

Proof. It is obvious that PH = P implies that DistPH ⊆ AvgP. Thus we prove the converse
direction. Assume that DistPH ⊆ AvgP. By Theorem 4, we obtain Gap(KΣkSAT vs K) ∈ P
for any constant k ∈ N. By the assumption, we have NP ⊆ BPP; moreover, by Lemma 20, we
also have BPP = P. Therefore, it follows that NP = P, which is equivalent to PH = P. J

Under the plausible assumption that ENP 6= E, we observe that Gap(KSAT vs K) is
non-disjoint.

I Proposition 24. If ENP 6= E, then, for some polynomial τ0 and any polynomial τ , there are
infinitely many strings x such that Kt,SAT(x) = O(log |x|) and Kτ(|x|)(x) > log τ(|x|), where
t := τ0(|x|).

Proof. By [12], the assumption is equivalent to ENP 6⊆ E/O(n). Take a language L ∈
ENP \ E/O(n). For each n ∈ N, define xn to be the truth table of length 2n that encodes
the characteristic function of L ∩ {0, 1}n. Since xn can be described in τ0(|xn|) = poly(|xn|)
time given n ∈ N and oracle access to SAT, we have Kt,SAT(x) = O(log |xn|). On the other
hand, if Kτ(|xn|)(xn) ≤ log τ(|xn|) for all large n ∈ N, there exists an advice string of length
log τ(|xn|) = O(n) that makes it possible to compute L∩{0, 1}n in time poly(τ(|xn|)) = 2O(n),
which contradicts L 6∈ E/O(n). J
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Finally, we observe that the complexity of Gap(KSAT vs K) is closely related to the
complexity of MINKT.

I Proposition 25. For any polynomial τ , the following hold.
Gapτ (K vs K) is reducible to Gapτ (KSAT vs K) via an identity map.
If Gapτ (KSAT vs K) is disjoint, then Gapτ (KSAT vs K) is reducible to MINKT; in
particular, Gapτ (KSAT vs K) ∈ NP.

Proof. The first item is obvious because Kt,SAT(x) ≤ Kt(x) for any t ∈ N and x ∈ {0, 1}∗.
For the second item, let (ΠYes,ΠNo) denote Gapτ (KSAT vs K). Since (ΠNo,ΠNo) is a problem
of checking whether Kτ(|x|,t)(x) ≤ s + log τ(|x|, t) given (x, 1s, 1t) as input, it is reducible
to MINKT. In particular, (ΠYes,ΠNo) ∈ NP holds as well under the assumption that it is
disjoint. J

3.2 Gap(F vs F−1): PRG Construction from One-Way Functions
Håstad, Impagliazzo, Levin, and Luby [29] showed that a cryptographic pseudorandom
generator can be constructed from any one-way function. In this section, we view the
black-box PRG construction from a meta-computational perspective, which leads us to the
promise problem Gap(F vs F−1), which is a problem of asking whether a given function f
is computable by a small circuit or f is hard to invert by any small circuit. Here we assume
that the function f : {0, 1}n → {0, 1}n is given as oracle, and we focus on an algorithm that
runs in time poly(n). In other words, we consider a sublinear-time algorithm that is given
random access to the truth table of f .

I Definition 26. For a function τ : N × N → N, Gapτ (F vs F−1) is a promise problem
(ΠYes,ΠNo) defined as follows. The input consists of a size parameter s ∈ N, an integer
n ∈ N, and black-box access to a function f : {0, 1}n → {0, 1}n.

The set ΠYes consists of inputs (n, s, f) such that size(f) ≤ s.
The set ΠNo consists of inputs (n, s, f) such that, for any oracle circuit C of size τ(n, s),

Pr
x∼{0,1}n

[
Cf (f(x)) ∈ f−1(f(x))

]
<

1
2 .

I Theorem 27. If DistNP ⊆ AvgP, then there exist a polynomial τ and a coRP-type ran-
domized algorithm M that solves Gapτ (F vs F−1) = (ΠYes,ΠNo) on input (n, s) in time
poly(n, s). That is, M is a randomized oracle algorithm such that
1. PrM [Mf (n, s) = 1] = 1 for every (n, s, f) ∈ ΠYes,
2. PrM [Mf (n, s) = 0] ≥ 1

2 for every (n, s, f) ∈ ΠNo, and
3. Mf (n, s) runs in time poly(n, s).

For the proof, we make use of the following black-box construction of a pseudorandom
generator based on any one-way function.

I Lemma 28 (A black-box PRG Construction from Any OWF [29]). There exists a polynomial
d = d(n) such that, for a parameter m ∈ N, there exists a polynomial-time oracle algorithm
G

(-)
m : {0, 1}d(n) → {0, 1}m that takes a function f : {0, 1}n → {0, 1}n and there exists an

oracle algorithm R such that, for any function D : {0, 1}m → {0, 1}, if m > d and

Pr
z∼{0,1}n

[
D(Gf (z)) = 1

]
− Pr
w∼{0,1}m

[D(w) = 1] ≥ 1
8 ,

then

Pr
x,R

[Rf,D(f(x)) ∈ f−1(f(x))] ≥ 1
2 .

The running time of G(-)
m and R is at most poly(n,m).
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Proof Sketch. Since a weakly one-way function exists if and only if a strongly one-way
function exists ([72]), it suffices to present a reduction that inverts f with probability at
least 1/poly(n,m). (To be more specific, we first amplify the hardness of f by taking a
direct product f t(x1, · · · , xt) := (f(x1), · · · , f(xt)), where t is some appropriately chosen
parameter, and then apply the HILL construction to f t described below.)

We invoke the pseudorandom generator construction GfHILL of Håstad, Impagliazzo, Levin,
and Luby [29] based on f . They presented a security reduction R such that if there exists a
function D that distinguishes GfHILL from the uniform distribution, then an oracle algorithm
Rf,D(f(x)) can compute an element in f−1(f(x)) with probability at least 1/poly(n,m) over
the choice of x ∼ {0, 1}n and the internal randomness of R. J

Proof of Theorem 27. Let G(-) be the black-box pseudorandom generator construction of
Lemma 28, and let R be the security reduction of Lemma 28.

Under the assumption that DistNP ⊆ AvgP, by Lemma 21, there exists a polynomial-
time algorithm M such that M(x, 1t) = 1 for every x such that Kt(x) < |x| − 1, and
Prx∼{0,1}n [M(x, 1t) = 0] ≥ 1

4 for every n ∈ N and every t ∈ N.
The algorithm M ′ for computing Gap(F vs F−1) is defined as follows. Let f : {0, 1}n →

{0, 1}n and s ∈ N be inputs. Define m := p(n, s) for some polynomial p chosen later. Pick a
random z ∈ {0, 1}n. Then M ′ accepts if and only if M(Gfm(z), 1t) accepts for a sufficiently
large t = poly(n, s).

We claim the correctness of M ′ below.

B Claim 29.
1. M ′ accepts any f such that size(f) ≤ s with probability 1.
2. M ′ rejects any f such that Prx

[
Cf (f(x)) ∈ f−1(f(x))

]
< 1

2 with probability at least 1
8 .

We claim that any f such that size(f) ≤ s is accepted by the algorithm M ′. Indeed,
since f is computable by some circuit of size s and Gfm is polynomial-time-computable, the
output of the generator Gfm(z) can be described by using the description of the circuit of
size s, the seed z of length d(n), and n,m ∈ N in polynomial time; thus, for a sufficiently
large t = poly(n, s),

Kt(Gfm(z)) ≤ d(n) + Õ(s) +O(logn).

Choosing m = p(n, s) large enough, this is bounded by m− 2. Thus M ′ accepts.
Conversely, suppose that the algorithm M ′ accepts with probability at least 7

8 . This
means that

Pr
z∼{0,1}n

[
M(Gfm(z), 1t) = 1

]
≥ 7

8 .

On the other hand, by Lemma 21, we have

Pr
w∼{0,1}m

[
M(w, 1t) = 1

]
≤ 3

4 .

Therefore, M(-, 1t) is a distinguisher for Gfm. It follows from the property of the security
reduction R that

Pr
x,R

[
Rf,M(-,1t)(f(x)) ∈ f−1(f(x))

]
≥ 1

2 .

By fixing the internal randomness of R and simulating the polynomial-time algorithm
Rf,M(-,1t) by a polynomial-size circuit Cf , we conclude that f can be inverted by the oracle
circuit Cf of size poly(n, s) =: τ(n, s). Thus f is not a No instance of Gapτ (F vs F−1). J
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I Remark 30. In fact, the assumption that DistNP ⊆ AvgP of Theorem 27 can be weakened
to the assumption that there exists a P-natural property useful against SIZE(2o(n)) (which
is essentially equivalent to an errorless heuristic algorithm for MCSP [34, 31]). Indeed,
as in [2, 60, 5], the pseudorandom function generator construction of [25] can be used to
construct a black-box pseudorandom generator Gf based on a one-way function f that satisfies
size(Gf (z)) ≤ poly(|z|, log |Gf (z)|) for any seed z ∈ {0, 1}d; such a pseudorandom generator
Gf can be distinguished from the uniform distribution by using the natural property.

We now explain that Gap(F vs F−1) is conjectured to be non-disjoint. An auxiliary-input
one-way function (AIOWF) f = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗ is a polynomial-time-
computable function such that, for some infinite set I, for any non-uniform polynomial-time
algorithm A, Pry

[
A(x, fx(y)) ∈ f−1

x (fx(y))
]
< 1/nω(1) for all large n ∈ N and any x ∈ I.

This is a weaker cryptographic primitive than a one-way function (i.e., the existence of a
one-way function implies that of an auxiliary-input one-way function). Ostrovsky [56] showed
that non-triviality of SZK implies the existence of an auxiliary-input one-way function. (see
also [68]). We observe that the existence of an auxiliary-input one-way function implies the
non-disjointness of Gap(F vs F−1).

I Proposition 31. If there exists an auxiliary-input one-way function f = {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)}x∈{0,1}∗ , then, for any polynomial τ , Gapτ (F vs F−1) is non-disjoint.

Proof. Take an infinite set I ⊆ {0, 1}∗ that is hard for polynomial-size circuits to invert
{fx}x∈I . Since f is polynomial-time-computable, size(fx) ≤ nc for some constant c, where
n = |x|. We set the size parameter s := nc. On the other hand, by the property of AIOWF,
for any circuit A of size τ(n, s), it holds that

Pr
y

[
A(x, fx(y)) ∈ f−1

x (fx(y))
]
<

1
2 ,

for a sufficiently large x ∈ I. This means that fx is a Yes and No instance of Gapτ (F vs F−1).
J

An immediate corollary of Theorem 27 and Proposition 31 is that the existence of AIOWF
implies DistNP 6⊆ AvgP (which is already shown in [31]). An interesting open question is to
prove “NP-hardness” of Gap(F vs F−1), which has the following important consequence:

I Corollary 32. If, for any polynomial τ , it is “NP-hard” to solve Gapτ (F vs F−1) in time
poly(n, s), then the worst-case and average-case complexity of NP is equivalent in the sense
that P 6= NP iff DistNP 6⊆ AvgP.

Proof. The assumption that Gap(F vs F−1) is “NP-hard” means that, for any polynomial
τ , if there exists a coRP-type algorithm that solves Gapτ (F vs F−1) on input (n, s) in time
poly(n, s), then NP ⊆ BPP. If DistNP ⊆ AvgP, then Theorem 27 implies that there exists
some polynomial τ such that Gapτ (F vs F−1) can be solved by a coRP-type algorithm in
time poly(n, s). By the assumption, we obtain NP ⊆ BPP = P, where the last equality is
from Lemma 20. J

4 Meta-Computational View of Complexity-Theoretic PRG
Constructions

We now turn our attention to a meta-computational view of complexity-theoretic PRG
constructions.
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4.1 Universal Hitting Set Generators and Kolmogorov Complexity

We review the notion of KS- and Kt-complexity and present definitions of universal hitting set
generators. The notion of KS-complexity was introduced in [2] as a space-bounded analogue
of Kt-complexity. Here we slightly modify the definition and add an additive term of +2 so
that a result about a universal hitting set generator becomes cleaner.

I Definition 33. For a string x ∈ {0, 1}∗, the KS complexity of x is defined as

KS(x) := min{ |d|+ s+ 2 | Ud(i) outputs xi in space s for every i ∈ [|x|+ 1] }.

Here xi denotes the ith bit of x for i ∈ [|x|], and x|x|+1 := ⊥.

We consider the following universal hitting set generator.

I Definition 34 (Universal Space-Bounded Hitting Set Generator). For a function s : N→ N,
define HSs = {HSsn : {0, 1}s(n) → {0, 1}n}n∈N as the function computed by the following
algorithm: If the input is of the form 1t0d01a for some t, a ∈ N and d ∈ {0, 1}∗, HSsn
simulates Ud(i) using at most t space, for every i ∈ [n+ 1]. If every simulation succeeds
and Ud(i) ∈ {0, 1} for i ∈ [n] and Ud(n+ 1) = ⊥, then output Ud(1) · · ·Ud(n). Otherwise,
output 0n.

The hitting set generator HS is universal in the sense that, if there exists a hitting set
generator G of seed length s(n) that is computable in s(n) space, then HSO(s)

n is also a
hitting set generator. This observation immediately follows from the following property.

I Proposition 35 (Universality of HS). For every function s : N→ N and n ∈ N, the image
of HSsn contains every string x ∈ {0, 1}n such that KS(x) ≤ s(n). Moreover, HSsn can be
computed in O(s(n) + logn) space.

Proof. Consider any string x of length n such that KS(x) ≤ s(n). By the definition of KS
complexity, there exists a description d ∈ {0, 1}∗ such that Ud(i) outputs xi using at most
t space for every i ∈ [n+ 1], where |d| + t + 2 ≤ s(n). By the definition of HSsn, we have
HSsn(1t0d01a) = x for a := s(n)− t− |d| − 2 ≥ 0. J

We recall Levin’s resource-bounded Kolmogorov complexity and define a time-bounded
version of a universal hitting set generator.

I Definition 36 ([47]). For a string x ∈ {0, 1}∗, Levin’s Kt complexity of x is defined as

Kt(x) := min{ |d|+ t+ 2 | Ud(i) outputs xi in time 2t for every i ∈ [|x|+ 1] }.

I Definition 37 (Universal Time-Bounded Hitting Set Generator). For a function s : N→ N,
define Hts = {Htsn : {0, 1}s(n) → {0, 1}n}n∈N as the function computed by the following
algorithm: If the input is of the form 1t0d01a for some t, a ∈ N and d ∈ {0, 1}∗, Htsn simulates
Ud(i) for 2t time, for every i ∈ [n+ 1]. If every simulation succeeds and Ud(i) ∈ {0, 1} for
i ∈ [n] and Ud(n+ 1) = ⊥, then output Ud(1) · · ·Ud(n). Otherwise, output 0n.

I Proposition 38 (Universality of Ht). For every function s : N→ N and n ∈ N, the image
of Htsn contains every string x ∈ {0, 1}n such that Kt(x) ≤ s(n). Moreover, the range of Htsn
can be enumerated in time Õ(2s(n)+logn).
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4.2 Advice and Resource-Bounded Kolmogorov Complexity
In order to define meta-computational circuit lower-bound problems, we modify the standard
notion of advice. Usually, a complexity class with advice such as E/O(n) is defined as a
subset of functions f : {0, 1}∗ → {0, 1} that are defined on all the strings of any length. Here,
for any n ∈ N, we define “DTIME(2O(n))/nO(n)” as a subset of functions f : {0, 1}n → {0, 1},
where the superscript n in “/n” is appended in order to emphasize that it depends on n.

I Definition 39. For any integers t, a, n ∈ N, we denote by DTIME(t)/na the class of
functions f : {0, 1}n → {0, 1} such that there exists a Turing machine M whose description
length is a and that outputs f(x) on input x ∈ {0, 1}n in time t. Similarly, let DSPACE(t)/na
denote the class of functions f : {0, 1}n → {0, 1} such that there exists a Turing machine M
whose description length is a and that outputs f(x) on input x ∈ {0, 1}n in space t.

This definition is slightly different from the standard notion of complexity classes with
advice, but these are essentially the same. In order to clarify the difference, for functions
t, a : N → N, let DTIME(t)/KLa denote the complexity class DTIME(t) with a-bit advice
strings in the standard sense of Karp and Lipton [42].6 That is, a function f : {0, 1}∗ → {0, 1}
is in DTIME(t)/KLa if and only if there exists a Turing machine M such that, for any n ∈ N,
there exists an advice string αn ∈ {0, 1}a(n) such that M outputs f(x) on input (x, αn) in
time t(n) for every x ∈ {0, 1}n. Then, the advice “/n” and the Karp–Lipton advice “/KL”
are equivalent in the following sense.

I Fact 40. For any functions t, a : N→ N and any family of functions f = {fn : {0, 1}n →
{0, 1}}n∈N (which is identified with a function f : {0, 1}∗ → {0, 1}), the following are equival-
ent.
1. There exists a constant c such that f ∈ DTIME(t′)/KLa′, where t′(n) := t(n)c + c and

a′(n) := c · a(n) + c.
2. There exists a constant c such that, for any n ∈ N, fn ∈ DTIME(t(n)c + c)/nc · a(n) + c.

Proof Sketch. If f ∈ DTIME(t′)/KLa′, then there exists a machine M that takes an advice
string αn on inputs of length n. For each n ∈ N, define Mn to be the machine that, on
input x, simulates M on input (x, αn); the description length of Mn is at most O(|αn|),
and thus fn ∈ DTIME(t(n)O(1))/nO(a(n)). Conversely, if, for any n ∈ N, there exists a
Turing machine Mn whose description length is O(a(n)), then a universal Turing machine U
witnesses f ∈ DTIME(t′)/KLa′. J

The advice “/n” is equivalent to Kt-complexity up to a constant factor in the following
sense.

I Fact 41. For any function t : N→ N such that t(n) ≥ n and for any family of functions
f = {fn : {0, 1}n → {0, 1}}n∈N, the following are equivalent.
1. fn ∈ DTIME(t(n)O(1))/nO(log t(n)) for all large n ∈ N.
2. Kt(fn) = O(log t(n)) for all large n ∈ N.

4.3 Meta-computational Circuit Lower-bound Problems (MCLPs)
We define promise problems of distinguishing the truth table of explicit functions (e.g.,
computable in DTIME(2cn)/ncn) from the truth table of hard functions (e.g., that cannot be
computed in SIZE(2εn)). We call these Meta-computational Circuit Lower-bound Problems
(MCLPs).

6 It is also common to use the notation DTIME(t(n))/KLa(n), where n is an indeterminate.
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I Definition 42 (Meta-computational Circuit Lower-bound Problems; MCLPs). Let E ,D be
families of functions. The E vs D problem is defined as the following promise problem
(ΠYes,ΠNo).

ΠYes := { tt(f) | f ∈ E },
ΠNo := { tt(f) | f 6∈ D }.

We will mainly consider a non-uniform computational model for computing the E vs D
problem; for N ∈ N, we denote by (E vs D)N the problem restricted to the input length of N .

We denote by (E vs D) a family of problems {Ec vs D}c∈N, where

Ec :=
⋃
n∈N

DTIME(2cn)/ncn.

For a circuit class C, we say that (E vs D) ∈ i.o.C(s(N)) if, for every constant c, there exists
a family of C-circuits {CN}N∈N of size s(N) such that CN solves the promise problem (Ec vs
D)N for infinitely many N . We also denote by

(
E vs SIZE(2o(n))

)
a family of problems

{Ec vs SIZE(2αn)}c∈N,α>0.
Similarly,

(
DSPACE(n) vs SIZE(2o(n))

)
denotes the family{⋃

n∈N
DSPACE(cn)/ncn vs SIZE(2αn)

}
c∈N,α>0

.

The definition of the E vs SIZE(2o(n)) problem given here is slightly different from
Definition 10 given earlier. In Definition 10, we defined the E vs SIZE(2o(n)) problem by
using the notion of Kt-complexity; however, these definitions are essentially equivalent in
light of Fact 41.

We justify the notation of
(
DSPACE(n) vs SIZE(2o(n))

)
below. One can observe that

the open question of whether DSPACE(n) 6⊆ i.o.SIZE(2o(n)) is closely related to the
DSPACE(n) vs SIZE(2o(n)) problem.

I Proposition 43. The following are equivalent.
1. DSPACE(n) 6⊆ i.o.SIZE(2εn) for some constant ε > 0.
2. No circuit can solve the DSPACE(n) vs SIZE(2o(n)) problem for all large n ∈ N.
3. No circuit can solve the DSPACE(n) vs S̃IZE(2o(n); 1

2 − 2−o(n)) problem for all large n ∈ N.
4. There exist some constants c ∈ N, α > 0 such that, for all large n ∈ N, there exists a

function f : {0, 1}n → {0, 1} such that f ∈ DSPACE(cn)/ncn and f 6∈ S̃IZE(2αn; 1
2−2−αn).

Proof. First, observe that Item 3 is equivalent to Item 4 by the definition. We claim that
Item 1 implies Item 4. By using a locally-decodable error-correcting code, it can be shown
that Item 1 is equivalent to DSPACE(n) 6⊆ i.o.S̃IZE(2αn; 1

2 − 2−αn) for some constant α > 0
(cf. [63, 44]). Take a problem L ∈ DSPACE(n) \ i.o.S̃IZE(2αn; 1

2 − 2−αn). For each n ∈ N, let
fn : {0, 1}n → {0, 1} be the characteristic function of L∩{0, 1}n. Then, there exists a constant
c such that, for all large n ∈ N, fn ∈ DSPACE(cn)/ncn and fn 6∈ S̃IZE(2αn; 1

2 − 2−αn), which
completes the proof of Item 4. It is immediate from the definition that Item 4 implies Item 2.

We claim that Item 2 implies Item 1. Let f = {fn : {0, 1}n → {0, 1}}n∈N be a family
of functions such that fn ∈ DSPACE(cn)/ncn and fn 6∈ SIZE(2αn) for all large n ∈ N. In
particular, for all large n ∈ N, there exists some machine Mn of description length cn that
computes fn(x) on input x ∈ {0, 1}n in space cn. Let L ⊆ {0, 1}∗ be a language such
that (x,M) ∈ L if and only if the description length of a Turing machine M is c|x| and M
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accepts x in space c|x|. It is clear that L ∈ DSPACE(n). Moreover, for all large n ∈ N, the
characteristic function of {x ∈ {0, 1}n | (x,Mn) ∈ L } is equal to fn; thus, it requires circuits
of size 2αn. Therefore, L 6∈ i.o.SIZE(2αn/(c+1)). J

It is also possible to define MCLPs whose non-disjointness characterizes other circuit
lower bounds. For example, the EXP/poly vs SIZE(2o(n)) problem defined as{⋃

n∈N
DTIME(2n

c

)/nnc vs SIZE(2αn)
}
c∈N,α>0

is non-disjoint if and only if EXP/poly 6⊆ SIZE(2o(n)).

4.4 MCLPs from HSG Constructions
We formalize the notion of black-box PRG and HSG construction and then we present a
general connection between black-box PRG and HSG constructions and meta-computational
circuit lower bound problems.

I Definition 44 (Black-Box PRG and HSG Construction). Let G(-) : {0, 1}d → {0, 1}m be an
oracle algorithm that expects an oracle of the form f : {0, 1}` → {0, 1}. Let C be a circuit
class and R(-) be an oracle circuit class. The algorithm G is referred to as a black-box
C-pseudorandom generator (resp. C-hitting set generator) construction with R-reconstruction
and error parameter ε if the following hold.
C-Construction For any seed z ∈ {0, 1}d, there exists a C-circuit that takes tt(f) as input

and outputs Gf (z).
R-Reconstruction For any function f : {0, 1}` → {0, 1} and any function D : {0, 1}m →
{0, 1}, if D is an ε-distinguisher for Gf (resp. D ε-avoids Gf ), then f ∈ RD.

We now present a generic connection between MCLPs and HSG constructions.

I Theorem 45. Let G(-) : {0, 1}s → {0, 1}m be a black-box C-construction with R-reconstruc-
tion that takes a function f : {0, 1}n → {0, 1}. Define N := 2n. Let H : {0, 1}d → {0, 1}m
be a function such that Gf (z) ∈ Im(H) for every f ∈ E and every z ∈ {0, 1}d. Let
D : {0, 1}m → {0, 1} be any function that ε-avoids H. Then, the following hold.
1. If Gf is a HSG construction with error parameter ε, then (E vs RD)N ∈ AND2s ◦ NOT ◦

D ◦ C.
2. If Gf is a PRG construction with error parameter ε/2, then (E vs RD)N ∈ ANDO(N/ε) ◦

NOT ◦D ◦ C.

Proof. Let G(-) be a HSG construction with error parameter ε. We first present a randomized
circuit for solving (E vs RD) on inputs of length N . Let f : {0, 1}n → {0, 1} denote an input.
Consider a circuit D1 such that D1(f ; z) := D

(
Gf (z)

)
, where z is an auxiliary input (that

will be regarded as non-deterministic bits or random bits). We claim that D1 can solve (E vs
D) co-nondeterministically.

B Claim 46.
1. If f ∈ E , then D1(f ; z) = 0 for every z ∈ {0, 1}s.
2. If f 6∈ RD, then D1(f ; z) = 1 for some z ∈ {0, 1}s.
Suppose that f is a Yes instance of (E vs D), that is, f ∈ E . By the assumption, we have
Gf (z) ∈ Im(H). Therefore, by the property of D, we obtain D1(f ; z) = D

(
Gf (z)

)
= 0.



S. Hirahara 20:29

Conversely, suppose that D
(
Gf (z)

)
= 0 for every z ∈ {0, 1}s. This means that D ε-avoids

Gf . By the reconstruction property of Gf , we obtain f ∈ RD. Taking its contrapositive, it
follows that if f 6∈ RD then D1(f ; z) = D

(
Gf (z)

)
= 1 for some z ∈ {0, 1}s. This completes

the proof of Claim 46.
Now consider a circuit D2 defined as D2(f) :=

∧
z∈{0,1}s ¬D1(f ; z). Then, it follows from

Claim 46 that the circuit D2 solves (E vs RD) on inputs of length N .
We move on to the case when G(-) is a PRG construction. In this case, we claim

that the second item of Claim 46 can be strengthened to the following: If f 6∈ RD, then
Prz∼{0,1}s [D1(f ; z) = 1] ≥ ε

2 . We prove the contrapositive of this claim. Assume that
Prz∼{0,1}s [D1(f ; z) = 1] < ε

2 . Since D ε-avoids H, we have Prw∼{0,1}m [D(w) = 1] ≥ ε.
Therefore, D ε

2 -distinguishes G
f (-) from the uniform distribution; by the reconstruction of

G(-), we obtain f ∈ RD, as desired.
Therefore, D1(-; z) is a one-sided-error randomized circuit that computes (E vs RD)

with probability at least ε/2. Now define a randomized circuit D′2 such that D′2(f) :=∧k
i=1 ¬D1(f ; zi), where z1, · · · , zk ∼ {0, 1}s are chosen independently and k is a parameter

chosen later. Then, it is easy to see that D′2(f) = 1 for any f ∈ E ; on the other hand, for any
f 6∈ RD, D′2(f) = 1 with probability at most (1− ε/2)k, which is less than 2−N by choosing
k = O(N/ε) large enough. By using a union bound, one can hardwire random bits in D′2 as
in Adleman’s trick [1], and obtain a deterministic AND ◦ NOT ◦D ◦ C circuit that computes
(E vs RD). J

4.5 The Nisan–Wigderson Generator
The pseudorandom generator construction of Nisan and Wigderson [53] is particularly efficient.
Indeed, each output bit of the Nisan–Wigderson generator depends on only 1 bit of the truth
table of a candidate hard function.

I Theorem 47 (Nisan–Wigderson Pseudorandom Generator Construction). For every con-
stant γ > 0 and any `,m ∈ N, there exists a C-pseudorandom generator construction
G(-) : {0, 1}d → {0, 1}m with R-reconstruction and error parameter ε that takes a function
f : {0, 1}` → {0, 1} such that

d = O(`), m ≤ 2`,
C = NC0

1, and
RD = D̃ ◦ AC0

2(m · 2γ`; 1
2 −

ε
m ).

Moreover, the output Gf (z) of the PRG can be computed in space O(`) given a function f
and a seed z as input.

We first recall the construction of the Nisan–Wigderson generator. In order to have a
space-efficient algorithm for computing the Nisan–Wigderson generator, we use the following
construction of a combinatorial design.

I Lemma 48 (Klivans and van Melkebeek [44], Viola [71]). For every constant γ > 0, for any
` ∈ N, there exist `-sized subsets S1, · · · , S2` of [d] for some d = O(`) such that
1. |Si ∩ Sj | ≤ γ · ` for every distinct i, j ∈ [2`], and
2. S1, · · · , S2` can be constructed in space O(`).

A nearly disjoint generator ND is defined based on the design.

I Definition 49. For a string z ∈ {0, 1}d and a subset S ⊆ [d] of indices, zS denotes the
string obtained by concatenating the ith bit zi of z for every i ∈ S. For `-sized subsets
S = {S1, · · · , Sm} of [d], define a nearly disjoint generator ND: {0, 1}d → ({0, 1}`)m as
ND(z) := (zS1 , · · · , zSm) for every z ∈ {0, 1}d.
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Using the nearly disjoint generator, the Nisan–Wigderson generator is defined as follows.

I Definition 50 (Nisan–Wigderson generator [53]). For a Boolean function f : {0, 1}` →
{0, 1} and for `-sized subsets S = {S1, · · · , Sm} of [d], the Nisan–Wigderson generator
NWf : {0, 1}d → {0, 1}m is defined as

NWf (z) := fm ◦ND(z) = f(zS1) · · · f(zSm).

It was shown in [53] that the pseudorandom generator construction is secure in the
following sense.

I Lemma 51 (Security of the Nisan–Wigderson Generator [53]). For any functions T : {0, 1}m →
{0, 1} and f : {0, 1}` → {0, 1}, for any ε > 0, if

Pr
w∼{0,1}m

[T (w) = 1]− Pr
z∼{0,1}d

[
T (NWf (z)) = 1

]
≥ ε,

then there exists a one-query depth-2 oracle circuit C ∈ AC0
2 of size O(m · 2γ`) such that

Pr
x∼{0,1}`

[
CT (x) = f(x)

]
≥ 1

2 + ε

m
.

Proof of Theorem 47. We use the Nisan–Wigderson generator NW(-) defined in Defini-
tion 50 (i.e., we define G(-) := NW(-)). NW(-) is an NC0

1-PRG construction because each bit
of NWf (z) for any fixed seed z is equal to one bit of the truth table of f . TheR-reconstruction
property of NW(-) follows from Lemma 51. J

4.6 Meta-Computational View of the Nisan–Wigderson Generator
Using the Nisan–Wigderson generator construction, we present a general connection between
the existence of hitting set generators and lower bounds for meta-computational circuit lower-
bound problems. We consider any family of circuits that is closed under taking projections
in the following sense.

I Definition 52. A class C of circuits is said to be closed under taking projections if, for any
s ∈ N, for every size-s circuit C ∈ C of n inputs, a circuit C ′ defined as C ′(x1, · · · , xn) =
C(xσ(1), · · · , xσ(n)) for some function σ : [n]→ [n] can be simulated by a size-s C-circuit.

I Theorem 53. Let C be any circuit class that is closed under taking projections. Suppose
that (E vs C̃ ◦ AC0

2(2αn; 1
2 − 2−αn)) 6∈ i.o.AND ◦NOT ◦ C(N1+β) for some constants α, β > 0.

Then, there exists a hitting set generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable
in time nO(1) and secure against linear-size C circuits.

Proof. We prove the contrapositive. Assume that, for every function s(m) = O(logm),
there exists a linear-size C circuit D that avoids the universal hitting set generator Htsm
for infinitely many m ∈ N. Given arbitrary constants c, α, β > 0, we will choose a small
constant γ > 0, and define s(m) := c′ logm/γ for some large constant c′. Then using D
that avoids Htsm, we present a AND ◦ NOT ◦ C-circuit of size N1+β that solves the Ec vs
C̃ ◦ AC0

2(2αn; 1
2 − 2−αn) problem.

Let f : {0, 1}n → {0, 1} denote the input of the MCLP. We use the Nisan–Wigderson
generator construction NWf : {0, 1}d → {0, 1}m of Theorem 47, where d = O(n), m = 2γn,
and ε := 1

4 . By Theorem 47, this is a black-box NC0
1-PRG construction with ÃC0

2(22γn; 1
2−

1
4m )

reconstruction.
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In order to apply Theorem 45, we claim that NWf (z) ∈ Im(Htsm) for every f ∈ Ec and
every z ∈ {0, 1}d. By Theorem 47, the output NWf (z) can be described by using a seed z
and a description for x in time NO(1), and thus

Kt(NWf (z)) ≤ |z|+ Kt(f) +O(logN) = O(n).

In particular, for a large enough constant c′, we have

Kt(NWf (z)) ≤ c′n = s(m),

By the universality of Htsm (Proposition 38) we obtain that NWf (z) ∈ Im(Htsm).
By applying Theorem 45, we have (Ec vs D̃ ◦ AC0

2(22γn; 1
2−

1
4m ))N ∈ ANDO(N)◦NOT◦D◦

NC0
1. SinceD is a C-circuit of sizem = 2γn, it follows that (Ec vs C̃ ◦ AC0

2(2O(γn); 1
2 −

1
4m ))N ∈

AND ◦ NOT ◦ C(O(N1+γ)). Note that this holds for infinitely many N = m1/γ . By choosing
γ small enough depending on α, β, the result follows. J

We observe that the converse direction also holds. In particular, for any circuit class
C ⊆ P/poly such that C is closed under taking projections and AND ◦ NOT ◦ C = C, our
reductions in fact establish the equivalence between the existence of a hitting set generator
secure against C and a C-lower bound for the E vs S̃IZE(2o(n); 1

2 − 2−o(n)) problem.

I Proposition 54 (Converse of Theorem 53). Let C be any circuit complexity class. Suppose
that there exists a hitting set generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in
time nO(1) and secure against linear-size C circuits. Then, for any constant k ∈ N, for all suf-
ficiently large N ∈ N, no NOT ◦C circuit of size Nk can solve

(
E vs S̃IZE(2αn; 1

2 − 2−αn)
)
N

for α := 1/4 nor MKtP[O(logN), N − 1] on input length N .

Proof. We first observe that MKtP[O(logN),N−1] is reducible to (E vs S̃IZE(2αn; 1
2 − 2−αn))

via an identity map: Take any function f ∈ S̃IZE(2αn; 1
2 − 2−αn). Since the truth table of

f can be described by a circuit of size Nα and log
(

N
≤N/2−N1−α

)
bits of information in time

NO(1), the Kt-complexity of tt(f) is at most

Õ(Nα) +N ·H2(1/2−N−α) +O(logN) ≤ N − Ω(N1−2α),

which is much smaller than N − 1. Therefore, it suffices to prove the result only for
MKtP[O(logN), N − 1].

We prove the contrapositive. Suppose that, for some constant k ∈ N, for any constant c,
for infinitely many N ∈ N, there exists a NOT ◦ C circuit of size Nk that solves the promise
problem MKtP[c logN,N − 1]. Consider any family of functions G = {Gm : {0, 1}d logm →
{0, 1}m}m∈N computable in time md for a constant d. Let c := 4kd, and take a NOT ◦ C
circuit ¬C of size Nk that solves MKtP[c logN,N − 1] on inputs of length N .

We regard C as a circuit that takes m := Nk input bits by ignoring m−N input bits, and
in what follows we claim that the linear-size circuit C avoids Gm. For a string w ∈ {0, 1}m,
denote by w�N the first N bits of w.

Let z ∈ {0, 1}d logm be any seed of G. Since G(z)�N can be described by N ∈ N and
z ∈ {0, 1}d logm in time md, its Kt complexity is

Kt(G(z)�N ) ≤ logN + |z|+ d logm+ o(logm) ≤ 4kd logN,

which means that G(z)�N is a Yes instance of MKtP[c logN,N−1] and thus G(z) is rejected
by C.
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Now consider a string w ∼ {0, 1}m chosen uniformly at random. By a standard counting
argument, Kt(w�N ) ≥ N − 1 with probability at least 1

2 ; thus C accepts at least a half of all
inputs. Therefore, the function G is not secure against C. J

Applying Theorem 53 to depth-d circuits C := AC0
d, we obtain the following.

I Corollary 55. Let d be a constant. Suppose that (E vs ÃC0
d+2(2αn; 1

2 − 2−αn)) 6∈
i.o.AC0

d+1(N1+β) for some constants α, β > 0. Then, there exists a hitting set gener-
ator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in time nO(1) and secure against
linear-size AC0

d circuits.

This means that, in order to obtain a nearly optimal hitting set generator for AC0
d, it suffices

to prove that nearly-linear-size AC0
d+1 circuits cannot distinguish the truth tables of functions

in E/O(n) from the truth tables of functions that cannot be approximated by AC0
d+2 circuits.

We present a proof of Theorem 13.

I Restatement of Theorem 13. The following are equivalent.
1. For any constants d, d′, there exists a constant β > 0 such that

(E vs ÃC0
d′(2o(n); 1

2 − 2−o(n))) 6∈ i.o.AC0
d(N1+β).

2. For any constant d, there exists a hitting set generator G = {Gn : {0, 1}O(logn) →
{0, 1}n}n∈N computable in time nO(1) and secure against linear-size AC0

d circuits.
3. For any constant d, there exist constants c, β > 0 such that

MKtP[c logN,N − 1] 6∈ i.o.AC0
d(N1+β).

4. For any constants d, k, there exists a constant c > 0 such that

MKtP[c logN,N − 1] 6∈ i.o.AC0
d(Nk).

Proof of Theorem 13. Item 1 =⇒ Item 2 follows from Corollary 55. Item 2 =⇒ Item 4
follows from Proposition 54. Item 4 =⇒ Item 3 is obvious. Item 3 =⇒ Item 1 holds because
the truth table of any function in ÃC0(2o(n); 1

2−2−o(n)) has Kt complexity less than N−1. J

4.7 Hardness Amplification and MCLPs
The main advantage of studying MCLPs is that hardness amplification can be naturally
regarded as a reduction between two different MCLPs. In this section, we present such
reductions.

Impagliazzo and Wigderson [40] gave a derandomized hardness amplification theorem.
We use the following generalized version of their result.

I Theorem 56 (Derandomized hardness amplification). Let γ > 0 be an arbitrary constant.
There exists a hardness amplification procedure Amp that takes a function f : {0, 1}n → {0, 1}
and parameters δ, ε > 0, and returns a Boolean function Ampfε,δ : {0, 1}O(n+log(1/ε)) → {0, 1}
satisfying the following:
1. If s̃ize(Ampfε,δ; 1/2− ε) ≤ s, then s̃ize(f ; δ) ≤ s · poly(1/ε, 1/δ).
2. For any fixed y ∈ {0, 1}O(n+log(1/ε)), there exist strings v1, · · · , vk ∈ {0, 1}n for some

k = O(log(1/ε)/δ) such that Ampfε,δ(y) = f(v1)⊕· · ·⊕f(vk). Moreover, if y is distributed
uniformly at random, for each i ∈ [k], vi is distributed uniformly at random.

3. Ampfε,δ(y) can be computed in O(n+ log(1/δ) + log(1/ε)) space, given f, y, ε and δ as an
input.
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Theorem 56 slightly differs from derandomized hardness amplification theorems of [40, 30] in
that we are also interested in the case when the hardness parameter δ is o(1), which is not
required in a standard application of derandomized hardness amplification theorems. We
defer a proof of Theorem 56 to Appendix A.

Using Theorem 56, we give a reduction among different MCLPs.

I Theorem 57. For any constants α, δ > 0, for all sufficiently small β > 0, there exists a
XORO(β logN)-computable reduction from (E vs S̃IZE(2αn; δ)) to (E vs S̃IZE(2βn; 1

2 − 2−βn)).

Proof. The reduction is to simply take the hardness amplification procedure Amp of The-
orem 56. Specifically, given the truth table of a function f : {0, 1}n → {0, 1}, the reduction
maps f to the truth table of Ampfε,δ : {0, 1}n′ → {0, 1}, where ε := 2−βn and n′ = O(n). By
the second item of Theorem 56, each output of the reduction is computable by a XOR of k
bits, where k = O(log(1/ε)/δ) = O(βn).

We claim the correctness of the reduction. Suppose that Kt(f) ≤ O(logN). Then, by
the third item of Theorem 56, we obtain that Kt(Ampfε,δ) ≤ O(logN).

Conversely, suppose that f 6∈ S̃IZE(2αn; δ); that is, s̃ize(f ; δ) > 2αn > 2βn · poly(1/ε, 1/δ),
where the last inequality holds by choosing β > 0 small enough. By the first item of
Theorem 56, we obtain that s̃ize(Ampfε,δ;

1
2 − 2−βn) > 2βn, which implies that Ampfε,δ 6∈

S̃IZE(2β′n′ ; 1
2 − 2−β′n′) for some constant β′ > 0. J

Applying the reduction of Theorem 57 to Corollary 55, we obtain the following.

I Corollary 58. Let d ∈ N, δ > 0 be constants. Suppose that (E vs S̃IZE(2αn; δ)) 6∈
i.o.AC0

d+2(N1+β) for some constants α, β > 0. Then, there exists a hitting set gener-
ator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N computable in time nO(1) and secure against
linear-size AC0

d circuits.

Proof. We prove the contrapositive. Under the assumption that no hitting set generator
is secure against AC0

d, it follows from Corollary 55 that (E vs ÃC0
d+2(2βn; 1

2 − 2−βn)) ∈
i.o.AC0

d+1(N1+γ) for any constants β, γ > 0. Our goal is to prove that (E vs S̃IZE(2αn; δ)) ∈
i.o.AC0

d+2(N1+η) for any constants α, η > 0.
Fix any constants α, η > 0. By Theorem 57, there exists a XORO(βn)-computable reduction

from (E vs S̃IZE(2αn; δ)) to (E vs ÃC0
d+2(2βn; 1

2 − 2−βn)), for all sufficiently small β > 0. The
latter problem can be solved by an AC0

d+1(N1+γ). Thus we obtain an AC0
d+1(N1+γ)◦XORO(βn)

circuit that computes the former problem. Since XORO(βn) can be computed by a depth-2
circuit of size NO(β), by merging one bottom layer of the AC0

d+1 circuit, we obtain a circuit
in AC0

d+2(N1+γ+O(β)) that computes (E vs S̃IZE(2αn; δ)). The result follows by choosing
β, γ > 0 small enough depending on η > 0. J

Note that AC0 circuits are not capable of computing XOR gates of large fan-in. If a
computational model can compute XOR gates, it is possible to compute a locally-decodable
error-correcting code. Specifically, we provide an efficient reduction from (E vs SIZE(2o(n)))
to (E vs S̃IZE(2o(n); 1

2 − 2−o(n))) that is computable by a single layer of XOR gates.

I Theorem 59 (Reductions by Error-Correcting Codes). For any constants α, γ > 0, for
all sufficiently small β > 0, there exists a reduction from (E vs SIZE(2αn)) to (E vs
S̃IZE(2βn; 1

2 − 2−βn)) that is computable by one layer of O(N1+γ) XOR gates.
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I Lemma 60 (cf. [63, 69, 73]). For any small constant β > 0, for all large n ∈ N, there
exists an error-correcting code Encf that encodes a function f : {0, 1}n → {0, 1} as a function
Encf : {0, 1}(1+O(

√
β))n → {0, 1} satisfying following:

1. size(f) ≤ s̃ize(Encf ; 1
2 − 2−βn) · 2O(

√
βn).

2. For any fixed y ∈ {0, 1}(1+O(
√
β))n, Encf (y) can be computed by an XOR of some bits of

the truth table of f .
3. Encf can be computed in time 2O(n).

Proof Sketch. We use a Reed-Muller code concatenated with a Hadamard code. The crux
is that the length of a codeword of can be made small because the query complexity of
local-list-decoding algorithms is allowed to be quite large.

Let f : {0, 1}n → {0, 1}. Let Fq be a finite field, where q = 2k for some k. Pick H ⊆ F,
and encode any element of {0, 1}n as an element of Ht by taking an injection η from {0, 1}n
to Ht, where t is some large constant chosen later. Let the size |H| of H be 2n/t. Any
f : {0, 1}n → {0, 1} can be encoded as a unique low-degree extension f̂ : Ftq → Fq such that
f̂ and f ◦ η agree on Hq. The total degree of f̂ is at most d := t|H| = t2n/t. We will set
q = t2n/t+O(βn).

Then, each alphabet f̂(x) in the Reed-Muller code is encoded with a Hadamard code.
Namely, Encf (x, y) := 〈f̂(x), y〉, where x ∈ Ftq, y ∈ Fk2 and 〈-, -〉 denotes the inner
product function over F2. The length of the truth table of Encf is at most qt+1 =
O(tt+12(n/t+O(βn))(t+1)). By choosing t := 1/

√
β, this is bounded by 2(1+O(

√
β))·n.

Sudan, Trevisan, and Vadhan [63] gave a local list-decoding algorithm for the code
Encf running in time poly(t, q) that can handle a

( 1
2 − (d/q)Ω(1))-fraction of errors, which

is more than 1
2 − 2−βn by choosing q := t2n/t+O(βn) large enough. Given a circuit that

approximates Encf on a 1
2 − 2−βn fraction of inputs, one can apply the local list-decoding

algorithm to obtain a circuit that computes f on every input; thus we have size(f) ≤
s̃ize(Encf ; 1

2 − 2−βn) · 2O(
√
β)n. J

Proof of Theorem 59. We apply the error-correcting code Enc of Theorem 59. Specifically,
given f : {0, 1}n → {0, 1} as input, we map f to Encf : {0, 1}n′ → {0, 1}. Since the length of
tt(Encf ) is 2n′ = N1+O(

√
β) and each bit is computable by a XOR of some bits of tt(f), the

reduction is computable by one layer of O(N1+γ) XOR gates for all sufficiently small β > 0.
We claim the correctness of the reduction. Suppose that Kt(f) = O(logN); then, by the

third item of Lemma 60, we have Kt(Encf ) = O(logN).
Now suppose that f 6∈ SIZE(2αn). By Lemma 60, we have 2αn < size(f) ≤

s̃ize(Encf ; 1
2 − 2−βn) · 2O(

√
βn). Therefore, we obtain that s̃ize(Encf ; 1

2 − 2−βn) >

2(α−O(
√
β))n ≥ 2βn, where the last inequality holds by choosing β > 0 small enough.

Therefore, Encf 6∈ S̃IZE(2β′n′ ; 1
2 − 2−β′n′) holds for some constant β′ > 0. J

Applying the reduction, we obtain the following.

I Theorem 61. Let d be a constant. Suppose that (E vs SIZE(2αn)) 6∈ i.o.AC0
d+1◦XOR(N1+β)

for some constants α, β > 0. Then, there exists a hitting set generator G = {Gn :
{0, 1}O(logn) → {0, 1}n}n∈N computable in time nO(1) and secure against linear-size AC0

d◦XOR
circuits.
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Proof. We prove the contrapositive. Let α, β > 0 be arbitrary constants. Assuming
that no hitting set generator is secure against AC0

d ◦ XOR, by Theorem 53, we have (E vs
S̃IZE(2α0n; 1

2 − 2−α0n)) ∈ i.o.AC0
d+1 ◦ XOR(N1+β0) for any constants α0, β0 > 0. By The-

orem 59, (E vs SIZE(2αn)) is reducible to (E vs S̃IZE(2α0n; 1
2 − 2−α0n)) by one layer of

O(N1+γ) XOR gates for any constant γ > 0 and any small enough constant α0 > 0. There-
fore, we obtain a circuit in AC0

d+1 ◦XOR◦XOR((N1+γ)1+β0) that computes (E vs SIZE(2αn)).
By merging the bottom two XOR layers, the circuit can be written as an AC0

d+1 ◦XOR circuit
of size N1+γ+β0+γβ0 .7 The result follows by choosing positive constants γ, β0 � β small
enough. J

We are now ready to complete a proof of Theorem 11, which establishes the equivalence
between the existence of a hitting set generator secure against AC0 ◦XOR and the AC0 ◦XOR
circuit lower bound for the E vs SIZE(2o(n)) problem.

I Restatement of Theorem 11. The following are equivalent.
1. For any constant d, there exists a hitting set generator G = {Gn : {0, 1}O(logn) →
{0, 1}n}n∈N computable in time nO(1) and secure against linear-size AC0

d ◦ XOR circuits.
2. For any constant d, for some constant β > 0, (E vs SIZE(2o(n))) 6∈ i.o.AC0

d(N1+β).
3. For any constant d, for some constant β > 0, MKtP[O(logN), No(1)] 6∈ i.o.AC0

d ◦
XOR(N1+β).

4. For any constants d, k ∈ N, MKtP[O(logN), No(1)] 6∈ i.o.AC0
d ◦ XOR(Nk).

Proof of Theorem 11. The implications from Item 4 to Item 3 and from Item 3 to Item 2
are trivial. The implication from Item 2 to Item 1 immediately follows from Theorem 61.
The implication from Item 1 to Item 4 is a standard approach for showing a lower bound for
MKtP, and follows from Proposition 54. J

4.8 KS Complexity and Read-Once Branching Program
We now turn our attention to KS complexity. This amounts to considering a hitting set
generator that is computable in a limited amount of space. Applying our proof ideas to the
case of read-once branching programs, we provide a potential approach for resolving RL = L.

I Theorem 62. There exists a universal constant ρ > 0 satisfying the following. Suppose
that, for some constants α, β > 0, (DSPACE(n) vs S̃IZE(2αn; 2−ραn)) cannot be computed by
a read-once co-nondeterministic branching program of size N1+β for all large input length
N ∈ N. Then there exists a hitting set generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N
computable in O(logn) space and secure against linear-size read-once branching programs.

Since the class of read-once branching programs is not closed under taking several
reductions presented so far, we provide a self-contained proof below.

Proof. We prove the contrapositive of Theorem 62 for the universal hitting set generator
HS. Assume that, for every function s(m) = O(logm), there exists a linear-size read-once
branching program D that avoids HSsm for infinitely many m ∈ N. Given arbitrary constants
c, α, β > 0, we will choose a small constant γ > 0, and define s(m) := c′ logm/γ for some
large constant c′. Then using D that avoids HSsm, we present a coRP-type randomized read-
once branching program that solves (ΠYes,ΠNo) := (DSPACE(cn)/ncn vs S̃IZE(2αn; 2−ραn))
on inputs of length N = 2n, for some sufficiently large N := m1/γ . Here, a randomized
branching program means a probability distribution on branching programs.

7 Recall that we count the number of gates except for input gates.
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For simplicity, we first explain a construction of a branching program that may not
be read-once. A randomized branching program D0 is defined as follows. Given an input
f : {0, 1}n → {0, 1}, set ε := 1/4m. Define f̃ := Ampfε,δ : {0, 1}O(logN) → {0, 1}. Let ` denote
the input length of f̃ , and let d = O(`) = O(n) denote the seed length of the Nisan–Wigderson
generator instantiated with `-sized m subsets (Definition 50). Pick z ∼ {0, 1}d and output
¬D(NWf̃ (z)). This is a randomized branching program because for each fixed z, each bit of
NWf̃ (z) is equal to f̃(zS) for some subset S, and hence by Item 2 of Theorem 56 it is some
linear combination of at most k bits of tt(f), which can be computed by a read-once width-2
branching program of size O(k). Thus ¬D(NWf̃ (z)) can be implemented as a branching
program of size O(m · k), by replacing each node of D by the read-once width-2 branching
programs that compute some linear combinations of tt(f).

We claim the correctness of the randomized branching program D0.

B Claim 63.
1. D0 accepts every f ∈ ΠYes with probability 1.
2. For every f ∈ ΠNo, the probability that D0 rejects f is at least 1

4 .
3. The size of D0 is at most Nβ .
Take any Yes instance f ∈ ΠYes. We observe that the output NWf̃ (z) of the generator has
small KS complexity. Indeed,

KS(NWf̃ (z)) ≤ |z|+ KS(f̃) +O(logN) ≤ KS(f) +O(logN),

where we used Lemma 48 and Item 3 of Theorem 56. In particular, for a large enough
constant c′, we have

KS(f) ≤ c′ logN = s(m),

and thus D(NWf̃ (z)) = 0 by Proposition 35 and the assumption that D avoids HSsm. This
means that the algorithm D0 accepts for every choice of z.

Conversely, suppose that the algorithm D0 accepts some input f with probability at least
3
4 . We claim that f 6∈ ΠNo. The assumption means that Prz[D(NWf̃ (z)) = 0] ≥ 3

4 , which
is equivalent to saying that Prz[D(NWf̃ (z)) = 1] ≤ 1

4 . On the other hand, since D avoids
HSsm, we have Prw[D(w) = 1] ≥ 1

2 . In particular, we obtain

Pr
w

[D(w) = 1]− Pr
z

[D(NWf̃ (z)) = 1] ≥ 1
4 .

By the security proof of the Nisan–Wigderson generator (Lemma 51), there exists a one-query
oracle circuit C of size O(m · 2γ`) such that

Pr
y∼{0,1}`

[CD(y) = f̃(y)] ≥ 1
2 + 1

4m.

Now replacing the oracle gate of C with a circuit that simulates D, we obtain a circuit of size
mO(1) +m ·NO(γ). By the property of Ampε,δ (Item 1 of Theorem 56), we obtain another
circuit C ′ of size mO(1) ·NO(γ) · (1/δ)O(1) such that

Pr
x∼{0,1}n

[C ′(x) = f(x)] ≥ 1− δ.

Choosing δ := N−γ , we obtain that s̃ize(f ;N−γ) ≤ NO(γ), where γ > 0 is an arbitrary small
constant. This completes the proof of the second item of Claim 63, by choosing γ small
enough so that O(γ) < α.
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Recall that the size of D0 is O(m · k). Here k is the parameter from Theorem 56 and
k = O(log(1/ε)/δ) = NO(γ). Thus the size of D0 is at most NO(γ) ≤ Nβ , by choosing γ
small enough so that O(γ) ≤ β. This completes the proof of Claim 63.

Now we modify the construction of D0 in order to obtain a read-once branching program
D1. The branching program D0(NWf̃ (z)) may read some x-th bit of the input tt(f) twice
only if there exists a pair of distinct indices (i, j) such that the ith bit of NWf̃ (z) and the
jth bit of NWf̃ (z) are linear combinations of tt(f) that contain f(x). We say that a coin
flip z is bad if this happens. To ensure that a coin flip is bad with small probability, we
take a pairwise independent generator G2 : {0, 1}O(`) → ({0, 1}`)m, and define a modified
Nisan–Wigderson generator NW′f̃ := f̃m ◦ (ND⊕G2), where ND⊕G2 denotes the function
such that ND⊕G2(u, v) := ND(u)⊕G2(v). Using this modified construction, the read-once
branching program D1 is defined as ¬D(NW′f̃ (z)) if z is not bad, and otherwise defined as
a trivial branching program that outputs 1 always. (Note here that since we deal with a
non-uniform computation, one does not need to check the badness of z by using a branching
program.) By the definition, it is obvious that D1 is read-once; hence it remains to claim
that D1 satisfies the promise of (ΠYes,ΠNo).

As in the case of D0, for f ∈ ΠYes, it can be seen that D(NW′f̃ (z)) = 0 for every z, and
hence D1 always accepts. (We note that the KS complexity increases by an additive term of
the input length of G2, which is O(logN).) Conversely, we claim that if D1 accepts with
probability at least 7

8 , then f 6∈ ΠNo. Assume that Prz[D1 accepts] ≥ 7
8 . We claim that the

probability that z is bad is small: Fix any distinct indices (i, j) ∈ [m]2. Recall that by Item 2
of Theorem 56 for each fixed y ∈ {0, 1}`, there exist inputs vi1, · · · , vik of f such that f̃(y)
can be written as a linear combination of f(vi1), · · · , f(vik), where k = O(log(1/ε)/δ). Fix
any indices i′, j′ ∈ [k]. Then the probability that vii′ = vjj′ is at most 1/N because of the
pairwise independence of G2 and each vii′ is uniformly distributed. By the union bound, the
probability that z is bad is bounded above by (km)2 · 1/N ≤ NO(γ)−1 ≤ 1

8 , for a sufficiently
small γ > 0 and a large N ∈ N. Thus we obtain

Pr
z

[D(NW′f̃ (z)) = 0] ≥ Pr[D1 accepts]− Pr[z is bad] ≥ 3
4 .

The rest of a proof of the correctness is essentially the same with the case of D0, observing
that the security proof of the Nisan–Wigderson generator also works for the modified version
NW′.

Finally, we convert the randomized read-once branching program D1 of size Nβ into a
co-nondeterministic read-once branching program of size N1+β . This can be done by using
the standard Adleman’s trick [1]: Specifically, the success probability of D1 can be amplified
to 1− 2−N by taking AND of O(N) independent copies of D1. By the union bound, there
exists a good coin flip sequence such that AND of O(N) copies of D1 solves (ΠYes,ΠNo) on
every input of length N . Hard-wiring such a coin flip sequence and simulating the AND
gate by using a co-nondeterministic computation, we obtain a co-nondeterministic read-once
branching program of size O(N1+β). J

5 Non-trivial Derandomization and MKtP

In this section, we provide a characterization of non-trivial derandomization for uniform
algorithms by a lower bound for MKtP. We start with a formal definition of non-trivial
derandomization for uniform algorithms.
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IDefinition 64 (Non-trivial derandomization). An algorithm A is said to be a derandomization
algorithm for DTIME(t(n)) that runs in time s(n) if the following hold. The algorithm takes
1n and a description of a machine M and outputs an n-bit string A(1n,M) ∈ {0, 1}n in
time s(n). For any machine M running in time t(n) on inputs of length n ∈ N, there exist
infinitely many n ∈ N such that, if Prx∼{0,1}n [M(x) = 1] ≥ 1

2 , then M(A(1n,M)) = 1.

In the following, for a function s : N → N, we denote by RsKt the set {x ∈ {0, 1}∗ |
Kt(x) ≥ s(|x|) } of Kt-random strings with threshold s. We say that a set R ⊆ {0, 1}∗ is
dense if Prx∼{0,1}n [x ∈ R] ≥ 1

2 for all large n ∈ N.

I Proposition 65. The following are equivalent for any time-constructible functions t, s such
that t(n), s(n) ≥ n.
1. There exists a derandomization algorithm for DTIME(t(n)) that runs in time

2s(n)+O(log t(n)).
2. Any dense subset of Rs(n)+O(log t(n))

Kt cannot be accepted by any t(n)-time algorithm.

Proof. (Item 1 =⇒ Item 2) Let A be a derandomization algorithm for DTIME(t(n)). Since
A runs in time 2s(n)+O(log t(n)) on input (1n,M), the Kt-complexity of A(1n,M) is at most
s(n) +O(log t(n)) + |M |.

Let M be any t(n)-time algorithm such that Prx∼{0,1}n [M(x) = 1] ≥ 1
2 for all large

n ∈ N. By the property of A, we have M(A(1n,M)) = 1 for infinitely many n. This means
that M accepts the string A(1n,M) that has Kt-complexity at most s(n) + O(log t(n));
therefore, M does not accept a dense subset of Kt-random strings.

(Item 2 =⇒ Item 1) Let A be the algorithm that takes (1n,M), enumerates all the
strings x whose Kt-complexity is at most s(n) + O(log t(n)), and, for each string x with
small Kt-complexity, simulates M on input x; if M accepts x in time t(n), output x and
halt. The running time of A is clearly at most 2s(n)+O(log t(n)). To prove the correctness,
assume towards a contradiction that some algorithm M runs in time t(n) and for all large n,
Prx∼{0,1}n [M(x) = 1] ≥ 1

2 andM(A(1n,M)) = 0. The latter condition means that A cannot
find a string x that is accepted by M ; thus, M rejects all the strings x whose Kt-complexity
is at most s(n) + O(log t(n)). Therefore, M accepts a dense subset of Kt-random strings,
which is a contradiction. J

I Theorem 66. Let t, s : N→ N be time-constructible functions such that t is non-decreasing
and ω(log2 n) ≤ s(n) ≤ n and poly(n) ≤ t(n) for all large n, where poly is some universal
polynomial.

For any constant c > 0, there exists a constant c′ such that, if there is a t(n)-time
algorithm that accepts a dense subset of Rn−c

√
n logn

Kt , then the following promise problem can
be solved in DTIME(O(t(2s(n)) · 2

√
s(n) logn)) ∩ coRTIME(O(t(2s(n)))).

Yes: strings x such that Kt(x) ≤ s, where s := s(|x|).
No: strings x such that Kt′(x) > s+ c′

√
s logn, where s := s(|x|) and t′ = t(2s) · poly(|x|).

I Lemma 67 (cf. [31]). For any d,m ≤ n, ε > 0, there exists a black-box pseudorandom
generator construction Gx : {0, 1}d → {0, 1}m that takes a string x ∈ {0, 1}n and satisfies the
following.
1. For any ε-distinguisher T : {0, 1}m → {0, 1} for Gx, it holds that

Kt,T (x) ≤ exp(`2/d) ·m+ d+O(log(n/ε)),

where ` = O(logn) and t = poly(n, 1/ε).
2. Gx(z) is computable in time poly(n, 1/ε).
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Proof Sketch. The pseudorandom generator construction Gx is defined as Gx(z) :=
NWEnc(x)(z) for any z ∈ {0, 1}d, where NW is the Nisan–Wigderson generator [53] that is
instantiated with the weak design of [58] and the function whose truth table is Enc(x) as a
candidate hard function. J

Proof of Theorem 66. Fix n ∈ N and an input x ∈ {0, 1}n. For simplicity, let s := s(n).
Define d :=

√
s logn. Since s(n) = ω(log2 n), we have 4cd ≤ s for a sufficiently large n.

Set m := s + 4cd ≤ 2s. Let D be the t(n)-time algorithm that accepts a dense subset of
R
n−c
√
n logn

Kt .
We claim that there exists a coRP-type algorithm A that uses d random bits and solves

the promise problem. The algorithm A operates as follows. Pick a random seed z ∈ {0, 1}d,
and accept if and only if D(Gx(z)) = 0, where the output length of Gx is set to be m. This
runs in time t(m) + poly(n) ≤ O(t(2s)) and can be derandomized in time O(t(2s)) · 2d by
exhaustively trying all the random bits.

It remains to prove the correctness of the algorithm A. Assume that Kt(x) ≤ s. Then,
since Gx(z) is computable in polynomial time, for any z ∈ {0, 1}d, we have

Kt(Gx(z)) ≤ d+ s+O(logn) ≤ s+ 2d ≤ s+ 4cd− 2cd < m− c
√
m logn,

where, in the last inequality, we used the fact that
√
m logn ≤

√
2s logn < 2d. Therefore,

Gx(z) 6∈ Rm−c
√
m logm

Kt , which is rejected by D; hence, A accepts.
Conversely, assume that the probability that A accepts is at least 3

4 . This means that

Pr
z∼{0,1}d

[D(Gx(z)) = 0] ≥ 3
4 .

Since we have

Pr
w∼{0,1}m

[D(w) = 0] ≤ 1
2 ,

D is a distinguisher for Gx. By the security of Lemma 67, we obtain that, for t′ :=
poly(n) · t(m),

Kt′(x) ≤ exp(`2/d) ·m+O(logn)
≤ (1 + 2`2/d) · (s+ 4cd) +O(logn)
≤ s+O(

√
s logn),

which can be bounded above by s+ c′
√
s logn by choosing a large enough constant c′. Thus,

x is not a No instance of the promise problem. Taking the contrapositive, we conclude that
any No instance x is rejected by A with probability at least 1

4 . J

In the special case when t(n) = nO(1), Theorem 66 implies that the Kt vs Kt problem
can be solved in coRP.

Proof Sketch of Theorem 15. We claim that the Kt vs Kt problem can be solved in coRP
under the assumption that MKtP ∈ P. We use the same proof of Theorem 66 for t(n) = nO(1)

when the parameter s = ω(log2 n); when s = O(log2 n), we set d := `2 and m := O(d)
as in [31]. J
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I Restatement of Theorem 14. For any constant 0 < ε < 1, the following are equivalent.
1. For some c1, for any large c2, there exists no derandomization algorithm for

DTIME(2c1
√
n logn) that runs in time 2n−c2

√
n logn.

2. For some c1, for any large c2, there exists an algorithm running in time 2c1
√
n logn that

accepts a dense subset of Rn−c2
√
n logn

Kt .
3. For some c1, for any large c2, MKtP[n− c2

√
n logn, n− 1] ∈ DTIME(2c1

√
n logn).

4. For some c1, for any large c2, MKtP[nε, nε + c2
√
nε logn] ∈ DTIME(2c1

√
nε logn).

Proof. (Item 1 ⇐⇒ Item 2) This equivalence follows from Proposition 65.
(Item 2 =⇒ Item 4) We apply Theorem 66 for t(n) := 2c1

√
n logn and s(n) := nε.

Then we obtain a DTIME(O(t(2s)) · 2
√
s logn)-algorithm A that distinguishes Yes instances

x such that Kt(x) ≤ s from No instances x such that Kt′(x) > s + c′2
√
s logn, where

t′ = t(2s) · poly(n) and c′2 is some constant. We choose a constant c′1 large enough so that
O(t(2s)) ·2

√
s logn ≤ 2c′1

√
s logn, which bounds from above the running time of the algorithm A.

We claim that MKtP[s, s+ c′′2
√
s logn] is also solved by A for any sufficiently large c′′2 .

Take any string x such that Kt(x) ≥ s + c′′2
√
s logn. Since Kt(x) ≤ Kt′(x) + O(log t′) ≤

Kt′(x)+O(c1
√
s logn), it follows that Kt′(x) ≥ s+c′′2

√
s logn−O(c1

√
s logn) > s+c′2

√
s logn,

where the last inequality holds for any sufficiently large c′′2 ; thus, x is rejected by A.
(Item 4 =⇒ Item 3) By the assumption, there exists a constant c1 such that, for

all large c2, there exists an algorithm A that solves MKtP[nε, nε + c2
√
nε logn] in time

2c1
√
nε logn. Define c′1 := c1/ε. For all large c′2, we construct an algorithm B that solves

MKtP[n− c′2
√
n logn, n− 1] in time 2c′1

√
n logn. The algorithm B takes an input x of length

n and simulates A on input x10m−n−1 for m := (n− 2c2
√
n logn)1/ε. The running time of

B is at most 2c1
√
m logm ≤ 2c1/ε·

√
m logn = 2c′1

√
m logn.

It remains to prove the correctness of B. Take any x ∈ {0, 1}n such that Kt(x) ≤
n − c′2

√
n logn. Then we have Kt(x10m−n−1) ≤ n − c′2

√
n logn + O(logn) ≤ mε for any

large c2; thus B accepts x. Conversely, take any x such that Kt(x) ≥ n− 1. Then we have
Kt(x10m−n−1) ≥ n−O(logn) = mε + 2c2

√
n logn−O(logn) ≥ mε + c2

√
mε logn; thus, B

rejects.
(Item 3 =⇒ Item 2) This immediately follows from the fact that the complement of

MKtP[n− c2
√
n logn, n− 1] is a dense subset of Rn−c2

√
n logn+1

Kt . J
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A Derandomized Hardness Amplification Theorem

We review a simplified proof of derandomized hardness amplification given by Healy, Vadhan
and Viola [30], and observe that the parameter shown in Theorem 56 can be achieved by
slightly modifying the construction.

ITheorem 56 (Derandomized hardness amplification). Let γ > 0 be an arbitrary constant.
There exists a hardness amplification procedure Amp that takes a function f : {0, 1}n → {0, 1}
and parameters δ, ε > 0, and returns a Boolean function Ampfε,δ : {0, 1}O(n+log(1/ε)) → {0, 1}
satisfying the following:
1. If s̃ize(Ampfε,δ; 1/2− ε) ≤ s, then s̃ize(f ; δ) ≤ s · poly(1/ε, 1/δ).
2. For any fixed y ∈ {0, 1}O(n+log(1/ε)), there exist strings v1, · · · , vk ∈ {0, 1}n for some

k = O(log(1/ε)/δ) such that Ampfε,δ(y) = f(v1)⊕· · ·⊕f(vk). Moreover, if y is distributed
uniformly at random, for each i ∈ [k], vi is distributed uniformly at random.

3. Ampfε,δ(y) can be computed in O(n+ log(1/δ) + log(1/ε)) space, given f, y, ε and δ as an
input.

First, we explain the construction of our hardness amplification procedure. The construc-
tion is a XOR of the nearly disjoint generator ND and a hitter Hit (cf. [24]). In fact, we need
a slightly generalized version of a hitter, for which we show that the same construction of [24]
suffices. We note that in the previous works [40, 30], an expander walk was used instead of
Hit; this does not give us a nearly optimal construction of a hitter when δ is not a constant.

I Lemma 68. There exists a “hitter” Hit such that, given parameters n ∈ N, ε, δ > 0, a
function Hitn,ε,δ : {0, 1}O(n+log(1/ε)) → ({0, 1}n)kn,ε,δ takes a seed of length O(n+ log(1/ε))
and outputs a list L of kn,ε,δ = O(log(1/ε)/δ) strings of length n such that, for any subsets
H1, · · · , Hkn,ε,δ ⊆ {0, 1}n of size ≥ δ2n, with probability at least 1− ε, there exists an index
i ∈ [kn,ε,δ] such that the ith string in the list L is in Hi. Moreover, KS(L) ≤ O(n+ log(1/ε)).

Proof Sketch. We observe that the construction of [24, Appendix C] satisfies the requirement
of Lemma 68. The construction is as follows: First, we take a pairwise independent generator
G2 : {0, 1}O(n) → ({0, 1}n)O(1/δ). By Chebyshev’s inequality, with probability at least 1

2 over
the choice of a seed r ∈ {0, 1}O(n), G2 hits some Hi, · · · , Hi+O(1/δ), where i is an arbitrary
index. Now we take an explicit construction of a constant-degree expander on 2O(n) vertices,
and generate a random walk v1, · · · , v` of length ` = O(log(1/ε)) over {0, 1}O(n), which takes
random bits of length O(n+ log(1/ε)). The output of Hit is defined as the concatenation of
G2(v1), · · · , G2(v`). The correctness follows by using the Expander Random Walk Theorem
[24, Theorem A.4]. J

I Definition 69. Let f be a function f : {0, 1}n → {0, 1}, and ε, δ > 0 be arbitrary para-
meters. Let k := kn,ε,δ. Let ND: {0, 1}O(n) → ({0, 1}n)k be the nearly disjoint generator
(Definition 49) defined with the design of Lemma 48. We define a generator

IWn,ε,δ : {0, 1}O(n+log(1/ε)) → ({0, 1}n)k

as

IWn,ε,δ(x, y) := ND(x)⊕Hit(y).

Then we define a hardness amplified version

Ampfε,δ : {0, 1}O(n+log(1/ε)) → {0, 1}

of f as the function Ampfε,δ := f⊕k ◦ IWn,ε,δ.
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We proceed to a proof of Theorem 56. Recall several notions from [30]. For a subset
H ⊆ {0, 1}n (which is supposed to be a hard-core set) and a function f : {0, 1}n → {0, 1},
we consider a probabilistic function fH : {0, 1}n → {0, 1}, i.e., a distribution over a Boolean
function, defined as follows: For each x ∈ H, the value fH(x) is defined as a random bit
chosen uniformly at random and independently; For each x ∈ {0, 1}n \H, the value fH(x) is
defined as f(x). Assuming that H is indeed a hard-core set for f , the distributions (x, f(x))
and (x, fH(x)) where x ∼ {0, 1}n are computationally indistinguishable. Indeed:

I Proposition 70 (cf. [65]). Let H ⊆ {0, 1}n be an arbitrary subset, f : {0, 1}n → {0, 1} be
an arbitrary function, and ε > 0 be an arbitrary parameter. If

Pr
x∼{0,1}n

[A(x, f(x)) = 1]− Pr
x∼{0,1}n

[A(x, fH(x)) = 1] ≥ ε,

for some function A : {0, 1}n+1 → {0, 1}, then there exists a one-query oracle circuit of size
O(1) such that

Pr
x∼H

[CA(x) = f(x)] ≥ 1
2 + ε

δ
.

For a probabilistic function h : {0, 1}n → {0, 1}, the expected bias of h is defined as

ExpBias[h] := E
x∼{0,1}n

[Bias(h(x))],

where Bias(h(x)) is defined as |Prh[h(x) = 0]− Prh[h(x) = 1]|. It was shown in [30] that the
hardness of f⊕k ◦G(z) is essentially characterized by the expected bias of ExpBias[f⊕kH ◦ IW],
using a property of the nearly disjoint generator ND.

I Lemma 71 ([30, Lemma 5.2 and Lemma 5.12]). Let g be an arbitrary probabilistic function,
and ε > 0 be arbitrary parameters. Suppose that there exists a function A such that

Pr
z

[A(z) = f⊕k ◦ IW(z)] ≥ 1
2 + 1

2ExpBias[g⊕k ◦ IW] + ε

2
Then there exists a one-query oracle circuit C of size O(k · 2γn) such that

E
x

[CA(x, f(x))− CA(x, g(x))] ≥ ε

2k ,

where γ > 0 is an arbitrary constant of Lemma 48.

We will apply Lemma 71 for g := fH . By using a property of the hitter, we show that
the expected bias of fH is small whenever a hard-core set H is large enough.

I Lemma 72. Let ε, δ > 0 be arbitrary parameters, and H ⊆ {0, 1}n be a subset of size at
least δ2n. Let k := kn,ε,δ. Then ExpBias[f⊕kH ◦ IWn,ε,δ] ≤ ε

Proof. The idea is that when a hitter hits a hard-core set H, the expected bias becomes
0. More specifically, recall that IW(x, y) is defined as ND(x)⊕Hitn,ε,δ(y). Fix any x, and
define Hi as a shifted version of H: namely, Hi := ND(x)i ⊕H := {ND(x)i ⊕ h | h ∈ H }
for every i ∈ [k]. We apply Lemma 68 for H1, · · · , Hk. Since |Hi| = |H| ≥ δ2n for
every i ∈ [k], by the property of the hitter, there exists some index i ∈ [k] such that
Hitn,ε,δ(y)i ∈ Hi = ND(x)i ⊕H with probability at least 1− ε over the choice of y. In this
case, IWn,ε,δ(x, y)i = ND(x)i ⊕Hitn,ε,δ(y)i ∈ H, and hence the bias of fH(IWn,ε,δ(x, y)) is
exactly 0. Therefore,

ExpBias[f⊕kH ◦ IWn,ε,δ]
= Pr

x,y

[
Bias(f⊕kH ◦ IWn,ε,δ(x, y))

]
≤ Pr

x,y
[ IWn,ε,δ(x, y)i 6∈ H for every i ∈ [k] ] ≤ ε J
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Now we combine Proposition 70 and Lemmas 71 and 72 and obtain the following:

I Corollary 73. Let n ∈ N and ε, δ > 0. Let H ⊆ {0, 1}n be an arbitrary subset of size at
least δ2n. If some function A satisfies

Pr
z

[A(z) = f⊕k ◦ IWn,ε,δ(z)] ≥
1
2 + ε

then there exists a one-query oracle circuit C of size O(k · 2γn) such that,

Pr
x∼H

[CA(x) = f(x)] ≥ 1
2 + ε

2δk .

At this point, we make use of Impagliazzo’s hard-core lemma [37]. Equivalently, one can
view it as a boosting algorithm (cf. [43]).

I Lemma 74 (cf. [37, 43]). Under the condition of Corollary 73, there exists an oracle circuit
C of size O(k · 2γn) · poly(k/ε) such that

Pr
x∼{0,1}n

[CA(x) = f(x)] ≥ 1− δ.

Now we take any circuit A of size s such that

Pr
z

[A(z) = Ampfε,δ(z)] ≥
1
2 + ε.

By using Corollary 73 and Lemma 74 and replacing each oracle gate by a circuit A, we obtain
a circuit C of size O(k · 2γn) · poly(k/ε) · s such that

Pr
x∼{0,1}n

[C(x) = f(x)] ≥ 1− δ.

This completes the proof of Theorem 56.

B AC0 Lower Bounds for MKtP

In this section, we prove that there exists no constant-depth fixed-polynomial-size circuit that
computes MKtP[O(logN), No(1)] (Proposition 12). Previously, [14] used the pseudorandom
restriction of Trevisan and Xue [67] to obtain AC0 lower bounds for MKtP[polylogN ]. Here
we make use of a polynomial-time-computable pseudorandom restriction that shrinks AC0

circuits, which enables us to prove a lower bound for MKtP[O(logN)]. The following lemma
is proved in the context of quantified derandomization.

I Lemma 75 (Goldreich and Wigderson [27]). For any constants α < 1 and d ∈ N and
any polynomials p, q, there exists a constant k and a polynomial-time algorithm of O(logn)
randomness complexity that produces restrictions on n variables such that the following
conditions hold:
1. The number of undetermined variables in each restriction is at least 2nα.
2. For any n-input circuit of depth d and size at most p(n), with probability at least 1−1/q(n),

the corresponding restricted circuit depends on at most k variables.

Proof of Proposition 12. Fix any polynomial p and a depth d. We claim that, for some
constant c > 0, there exists no depth-d circuit of size p(n) that computes MKtP[c logn, nα]
for all large n. Assume, towards a contradiction, that there exists a depth-d circuit C of size
p(n) that computes MKtP[c logn, nα]. We use Lemma 75 for q ≡ 2. Then, there exists a
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polynomial-time algorithm that produces a pseudorandom restriction ρ that shrinks C to a
circuit of size k = O(1) with probability at least 1

2 . Fix one pseudorandom restriction ρ such
that the restricted circuit C�ρ is a constant-size circuit.

We claim that C does not compute MKtP[c logn, nα]. Let σ be the restriction that fixes
k variables on which C�ρ depend to 0. Consider 0n ◦ρ = 0n ◦σ ◦ρ, i.e., the string obtained by
fixing undetermined variables in ρ to 0. Since ρ is generated by a polynomial-time algorithm,
there exists a constant c such that Kt(0n ◦ ρ) ≤ c logn. Thus, 0n ◦ σ ◦ ρ is a Yes instance of
MKtP[c logn, nα]. Since C�σ◦ρ is a constant circuit, we have 1 = C�σ◦ρ(0n) = C�σ◦ρ(x) for
any x ∈ {0, 1}n. However, for a random x ∈ {0, 1}n, by a simple counting argument, it holds
that Kt(x ◦ σ ◦ ρ) ≥ 2nα − k − 1 > nα with high probability. Therefore, x ◦ σ ◦ ρ is a No
instance of MKtP[c logn, nα] for some x, which is a contradiction. J
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It was mentioned by Forbes that this result would probably break when going from single-
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1 Introduction and Results

Algebraic branching programs (ABPs) are an elegant model of computation that is widely
studied in algebraic complexity theory (see e.g. [4, 40, 30, 31, 1, 3, 25, 27, 15, 17]) and is a
focus of study in geometric complexity theory [28, 18, 19]. An ABP is a layered directed
graph with d+ 1 layers of vertices (edges only go from layers i to i+ 1) such that the first
and last layer have exactly the same number of vertices. Each vertex in the first layer has
exactly one so-called corresponding vertex in the last layer. One interesting classical case is
when the first and last layer have exactly one vertex, which is usually studied in theoretical
computer science. We call this the single-(source,sink) model. Among algebraic geometers
working on ABPs it is common to not impose restrictions on the number of vertices in the
first and last layer [28, 18, 29]. We call this the trace model. Every edge in an ABP is labeled
by a homogeneous linear form. If we denote by `(e) the homogeneous linear form of edge e,
then we say that the ABP computes

∑
p

∏
e∈p `(e), where the sum is over all paths that start

in the first layer and end in the last layer at the vertex corresponding to the start vertex.
The width of an ABP is the number of vertices in its largest layer. We denote by w(f)

the minimal width required to compute f in the trace model and we call w(f) the trace
ABP width complexity of f . We denote by w1(f) the minimal width required to compute
f in the single-(source,sink) model and we call w1(f) the single-(source,sink) ABP width
complexity of f .

The complexity class VBP is defined as the set of sequences of polynomials (fm) for
which the sequence w(fm) is polynomially bounded. Let perm :=

∑
π∈Sm

∏m
i=1 xi,π(i) be the

permanent polynomial. Valiant’s famous VBP 6= VNP conjecture can concisely be stated as
“The sequence of natural numbers

(
w(perm)

)
m

is not polynomially bounded.” Alternatively,
this is phrased with w1 or other polynomially related complexity measures in a completely
analogous way. In geometric complexity theory (GCT), one searches for lower bounds on
algebraic complexity measures over C such as w and w1 for explicit polynomials such as the
permanent. All lower bounds methods in GCT and most lower bounds methods in algebraic
complexity theory are continuous, which means that if fε is a curve of polynomials with
limε→0 fε = f (coefficient-wise limit) and w(fε) ≤ w, then these methods cannot be used
to prove w(f) > w. This is usually phrased in terms of so-called border complexity (see
e.g. [14, 28]): The border trace ABP width complexity w(f) is the smallest w such that f
can be approximated arbitrarily closely by polynomials fε with w(fε) ≤ w. Analogously, we
define the border single-(source,sink) ABP width complexity w1(f) as the smallest w such
that f can be approximated arbitrarily closely by polynomials fε with w1(fε) ≤ w. We define
VBP as the set of sequences of polynomials such that (w(fm)) is polynomially bounded.
Clearly VBP ⊆ VBP. Mulmuley and Sohoni [32, 33, 14] (see also [12, 10] for a related
conjecture) conjectured a strengthening of Valiant’s conjecture, namely that VNP 6⊆ VBP.
In principle it could be that w(f) < w(f); the gap could even be superpolynomial, which
would mean that VBP ( VBP. If VBP = VBP, then Valiant’s conjecture is the same as the
Mulmuley-Sohoni conjecture, which would mean that if VBP 6= VNP, then continuous lower
bounds methods exist that show this separation.

Border complexity is an old area of study in algebraic geometry. In theoretical computer
science it was introduced by Bini et al. [6], where [5] proves that in the study of fast matrix
multiplication, the gap between complexity and border complexity is not too large. The
study of the gap between complexity and border complexity of algebraic complexity measures
in general has started recently [21, 9, 26] as an approach to understand if strong algebraic
complexity lower bounds can be obtained from continuous methods.
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In this paper we study two very different settings of ABPs: The noncommutative and the
monotone setting. To capture commutative, noncommutative, and monotone computation,
let R be a graded semiring with homogeneous components Rd. In our case the settings for
Rd are

Rd = F[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables over a
field F,
Rd = F〈x1, . . . , xm〉d the set of homogeneous degree d polynomials in m noncommuting
variables over a field F,
Rd = R+[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables with
nonnegative coefficients.

As it is common in the theoretical computer science literature, we call elements of Rd
polynomials. Note that F〈x1, . . . , xm〉d is naturally isomorphic to the d-th tensor power of
Fm, so tensor would be the better name. We hope that no confusion arises when in the later
sections (where we use concepts from multilinear algebra) we use the tensor language. In
the homogeneous setting, all ABP edge labels are in R1, and hence the polynomial that is
computed is in Rd. In the affine setting, all ABP edge labels are in R0 +R1, and hence the
polynomial that is computed is in

⊕
d′≤dRd′ .

Noncommutative ABPs
Let Rd = F〈x1, . . . , xm〉d and consider the homogeneous setting. We write ncw instead of w
and ncw1 instead of w1 to highlight that we are in the noncommutative setting. Nisan [35]
proved:

I Theorem 1. Let Mi denote the mi × md−i matrix whose entry at position
((k1, . . . , ki), (ki+1, . . . , kd)) is the coefficient of the monomial xk1xk2 · · ·xkd in f . Then
every single-(source,sink) ABP computing f has at least rk(Mi) many vertices in layer i.
Conversely, there exists a single-(source,sink) ABP computing f with exactly rk(Mi) many
vertices in layer i.

Nisan used this formulation to prove strong complexity lower bounds for the noncommutative
determinant and permanent. Forbes [16] remarked that Theorem 1 implies that for fixed w

the set {f | ncw1(f) ≤ w} is Zariski-closed1 (1)

and hence that

ncw1(f) = ncw1(f) for all f. (2)

Proving a similar result (even up to polynomial blowups) in the commutative setting
would be spectacular: It would imply VBP = VBP and hence that Valiant’s conjecture is the
same as the Mulmuley-Sohoni conjecture. By a general principle, for all standard algebraic
complexity measures, over C we have that the Zariski-closure of a set of polynomials of
complexity at most w equals the Euclidean closure [34, §2.C].

1 We identify each m-variate homogeneous degree d polynomial with its coefficient vector. There is a
standard topology on the vector space of these coefficient vectors that we call the Euclidean topology.
The Zariski-closure of a set X of vectors is the smallest set of vectors that contains X and that is the
common zero set of a finite set of polynomials in the coordinate variables, see e.g. [7, Ch. 4] for the
commutative case.
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Forbes mentioned that he believes that Nisan’s proof cannot be lifted to the trace model.
In this paper we prove that Forbes is correct, by constructing a polynomial f0 with

ncw(f0) < ncw(f0). (3)

The proof is given in Sections 5–8. It is a surprisingly subtle application of differential
geometry (inspired by [24]) and interprets tangent spaces to certain varieties as vector spaces
of flows on an ABP digraph.

The gap between ncw(f) and ncw(f) can never be very large though:

ncw(f) ≤ ncw(f) ≤ ncw1(f) (2)= ncw1(f)
2
≤
(
ncw(f)

)2 for all f. (4)

It is worth noting that for our separating polynomial f0, the gap is even less; ncw(f0) <
ncw(f0) ≤ 2ncw(f0). This is the first algebraic model of computation where complexity and
border complexity differ, but their gap is known to be polynomially bounded! For most
models of computation almost nothing is known about the gap between complexity and
border complexity. For commutative width 2 affine ABPs the gap is even as large as between
computable and non-computable [9]!

Monotone ABPs
Let Rd = R+[x1, . . . , xm]d and consider the affine or homogeneous setting.

Since R is not algebraically closed, we switch to a more algebraic definition of approx-
imation. Let R[ε, ε−1]+ denote the ring of Laurent polynomials that are nonnegative for
all sufficiently small ε > 0. Clearly, elements from R[ε, ε−1]+ can have a pole at ε = 0
of arbitrarily high order. We define mw(f) to be the smallest w such that there exists a
polynomial f ′ over the ring R[ε, ε−1]+ such that

there exists a width w ABP over R[ε, ε−1]+ that computes f ′,
no coefficient in f ′ contains an ε with negative exponent, and setting ε to 0 in f ′ yields
f , i.e., f ′ε=0 = f .

We prove a result that is comparable to (2), but uses a very different proof technique:

mw1(f) = mw1(f) for all f. (5)

In terms of complexity classes, this implies

MVBP = MVBPR
.

Our proof also works if the ABP is not layered and the labels are affine.
Intuitively, in this monotone setting, one would think that approximations do not help,

because there cannot be cancellations. But quite surprisingly the same construction as in (3)
can be used to find f0 such that

mw(f0) < mw(f0). (6)

2 Given a trace ABP Γ computing f and a pair of corresponding start and end vertices, we can extract
a single-(source,sink) ABP by deleting all other start and end vertices. If we do this for each pair of
start and end vertices, and if we then idenfity all start vertices to a single start vertex, and also all end
vertex to a single end vertex, then we obtain a single-(source,sink) ABP computing f . The width has
grown by a factor of w, where w is the number of start vertices in Γ.
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By the same reasoning as in (4), we obtain

mw(f) ≤ mw(f) ≤
(
mw(f)

)2 for all f. (7)

This gives a natural monotone model of computation where approximations speed up the
computation. Again, the gap is polynomially bounded!

Separating VQP from VNP
Bürgisser in his monograph [11] defined the complexity class VQP as the class of polynomials
with quasi-polynomially bounded straight-line programs, and established its relation to
the classes VP and VNP (see Section 9 for definitions). He showed that the determinant
polynomial is VQP-complete with respect to the so-called qp-projections (see [11], Corollary
2.29). He strengthened Valiant’s hypothesis of VNP 6⊆ VP to VNP 6⊆ VQP and called it
Valiant’s extended hypothesis (see [11], section 2.5). He further showed that VP is strictly
contained in VQP as one would intuitively expect (see [11], section 8.2). Finally, he also
showed that VQP is not contained in VNP (see [11], Proposition 8.5 and Corollary 8.9).
In this article, we observe that his proof is stronger and actually shows that VQP is not
contained in VNP either, where VNP is the closure of the complexity class VNP in the sense
as mentioned above.

Structure of the paper
In Section 4 we prove (5). Sections 5 to 8 are dedicated to proving (3) and (6) via a new
connection between tangent spaces and flow vector spaces. In Section 9, we discuss the
separation between VQP and VNP.

2 Related work

Grenet [20] showed that mw(perm) ≤
(

m
dm/2e

)
by an explicit construction of a monotone

single-(source,sink) ABP. Even though the construction is monotone, its size is optimal for
m = 3 [2] (for 4 this is already unknown). The noncommutative version of this setting has
been studied in [17]. [42] recently showed that the monotone circuit classes MVP and MVNP
are different. We refer the reader to [42] and [38] and the references therein to get more
information about monotone algebraic models of computation and their long history.

Hüttenhain and Lairez [24] present a method that can be used to show that a complexity
measure and its border variant are not the same. They used it to prove that an explicit
polynomial has border determinantal complexity 3, but higher determinantal complexity.
We use their ideas as a starting point in Section 5 and the later sections.

3 Preliminaries

For a homogeneous degree d ABP Γ, we denote by V the set of vertices of Γ and by V i the
set of vertices in layer i, 1 ≤ i ≤ d+ 1. We choose an explicit bijection between the sets V 1

and V d+1, so that each vertex v in V 1 has exactly one corresponding vertex corr(v) in V d+1.
We denote by Ei the set of edges from V i to V i+1. Let E denote the union of all Ei.

There is a classical interpretation in terms of iterated matrix multiplication: Fix some
arbitrary ordering of the vertices within each layer, such that the i-th vertex in V 1 corresponds
to the i-th vertex in V d+1. For 1 ≤ k ≤ d let Mk be the |V k| × |V k+1| matrix whose entry
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at position (i, j) in Mk is the label from the i-th vertex in V k to the j-th vertex in V k+1.
Then Γ computes the trace∑

1≤k1≤|V 1|
1≤k2≤|V 2|

...
1≤kd≤|V d|

(M1)k1,k2(M2)k2,k3 · · · (Md−1)kd−1,kd(Md)kd,k1 = tr
(
M1M2 · · ·Md

)
. (8)

Hence the name trace model. In the single-(source,sink) model, the trace is taken of a 1× 1
matrix.

4 Monotone commutative single-(source,sink) ABPs are closed

For fixed w ∈ N we study

the set {f ∈ R+[x1, . . . , xn]d | mw1(f) ≤ w}. (9)

We first start with the simple observation that it is not Zariski-closed.

I Proposition 2. {f ∈ R+[x1, . . . , xn]d | mw1(f) ≤ w} is not Zariski-closed.

Proof. Note that a homogeneous degree d single-(source,sink) width w ABP has 2w+w2(d−2)
many edges. The label on each edge is a linear form in n variables, so such an ABP is
determined by N := n(2w + w2(d − 2)) many parameters. Let F : CN → C[x1, . . . , xn]d
be the map that maps these parameters to the polynomial computed by the ABP. Every
coordinate function of F is given by polynomials in N variables, so F is Zariski-continuous.
Therefore

F ((R+)N ) = F ((R+)N ) = F (CN ) ⊇ F (CN ) % F ((R+)N ),

where the overline means the Zariski-closure. We remark that we did not use any special
feature of the model of computation other than the fact that it is defined over R. J

Recall that an ABP has d + 1 layers of vertices. If an ABP has wi many vertices in
layer i, 1 ≤ i ≤ d, we say the ABP has format w = (w1, w2, . . . , wd). We further recall
that wd+1 = w1. The following theorem is our closure result, which proves (5) and hence
MVBP = MVBPR.

I Theorem 3. Given a polynomial f over R and given a format w single-(source,sink) ABP
with affine linear labels over R[ε, ε−1]+ computing fε such that limε→0 fε = f . Then there
exists a format w monotone single-(source,sink) ABP that computes f .

Proof. The proof is constructive and done by a two-step process. In the first step (which is
fairly standard and works in many computational models) we move all the ε with negative
exponents to edges adjacent to the source. The second step then uses the monotonicity.

Given Γ with affine linear labels over R[ε, ε−1]+ we repeat the following process until all
labels that contain an ε with a negative exponent are incident to the source vertex.

Let e be an edge whose label contains ε with a negative exponent −i < 0. Moreover,
assume that e is not incident to the source vertex. Let v be the start vertex of e. We
rescale all edges outgoing of v with εi and we rescale all edges incoming to v with ε−i.
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If we always choose the edge with the highest layer, then it is easy to see that this process
terminates. Since every path from the source to the sink that goes through a vertex v must
use exactly one edge that goes into v and exactly one edge that comes out of v, throughout
the process the value of Γ does not change. We finish this first phase by taking the highest
negative power i among all labels of edges that are incident to the source and then rescale
all these edges with εi. The resulting ABP Γi computes εifε and no label contains an ε with
negative exponent. We now start phase 2 that transforms Γi into Γi−1 that computes εi−1fε
without introducing negative exponents of ε. We repeat phase 2 until we reach Γ0 in which
we safely set ε to 0. Throughout the whole process we do not change the structure of the
ABP and only rescale edge labels with powers of ε, which preserves monotonicity, so the
proof is finished. It remains to show how Γi can be transformed into Γi−1. An edge whose
label is divisible by ε is called an ε-edge. Consider the set ∆ of vertices that are reachable
from the source using only non ε-edges in Γi. The crucial insight is that since Γi is monotone
and computes a polynomial that is divisible by ε, we know that every path in Γi from the
source to the sink uses an ε-edge. Therefore ∆ cannot contain the sink. We call a vertex in
∆ whose outdegree is zero a leaf vertex. We repeat the following procedure until the source
is the only leaf vertex:

Let v be a non-source leaf vertex in ∆. We rescale all edges outgoing of v with ε−1 and
we rescale all edges incoming to v with ε.

It is easy to see that this process terminates with the source being the only leaf vertex. Since
the source is a leaf vertex, all edges incident to the source are ε-edges. We divide all their
labels by ε to obtain Γi−1. J

5 Explicit construction of f0 with higher complexity than border
complexity

Fix some d ≥ 3. In this section for every m ≥ 2 we construct f0 such that

m = ncw(f0) < ncw(f0). (10)

A completely analogous construction can be used to find f0 with w(f0) < w(f0) and with
mw(f0) < mw(f0). For the sake of simplicity, we carry out only the proof for (10).

Recall that in a format w ABP we have wd+1 = w1. In each layer i we enumerate the
vertices V i = {vi1, . . . , viwi} and we assume without loss of generality that the correspondence
bijection between V d+1 and V 1 is the identity on the indices j of v1

j , i.e., the jth vertex in
V 1 corresponds to the jth vertex in V d+1.

Fix an ABP format w = (w1, w2, . . . , wd) such that for all i, wi ≥ 2. Let Γcom denote
the directed acyclic graph underlying an ABP of format w. An edge can be described by
the triple (a, b, i), where 1 ≤ i ≤ d, 1 ≤ a ≤ wi and 1 ≤ b ≤ wi+1. Consider the following
labeling of the edges with triple-indexed variables: `com((a, b, i)) = x

(i)
(a,b). Define fcom to be

the polynomial computed by Γcom with edge labels `com.
We now construct f0 as follows. Let d be odd (the case when d is even works analogously).

Since in each layer we enumerated the vertices, we can now assign to each vertex its parity:
even or odd. We call an edge between two even or two odd vertices parity preserving, while
we call the other edges parity changing. Let us consider the following labeling of Γcom: We
set `0((a, b, i)) := x

(i)
(a,b) if (a, b, i) is parity changing (i.e., a 6≡ b (mod 2)) and set the label

`0((a, b, i)) := εx
(i)
(a,b) otherwise, where ε ∈ C. Let f ′ε be the polynomial computed by Γcom

with edge labels `0 and set fε := 1
εf
′
ε for ε 6= 0. We define f0 := limε→0 fε (convergence

follows from the construction, because d is odd). By definition, for all ε 6= 0, fε can be
computed by a format w ABP. However, we will now prove that this property fails for the
limit point f0.
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I Theorem 4. Fix an ABP format w = (w1, w2, . . . , wd) such that for all i, wi ≥ 2. Let f0
be defined as above. Then, f0 cannot be computed by an ABP of format w.

Note that for a format where m = w1 = · · · = wd, this gives the f0 which was desired in (10).
(Note, however, that f0 can be computed by an ABP of width 2m as follows. Construct an
ABP Γ′ that has, for each vertex v ∈ Γcom, vertices v′ and v′′. For each parity changing
edge (a, b) ∈ Γcom with label `0, add edges (a′, b′) and (a′′, b′′) with the same label `0. For
each parity preserving edge (a, b) ∈ Γcom with label `0, add edge (a′, b′′) with label ( 1

ε )`0.
For corresponding vertices u, v in Γcom, let v′′ be the corresponding vertex for u′ and v′ be
the corresponding vertex for u′′ in Γ′. All paths between corresponding vertices in this ABP
use exactly one parity preserving edge of Γcom, and so this ABP computes f0.)

The proof of Theorem 4 works as follows. Let G := GLw1w2 × GLw2w3 × · · · × GLwdwd+1 .
Let End := G denote its Euclidean closure, i.e., tuples of matrices in which one or several
matrices can be singular.

We consider noncommutative homogeneous polynomials in the variables x(i)
(a,b) such that

the i-th variable in each monomial is x(i)
(a,b) for some a ∈ [wi] and b ∈ [wi+1]. The vector

space of these polynomials is isomorphic to W := Cw1w2 ⊗ Cw2w3 ⊗ · · · ⊗ Cwdwd+1 and the
monoid End (and thus also the group G) acts on this space in the canonical way. The set

{f ∈W | f can be computed by a format w ABP}

is precisely the orbit Endfcom. We follow the overall proof strategy in [24]. The monoid orbit
Endfcom decomposes into two disjoint orbits:

Endfcom = Gfcom ∪ (End \ G)fcom.

Our goal is to show two things independently:
1. f0 /∈ (End \ G)fcom, and
2. f0 /∈ Gfcom,
which finishes the proof of Theorem 4.

All elements in (End \ G)fcom are not concise, a term that we define in Section 6, where
we also prove that f0 is concise. Therefore f0 /∈ (End \ G)fcom.

All elements in Gfcom have full orbit dimension, a term that we define in Section 7 and
we prove that f0 does not have full orbit dimension in Section 8. This finishes the proof of
Theorem 4.

6 Conciseness

In this section we show that f0 /∈ (End \ G)fcom. To do so we use a notion called conciseness.
Informally, it captures whether a polynomial depends on all variables independent of a change
of basis, or a tensor cannot be embedded into a tensor product of smaller spaces.

Given a tensor f in Cm1 ⊗ Cm2 ⊗ · · · ⊗ Cmd , we associate the following matrices
with f . For j ∈ [d], define a matrix M j

f of dimension mj × (
∏
i∈[d]\{j}mi) with rows

labeled by the standard basis of Cmj , and columns by elements in the Cartesian product
{standard basis of Cm1} × · · · × {standard basis of Cmj−1} × {standard basis of Cmj+1} ×
· · · × {standard basis of Cmd}. We write the tensor f in the standard basis

f =
∑

1≤i1≤m1
1≤i2≤m2

...
1≤id≤md

αi1,...,idei1 ⊗ · · · ⊗ eid

and associate to it the matrix M j
f whose entry at position ((ij), (i1, i2, . . . , ij−1, ij+1, . . . , id))

is αi1,...,id .
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I Definition 5. We say that a tensor f in Cm1 ⊗ Cm2 ⊗ · · · ⊗ Cmd is concise if and only if
for all j ∈ [d], M j

f has full rank. 3

As a warm-up exercise we now show that fcom is concise.

I Proposition 6. fcom is concise.

Proof. We know that fcom ∈ W . Let us consider the matrix M j
fcom

for some j ∈ [d]. To
establish that M j

fcom
has full rank, it suffices to show that rows are linearly independent. In

order to show that, we argue that every row is non-zero and every column has at most one
non-zero entry. In other words, rows are supported on disjoint sets of columns.

A row of M j
fcom

is labeled by an edge in the j-th layer of the ABP Γcom. Recall that only
paths that start at a vertex in V 1 and end at the corresponding vertex in V d+1 contribute
to the computation in Γcom. We call such paths valid paths. An entry in M j

fcom
is non-zero

iff the corresponding row and column labels form a valid path in Γcom. Thus, it is easily
seen that a row is non-zero iff there is a valid path in Γcom that passes through the edge
given by the row label. By the structure of Γcom, in particular that every layer is a complete
bipartite graph, we observe that passing through every edge there is some valid path. Hence,
we obtain that every row is non-zero.

The second claim now follows from the observation that fixing d− 1 edges either defines
a unique dth edge so that these d edges form a valid path, or for these d− 1 edges there is
no such dth edge. J

As mentioned in Section 5, to establish f0 /∈ (End \G)fcom we will show that f0 is concise
while any element in (End \ G)fcom is not.

I Lemma 7. f0 is concise.

Proof. Analogous to the proof of Proposition 6, we again show that every row of M j
f0

is
non-zero and every column of it has at most one non-zero entry. That is, rows of M j

f0
are

supported on disjoint sets of columns.
From the construction of f0 it is seen that a path in Γcom contributes to the computation

of f0 iff it is a valid path that comprises of exactly one parity preserving edge. The second
claim of every column having at most one non-zero entry now follows for the same reason as
in the proof of Proposition 6.

Before proving the first claim, we recall two assumptions in the construction of f0. The
first is that the format w = (w1, w2, . . . , wd) is such that wi ≥ 2 for all i ∈ [d] and the
second is that d is odd. To argue that a row is non-zero it suffices to show that a valid path
comprising of only one parity preserving edge passes through the edge given by the row level.
Let us consider an arbitrary edge e in Γcom. We have two cases to consider depending on
whether it is parity preserving or changing.
Case 1. Suppose e is parity preserving and it belongs to a layer j ∈ [d]. The number of

layers on the left of e is j − 1 and on the right is d− j. Since d is odd, these numbers are
either both even or both odd. We now argue for the case when they are even (the odd
case is analogous). Choose a vertex v in V 1 that has the same parity (different in the odd

3 When f is viewed as a set-multilinear polynomial (see [36, Section 1.4]), this condition translates to the
linear independence of the partial derivatives of f . In particular, M j

f is testing if the partial derivatives
of f with respect to the j-th block of variables are all linearly independent. This partial derivatives
based criterion for testing if a polynomial depends on all the variables, independent of a change of basis,
is pretty standard: see, for instance, [23, Corollary 5.1.4].
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case) as one of the end points of e. (Such a choice exists because w1 ≥ 2.) We now claim
that there exists a valid path starting at v that passes through e and contains exactly
one parity preserving edge. Since e is parity preserving, all edges in the claimed path
must be parity changing. We observe that e can be easily extended in both directions
using parity changing edges such that the path ends at corr(v). The existence of parity
changing edges at each layer uses the assumption that wi ≥ 2.

Case 2. Otherwise e = (a, b) is parity changing. Again as before there are two cases based
on whether both j − 1 and d− j are even or odd. Consider the case when they are even
(the odd case being analogous). We first assume that j 6= d. Choose a vertex v in V 1

that has the same parity as a. We now construct a valid path from v to corr(v) that
passes through e and contains exactly one parity preserving edge. It is easily seen that
there exists a path from v to a using only parity changing edges. We choose a parity
preserving outgoing edge incident to b. We call its endpoint v1. Since v1 and v have
different parities, we can connect v1 to corr(v) in V d+1 using only parity changing edges.
Thus we obtain the following valid path v → · · · → a→ b→ v1 → · · · → corr(v) passing
through exactly one parity preserving edge (b, v1). In the case that j = d, choose an
incoming parity preserving edge incident on a instead of an outgoing edge on b. J

I Remark 8. We note that if the format w = (w1, . . . , wd) defining f0 is such that for some
j ∈ [d], wj = 1, then f0 is not concise. This can be seen as follows.

Let wj = 1, and let v denote the unique vertex in V j . Let e be the edge e = (1, 1, j). If
j < d, let e′ be the edge e′ = (1, 1, j + 1), otherwise let e′ be the edge e′ = (1, 1, j − 1). Both
e, e′ are parity preserving edges. By construction, every valid path using e′ must also use e.
Hence the corresponding row in the matrix M j+1

f0
if j < d, and in M j−1

f0
otherwise, is zero.

Therefore f0 is not concise.
This is an interesting observation, because this is the point where our proof fails for

single-(source,sink) ABPs, and this is expected, because Nisan [35] had shown that the set of
polynomials computed by such ABPs of format w is a closed set.

I Lemma 9. Let f ∈ (End \ G)fcom. Then f is not concise.

Proof. This statement is true in very high generality. In our specific case a proof goes as
follows. If f ∈ (End \ G)fcom, then f = gfcom for some g ∈ End \ G. Let g = (g1, . . . , gd),
where gi ∈ Cwiwi+1×wiwi+1 . Since g /∈ G, at least one of the gi must be singular. The crucial
property is M i

gfcom
= giM

i
fcom

, which finishes the proof. J

7 Orbit dimension, tangent spaces, and flows

In this section we introduce tangent spaces and study their dimensions. We especially study
them in the context of Gfcom, and Gf0.

The orbit dimension of a tensor f ∈ Cw1w2 ⊗ Cw2w3 ⊗ · · · ⊗ Cwdwd+1 is the dimension
of the orbit Gf as an affine variety. It can be determined as the dimension of the tangent
space Tf of the action of G at f , which is a vector space defined as follows. Let g :=
Cw1w2×w1w2 × · · · × Cwdwd+1×wdwd+1 . For A ∈ g we define the Lie algebra action Af :=
limε→0

1
ε ((id + εA)f − f), where id ∈ G is the identity element. We define the vector space

Tf := gf = {Af | A ∈ g}.

B Claim 10. The dimension dimTh is the same for all h ∈ Gf .
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Proof. Since the action of G is linear, for all g ∈ G and A ∈ g we have

A(gf) = lim
ε→0

1
ε ((id + εA)(gf)− gf) = lim

ε→0
1
ε

(
gg−1(id + εA)gf − gf

)
= g lim

ε→0
1
ε

(
(id + ε(g−1Ag))f − f

)
= g((g−1Ag)f)

Since A 7→ g−1Ag is a bijection on g, it follows that Tgf = gTf . Hence the claim follows.
C

In the following we will use Claim 10 to argue f0 /∈ Gfcom by showing that dimTfcom and
dimTf0 are different.

Let e, e′ ∈ Ei and let A(i)
e,e′ ∈ g denote the matrix tuple where the i-th matrix has a 1 at

position (e, e′) and all other entries (also in all other matrices) are 0. Since these matrices
form a basis of g, it follows that

gf = linspan{A(i)
e,e′f}.

For a tensor f we define the support of f as the set of monomials (i.e., standard basis tensors)
for which f has nonzero coefficient. For a linear subspace V ⊆ Cw1w2⊗Cw2w3⊗· · ·⊗Cwdwd+1

we define the support of V as the union of the supports of all f ∈ V .
We write e∩ e′ = ∅ to indicate that two edges e and e′ do not share any vertex. We write

|e ∩ e′| = 1 if they share exactly one vertex. We observe that for f ∈ {fcom, f0} the vector
space Tf decomposes into a direct sum of three vector spaces,

g2 := linspan{A(i)
e,e′ | 1 ≤ i ≤ d, 1 ≤ e, e

′ ≤ wiwi+1, e ∩ e′ = ∅}

g1 := linspan{A(i)
e,e′ | 1 ≤ i ≤ d, 1 ≤ e, e

′ ≤ wiwi+1, |e ∩ e′| = 1}

g0 := linspan{A(i)
e,e | 1 ≤ i ≤ d, 1 ≤ e ≤ wiwi+1}.

g = g0 ⊕ g1 ⊕ g2

Tf = g0f ⊕ g1f ⊕ g2f

The last direct sum decomposition follows from the fact that g0f , g1f , and g2f have pairwise
disjoint supports.

We show in this section that dim g2fcom = dim g2f0, and that dim g1fcom = dim g1f0. In
Section 8 we show that dim g0fcom > dim g0f0, which then implies f0 /∈ Gfcom by Claim 10.
In fact, Theorem 13 gives the exact dimension of g0fcom by proving that g0fcom is isomorphic
to the vector space of flows on the ABP digraph when identifying vertices in V 1 with their
corresponding vertices in V d+1. Theorem 14 establishes an additional equation based on the
vertex parities that shows that g0f0 is strictly lower dimensional than g0fcom.

We start with Lemma 11, which shows that dim g2fcom and dim g2f0 have full dimension.

I Lemma 11. Let f ∈ {fcom, f0}. The space g2f has full dimension. That is, its dimension
equals

∑d
i=1 wiwi+1(wi − 1)(wi+1 − 1).

Proof. Suppose f = fcom. The other case being analogous, we only argue this case.
We analyze the monomials that appear in the different A(i)

e,e′fcom and argue that a
monomial that appears in some A(i)

e,e′fcom can only appear in that specific A(i)
e,e′fcom. Indeed,

each monomial corresponds to a valid path in which one edge e in layer i is changed to
e′. Since e and e′ share no vertex, from this edge sequence we can reconstruct i, e, and e′
uniquely: e′ is the edge that does not have any vertex in common with the rest of the edge
sequence, i is its layer, and e is the unique edge that we can replace e′ by in order to form a
valid path. We conclude that the A(i)

e,e′fcom have disjoint support and the lemma follows. J
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To establish that dim g1fcom = dim g1f0, we introduce some notation.
For a connected directed graph G = (V,E) we define a flow to be a labeling of the edge

set E by complex numbers such that at every vertex the sum of the labels of the incoming
edges equals the sum of the labels of the outgoing edges. It is easily seen that the set of flows
forms a vector space F . We have

dimF = |E| − |V |+ 1, (11)

see e.g. Theorem 20.7 in [8].
Recall that Ei denotes the set of edges from V i to V i+1. Let X := E1× · · · ×Ed denote

the direct product of the sets of edge lists. Each directed path of length d from layer 1
to d + 1 is an element of X , but X contains other edge sets as well. Define Ei := CEi .
Consider the following map ϕ from X to E1 ⊗ · · · ⊗ Ed,

ϕ(e1, . . . , ed) = xe1 ⊗ · · · ⊗ xed ∈ E1 ⊗ · · · ⊗ Ed

where (xj) is the standard basis of Ei. Note ϕ is a bijection between X and the standard
basis of E1 ⊗ · · · ⊗ Ed.

An edge set in X is called a valid path if it forms a path that starts and ends at
corresponding vertices (see Sec. 1). Let P ⊆X denote the set of valid paths.

I Proposition 12. dim g1fcom = dim g1f0 =
∑d
i=1(wi−1 + wi+1 − 1)(wi − 1)wi, where

w0 := wd.

Proof. The proof works almost analogously for fcom and f0, so we treat only the more
natural case fcom. We show that g1fcom is isomorphic to a direct sum of vector spaces of
flows on very simple digraphs. Fix 1 ≤ i ≤ d. Fix distinct 1 ≤ a, b ≤ wi. For distinct edges
e, e′ ∈ Ei, let Pe,e′ ⊆X be the set of edge sets containing e′ that are not valid paths, but
that become valid paths by removing e′ and adding e. Let Pi

a,b ⊆ X be the set of edge
sets that are not valid paths, but that become valid paths by switching the end point of the
(i− 1)-th edge to vib and that also become valid paths by switching the start point of the
i-th edge to via (if i− 1 = 0, then interpret i− 1 := d). Pictorially, this means that elements
in Pi

a,b are almost valid paths, but there is a discontinuity at layer i, where the path jumps
from vertex via to vertex vib. We have

A
(i)
e,e′fcom =

∑
p∈Pe,e′

ϕ(p).

The vectors {A(i)
e,e′fcom | 1 ≤ i ≤ d, e, e′ ∈ Ei, |e ∩ e′| = 1} are not linearly independent,

because for a 6= b we have∑
e and e′ have the same start point

e′ ends at the a-th vertex
e ends at the b-th vertex

A
(i−1)
e,e′ fcom =

∑
p∈Pi

a,b

ϕ(p) =
∑

h and h′ have the same end point
h starts at the a-th vertex
h′ starts at the b-th vertex

A
(i)
h,h′fcom.

(12)

Define

Ta,b,i := linspan
{
A

(i−1)
e,e′ fcom

∣∣∣∣ e and e′ have the same start point
e′ ends at the a-th vertex
e ends at the b-th vertex

}
+ linspan

{
A

(i)
h,h′fcom

∣∣∣∣ h and h′ have the same end point
h starts at the a-th vertex
h′ starts at the b-th vertex

}
.
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The support of Ta,b,i and Tã,b̃,̃i are disjoint, provided (a, b, i) 6= (ã, b̃, ĩ). Hence

g1fcom =
⊕

1≤i≤d
1≤a,b≤wi

a6=b

Ta,b,i

It remains to prove that the dimension of Ta,b,i is wi−1 + wi+1 − 1, because then

dim g1fcom =
∑

1≤i≤d
1≤a,b≤wi

a 6=b

(wi−1 + wi+1 − 1) =
d∑
i=1

(wi−1 + wi+1 − 1)(wi − 1)wi.

Note that Ta,b,i is defined as the linear span of wi−1 +wi+1 many vectors, but (12) shows that
these are not linearly independent. We prove that (12) is the only equality by showing that
Ta,b,i is isomorphic to a flow vector space. We define a multigraph with two vertices: ·© and
∗©. We have wi+1 many edges from ·© to ∗©, and we have wi−1 many edges from ∗© to ·©.
We denote by ∗© k→ ·© the k-th edge from ∗© to ·©. Let Fa,b,i denote the vector space of flows
on this graph. Its dimension is wi−1 +wi+1−1, see (11). We define % : E1⊗· · ·⊗Ed → Fa,b,i
on rank 1 tensors via

%(xe1 ⊗ · · · ⊗ xed)( ∗© k→ ·©) =

{
1 if ei−1 starts at k in layer i− 1 and ends at a in layer i,
0 otherwise.

%(xe1 ⊗ · · · ⊗ xed)( ·© l→ ∗©) =

{
1 if ei starts at b in layer i and ends at l in layer i+ 1,
0 otherwise.

Using (12) it is readily verified that % maps Ta,b,i to Fa,b,i. It remains to show that
% : Ta,b,i → Fa,b,i is surjective. Let α := |Pi

a,b|. We observe that

%(A(i−1)
e,e′ fcom)( ∗© k→ ·©) =

{
α/wi−1 if e and e′ both start at the k-th vertex
0 if e and e′ both start at the same vertex, but not at the k-th

%(A(i−1)
e,e′ fcom)( ·© l→ ∗©) = α/(wi−1wi+1)

%(A(i)
h,h′fcom)( ·© l→ ∗©) =

{
α/wi+1 if h and h′ both end at the l-th vertex
0 if h and h′ both end at the same vertex, but not at the l-th

%(A(i)
h,h′fcom)( ∗© k→ ·©) = α/(wi−1wi+1)

Let Ξ :=
∑
A

(i−1)
e,e′ fcom. Then ∀k : %(Ξ)( ∗© k→ ·©) = α/wi−1 and ∀l : %(Ξ)( ·© l→ ∗©) = α.

Therefore, for e, e′ starting at the k0-th vertex and h, h′ ending at the l0-th vertex we have
that

%

(
wi−1wi+1%(A(i−1)

e,e′ fcom) + wi−1wi+1%(Aih,h′fcom)− Ξ
)

is nonzero only on exactly two edges: ∗© k0→ ·© and ·© l0→ ∗©. Cycles form a generating set of
the vector space Fa,b,i, which finishes the proof of the surjectivity of %. J
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8 Flows on ABPs

We now proceed to the analysis of g0fcom and g0f0. The connection to flow vector spaces
will be even more prevalent than in Proposition 12. The main result of this section is
dim g0fcom > dim g0f0 (Theorems 13 and 14), which implies that fcom and f0 have different
orbit dimensions. We thereby conclude that f0 /∈ Gfcom.

To each edge e we assign its path tensor ψ(e) by summing tensors over all valid paths
passing through e,

ψ(e) :=
∑

p∈P with e∈p

ϕ(p) ∈ E1 ⊗ · · · ⊗ Ed.

By linear continuation this gives a linear map ψ : CE → E1 ⊗ · · · ⊗ Ed.
Observe that ψ(e) = A

(i)
e,efcom. Let T denote the linear span of all ψ(e), e ∈ E. In other

words, T = g0fcom.
Let P ′ ⊆P ⊆X be the set of valid paths that contain exactly one parity preserving

edge. To each edge e we assign its parity path tensor ψ′(e) by summing tensors over paths
in P ′,

ψ′(e) :=
∑

p∈P′ with e∈p

ϕ(p) ∈ E1 ⊗ · · · ⊗ Ed.

By linear continuation this gives a linear map ψ′ : CE → E1 ⊗ · · · ⊗ Ed. Observe that
ψ′(e) = A

(i)
e,ef0. Let T ′ denote the linear span of all ψ′(e), e ∈ E. In other words, T ′ = g0f0.

We will establish the following bounds on the dimensions of T and T ′.

I Theorem 13. dim T = |E| −
∑d
i=1 wi + 1.

I Theorem 14. dim T ′ ≤ |E| −
∑d
i=1 wi.

The rest of this section is dedicated to the proofs of Theorem 13 and Theorem 14 by
showing that T is isomorphic to the vector space of flows “on the ABP”, while the parity
constraints lead to a smaller dimension of T ′.

From an ABP Γ we construct a digraph Γ̃ by identifying corresponding vertices from
the first and the last layer in V and calling the resulting vertex set Ṽ . Note |Ṽ | =

∑d
i=1 wi.

The directed graphs Γ and Γ̃ have the same edge set. The resulting directed graph is called
Γ̃ = (Ṽ , E). Let F denote the vector space of flows on Γ̃. Note that by (11) we have
dimF = |E| − |Ṽ | + 1. All directed cycles in Γ̃ have a length that is a multiple of d. In
particular, all cycles of length exactly d are in one-to-one correspondence with valid paths
in Γcom. For an edge e ∈ E, let χ(e) ∈ CE denote the characteristic function of e, i.e., the
function whose value is 1 on e and 0 everywhere else.

We now prove Theorem 13 by establishing a matching upper (Lemma 15) and lower
bound (Lemma 16) of |E| − |Ṽ |+ 1 = dimF on dim T .

The upper bound
I Lemma 15. dim T ≤ |E| − |Ṽ |+ 1.

Proof. For v ∈ Ṽ , let in(v) ⊆ E denote the set of incoming edges incident to v and out(v) ⊆ E
denote the set of outgoing edges incident to v. For each v ∈ Ṽ , define the row vector

rv =
∑

e∈in(v)

χ(e)−
∑

e∈out(v)

χ(e).
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These vectors are the rows of the signed incidence matrix of Γ̃, and since Γ̃ is connected,
they span a space of dimension |Ṽ | − 1 ([8, Ex. 1.5.6]). Now observe that for all v ∈ Ṽ ,∑

e∈in(v)

ψ(e) =
∑

e∈out(v)

ψ(e).

Since ψ is linear, this is equivalent to

ψ

 ∑
e∈in(v)

χ(e)−
∑

e∈out(v)

χ(e)

 = 0.

Hence each rv is in the kernel of ψ, and hence dim kerψ ≥ |Ṽ | − 1. Using (11), we obtain
dim T = dim imψ = |E| − dim kerψ ≤ |E| − |Ṽ |+ 1 = dimF . J

The lower bound
To obtain the lower bound, we define a linear map % : E1 ⊗ · · · ⊗ Ed → CE such that the
image of % restricted to T equals F . This will imply that dim T ≥ dimF , thereby achieving
the required lower bound.

We define the linear map % on standard basis elements xe1 ⊗ · · · ⊗ xed as follows,

%(xe1 ⊗ · · · ⊗ xed) := χ(e1) + · · ·+ χ(ed),

and then extend it to the domain E1 ⊗ · · · ⊗ Ed via linear continuation.

I Lemma 16. Let %|T denote the restriction of % to the linear subspace T . Then, im %|T = F .
In particular, dim T ≥ dimF = |E| − |Ṽ |+ 1.

Proof. To prove equality it suffices to show im %|T ⊆ F and F ⊆ im %|T .
The first containment is easy to see. For an edge e, consider the image of ψ(e) under the

map %,

%(ψ(e)) =
∑

e∈p∈P

∑
e′∈p

χ(e′).

Observe that for a path p ∈P,
∑
e′∈p χ(e′) is a flow on Γ̃ and hence it belongs to F . Thus,

we have %(ψ(e)) ∈ F . Since T is spanned by ψ(e), for e ∈ E, we obtain that im %|T ⊆ F .
To establish the second containment it suffices to show that the image of T under the

map % contains a basis of F . We identify a specific basis for F in Claim 17 and prove that it
is contained in im %|T in Claim 18 to complete the argument. J

We identify directed cycles with their characteristic flows, i.e., flows that have value 1
on the cycle’s edges and 0 everywhere else. We also identify directed cycles that use edges
in any direction with their characteristic flow: the characteristic flow is defined to take the
value 1 on an edge e if e is traversed in the direction of e, and value −1 on e if e is traversed
against its direction.

From the theory of flows we know that for every (undirected) spanning tree T of Γ̃, the
vector space F ∈ CE has a basis given by the characteristic flows of cycles that only use
edges from T and exactly one additional edge (for example, see Theorem 20.8 in [8]). Thus,
the cycle flows corresponding to the elements not in the spanning tree form a basis of F .

B Claim 17. F is spanned by the set of directed cycles in Γ̃ of length exactly d.

CCC 2020
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Figure 1 The spanning tree construction for width 4 and d = 5.

e

Ce

= + -

C2 C3 C1

Figure 2 Decomposing a cycle of length d+ 2 as a linear combination of cycles of length d. The
figure is an illustration when d = 3. The dotted layers in each cycle from the left are V 3, V 1, V 2,
and V 3 again.

Proof. We construct a spanning tree τ as follows, which will be a tree whose edges are all
directed away from its root. Informally, the tree is given by the following subgraph, we make
the first vertex in V 1 as root, and include all the outgoing edges incident to it. We then
move to the first vertex in V 2 and include all the outgoing edges incident to it. We continue
in this way until we reach V d. Upon reaching the first vertex in V d we include all but one
outgoing edges incident to it. The one that is an incoming edge to the root is not included.
Figure 1 illustrates the construction. We now formally define this.

Let vi1 ∈ V i denote the first vertex in the layer i, 1 ≤ i ≤ d. Further recall in(v) ⊆ E and
out(v) ⊆ E denote the set of incoming and outgoing edges, respectively, incident to v. Define
the edge set

τ :=
(

d⋃
i=1

out(vi1)
)
\ {(vd1 , v1

1)},

which is a spanning tree in Γ̃. We know that every edge not in the tree when added to the
tree gives a unique undirected cycle. We now show that the characteristic flows of these
undirected cycles can be expressed as a linear combination of the characteristic flows of
directed cycles of length d. For e ∈ E \ τ , let ce denote the characteristic flow of the unique
undirected cycle that uses e in its correct direction and only edges of τ . We argue depending
on which layer the edge e belongs to.

Suppose e ∈ E1 \ τ .
If e is incident to v2

1 , the first vertex in V 2, then the inclusion of e creates a directed
cycle of length d. Hence, ce equals the characteristic flow of this directed cycle.
Otherwise, the inclusion of e creates an undirected cycle of length d+2. If e = (v1

j1
, v2
j2

)
for some j1 ∈ [2, w1] and j2 ∈ [2, w2], then the cycle ce is given as follows:

vd1 − v1
j1
− v2

j2
− v1

1 − v2
1 − · · · − vd−1

1 − vd1 .
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Consider the following two directed cycles:

C1 : v1
1 − v2

j2
− · · · − vd1 − v1

1 and
C2 : v1

j1
− v2

j2
− · · · − vd1 − v1

j1
,

such that the part v2
j2
−· · ·−vd1 between v2

j2
and vd1 in the two cycles is the same. Let us

denote the characteristic flow of a cycle C by χ(C). We now observe that χ(C2)−χ(C1)
equals the characteristic flow of the undirected cycle v1

j1
− v2

j2
− v1

1 − vd1 − v1
j1
. This is

because the common part in C1 and C2 cancels out. To χ(C2) − χ(C1) we add the
characteristic flow of the directed cycle,

C3 : v1
1 − v2

1 − v3
1 − · · · − vd−1

1 − vd1 − v1
1 .

It is now easily seen that χ(C2)− χ(C1) + χ(C3) equals the characteristic flow of the
cycle ce (see Figure 2 for an illustration).

Suppose e ∈ Ed \ τ .
If e is incident to v1

1 , the first vertex in V 1, then as before the inclusion of e creates
a directed cycle of length d. Hence, ce equals the characteristic flow of this directed
cycle.
Otherwise, the inclusion of e creates an undirected cycle of length 4. If e = (vdj1

, v1
j2

)
for some j1 ∈ [2, wd] and j2 ∈ [2, w1], then the cycle ce is given as follows:

vdj1
− v1

j2
− vd1 − vd−1

1 − vdj1
.

Consider the following two directed cycles:

C4 : v1
j2
− · · · − vd−1

1 − vd1 − v1
j2

and
C5 : v1

j2
− · · · − vd−1

1 − vdj1
− v1

j2
,

such that the part v1
j2
− · · · − vd−1

1 between v1
j2

and vd−1
1 in the two cycles is the same.

We now claim that χ(C5)− χ(C4) equals the characteristic flow of ce. This is because
the common part in C4 and C5 cancels out.

Otherwise e ∈ Ei \ τ for some i ∈ {2, . . . , d− 1}. In such a case inclusion of e creates an
undirected cycle of length 4. We can again argue exactly like in the previous case, and so
we omit the argument here. C

We now prove that the generating set given by the directed cycles of length d is contained
in the image of T under the map %.

B Claim 18. im(%|T ) contains the characteristic flow of each directed cycle of length d.

Proof. Let {e1, e2, . . . , ed} ⊆ E be a directed cycle of length d, where each ei points from a
vertex in V i to a vertex in V i+1. Let {e(j)

i } denote the set of edges that start at the same
vertex as ei, but for which e(j)

i 6= ei. Thus |{e(j)
i }| = |V i+1| − 1. Let

ψ̄(e) := 1
|{p ∈P with e ∈ p}|ψ(e),

so that %(ψ̄(e)) is a flow with value 1 on the edge e. It is instructive to have a look at the left
side of Figure 3, where %(ψ̄(e1)) is depicted. Subtracting 1

w3

∑w3−1
j=1 %(ψ̄(e(j)

2 )) and adding
w3−1
w3

%(ψ̄(e2)) reduces the support significantly and brings us one step closer to the cycle,
see the right side of Figure 3. We iterate this process until only the cycle is left. Formally:
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1
w4w5

1
w5 1 1

w3
1

w3w4
1

w4w5
1
w5 1 1 1

w4

Figure 3 On the left: %(ψ̄(e1)). On the right: %(ψ̄(e1))− 1
w3

∑w3−1
j=1 %(ψ̄(e(j)

2 )) + w3−1
w3

%(ψ̄(e2)).
This is the case d = 5 and format (4, 4, 4, 4, 4). Edges that are not drawn carry 0 flow. All edges
in the same layer carry either 0 flow or the value that is depicted above the edge layer. For the
purposes of illustation, e1 is the top edge in the center. Here we assume that each ei points from
the first vertex in V i to the first vertex in V i+1.

χ(e1, . . . , ed) = %(ψ̄(e1))

+ w3−1
w3

%(ψ̄(e2))− 1
w3

w3−1∑
j=1

%(ψ̄(e(j)
2 ))

+ · · ·

+ wd−1
wd

%(ψ̄(ed−1))− 1
wd

wd−1∑
j=1

%(ψ̄(e(j)
d−1)). C

The stronger upper bound via parities
We now proceed to upper bound dim T ′ (Theorem 14). The proof is analogous to the proof
of Lemma 15.

I Theorem 19 (Restatement of Theorem 14). dim T ′ ≤ |E| − |Ṽ |.

Proof. As in the proof of Lemma 15, for v ∈ Ṽ , we have∑
e∈in(v)

ψ′(e) =
∑

e∈out(v)

ψ′(e).

Furthermore, we have the following additional constraint on ψ′,

(d− 1)
∑

e parity preserving
ψ′(e) =

∑
e parity changing

ψ′(e).

By the linearity of ψ′, we have

ψ′

(d− 1)
∑

e parity preserving
χ(e)−

∑
e parity changing

χ(e)

 = 0.

Therefore, the kernel of ψ′ is spanned by the vectors (
∑
e∈in(v) χ(e) −

∑
e∈out(v) χ(e)), for

v ∈ Ṽ , and an additional vector ((d− 1)
∑
e parity preserving χ(e)−

∑
e parity changing χ(e)).
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We now claim that the new vector is linearly independent from the earlier set of vectors.
We prove the claim by constructing a vector in CE that is orthogonal to the earlier set of
vectors but is non-orthogonal to the additional vector. One such vector is given by the
characteristic flow of the directed cycle v1

1 − v2
1 − v3

1 − · · · − vd−1
1 − vd1 − v1

1 .
Thus, it follows that dim kerψ′ ≥ |Ṽ |, and hence dim T ′ ≤ |E| − |Ṽ |. J

9 VQP versus VNP

In this section, we compare the complexity classes VQP and VNP. Valiant in his seminal
paper [41] defined the complexity classes that are now called as VP and VNP, and the central
question of algebraic complexity is to understand whether the two complexity classes are
indeed different as sets (Valiant’s hypothesis). Bürgisser [11] defined the complexity class
VQP and related it to the complexity classes VP and VNP. We proceed to define the above
three classes for establishing the context. For an exhaustive treatment of the classes, we refer
the readers to Bürgisser’s monograph [11] from where we are lifting the definitions. We first
need to define so-called p-families.

I Definition 20. A sequence f = (fn) of multivariate polynomials over a field k is called
a p-family (over k) iff the number of variables as well as the degree of fn are bounded by
polynomial functions in n.

We now need to define the model of computation and the notion of complexity in order to
define the complexity classes of interest.

I Definition 21. A straight-line program Γ (expecting m inputs) represents a sequence
(Γ1, . . . ,Γr) of instructions Γρ = (ωρ; iρ, jρ) with operation symbols ωρ ∈ {+,−, ∗} and the
address iρ, jρ which are integers satisfying −m < iρ, jρ < ρ. We call r the size of Γ.

So, essentially, in a straight-line program, we either perform addition or subtraction or
multiplication on the inputs or the previously computed elements. The size of the straight-
line program naturally induces a size complexity measure on polynomials as follows:

I Definition 22. The complexity L(f) of a polynomial f ∈ F[x1, . . . , xn] is the minimal size
of a straight-line program computing f from variables xi and constants in F.

We are now all set to define the above discussed complexity classes.

I Definition 23. A p-family f = (fn) is said to be p-computable iff the complexity L(fn) is
a polynomially bounded function of n. VPF consists of all p-computable families over the
field F.

I Definition 24. A p-family f = (fn) is said to be p-definable iff there exists a p-computable
family g = (gn), gn ∈ F[x1, . . . , xu(n)], such that for all n

fn(x1, . . . , xv(n)) =
∑

e∈{0,1}u(n)−v(n)

gn(x1, . . . , xv(n), ev(n)+1, . . . , eu(n)).

The set of p-definable families over F forms the complexity class VNPF.

I Definition 25. A p-family f = (fn) is said to be qp-computable iff the complexity L(fn)
is a quasi-polynomially bounded function of n. The complexity class VQPF consists of all
qp-computable families over F.
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In the above three definitions, if the underlying field is clear from the context, we can drop
the subscript F and simply represent the classes as VP,VNP and VQP respectively. In what
follows, the underlying field is always assumed to be Q, the field of rational numbers.

In [11], Bürgisser showed the completeness of the determinant polynomial for VQP
under qp-projections and strengthened Valiant’s hypothesis of VNP 6⊆ VP to VNP 6⊆ VQP
and called it Valiant’s extended hypothesis (see [11], Section 2.5). He also established that
VP ( VQP and went on to show that VQP 6⊆ VNP (see [11], Proposition 8.5 and Corollary
8.9). The main observation of this section is that his proof is stronger and is sufficient to
conclude that VQP is not contained in the closure of VNP either, where the closure is in the
sense as mentioned in Section 1.

In fact, Bürgisser in his monograph [11] also gives a set of conditions which if the
coefficients of a polynomial sequence satisfies, then that polynomial sequence cannot be in
VNP [11, Theorem 8.1]. His theorem and the proof is inspired by Heintz and Sieveking [22].
The second observation of this section is that this proof is even stronger and actually those
conditions are sufficient to show that the given polynomial sequence is not contained in
VNP either.

We now discuss both the observations.

9.1 VQP 6⊆ VNP
We first show that there is a logn variate polynomial of degree (n− 1) logn which is in VQP
but not in VNP. In this exposition, for the sake of better readability, we do not present the
Bürgisser’s statements in full generality since it is not essential for the theorem that we want
to show here. Moreover, the less general version that we present here contains all the ideas
for the theorem statements and their proofs.

I Theorem 26. Let Nn := {0, . . . , n − 1}logn and fn :=
∑

µ∈Nn
22j(µ)

Xµ1
1 · · ·X

µlogn
logn , where

j(µ) :=
∑logn
j=1 µjn

j−1. Then fn ∈ VQP, but fn /∈ VNP, and hence VQP 6⊆ VNP.

The theorem consists of two parts. The containment in VQP follows immediately from the
fact that the total number of monomials in fn is nlogn. For the other part, we closely follow
Bürgisser’s lower bound proof [11, Proposition 8.5] against VNP here, making transparent
the fact that the proof works also against VNP. His proof techniques were borrowed from
Strassen ([39]). The idea is to use the universal representation for polynomial sequences
in VNP, so that we get a hold on how the coefficients of the polynomials look like. Using
that, we establish polynomials Hn that vanish on all the polynomial sequences in VNP (in
other words, Hn is in the vanishing ideal of sequences in VNP), but do not vanish on fn
(because the growth rate of its coefficients is too high), hence giving the separation. Since
the vanishing ideal of a set characterizes its closure, we get the stronger separation, i.e., fn
does not belong to the closure of VNP, namely, VNP.

Proof of Theorem 26. As stated above, the proof works in three stages: first, assuming
the contrary and writing fn using the universal representation for the polynomial sequences
in VNP, then giving polynomials Hn of special forms in the vanishing ideal of polynomial
sequences in VNP, and finally showing that Hn cannot vanish on our sequence fn, hence
arriving at a contradiction.

Assuming (fn) ∈ VNP implies the existence of a family (gn) ∈ VP, with L(gn) bounded
by a polynomial r(n), and a polynomial u(n) such that

fn(X1, . . . , Xlogn) =
∑

e∈{0,1}u(n)−logn

gn(X1, . . . , Xlogn, elogn+1, . . . , eu(n)).
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Next, we use the universal representation theorem (see [39], [37]) as stated in Bürgisser’s
monograph ([11], Proposition 8.3; for a proof see [13], Proposition 9.11) for size r(n) straight-
line program to get that there exist polynomials G(n)

ν ∈ Z[Y1, . . . , Yq(n)], with q(n) being
a polynomial in n (more precisely, it is a polynomial in r(n) and u(n)) which for |ν| ≤
deg gn = nO(1), guarantee that degGν = nO(1), log wt(Gν)(n) = 2nO(1) , and also guarantee
the existence of some ζ ∈ Qq(n), such that

gn =
∑
ν

G(n)
ν (ζ)Xν1

1 · · ·X
νu(n)
u(n) ,

where weight of a polynomial f , wt(f) refers to the sum of the absolute values of its
coefficients.

Now, taking exponential sum yields that

fn =
∑
µ∈Nn

F (n)
µ (ζ)Xµ1

1 · · ·X
µlogn
logn ,

where the polynomials F (n)
µ are obtained as a sum of at most 2u(n) polynomials G(n)

ν . Thus,
we now have a good hold on F (n)

µ , i.e. degF (n)
µ ≤ α(n) and log wt(F (n)

µ ) ≤ 2β(n), where both
α(n) and β(n) are polynomially bounded functions of n.

Thus, for fn to be in VNP, the coefficients of fn should be in the image of the polynomial
map Fnµ : Qq(n) → Qn

logn

. In other words, we must have some ζ ∈ Qq(n), such that for
all µ ∈ Nn, we have Fnµ (ζ) = 22j(µ) , where j(µ) :=

∑logn
j=1 µjn

j−1. Since Fnµ takes all the

values from 220 to 22n
logn−1 , we have a subset of indices Ñn ⊆ Nn of size s(n) := b|Nn|/nc =

bnlogn/nc, such that for σ ∈ {0, 1, . . . , s(n)− 1} and a bijection δ : {0, 1, . . . , s(n)− 1} → Ñn
with σ 7→ δ(σ), we have Fnδ(σ) = 22σn+1 .

Now we can apply Lemma 9.28 from [13] which asserts that there will be polynomials
of low height (ht) (the maximum of the absolute value of the coefficients) on which these
coefficients shall vanish. More precisely, there exists non-zero forms Hn ∈ Z[Yµ | µ ∈ Ñn]
with ht(Hn) ≤ 3, degHn ≤ D(n), and such that Hn(Fnµ | µ ∈ Nn) = 0, given that
D(n)s(n)−q(n)−2 > α(n)q(n)s(n)s(n)2β(n).

It can be seen that D(n) = 2n − 1 satisfies the above inequality, since α(n), β(n) and
q(n) are polynomially bounded and 2n grows much faster than s(n) = bnlogn/nc. This
allows us to write Hn =

∑
e λe

∏
µ∈Ñn Y

eµ
µ , where the absolute values of λe are bounded by

3. Since Hn vanishes on the subset of coefficients of fn, i.e it vanishes on Fnδ(σ) = 22σn+1 with
σ ∈ {0, 1, . . . , s(n)− 1}, we have

0 = Hn(Fnµ | µ ∈ Ñn) =
∑
e

λe

s(n)−1∏
σ=0

2eδ(σ)2σn+1
=
∑
e

λe · 4
∑

σ
eδ(σ)(2n)σ .

The last sum is essentially a 4-adic integer, since firstly, |λe| ≤ 3, and secondly, all the
exponents of 4, that is,

∑
σ eδ(σ)(2n)σ are all distinct, as they can be seen as 2n-adic

representation since eδ(σ) < 2n. Thus λe has to be zero for all e. Hence Hn must be
identically zero, which is a contradiction. J

9.2 A criterion for non-membership in VNP
In this section, we discuss a criterion Bürgisser presented in his monograph [11] based on a
proof due to Heintz and Sieveking which gives a set of conditions that puts a p-family out of
VNP. We observe that those conditions if satisfied, in fact, put a given p-family out of VNP
as well.
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I Theorem 27. Let (pn) be a sequence of polynomials over Q and let N(n) denote the degree
of the field extension generated by the coefficients of pn over Q. Further suppose the following
holds:
1. The map n 7→ dlogN(n)e is not p-bounded.
2. For all n, there is a system Gn of rational polynomials of degree at most D(n) with

finite zeroset, containing the coefficient system of fn, and such that n 7→ dlogD(n)e is
p-bounded.

Then the family (pn) 6∈ VNP.

Thus the above theorem shows that certain p-families with algebraic coefficients of high
degree are not contained in VNP. We now give a simple example from [11] to illustrate the
theorem.

I Example 28. Consider the following multivariate family defined as

pn =
∑

e∈{0,1}n\0

√
pj(e)X

e,

where j(e) =
∑n
s=1 es2s−1 and pj refers to the j-th prime number. Then using the above

Theorem 27, we can conclude that pn /∈ VNP. This is because the degree of field extension
N(n) = [Q(√pj | 1 ≤ j ≤ 2n) : Q] = 22n−1 (see for example [13], Lemma 9.20), hence
condition 1 above is satisfied. Condition 2 is also satisfied because the coefficients are the
roots of the system Gn = {Z2

j − pj | 1 ≤ j < 2n}, with D(n) = 2.

For a proof of the theorem, we refer the readers to [11, Theorem 8.1]. We point out
that the proof in its original form already works. In his proof, he wanted to conclude that
fn /∈ VNP. However, along the way, he arrives at a contradiction to the assertion that fn
is contained in the Zariski-closure of VNP, which is exactly what is now known as VNP.
During the time of the original proof, the complexity class VNP was not defined.
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Abstract
Can we design efficient algorithms for finding fast algorithms? This question is captured by various
circuit minimization problems, and algorithms for the corresponding tasks have significant practical
applications. Following the work of Cook and Levin in the early 1970s, a central question is whether
minimizing the circuit size of an explicitly given function is NP-complete. While this is known to
hold in restricted models such as DNFs, making progress with respect to more expressive classes of
circuits has been elusive.

In this work, we establish the first NP-hardness result for circuit minimization of total functions
in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the
minimum circuit size of a given multi-output Boolean function f : {0, 1}n → {0, 1}m is NP-hard under
many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness
proof for the circuit minimization problem for (single-output) Boolean functions under an extended
set of generators.

Complementing these results, we investigate the computational hardness of minimizing com-
munication. We establish that several variants of this problem are NP-hard under deterministic
reductions. In particular, unless P = NP, no polynomial-time computable function can approximate
the deterministic two-party communication complexity of a partial Boolean function up to a polyno-
mial. This has consequences for the class of structural results that one might hope to show about
the communication complexity of partial functions.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) asks for the size (number of gates) of the
smallest Boolean circuit that computes a given Boolean function f : {0, 1}m → {0, 1}, where
f is represented as a string of length n = 2m. Researchers have investigated this problem
and its variants from several angles since the early stages of complexity theory (see [75]
for some historical perspective). In particular, over the last two decades there has been a
significant interest in understanding the computational hardness of circuit minimization.
This is motivated in part by the discovery of connections between this problem and a variety
of areas, including complexity theory [43], learning theory [17], cryptography and circuit
complexity [70], and proof complexity (see e.g. [51, Part VIII]). In addition, Boolean circuit
minimization is of high practical relevance, and a number of textbooks and monographs have
been written about heuristics and other applied aspects of this problem (cf. [59, 73, 29]).1

Despite considerable efforts to understand the computational complexity of circuit min-
imization, its NP-hardness status has remained wide open. While there is strong evidence
that finding optimal circuits is intractable (see Section 1.3), some researchers have suggested
that circuit minimization problems such as MCSP might be NP-intermediate (that is, neither
in P nor NP-complete). There is a vast literature on MCSP and this question, and we review
the references more directly related to our work in Sections 1.2 and 1.3 below.

1.1 Results
We investigate the natural variant of MCSP where the input function f : {0, 1}n → {0, 1}m

is allowed to have multiple output bits. Our main contribution is a proof that the circuit
minimization problem for such multi-output functions is NP-hard with respect to randomized
reductions. This is the first NP-hardness result for the circuit minimization of total functions
that holds with respect to the class of general (unrestricted) Boolean circuits. Previous NP-
hardness results for total functions were known when the computational model is considerably
restricted, for instance with respect to DNFs [55, 58] (also known as two-level minimization;
see e.g. [77]) and DNFs extended with parity gates at the bottom layer [33].

There are well-known connections between computation and communication (see e.g. [53]).
In the second part of this work, we explore the complexity of minimizing communication
cost with respect to deterministic protocols, a question that dates back to Yao’s seminal
work on communication complexity [80, Section 4, Problem E]. Among other contributions,
we establish the first NP-hardness result for this model, in the setting that the input
communication problem is described by a partial Boolean matrix in {0, 1, ∗}n×n. In a
remarkable paper, Kushilevitz and Weinreb [54] had previously established the intractability
of this problem over total Boolean matrices, but their techniques require cryptographic
assumptions. Our proof extends to a stronger hardness of approximation result, and this has
interesting consequences for communication complexity.

We now describe in more detail each of our NP-hardness results and their implications.

1 The problem is also referred to as Boolean function or Boolean algebra minimization, logic synthesis,
circuit synthesis, logic minimization, circuit optimization, or multi-level minimization in different
communities.
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1.1.1 NP-hardness of circuit minimization
First, let us fix some notation and terminology. A Boolean circuit consists of fan-in two
AND gates, fan-in two OR gates, and NOT gates. The input gates are labelled by variables
x1, . . . , xn. We measure the size of a Boolean circuit C, denoted |C|, using the number of
AND, OR, and NOT gates in the circuit. (While this is the convention adopted here, our
techniques are robust to modifications of the circuit size measure and of the gate types in
the circuit.)

We now introduce the circuit minimization problems considered in our work.

Multi-output Boolean functions. In practice, one is often interested in computing Boolean
functions f that have multiple output bits. Indeed, the vast majority of computations,
such as addition, multiplication, encryption schemes, error-correcting codes, solutions to
search problems, etc., have multiple outputs. In this case, MCSP can give a misleading
picture of the circuit complexity of f . For example, if f is the problem of multiplying two
n× n matrices over F2, then computing any specific choice of one of the n2 output bits of f
requires a circuit with Ω(n) gates, which seems to suggest a lower bound of Ω(n3) on matrix
multiplication. Of course, it is widely-known that one can beat the O(n3) time algorithm for
matrix multiplication quite significantly!

This motivates the study of circuit minimization for multi-output Boolean functions. We
begin by fixing our notion of multi-output computation. The components of a multi-output
Boolean function f : {0, 1}n → {0, 1}m are the single-output functions that compute the ith
output bit of f for i ∈ [m]. We say a Boolean circuit C computes a multi-output Boolean
function f if for each component fi of f , there is a gate or input wire in C that computes fi.

I Definition 1. Multi-MCSP is defined as follows:
Input. Positive integers n, m, and s represented in unary, and a (multi-output) Boolean
function f : {0, 1}n → {0, 1}m represented by a string of length m · 2n.
Output. The input is accepted if and only if there exists a Boolean circuit C of size at
most s that computes f .

Note that Multi-MCSP is in NP,2 and that this problem is at least as hard as MCSP.

Partial Boolean functions. Despite the fundamental nature of MCSP, in several natural
scenarios arising from practical or theoretical considerations one does not really care about
the output of a Boolean function on every string of length n.3 For instance, for a problem
on graphs, one might be interested only in graphs that are planar. In such situations, it
becomes relevant to understand the complexity of the corresponding function on a subset of
inputs. This is more naturally captured by a different formulation of MCSP, where irrelevant
or inessential inputs of the Boolean function are omitted. In other words, while MCSP refers
to total Boolean functions, it is equally natural to consider circuit minimization over partial
Boolean functions.

I Definition 2. Partial-MCSP is defined as follows:
Input. A positive integer n represented in unary, a collection P of pairs (xi, bi), where
xi ∈ {0, 1}n and bi ∈ {0, 1}, and a positive integer s.
Output. The input is accepted if and only if there exists a Boolean circuit C of size at
most s such that C(xi) = bi for every pair (xi, bi) ∈ P.

Note that, like Multi-MCSP, Partial-MCSP is in NP and is at least at hard as MCSP.

2 If the parameter s is large then the answer is trivial.
3 Such inputs are associated with “don’t care” values in the applied literature.
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Boolean functions over an arbitrary set of generators. We also consider circuit minimiz-
ation for (single-output, total) Boolean functions f : {0, 1}m → {0, 1} under an arbitrary set
of generators.

To explain, let V be a finite set, called the ground set, and B = {Bi}i∈[m] a family of
nonempty sets Bi ⊆ V called generators, and let A ⊆ V . Then we let D(A | B) denote the
minimum number of unions, intersections, and complements that are required to construct
A from the sets in B. More precisely, the complement of a set U ⊆ V is defined as V \ U ,
and we represent a construction of A from B as a sequence B1, . . . , Bm, E1, . . . , E` of sets in
V such that E` = A and each set Ej is either the union or intersection of two previously
generated sets, or the complement of a previously generated set. We assume for convenience
that D(B | B) = 0 if B ∈ B. We refer to D(A | B) as the discrete complexity4 of A with
respect to B.

It may then be seen the minimum number of AND, OR and NOT gates needed for a
Boolean circuit to compute a Boolean function f : {0, 1}m → {0, 1} is exactly D(f−1(1) | B),
where V = {0, 1}m, and B = {x1, . . . , xm} ⊆ {0, 1}m contains the input variables x1 . . . , xm,
seen as subsets of {0, 1}m (i.e.. xi is the set of strings w ∈ {0, 1}m such that wi = 1). So
computing the discrete complexity D(A | B), for given A and B, generalizes the task of
computing the minimum circuit size, by allowing for the consideration of generator sets B
other than {x1, . . . , xm}.

Another possibility is to consider circuit complexity over a family B of generators over
a ground set V other than the set of binary strings. For example, the graph complexity
(see [42] §1.7) of a given bipartite graph G = (U × V,E), with E ⊆ U × V , is D(E | B),
where B contains all product sets A×B with A ⊆ U and B ⊆ V . So computing the discrete
complexity D(A | B), for given a given A and B, also generalizes the task of computing graph
complexity.

In analogy to MCSP, we now introduce the Minimum Discrete Complexity Problem
(MDCP).

I Definition 3. MDCP is defined as follows:
Input. A positive integer n represented in unary describing the size of the ground set
V = [n], a target set A ⊆ V , a family B of nonempty subsets of V , and an integer s.
Output. The input is accepted if and only if D(A | B) ≤ s.

It is easy to see that MDCP is in NP and that it is more general than MCSP. Our hardness
result for MDCP, discussed below, also holds under the assumption that the ground set V is
a hypercube {0, 1}m and that the collection B contains the sets generated by x1, . . . , xm.

NP-hardness of MDCP, Partial-MCSP, and Multi-MCSP. Note that establishing the
hardness of these problems is necessary before proving hardness of MCSP. This is because
instances of MCSP can be easily converted into instances of each one them.

By adapting techniques from [38], it is not hard to show that MDCP is NP-hard under
randomized reductions. Moreover, this result almost immediately implies the NP-hardness of
Partial-MCSP, since there is a simple way of converting the circuit minimization of Boolean
functions under an arbitrary set of generators into a problem about partial Boolean functions
(see Section 3.3). We note that previous works in learning theory [30, 1] implicitly contain a

4 This general setting was already considered in [68], see also §1.7.2 of Jukna’s book [42]. By Stone’s
representation theorem for Boolean algebras, discrete complexity can be seen as the investigation of
circuit complexity with respect to an arbitrary Boolean algebra.
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substantially simpler proof that Partial-MCSP is NP-hard, even under deterministic reductions.
Unfortunately, there is strong evidence that this simpler proof has limitations. For instance,
if it could be adapted to show deterministic NP-hardness of MDCP for instances extending
the hypercube, then EXP 6= ZPP. This follows from an argument analogous to [62].

Proving the NP-hardness of circuit minimization for total functions seems to require a
more sophisticated argument. We are able to combine the technique that we use to show
NP-hardness of MDCP and Partial-MCSP with several new ideas to establish the following
result.

I Theorem 4. Multi-MCSP is NP-hard under many-one randomized polynomial time reduc-
tions.

We explain the insights leading to the proof of Theorem 4 in Section 1.2. The final
argument is not overly technical, though it took us considerable time to discover the right
conceptual ingredients. Could it be the case that MCSP admits a randomized NP-hardness
that relies on a clever modification of existing techniques? As far as we know, the existence
of a “standard” randomized reduction would not imply a breakthrough such as a complexity
class separation.

The hardness results mentioned above come with certain features and consequences that
might be of independent interest. We discuss them next.

Search-to-decision reductions for circuit minimization. The formula satisfiability problem
(SAT) admits a well-known search-to-decision reduction. In other words, if one can easily
check if a formula is satisfiable, then it is not much harder to find a satisfiable assignment,
whenever one exists. As a consequence of the NP-completeness of SAT, all NP-complete
problems must have search-to-decision reductions. On the other hand, designing a search-to-
decision reduction for MCSP is open. We refer to [17, 32] for recent developments in this
direction which can be interpreted as weak search-to-decision reduction for MCSP.

A corollary of Theorem 4 is that the search version of Multi-MCSP and its decision version
are computationally equivalent under polynomial-time randomized reductions. Inspired by
this consequence, we further investigate this phenomenon, and in Section 4.3 we describe a
natural deterministic search-to-decision reduction for Multi-MCSP. Additionally, we show in
Section 3.4 that Partial-MCSP has a simple deterministic search-to-decision reduction. These
search-to-decision reductions rely on ideas employed in our NP-hardness proofs. This suggests
that establishing the NP-hardness of MCSP and obtaining a corresponding search-to-decision
reduction might be closely related tasks.

Satisfiability versus Learning. It is known that the appropriate average-case formulation5
of Partial-MCSP captures the complexity of learning general Boolean circuits under the
uniform distribution using random examples. This follows by a combination of the ideas
in [78] and [15], and for completeness we provide a proof of this equivalence in Appendix
A. Consequently, we can base the hardness of learning Boolean circuits on the assumption
NP * RP if and only if the existence of an efficient algorithm for average-case Partial-MCSP
implies the existence of an efficient (worst-case) algorithm for Partial-MCSP (see Appendix
A for details). We refer to [14, 9] for more information about learning algorithms and
average-case versus worst-case assumptions.

5 Here one needs to distinguish, for a random choice of polynomially many inputs xi, whether the labels
bi are randomly generated or are consistent with a fixed circuit of size at most s. We say that an
algorithm solves Partial-MCSP on average (for a given choice of the size parameter s) if the distinguishing
probability of this experiment is noticeable on every circuit of size at most s.
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It seems interesting that the worst-case and average-case complexities of a natural problem
connect to satisfiability and learning, respectively. Further investigating these relations might
be a fruitful research direction.

1.1.2 NP-hardness of communication minimization
Let f : [n] × [n] → {0, 1, ∗} be a partial Boolean function. The two-party communication
problem of computing f is defined as follows. Alice is given x ∈ [n], Bob is given y ∈ [n], and
they are promised that f(x, y) is defined. Their goal is to exchange the minimum number of
bits in order to compute f(x, y). We refer to Section 5.1 for definitions, and to [52] for more
information about communication complexity in general.

Note that many communication problems of interest are captured by partial Boolean
functions, such as Gap-Hamming-Distance (see e.g. [18]) and Unique-Disjointness (cf. [28]).

We are primarily interested in the computational hardness of estimating the communic-
ation cost of optimal deterministic protocols for a given function f : [n] × [n] → {0, 1, ∗}.
This function will be naturally represented by an n × n matrix M ∈ {0, 1, ∗}n×n, so that
M [x, y] = f(x, y) ∈ {0, 1} if f(x, y) is defined over the input pair (x, y), and M [x, y] = ∗
otherwise. In order to state our main result in the context of communication complexity, we
introduce the Minimum Communication Complexity Problem for partial Boolean functions.

I Definition 5. Partial-MCCP is defined as follows:
Input. A positive integer n represented in unary, a matrix M ∈ {0, 1, ∗}n×n representing
a partial Boolean function f : [n]× [n]→ {0, 1, ∗}, and a positive integer s.
Output. The input is accepted if and only if there exists a two-party deterministic protocol
for computing f whose communication cost is at most s.

Note that Partial-MCCP is in NP, as the full communication matrix is represented as
part of the input, and any non-trivial protocol for f can be described by a string of length
polynomial in n.6

We prove that computing communication complexity and several related measures is
NP-hard under deterministic reductions.

I Theorem 6. Partial-MCCP is NP-hard under many-one deterministic polynomial time
reductions. Furthermore, analogous results hold with respect to leaf complexity, partition
number, cover number, and the smallest number of nodes in a DAG-like protocol of a partial
Boolean function.

Our hardness results are actually significantly stronger: we show that all these complexity
measures are hard to approximate in the context of partial Boolean functions. The NP-
hardness of approximating communication cost will be discussed in more detail below. The
remaining four measures – leaf complexity, partition number, cover number, and the smallest
number of nodes in a DAG-like protocol – are NP-hard to approximate up to a factor of
n1−ε (for any fixed ε > 0), which is essentially optimal.

We note that in the setting of NP-hardness results for MCSP with respect to restricted
classes of circuits, such as DNF [4] and DNF-XOR [33], a successful strategy has been to first
establish hardness of a variant of the problem where the input is the full truth table of a given
partial function. This is then followed by a reduction to the case of total functions. We leave
as an open problem whether Partial-MCCP can be reduced to minimizing communication
complexity of total matrices.

6 In contrast to this definition, note that the NP-hardness result for circuit minimization of partial Boolean
functions refers to functions succinctly described by a list of its {0, 1}-valued entries.
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Hardness of approximating communication cost and its consequences. Our complexity-
theoretic results have implications for the theory of communication complexity. In order to
make the discussion more concrete, we first consider an example.

The log-rank conjecture of Lovász and Saks [56] states that the deterministic commu-
nication complexity of a total Boolean function f : [n] × [n] → {0, 1}, denoted D(f), is
characterized up to a polynomial by the logarithm of the rank (over R) of the corresponding
communication matrix Mf . It is a basic, well-known fact that D(f) ≥ log(rkMf ) (cf. [53]).
If we do not allow for a super-constant additive error term, the log-rank conjecture says
that there is a universal constant c > 0 such that 1

c D(f)1/c − c ≤ log(rkMf ) for every total
function f .

In the context of our work, the significance of this conjecture is that, if true, it would
provide an algorithm (compute the rank and take the logarithm) for approximating the
deterministic communication complexity of a given total Boolean function. This algorithm
runs in time polynomial in the communication matrix, which means that computing such
an approximation of D(f) is not NP-complete, unless P = NP. While the status of the
log-rank conjecture remains unclear,7 there may be other algebraic or analytic quantities
that approximately capture communication cost.

Similar considerations can be made about the communication complexity of partial
Boolean functions. More generally, we would like it if there were some polynomial-time
computable function r that would estimate the communication complexity up to a polynomial,
in the sense that for some constant c > 0 and for every large enough n, any partial function
f : [n]× [n]→ {0, 1, ∗} satisfies

1
c
· D(f)1/c − c ≤ r(Mf ) ≤ c · D(f)c + c.

However, we are able to prove a strong negative result in this direction. We establish that
there is no function r as we just described, under the assumption that P 6= NP. This result
is a consequence of the techniques behind the proof of Theorem 6, which also imply certain
hardness of approximating results for communication complexity. In more detail, we prove
that it is NP-hard to approximate D(f) up to a sub-exponential function of D(f). (This result
makes sense because D(f) might be a constant independent of n.) Additionally, we prove
that it is NP-hard to estimate D(f) with an additive error term of (1−Ω(1)) logn, or within
a fixed but arbitrary constant factor. We refer to Section 5.3 for the precise statements.

1.2 Techniques
1.2.1 Circuit complexity
The proof of Theorem 4 builds on insights from several works on the complexity of circuit
minimization, including the references [4], [62] [33], and [38].

In [4], the authors provide a new proof that DNF-MCSP is NP-hard, i.e., the variant of
MCSP where the circuit complexity of the input function is measured with respect to DNF
size. Their proof employs a deterministic reduction from a set cover problem. More precisely,
in the r-Bounded Set Cover Problem (cf. [26]), we are given a collection S of subsets of
[n] def= {1, . . . , n}, and the goal is to cover [n] with the minimum number of such sets. We
are also promised that each set S ∈ S has size at most r. The argument of [4] relies on the
NP-hardness of solving this problem on certain structured inputs.

7 In a recent paper, Chattopadhyay et al. [19] (see also [74, 8]) showed that an analogous conjecture for
randomized communication complexity is false.
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Extending the techniques of [4], a more recent work [33] established that (DNF-XOR)-
MCSP is NP-hard under deterministic reductions. Crucial for the argument of [33] to go
through is the stronger result proved by [76] showing that r-Bounded Set Cover is NP-hard
even to approximate (the proof in [76] relies on ideas from [23]). In particular, for any
constant-factor approximation parameter α, there exists a parameter r independent of n
such that computing an α-approximation of the optimal cover size in r-Bounded Set Cover
is NP-hard. Intuitively, this hardness of approximation result provides more flexibility when
implementing a reduction from a cover problem to a circuit minimization problem.

Note that the results discussed above rely on the weakness of the circuit classes (DNF and
DNF-XOR) to establish the NP-hardness of the corresponding circuit minimization problems.
In particular, structural properties of these low-depth circuits are explored in crucial ways.
On the other hand, hardly anything is known about the limitations of unrestricted Boolean
circuits. For instance, while exponential lower bounds are known against DNF-XOR circuits
[21], the strongest known explicit lower bounds against general Boolean circuits are of
the form cn for a small constant c (cf. [40, 25]). Perhaps this explains in part why many
researchers have been pessimistic about the possibility of extending such techniques to show
NP-hardness of circuit minimization for more expressive classes of Boolean circuits.

Moreover, some results (see [62], [36], and [38, Appendix B]) strongly suggest that
designing deterministic reductions for circuit minimization problems that refer to general
circuits might be a challenging task. Formally, [62] proved that if MCSP is NP-hard under
polynomial-time deterministic many-one reductions, then EXP 6= ZPP. In other words, it is
not possible to design a deterministic reduction showing NP-hardness of MCSP without a
breakthrough in complexity theory. While it is not immediately clear to us if this connection
applies to problems such as Multi-MCSP, given these results it is more natural to focus on
randomized reductions.

In sharp contrast to previous works, which have considered the NP-hardness of circuit
minimization for restricted circuit classes, [38] has recently established the NP-hardness of
MCSP for unrestricted circuits with oracle gates. In more detail, let MOCSP (Minimum
Oracle Circuit Size Problem) be the problem where we are given a parameter s and total
functions f : {0, 1}n → {0, 1} and g1, . . . , gt : {0, 1}m → {0, 1}, and the goal is to decide if f
can be computed by a circuit with at most s AND, OR, NOT, and ORACLE gates, where
each ORACLE gate can compute any one of the functions gi. Perhaps surprisingly, [38] was
able to exploit the presence of arbitrary oracle gates to show that MOCSP is NP-hard under
randomized reductions.

While computations with oracles might behave very differently than normal computa-
tions,8 this result gave us some optimism, and it was the starting point of our investigation.
Our techniques build on the reduction of [38], which relies in part on ideas from [4] and [33].

Similarly to [33] and [38], we will also employ the NP-hardness of approximating r-
Bounded Set Cover. Our proofs are technically not very involved, and we focus here on some
key conceptual ideas. We refer to Sections 3 and 4 for details.

First, we sketch the proof that MDCP is NP-hard. Building on this argument, we discuss
the NP-hardness of Multi-MCSP under many-one polynomial-time randomized reductions
(Theorem 4).

8 For instance, it is well known that there exist oracles A and B such that PA 6= NPA and PB = NPB ,
respectively [10].
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Hardness of circuit minimization under arbitrary generators (MDCP). We are given a
collection S = {S1, . . . , Sm} of sets Si ⊆ [n], where each set Si has size at most r. The goal
is to compute from S and [n] an input instance of MDCP whose complexity approximates
the cover complexity of [n] with respect to S.

One can view the cover complexity of [n] with respect to S as measuring the complexity
of “generating” the set [n] from the sets in S using only union operations. In more detail, let
cover([n],S) denote the smallest possible number of sets in S required to cover [n]. It is easy
to see that, if cover([n],S) ≤ `, then [n] can be generated from the sets in S using at most `
fan-in-two union operations. Similarly, it is not hard to see that if [n] can be generated using
` fan-in-two union operations when starting from sets in S, then a trivial upper bound is
that cover([n],S) ≤ 2`. In other words, the minimum number of fan-in-two union operations
necessary to generate [n] from sets in S gives a 2-approximation for cover([n],S).

The discussion above shows that cover([n],S) = Θ(D∪([n] | S)), where DO(A | B) denotes
the minimum number of O-operations sufficient to generate A from B when only set operations
in O are allowed. It is not hard to see that intersections are not helpful when generating
the entire “ground set” [n]. More precisely, one can easily argue that cover([n],S) =
Θ(D{∪,∩}([n] | S)) by simply replacing intersections by unions. This simple argument and the
hardness of approximating set cover can be used to show that, under such a generalization of
circuit complexity and when allowing only monotone operations (unions and intersections),
it is NP-hard to compute circuit complexity.

We consider next the case of non-monotone operations, which are also present in discrete
complexity. Note that when negations (complementations) are allowed, the argument sketched
above completely breaks down: by taking the complement of a single set in S, one might be
able to cover most of [n]. In order to handle this issue, a new ingredient seems necessary.
Instead of translating the cover problem given by ([n],S) into a direct instance D([n] | S), we
employ a more involved construction based on an idea from [38]. (Intuitively, the construction
inoculates the power of negations.) In more detail, we map each element i ∈ [n] to a block Bi

of size n2 inside the larger ground set V = [n3]. This induces a partition of V into B1, . . . , Bn.
A set Sj ∈ S = {S1, . . . , St} is mapped to the union of the blocks Bi with i ∈ Sj . We now
consider a certain set A ⊆ [n3] with nice properties, and use the previously described map to
create an instance D(A |WS1 , . . . ,WSt

), where each WSj
is the intersection of A with the

union of the sets Bi with i ∈ Sj . (By construction, a cover of [n] by sets in S provides a way
to write any set A as a union of its corresponding sets WSj

.) For a random set A (and for
this reason we can only get a randomized reduction), we are able to show that with high
probability the discrete complexity D(A |WS1 , . . . ,WSt

) approximates the cover complexity
cover([n],S). Roughly speaking, this is true because a random set A is so complex that
taking negations of the sets WSj

does not really help to considerably reduce its complexity,
and the best way to generate A is essentially to use a cover of [n] by sets in S as a recipe.
This allows us to prove that computing discrete complexity is NP-hard under randomized
reductions.

Hardness of circuit minimization for multi-output Boolean functions. Next, we try to
adapt the NP-hardness result for discrete complexity to Multi-MCSP. Loosely summarizing,
the discrete complexity reduction works as follows (continuing with the notation from before):
(1) Randomly convert a set cover problem ([n],S) into an essentially equivalent set cover

problem (A,WS1 , . . . ,WSt
) on a larger ground set in a way that (with high probability)

the randomness inoculates against there being way of building A from WS1 , . . . ,WSt

that is significantly better than the naive method of unioning over an optimal set cover.
(2) Compute how hard it is to build A fromWS1 , . . . ,WSt by outputtingD(A |WS1 , . . . ,WSt).
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We translate each of these two steps into a Multi-MCSP version separately. For the
first step, we translate the sets (A,WS1 , . . . ,WSt

) into the truth tables (T, TS1 , . . . , TSt
)

corresponding to the sets’ characteristic functions, and then replace the notion of building a
set from other sets by the notion of computing a function on some input given the values of
other functions on that input. In detail, the Multi-MCSP version of Step (1) becomes
(1’) Randomly convert a set cover problem ([n],S) into an essentially equivalent set cover

problem (A,WS1 , . . . ,WSt
) on a larger ground set in a way that (w.h.p.) the randomness

inoculates against the existence of a circuit C satisfying T (x) = C(x, TS1(x), . . . , TSt(x))
that is significantly smaller than the naive method of computing

∨
S∈S0

TS(x) where
S0 ⊆ S is an optimal cover.

The main technical challenge for the Multi-MCSP reduction comes from the lack of a simple
translation for Step (2). To some degree, this is because there is a “type mismatch” between
the problems of computing discrete complexity, where you have a notion of computing “from,”
and the problem of Multi-MCSP, where there is no notion of computing “from,” only a notion
of computing “in addition to.” Perhaps the closest Multi-MCSP analogue to how hard it is to
compute T “from” TS1 , . . . , TSt

is the quantity

∆ def= CC(T • TS1 • · · · • TSt
)− CC(TS1 • · · · • TSt

)

where the notation f1 • . . . • fk denotes the multi-output function whose components are the
functions f1, . . . , fk. Informally, the quantity ∆ corresponds to how much harder is it to
compute T along with TS1 , . . . , TSt than it is without T .9

However, this quantity does not really compute what we want it to compute. For example,
if there is an optimal circuit for computing TS1 • · · · • TSt that also computes T at some gate
(which might be possible), then ∆ = 0. But a solution to a non-trivial set cover problem is
never zero! One might hope that we could use randomness again to inoculate against these
possibilities, but we have not yet figured out how to do so.

Our key idea for overcoming this barrier is to add additional output functions in order to
force TS1 , . . . , TSt to be computed in a way such that (with high probability) none of the
gates used for computing TS1 , . . . , TSt

compute T or even help very much in computing T .
These new outputs will correspond to the functions we want computed “along the way” to
computing TS1 , . . . , TSt

.
The actual implementation of this idea is rather subtle, but here is an, admittedly sketchy,

outline. Let D be the circuit that computes TS1 • · · · • TSt
by just computing each of these

functions individually via their naive DNF formula. Our random choice of T can be shown to
ensure that none of the functions computed by gates in D “help too much in computing T .”
Next, define the Evaluation Function induced by D, denoted Eval-D, to be the multi-output
function whose components are all those functions which are either computed by a gate in D
or an input wire in D. Finally, the Multi-MCSP version of Step (2) will be
(2’) Compute how hard it is to compute T at some input from the values of TS1 , . . . , TSt

at
that input by outputting ∆′ def= CC(T • Eval-D)− CC(Eval-D).

Since any circuit for computing Eval-D can be converted into a circuit for T • Eval-D using
at most t gates (since T = TS1 ∨ · · · ∨ TSt

), the parameters in our reduction can be set so
that the overwhelming number of gates in an optimal circuit for T • Eval-D are functions
that are computed in D which we know do not “help too much in computing T .” We can

9 The above definition of ∆ brings to mind the chain rule for Kolmogorov complexity K(x | y) =
K(xy)−K(y) +O(1), so one may think intuitively of ∆ as measuring the “complexity”, or “entropy”,
of T given TS1 . . . TSt

.
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then show that the quantity ∆′ approximates how hard it is to compute T on some input
given the values of TS1 , . . . , TSt

on that input, which in turn, by Step (1’), approximates the
size of an optimal cover in (n,S).

1.2.2 Communication complexity

The intractability of computing deterministic communication complexity is known under
certain cryptographic assumptions [54]. However, it is unclear how to exploit the techniques
in their work to prove a hardness result under a worst-case assumption (see also [54,
Remark 4.4]).

While in the context of circuit minimization we have explored reductions from variants of
the set cover problem, the proof of Theorem 6 relies on a reduction from graph colorability.
The NP-hardness of approximating the chromatic number of a given graph G is now well
established (see [57, 31, 24, 82]): it is NP-hard to approximate χ(G) up to a factor of n1−ε,
where n is the number of nodes in G, and ε > 0 is an arbitrary constant.

Our reduction from graph colorability to Partial-MCCP is elementary, and we describe it
next. Given a graph G = ([n], E), where E ⊆

([n]
2
)
, we construct from it a partial function

fG : [n]× [n]→ {0, 1, ∗}, such that the complexity of fG under any of the measures considered
in Theorem 6 will give us an approximation on χ(G). The partial function fG is given by
fG(i, j) = 1 if i = j, fG(i, j) = 0 if {i, j} ∈ E, and fG(i, j) is undefined otherwise. Note
that the matrix MG ∈ {0, 1, ∗}n×n encoding fG is easily constructed from the input graph G.
This completes the description of the communication problem output by the reduction.

For the reader familiar with standard notions from communication complexity, we briefly
explain why the communication complexity of fG (denoted by D(fG)) provides information
about χ(G). First, it is not hard to show that the 1-cover number of MG is exactly the
chromatic number of G. Using the relation between 1-cover number and deterministic
communication complexity, this shows that D(ff ) ≥ χ(G). On the other hand, it can be
shown that there is a deterministic protocol for MG which has no more than 2 · χ(G) leaves
in its protocol tree. Moreover, this protocol is balanced, and this provides a useful upper
bound on D(f). Theorem 6 will then follow from these two claims.

While this reduction and the aforementioned n1−ε-inapproximability results for graph
coloring allow us to derive strong hardness of approximation results for communication
measures such as leaf complexity and partition number, there is a significant loss with respect
to computing D(f). This happens because in the worst-case D(f) is only logarithmically
related to the other measures. As a consequence, these results are insufficient to establish the
consequences described in the second part of Section 1.1.2. To achieve that, we rely on more
recent results on the hardness of graph coloring for a different regime of parameters. In more
detail, we make crucial use of the works of Huang [37] and Wrochna and Živný [79]. They
established that, for any large enough constant k, it is NP-hard to distinguish k-colorable
graphs from graphs that are not g(k)-colorable, where the function g is exponential in k.
This translates to new hardness results for approximating D(f), and we refer to Section 5.3
for more details.

1.3 Further related work

In this section we provide additional pointers to works and research directions related to our
results.
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Circuit minimization of Boolean functions (MCSP). The circuit minimization problem
for single-output Boolean functions with respect to a circuit class C (denoted by C-MCSP) is
known to be NP-complete when C ∈ {DNF,DNF-XOR}. Hardness of DNF-MCSP was first
established by Masek [58], with alternate proofs appearing in [22, 4]. This result has also
been extended to an almost tight hardness of approximation result for DNF-MCSP (see [48]).
The NP-hardness result for (DNF-XOR)-MCSP is more recent [33]. We are not aware of
NP-hardness results for C-MCSP for stronger classes. We refer to [69] for more information
on circuit minimization for restricted computational models, and for pointers to several
related works.

In the case of general Boolean circuits, MCSP is known to be hard for NC1 (and for
slightly stronger classes) under non-uniform AC0 reductions [64, 27]. Moreover, it has been
proved that any function in P can be approximated with noticeable advantage by AC0 circuits
containing a single oracle gate that decides MCSP [64]. Other works have established that
every problem in the complexity class SZK (including graph isomorphism) is efficiently
reducible to MCSP (see [2, 3]). Interestingly, it has been proved under a cryptographic
assumption that a version of MCSP with a large gap between positive and negative instances
is NP-intermediate [5].

Several works have shown that establishing the NP-hardness of MCSP with respect to
certain classes of reductions would have significant implications to our understanding of
algorithms and complexity. For some restricted notions of reduction, hardness results cannot
be established even for very simple subclasses of P (see [62]). We refer to [43, 62] and
subsequent papers [36, 35, 5, 7] for more information about this line of work. We discussed
the influence of these works in our results in Section 1.2.

It is widely known that if solving MCSP is feasible then modern cryptography is insecure
[67, 70]. The hardness of MCSP also plays a fundamental role in circuit complexity via the
notion of natural proofs [70], and more recently in connection to hardness magnification
[63, 60] (see the paragraph on unconditional lower bounds below). As mentioned above,
MCSP is closely related to learning algorithms, and we refer to [17] and to Section A for
more details.10 The hardness of MCSP and C-MCSP is also connected to questions in proof
complexity (cf. [51, 61]). For several relations between MCSP and complexity theory, we
refer to [43].

As mentioned in Section 1.2, it is known that that an extension of MCSP to circuits with
oracle gates is NP-hard under randomized reductions [38]. A different formulation of MCSP
with oracles has been investigated in [6, 35, 39].

Note that many results discussed above also apply to circuit minimization for partial and
multi-output functions, since the corresponding problems generalize MCSP.

Partial Boolean functions (Partial-MCSP) and learning algorithms. The circuit minim-
ization problem for partial Boolean functions with respect to DNF size was shown to be
NP-hard by Levin in his seminal work [55].11 A proof of this NP-hardness result can be
found for instance in [77]. Kearns and Valiant [45] showed cryptographic hardness for
(Formula)-Partial-MCSP, and a proof that Partial-MCSP is NP-complete under deterministic
reductions is implicit in [30] and [1].

10 Indeed, the opening question in our abstract is also naturally captured by investigations about the
power and limitations of learning algorithms. Modern results in complexity theory and learning theory
show that circuit minimization and learning are directly related tasks.

11This result corresponds to Problem 2 in the English translation of Levin’s paper, which can be found in
the appendix of [75].
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The complexity of Partial-MCSP plays a crucial role in learning theory. More precisely,
the search version of C-Partial-MCSP for a concept class C has long been known to be hard
with respect to problems in computational learning theory ([13]; see also [46, Chapter 2]).
In other words, an efficient algorithm for the search version of C-Partial-MCSP implies that
C(poly) is PAC learnable in polynomial time (this is often referred to as the “Occam’s Razor”
principle). This has led to numerous learning algorithms, since the problem is known to be
solvable by non-trivial algorithms if C is simple enough (for example, in the case of decision
lists [71]). Other works have established NP-hardness results for slightly more complex classes
C, such as decision trees [30]12, or neural networks with a fixed topology [41, 12].

More recently, [78] proved that an efficient algorithm for C-Partial-MCSP also implies
PAC learnability. Indeed, he showed that these two tasks are equivalent when one considers
a relaxation of worst-case C-Partial-MCSP. (In Section A, we adapt his result to the case of
learnability under the uniform distribution.) A certain robust variant of Partial-MCSP is also
known to be tightly connected to learnability in the agnostic case (see [50] for more details).

Ko [49] considers the problem MINLT (which roughly corresponds to a variant of
Partial-MCSP based on Turing machines rather than circuits) and shows that there ex-
ist oracles O such that MINLTO is not complete for NPO under polynomial-time Turing
reductions.

Multi-output Boolean functions (Multi-MCSP) and circuit minimization in practice.
There have been quite a few developments on the theoretical aspects of multi-output circuit
minimization, and some of these works have had an impact on the practice of circuit minim-
ization. Indeed, chip designers are interested in (and have developed many heuristics for)
solving the circuit minimization problem for multi-output (partial) Boolean functions under
different input representations. The problem has a long history (see e.g. Karnaugh [44] for
two-level minimization and Roth and Karp [72] for multi-level minimization), and we refer
to a textbook such as [29] for details.

Regarding theoretical hardness results, Boyar, Matthews, and Peralta [16] show that
the multi-output minimization problem for computing linear forms (computing Ax where A
is a fixed matrix and x is the input vector) in the restricted model of “linear straight-line
programs” (where operations consist of taking linear combinations of inputs) is NP-hard.

Unconditional complexity lower bounds for MDCP, Partial-MCSP, and Multi-MCSP.
Results from the emerging area of hardness magnification (see e.g. [63, 60]) show that weak
unconditional lower bounds for MCSP and related problems against a variety of computational
models can be magnified to complexity separations as strong as P 6= NP. It is worth noting
that Partial-MCSP has played a crucial role in the proof of earlier results in this area, both in
circuit complexity [65, Theorem 1] and in proof complexity [61, Proposition 4.14]. Motivated
in part by hardness magnification, it is now known that most combinatorial circuit lower
bounds established in complexity theory can be shown to hold for MCSP as well (see [27, 20]
and references therein). All these results immediately imply state-of-the-art lower bounds
for MDCP, Partial-MCSP, and Multi-MCSP, since the instances of MCSP easily embed into
these problems.

12Note that this NP-hardness result for decision trees is for partial functions, represented by a list as
in Definition 2. For total functions, the problem is solvable in polynomial time by a simple dynamic
programming algorithm.
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Hardness of estimating communication complexity. It has long been known that comput-
ing the non-deterministic communication complexity of a given total function is NP-hard
[66]. We refer to a subsequent work [57] for an inapproximability result.

In the setting of deterministic communication complexity, which is the main focus of our
results, the following was known. In [54], Kushilevitz and Weinreb proved under cryptographic
assumptions that one cannot efficiently compute the communication complexity of a given
total two-player function f : [n]× [n]→ {0, 1}. In more detail, if one assumes that there are
pseudorandom function generators in NC1 which fool polynomial size distinguishers, then it
is hard to estimate communication complexity with an approximation ratio of ≈ 1.1. On the
other hand, if one assumes that there are pseudorandom function generators in NC secure
against distinguishers of sub-exponential size, then the hardness result is improved to an
approximation ratio of order n1/2.

To our knowledge, previously to our work no result was known on the hardness of
estimating deterministic communication complexity under worst-case assumptions.

2 Preliminaries

We let [n] denote the set {1, . . . , n}.
We will use the NP-hardness of approximating Set Cover with respect to sets of bounded

size [76]. A weaker version of the result from [76] is sufficient.
We say that sets S1, . . . , S` cover a set T if T ⊆ S1 ∪ · · · ∪ S`. For a collection of sets S

and a set T , we use cover(T,S) to denote the minimum number of sets in S necessary to
cover T .

I Definition 7 (r-Bounded Set Cover Problem). For a positive integer r, the r-Bounded Set
Cover Problem is defined as follows:

Input. A positive integer n represented in unary, and a collection S of nonempty subsets
of [n]. We are promised that

⋃
S∈S S = [n] and that |S| ≤ r for each S ∈ S.

Output. The value cover([n],S).

For convenience, we defined the r-Bounded Set Cover Problem as an optimization problem
instead of decision problem.

I Theorem 8 (Hardness of approximating r-Bounded Set Cover [76]). For every constant α ≥ 1
there exists r ∈ N such that approximating the r-Bounded Set Cover Problem within a factor
of α is NP-hard. More precisely, for every L ∈ NP, there exists a polynomial-time algorithm
that, on input x, outputs a parameter k and an instance (1m,S) of the r-Bounded Set Cover
Problem such that if x ∈ L then cover([m],S) ≤ k, and if x /∈ L then cover([m],S) > α · k.

3 Warm-up: NP-hardness for arbitrary generators and partial
functions

We establish in this section the NP-hardness of MDCP, and as an easy corollary, provide
a self-contained proof of the NP-hardness of Partial-MCSP. The argument consists of two
steps: a randomized (approximate) reduction from r-Bounded Set Cover to MDCP, and a
deterministic reduction from MDCP to Partial-MCSP.

3.1 Notation
Recall that we consider a generalization of Boolean circuit complexity originally proposed
and investigated in a particular context by [68]. Let V be a finite set (also referred to as
the ground set). Given a family B = {Bi}i∈[m] of nonempty sets Bi ⊆ V (also referred to
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as the family of generators) and a set A ⊆ V , we let D(A | B) denote the minimum number
of unions, intersections, and complements that are required to construct A from the sets in
B. More precisely, the complement of a set U ⊆ V is defined as V \ U , and we represent a
construction of A from B as a sequence B1, . . . , Bm, E1, . . . , E` of sets in V such that E` = A

and each set Ej is either the union or intersection of two previously generated sets, or the
complement of a previously generated set. We assume for convenience that D(B | B) = 0 if
B ∈ B. We refer to D(A | B) as the discrete complexity of A with respect to B.

3.2 A reduction from r-Bounded Set Cover to MDCP
We will use instances of MDCP with a particular structure. This makes the second reduction
from MDCP to Partial-MCSP more transparent.

Let V be a ground set, and B = {B1, . . . , Bn} be a collection of nonempty subsets of V .
For an element v ∈ V , we use v↑ ∈ {0, 1}n (the “lifted” version of v) to denote the string
with the property that v↑i = 1 if and only if v ∈ Bi. We say that a collection B is complete
(with respect to V ) if the following holds: if a, b ∈ V and a↑ = b↑ then a = b. In other
words, distinct elements of V have different liftings with respect to B. Our reduction from
r-Bounded Set Cover to MDCP will always produce a family of generators that is complete.

Let r be a large enough constant, so that say 10-approximating r-Bounded Set Cover is
NP-hard. Given an instance (1n,S) of this problem, the reduction proceed as follows. Fix
V

def= [n3]. Partition V into n blocks V1, . . . , Vn, where |Vi| = n2 for each i ∈ [n]. Given a set
A ⊆ V , we let Ai

def= A ∩ Vi. Now view V as the set {0, 1}3 log n, and for each j ∈ [3 logn],
let Bj = {v ∈ V | vj = 1}. For convenience, we let F def= {B1, . . . , B3 log n}. Note that any
family B of generators that contains F is complete with respect to V .

Let A−i def= {A1, . . . , Ai−1, Ai+1, . . . , An}. We say that a set A is critical if, for every
i ∈ [n],

D(A | F ∪ A−i) > n · logn.

It is not hard to show that a uniformly random set A ⊆1/2 V is typically critical.

I Lemma 9. Let A ⊆1/2 V be sampled by letting v ∈ A independently with probability 1/2
for each v ∈ V . Then,

Pr
A

[A is critical ]→ 1 as n→∞.

Proof. For a fixed i ∈ [n], we argue below that

Pr
A

[D(A | F ∪A−i) ≤ n · logn ] = o(1/n).

The lemma follows by a union bound.
Note that, conditioning on the choice of A1, . . . ,Ai−1,Ai+1, . . . ,An, the set Ai is still a

uniformly distributed subset of Vi. Moreover, after we fix F and A−i, any construction of a
set E ⊆ V from F ∪A−i using s operations can be described by a binary string of length
at most O(s · (log s+ logn)). Since |Vi| = n2, the probability that the discrete complexity
of A (conditioned on the choice of A1, . . . ,Ai−1,Ai+1, . . . ,An) given F ∪A−i falls below
s = n · logn is at most

2O(s·(log s+log n))

2n2 = o(1/n).

Since this holds for any choice of A1, . . . ,Ai−1,Ai+1, . . . ,An, the desired probability upper
bound holds. J
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We assume from now on that we have efficiently produced a critical set A. (Our randomized
reduction will always be correct on a critical set.) Note that so far we have only inspected
the input 1n from (1n,S). Our approximate reduction outputs a triple (1n3

, A,BS), where A
is generated as above, and whose family BS is defined as follows. For each set S ∈ S, let
WS

def=
⋃

i∈S Ai. Now set

BS
def= F ∪ {WS | S ∈ S}.

Clearly, the triple (1n3
, A,BS) can be efficiently computed from (1n,S).

We argue next that computing D(A | BS) allows us to 2-approximate cover([n],S).

I Lemma 10. If cover([n],S) = ` then D(A | BS) ≤ `.

Proof. Let S1, . . . , S` be a cover of [n] using sets from S. Then, by construction of the sets
WS , we get that A = WS1 ∪ · · · ∪WS`

. In particular, it is possible to construct A using at
most ` operations (unions) starting from the sets in BS . J

I Lemma 11. If D(A | BS) = ` then cover([n],S) ≤ 2`.

Proof. Let t def= |S|, and suppose that E1, . . . , E` represent a construction of A = E` from
sets in BS . For convenience, we write BS = F ∪ {WS1 , . . . ,WSt

}. In order to prove Lemma
11, we need the following simple claim.

B Claim 12. E1, . . . , E` depend on at most 2` sets from {WS1 , . . . ,WSt
}.

This claim holds simply because each set Ej depends on at most 2 other sets. One may
replace 2` by `+ 1 by arguing more carefully, that any `-node directed acyclic graph with
fan-in 2 and a single sink node has at most `+ 1 source nodes. But this tighter bound is
unnecessary for our purpose.

Continuing with the proof of Lemma 11, and relabelling some indexes if necessary, we
assume for convenience of notation that the construction of A from BS depends only on
F ∪ {WS1 , . . . ,WS2`

}. In other words,

D(A | F ∪ {WS1 , . . . ,WS2`
}) ≤ `.

Since WSj
=
⋃

i∈Sj
Ai and |Sj | ≤ r, we get that D(WSj

| {Ai}i∈Sj
) ≤ r. In turn, by

composing constructions, we obtain that

D(A | F ∪ {Ai}i∈S1 ∪ · · · ∪ {Ai}i∈S2`
) ≤ ` · r.

We can assume that r < logn for a large enough n. In addition, notice that if ` > n then
the statement of Lemma 11 is trivial, since by assumption S always covers [n] and as a
consequence cover([n],S) ≤ n. But from r < logn and ` ≤ n it follows that the expression
above can be upper bounded by n · logn. Given that A is critical, it must be the case that the
sets S1, . . . , S2` cover [n]. In other words, cover([n],S) ≤ 2`, which completes the proof. J

Consequently, it immediately follows from Lemmas 9, 10, and 11 and from Theorem 8
that MDCP is NP-hard to compute under polynomial-time randomized reductions.
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3.3 A reduction from MDCP to Partial-MCSP
Let (1n, A,B, s) be an input to MDCP. We can assume from the properties of the previous
reduction that B is complete. We will also assume without loss of generality that A is
nonempty. We create an instance of Partial-MCSP as follows.

For every v ∈ V , where V = [n], we consider the corresponding lifted vector v↑ ∈ {0, 1}k

described above, where B = {B1, . . . , Bk} and each Bi ⊆ V is nonempty. We let

V ↑
def= {v↑ | v ∈ V } ⊆ {0, 1}k and A↑

def= {a↑ | a ∈ A} ⊆ V ↑.

Consider the partial Boolean function fA : V ↑ → {0, 1} defined by fA(x) = 1 if and only if
x ∈ A↑. The reduction outputs the tuple (1n,P, s), where

P def= {(x, fA(x)) | x ∈ V ↑}.

It is easy to see that this tuple can be efficiently computed from the input (1n, A,B). In
order to establish the correctness of this reduction, it suffices to prove the following lemma.

I Lemma 13. The partial Boolean function fA : V ↑ → {0, 1} agrees with a Boolean circuit
of size at most s if and only if D(A | B) ≤ s.

Proof. The lemma is intuitively clear, since the lifting operation ↑ induces a bijection between
V = [n] and V ↑ ⊆ {0, 1}k. (This is the case because by assumption B is complete.) For
completeness, we provide more details below.

Let A ⊆ V be an arbitrary nonempty set, and assume that B is complete. If the circuit
size of fA is 0, then it must be the case that this circuit is simply xi for some i ∈ [k]. But
then v ∈ A iff fA(v↑) = 1 iff v↑i = 1 iff v ∈ Bi. Equivalently, A = Bi. By convention, we have
D(Bi | B) = 0. The other direction is analogous. This establishes the base case corresponding
to s = 0.

Suppose now that C is a Boolean circuit of size s > 0 that agrees with fA over V ↑.
Replace each input variable xi of C by the set Bi ∈ B, and each Boolean operation AND,
OR, and NOT in C by the corresponding set operation ∩, ∪, and complementation. We
claim that this induces a construction of A from B.

In order to see this, fix any element v ∈ V . More generally, we claim that the i-th gate of
C outputs 1 on v↑ if and only if the i-th set Ei constructed under this transformation contains
the element v. For the input gates, this follows from the discussion above. To prove this for
the i-th gate gi, assume that the result holds for x1, . . . , xk, g1, . . . , gi−1 (viewed as subsets of
V ↑), and consider the corresponding construction B1, . . . , Bk, E1, . . . , Ek (these are subsets
of V ) induced by the transformation. Then it easily follows from the induction hypothesis
that gi(v↑) = 1 if and only if v ∈ Ei, regardless of the Boolean operation performed at gi

over the preceding gates. For instance, if gi = gi1 AND gi2 for i1, i2 < i, then gi(v↑) = 1 iff
gi1(v↑) = 1 and gi2(v↑) = 1 iff v ∈ Ei1 and v ∈ Ei2 iff v ∈ Ei1 ∩ Ei2 = Ei.

Obtaining an upper bound on the circuit complexity of fA from an upper bound onD(A | B)
can be done using the reverse transformation. This completes the proof of Lemma 13. J

Composing the reductions above completes the proof of NP-hardness of Partial-MCSP.

3.4 Search-to-decision reduction for Partial-MCSP
Recall that in Search-Partial-MCSP we are given (1n,P), where P = {(xi, bi)}i∈[t] for some
t ∈ N, xi ∈ {0, 1}n, and bi ∈ {0, 1}. The goal is to output a circuit C of minimum size that is
consistent with P. In this section, we show that this problem can be solved in deterministic
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polynomial-time using an oracle APartial-MCSP that solves Partial-MCSP. We assume that
APartial-MCSP outputs the optimal circuit size s ∈ N (a simple binary search suffices to obtain
this value using oracle calls to Partial-MCSP).

We describe a recursive procedure B with access to APartial-MCSP that solves Search-
Partial-MCSP. The input to B is of the form (1`,Q), where Q is a collection of input pairs
in {0, 1}` × {0, 1}. The initial call to B that solves Search-Partial-MCSP will be of the form
B(1n,P). For convenience, we rely on a polynomial-time sub-routine Consistent(Q, C) that
returns true if and only if circuit C over input variables y1, . . . , y` is consistent with Q.

Algorithm B.

Input. A pair (1`,Q).
Output. A minimum size circuit C over y1, . . . , y` that is consistent with Q.

1. If Consistent(Q, yi) holds for some i ∈ [`], return the circuit represented by input variable
yi.

2. Otherwise, for each operation ? ∈ {∨,∧,¬}, and for each appropriate choice of one or
two operands from {y1, . . . , y`}:
2.1 Let Q+ extend each pair (y, b) ∈ Q to a pair (y+, b) ∈ {0, 1}`+1 × {0, 1}, where

the new coordinate corresponds to the result of the operation. Moreover, let
D(y1, . . . , y`) be a depth-1 circuit of size 1 corresponding to the same operation.

2.2 If APartial-MCSP(1`+1,Q+) < APartial-MCSP(1`,Q), invoke B(1`+1,Q+). Let
C+(y1, . . . , y`+1) be the circuit returned by this call. Return the description of
C(y1, . . . , y`)

def= C+(y1, . . . , y`, D(y1, . . . , y`)).

We sketch next the proof that B(1`,Q) runs in polynomial time, and that it always
returns a consistent circuit of minimum size. Let s = APartial-MCSP(1`,Q). The proof of
correctness is by induction on s, i.e., the induction hypothesis is that the algorithm is correct
on every input pair (1`,Q) whose circuit complexity is at most s.

If s = 0, then an input variable yi must be consistent with Q. In this case, algorithm
B correctly returns such a circuit in step (1) above. Assume now that s ≥ 1 and that the
induction hypothesis holds for any input whose complexity is at most s−1. For the induction
step, let (1`,Q) be an input to Search-Partial-MCSP for which APartial-MCSP(1`,Q) = s. Since
s > 0, using any bottom layer gate in any optimal circuit for Q, it follows that there is at
least one Boolean operation whose corresponding set Q+ defined in step (2.1) will pass the
test performed in step (2.2). Now consider any recursive call in step (2.2), which might not
necessarily come from a bottom gate in an optimal circuit for Q. By the induction hypothesis,
a circuit C+ consistent with the corresponding collection Q+ and of size at most s − 1 is
returned. Clearly, the resulting circuit C obtained from C+ and from the corresponding
circuit D is consistent with Q and has size at most s. This completes the induction step,
and the proof of correctness of B.

For the running time, note that on every instance (1`,Q) of B we have s =
APartial-MCSP(1`,Q) ≤ O(` · |Q|). Consequently, at most s nested recursive calls are made.
In each call, Consistent(Q, yi) can be computed in time O(|Q| · (` + s)). We also consider
in the worst case all possible operations over a set of at most ` + s input coordinates,
and there are at most O(` + s)2 such operations. Consequently, B runs in time at most
O(s · (|Q| · (`+ s) + (`+ s)2)) = O(` · |Q|)3.
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4 Main result: NP-hardness of circuit minimization for multi-output
functions

4.1 Definitions
4.1.1 Multi-output Functions, Concatenations, and Truth Tables
For a multi-output Boolean function f : {0, 1}n → {0, 1}m, the components of f are the
single-output functions f1, . . . , fm where fi : {0, 1}n → {0, 1} is defined so fi(x) equals the
ith output bit of f(x).

For a multi-output Boolean function f , we let the circuit complexity of f , denoted CC(f),
be the minimum size of any circuit computing f .

For strings x, y ∈ {0, 1}?, we let x• y denote the concatenated string. We identify a multi-
output Boolean function f : {0, 1}n → {0, 1}m with the concatenated string T1 • · · · • Tm ∈
{0, 1}m·2n where T1, · · · , Tm are the truth tables of the components f1, . . . , fm respectively.

If f : {0, 1}n → {0, 1}m1 and g : {0, 1}n → {0, 1}m2 are Boolean functions with the same
number of inputs, we define the concatenated Boolean function f • g : {0, 1}n → {0, 1}m1+m2

given by f • g(x) = f(x) • g(x).
We also use the  symbol to indicate concatenation in a similar way that

∑
acts for

addition. For example, if T1, . . . , Tm are truth tables of functions with the same number of
inputs, then we use the notation  i∈[m] Ti to indicate T1 • · · · • Tm.

4.1.2 The Evaluation Function and Multi-output Computation
Each circuit C induces a multi-output Boolean function we call the Evaluation Function of
C, denoted Eval-C, that computes the outputs of each of the gates in C. In more detail,
for a circuit C that takes n inputs and has s gates, the evaluation function induced by C,
denoted Eval-C : {0, 1}n → {0, 1}s+n, is given by x1 • · · · • xn • g1 • · · · • gs where xi is the
function computed by the ith input wire of C and gj is the function computed by the jth
gate in C (for this to be well-defined, we need to fix an ordering of the gates of C, but, for
our purposes, any ordering will do).

Using the Evaluation Function, an equivalent definition of multi-output circuit computa-
tion to the one given in the introduction is that a Boolean circuit C computes a (multi-output)
Boolean function f if and only if every component of f is a component of Eval-C.

4.1.3 Windows of Truth Tables
Given a truth table T of length n and a subset S ⊆ [n], we define the S-window of T , denoted
T〈S〉, to be the truth table of length n that (informally) “sees” T on the elements of S and
zeroes everywhere else. Rigorously,

T〈S〉(x) =
{
T (x) if x ∈ S,
0 otherwise.

4.1.4 Canonical DNF Circuits
For each (single output) Boolean function f : {0, 1}n → {0, 1}, it will be useful to fix an
algorithm that outputs a single “canonical” Boolean circuit for computing f .

For our purposes, many algorithms are possible, but, for concreteness, we will define the
canonical circuit of a Boolean function f : {0, 1}n → {0, 1} to be the naive DNF formula for
f , denoted DNFf , given by
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DNFf
def= ((x1 = y1

1) ∧ · · · ∧ (xn = y1
n)) ∨ · · · ∨ ((x1 = yt

1) ∧ · · · ∧ (xn = yt
n))

where
y1, . . . , yt are the YES inputs of f in lexicographical order,
x1, . . . , xn index the bits of the input string x,
yj

1, . . . , y
j
n index the bits of yj for each j ∈ [t],

and for i ∈ [n] and j ∈ [t], (xi = yj
i ) is syntax for

{
xi if yj

i = 1,
¬xi if yj

i = 0.

It is easy to see that DNFf can be computed in polynomial-time given the truth table
of f .

Moreover, reading the above definition of DNFf from left to right gives a natural way of
defining the kth gate in DNFf , whereby the kth gate corresponds to the kth gate symbol
appearing in the above formula. This fact will later be useful in our analysis.

4.1.5 Lifting Sets
Our reduction will use a way to lift subsets into subsets on larger ground sets. To do
this, we will first define a canonical partition of [m] into n parts for m ≥ n. Let Pm,n =
(Pm,n

1 , . . . , Pm,n
n ) be the partition of [m] into n parts given by

Pm,n
i = {j ∈ [m] : j ≡ i mod n}.

From this partition, we can now lift subsets as follows. Let n ≤ m ∈ N. Let S ⊆ [n]. The
m-lift of S, denoted Sm, is the set given by

Sm def=
⋃
i∈S

Pm,n
i .

4.2 A reduction from r-Bounded Set Cover to Multi-MCSP
In order to show that Multi-MCSP is NP-hard, we give a probabalistic polynomial-time
many-one reduction with one-sided error from a constant approximation of r-Bounded Set
Cover to Multi-MCSP.

In fact, for convenience, our reduction will be from the optimization version of approxim-
ating r-Bounded Set Cover to the optimization version of Multi-MCSP (computing CC), but
it will be easy to see that our reduction can be converted into the desired reduction for the
corresponding decision problems.

Let r be a large enough constant, so that say 10-approximating r-Bounded Set Cover
is NP-hard. Given an instance (1n,S) of this problem, the reduction proceeds as follows.
Let m = O(n3) be the least power of two greater than n3. Let T be a uniformly random
truth table of length m. I.e., T is a binary string in {0, 1}m, representing a function from
{0, 1}log m to {0, 1}. Compute the truth table of

g
def=  

S∈S
Eval-DNFT〈Sm〉 .

Let k be the number of distinct components of g that are not functions computed by an
input gate, that is,

k
def= |{gi : gi is a component of g and gi 6= xj for all j ∈ [logm]}|.
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The reduction then outputs 13

∆ def= CC(T • g)− k.

First, we argue that this procedure runs in polynomial time. The only two steps that
may raise concern are whether we can compute the truth table of g efficiently and whether
we can compute k efficiently.

To show that the truth table of g can be computed efficiently, it suffices to show that
for each S ∈ S, the truth table of Eval-DNFT〈Sm〉 can be computed in time polynomial in
n. Computing T〈Sm〉 can be done in time O(m+ |T |) = O(m) and outputs a truth table of
length m. The canonical DNF of the truth table T〈Sm〉 can be computed in time polynomial
in |T〈Sm〉| = m, and the resulting DNF has logm inputs and size at most O(m logm). Finally,
computing the Evaluation Function of a circuit with logm inputs and O(m logm) gates can
be done in time O(m3) by just evaluating the circuit on every input. Hence, putting these
all together, computing the truth table of Eval-DNFT〈Sm〉 can be done in time polynomial
in m = O(n3).

To see that we can compute k efficiently, realize that we have already computed the full
truth table of g and that removing any components computed by one of the logm input
wires along with any duplicate components takes time at most quadratic in the length of the
truth table of g.

Now, we will argue for the correctness of the reduction. We will show that

cover([n],S)/4− 4 ≤
(with high probability

using Lemma 16)

∆ ≤
(unconditionally
using Lemma 15)

cover([n],S),

and thus, with high probability ∆ computes a 10-approximation of r-Bounded Set Cover
when n is sufficiently large.14 Moreover, this computation has one-sided error since the upper
bound holds unconditionally.

Thus, after proving Lemmas 15 and 16, we will have shown that there is a randomized
polynomial-time many-one reduction with one-sided error from 10-approximating r-Bounded
Set Cover to Multi-MCSP.

Before proving Lemmas 15 and 16, we make the following observation about computing g.

I Proposition 14. If a circuit C computes g, then there are k distinct gates in C that
compute components of g. Moreover, CC(g) = k.

Proof. We begin by proving the first statement, which also implies the lower bound CC(g) ≥ k.
Suppose C is a circuit that computes g. Then every distinct component of g has a (necessarily
distinct) input wire or gate from C that computes that component. Therefore, since g has k
distinct components that are not computed by an input wire, C must have at least k distinct
gates computing components of g.

Next, we sketch the proof of the upper bound CC(g) ≤ k. Let C be the circuit built as
follows. For each S ∈ S, iterate through the gates g in DNFT〈Sm〉 in topological order. Let
� ∈ {∧,∨,¬} be the gate type of g. If g computes a function that is already computed by C,

13For the decision problems, we can determine if there is a 10-approximate set cover of size ` by outputting
Multi-MCSP(T • g, k + `), which computes whether ∆ ≤ `.

14 Since cover([n],S) ≥ n/r (using that the sets in S have cardinality at most r), we will actually get that,
for each ε > 0, ∆ gives a 4 + ε approximation with high probability when n is sufficiently large.
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then ignore it. Otherwise, add a � gate to C that takes as input(s) those gate(s) in C that
compute the function(s) which are fed as inputs to g in DNFT〈Sm〉 (we are guaranteed to
find such gates in C since we are iterating in topological order).

By construction, C computes g. (Recall that g =  S∈S Eval-DNFT〈Sm〉 , and our con-
struction ensures C computes every function computed by a gate in DNFT〈Sm〉 for any
S ∈ S.) Moreover, our construction maintains that every gate in C computes a component of
g that is not computed by any other gate or input wire. Thus, since g has at most k unique
components not computed by input wires, C has at most k gates. J

One consequence of Proposition 14 is that ∆ = CC(T • g)− CC(g). With this fact, we
can prove our two main lemmas.

I Lemma 15. If cover([n],S) = `, then ∆ ≤ `.

Proof. Let S1, . . . , S` be a cover of [n] using sets from S. Then, by construction, we have
that T = T〈Sm

1 〉 ∨ · · · ∨ T〈Sm
`
〉. Since T〈Sm

1 〉, . . . , T〈Sm
`
〉 are components of g, this implies that

∆ = CC(T • g)− CC(g) ≤ `

as desired. J

I Lemma 16. Let ` be the largest integer such that cover([n],S) ≥ 4`. Then, ∆ > ` with
high probability.

Proof. Our strategy will be as follows. We say that the choice of T is bad if, for that choice
of T , ∆ ≤ `. We will then upper bound the number of bad T by showing such T have short
descriptions.

Fix some bad T . Then ` ≥ ∆ = CC(T • g) − k, so CC(T • g) ≤ ` + k. Since there is a
circuit C computing T • g using at most `+ k gates and k of the gates in C must compute
the unique components of g (using Proposition 14), it follows that there is a circuit D that
takes (log(m) + k)-inputs and has at most ` gates such that

D(x, g1(x), . . . , gk(x)) = T (x)

for all x ∈ {0, 1}log m where g1, . . . , gk are the unique components of g. Moreover, since D
has only ` gates of fan-in 2, it uses at most 2` of the components of g in the circuit. Thus,
after a possible relabeling of g1, . . . , gk, we can assume D takes at most (log(m) + 2`)-inputs
and that

D(x, g1(x), . . . , g2`(x)) = T (x).

Hence, to describe T , we just need to have a description for D as well as a description for
g1, . . . , g2`. Indeed, this will be the last step in our eventual description of T . We present
the eventual description now so as to guide the reader. Our proof will subsequently proceed
working through this description from bottom to top.
1. Given

a subset J ⊆ [n] of size at most ≤ n(1− 1
2r )

for each j ∈ J a partial truth table encoding (j, Vj) ∈ [n]× {0, 1}m/n+1

r-bounded subsets S1, . . . , S2` ⊆ [n] whose union is J ,
gate numbers u1, . . . , u2` ∈ [2m logm],
and a circuit D of size ` with (n+ 2`) inputs
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2. For j ∈ J , let T〈P m,n
j
〉 be the function whose values on Pm,n

j in lexicographic order are
given by the binary string Vj and is zero everywhere else

3. For i ∈ [2`], let T〈Sm
i
〉 =

∨
j∈Si⊆J T〈P m,n

j
〉

4. For i ∈ [2`], let gi be the function computing by the uith gate of DNFT〈Sm
i

〉

5. Let T (x) = D(x, g1(x), . . . , g2`(x))

Step 4: Describing the gi. Since g1, . . . , g2` are components of g and g =  S∈SEval-
DNFT〈Sm〉 , there exist u1, . . . , u2` and S1, . . . , S2` such that each gi is the uith gate
of DNFT〈Sm

i
〉 for i ∈ [2`]. Moreover, each ui ≤ 2m logm by the trivial upper bound on

the number of gates in a canonical DNF.
Step 3: Describing the T〈Sm

i
〉. Next, we focus on encoding T〈Sm

i
〉 for some i. Since Sm

i =⋃
j∈Si

Pm,n
j (by construction of Sm

i ), we have (by construction of T〈Sm
i
〉) that T〈Sm

i
〉 =∨

j∈Si
T〈P m,n

j
〉. Thus, to compute T〈Sm

i
〉 for all i ∈ [2`], it suffices to know S1, . . . , S2` as

well as T〈P m,n
j
〉 for all j ∈ J

def=
⋃

i∈[2`] Si.
Step 2: Describing T〈P m,n

j
〉 for j ∈ J . The key to our encoding is to realize that |J | cannot

be too large, and thus, we do not need to know T〈P m,n
j
〉 for all j ∈ [n]. Since cover([n],S) ≥

4`, and J is the union of 2` sets from S, it follows that |J | ≤ n− 2`. Moreover, we have
that

n/r ≤ cover([n],S) < 4`+ 4

where the first inequality comes from the sets in S having cardinality at most r and the
second inequality comes from the definition of `. Thus,

|J | ≤ n− 2` < n− n

2r + 2 = n(1− 1
2r ) + 2.

Moreover, we can encode T〈P m,n
j
〉 for j ∈ J very efficiently. To describe T〈P m,n

j
〉, it suffices

to describe j and then give the list of values of T〈P m,n
j
〉 on the set Pm,n

j in lexicographic
order. Since |Pm,n

j | ≤ m/n + 1 (essentially by construction), we can encode this list
of values by a string Vj ∈ {0, 1}m/n+1 (where we pad this string with extra zeroes if
|Pm,n

j | < m/n+ 1).
Step 1: Counting the bits in the description. Now, we count the number of bits in our

description of T . Describing J requires n-bits. For j ∈ J , each partial truth table
encoding (j, Vj) requires at most 2 logn+m/n+ 1 bits. Using that |J | ≤ n(1− 1

2r ), we
get that all these encodings require at most n(1− 1

2r )(2 logn+m/n+ 1) bits. Encoding
the r-bounded subsets S1, . . . , S2` ⊆ [n] requires at most 2n` ≤ n2 bits (here we use the
fact that 4` ≤ n since cover([n],S) = 4`). Encoding the gate numbers u1, . . . , u2` requires
at most 4` log(2m logm) = O(n logn) (using that 4` ≤ n and that m = nO(1)). Finally,
describing a circuit with ` gates and (n+ 2`) input bits where 4` ≤ n requires O(n logn)
bits. Putting this all together and using that m = O(n3), we get that T can be described
using

n+(n(1− 1
2r )+2)(2 logn+m/n+1)+n2+O(n logn) = (1− 1

2r )m+O(n2) = (1−Ω(1))m

bits. Thus, the number of bad T is upper bounded by 2(1−Ω(1))m, so the probability that
T is bad is at most 2−Ω(m). J
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4.3 Search-to-decision reduction for Multi-MCSP
A similar “bottom-up” search-to-decision reduction to the one for Partial-MCSP works for
Multi-MCSP. Recall, in the Search-Multi-MCSP problem, the goal is a to output a Boolean
circuit C of minimum size computing a (multi-output) Boolean function f .

We will now describe a deterministic polynomial-time procedure to solve Search-Multi-
MCSP using an oracle to Multi-MCSP. In our algorithm, we will assume access to an oracle
that computes CC, the exact circuit complexity of a (multi-output) Boolean function, but
one can compute CC efficiently using an oracle to Multi-MCSP. Finally, our algorithm will
work recursively and actually solve a slightly stronger problem.

Our algorithm makes use of the Evaluation Function Eval-C defined in Subsection 4.1,
where our precise notion of multi-output computation can also be found. Additionally, we
say a circuit C is a subcircuit of a circuit D if D can be obtained by adding gates to C.

Algorithm E.

Input. The truth table of a multi-output Boolean function f with n inputs and a circuit C
with n input variables x1, . . . , xn and s gates g1, . . . , gs.
Output. A minimum-sized circuit D computing f among circuits containing C as a
subcircuit.

1. If C computes f , then return C.
2. Otherwise, for each operation ? ∈ {∨,∧,¬}, and for each appropriate choice of one or

two operands from {x1, . . . , xn, g1, . . . , gs}:
2.1 Let C+ be the circuit obtained by adding a ? gate to C with the chosen operands.
2.2 If CC(Eval-C+) > CC(Eval-C) and CC(f • Eval-C+) = CC(f • Eval-C), then output

E(f, C+).

If Algorithm E works as claimed, then it is easy to see that invoking E on a multi-output
Boolean function f and an empty circuit yields the desired search-to-decision reduction.

We now sketch the proof that E runs in polynomial-time and returns the claimed output
on input (f, C). We argue by induction on the quantity s def= CC(f • Eval-C)− CC(Eval-C)
(intuitively, s is the minimum number of gates that need to be added to C in order to
compute f).

If s = 0, then it must be that C computes f . (By a similar argument to Proposition 14,
CC(Eval-C) is exactly the number of distinct components of Eval-C not computed by input
wires. It follows that any function computed by a gate in an optimal circuit for Eval-C must
be a component of Eval-C and therefore be computed by C.) Thus, Algorithm E correctly
returns C in step (1).

Now assume that s ≥ 1. Let D be a circuit computing f of minimum-size among circuits
containing C as a subcircuit.

B Claim 17. There is a gate in D whose function that computes a function h such that h is
not computed in C and such that h can be computed by applying an operator ? ∈ {∨,∧,¬}
to operand(s) solely from the set {x1, . . . , xn, g1, . . . , gs}.

Proof. Imagine labeling as depth-0 all the input variables and gates in D whose functions
are computed in C. Next, inductively define all other gates to have depth one more than the
maximum depth of their input gates. Since D computes f and C does not, there is at least
one gate in D with positive depth. Therefore there must be one gate with depth-1. Any gate
with depth-1 satisfies the property that it is not computed in C and can be computed by
adding a single operator to C. C
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As a consequence of this, we get that some C+ will pass the test in Step (2.2).

B Claim 18. At least one choice of operator and operand(s) in Step (2.1) will pass the test
in Step (2.2).

Proof. Let h be the function guaranteed by Claim 17 that is computed by some choice of apply
some operator ? ∈ {∨,∧,¬} to some operand(s) solely from the set {x1, . . . , xn, g1, . . . , gs},
and let C+ be the circuit obtained by adding this gate to C. Since h is not computed by C
and C+ is obtained by adding a gate to C, it follows that CC(Eval-C+) > CC(Eval-C). Next,
since h is computed by D and C is a subcircuit of D, it follows that every function computed
by a gate in C+ is computed by a gate in D. Thus, we have that CC(f • Eval-C+) ≤ |D|.
Combining this with the optimality of D and the fact that C is a subcircuit of C+, we have
that

CC(f • Eval-C) ≤ CC(f • Eval-C+) ≤ |D| = CC(f • Eval-C).

Therefore, CC(f • Eval-C+) = CC(f • Eval-C), and so C+ passes the test in Step (2.2). C

Now, let C+ be any circuit that passes the test in Step (2.2). Then the quantity

s+ = CC(f • Eval-C+)− CC(Eval-C+) < CC(f • Eval-C)− CC(Eval-C) = s

using the test conditions in Step (2.2). Thus, by the inductive hypothesis, E(f, C+) returns a
circuit D that is a minimum sized circuit for f among circuits containing C+ as a subcircuit.
Since C+ contains C as a subcircuit, it follows that D also contains C as a subcircuit.
Moreover, |D| = CC(f • Eval-C+) = CC(f • Eval-C) (by a test condition). Hence, D is a
minimum-sized circuit for f among circuits containing C as a subcircuit, as desired.

Finally, we argue that Algorithm E runs in polynomial-time on input (f, C1). Let T be
the truth table of f . Then a lower bound on the input length is m = |T |+ |C1|. We will
show that E runs in time polynomial in m.

First, we upper bound the number of recursive calls c. Let (f, C1), . . . , (f, Cc) denote the
successive inputs to E made by the recursive calls where (f, C1) is the original input. Using
induction on the two test conditions in Step (2.2), we have that

CC(Eval-Cc) ≥ CC(Eval-C1) + c− 1

and that

CC(f • Eval-Cc) = CC(f • Eval-C1).

On the other hand, we have that

CC(f • Eval-C1) ≤ CC(Eval-C1) +O(|T | log |T |)

as witnessed by the circuit that uses trivial DNFs to compute each component of f individually
and a minimum-sized circuit for Eval-C1 to compute Eval-C1. Putting these facts together,
we get that

CC(Eval-C1) + c− 1 ≤ CC(Eval-Cc)
≤ CC(f • Eval-Cc)
= CC(f • Eval-C1)
≤ CC(Eval-C1) +O(|T | log |T |),

so the number of recursive calls c = O(|T | log |T |) = O(m2).
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Next, we analyze the computation required in recursive call i ∈ [c]. Since Algorithm E

adds at most one gate to C in each recursive call and i ≤ c, we have by induction that

|Ci| ≤ |C1|+ c− 1 = O(|C1|+m2) = O(m2).

Therefore, the computation in Step (1) of checking whether Ci computes T can be done in
time O(|T ||Ci|) = O(m3) (by just evaluating Ci on all inputs). Next, trying all possible
operands on all pairs of input variables and circuit gates from Ci in Step (2) takes at most
O((|Ci|+ n)2) = O(m4) time. Lastly, it is easy to see that Steps (2.1) and Steps (2.2) run
in O(m) time. Thus, each recursive step of Algorithm E runs in time O(m4) and there are
O(m2) recursive calls, so Algorithm E runs in time O(m6).

5 On the NP-hardness of communication minimization problems

5.1 Background
Hardness of graph coloring. Our NP-hardness reduction is from the chromatic number
problem:

I Definition 19 (Chromatic number). A coloring of an undirected graph G, is a partition of
the vertices such that no edge has both endpoints in the same part. The chromatic number of
a graph G, denoted χ(G), is the smallest number of parts of a coloring of G.

The NP-hardness of approximating the chromatic number has been established by a series
of results [57, 31, 24], culminating in a paper by Zuckerman [82], where the following was
proven:

I Theorem 20 ([82]). For every constant ε > 0 it is NP-hard to approximate χ(G) for a
given n-vertex graph G, with an approximation ratio better than n1−ε. More precisely, for
every L ∈ NP and ε > 0, there exists a polynomial-time algorithm that, on input x, outputs a
parameter k and an n-vertex graph G such that if x ∈ L then χ(G) ≤ k, and if x /∈ L then
χ(G) > n1−ε · k.

In the reductions above, the parameter k is Θ(nε). More recent results on the hardness of
approximating chromatic number allow for a different gap, where k is constant as n grows, and
we wish to distinguish graphs which are k-colorable from graphs which are not g(k)-colorable,
for a fast-growing function g : N → N. An original such result with g(k) = kΩ(log k) was
shown by Khot [47], which was later improved to g(k) = 2Ω(k1/3) by Huang [37]. The latest
result, by Wrochna and Živný [79], achieves g(k) =

(
k
bk/2c

)
:

I Theorem 21 ([79]). Let k ≥ 4 be a natural number. For every L ∈ NP, there exists a
polynomial-time algorithm that, on input x, outputs an graph G such that if x ∈ L then
χ(G) ≤ k, and if x /∈ L then χ(G) >

(
k
bk/2c

)
.

Communication complexity of relations and partial functions. We will need the following
definitions.

I Definition 22. We will call a two-player communication relation, or simply a relation, to
any subset F ⊆ X ×Y ×Z, where X ,Y,Z are finite sets, such that, for every (x, y) ∈ X ×Y,
there exists at least one z ∈ Z with (x, y, z) ∈ F .
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Given a relation F ⊆ X × Y × Z, and a pair (x, y) ∈ X × Y, we let

F (x, y) = {z ∈ Z | (x, y, z) ∈ F} 6= ∅.

The matrix with X -indexed rows and Y-indexed columns, whose (x, y) entry is F (x, y), is
called the communication matrix of F .

Given a relation F ⊆ X × Y × Z, a rectangle R = A × B ⊆ X × Y, and an element
z ∈ Z, we say R is z-monochromatic for F , if (x, y, z) ∈ F for all (x, y) ∈ R. We say R is
monochromatic for F if there exists a z ∈ Z with R being z-monochromatic for F .

A partial two-player function is a relation f ⊆ X×Y×Z such that, for every (x, y) ∈ X×Y,
either |f(x, y)| = 1, in which case we say f is defined at (x, y), or f(x, y) = Z, in which
case we say f is undefined at (x, y). If f is defined at (x, y), we write f(x, y) = z in place of
f(x, y) = {z}, and if f is undefined at (x, y), we write f(x, y) = ∗, instead of f(x, y) = Z.

I Definition 23 (P(F )). Given a relation F ⊆ X × Y × Z, a partition of F is a family Π
of monochromatic rectangles for F , such that every (x, y) ∈ X × Y appears in exactly one
rectangle of Π. The partition number of a relation F ⊆ X × Y × Z, denoted P(F ) is the
smallest possible size of a partition of F .

I Definition 24 (C(F )). Given a relation F ⊆ X × Y × Z, a cover of F is a family Γ of
monochromatic rectangles for F , such that every (x, y) ∈ X × Y appears in at least one
rectangle of Γ. The cover number of a relation F ⊆ X ×Y ×Z, denoted C(F ) is the smallest
possible size of a cover of F .

In the context of Boolean-valued functions, the usual notion of cover number (see [42]
§4.2, p. 97), and related notion of non-deterministic communication complexity, only require
that the 1s of the communication matrix are covered.

I Definition 25 (C1(F )). Given a partial two-player function f : X × Y → {0, 1}, a 1-cover
of F is a family Γ of 1-monochromatic rectangles for F , such that every (x, y) ∈ X × Y
having f(x, y) = 1 appears in at least one rectangle of Γ. The 1-cover number of f , denoted
C1(F ) is the smallest possible size of a 1-cover of F . We then define the non-deterministic
communication complexity of f to be N(f) = dlog C1(f)e.

I Definition 26. A protocol π over X × Y is a rooted tree:
Each node v is associated with a rectangle π−1(v) = A×B ⊆ X × Y.
Each non-leaf node v, with π−1(v) = A×B, is labeled by either (a) a partition A = A0∪· A1
of A, in which case we say it is Alice’s node or (b) a partition B = B0 ∪· B1 of B, in
which case we say it is Bob’s node.
The rectangle associated with the root is X × Y.
If a non-leaf node v of Alice has π−1(v) = A×B and is labeled by a partition A = A0∪· A1
of A, then for each c ∈ {0, 1} there will be a unique child vc of v, with π−1(vc) = Ac ×B;
similarly for Bob’s nodes.

I Definition 27 (L(F ), D(F )). Let F ⊆ X × Y × Z be a relation, and π a protocol over
X × Y. We say that π is a protocol for F if, for any leaf ` of π, the rectangle π−1(`) is
monochromatic for F . We then let L(F ) be the smallest possible number of leaves in a protocol
for F , and we let D(F ) be the smallest possible depth of a protocol for F .

Note that the rectangles associated with the leaves of a protocol for F form a partition
of F , any partition of F is a cover of F , and any cover of F contains a 1-cover of F , and
hence we get the following:
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I Lemma 28. For any relation F ⊆ X × Y × Z, L(F ) ≥ P(F ) ≥ C(F ), and for a partial
two-player function f : X × Y → {0, 1}, C(f) ≥ C1(f).

I Definition 29. A DAG-like protocol γ over X × Y is a directed acyclic graph:
γ has a single source node, called the root, and one or more sink nodes, called leaves.
Each node v is associated with a rectangle γ−1(v) = A×B ⊆ X × Y.
Each non-leaf node v, with γ−1(v) = A×B, is labeled by either (a) a partition A = A0∪· A1
of A, in which case we say it is Alice’s node or (b) a partition B = B0 ∪· B1 of B, in
which case we say it is Bob’s node.
The rectangle associated with the root is X × Y.
If a non-leaf node v of Alice has γ−1(v) = A×B and is labeled by a partition A = A0∪· A1
of A, then for each c ∈ {0, 1} there will be an edge from v to a node vc of γ, which must
be such that Ac ×B ⊆ γ−1(vc); similarly for Bob’s nodes.

I Definition 30 (S(F )). Let F ⊆ X × Y × Z be a relation, and γ a DAG-like protocol over
X × Y. We say that γ is a DAG-like protocol for F if, for any leaf ` of γ, the rectangle
γ−1(`) is monochromatic for F . We then let S(F ) be the smallest possible number of nodes
in a DAG-like protocol for F .

Note that: (1) a protocol with k leaves is a DAG-like protocol with 2k − 1 nodes, (2) the
rectangles associated with the leaves of a DAG-like protocol form a cover of F , and (3) any
DAG with 1 source node, k sink nodes, and maximum out-degree 2 has at least 2k− 1 nodes
in total. Hence:

I Lemma 31. S(F ) ≤ 2L(F )− 1 and S(F ) ≥ 2C(F )− 1.

5.2 A reduction from Graph Coloring to Partial-MCCP
Let us be given a graph G = ([n], E) with E ⊆

([n]
2
)
, and consider the partial two-player

Boolean function fG : [n]× [n]→ {0, 1, ∗}, given by

fG(i, j) =


1 if i = j,

0 if {i, j} ∈ E,
∗ if {i, j} /∈ E.

By fG(i, j) = ∗ we mean that fG(i, j) is undefined, which is to say Alice and Bob may output
any value when given (i, j) as input.

I Theorem 32. We have L(fG) ≤ 2χ(G) and C1(fG) = χ(G).

Proof. To show that L(fG) ≤ 2χ(G), consider the simple protocol where Alice and Bob have
agreed on a coloring of G, so Alice begins by sending the color of her vertex, and Bob replies
whether the color of his vertex is the same. If the two colors match, they output 1, and
otherwise they output 0.

This is a protocol for f , since a valid coloring of G will only color i and j by the same
color if i = j, or {i, j} /∈ E, in which case 1 is a valid output. If i and j are colored differently,
then i 6= j, and so 0 is a valid output. This protocol has 2χ(G) leaves.

To show that C1(fG) ≤ χ(G), we cover the diagonal by 1-monochromatic rectangles; each
such rectangle corresponds to a color c, and is the smallest rectangle containing all diagonal
entries (i, i) for vertices i of G that are colored c.
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Now suppose we have any positive cover Γ for f . The diagonal entries must be covered
by 1-monochromatic rectangles of Γ, so consider the coloring of G which colors vertex i ∈ [n]
by the 1-monochromatic rectangle which covers (i, i). By our choice of f , any two diagonal
entries belonging to the same 1-monochromatic rectangle are not connected by an edge of G.
And so this gives us a valid coloring of G, which implies that χ(G) ≤ |Γ|. J

5.3 Consequences of the reduction
We may now take Theorems 32 and 20, together with Lemmas 28 and 31, to obtain:

I Corollary 33. For any constant ε > 0, it is NP-hard to approximate L(f), P(f), C(f),
C1(f) and S(f), for a given partial function f : [n]× [n]→ {0, 1, ∗}, with an approximation
ratio better than n1−ε.

Observe that this hardness of approximation result with a ratio of n1−ε is very close to
optimal, since all aforementioned measures for a partial two-player function f : [n]× [n]→
{0, 1, ∗} are upper-bounded by 2n. Improving upon this might still be possible, and we leave
it as an open problem.

Now notice that the protocol given in the proof of Theorem 20 is balanced. For this
reason, its depth is logarithmic in the number of leaves. Thus, since computing L(f) is
hard up to an approximation ratio of n1−ε, it follows that computing the communication
complexity D(f) for a given partial function f : [n]× [n]→ {0, 1, ∗} is hard, even if we allow
for an additive error term of (1− ε) logn. Since D(f) ≤ logn, this implies that we cannot
approximate D(f) with an approximation ratio better than ≈ 1

ε , which we can take as an
arbitrarily large constant. The same reasoning applies to non-deterministic communication
complexity.

I Corollary 34. For any constant ε > 0, it is NP-hard to approximate D(f) or N(f), for a
given partial function f : [n]× [n]→ {0, 1, ∗}, with an error term smaller than (1− ε) logn.
For any constant c > 1, it is NP-hard to approximate D(f) or N(f), for a given partial
function f : [n]× [n]→ {0, 1, ∗}, with an approximation ratio better than c.

Let us now prove that, assuming P 6= NP, there is no polynomial-time computable
approximate characterization of the communication complexity of a partial Boolean function.
This is captured by a more general result, which is an immediate consequence of the reduction
presented in Section 5.2 and Theorem 21.

I Theorem 35. Let λ, η : R≥0 → R≥0 be functions such that η(1 + log x) < λ(0.99x) for
all sufficiently large x. Moreover, assume that these functions are non-decreasing for every
large enough x. Then, if P 6= NP, there is no polynomial-time computable function r, which
accepts as input the communication matrix Mf ∈ {0, 1, ∗}n×n of a partial Boolean function
f : [n]× [n]→ {0, 1, ∗}, and for every large enough n outputs a value r(Mf ) such that

λ(D(f)) ≤ r(Mf ) ≤ η(D(f)).

Proof. Suppose that functions λ, η, and r exist as described in the statement of the theorem.
Let L be any language in NP, and assume that k is a sufficiently large constant. For any
x ∈ {0, 1}n, let Gx be the corresponding graph given by Theorem 21. Then let fx = fGx be as
defined in Section 5.2 above, and letMx be the communication matrix of fx. If x ∈ L, we then
have by Theorem 32 that k ≥ χ(Gx) ≥ 1

2L(fx), and because the protocol for fx that witnesses
this fact is balanced, we get 1 + log k ≥ D(fx). Hence η(1 + log k) ≥ η(D(fx)) ≥ r(Mx). If,
on the other hand, y /∈ L, then we have 20.99k <

(
k
bk/2c

)
< χ(Gy) = C1(fy) ≤ L(fy), and

CCC 2020



22:30 NP-Hardness of Circuit Minimization for Multi-Output Functions

thus 0.99k < D(fy). Then λ(0.99k) ≤ λ(D(fy)) ≤ r(My). But since λ(0.99k) > η(1 + log k)
using our assumptions on these functions and on k, it follows that r(My) > r(Mx). As a
consequence, the polynomial time function r can be used to distinguish positive and negative
instances of L. Since L is an arbitrary language in NP, we get that P = NP. This completes
the proof. J
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A The connection between average-case Partial-MCSP and learning

A few years ago, [17] established an equivalence between solving MCSP on average and learning
Boolean circuits under the uniform distribution using membership queries.15 In this section,
we describe a similar equivalence between the average-case complexity of Partial-MCSP and
learning Boolean circuits under the uniform distribution using random examples. The result
is implicit in the work of [78], and similar ideas have appeared in the literature before (see
e.g. [11]). Here we simply translate these ideas to the language of circuit minimization.16

15 See [34] for a discussion on the average-case complexity of MCSP and its connection to natural proofs
[70].

16Note that [78] considers learnability in the PAC model (i.e. with respect to arbitrary distributions),
while here we focus on learnability under the uniform distribution.
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First, we formalize the learning model. For a Boolean function f : {0, 1}n → {0, 1},
an example oracle EX (f) for f is a procedure that when invoked returns a pair (x, f(x))
consisting of a uniformly distributed string x ∈ {0, 1}n and its label f(x). We say that a
circuit C is ε-close to a function f if Prx[C(x) 6= f(x)] ≤ ε. A randomized algorithm A

learns a class of Boolean functions F with accuracy ε and confidence δ if, for every f ∈ F of
the form f : {0, 1}n → {0, 1}, when A is given access to an example oracle EX (f),

Pr
A, EX (f)

[AEX (f)(1n) outputs a circuit C that is ε(n)-close to f ] ≥ 1− δ(n).

The confidence parameter δ(n) can be easily boosted without a significant increase of
running time. In particular, a learner that succeeds with probability at least 1/poly(n)
can be transformed into a learner that fails with probability at most 1/poly(n) with just a
polynomial overhead in the running time (cf. [46]). For this reason, the discussion below will
concentrate on the accuracy parameter ε, implicitly assuming that δ(n) = 1/n.

We will focus on the class F = SIZE[s] that corresponds to Boolean functions computable
by (unrestricted) Boolean circuits of size at most s, where s : N → N. For simplicity, we
focus on the regime where s = poly(n).

Next, we make precise the notion of average-case complexity of Partial-MCSP. We say
that a randomized algorithm B solves Partial-MCSP (over dimension n) on average with
advantage γ for a size parameter s using t samples if, for every f ∈ SIZE[s] of the form
f : {0, 1}n → {0, 1}, we have:∣∣∣ Pr

B, {zi}i∈[t]

[B(1n, z1, f(z1), . . . , zt, f(zt)) = 1 ]− Pr
B, {zi}i∈[t], b

[B(1n, z1, b1, . . . , z
t, bt)) = 1 ]

∣∣∣ ≥ γ(n),

where b ∈ {0, 1}t and z1, . . . , zt ∈ {0, 1}n are independent and uniformly random, and
t = t(n).

I Theorem 36. The following implications hold.
(1) For every c, d ∈ N there exists ` ∈ N such that if SIZE[nc] can be learned in time O(nd)

with accuracy ε = 1/10, then Partial-MCSP over dimension n can be solved on average
in polynomial time with advantage γ(n)→n 1 for s(n) = nc using t(n) = n` samples.

(2) If for every c ∈ N there exists ` ∈ N such that Partial-MCSP over every dimension n can
be solved on average in polynomial time with advantage γ = 1/10 for s(n) = nc using
t(n) = n` samples, then for every a ∈ N the class SIZE[na] can be learned in polynomial
time with accuracy ε(n) = 1/n.

In other words, Theorem 36 says that polynomial-size Boolean circuits over {0, 1}n can
be learned in polynomial time using random examples if and only if Partial-MCSP over
{0, 1}poly(n) can be solved on average in polynomial time.

Proof Sketch. We start with the proof of (1). Let ` def= nd+1 + n. Assuming the existence
of a learning algorithm A for SIZE[nc] with accuracy ε = 1/10 and confidence δ = 1/n, the
algorithm B for average-case Partial-MCSP employs A as a sub-routine, and computes as
follows. Given 1n and a sequence (z1, a1), . . . , (zt, at) in {0, 1}t·(n+1), where t(n) def= n`, B
uses the first nd+1 pairs (zi, ai) to simulate the answers to the oracle calls made by A to
its example oracle. Let C be the circuit output by AEX (·)(1n) after its computation. B
uses the last n input pairs (zi, ai) to compute the fraction α ∈ [0, 1] of such pairs for which
C(xi) 6= ai. Finally, B outputs 1 if and only if α ≤ 1/3. Note that B runs in polynomial
time under the assumption that A runs in time O(nd).
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Let f ∈ SIZE[nc]. In this case, PrB, {zi}i∈[t] [B(1n, z1, f(z1), . . . , zt, f(zt)) = 1 ] ≥ 1− 2/n,
since with probability at most 1/n algorithm A fails to output a circuit C that is (1/10)-
close to f , and by a standard concentration bound with probability at most 1/n we have
α > 1/3. On the other hand, it is not hard to see by a standard concentration bound that
PrB, {zi}i∈[t], b[B(1n, z1, b1, . . . , z

t, bt)) = 1 ] ≤ 1/n, since in this case no matter the circuit C
output by A, the last n input pairs of B contain random bits bi that are uncorrelated with
C. This shows that B has advantage γ(n)→n 1.

In order to prove (2), it is enough to conclude that for every a ∈ N there is ` ∈ N such that
the class SIZE[na] can be learned to accuracy ε(n) = 1/2− 1/n`+1 in polynomial time. This
claim follows from a result of [15, Section 2] showing in particular that, when learning general
polynomial-size Boolean circuits under the uniform distribution from random examples, one
can boost the accuracy parameter from ε(n) = 1/2 − 1/poly(n) to ε(n) = 1/poly(n) with
only a polynomial overhead in the running time. (From the discussion above, we also know
that it is sufficient to achieve confidence δ(n) = 1− 1/poly(n).)

Proceeding with the proof of (2), we describe a learning algorithm A for SIZE[na]
with accuracy ε(n) = 1/2 − 1/100n` using an algorithm B that solves Partial-MCSP over
dimension n on average in polynomial time with advantage γ = 1/10 for s(n) = nc using
t(n) = n` samples. The argument relies on Yao’s connection between pseudorandomness and
(un)predictability [81], which is established using a hybrid argument. We provide below a
self-contained presentation of the argument.

By assumption, for every f ∈ SIZE[na],∣∣∣ Pr
B, {zi}i∈[t]

[B(1n, z1, f(z1), . . . , zt, f(zt)) = 1 ]− Pr
B, {zi}i∈[t], b

[B(1n, z1, b1, . . . , z
t, bt)) = 1 ]

∣∣∣ ≥ 1/10.

For i ∈ {0, 1, . . . , t}, consider the distribution Di supported over {0, 1}t·(n+1) obtained
by sampling a string x1, b1, . . . , x

i, bi, . . . , x
t, bt, where each xj is a random n-bit string,

and each bj is set to f(xj) if j > i and to a random bit otherwise. For convenience, let
pi

def= PrB, w∼Di
[B(1n, w) = 1]. The inequality above implies that

∣∣∣ t−1∑
i=0

(pi − pi+1)
∣∣∣ ≥ 1/10.

Consequently, for some index j ∈ {0, 1, . . . , t− 1} that might depend on f ,∣∣∣ Pr
B, w∼Dj

[B(1n, w) = 1]− Pr
B, w∼Dj+1

[B(1n, w) = 1]
∣∣∣ ≥ 1/10t.

The only distinction between the distributions Dj and Dj+1 is that, for a random xj+1 ∈
{0, 1}n, one generates the pair (xj+1, f(xj+1)), while the other generates the pair (xj+1, bj+1),
where bj+1 is a random bit. Note that the other coordinates of these two distributions are
identically distributed and can be generated using the randomness of the learner and its
example oracle EX (f). For this reason, once one knows the index j + 1, it is possible to use
B (or its negation) to predict the value of f on a random input with advantage Ω(1/t) over
a random guess.

It is not difficult to show that this can be used to design a randomized learning algorithm
A that, with probability Ω(1/t) over its internal randomness and EX (f), outputs a circuit
that is ε-close to f , where ε(n) = 1/2− 1/100t. Finally, the running time of A is polynomial
under the assumption that B runs in polynomial time. J

A consequence of this result is that we can base the hardness of learning on the worst-
case assumption that NP * RP if and only if the existence of an efficient algorithm for
average-case Partial-MCSP implies the existence of an efficient (worst-case) algorithm for
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Partial-MCSP. In order to see this, note that NP ⊆ BPP if and only if NP ⊆ RP (using a
search-to-decision reduction). Now the inclusion NP ⊆ BPP is equivalent to the easiness
of (worst-case) Partial-MCSP by Theorem 4, while Theorem 36 establishes an equivalence
between learnability and solving Partial-MCSP on average.

Finally, we remark that the connection between learning and Partial-MCSP described here
generalizes to any circuit class C that can efficiently compute the parity function. (This is
necessary in order to apply the uniform distribution boosting procedure from [15].) In other
words, C-Partial-MCSP is easy on average if and ony if C can be efficiently learned under the
uniform distribution from random examples.
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Abstract
We show an Ω̃(n2.5) lower bound for general depth four arithmetic circuits computing an explicit
n-variate degree-Θ(n) multilinear polynomial over any field of characteristic zero. To our knowledge,
and as stated in the survey [88], no super-quadratic lower bound was known for depth four circuits
over fields of characteristic 6= 2 before this work. The previous best lower bound is Ω̃(n1.5) [85],
which is a slight quantitative improvement over the roughly Ω(n1.33) bound obtained by invoking
the super-linear lower bound for constant depth circuits in [73,86].

Our lower bound proof follows the approach of the almost cubic lower bound for depth three
circuits in [53] by replacing the shifted partials measure with a suitable variant of the projected
shifted partials measure, but it differs from [53]’s proof at a crucial step – namely, the way “heavy”
product gates are handled. Loosely speaking, a heavy product gate has a relatively high fan-in.
Product gates of a depth three circuit compute products of affine forms, and so, it is easy to prune
Θ(n) many heavy product gates by projecting the circuit to a low-dimensional affine subspace [53,87].
However, in a depth four circuit, the second (from the top) layer of product gates compute products
of polynomials having arbitrary degree, and hence it was not clear how to prune such heavy product
gates from the circuit. We show that heavy product gates can also be eliminated from a depth
four circuit by projecting the circuit to a low-dimensional affine subspace, unless the heavy gates
together account for Ω̃(n2.5) size. This part of our argument is inspired by a well-known greedy
approximation algorithm for the weighted set-cover problem.
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1 Introduction

The arithmetic circuit model is naturally well-suited for the study of optimality of algorithms
for algebraic and linear algebraic problems. An arithmetic circuit consists of addition (+)
and multiplication (×) gates, it takes input {x1, x2, . . . , xn} and field scalars, and computes
a polynomial in {x1, x2, . . . , xn}. Size of a circuit is the number of wires in it, and depth
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is the longest path from an input to an output gate. The two complexity measures – size
and depth – of a circuit essentially capture the sequential and parallel complexity of the
computation happening inside the circuit.

Arithmetic circuits are weaker1 than Boolean circuits: An explicit lower bound on the
size of Boolean circuits implies an explicit lower bound on the size of arithmetic circuits
over finite fields2 and also over fields of characteristic zero3, but the converse is not true4.
Still, the best known lower bound for arithmetic circuits is Ω(n logn) [13,90], which is barely
super-linear. For arithmetic formulas, an Ω(n2) lower bound is known [44]. Several other
better lower bounds have been shown in the past few decades for various restricted models of
arithmetic circuits (see Section A for a brief history of known lower bounds). But, very few
lower bounds are known for circuit models that do not impose restrictions like homogeneity,
multilinearity, monotonicity, bounded coefficients, bounded reads etc. One such result is the
lower bound for constant depth circuits.

Shoup and Smolensky [86], and Raz [73], showed an Ω(∆n1+ 1
∆ ) lower bound for depth-∆

circuits, where ∆ = O(logn). In the special case of depth three circuits, an Ω(n2) lower
bound was shown in [87], which was improved to an Ω̃(n3) lower bound in [53]. However, for
depth four circuits5, the best lower bound was Ω̃(n1.5) [85], which is a slight quantitative
improvement over the roughly Ω(n1.33) lower bound obtained by specializing the constant
depth lower bound in [73,86] to depth four circuits.

In this work, we show an Ω̃(n2.5) lower bound for depth four circuits. To the best of
our knowledge, and as stated in the survey [88] (Section 1.4.2, page-13), this is the first
super-quadratic lower bound for this model over fields of characteristic 6= 2.

1.1 Our Result
We state our result formally now. Without loss of generality, we will assume that a depth
four circuit is a ΣΠΣΠ circuit, i.e., the circuit has a +-gate on top followed by second layer
of ×-gates, then a third layer of +-gates and finally a bottom layer of ×-gates.

I Theorem 1 (Lower bound for depth four circuits). Over any field of characteristic zero6,
there exists a family of mulitilinear polynomials {fn}n≥1 in VNP, where fn is a polynomial
in Θ(n) variables and of degree Θ(n) such that any depth four circuit computing fn has
Ω
(

n2.5

(logn)6

)
many wires/edges and Ω

(
n1.5

(logn)4

)
many gates.

1 This is not to mean that arithmetic circuits cannot simulate Boolean circuits. It is easy to see that a
Boolean circuit can be efficiently simulated by an arithmetic circuit over any field that contains the
additive and the multiplicative identities 0 and 1 respectively.

2 This is because an arithmetic circuit over a finite field can be simulated by a Boolean circuit with only
a slight blow-up in size and depth (see [100]).

3 It was shown in [16] (Corollary 4.6 in Chapter 4) that NC3/poly 6= NP/poly implies VP 6= VNP over
fields of characteristic zero, assuming the Generalized Riemann Hypothesis. The circuit classes VP and
VNP are arithmetic analogues of non-uniform P and NP respectively [96].

4 as computing a Boolean function is a weaker requirement than computing a specific polynomial
representation of the function.

5 Depth four circuits form a natural circuit class as the “optimal” circuit for an arbitrary polynomial
turns out to be a depth four circuit: The multiplicative complexity of a polynomial f , denoted M(f),
is the minimum number of multiplication gates required to compute f . It is known that there exists
an n-variate degree-d polynomial f for which M(f) = Ω(

√(
n+d
d

)
) [21,39]. On the other hand, every

n-variate degree-d polynomial can be computed by a depth four circuit having
√(

n+d
d

)
· poly(n, d)

many multiplication gates [61].
6 The lower bound holds even if the characteristic is sufficiently large (see Section 4).



N. Gupta, C. Saha, and B. Thankey 23:3

A word about the polynomial family. The polynomial family {fn}n≥1 is a variant of the
Nisan-Wigderson design polynomial family, which has been used in proving several other
previous lower bounds [49, 51–53, 57, 58, 73, 85]. The n-th member of the family, i.e., fn is
a polynomial in x = {x1, ..., x3m} and y = {y1, ..., y3m} variables, where m is an integer in[
n
2 , 2n

]
. The degree of the polynomial in y variables is degy(fn) = m, while its degree in x

variables is degx(fn) = dx = Θ(
√
m

lnm ). Informally, fn contains multiple ‘copies’ of the design
polynomial in different subsets of the x variables, while the y variables are used as ‘prefixes’
to uniquely identify each such copy. While the reason for having multiple copies is similar to
[53], as we shall see in the next section, handling them is a little trickier in our case. Note
that because of the way we have defined m and dx, proving that any depth four circuit
computing fn has Ω

(
m2dx

(lnm)5

)
many edges and Ω

(
mdx

(lnm)3

)
many gates would establish the

theorem.7 The exact description of fn is given in Section 4.

1.2 Proof Idea
Let C be a depth four circuit over a field F. Like many other works on arithmetic circuit
lower bounds, we use a rank based complexity measure to obtain our result. The measure
we apply is a variant of the projected shifted partials measure, which has been used before in
[49,51,58,85] and other works. Our proof can be divided into four steps; the first three show
a “small” upper bound on the measure of C while the last step shows a “large” lower bound
on the measure of the hard polynomial fn described above. We now briefly outline each of
these steps.

Step 1: Restricting the bottom support of C. We begin by removing all monomials
computed by the bottom layer of C that have a “large” support. Such restrictions have been
used in previous works [49,51,56,58,85] to control the degree of the (sparse) polynomials
computed at the third layer of a depth four circuit so that a “small” upper bound on the
measure of the circuit can be obtained. However, in our work, this step plays an even more
significant role by enabling us to remove “heavy” gates (see below). While previous works
use random restrictions, we use a deterministic procedure for restricting the bottom support
– we briefly explain our reasons for doing so towards the end of this section.

Heavy gates. We call a product gate in the second layer of C heavy if the number of distinct
third layer gates (computing sparse polynomials) feeding into it is Ω̃(n1.5). The presence of
heavy gates makes the task of obtaining a “small” upper bound on the measure of C difficult.
The problem of dealing with heavy gates was also faced by previous works on depth three
circuits [53, 87], and was dealt with by removing all heavy gates from the circuit before
applying the measure to it. We too remove all heavy gates from C, but our way of doing so
differs from [53,87]. Since a depth three circuit computes a sum of product of affine forms,
[53, 87] were able to remove all heavy gates by going modulo affine factors of these gates
thereby restricting the circuit to an affine subspace. While going modulo the sparse factors
of heavy gates is a natural generalization of this technique for depth four circuits, we do not
know how to adopt this method as the quotient ring so obtained might not be a polynomial
ring. In the next step, we outline a technique of removing heavy gates from C which, in
spirit, also restricts C to an affine subspace.

7 We use log base e in the proof rather than log base 2 as it simplifies the analysis.
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Step 2: Removing heavy gates from C. We remove heavy gates from C by sequentially
evaluating exactly one sparse factor of each heavy gate to zero. This can be done if F is
algebraically closed, which one can assume without loss of generality (as argued in Section
5). In particular, we use the following greedy procedure: While there exists a heavy gate in
C, pick a sparse polynomial for which the ratio of the number of heavy gates connected to
it to its fan-in is maximum, and evaluate it to zero. Intuitively, this allows us to remove a
large number of heavy gates at the cost of evaluating a few monomials (computed by the
bottom layer) to field constants. Then, as we have restricted the bottom support of C in
Step 1, we are able to show that we can remove Θ(n) many heavy gates at a cost of setting
only a few variables to constants (unless the already removed heavy gates account for Ω̃(n2.5)
size). Note that Θ(n) many heavy gates would immediately imply the desired lower bound.
This greedy procedure is inspired by an approximation algorithm for the weighted set cover
problem [99] (Section 2.1, page-16), however its analysis here is tailored to our needs. This
step, which is the main contribution of this work, plays a crucial role in enabling us to prove
a super-quadratic lower bound and we provide more details about it in Section 3.2.2.

Step 3: Analyzing the measure of C. After all the heavy gates have been removed, a “small”
upper bound on the measure of C is derived by closely following the “grouping” argument
made in [53]. However, we replace the shifted partials measure by the projected shifted
partials measure as the latter is suitable for controlling the degree of the sparse polynomials
computed at the third layer of C. In this step, we divide the factors of a polynomial T
computed by a ×-gate in the second layer of C into “groups” of suitable sizes, and multiply
out factors in the same group to reduce the effective number of factors of T . This then
helps obtain a “small” upper bound on the projected shifted partials measure of T which, by
sub-additivity, implies a “small” upper bound on the projected shifted partials measure of C.

Step 4: Lower bound on the measure of fn. The choice of the hard polynomial fn is
dictated by the above technique of removing heavy gates. As mentioned before, fn has
multiple copies of the Nisan-Wigderson design polynomial, denoted NW. The reason for
having multiple copies is that if we work with only one copy, we might end up irreparably
damaging it while removing heavy gates from C. On the other hand, starting with multiple
copies of NW, much like in [53], we are able to show that the procedure for removing heavy
gates leaves an intact copy along with some ‘damaged’ parts from the other copies. Our use
of a deterministic restriction in Step 1 makes it easier to show this. A “large” lower bound on
the measure of NW was obtained in [49,51,58]. However, it is not clear how to obtain such a
lower bound on NW in the presence of other “damaged” parts, and so we remove these parts.
Although in [53], such parts were removed by simply setting a subset of variables to 0 and 1,
here we need to augment the projected shifted measure appropriately to get rid of them.

2 Preliminaries

Notations. For r ∈ N, [r] := {1, . . . , r}. We use lowercase Greek alphabets like α, β for
field constants, bold-face lowercase letters like x and y to denote sets of variables, f, g for
polynomials in F[x,y], uppercase typewriter alphabets C, D for arithmetic circuits over F,
uppercase Roman alphabets T,Q for the polynomials computed by the gates of a depth
four circuit and M,M1,M2 for subsets of natural numbers. For M ⊆ [3m],xM := {xi : i ∈
M},yM := {yi : i ∈M}. For z ⊆ xM ∪ yM and r ∈ N, z≤∞ and z≤r denote the set of all
monomials in z variables and the set of all monomials in z variables with degree at most r
respectively. For S ⊆ F[x,y], dim〈S〉 denotes the dimension of the F-linear span of S.
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Support and degree of a monomial. The support of a monomial η, denoted Supp(η), is
the set of variables appearing in it. Also, for any z ⊆ x ∪ y we will use degz(η) to denote its
degree in z variables. We will say that η is z-multilinear if the degree of every z variable in η
is at most one.

2.1 The complexity measure
Throughout this section, we will assume that m ∈ N is as stated in the paragraph following
Theorem 1, M ⊆ [3m], |M | = m, f ∈ F[xM ,yM ] and S ⊆ F[xM ,yM ]. Note that the set M
is not fixed and will depend on the circuit under analysis. Before defining the measure, let
us define the operations that make up the measure.

1. Partial derivatives. Let η = x1 · · · xk be a monomial in x variables. Then, we define
the partial derivative of f with respect to η as

∂f

∂η
:= ∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f

∂xk

)))
.

If the degree of η is k, then ∂ f
∂η is said to be a k-th order partial derivative of f . We

denote by ∂kxf the set of all k-th order partial derivatives of f taken with respect to
multilinear monomials in x variables.

2. The shift operation. Let η be a degree ` multilinear monomial in xM variables. We
say that the polynomial η · f is obtained by shifting f by η. We denote by x`Mf the set of
polynomials obtained by shifting f by all degree ` multilinear monomials in xM variables
and x`MS :=

{
x`Mf : f ∈ S

}
.

3. Multilinear projection. We define a map πx : F[xM ,yM ] → F[xM ,yM ] with πx(f)
being the polynomial made up of exactly the x-multilinear monomials of f . Formally, for
a monomial η, πx(η) = η if η is x-multilinear and 0 otherwise. The map is then linearly
extended for arbitrary polynomials and πx(S) := {πx(f) : f ∈ S} .

4. A degree based projection. For i ∈ N and f ∈ F[xM ,yM ], we define [f ]i to be the
polynomial made up of only those monomials of f whose y-degree is exactly i. Formally,
for a monomial η, [η]i = η if degy(η) = i and 0 otherwise. It is then linearly extended for
arbitrary polynomials and [S]m := {[f ]m : f ∈ S} .

5. An evaluation map. For α ∈ F and z ⊆ xM∪yM , we define a map σz=α : F[xM ,yM ]→
F[xM \ z, yM \ z] with σz=α(f) being obtained from f by setting every variable in z to
α and σz=α(S) := {σz=α(f) : f ∈ S} .

The operations given in 1, 2 and 3 constitute the projected shifted partials measure [49].
In this work, we define and use the measure PSPM,k,`, which is obtained by augmenting the
projected shifted partials measure with the operations in 4 and 5 as follows.

I Definition 2 (The measure). For m, k, ` ∈ N, M ⊆ [3m], |M | = m and f ∈ F[xM ,yM ],

PSPM,k,`(f) := dim
〈
σyM=1

([
πx
(
x`M ∂kx f

)]
m

)〉
.

I Observation 3 (Sub-additivity of the measure). For any two polynomials f, g ∈ F[xM ,yM ],

PSPM,k,` (f + g) ≤ PSPM,k,` (f) + PSPM,k,` (g) .

The above observation is easy to prove and we omit its proof here.
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2.2 Some numerical estimates

I Proposition 4 (Estimating Binomial Coefficients). For any n, k ∈ N, k ≤ n,
(
n
k

)k ≤ (nk) <(
en
k

)k.
I Proposition 5 ([33,49]). Let a(n), f(n), g(n) : Z>0 → Z be integer values functions such
that (|f |+ |g|) = o(a). Then, ln (a+f)!

(a−g)! = (f + g) ln(a)±O
(
f2+g2

a

)
.

3 Upper bounding the measure for a depth four circuit

Let C =
∑s
i=1 Ti be a depth four circuit computing the polynomial f = fn (recall degx(fn) =

dx = Θ
(√

m
lnm

)
from Section 1.1); Ti =

∏ai
j=1Q

ej
ij and Qij ’s are distinct sparse polynomials

computed by the +-gates in the third layer of C, and ej ≥ 1. We assume that F is algebraically
closed and argue in Section 5 why this holds without loss of generality. For brevity, we would
use the terminologies ‘product terms’, ‘sparse polynomials’ and ‘monomials’ for the ×-gates,
+-gates and ×-gates in the second, third and fourth layers of C respectively as shown in
Figure 1a. The proof of the upper bound is divided into three steps:

Step 1: Restricting the bottom support. In this step, we show that if C has fewer than
Ω
(
m2dx

(lnm)5

)
distinct monomials then we can remove all monomials with support more than

τ = b20 lnmc at a cost of setting m many x variables and m many y variables to zero.
(Notice that if there are more than Ω

(
m2dx

(lnm)5

)
many monomials then there is nothing to

prove.) This step is required not only to remove heavy gates in Step 2 but also in Step 3
where using the fact that all monomials have support at most τ and multilinear projection,
we will argue that the degree of all monomials is not too large. More details about this
restriction are given in Section 3.2.1.

Step 2: Removing heavy gates. The transformed circuit C1, obtained after Step 1, com-
putes a polynomial in the remaining 2mmany x variables and 2mmany y variables. Moreover,
the number of gates and the fan-in of all gates in C1 is upper bounded by the number of
gates and the fan-in of the corresponding gates in C. A product term in C1 is called a heavy
gate if at least w =

⌊
mdx

λ0·(lnm)3

⌋
(λ0 is a large enough constant fixed in Appendix C) many

distinct sparse polynomials are connected to it. If there are more than m heavy gates, we
are done. Otherwise, we remove all heavy gates using the following greedy procedure: While
there is a heavy gate, evaluate a sparse polynomial that would kill the most number of heavy
gates at the cost of evaluating as few monomials as possible. As we have already restricted
the support of all monomials to τ , we are able to argue in Section 3.2.2 that this can be done
at a cost of setting m many x and m many y variables to field constants.

These steps transform C to a ‘pruned circuit’, defined as follows and depicted in Figure 1b.

I Definition 6. We say that a depth four circuit D is a pruned circuit if the support of
all monomials in D is at most τ = b20 lnmc, and it does not contain any heavy gate; i.e.
the number of distinct sparse polynomials feeding into any product term in D is less than
w =

⌊
mdx

λ0·(lnm)3

⌋
.
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(a) A depth four circuit C.

+

X X X

+ + +

X XX X

Input variables and field constants

Top fan-in = 𝑠

Number of distinct sparse 
factors  ≤ 𝑤

Support of each monomial ≤ 𝜏

(b) The pruned depth four circuit D.

Figure 1 A depth four circuit and its pruned version.

Step 3: Analysing the measure. In this step, we analyse the measure PSPM,k,` of the
pruned circuit D, obtained after Steps 1 and 2, computing a polynomial in the remaining m
many x and m many y variables. More details on this analysis are provided in the following
section.

3.1 Upper bound on the measure of a pruned depth four circuit
Recall the definition of the measure PSPM,k,` from Section 2. In Steps 1 and 2, we will ensure
that if a variable xi is set to a field constant then yi is also set to a field constant and vice
versa. The set M is then the set of indices of the remaining x (or y) variables and |M | = m.

I Lemma 7. Let D be a pruned depth four circuit with top fan-in s computing a polynomial
in xM and yM variables, where M ⊆ [3m], |M | = m. Also, let dx, τ, w be as defined earlier,
t =

⌊
dx

(lnm)3

⌋
, δ = 1

(lnm)2 , k =
⌊
δdx
t

⌋
and ` =

⌊
m

mδ/t+1

⌋
. Then, for sufficiently large m,

PSPM,k,`(D) ≤ s ·mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
.

We prove the lemma at the end of this section. As D = T1 + · · · + Ts, where Ti is a
product term and as PSPM,k,` is sub-additive, to prove the lemma it suffices to show that
for all i ∈ [s],

PSPM,k,`(Ti) ≤ mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
.

Consider any such product term T =
∏
i∈[a]Q

ei
i , where Qi ∈ F[xM ,yM ], and since D is a

pruned depth four circuit, a ≤ w. Write Qi = Q′i +Q′′i , where Q′i is the sum of all monomials
of Qi wherein the individual degree of every x variable is at most two and Q′′i = Qi −Q′i.
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Then,

T =
∏
i∈[a]

(Q′i +Q′′i )ei =
∏
i∈[a]

Q′i
ei +Q′′,

where Q′′ is a polynomial whose every monomial has a x variable with degree at least
three. Thus, PSPM,k,`(Q′′) = 0 and hence from the sub-additivity of PSPM,k,` we have that

PSPM,k,`(T ) ≤ PSPM,k,`

( ∏
i∈[a]

Q′i
ei
)
.

Let T ′ =
∏
i∈[a]Q

′
i
ei . We will now upper bound PSPM,k,`(T ′). First, we assume without

loss of generality that a = w since if a < w then we can multiply with additional sparse
polynomials all of which are 1. Next we divide the sparse polynomials into disjoint sets such
that each set (except perhaps the last) has size exactly t. Then, we have that

T ′ = P1 · · ·Pdwt e, where Pi =
min(it,w)∏
j=(i−1)t+1

Q′j
ej .

B Claim 8. Let P = Q′1
e1 · · ·Q′t

et be one of the polynomials Pi. For k ≥ 0, let P (k) :=∏
i∈[t]Q

′
i
max(ei−k,0). Then, ∂kxP ⊆ F-span{y≤∞M x≤k(2tτ−1)

M P (k)}.

The proof of the claim is straighforward and is given in Appendix B.1.

Proof of Lemma 7. Recall that it is enough to show the following

PSPM,k,`(T ′) ≤ mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
,

where T ′ = P1 · · · Pdwt e. Let v =
⌈
w
t

⌉
. Now,

∂kxT
′ ⊆ F-span

{
∂k1

x P1 · · · ∂kvx Pv : k1 + · · ·+ kv = k
}

⊆ F-span
{

y≤∞M x≤k1(2tτ−1)
M P

(k1)
1 · · ·y≤∞M x≤kv(2tτ−1)

M P (kv)
v : k1 + · · ·+ kv = k

}
⊆ F-span

{
y≤∞M x≤k(2tτ−1)

M P
(k1)
1 · · ·P (kv)

v : k1 + · · ·+ kv = k
}
,

where the second to last inclusion follows from Claim 8. Hence,

x`M∂kxT ′ ⊆ F-span
{

y≤∞M x≤`+k(2tτ−1)
M P

(k1)
1 · · ·P (kv)

v : k1 + · · ·+ kv = k
}
.

In other words, the space of shifted partials of T ′ is contained in the F-span of polynomials
of the form Y ·X ·P (k1)

1 · · ·P (kv)
v where Y is a monomial in yM variables and X is a monomial

in xM variables of degree at most `+ k(2tτ − 1). Let us analyse the effect of the operations
σyM=1, [·]m and πx on one such polynomial. We will assume that degy(Y ) ≤ m and X is
multilinear for otherwise the polynomial will vanish after the operations are applied. Then,
we have that,

σyM=1

([
πx

(
Y ·X · P (k1)

1 · · ·P (kv)
v

)]
m

)
= X · σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
m−deg(Y )

)
.
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Thus,

σyM=1
([
πx
(
x`M∂kxT ′

)]
m

)
⊆ F-span

{
X · σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
i

)
:

X is a multilinear monomial in xM variables,deg(X) is

at most `+ k(2tτ − 1), 0 ≤ i ≤ m and k1 + · · ·+ kv = k
}
.

Once we fix i, X, and k1, ..., kv, X ·σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
i

)
is fixed.

So,

PSPM,k,`(T ′) = dim
〈
σyM=1

([
πx
(
x`M∂kx T ′

)]
m

)〉
≤ (m+ 1) ·

`+k(2tτ−1)∑
j=0

(
m

j

)(
v + k − 1

k

)

≤ (m+ 1) · (`+ 2ktτ) ·
(

m

`+ 2ktτ

)(
v + k − 1

k

)
= mO(1) ·

(
m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
,

where the second last inequality follows from Claim 9 (proved in Appendix B.1). J

B Claim 9. Let `, k, t and τ be as defined earlier. Then, `+ 2ktτ < m
2 .

3.2 Pruning a depth four circuit
As mentioned before, we will prune the circuit C computing fn in two steps - first we will
restrict the bottom support of C and then we will get rid of all heavy gates in it.

3.2.1 Step 1 - Restricting the bottom support of C

If the number of monomials in C is more than
⌊
m2dx

(lnm)5

⌋
, there is nothing to prove. Otherwise,

we show that we can get rid of all monomials with support more than τ = b20 lnmc.

I Lemma 10. Let the number of monomials in C be at most
⌊
m2dx

(lnm)5

⌋
. Then, for sufficiently

large m, there exists M1 ⊆ [3m], |M1| = m such that all monomials in C1 obtained from C by
setting variables xM1 and yM1 to 0 have support at most τ .

Proof. We first present a greedy procedure to remove all monomials with support more
than τ and then argue that it sets m variables each from x and y to 0. In each iteration
the procedure picks a pair of variables that appears in a large number of monomials with
support more than τ and set them to 0.

Procedure 1 Restriction procedure.

1. M1 ← ∅, C1 ← C, H := set of all monomials of C1 with support more than τ .
2. For j ∈ [3m], e(j) := number of monomials in H containing xj or yj .
3. while H 6= ∅ do
4. Pick j′ ∈ [3m]\M1 such that e(j′) ≥ e(j) for all j ∈ [3m]. Set xj′ = 0 and yj′ = 0.

Update M1 ← M1 ∪ {j′}, C1 ← circuit obtained from C1 by setting xj′ and yj′ to 0,
H ← set of all monomials of C1 with support more than τ , and e(j) ← number of
monomials in H containing xj or yj .

5. end while
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It is clear that the bottom support of C1 obtained after the termination of the procedure
is at most τ . Also, since we are only setting variables to 0, it trivially follows that the
procedure does not increase the number of gates nor does it increase the fan-in of any gate
in the circuit. Claim 11 (proved in Appendix B.2) implies that the procedure terminates in
at most m iterations. If it terminates before m iterations, we arbitrarily add an appropriate
number of j ∈ [3m] to M1 so that |M1| = m and set xj and yj to 0 for all such j. J

B Claim 11. Procedure 1 terminates in at most m iterations.

I Remark. Procedure 1 looks similar to an approximation algorithm for the Set Cover
problem [102] (Section 1.2, page-6). This is because the problem of removing monomials
with support more than τ can be formulated as an instance of Set Cover with the universe
being all such monomials and with a set corresponding to each j ∈ [3m]. For a j ∈ [3m], the
corresponding set will contain all monomials with support more than τ in which at least one
of xj and yj appears.

3.2.2 Step 2 - Pruning the heavy gates from C1

A sparse polynomial Q in C1 is said to be light if its fan-in is at most m
(lnm)2 , i.e., at most

m
(lnm)2 many non-zero monomials are present in Q. If the sum of fan-ins of all the light

sparse polynomials is Ω
(
m2dx

(lnm)5

)
then there is nothing to prove. So assume that the sum of

fan-ins of all the light sparse polynomials is O
(
m2dx

(lnm)5

)
. Recall that a product term is called

heavy if it has at least w =
⌊

mdx
λ0·(lnm)3

⌋
many distinct sparse polynomials connected to it

(where λ0 is a large enough constant fixed in Appendix C). Observe that one of the following
cases is true:
1. There is a heavy gate in C1, that is connected to at most m·dx

2·λ0·(lnm)3 light sparse polyno-
mials.

2. Every heavy gate is connected to at least m·dx
2·λ0·(lnm)3 light sparse polynomials.

Case 1 clearly implies a lower bound of Ω
(
m2dx

(lnm)5

)
. Else, we prove the following lemma.

I Lemma 12. Let C1 be the circuit (obtained from Lemma 10) having at most m heavy gates
such that every heavy gate is connected to at least mdx

2·λ0·(lnm)3 light sparse polynomials, and
the sum of fan-ins of all the light sparse polynomials is at most m2·dx

160·λ0·(lnm)5 . Then, there
exist M2 ⊆ [3m] \M1, |M2| = m and αl, βl ∈ F for l ∈M2, such that setting xl = αl, yl = βl
for all l ∈M2 removes all heavy gates from C1.

Proof. We first present the pruning procedure and then argue its correctness. For any light
sparse polynomial Qj in C1, let bj and cj be equal to the fan-in of Qj and the number of
distinct heavy gates connected to Qj in C1 respectively. As Qj is a light sparse polynomial,
bj ≤ m

(lnm)2 . In this procedure, while all the heavy gates do not disappear from C1, we pick
a sparse polynomial whose ratio of the number of distinct heavy gates connected to it and
fan-in is maximum and set that to zero by evaluating it to one of its roots in F. This can be
done as F is algebraically closed. The restricted support of the monomials in C1 ensure that
at the end of this procedure, only a small fraction of the variables are set.
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Procedure 2 Pruning heavy gates from C1.

1. Set i = 1 and M2 = ∅. Let s1 ≤ m be the number of heavy gates in C1. Choose a
non-constant light sparse polynomial Q1 from C1 such that the ratio c1

b1
is maximum

and add the indices of the variables appearing in Q1 to M2. As b1 ≤ m
(lnm)2 , we have

τ · b1 ≤ m.
2. Make Q1 equal to zero by setting at most τ · b1 many variables appearing in Q1 to field

constants. By doing so, at least c1 many heavy gates vanish from C1.
3. while (τ(b1 + · · ·+ bi) ≤ m) do
4. Increment i by 1.
5. Let si be the number of heavy gates in the current circuit C1 obtained after the

(i− 1)-th iteration. Clearly, si ≤ si−1 − ci−1. If si = 0 then exit the loop.
6. Otherwise, choose a non-constant light sparse polynomial Qi from C1 having the

maximum value of cibi in C1 and add the indices of the variables appearing in Qi to
M2.

7. Make Qi equal to zero by setting at most τ · bi many variables appearing in Qi to field
constants. By doing so, at least ci many heavy gates vanish from C1.

8. end while

B Claim 13. Let M1 = [3m]\M1. Procedure 2 sets at most m many variables in xM1
∪ yM1

to field constants and removes all the heavy gates from C1.

The above claim is proved in Appendix B.3. The claim implies that |M2| ≤ m. If
|M2| < m, add appropriate number of elements from [3m] \M1 ∪M2 to M2 arbitrarily so
that |M2| = m. For every l ∈ M2, if xl or yl is not set to a field constant then set xl = 0
or yl = 0 respectively. Clearly, we end up setting exactly m variables each from xM1

and
yM1

. J

I Remark. Procedure 2 resembles an approximation algorithm for the Weighted Set Cover
problem [99] (Section 2.1, page-16). This is no coincidence as the problem of removing
heavy gates can be formulated as an instance of Weighted Set Cover with the universe
being all heavy gates and with a set corresponding to every sparse polynomial Q. The set
corresponding to Q contains all heavy gates connected to Q and has a cost equal to the
number of monomials feeding into Q.

4 An explicit polynomial family with high measure

We now describe the family {fn}n≥1, whose n-th member fn is a polynomial in variables
x = {x1, ..., x3m} and y = {y1, ..., y3m}, where m ∈

[
n
2 , 2n

]
will be fixed later.

fn :=
∑

S⊆[3m],|S|=m

(∏
i∈S

yi

)
· NWr(xS),

where NWr is a variant of the Nisan-Wigderson design polynomial (introduced in [52]), the
construction of which is described later and r is a parameter fixed in this construction. Note
that {fn}n≥1 is in VNP. Given a monomial, in order to find its coefficient in fn, we first
check if the monomial is multilinear and of degree m in y variables. If it is so and S is
the set of the indices of the m many y variables in the monomial then simply return the
coefficient of the part of the monomial in x variables in NWr(xS) – this can be done as the
Nisan-Wigderson polynomial family is in VNP.
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Let M1 and M2 be as in Section 3 and M = [3m] \ (M1 ∪M2). Let f1 be the polynomial
computed by the pruned circuit D, which is obtained from f = fn by setting the variables
xM and yM to field constants as in Section 3.2. Let us now see how PSPM,k,`(f1) is related
to dim

〈
πx
(
x`M∂kx NWr

)〉
.

I Lemma 14. Let f1 be as defined above. Then, PSPM,k,`(f1)=dim
〈
πx
(
x`M∂kx NWr(xM )

)〉
.

Proof. The proof follows easily from the following two observations:
1. The two operations in y variables and the three operations in x variables (in the definition

of PSPM,k,`) commute. That is, we have σyM=1
([
πx(x`M∂kx f1)

]
m

)
=

πx
(
x`M∂kx (σyM=1 ([f1]m))

)
.

2. f1 = (
∏
i∈M yi) · NWr(xM ) + f ′, where f ′ ∈ F[xM ,yM ] and degy(f ′) < m.

From these observations we have that

PSPM,k,`(f1) = dim
〈
σyM=1

([
πx(x`M∂kx f1)

]
m

)〉
= dim

〈
πx

(
x`M∂kx

(
σyM=1

([(∏
i∈M

yi

)
· NWr(xM ) + f ′

]
m

)))〉
= dim

〈
πx
(
x`M∂kx NWr(xM )

)〉
.

The last equality follows from the fact that
(
σyM=1

([(∏
i∈M yi

)
· NWr(xM ) + f ′

]
m

))
=

NWr(xM ). J

Construction of NWr. Let dx =
⌊√

n
lnn

⌋
. Pick an α such that dx

⌈
d1+α

x
⌉
≤ n ≤ 2dx

⌈
d1+α

x
⌉
;

this forces α to be Θ( ln lnn
lnn ). Let q be a prime number between

⌈
d1+α

x
⌉
and 2

⌈
d1+α

x
⌉
–

such a prime exists [26] – and let m = dxq. Thus, dx
⌈
d1+α

x
⌉
≤ m ≤ 2dx

⌈
d1+α

x
⌉
and hence

n
2 ≤ m ≤ 2n; moreover, it can be easily verified that dx ∈

[ √
m

2
√

2·lnm ,
2
√

2·
√
m

lnm

]
; both being

as required in Section 3. Also notice that this means q = Θ(
√
n lnn). Let β = 1

lnm and
r =

⌊
α+β

2(1+α)dx

⌋
− 1, u = (u1,1, ..., u1,q, ..., udx,1, ..., udx,q) and define

NWr(u) :=
∑

h(z)∈Fq [z], deg(h)≤r

u1,h(1) · · ·udx,h(dx).

A lower bound on dim
〈
πx
(
x`M∂kx NWr

)〉
was proved in [51, 85]. Since their analysis

continues to hold for our choice of parameters – which only slightly differ from the parameters
in [85] – we omit the proof of the following theorem. Moreover, while they prove this lower
bound over fields of characteristic zero, the same proof also works if the characteristic is
greater than q(r+1)·min{(mk )(m` ),( m

`−dx−k)}.

I Theorem 15 (Lemma 5.2 of [51], Lemma 4.1 of [85]).

dim
〈
πx
(
x`M∂kx NWr(xM )

)〉
≥ 1
mO(1) min

{
1
4k ·

(
m

`

)(
m

k

)
,

(
m

`+ dx − k

)}
.

Hence, from Lemma 14 and Theorem 15 we get

I Lemma 16. PSPM,k,`(f1) ≥ 1
mO(1) min

{ 1
4k ·

(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
.
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5 Proof of Theorem 1

As before, let C be a depth four circuit computing the polynomial fn. Before proving the
theorem, let us first justify the assumption that F is an algebraically closed field that we
made in Section 3. Suppose not. Then, let F be its algebraic closure. Since C is also a circuit
over F and fn a polynomial over F, we can make all arguments assuming the underlying field
to be F. Since the size of a circuit does not depend on the underlying field, the lower bound
so obtained will continue to hold when we treat C as a circuit over F.

First we will prove a lower bound on the number of wires of C. If the number of monomials
in C is

⌊
m2dx

(lnm)5

⌋
then there is nothing to prove. Otherwise from Lemma 10, we can obtain

a circuit C1 such that the support of all the monomials of C1 is at most τ = b20 lnmc, the
number of gates in C1 is at most the number of gates in C and the fan-in of each gate in C1
is upper bounded by the fan-in of the corresponding gate in C. Then, if C1 does not satisfy
the hypothesis of Lemma 12, the size of C1 and hence the size of C is at least Ω

(
m2dx

(lnm)5

)
.

Otherwise, we can obtain a pruned circuit D such that the top fan-in and the bottom support
of D are upper bounded by the top fan-in and bottom support of C1 and so proving a lower
bound on the top fan-in of D would suffice.

As D computes f1 (defined in Section 4), PSPM,k,`(D) = PSPM,k,`(f1). Lemma 7 and 16
imply

s ≥
1

mO(1) min
{ 1

4k ·
(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
mO(1) ·

(
m

`+2ktτ
)(dwt e+k−1

k

) , (1)

and the required lower bound follows from the next claim, which is proved in Appendix C.

B Claim 17. The top fan-in s of D is ω
(
m2dx

(lnm)5

)
.

Now let us prove the lower bound on the number of gates. Notice that if the circuit C
computing f has a heavy gate as defined in Section 3 then we are done. So assume that
it does not have any heavy gates. Now, if the number of monomials in C is

⌊
m2dx

(lnm)5

⌋
then

there is nothing to prove. Otherwise from Lemma 10, we can obtain a circuit C1 such that
the support of all the monomials of C1 is at most τ = b20 lnmc, the number of gates in
C1 is at most the number of gates in C and the fan-in of each gate in C1 is upper bounded
by the fan-in of the corresponding gate in C. Obtain a circuit D from C1 by picking a set
M2 ⊆ [3m] \M1 (where M1 is as in Lemma 10), |M2| = m arbitrarily and setting variables
in xM2 and yM2 to 0 (notice that the top fan-in and bottom support of D are upper bounded
by the top fan-in and bottom support of C1 ). Now D computes f1 (where f1 is as defined in
Section 4) and just as it was done in the preceding paragraph, we can show that the top
fan-in of D is ω

(
m2dx

(lnm)5

)
. However, we only get an Ω

(
mdx

(lnm)3

)
lower bound on the number

of gates since the definition of a heavy gate is the bottleneck.

6 Conclusion

We conclude by stating a few questions/problems, some of which may not be very hard to
answer/solve.

1. Improving the depth four lower bound. An affirmative answer to any of the
following questions will strengthen or improve the lower bound shown in this work.

Can we prove an Ω̃(n2.5) lower bound on the number of gates of depth four circuits?
The almost cubic lower bound in [53] is on the number of gates of depth three circuits.
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Can we prove an Ω̃(n2.5) lower bound for depth four circuits computing IMM2,n
8? The

same question may also be asked with regard to the Ω̃(n3) lower bound for depth three
circuits.
Can we prove an Ω̃(n3) lower bound for depth four circuits? The loss of a

√
n factor

(in Theorem 1) in comparison to the almost cubic lower bound for depth three circuits
[53] is due to the use of the projected shifted partials measure in place of the shifted
partials measure.

2. A lower bound for depth five circuits. As mentioned in Appendix A, an Ω(n1.8+ε)
lower bound on the number of gates of a depth five circuit computing IMM2,n implies a
super-cubic lower bound for depth three circuits. It is also interesting to note that the
hard polynomial used in [12, 103] to prove an Ω̃(n3) lower bound for depth three circuits
is computable by a poly(n)-size depth five circuit. As a natural next step, we pose the
following problem:

Prove a super-quadratic lower bound for depth five circuits.
3. Super-linear lower bound for constant depth circuits computing IMM2,n. Re-

call that lower bounds of Ω(∆n1+ 1
∆ ) and roughly Ω(n1+ 1

∆ ) are shown for depth-∆ circuits
in [86] and [73] respectively. We have argued in Appendix A that the same lower bound
for depth-∆ circuits computing IMM2,n would give a super-polynomial lower bound for
constant depth circuits. It is thus natural to ask:

Can we prove a super-linear lower bound for constant depth circuits computing IMM2,n?
4. Hardness magnification for commutative circuits. It was shown in [18] that

a sufficiently large super-linear lower bound for non-commutative circuits implies an
arbitrarily large polynomial lower bound for general non-commutative circuits. It would
be highly interesting to show a similar hardness magnification result for commutative
circuits.
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A Known lower bounds

We give a brief account of known lower bounds for some of the important classes of arithmetic
circuits by drawing parallels with similar results from the Boolean circuit literature. The
reader may refer to the surveys [21,88] or the book [17] for more details on arithmetic circuit
lower bounds. We also state a few hardness magnification9 or amplification results to show
that proving seemingly modest lower bounds can be quite interesting and challenging even
for constant depth circuits, provided the polynomials being computed have “low” complexity.

General circuits. The best known lower bound for general arithmetic circuits is Ω(n log d),
which was obtained nearly four decades ago for circuits computing the power symmetric
polynomial xd1 + xd2 + . . . + xdn [13, 90]10. Recently, [19] has shown an Ω(n2) lower bound
for “layered” algebraic branching programs (ABPs) computing the same polynomial. An
Ω(n2) lower bound for formulas computing the polynomial

∑
i,j∈[n] x

j
iyj was shown in [44].

The situation is similar for Boolean circuits. For circuits over the DeMorgan basis and over
the full binary basis, the lower bounds 5n − o(n) [42, 55, 60] and (3 + 1

86 )n − o(n) [14, 27]
respectively, are the best till date. For Boolean formulas, an Ω̃(n2) lower bound is known
over the full binary basis [64], and an Ω̃(n3) lower bound is known over the DeMorgan basis
[10,36].

Monotone circuits. These are arithmetic circuits over Q or R that disallow negation. A
lot more is known about this class of circuits. A near optimal 2Ω(n) lower bound on the
monotone circuit complexity of the n× n permanent was shown in [43]. In fact, [97] showed
an exponential separation between monotone and general circuits computing the perfect
matching polynomial of a certain planar graph. Optimal separations are also known between
monotone ABPs and monotone circuits [40] and between monotone formulas and monotone
ABPs [84]. Recently, [104] gave an exponential separation between monotone VP and
monotone VNP which was made stronger in [89]. One of the success stories on Boolean

9 Borrowing terminology from [67].
10The bound also holds for the d-th elementary symmetric polynomial in n variables.
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circuit complexity in the 80s is the exponential lower bound for monotone circuits computing
the clique function [7,81]. Building on these results, [92] showed an exponential separation
between monotone and general Boolean circuits11. An exponential separation between
monotone switching networks12 and monotone circuits was given in [83]13. A separation
between monotone formulas and monotone switching networks follows from the work of [30].
Yet another interesting result is the separation of monotone-NCi from monotone-NCi+1 for
every i ≤ 1 [46, 75].

Non-commutative and multilinear circuits. A non-commutative circuit computes a poly-
nomial in non-commuting variables. This model has more structure than circuits over
commuting variables and so one may hope that it is “easier” to prove lower bounds for non-
commutative circuits14. The seminal work of [65] showed an exponential separation between
non-commutative ABPs and non-commutative circuits. But, proving a super-polynomial
lower bound for general non-commutative circuits15 and showing a separation between
non-commutative formulas and non-commutative ABPs continue to remain two important
open problems. The techniques used to prove lower bounds for non-commutative circuits is
closely related to that used to prove lower bounds for multilinear circuits. In a (syntactically)
multilinear circuit, the sets of variables occurring in the subcircuits rooted at the children of a
product gate are pairwise disjoint. It is an interesting model of computation as most natural
families of polynomials, like the permanent, determinant, iterated matrix multiplication,
elementary symmetric polynomials, design polynomials etc., are multilinear. Building on [77],
an Ω( n2

(logn)2 ) lower bound for multilinear circuits has been recently shown in [8]. Prior to
this, the breakthrough work of [72] culminated in an optimal separation between multilinear
formulas and multilinear ABPs [25,71,78]. We do not know of any super-polynomial lower
bound for multilinear ABPs.

Bounded coefficient circuits. In a bounded coefficient circuit over C, we forbid any mul-
tiplication by a field element having absolute value larger than 1. An Ω(n logn) lower
bound for bounded coefficient circuits computing the Discrete Fourier Transform of a vector
(x1, . . . , xn) was shown in [62]. Later, [70] gave an Ω(n logn) lower bound for the same class
of circuits computing the product of two

√
n×
√
n matrices.

Read-k circuits. A read-once oblivious algebraic branching program (ROABP) is a layered
ABP in which every layer is indexed by a variable, and every variable indexes exactly one
layer. The edges of a layer are labeled by univariate polynomials in the variable indexing
the layer. In a certain sense, the ROABP model generalizes quite a few other interesting
arithmetic circuit models, especially tensors. An exponential lower bound for ROABPs
follows from the technique introduced in the work of [65]. A read-k oblivious ABP is defined
similarly, with every variable indexing at most k layers. In [9], an exp( n

kO(k) ) lower bound
for read-k oblivious ABP was shown. Another related result is the exp( nk2 ) lower bound for

11Prior to this, [80] showed a quasi-polynomial lower bound for monotone circuits computing the perfect
matching function.

12We may think of monotone switching networks as the Boolean analogue of monotone ABPs.
13 In fact, [83] gave an exponential lower bound for the more powerful model of monotone span programs

that was introduced in [47].
14Besides, there is an interesting connection between the non-commutative determinant and the commut-

ative permanent [11].
15 In fact, nothing better than the Ω(n log d) lower bound (which also holds for commutative circuits) is

known. The hardness of proving a sufficiently strong super-linear lower bound for non-commutative
circuits is explained in a recent work [18] (see the discussion below on hardness magnification).
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depth four read-k formulas [2]. An exponential lower bound is also known for read-k Boolean
branching programs [15], which is a stronger model than read-k oblivious Boolean branching
programs.

Constant depth circuits
The best lower bound for constant depth circuits is a little better than that for general circuits.
Shoup and Smolensky [86] showed an Ω(∆n1+ 1

∆ ) lower bound for depth-∆ circuits computing
the polynomials {

∑
j∈[n] x

j
1yj , . . . ,

∑
j∈[n] x

j
nyj}. Using an argument similar to [86], Raz

[73] showed a roughly Ω(n1+ 1
∆ ) lower bound for depth-∆ circuits computing polynomials of

degree Θ(∆), i.e., the polynomials have constant degree for constant depth circuits. These
bounds were essentially achieved by analyzing linear circuits16. Prior to these works, a
barely super-linear lower bound of n · λ∆(n) was known for depth-∆ linear circuits using
super-concentrators [24,68,76,94], where λ∆(n) is a very slowly growing function17. Recently,
[59] gave a n1+ 1

2∆ lower bound for depth-∆ linear circuits computing a linear transformation
that can be computed in exp(n1−Ω( 1

d )) time. A similar lower bound was known before for
bounded coefficient circuits – Pudlák [69] proved an Ω(∆n1+ 1

∆ ) lower bound for depth-∆
bounded coefficient circuits computing the DFT matrix. A lower bound of Ω(n1+ 1

O(∆) ) was
also shown in [70] for depth-∆ bounded coefficient circuits computing the product of two√
n×
√
n matrices.

A lot better lower bounds are known for constant depth multilinear circuits. Raz and
Yehudayoff [79] showed an exp(nΩ( 1

∆ )) lower bound for depth-∆ multilinear circuits computing
the n× n determinant polynomial. More recently, [23] showed an exp(n 1

∆ ) lower bound for
depth-∆ multilinear circuits computing the product of n many 2× 2 matrices. In fact, an
exponential separation is known between depth-∆ and depth-(∆ + 1) multilinear circuits
[22], which improved upon a previous quasi-polynomial separation [79].

A circuit computing an n-variate homogeneous polynomial of poly(n) degree can be
homogenized with only a polynomial blow-up in size [91], but this process is not depth
preserving. It is plausible that homogeneous depth-∆ circuits are weaker than general
depth-∆ circuits for constant ∆. Indeed, such a statement is known to be true for ∆ = 3
and ∆ = 4. It was shown in the classical work [66] that any homogeneous depth three circuit
computing the n-variate degree-d elementary symmetric polynomial ESymn,d has size nΩ(d),
although ESymn,d has a non-homogeneous (multilinear) depth three circuit18 of size O(n2).
A sequence of work [28,33,48,49,52,58] culminated in a nΩ(

√
d) lower bound for homogeneous

depth four circuits computing the width-n, degree-d iterated matrix multiplication polynomial
IMMn,d. On the other hand, the depth reduction result in [34,93], which built on [3, 54,98],
yields a non-homogeneous depth four circuit of size nO(d

1
3 ) for IMMn,d.

An almost cubic lower bound for general depth three circuits was shown in [53], which
improved upon the previous quadratic bound [87]. The bound in [87] is for the elementary
symmetric polynomial, whereas the bound in [53] is for a variant of the Nisan-Wigderson
design polynomial (which is in VNP). Subsequently, [12,103] showed near cubic lower bounds
for depth three circuits computing polynomials that have poly(n)-size depth five circuits. Over

16A linear circuit has only addition gates and so it computes a linear transformation (i.e., a set of linear
forms) in the input variables. If a set of linear forms is computable by a circuit of size s and depth-∆
then they are computable by a linear circuit of size O(s) and depth ∆. Thus, a super-linear lower bound
for linear circuits implies a super-linear lower bound for general circuits.

17For instance, λ4(n) = log∗ n.
18Construction of this circuit is attributed to Michael Ben-Or.
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fixed finite fields, an exponential lower bound is known for depth three circuits computing
the determinant [31, 32]. For depth three circuits with low bottom fan-in19 (but without any
homogeneity restriction), [51] proved an exponential lower bound20. As mentioned before,
the previous best lower bound for general depth four circuits is Ω̃(n1.5) [85], which is a slight
improvement over the roughly Ω(n1.33) bound obtained by specializing the lower bound for
constant depth circuits in [73, 86] to depth four circuits21. Our work here improves these
super-linear bounds to a super-quadratic lower bound for depth four circuits.

Now, coming to constant depth Boolean circuits, an exponential lower bound is known
for constant depth Boolean circuits over the DeMorgan basis (i.e., AC0 circuits). However, it
appears to us that the “right” Boolean analogue of constant depth arithmetic circuits is TC0

circuits (see [1, 37,82])22. The exponential lower bounds for AC0 circuits [4, 29,35] and the
quasi-polynomial lower bounds for ACC0 circuits23 [63,101] are two of the great achievements
in Boolean circuit complexity, but we are yet to see these kind of bounds for TC0 circuits.
The best known lower bound for threshold circuits is the slightly super-linear n1+ 1

c∆ bound
for depth-∆ TC0 circuits computing the parity function, where c > 1 is a fixed constant [41].
For depth two TC0 circuits, [45] showed an Ω̃(n2.5) lower bound on the number of wires and
an Ω̃(n1.5) lower bound on the number of gates.

Hardness magnification
There are results in the arithmetic and Boolean circuit literature that show how to obtain
strong lower bounds from seemingly weak ones. We state a few of these results below with
the intent of demonstrating that sufficiently strong super-linear or super-quadratic lower
bounds can be quite interesting and challenging to prove even for constant depth circuits.

It follows from [91] that a cubic form24 has a depth three powering circuit25 with Θ(s)
gates if it has a circuit of size s. Thus, a super-linear lower bound on the number of gates
of a depth three powering circuit computing an explicit cubic form implies a super-linear
circuit lower bound. Stated differently, a super-linear lower bound on the (symmetric) tensor
rank of an explicit (symmetric) tensor of order 3 implies a super-linear circuit lower bound26.
In fact, Raz [74] showed that an nr·(1−o(1)) lower bound on the tensor rank of an explicit
order-r tensor T : [n]r → F implies a super-polynomial formula lower bound, assuming r is
a super-constant and r ≤ logn

log logn .

19The depth reduction in [34] yields a depth three circuit with low bottom fan-in. This is reminiscent of a
result in [95], which showed that a strong exponential lower bound for depth three Boolean circuits with
low bottom fan-in implies a super-linear lower bound for Boolean circuits having logarithmic depth and
bounded fan-in.

20This result was extended to depth four circuits with low bottom fan-in in the works [50,57].
21For the reader’s convenience, we show how the Ω(n1.33) bound can be derived from [73,86] in Appendix

D.
22This is because iterated addition and multiplication of integers are in TC0, and in the converse direction,

it is known that TC0 circuits can be simulated by constant depth arithmetic circuits using a single
threshold gate [1]. A related fact (attributed to Michael Ben-Or) is that there is an O(n2) size depth
three arithmetic circuit computing the n-variate degree-n2 elementary symmetric polynomial, which is
the arithmetic analogue of the majority function.

23 also for ACC0 circuits composed with a bottom layer of threshold gates
24 i.e., a homogeneous degree-3 polynomial
25A depth three powering circuit has a top +-gate, a middle layer of powering gates, and a bottom layer

of +-gates.
26The best known lower bound for an explicit order-3 tensor T : [n]3 → F is roughly 3n and for an

explicit order-r tensor is roughly 2nb
r
2 c [5].
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Recently, Chen and Tell [20] showed that a super-linear lower bound for TC0 circuits
(computing certain NC1-complete functions) which is slightly better than the lower bound
in [41] would imply TC0 6= NC1. Their result builds on the work of [6]. By mimicking
the argument in [20] for arithmetic circuits one gets the following statement: If IMM2,n is
computable27 by a depth-∆0 circuit of size nk then it is computable by a depth-∆ circuit
of size O( ∆

∆0
· n1+exp(− ∆

∆0k
)). Recall that an Ω(∆n1+ 1

∆ ) lower bound is already known for
depth-∆ arithmetic circuits [73,86]. If the same lower bound is shown for depth-∆ circuits
computing IMM2,n then that would imply a super-polynomial lower bound for constant depth
arithmetic circuits! Compare this with the best known upper bound for depth-∆ circuits
computing IMM2,n which is roughly exp(O(∆n 1

∆ )). Even for depth three circuits, we get
the following interesting observation: An Ω(n1.8+ε) lower bound on the number of gates of
a depth five circuit computing IMM2,n, for any constant ε > 0, implies a super-cubic lower
bound for depth three circuits28.

Hardness amplification results are also known for non-commutative circuits [18, 38].
A biquadratic polynomial f in the variables x = {x1, . . . , xn} and y = {y1, . . . , yn} is
a homogeneous degree-4 polynomial in which every monomial is of the form xixjykyl.
The bilinear complexity of a biquadratic polynomial f is the minimum r such that f =
g1h1 + . . . + grhr, where gi, hi are bilinear forms in x and y. It was shown in [38] that
Permanent requires non-commutative circuits of exponential size if there is an explicit
biquadratic polynomial having bilinear complexity Ω(n1+ε), for some constant ε > 0. In other
words, a super-cubic lower bound on the size of a homogeneous depth four (commutative)
circuit computing an explicit biquadratic form implies an exponential lower bound for
non-commutative circuits. In another appealing instance of hardness amplification, [18]
showed that an Ω(nω2 +ε) lower bound, where ω is the matrix multiplication exponent, for
non-commutative circuits computing an explicit constant degree polynomial implies an
exponential lower bound for non-commutative circuits; if the explicit polynomial has poly(n)
degree then the lower bound is an arbitrarily large polynomial function.

B Missing proofs from Section 3

B.1 Proofs from Section 3.1

B Claim 8. Let P = Q′1
e1 · · ·Q′t

et be one of the polynomials Pi. For k ≥ 0, let P (k) :=∏
i∈[t]Q

′
i
max(ei−k,0). Then, ∂kxP ⊆ F-span{y≤∞M x≤k(2tτ−1)

M P (k)}.

Proof. We prove the claim by induction on k. If k = 0, then ∂0
xMP = {P} = {P (0)} and

hence the claim is true. Assume that the claim is true for k. Let X be a multilinear monomial
of degree k + 1 in x variables. Then X = xX ′ where X ′ is a multilinear monomial of degree
k in x variables and x one of the x variables. From the induction hypothesis we have that,

∂P

∂X ′
= g · P (k)

where g is a polynomial in F[xM ,yM ] with xM degree of g being at most k(2tτ − 1) while
its yM degree can be arbitrarily large.

27Here IMM2,n is a collection of four polynomials corresponding to the entries of a product of n many
2× 2 matrices whose entries are distinct formal variables.

28We attribute this observation to Ankit Garg.
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Let J := {j ∈ [t] : ej > k}. We have that,

∂P

∂X
= ∂

∂x

(
g · P (k)

)
= ∂

∂x

g ·∏
j∈J

Q′j
ej−k


= ∂g

∂x
·
∏
j∈J

Q′j
ej−k + g ·

∑
j∈J

(ej − k) ·Q′j
ej−k−1 ·

∂Q′j
∂x
·
∏

i∈J\{j}

Q′i
ei−k

=

∂g

∂x
·
∏
j∈J

Q′j + g ·
∑
j∈J

(ej − k) ·
∂Q′j
∂x
·
∏

i∈J\{j}

Q′i

 ·∏
j∈J

Q′j
ej−k−1

Observe that as D is a pruned depth four circuit, the support of all monomials of Q′j is
upper bounded by τ and as in any monomial the individual degree of any x variable is at
most two, degx(Q′j) ≤ 2τ . Also, |J | ≤ t and hence

degx

∂g

∂x
·
∏
j∈J

Q′j + g ·
∑
j∈J

(ej − k) ·
∂Q′j
∂x
·
∏

i∈J\{j}

Q′i

 ≤ (k + 1)(2tτ − 1).

As
∏
j∈J Q

′
j
ej−k−1 = P (k+1), the claim is true for k + 1. C

B Claim 9. Let `, k, t and τ be as defined earlier. Then, `+ 2ktτ < m
2 .

Proof. We will show that the ratio
m
2 −2ktτ

` > 1. Putting the values of k and `,

m
2 − 2ktτ

`
=

m
2 − 2

⌊
δdx
t

⌋
tτ⌊

m
mδ/t+1

⌋
≥
(

1
2 −

2δdxτ

m

)
(mδ/t + 1).

So, we need to show that

1
1
2 −

2δdxτ
m

< mδ/t + 1 ⇐⇒ 1
1
2 −

2δdxτ
m

− 1 < mδ/t

⇐⇒
1 + 4δdxτ

m

1− 4δdxτ
m

< mδ/t.

For large enough m, 4δdxτ
m ≤ 1

2 . Using 1 + x ≤ ex, which holds for all x ∈ R, and
1

1−x ≤ e
2x, which holds for 0 ≤ x ≤ 1

2 we get:

1 + 4δdxτ
m

1− 4δdxτ
m

≤ e
12δdxτ
m .

So showing that e
12δdxτ
m < mδ/t would suffice. Now,

e
12δdxτ
m < mδ/t ⇐⇒ e

12dxtτ
m < m.

Putting the values of dx, t an τ , we get that 12dxtτ
m =

12dx
⌊

dx
(lnm)3

⌋
b20 lnmc

m ≤ 12d2
x ·20 lnm
m(lnm)3 =

Θ
(

m
m(lnm)2(lnm)2

)
= Θ

(
1

(lnm)4

)
= o(1) as dx = Θ

(√
m

lnm

)
. Thus e

12dxtτ
m < m. C
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B.2 Proof from Section 3.2.1
B Claim 11. Procedure 1 terminates in at most m iterations.

Proof. Let Hi be the set H after the i-th iteration of the procedure. Since each monomial in
Hi has support more than τ , for any such monomial there are at least τ

2 distinct j ∈ [3m]\M1
such that at least one of xj and yj appears in it. Counting the number of times at least one
of xj and yj appears in a monomial in Hi and summing up these counts for all j ∈ [3m]\M1,
we get that∑

j∈[3m]\M1

e(j) ≥ τ · |Hi|
2 ;

so from an averaging argument there exists a j such that

e(j) ≥ τ · |Hi|
6m .

Hence, the size of Hi+1 is upper bounded as

|Hi+1| ≤ |Hi| ·
(

1− τ

6m

)
.

So after i iterations of the procedure we get,

|Hi| ≤ |H0| ·
(

1− τ

6m

)i
≤
⌊
m2dx

(lnm)5

⌋
·
(

1− b20 lnmc
6m

)i
≤ m2dx

(lnm)5 ·
(

1− (20 lnm− 1)
6m

)i
≤ m2dx

(lnm)5 · e
− 3i·lnm

m (for sufficiently large m)

= m2dx

(lnm)5 ·m
− 3i
m .

For i = m, |Hi| < 1 (for sufficiently large m), i.e., the procedure terminates in at most m
iterations. C

B.3 Proof from Section 3.2.2
B Claim 13. Let M1 = [3m]\M1. Procedure 2 sets at most m many variables in xM1

∪ yM1

to field constants and removes all the heavy gates from C1.

Proof. In each iteration, we evaluate a light sparse polynomial in C1 to zero. This can be
done as F is an algebraically closed field. Since the support of every monomial in C1 is at
most τ , we end up setting at most τ ·m

(lnm)2 ≤ 20·m
lnm many variables to field constants in each

iteration. As we can afford to set m variables, Step 2 of the procedure executes successfully.
For some i ∈ N, the while loop terminates in the i-th iteration in either of the following two
cases:
1. All the heavy gates get eliminated after the (i− 1)-th iteration, i.e., si = 0.
2. τ(b1 + · · ·+ bi) > m. (We show in the following subclaim that all the heavy gates are

eliminated before this happens. Hence, the procedure stops only in the above case.)
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B Subclaim 18. Let i ∈ N be such that τ(b1 + · · · + bi−1) ≤ m but τ(b1 + · · · + bi) > m.
Then, all the heavy gates in C1 get eliminated in the first (i− 1) iterations of Procedure 2.
If we assume Subclaim 18 then Claim 13 is proved. C

Proof of Subclaim 18: For 1 ≤ j < i, let (Qj,1, . . . , Qj,rj ) be the available light sparse poly-
nomials in C1 after the (j − 1)-th iteration. Recall that sj is the number of heavy gates in C1
after the (j − 1)-th iteration. Suppose, sj ≥ 1 (otherwise, we have nothing to prove). For
every l ∈ [rj ], bj,l and cj,l refer to the fan-in of Qj,l and the number of distinct heavy gates
connected to Qj,l in C1 respectively. We may assume that bj,l 6= 0 for every l ∈ [rj ]. It is
given that

bj,1 + . . .+ bj,rj ≤
m2dx

160 · λ0 · (lnm)5 . (2)

Since every heavy gate is connected to at least m·dx
2·λ0·(lnm)3 many light sparse polynomials in

C1,

sj ·
mdx

2 · λ0 · (lnm)3 ≤ cj,1 + · · ·+ cj,rj .

As bj,1, . . . , bj,rj are all non-zero, we get

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj,1
bj,1
· bj,1 + · · ·+

cj,rj
bj,rj

· bj,rj .

Let u ∈ [rj ] be such that cj,u
bj,u

= max
{
cj,1
bj,1

, . . . ,
cj,rj
bj,rj

}
. Let cj := cj,u and bj := bj,u. Then,

the above equation implies

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj
bj
· (bj,1 + · · ·+ bj,rj ).

From Equation (2), we get that for every 1 ≤ j < i,

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj
bj
· m2dx

160 · λ0 · (lnm)5 ,

which implies

80 · sj · bj · (lnm)2

m
≤ cj . (3)

Thus, by setting the light sparse polynomial Qj,u to zero in the j-th iteration, we get rid of
at least 80·sj ·bj ·(lnm)2

m many heavy gates from C1. Recall that sj+1 is the number of available
heavy gates after the j-th iteration. Then, for every 1 ≤ j < i,

sj+1 ≤ sj − cj ≤ sj ·
(

1− 80 · bj · (lnm)2

m

)
. (4)

Hence, for every 1 ≤ j < i,

sj+1 ≤ s1 ·
j∏
l=1

(
1− 80 · bl · (lnm)2

m

)
. (5)

Also, for every l ≤ j, we have cl ≤ sl. Thus, Equation (3) implies

80 · bl · (lnm)2

m
≤ 1. (6)
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As 1− a ≤ e− a2 for 0 ≤ a ≤ 1, Equations (5) and (6) imply

sj+1 ≤ s1 ·
j∏
l=1

(
e−

40·bl·(lnm)2
m

)
= s1 · e−

40·(b1+···+bj)·(lnm)2

m . (7)

It is given that τ(b1 + · · ·+ bi) > m, which implies τ(b1 + · · ·+ bi−1) > m− τ · bi. As bi
is the fan-in of a light sparse polynomial, bi ≤ m

(lnm)2 and so

τ(b1 + · · ·+ bi−1) > m− mτ

(lnm)2 . (8)

On substituting j = i− 1, τ = b20 lnmc and the value of τ(b1 + · · ·+ bi−1) from Equation
(8) in Equation (7), we get

si ≤ s1 · e
− 40·(lnm)2

m ·
(

m
20 lnm−

m
(lnm)2

)
= s1 · e−(2 lnm−40).

For large enough m, si ≤ s1
m1.9 . Since s1 ≤ m, we get si = 0 (as it is a natural number). In

other words, we get rid of all the heavy gates within (i− 1) iterations. C

C Missing proofs from Section 5

B Claim 17. The top fan-in s of D is ω
(
m2dx

(lnm)5

)
.

Proof. From Equation (1), we have

s ≥
1

mO(1) min
{

1
4k ·
(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
mO(1) ·

(
m

`+2ktτ

)(dwt e+k−1
k

)
≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m
`+1

)(
m

`+2ktτ+1

) , ( m
`+dx−k

)(
m

`+2ktτ

) }

= 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(m− `− 2ktτ − 1)!
(m− `− 1)! · (`+ 2ktτ + 1)!

(`+ 1)! ,

(m− `− 2ktτ)!
(m− `− dx + k)! ·

(`+ 2ktτ)!
(`+ dx − k)!

}
= 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k · e

(−2ktτ) ln m−`−1
`+1 ±o(1), e(dx−2ktτ−k) ln m−`

`
±o(1)

}
(Using Proposition 5.)

≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m

`+ 1 − 1
)−2ktτ

,

(
m

`
− 1
)(dx−2ktτ−k)

}

= 1

mO(1)
(dwt e+k−1

k

) min


(
m
k

)
4k ·

(
m⌊

m
mδ/t+1

⌋
+ 1
− 1

)−2ktτ

,

(
m⌊
m

mδ/t+1

⌋ − 1

)(dx−2ktτ−k)


≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m
m

mδ/t+1
− 1
)−2ktτ

,

(
m
m

mδ/t+1
− 1
)(dx−2ktτ−k)

}

≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·m

−2kδτ ,m(1−2δτ− δ
t

)k

}
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Since (mk )
4k · m

−2kδτ = (mk )
4k·m(1− δ

t
)k
· m(1−2δτ− δt )k ≤ ( emk )k · m

δk
t

4kmk · m
(1−2δτ− δt )k. For our

choice of parameters δ, k and t, m δk
t = O(1). Hence, (mk )

4k ·m
−2kδτ ≤ m(1−2δτ− δt )k and thus,

s ≥ 1
mO(1) ·

(
m
k

)
·m−2kδτ

4k ·
(dwt e+k−1

k

)
≥ 1
mO(1) ·

(
m · k

4e · k ·m2δτ · (wt + k)

)k
(Using Proposition 4.)

≥ 1
mO(1) ·

(
m · t

8e ·m2δτ · w

)k
(Since kt ≤ w =

⌊
mdx

λ0·(lnm)3

⌋
.)

= 1
mO(1) ·

 m ·
⌊

dx
(lnm)3

⌋
8e ·m2δτ ·

⌊
mdx

λ0·(lnm)3

⌋
k

≥ 1
mO(1) ·

(
m · dx

(lnm)3

16e ·m2δτ · mdx
λ0·(lnm)3

)k

≥ 1
mO(1) ·

(
λ0

16e ·m2· 1
(lnm)2

·b20 lnmc

)lnm
(Since k ≥ blnmc.)

= 1
mO(1) ·

(
λ0

16e · eO(1)

)lnm

= ω

(
m2dx

(lnm)5

)
,

if we choose λ0 to be a large enough constant. C

D A brief review of the lower bounds from [86] and [73]

In this section, we present a short overview of the lower bounds for restricted depth arithmetic
circuits with multiple output gates from [86] and [73] and focus mainly on depth four circuits.
We would use (s,∆)-arithmetic circuit to denote an arithmetic circuit of size-s and depth-∆
and y for the set of variables {y1, . . . , yn}.

Lower bound from [86]. Let n ∈ N and ∆ = O(logn). Shoup and Smolensky showed that
there exist n linear forms g1, . . . , gn ∈ C[y], such that the size of any depth-∆ normal-linear
circuit29 that computes g1, . . . , gn is Ω(∆n1+ 1

∆ ). The following proposition implies that the
same lower bound holds for a depth-∆ arithmetic circuit, that also computes g1, . . . , gn.

I Proposition 19. Let n ∈ N, F be an arbitrary field and h1, . . . , hn ∈ F[y] be linear forms
computed by an (s,∆)-arithmetic circuit. Then, there exists an (s,∆)-normal-linear circuit
that computes h1, . . . , hn.

This proposition is easy to prove; a proof of the same in given in Section 2 of [73]. We
refer the reader to Section 3 of [86] for more details. In case of depth four arithmetic circuits
over C, if we substitute ∆ = 4 in the above mentioned result then we get a lower bound of

29An arithmetic circuit D over F is called a normal-linear circuit if all the gates in D are labelled by either
variables or by +. Every gate in D computes a linear form in the underlying set of variables over F.
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Ω(n1.25), but we observe that this lower bound can be optimised roughly to Ω(n1.33) using
the following claim. Claim 20 implies that the size of any depth four arithmetic circuit and
any depth three normal-linear circuit computing the linear forms g1, . . . , gn given in [86] are
same, which is roughly Ω(n1.33).

B Claim 20. Let n ∈ N and h1, . . . , hn ∈ F[y] be linear forms, computed by an (s, 4)-
arithmetic circuit C over F. Then, there exists an (s, 3)-normal-linear circuit over F that
computes h1, . . . , hn.

Proof. From Proposition 19, we obtain an (s, 4)-normal-linear circuit D over F that computes
h1, . . . , hn. We now argue that linearisation ensures that the fan-in of every gate in the
bottom layer of D is exactly 1. It turns out that only those product gates survive the
linearisation in the bottom layer of C which are connected to exactly one variable. Let v be
a gate in the bottom layer of C with children u1, . . . , ur. Then, there exists some i ∈ [r] such
that ui is a variable and all other gates are labelled by field constants, in which case, we
remove uj , j ∈ [r] \ {i} and multiply the label of the edge (v, ui) with

∏
j∈[r]\{i} uj . As every

gate in the bottom layer of D has fan-in 1, we can directly connect the input of every gate
in this layer to its outputs, thereby yielding an (s, 3)-normal-linear circuit that computes
h1, . . . , hn. C

Lower bound from [73]. Let n be a prime number and ∆ = O(logn). Raz showed that
there exist n explicit homogeneous polynomials of degree Θ(∆) in Θ(n) variables over F, such
that any depth-∆ arithmetic circuit that computes these polynomials has size Ω(n1+ 1

2·∆ ).
While the lower bound for depth-∆ arithmetic circuit given in [86] holds for n non-explicit
linear forms over C, the same lower bound also holds for n explicit homogeneous polynomials
of Θ(n) degree in Θ(n) variables over C. We first recall some definitions from [73] and then
show that the lower bound for depth-∆ arithmetic circuits in [73] can be optimized slightly.

Let n′,m, t, s ∈ N. A polynomial mapping f : Fn′ → Fm of degree t is an m tuple
(f1, . . . , fm) of n′ variate degree t polynomials over F. The polynomial mapping f eludes
a polynomial mapping Γ : Fs → Fm if Image(f) 6⊂ Image(Γ). Moreover, f is said to be
(s, t)-elusive over F if it eludes every polynomial mapping Γ : Fs → Fm of degree at most t.

Let n be a prime, ∆ = O(logn), m := n2,∆′ := a · ∆, where a ∈ N is a constant,
n′ := ∆′ · n and x := {xk,l : k ∈ [∆′], l ∈ [n]}. Let f : Fn′ → Fm be defined as follows:

For every (i, j) ∈ [n]× [n],

f(i,j)(x) :=
∆′∏
k=1

xk,(i+j·k)mod n. (9)

Further, for every i ∈ [n],

f̃i(x,y) :=
∑
j∈[n]

yj · f(i,j)(x). (10)

[73] showed that for a = 5, any depth-∆ arithmetic circuit computing f̃1, . . . , f̃n requires size
Ω(n1+ 1

2·∆ ). The detailed proof is given in Section 4 of [73]. Here, we show how this lower
bound can be optimized to Ω(n1+ 1

∆−εa,∆), where εa,∆ := 2·∆−1
a·∆2 . Note that as we increase

the value of a, this lower bound gets closer to the one for depth-∆ arithmetic circuits given
in [86]. The main ingredient of this improvement is the following optimization of Lemma 4.1
in [73].
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I Lemma 21. Let n be a prime, m = n2, ∆ = O(logn), ∆′ = a·∆, where a ∈ N is a constant
and n′ = ∆′ · n. Let G be a field extension of F of size more than m and f : Gn′ → Gm be
the polynomial mapping defined in Equation (9)30. Then, f is (s,∆)-elusive over G, where
s = bn1+ 1

∆−εa,∆c and εa,∆ = 2·∆−1
a·∆2 .

Proof. Let U := [n]× [n], r := 1
2bn

1− 2
∆′ c. For A ⊆ U , fA(x) :=

∏
(i,j)∈A fi,j(x). A is said

to be retrievable if for any A′ ⊆ U , fA 6= fA′ implies A 6= A′. It is shown in Claim 4.2 of [73]
that

Pr
A∈R(Ur)

[A is not retrievable] ≤
(
|A|
n+ 1

)∆′

· n2,

where A ∈R
(
U
r

)
means that A is a subset of U of size r chosen uniformly at random. On

plugging the value of r in the above equation, we get

Pr
A∈R(Ur)

[A is retrievable] > 1
2 . (11)

Let L be the set of degree r multilinear homogeneous polynomials of the type g : Gm → G,
such that every monomial of g corresponds to a retrievable set. Clearly, L is a G-vector space.
From Equation (11), we get dimG(L) > 1

2
(
m
r

)
≥ 1

2
(
m
r

)r = 1
2

(
2n1+ 2

∆′
)r

. Fix a polynomial
map Γ : Gs → Gm of degree ∆. Then, for every g ∈ L, g◦Γ : Gs → G is a polynomial of degree
r ·∆. Let K be the set of all polynomials from Gs to G of degree at most r ·∆. Then, K is a
G-vector space and dimGK ≤

(
s+r·∆
r·∆

)
≤
(
e(s+r·∆)
r·∆

)r·∆
<
( 2es
r

)r·∆ =
(

12n 1
∆ + 2

∆′−εa,∆
)r·∆

.

On substituting the values of ∆′ and εa,∆ in dimG L and dimGK, we get dimGK < dimG L.
Now, for a fixed polynomial map Γ : Gs → Gm of degree ∆, define ϕΓ : L → K ; g 7→ g ◦ Γ.
Clearly, ϕΓ is a G-linear map and as dimGK < dimG L, ϕΓ is not an injective map. This
means that there exists a non-zero gΓ ∈ L, such that ϕΓ(gΓ) = gΓ ◦ Γ = 0. As |G| > m,
Claim 4.4 in [73] implies that gΓ ◦ f : Gn′ → G is not the zero polynomial. Thus, for every
polynomial mapping Γ : Gs → Gm of degree ∆, Image(f) 6⊂ Image(Γ). Hence, f is an
(s,∆)-elusive polynomial map over G. J

The following is a corollary of Lemma 21 and Proposition 3.11 in [73].

I Corollary 22. Let n be a prime, ∆ = O(logn) and ∆′ = a ·∆ for some constant a ∈ N. Let
f̃1, . . . , f̃n be n(∆′ + 1) variate degree ∆′ + 1 polynomials as defined in Equation (10). Then,
any depth-∆ arithmetic circuit C over F computing f̃1, . . . , f̃n requires size Ω

(
n1+ 1

∆−εa,∆
)
,

where εa,∆ = 2·∆−1
a·∆2 .

Proof idea. In Proposition 3.11 in [73], f̃1, . . . , f̃n and C are viewed as linear polynomials
in y variables over the function field F(x) and an arithmetic circuit over F(x) respectively.
Then, using Proposition 19, C is converted to an (s,∆)-normal-linear circuit over F(x), that
also computes f̃1, . . . , f̃n. After that, on invoking Lemma 21, we get the lower bound of
Ω
(
n1+ 1

∆−εa,∆
)
on a depth-∆ arithmetic circuit computing f̃1, . . . , f̃n. J

We now focus on depth four circuits. Let s := n
4
3−εa,3 , where εa,3 := 5

9a . In the proof of
Corollary 22, we use Claim 20 to obtain an (s, 3)-normal-linear circuit over F(x) from an
(s, 4)-arithmetic circuit over F(x), such that both circuits compute f̃1, . . . , f̃n. As Lemma 21
implies that the polynomial mapping f is (s, 3)-elusive, we get a lower bound of Ω(n 4

3−εa,3)
for depth four circuits.

30 f is naturally a polynomial mapping over G because from every i, j ∈ [n], fi,j(x) ∈ F[x] ⊆ G[x].
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Abstract
We suggest a generalization of Karchmer – Wigderson communication games to the multiparty
setting. Our generalization turns out to be tightly connected to circuits consisting of threshold
gates. This allows us to obtain new explicit constructions of such circuits for several functions. In
particular, we provide an explicit (polynomial-time computable) log-depth monotone formula for
Majority function, consisting only of 3-bit majority gates and variables. This resolves a conjecture
of Cohen et al. (CRYPTO 2013).
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1 Introduction

Karchmer and Wigderson established tight connection between circuit depth and communic-
ation complexity [11] (see also [12, Chapter 9]). Namely, they showed that for each Boolean
function f one can define a communication game which communication complexity exactly
equals the depth of f in the standard De Morgan basis. This discovery turned out to be
very influential in Complexity Theory. A lot of circuit depth lower bounds as well as formula
size lower bounds rely on this discovery [10, 13, 5, 7, 4]. Karchmer – Wigderson games have
been used also in adjacent areas like Proof Complexity (see, e.g., [14]).

Karchmer – Wigderson games represent a deep connection of two-party communication
protocols with De Morgan circuits. Loosely speaking, in this connection one party is
responsible for ∧ gates and the other party is responsible for ∨ gates. In this paper we
address the question of what would be a natural generalization of Karchmer – Wigderson
games to the multiparty setting. Is it possible to obtain in this way a connection with other
types of circuits?

We answer positively to this question: we suggest such a generalization and show its
connection to circuits consisting of threshold gates. To motivate our results we first present
applications we get from this new connection.
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1.1 Applications to circuits
There are two classical constructions of O(logn)-depth monotone formulas for the Majority
function, MAJ2n+1. The one was given by Valiant [15]. Valiant used probabilistic method
which does not give an explicit construction. The other construction is the AKS sorting
network [1]. This construction actually gives polynomial-time computable O(logn)-depth
O(n logn)-size monotone circuit for MAJn.

Several authors (see, e.g., [6, 3]) noticed that the Valiant’s probabilistic argument actually
gives a O(logn)-depth formula for MAJn, consisting only of MAJ3 gates and variables. Is it
possible to construct a O(logn)-depth circuit for MAJ2n+1, consisting only of MAJ3 gates
and variables, deterministically in polynomial time?1

This question was stated as a conjecture by Cohen et al. in [3]. First, they showed that
the answer is positive under some cryptographic assumptions. Secondly, they constructed
(unconditionally) a polynomial-time computable O(logn)-depth circuit, consisting only of
MAJ3 gates and variables, which coincides with MAJn for all inputs in which the fraction of
ones is bounded away from 1/2 by 2−Θ(

√
log n).

We show that the conjecture of Cohen et al. is true (unconditionally).

I Theorem 1. There exists polynomial-time computable O(logn)-depth formula for MAJ2n+1,
consisting only of MAJ3 gates and variables.

In the proof we use the AKS sorting network. In fact, one can use any polynomial-time
computable construction of O(logn)-depth monotone circuit for MAJ2n+1. We also obtain
the following general result:

I Theorem 2. If there is a monotone formula (i.e., formula, consisting of ∧,∨ gates and
variables) for MAJ2n+1 of size s, then there is a formula for MAJ2n+1 of size O(s ·nlog2(3)) =
O(s · n1.58...), consisting only of MAJ3 gates and variables.

Transformation from the last theorem, however, is not efficient. We can make this transform-
ation polynomial-time computable, provided log2(3) is replaced by 1/(1− log3(2)) ≈ 2.71. In
turn, we view Theorem 2 as a potential approach to obtain super-quadratic lower bounds on
monotone formula size for MAJ2n+1. However, this approach requires better than n2+log2(3)

lower bound on formula size of MAJ2n+1 in the {MAJ3} basis. Arguably, this basis may be
easier to analyze than the standard monotone basis. The best known size upper bounds
in the {∧,∨} basis and the {MAJ3} basis are, respectively, O(n5.3) and O(n4.29) [8]. Both
bounds are due to Valiant’s method (see [8] also for the limitations of Valiant’s method).

We also study a generalization of the conjecture of Cohen et al. to threshold functions.
By THRb

a we denote the following Boolean function:

THRb
a : {0, 1}b → {0, 1}, THRb

a(x) =
{

1 x contains at least a ones,
0 otherwise.

For some reasons (to be discussed below) a natural generalization would be a question of
whether THRkn+1

n+1 can by computed by a O(logn)-depth circuit, consisting only of THRk+1
2

gates and variables (initial conjecture can be obtained by setting k = 2). This question was
also addressed by Cohen et al. in [3]. First, they observed that there is a construction of depth
O(n) (and exponential size). Secondly, they gave an explicit construction of depth O(logn),
which coincides with THRkn+1

n+1 for all inputs in which the fraction of ones is bounded away
from 1/k by Θ(1/

√
logn).

1 Note that AKS sorting network does not provide a solution because it consists of ∧ and ∨ gates.
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However, no exact (even non-explicit) construction with sub-linear depth or sub-exponen-
tial size was known. In particular, Valiant’s probabilistic construction does not work for k ≥ 3.
Nevertheless, in this paper we improve depth O(n) to O(log2 n) and size from exp{O(n)} to
nO(1) for this problem:

I Theorem 3. For any constant k ≥ 3 there exists polynomial-time computable O(log2 n)-
depth polynomial-size circuit for THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables.

1.2 Applications to Multiparty Secure Computations
The conjecture stated in [3] was motivated by applications to Secure Multiparty Computations.
The paper [3] establishes an approach to construct efficient multiparty protocols based on
protocols for a small number of players. More specifically, in their framework one starts
with a protocol for a small number of players and a formula F computing a certain boolean
function. Then one combines a protocol for a small number of players with itself recursively,
where the recursion mimics the formula F .

It is shown in [3] that from our result it follows that for any n there is an explicit
polynomial size protocol for n players secure against a passive adversary that controls any
t < n

2 players. It is also implicit in [3] that from Theorem 3 for k = 3 it follows that for any
n there is a protocol of size 2O(log2 n) for n players secure against an active adversary that
controls any t < n

3 players. An improvement of the depth of the formula in Theorem 3 to
O(logn) would result in a polynomial size protocol. We refer to [3] for more details on the
secure multiparty computations.

1.3 Multiparty Karchmer – Wigderson games
We now reveal a bigger picture to which the above results belong to. Namely, they can be
put into framework of multiparty Karchmer – Wigderson games.

Before specifying how we define these games let us give an instructive example. Consider
ordinary monotone Karchmer – Wigderson game for MAJ2n+1. In this game Alice receives
a string x ∈ MAJ−1

2n+1(0) and Bob receives a string y ∈ MAJ−1
2n+1(1). In other words, the

number of ones in x is at most n and the number of ones in y is at least n+ 1. The goal of
Alice and Bob is to find some coordinate i such that xi = 0 and yi = 1. Next, imagine that
Bob flips each of his input bits. After that parties have two vectors in both of which the
number of ones is at most n. Now Alice and Bob have to find any coordinate in which both
vectors are 0.

In this form this problem can be naturally generalized to the multiparty setting. Namely,
assume that there are k parties, and each receives a Boolean vector of length kn+ 1 with at
most n ones. Let the task of parties be to find a coordinate in which all k input vectors are
0. How many bits of communication are needed for that?

For k = 2 the answer is O(logn), because there exists a O(logn)-depth monotone circuit
for MAJ2n+1 and hence the monotone Karchmer – Wigderson game for MAJ2n+1 can
be solved in O(logn) bits of communication. For k ≥ 3 we are only aware of a simple
O(log2 n)-bit solution based on the binary search.

Now, let us look at the case k ≥ 3 from another perspective and introduce multiparty
Karchmer – Wigderson games. Note that each party receives a vector on which THRkn+1

n+1
equals 0. The goal is to find a common zero. Note that we can consider a similar problem for
any function f satisfying so-called Qk-property: any k vectors from f−1(0) have a common
zero. In the next definition we define Qk-property formally and also introduce related
Rk-property.

CCC 2020



24:4 Multiparty Karchmer – Wigderson Games and Threshold Circuits

I Definition 4. Let Qk be the set of all Boolean functions f satisfying the following property:
for all x1, x2, . . . , xk ∈ f−1(0) there is a coordinate i such that x1

i = x2
i = . . . = xk

i = 0.
Further, let Rk be the set of all Boolean functions f satisfying the following property: for

all x1, x2, . . . , xk ∈ f−1(0) there is a coordinate i such that x1
i = x2

i = . . . = xk
i .

For f ∈ Qk let Qk-communication game for f be the following communication problem.
In this problem there are k parties. The jth party receives a Boolean vector xj ∈ f−1(0).
The goal of players is to find any coordinate i such that x1

i = x2
i = . . . = xk

i = 0.
Similarly we can define Rk-communication games for functions from Rk. In the Rk-

communication games the objective of parties is slightly different: their goal is to find any
coordinate i and a bit b such that x1

i = x2
i = . . . = xk

i = b.
Self-dual functions belong to R2 and monotone self-dual functions belong to Q2. It is

easy to see that R2-communication games are equivalent to Karchmer – Wigderson games for
self-dual functions (one party should flip all the input bits). Moreover, Q2-communication
games are equivalent to monotone Karchmer – Widgerson games for monotone self-dual
functions.

In this paper we consider Rk-communication games as a multiparty generalization of
Karchmer – Wigderson games. In turn, Qk-communication games are considered as a
generalization of monotone Karchmer – Wigderson games. To justify this choice one should
relate them to some type of circuit complexity.

1.4 Connection to threshold gates and the main result
Every function from Qk can be lower bounded by a circuit, consisting only of THRk+1

2 gates
and variables. More precisely, let us write C ≤ f for a Boolean circuit C and a Boolean
function f if for all x ∈ f−1(0) we have C(x) = 0. Then the following proposition holds:

I Proposition 5 ([3]). The set Qk is equal to the set of all Boolean functions f for which
there exists a circuit C ≤ f , consisting only of THRk+1

2 gates and variables.

There is a similar characterization of the set Rk.

I Proposition 6. The set Rk is equal to the set of all Boolean functions f for which there
exists a circuit C ≤ f , consisting only of THRk+1

2 gates and literals2.

The proof from [3] of Proposition 5 with obvious modifications also works for Proposition 6.
Given f ∈ Qk, what is the minimal depth of a circuit C ≤ f , consisting only of THRk+1

2
gates and variables? We show that this quantity is equal (up to constant factors) the
communication complexity of Qk-communication game for f .

I Theorem 7. Let k ≥ 2 be any constant. Then for any f ∈ Qk the following two quantities
are equal up to constant factors:

the communication complexity of Qk-communication game for f ;
minimal d for which there exists a d-depth circuit C ≤ f , consisting only of THRk+1

2
gates and variables.

Similar result can be obtained for Rk-communication games.

2 We stress that negations can only be applied to variables but not to THRk+1
2 gates.
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I Theorem 8. Let k ≥ 2 be any constant. Then for any f ∈ Rk the following two quantities
are equal up to constant factors:

the communication complexity of Rk-communication game for f ;
minimal d for which there exists a d-depth circuit C ≤ f , consisting only of THRk+1

2
gates and literals.

Proofs of both theorems are divided into two parts:
(a) transformation of a d-depth circuit C ≤ f , consisting only of THRk+1

2 gates and variables
(literals), into a O(d)-bit protocol computing Qk(Rk)-communication game for f ;

(b) transformation of a d-bit protocol computing Qk(Rk)-communication game for f into a
d-depth circuit C ≤ f , consisting only of THRk+1

2 gates and variables (literals).

The first part is simple and the main challenge is the second part. Later in this paper
(Section 6) we also formulate refined versions of Theorems 7 and 8. Namely, we refine these
theorems in the following two directions. Firstly, we take into account circuit size and for
this we consider dag-like communication protocols. Secondly, we show that transformations
(a-b) can be done in polynomial time (under some mild assumptions).

We derive our upper bounds on the depth of MAJ2n+1 and THRkn+1
n+1 (Theorems 1

and 3) from Theorem 7. We first solve the corresponding Qk-communication games with
small number of bits of communication. Namely, for the case of MAJ2n+1 we use AKS
sorting network to solve the corresponding Q2-communication game with O(logn) bits
of communication. For the case of THRkn+1

n+1 with k ≥ 3 we solve the corresponding Qk-
communication game by a simple binary search protocol with O(log2 n) bits of communication.
This is where we get depth O(logn) for Theorem 1 and depth O(log2 n) for Theorem 3.
Again, some special measures should be taken to make the resulting circuits polynomial-time
computable and to control their size3.

1.5 Our techniques: Qk(Rk)-hypotheses games
As we already mentioned, the hard part of our main result is to transform a protocol into a
circuit.

For this we develop a new language to describe circuits, consisting of threshold gates.
Namely, for every f in Qk (Rk) we introduce the corresponding Qk(Rk)-hypotheses game
for f . We show that strategies in these games exactly capture depth and size of circuits,
consisting only of THRk+1

2 gates and variables (literals). It turns out that strategies are more
convenient than circuits to simulate protocols, since they operate in the same top-bottom
manner.

Once we establish the equivalence of circuits and hypotheses games, it remains for us
to transform a communication protocol into a strategy in a hypotheses games. This is an
elaborate construction that is presented in Propositions 20 and 24. Below in this section we
introduce hypotheses games and as an illustration sketch the construction of a strategy in a
hypothesis game that is used in the proof of Theorem 1.

Here is how we define these games. Fix f : {0, 1}n → {0, 1}. There are two players,
Nature and Learner. Before the game starts, Nature privately chooses z ∈ f−1(0), which then
can not be changed. The goal of Learner is to find some i ∈ [n] such that zi = 0. The game
proceeds in rounds. At each round Learner specifies k + 1 families H0,H1, . . . ,Hk ⊂ f−1(0)
to Nature. We understand this as if Learner makes the following k + 1 hypotheses about z:

3 We should only care about the size in case of Theorem 3, because depth O(log n) immediately gives
polynomial size.

CCC 2020



24:6 Multiparty Karchmer – Wigderson Games and Threshold Circuits

“z ∈ H0”,
“z ∈ H1”,
...

“z ∈ Hk”.

Learner loses immediately if less than k hypotheses are true, i.e., if the number of j ∈
{0, 1, . . . , k} satisfying z ∈ Hj is less than k. Otherwise Nature points out to some hypothesis
which is true. In other words, Nature specifies to Learner some j ∈ {0, 1, . . . , k} such that
z ∈ Hj . The game then proceeds in the same manner for some finite number of rounds. At
the end Learner outputs an integer i ∈ [n]. We say that Learner wins if zi = 0.

It is not hard to show that Learner has a winning strategy in Qk-hypotheses game for f
if and only if f ∈ Qk. Since we will use similar arguments in the paper, let us go through
the “if” part: if f ∈ Qk, then Learner has a winning strategy. Denote by Z be the set of
all z’s which are compatible with Nature’s answers so far. At the beginning Z = f−1(0).
If |Z| ≥ k + 1, Learner takes any distinct z1, z2, . . . , zk+1 ∈ Z and makes the following
hypotheses:

“z 6= z1”,
“z 6= z2”,
...

“z 6= zk+1”.

At least k hypotheses are true, and the Nature’s response strictly reduces the size of Z.
When the size of Z becomes k, Learner is ready to give an answer due to Qk-property of f .

This strategy requires exponential in n number of rounds. This can be easily improved
to O(n) rounds. Indeed, instead of choosing k + 1 distinct elements of Z split Z into k + 1
disjoint almost equal parts. Then let the ith hypotheses be “z is not in the ith part”. Nature’s
response to this reduces the size of Z by a constant factor, until the size of Z is k.

For f ∈ Qk we can now ask what is the minimal number of rounds on in a Learner’s
winning strategy. The following proposition gives an exact answer:

I Proposition 9. For any f ∈ Qk the following holds. Learner has a d-round winning
strategy in Qk-hypotheses game for f if and only if there exists a d-depth circuit C ≤ f ,
consisting only of THRk+1

2 gates and variables.

Proposition 9 is the core result for our applications. For instance, we prove Theorem 1
by giving an explicit O(logn)-round winning strategy of Learner in Q2-hypotheses game for
MAJ2n+1. Let us now sketch our argument (the complete proof can be found in Section 4).

Assume that Nature’s input vector is z. We notice that in O(logn) rounds one can easily
find two integers i, j ∈ [2n+ 1] such that either zi = 0 or zj = 0. However, we need to know
for sure. For that we take any polynomial time computable O(logn)-depth monotone formula
F for MAJ2n+1 (for instance one that can be obtained from the AKS sorting network). We
start to descend from the output gate of F to one of F ’s inputs. Throughout this descending
we maintain the following invariant. If g is the current gate, then either g(z) = 0 ∧ zi = 0 or
g(¬z) = 1 ∧ zj = 0 (here ¬ denotes bit-wise negation). It can be shown that in one round
one can either exclude i or j (which will already give us an answer) or replace g by some
gate which is fed to g. If we reach an input to F , we output the index of the corresponding
variable.
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Similarly one can define Rk-hypotheses game for any f : {0, 1}n → {0, 1}. In Rk-
hypotheses game Nature and Learner play in the same way except that now Learner’s
objective is to find some pair (i, b) ∈ [n]× {0, 1} such that zi = b. The following analog of
Proposition 9 holds:

I Proposition 10. For any f ∈ Rk the following holds. Learner has a d-round winning
strategy in Rk-hypotheses game for f if and only if there exists a d-depth circuit C ≤ f ,
consisting only of THRk+1

2 gates and literals.

1.6 Organization of the paper
In Section 2 we give Preliminaries. In Section 3 we define Qk(Rk)-hypotheses games formally
and derive Proposition 9 and 10. In Section 4 we obtain our results for Majority function
(Theorems 1 and 2) using simpler arguments than in our general results. Then in Section 5
we prove these general results (Theorems 7 and 8). In Section 6 we refine Theorems 7 and 8
in order to take into account the circuit size and computational aspects (Theorems 27 and 30
below). In Section 7 we derive Theorem 3 and provide another proof for Theorem 1. Finally,
in Section 8 we formulate some open problems.

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n} for n ∈ N. For a set W we denote the set of all subsets
of W by 2W . For two sets A and B by AB we mean the set of all functions of the form
f : B → A.

We usually use subscripts to denote coordinates of vectors. In turn, we usually use
superscripts to numerate vectors.

We use standard terminology for Boolean formulas and circuits [9]. We denote the size of
a circuit C by size(C) and the depth by depth(C). By De Morgan formulas/circuits we mean
formulas/circuits consisting of ∧,∨ gates of fan-in 2 and literals (i.e., we assume that negations
are applied only to variables). By monotone formulas/circuits we mean formulas/circuits
consisting of ∧,∨ gates of fan-in 2 and variables. We also consider formulas/circuits consisting
only of THRk+1

2 gates and variables (literals). We stress that in such circuits we do not use
constants. Allowing literals as inputs we allow to apply negations only to variables. We also
assume that negations in literals do not contribute to the depth of a circuit.

We use the notion of deterministic communication protocols in the multiparty number-in-
hand model. However, to capture the circuit size in our results we consider not only standard
tree-like protocols, but also dag-like protocols. This notion was considered by Sokolov in [14].
We use slightly different variant of this notion, arguably more intuitive one. In the next
subsection we provide all necessary definitions. To obtain a definition of a standard protocol
one should replace dags by binary trees.

2.1 Dags and dag-like communication protocols
We use the following terminology for directed acyclic graphs (dags). Firstly, we allow more
than one directed edge from one node to another. A terminal node of a dag G is a node with
no out-going edges. Given a dag G, let

V (G) denote the set of nodes of G;
T (G) denote the set of terminal nodes of G.

For v ∈ V (G) let OutG(v) be the set of all edges of G that start at v. A dag G is called
t-ary if every non-terminal node v of G we have |OutG(v)| = t. An ordered t-ary dag is a
t-ary dag G equipped with a mapping from the set of edges of G to {0, 1, . . . , t− 1}. This

CCC 2020



24:8 Multiparty Karchmer – Wigderson Games and Threshold Circuits

mapping restricted to OutG(v) should be injective for every v ∈ V (G) \ T (G). The value
of this mapping on an edge e will be called the label of e. In terms of labels we require for
ordered t-ary dags that any t edges, starting at the same node, have different labels.

By a path in G we mean a sequence of edges 〈e1, e2, . . . , em〉 such that for every j ∈ [m−1]
edge ei ends in the same node in which ej+1 starts. Note that there may be two distinct
paths visiting same nodes (for instance, there may be two parallel edges from one node to
another).

We say that a node w is a descendant of a node v if there is a path from v to w. We call
w a successor of v if there is an edge from v to w. A node s is called starting node if any
other node is a descendant of s. Note that any dag has at most one starting node.

If a dag G has the starting node s, then by depth of v ∈ V (G) we mean the maximal
length of a path from s to v. The depth of G then is the maximal depth of its nodes.

Assume that X1,X2, . . . ,Xk,Y are some finite sets.

I Definition 11. A k-party dag-like communication protocol π with inputs from X1 ×X2 ×
. . .Xk and with outputs from Y is a tuple 〈G,P1, P2, . . . , Pk, φ1, φ2, . . . , φk, l〉, where

G is an ordered 2-ary dag with the starting node s;
P1, P2, . . . , Pk is a partition of V (G) \ T (G) into k disjoint subsets;
φi is a function from Pi ×Xi to {0, 1};
l is a function from T (G) to Y.

The depth of π (denoted by depth(π)) is the depth of G. The size of π (denoted by
size(π)) is |V (G)|.

The underlying mechanics of the protocol is as follows. Parties descend from s to one
of the terminals of G. If the current node v is not a terminal and v ∈ Pi, then at v the ith
party communicates a bit to all the other parties. Namely, the ith party communicates the
bit b = φi(v, x), where x ∈ Xi is the input of the ith party. Among the two edges, starting
at v, parties choose one labeled by b and descend to one of the successors of v along this
edge. Finally, when parties reach a terminal t, they output l(t).

We say that x ∈ Xi is i-compatible with an edge e from v to w if one of the following two
condition holds:

v /∈ Pi;
v ∈ Pi and e is labeled by φi(v, x).

We say that x ∈ Xi is i-compatible with a path p = (e1, e2, . . . , em) of G if for every j ∈ [m]
it holds that x is i-compatible with ej . Finally, we say that x ∈ Xi is i-compatible with a
node v ∈ V (G) if there is a path p from s to v such that x is i-compatible with v.

We say that an input (x1, x2, . . . , xk) ∈ X1 ×X2 × . . .Xk visits a node v ∈ V (G) if there
is a path p from s to v such that for every i ∈ [k] it holds that xi is i-compatible with p.
Note that there is unique t ∈ T (G) such that (x1, x2, . . . , xk) visits t.

To formulate an effective version of Theorems 7 and Theorem 8 we need the following
definition.

I Definition 12. The light form of a k-party dag-like communication protocol π =
〈G,P1, P2, . . . , Pk, φ1, φ2, . . . , φk, l〉 is a tuple 〈G,P1, P2, . . . , Pk, l〉.

I.e., to obtain the light form of π we just forget about φ1, φ2, . . . , φk. In other words, the
light form only contains the underlying graph of π, the partition of non-terminal nodes
between parties and the labels of terminals. On the other hand, in the light form there is no
information at all how parties communicate at the non-terminal nodes.

Protocol π computes a relation S ⊂ X1×X2× . . .×Xk×Y if the following holds. For every
(x1, x2, . . . , xk) ∈ X1 ×X2 × . . .×Xk there exist y ∈ Y and t ∈ T (G) such that (x1, . . . , xk)
visits t, l(t) = y and (x1, x2, . . . , xk, y) ∈ S.
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Using language of relations, we can formally define Qk- and Rk-communication games.
Namely, given f : {0, 1}n → {0, 1}, f ∈ Qk, we define Qk-communication game for f as the
following relation:

S ⊂ f−1(0)× . . .× f−1(0)︸ ︷︷ ︸
k

×[n],

S =
{

(x1, . . . , xk, j) | x1
j = . . . = xk

j = 0
}
.

Similarly, given f : {0, 1}n → {0, 1}, f ∈ Rk, we define Rk-communication game for f as the
following relation:

S ⊂ f−1(0)× . . .× f−1(0)︸ ︷︷ ︸
k

×([n]× {0, 1}),

S =
{

(x1, . . . , xk, (j, b)) | x1
j = . . . = xk

j = b
}
.

It is easy to see that a dag-like protocol for S can be transformed into a tree-like protocol
of the same depth, but this transformation can drastically increase the size.

3 Formal treatment of Qk(Rk)-hypotheses games

Fix f ∈ Qk, f : {0, 1}n → {0, 1}. Here we define Learner’s strategies in Qk-hypotheses game
for f formally. We consider not only tree-like strategies but also dag-like. To specify a
Learner’s strategy S in Qk-hypotheses game we have to specify:

An ordered (k + 1)-ary dag G with the starting node s;
a subset Hj(p) for every j ∈ {0, 1, . . . , k} and for every path p in G from s to some node
in V (G) \ T (G);
a number it ∈ [n] for every terminal t.

The underlying mechanics of the game is as follows. Let Nature’s vector be z ∈ f−1(0).
Learner and Nature descend from s to one of the terminals of G. More precisely, a position
in the game is determined by a path p, starting at s. If the endpoint of p is not a terminal,
then Learner specifies some sets H0(p),H1(p), . . . ,Hk(p) as his hypotheses. If less than k of
these sets contain z, then Nature wins. Otherwise Nature specifies some j ∈ {0, 1, . . . , k}
such that z ∈ Hj(p). Among k + 1 edges that start at the endpoint of p players choose one
which is labeled by j. After that they extend p by this edge. At some point parties reach
some terminal t (i.e., the endpoint of p becomes equal t). Then the game ends and Learner
output it.

We stress that Learner’s output depends only on t but not on a path to t (unlike Learner’s
hypotheses). This property will be crucial in establishing connection of Qk-hypotheses games
to circuits.

We now proceed to a formal definition of what does it mean that S is winning for Learner.
We say that z ∈ f−1(0) is compatible with a path p = 〈e1, . . . , em〉, starting in s, if the

following holds. If p is of length 0, then every z ∈ f−1(0) is compatible with p. Otherwise
for every i ∈ {1, . . . , em} it should hold that z ∈ Hj(〈e1, . . . , ei−1〉), where j is the label of
edge ei. Informally this means that Nature, having z on input, can reach a position in the
game which corresponds to a path p.

We say that strategy S is winning for Learner in Qk-hypotheses game for f if for every
path p, starting at s, and for every z ∈ f−1(0), compatible with p, the following holds:

if the endpoint of p is not a terminal, then the number of j ∈ {0, 1, . . . , k} such that
z ∈ Hj(p) is at least k;
if the endpoint of p is t ∈ T (G), then zit = 0.
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We will formulate a stronger version of Proposition 9. For that we need the notion of the
light form of the strategy S. Namely, the light form of S is its underlying dag G equipped
with a mapping which to every t ∈ T (G) assigns it. In other words, the light form contains
a “skeleton” of S and Learner’s outputs in terminals (and no information about Learner’s
hypotheses).

We can identify the light form of any strategy S with a circuit, consisting only of THRk+1
2

gates and variables. Namely, place THRk+1
2 gate in every v ∈ V (G) \ T (G) and for every

t ∈ T (G) place a variable xit in t. Set s to be the output gate.

I Proposition 13. For all f ∈ Qk, f : {0, 1}n → {0, 1} the following holds:
(a) if S is a Learner’s winning strategy in Qk-hypotheses game for f , then its light form,

considered as a circuit C consisting only of THRk+1
2 gates and variables, satisfies C ≤ f .

(b) Assume that C ≤ f is a circuit, consisting only of THRk+1
2 gates and variables. Then

there exists a Learner’s winning strategy S in Qk-hypotheses game for f such that the
light form of S coincides with C.

We omit the proof of (b) as in the paper we only use (a).

Proof of (a) of Proposition 13. For a node v ∈ V (G) let fv : {0, 1}n → {0, 1} be the
function, computed by the circuit C at the gate, corresponding to v.

We shall prove the following statement. For any path p, starting in s, and for any z which
is compatible with p it holds that fv(z) = 0, where v is the endpoint of p. To see why this
implies C ≤ f take any z ∈ f−1(0) and note that z is compatible with the path of length 0.
The endpoint of such path is s and hence 0 = fs(z) = C(z).

We will prove the above statement by the backward induction on the length of p. The
longest path p ends in some t ∈ T (G). By definition ft = xit

. On the other hand, since S is
winning, zit

= 0 for any z compatible with p. In other words, ft(z) = 0 for any z compatible
with p. The base is proved.

Induction step is the same if p ends in some other terminal. Now assume that p ends in
v ∈ V (G)\T (G). Take any z ∈ f−1(0) compatible with p. Let pj be the extension of p by the
edge which starts at v and is labeled by j ∈ {0, 1, . . . , k}. Next, let vj be the endpoint of pj

(nodes v0, v1, . . . , vk are successors of v). Since S is winning, the number of j ∈ {0, 1, . . . , k}
such that z ∈ Hj(p) is at least k. Hence by definition the number of j ∈ {0, 1, . . . , k} such
that z is compatible with pj is at least k. Finally, by the induction hypothesis this means
that the number of j ∈ {0, 1, . . . , k} such that fvj

(z) = 0 is at least k. On the other hand:

fv = THRk+1
2 (fv0 , fv1 , . . . , fvk

).

Therefore fv(z) = 0, as required. J

One can formally define analogues notions for Rk-hypotheses games. We skip this as
modifications are straightforwards and only formulate an analog of Proposition 13.

I Proposition 14. For all f ∈ Rk, f : {0, 1}n → {0, 1} the following holds:
(a) if S is a Learner’s winning strategy in Rk-hypotheses game for f , then its light form,

considered as a circuit C consisting only of THRk+1
2 gates and literals, satisfies C ≤ f .

(b) Assume that C ≤ f is a circuit, consisting only of THRk+1
2 gates and literals. Then

there exists a Learner’s winning strategy S in Rk-hypotheses game for f such that the
light form of S coincides with C.

I Remark 15. It might be unclear why we prefer to construct strategies instead of constructing
circuits directly, because beside the circuit itself we should also specify Learner’s hypotheses.
The reason is that strategies can be seen as proofs that the circuit we construct is correct.
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4 Results for Majority

Proof of Theorem 1. There exists an algorithm which in nO(1)-time produces a monotone
formula F of depth d = O(logn) computing MAJ2n+1. Below we will define a strategy SF in
the Q2-hypotheses game for MAJ2n+1. Strategy SF will be winning for Learner. Moreover,
its depth will be d + O(logn). In the end of the proof we will refer to Proposition 13 to
show that SF yields a O(logn)-depth polynomial-time computable formula for MAJ2n+1,
consisting only of MAJ3 gates and variables.

Strategy SF has two phases. The first phase does not uses F at all, only the second
phase does. The objective of the first phase is to find some distinct i, j ∈ [2n+ 1] such that
either zi = 0 ∧ zj = 1 or zi = 1 ∧ zj = 0, where z is the Nature’s vector. This can be done as
follows.

I Lemma 16. One can compute in polynomial time a 3-ary tree T of depth O(logn) with
the set of nodes v(T ) and a mapping w : v(T )→ 2[2n+1] such that the following holds:

if r is the root of T , then w(r) = [2n+ 1];
if v is not a leaf of T and v1, v2, v3 are 3 children of v, then every element of w(v) is
covered at least twice by w(v1), w(v2), w(v3);
if l is a leaf of T , then w(r) is of size 2.

Proof. We start with a trivial tree, consisting only of the root, to which we assign [2n+ 1].
Then at each iteration we do the following. We have a 3-ary tree in which nodes are assigned
to some subsets of [2n+1]. If every leaf is assigned to a set of size 2, we terminate. Otherwise
we pick any leaf l of the current tree which is assigned to a subset A ⊂ [2n+1] of size at least 3.
We split A into 3 disjoint subsets A1, A2, A3 of sizes b|A|/3c, b|A|/3c and |A| − 2b|A|/3c. We
add 3 children to l (which become new leafs) and assign A1 ∪A2, A1 ∪A3, A2 ∪A3 to them.

It is easy to verify that the sizes of A1 ∪A2, A1 ∪A3, A2 ∪A3 are at least 2 and at most
4
5 · |A|. Hence the size of the set assigned to a node of depth h is at most

( 4
5
)h · (2n + 1).

This means that the depth of the tree is at any moment at most log5/4(2n+ 1) = O(logn).
Therefore we terminate in 3O(log n) = nO(1) iterations, as at each iteration we add 3 new
nodes. Each iteration obviously takes polynomial time. J

We use T to find two i, j ∈ [2n+ 1] such that either zi = 0 or zj = 0. Namely, we descend
from the root of T to one of its leafs. Learner maintains an invariant that the leftmost
0-coordinate of z is in w(v), where v is the current node of T . Let v1, v2, v3 be 3 children
of v. Learner for every i ∈ [3] makes a hypothesis that the leftmost 0-coordinate of z is in
w(vi). Due to the properties of w at least two hypotheses are true. Nature indicates some vi

for which this is true, and Learner descends to vi. When Learner reaches a leaf, he knows a
set of size two containing the leftmost 0-coordinate of z. Let this set be {i, j}.

We know that either zi or zj is 0. Thus zizj ∈ {00, 01, 10}. At the cost of one round
we can ask Nature to identify an element of {00, 01, 10} which differs from zizj . If 10 is
identified, then zizj ∈ {00, 01}, and hence zi = 0, i.e., we can already output i. Similar thing
happens when 01 is identified. Finally, if 00 is identified, then the objective of the first phase
is fulfilled and we can proceed to the second phase.

The second phase takes at most d rounds. In this phase Learner produces a sequence
g0, g1, . . . , gd′ , d′ ≤ d of gates of F , where the depth of gi is i, the last gate gd′ is an input
variable (i.e., a leaf of F ) and each g ∈ {g0, g1, . . . , gd′} satisfies:

(g(z) = 0 ∧ zizj = 01) ∨ (g(¬z) = 1 ∧ zizj = 10) . (1)

Here ¬z denotes the bit-wise negation of z.
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At the beginning Learner sets g0 = gout to be the output gate of F . Let us explain why
(1) holds for gout. Nature’s vector is an element of MAJ−1

2n+1(0). I.e., the number of ones in
z is at most n. In turn, in ¬z there are at least n+ 1 ones. Since gout computes MAJ2n+1,
we have that gout(z) = 0 and gout(¬z) = 1. In turn, by the first phase it is guarantied that
zizj = 01 ∨ zizj = 10.

Assume now that the second phase is finished, i.e., Learner has produced some gd′ = xk

satisfying (1). Then by (1) either gd′(z) = zk = 0 or gd′(¬z) = (¬z)k = 1. In both cases
zk = 0, i.e., Learner can output k.

It remains to explain how to fulfill the second phase. It is enough to show the following.
Assume that Learner knows a gate gl of F of depth l satisfying (1) and that gl is not an
input variable. Then in one round he can either find a gate gl+1 of depth l + 1 satisfying (1)
or give a correct answer to the game.

The gate gl+1 will be one of the two gates which are fed to gl. Assume first that gl is an
∧-gate and gl = u ∧ v. From (1) we conclude that from the following 3 statements exactly 1
is true for z:

u(z) = 0 and zizj = 01, (2)
u(z) = 1, v(z) = 0 and zizj = 01, (3)

u(¬z) = v(¬z) = 1 and zizj = 10. (4)

At the cost of one round Learner can ask Nature to indicate one statement which is false for
x. If Nature says that (2) is false for z, then (1) holds for gl+1 = v. Next, if Nature says
that (3) is false for z, then (1) holds for gl+1 = u. Finally, if Nature says that (4) is false for
z, then we know that zizj = 01, i.e., Learner can already output i.

In the same way we can deal with the case when gl is an ∨-gate and gl = u ∨ v. By (1)
exactly 1 of the following 3 statements is true for z:

u(z) = v(z) = 0 and zizj = 01, (5)
u(¬z) = 1 and zizj = 10, (6)
u(¬z) = 0, v(¬z) = 1 and zizj = 10. (7)

Similarly, Learner asks Nature to indicate one statement which is false for z. If Nature says
that (5) is false for z, then zizj = 10, i.e., Learner can output j. Next, if Nature says that
(6) is false for z, then (1) holds for gl+1 = v. Finally, if Nature says that (7) is false for z,
then (1) holds for gl+1 = u.

Thus SF is a O(logn)-depth winning strategy of Learner. Apply Proposition 13 to SF .
We get a O(logn)-depth formula F ′ ≤ MAJ2n+1, consisting only of MAJ3 gates and variables.
In fact, F ′ computes MAJ2n+1. Indeed, F ′ ≤ MAJ2n+1 means that F ′ outputs 0 on every
input with at most n ones. On the other hand, F ′ consists of MAJ3 gates and hence F ′
computes a self-dual function. Therefore F ′ outputs 1 on every input with at least n + 1
ones.

It remains to explain how to compute F ′ in polynomial time. To do so we have to
compute in polynomial time the light form of SF , i.e., the underlying tree of SF and the
outputs of Learner in the leafs. It is easy to see that one can do this as follows.

First, compute F and compute T from Lemma 16. For each leaf l of T do the following.
Let w(l) = {i, j}. Add 3 children to l. Two of them will be leafs of SF , in one Learner
outputs i and in the other Learner outputs j. Attach a tree of F to the third child. Then
add to each non-leaf node of F one more child so that now the tree of F is 3-ary. Each added
child is a leaf of SF . If a child was added to an ∧-gate, then Learner outputs i in this child.
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In turn, if a child was added to an ∨ gate, then Learner outputs j in it. Finally, there are
leafs that were in F initially, each labeled by some input variable. In these nodes Learner
outputs the index of the corresponding input variable. J

Proof of Theorem 2. How many rounds takes the first phase of the strategy SF from the
previous proof? Initially the left-most 0-coordinate of z takes O(n) values. At the cost of
one round we can shrink the number of possible values almost by a factor of 3/2. Thus the
first phase corresponds to a ternary tree of depth log3/2(n) + O(1). The size of that tree
is hence 3log3/2(n)+O(1) = O(n1/(1−log3(2))) = O(n2.70951...). To some of its leafs we attach a
tree of the same size as the initial formula F . As a result we obtain a formula F ′ of size
O(n2.70951... · s) for MAJ2n+1, consisting of MAJ3 gates and variables (here s is the size of
the initial formula F ).

Let us show that we can perform the first phase in log2(n) + O(1) rounds. This will
improve the size of the previous construction to O(3log2(n)+O(1) ·s) = O(nlog2(3) ·s). However,
the construction with log2(n) + O(1) rounds will not be explicit. We need the following
Lemma:

I Lemma 17. There exists a formula D with the following properties:
formula D is a complete ternary tree of depth dlog2(n)e+ 10;
every non-leaf node of D contains a MAJ3 gate and every leaf of D contains a conjunction
of 2 variables;
D(x) = 0 for every x ∈ {0, 1}2n+1 with at most n ones.

Let us at first explain how to use formula D from Lemma 17 to fulfill the first phase. Recall
that our goal is to find two indices i, j ∈ [2n+ 1] such that either zi = 0 or zj = 0. To do so
Learner descends from the output gate of D to some of its leafs. He maintains an invariant
that for his current gate g of D it holds that g(z) = 0. For the output gate the invariant
is true because by Lemma 17 D is 0 on all Nature’s possible vectors. If we reached a leaf
so that g is a conjuction of two variables zi and zj , then the first phase is fulfilled (by the
invariant zi ∧ zj = 0). Finally, if g is a non-leaf node of D, i.e., a MAJ3 gate, then we can
descend to one of the children of g at the cost of one round without violating the invariant.
Indeed, as g(z) = 0, then the same is true for at least 2 children of g. For each child gi of g
Learner makes a hypotheses that gi(z) = 0. Any Nature’s response allows us to replace g by
some gi.

Proof of Lemma 17. We will show existence of such D via probabilistic method. Namely,
independently for each leaf l of D choose (i, j) ∈ [2n+ 1]2 uniformly at random and put the
conjuction zi ∧ zj into l. It is enough to demonstrate that for any x ∈ {0, 1}2n+1 with at
most n ones it holds that Pr[D(x) = 1] < 2−2n−1.

To do so we use the modification of the standard Valiant’s argument. For any fixed x let
p be the probability that a leaf l of D equals 1 on x. This probability is the same for all
the leafs and is at most 1/4. Now, Pr[D(x) = 1] can be expressed exactly in terms of p as
follows:

Pr[D(x) = 1] = f(f(f(. . . f︸ ︷︷ ︸
dlog2(n)e+ 10

(p))) . . .),

where f(t) = t3 + 3t2(1− t) = 3t2 − 2t3. Observe that 3f(t) ≤ (3t)2. Hence

3 Pr[D(x) = 1] ≤ (3p)2dlog2(n)e+10
≤ (3/4)1000n < (1/2)−2n−1. J

J
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5 Proof of the main theorem

Theorem 7 follows from Proposition 18 (Subsection 5.1) and Proposition 20 (Subsection 5.2).
In turn, Theorem 8 follows from Proposition 19 (Subsection 5.1) and Proposition 24 (Subsec-
tion 5.2).

5.1 From circuits to protocols
I Proposition 18. For any constant k ≥ 2 the following holds. Assume that f ∈ Qk and
C ≤ f is a circuit, consisting only of THRk+1

2 gates and variables. Then there is a protocol
π, computing Qk-communication game for f , such that depth(π) = O(depth(C)).

Proof. Let the inputs to parties be z1, . . . , zk ∈ f−1(0). Parties descend from the output
gate of C to one of the inputs. They maintain the invariant that for the current gate g
of C it holds that g(z1) = g(z2) = . . . = g(zk) = 0. If g is not yet an input, then g is a
THRk+1

2 gate and g = THRk+1
2 (g1, . . . , gk+1) for some gates g1, . . . , gk+1. For each zi we

have g(zi) = THRk+1
2 (g1(zi), . . . , gk+1(zi)) = 0. Hence for each zi there is at most one gate

out of g1, . . . , gk+1 satisfying gj(zi) = 1. This means that in O(1) bits of communication
parties can agree on the index j ∈ [k + 1] satisfying gj(z1) = gj(z2) = . . . gj(zk) = 0.

Thus in O(depth(π)) bits of communication they reach some input of C. If this input
contains the variable xl, then by the invariant z1

l = z2
l = . . . = zk

l = 0, as required. J

Exactly the same argument can be applied to the following proposition.

I Proposition 19. For any constant k ≥ 2 the following holds. Assume that f ∈ Rk and
C ≤ f is a circuit, consisting only of THRk+1

2 gates and literals. Then there is a protocol π,
computing Rk-communication game for f , such that depth(π) = O(depth(C)).

5.2 From protocols to circuits
I Proposition 20. For every constant k ≥ 2 the following holds. Let f ∈ Qk. Assume that
π is a communication protocol computing Qk-communication game for f . Then there is a
circuit C ≤ f , consisting of THRk+1

2 gates and variables, such that depth(C) = O(depth(π)).

Proof. In the proof we will use the following terminology for strategies in Qk-hypotheses
game. Fix some strategy S. A current play is a finite sequence r1, r2, r3, . . . rj of integers
from 0 to k. By ri we mean Nature’s response in the ith round. Given a current play, let
Hi

0, . . . ,Hi
k ⊂ f−1(0) be k + 1 hypotheses Learner makes in the ith round according to S if

Nature’s responses in the first i− 1 rounds were r1, . . . , ri−1. If after that Nature’s response
is ri, then Nature’s input vector z satisfies z ∈ Hi

ri
. We say that z ∈ f−1(0) is compatible

with the current play r1, . . . , rj if z ∈ H1
r1
, . . . , z ∈ Hj

rj
. Informally, this means that Nature,

having z on input, can produce responses r1, . . . , rj by playing against strategy S.
Set d = depth(π). By Proposition 13 it is enough to give a O(d)-round winning strategy

of Learner in the Qk-hypotheses game for f . Strategy proceeds in d iterations, each iteration
takes O(1) rounds.

As the game goes on, a sequence of Nature’s responses r1, r2, r3 . . . is produced. Assume
that r1, . . . , rh′ are Nature’s responses in the first h iteration (here h′ is the number of rounds
in the first h iterations). Given any r1, r2, r3 . . ., by Zh we denote the set of all z ∈ f−1(0)
which are compatible with r1, . . . rh′ , . We also say that elements of Zh are compatible with
the current play after h iterations.
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Let V be the set of all nodes of the protocol π and let T be the set of all terminals of the
protocol π.

Consider a set Z ⊂ f−1(0), a set of nodes U ⊂ V and a function g : Z → C, where
|C| = k. A g-profile of a tuple (z1, . . . , zk) ∈ Z is a vector (g(z1), . . . , g(zk)) ∈ Ck.

We say that g : Z → C is complete for Z with respect to the set of nodes U if the following
holds. For every vector c̄ ∈ Ck there exists a node v ∈ U such that all tuples from Zk with
g-profile c̄ visit v in the protocol π.

We say that a set of nodes U ⊂ T is complete for Z if there exists g : Z → C, |C| = k

which is complete for Z with respect to U .
Note that we can consider only complete sets of size at most kk. Formally, if U is complete

for Z, then there is a subset U ′ ⊂ U of size at most kk which is also complete for Z. Indeed,
there are kk possible g-profiles and for each we need only one node in U .

I Lemma 21. Assume that U ⊂ T is complete for Z ⊂ f−1(0). Then there exists i ∈ [n]
such that zi = 0 for every z ∈ Z.

Proof. If Z is empty, then there is nothing to prove. Otherwise let g : Z → C, |C| = k

be complete for Z with respect to U . Take any vector c̄ = (c1, . . . , ck) ∈ Ck such that
{ci | i ∈ [k]} = g(Z). There exists a node v ∈ U such that any tuple from Zk with g-profile c̄
visits v. Note that v is a terminal of π and let i be the output of π in v. Let us show that for
any z ∈ Z it holds that zi = 0. Indeed, note that there exists a tuple z̄ ∈ Zk which includes
z and which has g-profile c̄. This tuple visits v. Since π computes Qk-communication game
for f , every element of the tuple z̄ should have 0 at the ith coordinate. In particular, this
holds for z. J

After d iterations Learner should be able to produce an output. For that there should exist
i ∈ [n] such that for any z ∈ Zd it holds that zi = 0. We will use Lemma 21 to ensure that.
Namely, we will ensure that there exists U ⊂ T which is complete for Zd. Learner achieves
this by maintaining the following invariant.

Let us say that a set of nodes U is h-low if every element of U is either a terminal or a
node of depth at least h.

I Invariant 22. There is a h-low set U which is complete for Zh.

This invariant implies that Learner wins in the end, as any d-low set consists only of terminals.
A 0-low set which is complete for Z0 = f−1(0) is a set consisting only of the starting

node of π.
Assume that Invariant 22 holds after h iterations. Let us show how to perform the next

iteration to maintain the invariant. For that we need a notion of communication profile.
A communication profile of z ∈ f−1(0) with respect to a set of nodes U ⊂ V is a function

pz : U → {0, 1}. For v ∈ U the value of pz(v) is defined as follows. If v is a terminal, set
pz(v) = 0. Otherwise let i ∈ [k] be the index of the party communicating at v. Set pz(v) to
be the bit transmitted by the ith party at v on input z. I.e., pz for every v ∈ U contains
information where the protocol goes from the node v if the party, communicating at v, has z
on input.

We also define a communication profile of the tuple (z1, . . . , zk) ∈ (f−1(0))k as
(pz1 , . . . , pzk ).

I Lemma 23. Let (z1, . . . , zk), (y1, . . . , yk) ∈ (f−1(0))k be two inputs visiting the same node
v ∈ V \ T . Assume that their communication profiles with respect to {v} coincide. Then
these two inputs visit the same successor of v.
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Proof. Let their common communication profile with respect to {v} be (p1, . . . , pk). Next,
assume that i is the index of the party communicating at v. Then the information where
these inputs descend from v is contained in pi. J

Here is what Learner does during the (h+ 1)st iteration. He takes any h-low U of size at
most kk which is complete for Zh. Then he takes any g : Zh → C, |C| = k which is complete
for Zh with respect to U . He now devises a new function g′ taking elements of the set Zh on
input. The value of g′(z) is a pair (pz, g(z)), where pz is a communication profile of z with
respect to U . There are at most 2|U | ≤ 2kk different communication profiles with respect to
U . Hence g′(z) takes at most 2kk · k = O(1) values.

At each round of the (h+ 1)st iteration Learner asks Nature to identify some pair (p, c),
where p : U → {0, 1} and c ∈ C, such that g′(z) 6= (p, c) for the Nature’s vector z. Namely,
we take any k + 1 values of g′ which are not yet rejected by Nature and ask Nature to reject
one of them. We do so until there are only k possible values (p1, c1), . . . (pk, ck) left. This
takes O(1) rounds and the (h+ 1)st iteration is finished. Any z ∈ f−1(0) which is compatible
with the responses Nature’ gave during the (h+ 1)st iteration in the current play satisfies
g′(z) ∈ C ′ = {(p1, c1), . . . (pk, ck)}. In particular, any z ∈ Zh+1 satisfies g′(z) ∈ C ′. I.e.,
the restriction of g′ to Zh+1 is a function of the form g′ : Zh+1 → C ′. Let us show that
g′ : Zh+1 → C ′ is complete for Zh+1 with respect to some (h+ 1)-low set U ′. This will ensure
that Invariant 22 is maintained after h+ 1 iterations.

We define U ′ is follows. Take any vector c̄ ∈ (C ′)k. It is enough to show that all the
inputs from (Zh+1)k with g′-profile c̄ visit the same node v′ which is either a terminal or
of depth at least h+ 1. Then we just set U ′ to be the union of all such v′ over all possible
g′-profiles.

All the tuples from (Zh+1)k with the same g′-profile visit the same node v ∈ U . This is
because g′-profile of a tuple determines its g-profile (the value of g′ determines the value of
g) , and hence we can use Invariant 22 for Zh−1 here. If v is a terminal, there is nothing
left to prove. Otherwise, note that g′-profile of a tuple also determines its communication
profile with respect to U and hence with respect to {v} ⊂ U . Therefore all the tuples with
the same g′-profile by Lemma 23 visit the same successor of v. J

With straightforward modifications one can obtain a proof of the following:

I Proposition 24. For every constant k ≥ 2 the following holds. Let f ∈ Rk. Assume that
π is a dag-like protocol computing Rk-communication game for f . Then there is a circuit
C ≤ f , consisting of THRk+1

2 gates and literals, satisfying depth(C) = O(depth(π)).

I Corollary 25 (Weak version of Theorem 3). For any constant k ≥ 2 there exists O(log2 n)-
depth formula for THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables.

Proof. We will show that there exists O(log2 n)-depth protocol π computing Qk-communica-
tion game for THRkn+1

n+1 . By Proposition 20 this means that there is a O(log2 n)-depth
formula F ≤ THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables. It is easy to see that

F actually coincides with THRkn+1
n+1 . Indeed, assume that F (x) = 0 for some x with at least

n+ 1 ones. Then it is easy to construct x2, . . . , xk, each with n ones, such that there is no
common 0-coordinate for x, x2, . . . , xk. On all of these vectors F takes value 0. However, the
function computed by F should belong to Qk (Proposition 5).

Let π be the following protocol. Assume that the inputs to parties are x1, x2, . . . , xk ∈
{0, 1}kn+1, without loss of generality we can assume that in each xr there are exactly n ones.
For x ∈ {0, 1}kn+1 define supp(x) = {i ∈ [kn+ 1] | xi = 1}. Let T be a binary rooted tree of
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depth d = log2(n) +O(1) with kn+ 1 leafs. Identify leafs of T with elements of [kn+ 1]. For
a node v of T let Tv be the set of all leafs of T which are descendants of v. Once again, we
view Tv as a subset of [kn+ 1].

The protocol proceeds in at most d iterations. After i iterations, i = 0, 1, 2, . . . , d, parties
agree on a node v of T of depth i, satisfying the following invariant:

k∑
r=1
|supp(xr) ∩ Tv| < |Tv|. (8)

At the beginning Invariant (8) holds just because v is the root, Tv = [kn + 1] and each
supp(xr) is of size n.

After d iterations v = l is a leaf of T . Parties output l. This is correct because by (8) we
have |Tl| = 1 =⇒ |supp(xr) ∩ Tl| = 0 =⇒ xl = 0 for every r ∈ [k].

Let us now explain what parties do at each iteration. If the current v is not a leaf, let
v0, v1 be two children of v. Each party sends |supp(xr) ∩ Tv0 | and |supp(xr) ∩ Tv1 |, using
O(logn) bits. Since Tv0 and Tv1 is a partition of Tv, we have:

1∑
b=0

k∑
r=1
|supp(xr) ∩ Tvb

| =
k∑

r=1
|supp(xr) ∩ Tv| < |Tv| =

1∑
b=0
|Tvb
|.

Thus the inequality:

k∑
r=1
|supp(xr) ∩ Tvb

| < |Tvb
| (9)

is true either for b = 0 or for b = 1. Let b∗ be the smallest b ∈ {0, 1} for which (9) is true.
Parties proceed to the next iteration with v being replaced by vb∗ .

There are d = O(logn) iterations, at each parties communicate O(logn) bits. Hence π is
O(log2 n)-depth, as required. J

I Remark 26. Strategy from the proof of Proposition 20 is efficient only in terms of the
number of rounds. In the next section we give another version of this strategy. This version
will ensure that circuits we obtain from protocols for Qk-communication games are not only
low-depth, but also polynomial-size and explicit. For that, however, we require a bit more
from the protocol π.

6 Effective version

Fix f ∈ Qk. We say that a dag-like communication protocol π strongly computes Qk-
communication game for f if for every terminal t of π, for every x ∈ f−1(0) and for every
i ∈ [k] the following holds. If x is i-compatible with t, then xj = 0, where j = l(t) is the
label of terminal t in the protocol π.

Similarly, fix f ∈ Rk. We say that a dag-like communication protocol π strongly computes
Rk-communication game for f if for every terminal t of π, for every x ∈ f−1(0) and for every
i ∈ [k] the following holds. If x is i-compatible with t, then xj = b, where (j, b) = l(t) is the
label of terminal t in the protocol π.

Strong computability is close to the notion of computability that Sokolov gave in [14] for
general relations. Strong computability implies more intuitive notion of computability that
we gave in the Preliminaries. The opposite direction is false in general.

Next we prove an effective version of Proposition 20.
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I Theorem 27. For every constant k ≥ 2 there exists a polynomial-time algorithm A such
that the following holds. Assume that f ∈ Qk and π is a dag-like protocol which strongly
computes Qk-communication game for f . Then, given the light form of π, the algorithm
A outputs a circuit C ≤ f , consisting only of THRk+1

2 gates and variables, such that
depth(C) = O(depth(π)), size(C) = O

(
size(π)O(1)).

Proof. We will again give a O(d)-round winning strategy of Learner in the Qk-hypotheses
game for f . Now, however, we should ensure that the light form of our strategy is of size
O
(
size(π)O(1)) and can be computed in time O

(
size(π)O(1)) from the light form of π. Instead

of specifying the light form of our strategy directly we will use the following trick. Assume
that Learner has a working tape consisting of O(log size(π)) cells, where each cell can store
one bit. Learner memorizes all the Nature’s responses so that he knows the current position
of the game. But he does not store the sequence of Nature’s responses on the working tape
(there is no space for it). Instead, he first makes his hypotheses which depend on the current
position. Then he receives a Nature’s response r ∈ {0, 1, . . . , k}. And then he modifies
the working tape, but the result should depend only on the current content of the working
tape and on r (and not on the current position in a game). Moreover, we will ensure that
modifying the working tape takes O

(
size(π)O(1)) time, given the light form of π.

The main purpose of the working tape manifests itself in the end. Namely, at some point
Learner decides to stop making hypotheses. This should be indicated on the working tape.
More importantly, Learner’s output should depend only on the content of working tape in
the end (and not on the whole sequence of Nature’s responses). Moreover, this should take
O
(
size(π)O(1)) time to compute that output, given the light form of π.
If a strategy satisfies these restrictions, then its light form is computable in O

(
size(π)O(1))

time given the light form of π. Indeed, the underlying dag will consist of all possible
configurations of the working tape. There are O

(
size(π)O(1)) of them, as working tape uses

O(log size(π)) bits. For all non-terminal configurations c we go through all r ∈ {0, 1, . . . , k}.
We compute what would be a configuration cr of the working tape if the current configuration
is c and Nature’s response is r. After that we connect c to c0, c1, . . . , ck. Finally, in all
terminal configurations we compute the outputs of Learner. This gives a light form of our
strategy in O

(
size(π)O(1)) time.

Let V be the set of nodes of π and T be the set of terminals of π. Strategy proceeds in d
iterations, each taking O(1) rounds. We define sets Zh exactly as in the proof of Proposition
20. We also use the same notion of communication profile. However, we define completeness
in a different way. First of all, instead of working with sets of nodes with no additional
structure we will work with multidimensional arrays of nodes. Namely, we will consider
k-dimensional arrays in which every dimension is indexed by integers from [k]. Formally,
such arrays are functions of the form M : [k]k → V . We will use notation M [c1, . . . , ck] for
the value of M on (c1, . . . , ck) ∈ [k]k.

Consider any Z ⊂ f−1(0). We say that g : Z → [k] is complete for Z with respect to a
multidimensional array M : [k]k → V if for every (c1, . . . , ck) ∈ [k]k, for every i ∈ [k] and for
every z ∈ Z the following holds. If ci = g(z), then z is i-compatible with M [c1, . . . , ck].

We say that a multidimensional array M : [k]k → V is complete for Z if there exists
g : Z → [k] which is complete with respect to M .

To digest the notion of completeness it is instructive to consider the case k = 2. In this
case M is a 2× 2 table containing four nodes of π. The function g : Z → [2] is complete for
Z with respect to M if the following holds. First, for every z ∈ Z two nodes in the g(z)th
row of M should be 1-compatible with z. Second, for every z ∈ Z two nodes in the g(z)th
column of M should be 2-compatible with z.
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Let us now establish an analog of Lemma 21.

I Lemma 28. Assume that M : [k]k → T is complete for Z ⊂ f−1(0). Let l be the output of
π in the terminal M [1, 2, . . . , k]. Then zl = 0 for every Z.

Proof. Since π strongly computes Qk-communication game for f , it is enough to show that
every z ∈ Z is i-compatible withM [1, 2, . . . , k] for some i. Take g : Z → [k] which is complete
for Z with respect to M . By definition z is g(z)-compatible with M [1, 2, . . . , k]. J

We now proceed to the description of the Learner’s strategy. The working tape of Learner
consists of:

an integer iter;
a multidimensional array M : [k]k → V ;
O(1) additional bits of memory.

Integer iter will be at most d ≤ size(π) so to store all this information we need O(log(size(π)))
bits, as required. Integer iter always equals the number of iterations performed so far (at the
beginning iter = 0). The array M changes only at the moments when iter is incremented by
1. So let Mh denote the content of the array M when iter = h.

We call an array of nodes h-low if every node in it is either terminal or of depth at least
h. Learner maintains the following invariant.

I Invariant 29. Mh is h-low and Mh is complete for Zh.

At the beginning Learner sets every element of M0 to be the starting node of π so that
Invariant 29 trivially holds.

Note that every node in Md is a terminal of π. After d iterations Learner outputs the
label of terminal Md[1, 2, . . . , k] in the protocol π. As Md is complete for Zd due to Invariant
29, this by Lemma 28 will be a correct output in the Qk-hypotheses game for f . Obviously
producing the output takes polynomial time given the light form of π and the content of
Learner’s working tape in the end.

Now we need to perform an iteration. Assume that h iterations passed and Invariant 29
still holds. Let Uh be the set of all nodes appearing in Mh. Take any function g : Zh → [k]
which is complete for Zh with respect to Mh.

For any z ∈ f−1(0) we denote by pz a communication profile of z with respect to Uh.
Recall that pz is an element of {0, 1}Uh , i.e., a function from Uh to {0, 1}. At each round of
the (h+ 1)st iteration Learner asks Nature to specify some pair (p, c) ∈ {0, 1}Uh × [k] such
that (pz, g(z)) 6= (p, c), where z is the Nature’s vector. Learner stores each (p, c) using his
O(1) additional bits on the working tape. Learner can do this until there are only k pairs
from (p1, c1), . . . , (pk, ck) ∈ {0, 1}Uh × [k] left which are not rejected by Nature. When this
moment is reached, the (h+ 1)st iteration is finished. The iteration takes 2|Uh| · k− k = O(1)
rounds, as required. For any z compatible with the current play after h+ 1 iterations we
know that (pz, g(z)) is among (p1, c1), . . . , (pk, ck), i.e,

(pz, g(z)) ∈ {(p1, c1), . . . , (pk, ck)} for all z ∈ Zh+1. (10)

Learner writes (p1, c1), . . . , (pk, ck) on the working tape (all the pairs that were excluded
are on the working tape and hence he can compute the remaining ones). Learner then
computes a (h+ 1)-low array Mh+1 which will be complete for Zh+1. To compute Mh+1 he
will only need to know Mh, (p1, c1), . . . , (pk, ck) (this information is on the working tape)
and the light form of π.
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Namely, Learner determines Mh+1[d1, . . . , dk] for (d1, . . . , dk) ∈ [k]k as follows. Consider
the node v = Mh[cd1 , . . . , cdk

]. If v is a terminal, then set Mh+1[d1, . . . , dk] = v. Otherwise
let i ∈ [k] be the index of the party communicating at v. Look at pdi

, which can be considered
as a function of the form pdi : Uh → {0, 1}. Define r = pdi(v). Among two edges, starting at
v, choose one which is labeled by r. Descend along this edge from v and let the resulting
successor of v be Mh+1[d1, . . . , dk].

Obviously, computing Mh+1 takes O
(
size(π)O(1)). To show that Invariant 29 is main-

tained we have to show that (a) Mh+1 is (h+ 1)-low and (b) Mh+1 is complete for Zh+1.
The first part, (a), holds because eachMh+1[d1, . . . , dk] is either a terminal or a successor

of a node of depth at least h. For (b) we define the following function:

g′ : Zh+1 → [k], g′(z) = i, where i is such that (pz, g(z)) = (pi, ci).

By (10) this definition is correct. We will show that g′ is complete for Zh+1 with respect to
Mh+1.

For that take any (d1, . . . , dk) ∈ [k]k, z ∈ Zh+1 and i ∈ [k] such that di = g′(z). We shall
show that z is i-compatible with a node Mh+1[d1, . . . , dk]. By definition of g′ we have that
g(z) = cdi

. As by Invariant 29 function g is complete for Zh with respect to Mh, this means
that z is i-compatible with v = M [cd1 , . . . , cdk

]. If v is a terminal, then Mh+1[d1, . . . , dk] = v

and there is nothing left to prove.
Otherwise v ∈ V \ T . Let j be the index of the party communicating at v. By definition

Mh+1[d1, . . . , dk] is a successor of v. If j 6= i, i.e., not the ith party communicates at v, then
any successor of v is i-compatible with z. Finally, assume that j = i. Node Mh+1[d1, . . . , dk]
is obtained from v by descending along the edge which is labeled by r = pdi(v). Hence to
show that z is i-compatible with Mh+1[d1, . . . , dk] we should verify that at v on input z
the ith party transmits the bit r. For that again recall that g′(z) = di, which means by
definition of g′ that pz = pdi

. I.e., pdi
is the communication profile of z with respect to Uh.

In particular, the value r = pdi(v) is the bit transmitted by the ith party on input z at v, as
required. J

In the same way one can obtain an analog of the previous theorem for the Rk-case.

I Theorem 30. For every constant k ≥ 2 there exists a polynomial-time algorithm A

such that the following holds. Assume that f ∈ Rk and π is a dag-like protocol which
strongly computes Rk-communication game for f . Then, given the light form of π, the
algorithm A outputs a circuit C ≤ f , consisting only of THRk+1

2 gates and literals, such that
depth(C) = O(depth(π)), size(C) = O

(
size(π)O(1)).

7 Derivation of Theorems 1 and 3

In this section we obtain Theorems 1 and 3 by devising protocols strongly computing the
corresponding Qk-communication games. Unfortunately, establishing strong computability
requires diving into straightforward but tedious technical details, even for simple protocols.

Alternative proof of Theorem 1. We will show that there exists O(logn)-depth protocol π
with polynomial-time computable light form, strongly computing Q2-communication game
for MAJ2n+1. By Theorem 27 this means that there is a polynomial-time computable
O(logn)-depth formula F ≤ MAJ2n+1, consisting only of MAJ3 gates and variables. From
self-duality of MAJ2n+1 and MAJ3 it follows that F computes MAJ2n+1.
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Take a polynomial-time computable O(logn)-depth monotone formula F ′ for MAJ2n+1.
Consider the following communication protocol π. The tree of π coincides with the tree of
F ′. Inputs to F ′ will be leafs of π. In a leaf containing input variable xi the output of the
protocol π is i. Remaining nodes of π are ∧ and ∨ gates. In the ∧ gates communicates the
first party, while in the ∨ gates communicates the second party.

Fix an ∧ gate g (which belongs to the first party). Let g0, g1 be gates which are fed to g,
i.e., g = g0 ∧ g1. There are two edges, starting at g, one leads to g0 (and is labeled by 0) and
the other leads to g1 (and is labeled by 1). Take an input a ∈ MAJ−1

2n+1(0) to the first party.
On input a at the gate g the first party transmits the bit r = min{c ∈ {0, 1} | gc(a) = 0}. If
the minimum is over the empty set, then we set r = 0.

Take now an ∨ gate h belonging to the second party. Similarly, there are two edges,
starting at h, one leads to h0 (and is labeled by 0) and the other leads to h1 (and is labeled
by 1). Here h0, h1 are two gates which are fed to h, i.e., h = h0 ∨ h1. Take an input
b ∈ MAJ−1

2n+1(0) to the second party. On input b at the gate h the second party transmits
the bit r = min{c ∈ {0, 1} | hc(¬b) = 1}. If the minimum is over the empty set, then we set
r = 0. Here ¬ denotes the bit-wise negation. Description of the protocol π is finished.

Clearly, the protocol π is of depth O(logn) and its light form is polynomial-time com-
putable. It remains to argue that the protocol strongly computes Q2-communication game
for MAJ2n+1. Nodes of the protocol may be identified with the gates of F ′. Consider any
path p = 〈e1, . . . , em〉 in the protocol π. Assume that ej is an edge from gj−1 to gj and g0 is
the output gate of F ′. We shall show that the following: if a ∈ MAJ−1

2n+1(0) is 1-compatible
with p, then g0(a) = g1(a) = . . . = gm(a) = 0. Indeed, g0(a) = 0 holds because F ′ computes
MAJ2n+1. Now, assume that gj(a) = 0 is already proved. If gj is an ∨ gate, then gj+1(a) = 0
just because gj+1 feds to gj . Otherwise gj is an ∧ gate which therefore belongs to the first
party. Let r ∈ {0, 1} is the label of the edge ej+1. Note that gj+1 = gj

r , where g
j
0, g

j
1 are two

gates which are fed to gj . . Since a is 1-compatible with p, it holds that r coincides with
the bit that the first party transmits at gj on input a, i.e., with min{c ∈ {0, 1} | gj

c(a) = 0}.
The set over which the minimum is taken is non-empty because gj(a) = 0. In particular r
belongs to this set, which means that gj+1(a) = gj

r(a) = 0, as required.
Similarly one can verify that if b ∈ MAJ−1

2n+1(0) is 2-compatible with p, then g0(¬b) =
g1(¬b) = . . . = gm(¬b) = 0. Hence we get that if a leaf l is 1-compatible (2-compatible)
with a (b) and l contains a variable xi, then ai = 0 (¬bi = 1). Hence the protocol strongly
computes the Q2-communication game for MAJ2n+1. J

Proof of Theorem 3. We will realize the protocol from the proof of Corollary 25 in such a
way that it will give us O(log2 n)-depth polynomial-size dag-like protocol with polynomial-
time computable light form, strongly computing Qk-communication game for THRkn+1

n+1 .
By Theorem 27 this means that there is a polynomial-time computable O(log2 n)-depth
polynomial-size circuit C ≤ THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables. With

the same argument as in Corollary 25 one can show that C coincides with THRkn+1
n+1 .

We will use the same tree T as in the proof of Corollary 25. Let us specify the underlying
dag G of our protocol π. For a node v of T let Sv be the set of all tuples (s1, s2, . . . , sk) ∈
{0, 1, . . . , kn+ 1}k such that s1 + s2 + . . .+ sk < |Tv|. For every node v of T and for every
(s1, s2, . . . , sk) ∈ Sv the dag G will contain a node identified with a tuple (v, s1, s2, . . . , sk).
These nodes of G will be called the main nodes (there will be some other nodes too). The
starting node of G will be (r, n, . . . , n), where r is the root of T . Note that if l is a leaf of
T , then |Tl| = 1. Hence the only main node having l as the first coordinate is (l, 0, . . . , 0).
The set of terminals of π will coincide with the set of all main nodes of the form (l, 0, . . . , 0),
where l is a leaf of T . The output of π in (l, 0, . . . , 0) is l.
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For an integer s ≤ kn + 1 let W (s) be a binary tree of depth O(logn) with
|{(a, b) | a, b ∈ {0, 1, . . . , s}, a+ b = s}| leaves. We assume that leaves of W (s) are identified
with elements of {(a, b) | a, b ∈ {0, 1, . . . , s}, a + b = s}. We use W (s) in the construction
of G. Namely, take any main node (v, s1, s2, . . . , sk) with a non-leaf v. Attach W (s1) to it.
Then attach to every leaf of W (s1) a copy of W (s2). Next, to every leaf of the resulting
tree attach a copy of W (s3) and so on. In this way we obtain a binary tree W (v, s1, . . . , sk)
of depth O(logn) growing at (v, s1, . . . , sk). Its leaves can be identified with tuples of
integers (a1, b1, . . . , ak, bk) satisfying a1, b1, . . . , ak, bk ≥ 0, a1 + b1 = s1, . . . , ak + bk = sk.
We will merge every leaf of W (v, s1, . . . , sk) with some main node. Namely, take a leaf
(a1, b1, . . . , ak, bk). If a1 + . . .+ ak < |Tv0 |, then we merge (a1, b1, . . . , ak, bk) with the main
node (v0, a1, . . . , ak). Otherwise it should hold that b1 + . . . + bk < |Tv1 |. In this case we
merge (a1, b1, . . . , ak, bk) with the main node (v1, b1, . . . , bk).

Description of the dag of π is finished. Since k is constant, there are nO(1) main nodes and
to each we attach a tree of depth O(logn). Hence π is O(log2 n)-depth and nO(1)-size. Let
us define a partition of non-terminal nodes between parties. Take a main node (v, s1, . . . , sk),
where v is not a leaf of T . The tree W (v, s1, . . . , sk), growing from (v, s1, . . . , sk) consists of
copies of W (s1), . . . ,W (sk). We simply say that the ith party communicates in copies of
W (si). After that we conclude that the light form of π is polynomial-time computable.

Now let us specify how the ith party communicates inside W (si). Assume that x ∈
{0, 1}kn+1 is the input to the ith party. If |Tv∩supp(x)| 6= si, then the ith party communicates
arbitrarily. Now, assume that |Tv ∩ supp(x)| = si. Then the ith party communicates in such
a way that the resulting path descends from the root of W (si) to the leaf identified with a
pair of integers (|Tv0 ∩ supp(x)|, |Tv1 ∩ supp(x)|).

From this we immediately get the following observation. Let p be a path from the
root of W (v, s1, . . . , sk) to a leaf identified with a tuple (a1, b1, . . . , ak, bk). Further, assume
that x ∈ (THRkn+1

n+1 )−1(0), satisfying |Tv ∩ supp(x)| = si, is i-compatible with p. Then
ai = |Tv0 ∩ supp(x)| and bi = |Tv1 ∩ supp(x)|. Indeed, any such p passes though a copy W (si)
and leaves W (si) in a leaf identified with (|Tv0 ∩ supp(x)|, |Tv1 ∩ supp(x)|).

From this observation one can easily deduce that if x ∈ (THRkn+1
n+1 )−1(0) is i-compatible

with a main node (v, s1, . . . , sk), then |Tv ∩ supp(x)| = si. Indeed, we can obtain this by
induction on the depth of v. Induction step easily follows from the previous paragraph. As
for induction base we notice that |Tr ∩ supp(x)| = n for the root r of T (as in the proof of
Corollary 25 we assume that |supp(x)| = n as party can always add missing 1’s).

In particular, this means that π strongly computes Qk-communication game for THRkn+1
n+1 .

Indeed, any terminal of π is of the form (l, 0, . . . , 0), where l is a leaf of T . If x ∈
(THRkn+1

n+1 )−1(0) is i-compatible with (l, 0, . . . , 0), then, as shown in the previous para-
graph, |Tl ∩ supp(x)| = |{l} ∩ supp(x)| = 0. This means that xl = 0 and hence the output of
the protocol is correct. J

8 Open problems

Can Qk-communication game for THRkn+1
n+1 be solved in O(logn) bits of communication

for k ≥ 3? Equivalently, can THRkn+1
n+1 be computed by O(logn)-depth circuit, consisting

only of THRk+1
2 and variables? Can a deeper look into the construction of AKS sorting

network help here (note that we only use this sorting network as a black-box)?
Can at least Rk-communication game for THRkn+1

n+1 be solved in O(logn) bits of commu-
nication for k ≥ 3? Again, this is equivalent to asking whether THRkn+1

n+1 can be computed
by O(logn)-depth circuit, consisting only of THRk+1

2 and literals. Note that if we allow
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literals (along with ∧ and ∨ gates), then there are much simpler constructions of a
O(logn)-depth formula for MAJn and, in fact, for every symmetric Boolean function [16].
Moreover, this can be done in terms of communication complexity [2]. A natural approach
would be to apply ideas of [2] to Rk-communication games.
Are there any other interesting functions in Qk and Rk which can be analyzed with our
technique?
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Abstract
In a seminal work, Nisan (Combinatorica’92) constructed a pseudorandom generator for length n
and width w read-once branching programs with seed length O(logn · log(nw) + logn · log(1/ε))
and error ε. It remains a central question to reduce the seed length to O(log(nw/ε)), which would
prove that BPL = L. However, there has been no improvement on Nisan’s construction for the case
n = w, which is most relevant to space-bounded derandomization.

Recently, in a beautiful work, Braverman, Cohen and Garg (STOC’18) introduced the notion of
a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed
length Õ(logn · log(nw) + log(1/ε)). A PRPD is a relaxation of a pseudorandom generator, which
suffices for derandomizing BPL and also implies a hitting set. Unfortunately, their construction is
quite involved and complicated. Hoza and Zuckerman (FOCS’18) later constructed a much simpler
hitting set generator with seed length O(logn · log(nw)+log(1/ε)), but their techniques are restricted
to hitting sets.

In this work, we construct a PRPD with seed length

O(logn · log(nw) · log log(nw) + log(1/ε)).

This improves upon the construction by Braverman, Cogen and Garg by a O(log log(1/ε)) factor,
and is optimal in the small error regime. In addition, we believe our construction and analysis to be
simpler than the work of Braverman, Cohen and Garg.
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1 Introduction

A major challenge in computational complexity is to understand to what extent randomness
is useful for efficient computation. It is widely believed that randomness does not provide
substantial savings in time and space for algorithms. Indeed, under plausible assumption,
every randomized algorithm for decision problem can be made deterministic with only a
polynomial factor slowdown in time (BPP = P) [16] or a constant factor blowup in space
(BPL = L) [20].

However, it remains open for decades to prove these results unconditionally. For deran-
domization in the time-bounded setting, it is known that proving BPP = P implies circuit
lower bounds which seem much beyond reach with current proof techniques [18]. However no
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such implications are known for the space-bounded setting, and there has been some progress.
Savitch’s theorem [30] implies that RL ⊆ L2. Borodin, Cook, Pippenger [3] and Jung [17]
proved that PL ⊆ L2, which implies BPL ⊆ L2. Nisan [23, 24] constructed a pseudorandom
generator for log-space computation with seed length O(log2 n), and used it to show that
BPL can be simulated with O(log2 n) space and polynomial time. Saks and Zhou [29] used
Nisan’s generator in a non-trivial way to show that BPL ⊆ L3/2, which remains the best
known result so far. We refer the interested reader to the beautiful survey by Saks [28] for
more background and relevant prior work.

We introduce the notion of a read-once branching programs, which is a non-uniform
model for capturing algorithms that use limited memory.

IDefinition 1 (Read-once branching program). A (n,w)-read-once branching program (ROBP)
B is a directed graph on the vertex set V =

⋃n
i=0 Vi, where each set Vi contains w nodes.

Every edge in this directed graph is labeled either 0 or 1. For every i < n, and every node
v ∈ Vi, there exists exactly two edges starting from v, one with label 0 and the other with
label 1. Every edge starting from a node in Vi connects to a node in Vi+1. We say n is the
length of B, w is the width of B and Vi is the i-th layer of B.

Moreover, there exists exactly one starting state s ∈ V0, and exactly one accepting state
t ∈ Vn. For every x = (x1, . . . , xn) ∈ {0, 1}n, we define B(x) = 1 if starting from s we will
reach t following the edges labeled by x1, . . . , xn. Otherwise we define B(x) = 0.

It is well-known the computation of a probabilistic Turing machine that uses space S and
tosses n coins, on a given input y, can be carried out by a (n, 2O(S))-ROBP By. In particular,
if the string x ∈ {0, 1}n corresponds to the n coin tosses, then By(x) is the output of the
Turing machine.

A standard derandomization technique is via pseudorandom generators. We define this
notion for the class of ROBPs.

I Definition 2 (Pseudorandom generator). A function G : {0, 1}s → {0, 1}n is a (n,w, ε)-
pseudorandom generator (PRG) if for every (n,w)-ROBP B,∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[B(G(r))]

∣∣∣∣ ≤ ε.
The seed length of G is s. G is explicit if G is computable in O(s) space.

To derandomimze space-bounded computation given an explicit (n,w, ε)-PRG, one can
enumerate B(G(r)) for every r ∈ {0, 1}s with O(s) additional space to compute an ε-
approximation of the quantity Ex [B(x)].

Nisan [23] constructed a (n,w, ε)-PRG with seed length O(logn · log(nw/ε)), which
implies BPL ⊆ L2. While there is a lot of progress in constructing PRG with better seed
length for restricted family of ROBP (see, e.g., [25, 1, 6, 2, 5, 21, 9, 31, 22] and references
therein), Nisan’s generator and its variants [23, 15, 26] remain the best-known generators in
the general case.

1.1 Pseudorandom pseudodistribution
Recently, a beautiful work of Braverman, Cohen and Garg [4] introduced the notion of a
pseudorandom pseudodistribution (PRPD) that relaxes the definition of a PRG.
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I Definition 3 (Pseudorandom pseudodistribution). A pair of functions (G, ρ) : {0, 1}s →
{0, 1}n × R generates a (n,w, ε)-pseudorandom pseudodistribution (PRPD) if for every
(n,w)-ROBP B,∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[ρ(r) ·B(G(r))]

∣∣∣∣ ≤ ε.
We say s is the seed length of (G, ρ). We say (G, ρ) is k-bounded if |ρ(x)| ≤ k for every
x ∈ {0, 1}s. We say (G, ρ) is explicit if they are computable in space O(s).

Note that a (n,w, ε)-PRG G of seed length s with a constant function ρ(x) = 1 generates
a 1-bounded (n,w, ε)-PRPD. Similar to a PRG, it is possible to derandomize BPL by
enumerating all seeds of a PRPD and computing an ε-approximation for Ex [B(x)]. In [4]
they observe that given (G, ρ) which generates an (n,w, ε)-PRPD, the function G itself is an
ε-hitting set generator for (n,w)-ROBP.

The main result in [4] is an explicit construction of a (n,w, ε)-PRPD with seed length

O ((logn · log(nw) + log(1/ε)) · log log(nw/ε)) ,

which is poly(nw/ε)-bounded.1 This improves on the seed-length of Nisan’s generator and
provides near optimal dependence on error.

Unfortunately, the construction and analysis in [4] is highly complicated. Hoza and
Zuckerman [13] provided a dramatically simpler hitting set generator with slightly improved
seed length. However, it is not clear how to extend their techniques for constructing a PRPD
(or PRG).

1.2 Main result
In this paper, we construct a PRPD with optimal dependence on error (up to constants).

I Theorem 4. There exists an explicit (n,w, ε)-PRPD generator (G, ρ) with seed length

O (logn · log(nw) · log log(nw) + log(1/ε)) ,

which is poly(1/ε)-bounded.

This improves upon the construction in [4] by a factor of O(log log(1/ε)), for any ε <

n−Ω(log(nw) log log(nw)).
As observed in [4], the small-error regime is well motivated for application to derandom-

izing space-bounded computation. In particular, Saks and Zhou [29] instantiated Nisan’s
PRG with error n−ω(1) to obtain the result BPL ⊆ L3/2. We note that one can replace
the PRG in the Saks-Zhou scheme with a PRPD which is poly(w, 1/ε)-bounded, and hence
improvements to our result will lead to improved derandomization of BPL. We sketch a
proof in Appendix A.

Our construction uses a strategy similar to [4] with the following key differences.

1 Note that in [4], they define
∑

r
ρ(r)B(G(r)) to be the approximation of Ex [B(x)]. Here we define

Er [ρ(r)B(G(r))] to be the approximation instead to emphasize the possible loss when plugged into the
Saks-Zhou scheme. (See Appendix A for more details.) Therefore a k-bounded PRPD in their definition
is actually 2sk-bounded in our definition. Nevertheless, it is possible to show that their construction is
still poly(nw/ε)-bounded with our definition.
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The construction in [4] has a more bottom-up nature: their construction follows the binary
tree structure in Nisan’s generator [23], but in each node they maintain a sophisticated
“leveled matrix representation” (LMR) which consists of many pieces of small-norm
matrices, and they show how to combine pieces in two LMRs one by one to form a LMR
in the upper level. Our construction follows the binary tree structure in Nisan’s generator,
but has a more top-down spirit. We give a clean recursive formula which generates
a “robust PRPD” for (n,w)-PRPD given robust PRPDs for (n/2, w)-ROBP, where a
robust PRPD is a family of pseudodistributions such that the approximation error of
pseudodistribution drawn from this family is small on average. (A formal definition
can be found in Definition 32.) The top-down nature of our construction significantly
simplifies the construction and analysis.
Following [4], we use an averaging sampler in our recursive construction, but we further
observe that we can apply a simple “flattening” operation to limit the growth of seed
length. With this observation, we not only improve the seed length but also simplify the
construction and analysis by avoiding some special case treatments that are necessary
in [4]. (Specifically, we do not need the special multiplication rule “outer product” in [4].)

Independent work

Independent work of Cheng and Hoza [7] remarkably prove that a hitting set generator
(HSG) for ROBPs can be used for derandomizing BPL. Their first result shows that
every (n,w)-ROBP f can be deterministically approximated within error ε with an explicit
HSG for (poly(nwε ),poly(nwε ))-ROBP with seed length s. The space complexity of their
first derandomization is O(s + log(nw/ε)). Their second result shows that every (n,w)-
ROBP f can be deterministically approximated within error ε with an explicit HSG for
(n, poly(w))-ROBP with seed length s. Their second derandomization has space complexity
O(s+ w log(n/ε)), and only requires black-box access to f .

Their first result does not imply better derandomization algorithms with the state-of-
art HSGs so far. Plugging in the HSG from [13], their second result gives a black-box
derandomization algorithm for (n,w)-ROBP in space O(log(n) log(nw) + w log(n/ε)). This
is better than the black-box derandomization with our PRPD for the restricted case of
w = O(1). We note that an advantage of PRPDs (over hitting sets) is that they are
applicable in the Saks and Zhou’s scheme [29] (as mentioned in Appendix A, when applied
with Armoni’s sampler trick [1]).

Organization

In Section 2, we present the matrix representation of ROBPs, see how a pseudodistribution
can be interpreted as matrices, and introduce some basic rules for translating between matrix
operations and operations on pseudodistribution. We use Section 3 to present an outline of
our main construction and proof. Section 4 contains necessary preliminaries. In Section 5, we
formally prove several lemmas about using samplers on approximate matrix multiplication.
In Section 6, we present and prove correctness of our main construction. We conclude with
possible future directions in Section 7.

2 ROBPs and Matrices

We introduce the matrix representation of ROBPs and some related definitions that are
useful in the rest of the paper. First, we setup some notation.
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Notation: Given two strings x, y, we use x‖y to denote the concatenation of x and y. For
every n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote a collection of objects Aji
with subscript i ∈ S and superscript j ∈ T by [A]TS for short.

Given a (n,w)-ROBP B with layers V0, . . . , Vn, we can represent the transition from layer
Vt−1 to Vt by two stochastic matrices M0

t and M1
t as follows: suppose layer Vj consists of

the nodes {vj,1, . . . , vj,w}. The entry (M0
t )i,j = 1 if and only if there exist a 0-labeled edge

from vt−1,i to vt,j (else (M0
t )i,j = 0). The matrix M1

t is defined similarly according to the
edges that labeled 1 between layers Vt−1 and Vt. More generally, we can also represents
multi-step transition by a stochastic matrix. That is, for every 0 ≤ a ≤ b ≤ n, and every
r = (ra+1, . . . , rb) ∈ {0, 1}b−a, we can define

Mr
a..b =

b∏
t=a+1

Mrt
t

which corresponds to the transition matrix from layer a to layer b following the path labeled
by r. Note that every row of Mr

a,b contains exactly one 1, and the other entries are 0.
An n-step random walk starting from the first layer can be represented with the following

matrix:

M0..n = 1
2n

∑
r∈{0,1}n

Mr
0..n =

n∏
t=1

1
2
(
M0
t +M1

t

)
.

By definition of M0
t ,M

1
t one can observe that the (i, j) entry of M0..n is the probability that

a random walk from v0,i ∈ V0 reaches vn,j ∈ Vn. Therefore, suppose v0,i ∈ V0 is the starting
state of B, vn,j ∈ Vn is the accepting state of B, then Ex [B(x)] equals the (i, j) entry of
M0..n.

Recall that a generator of a (n,w, ε)-PRPD is a pair of function (G, ρ) such that for every
(n,w)-ROBP B,∣∣∣∣Er [ρ(r) ·B(G(r))]− E

x∈{0,1}n
[B(x)]

∣∣∣∣ ≤ ε.
Equivalently, for every transition matrices M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n, we have∥∥∥E

r

[
ρ(r) ·MG(r)

0..n

]
−M0..n

∥∥∥
max
≤ ε,

where ‖A‖max denotes maxi,j |A(i, j)|.
Therefore it is natural to represents a PRPD (G, ρ) with a mapping G : {0, 1}s → Rw×w

where G(r) = ρ(r) ·MG(r)
0..n . More generally, we will use a notation similar to the “matrix

bundle sequence” (MBS) introduced in [4] to represent a PRPD.

I Definition 5. Consider a (n,w)-ROBP [M ]{0,1}[n] and a pair of functions (G, ρ) : {0, 1}sout×
[Sin] → {0, 1}n × R. The matrix form of (G, ρ) on [M ]{0,1}[n] is a mapping A : {0, 1}sout ×
[Sin]→ Rw×w such that for every x ∈ {0, 1}sout and y ∈ [Sin],

A(x, y) = ρ(x, y) ·MG(x,y)
0..n .

For every x ∈ {0, 1}sout we abuse the notation and define

A(x) = E
y

[A(x, y)] .

Besides, we define 〈A〉 = Ex,y [A(x, y)]. We say sout is the outer seed length of A, denoted by
sout(A), and Sin is the inner size of A, denoted by Sin(A). We also define sin(A) = dlogSine
to be the inner seed length of A, and s(A) = sout(A) + sin(A) to be the seed length of A.
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I Remark 6. For every fixed x, the collection {A(x, y) : y ∈ [Sin]} corresponds to the “matrix
bundle” in [4]. This should be treated as a collection of matrices which “realizes” the matrix
A(x). The whole structure A corresponds to the “matrix bundle sequence” in [4], and should
be treated as a uniform distribution over the set {A(x) : x ∈ {0, 1}sout}.

When the ROBP [M ]{0,1}[n] is clear in the context, we will use the matrix formA to represent
the pseudodistribution (G, ρ) directly. We will apply arithmetic operations on matrices A(x),
and these operations can be easily translated back to operations on pseudodistributions as
follows.

I Definition 7. Consider a (n,w)-ROBP [M ]{0,1}[n] , and a pair of function (F, σ) : [S] →

{0, 1}n × R. The matrix that is realized by (F, σ) on M0..n is Ei∈[S]

[
σ(i) ·MF (i)

0..n

]
. We say

S is the size of (F, σ).

Scaling the matrix corresponds to scaling the coefficients in the pseudodistribution.

B Claim 8. Consider a (n,w)-ROBP [M ]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) on M0..n. Then cA is realized by a matrix bundle (F ′A, σ′A) of size SA s.t. F ′A = FA
and σ′A(x) = cσA(x) for every x ∈ [S].

The summation on matrices corresponds to re-weighting and union on pseudodistributions.

B Claim 9. Consider a (n,w)-ROBP [M ]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) of size SA on M0..n and B be a matrix realized by matrix bundle (FB , σB) of size
SB on M0..n. Then A+B is realized by a matrix bundle (F ′, σ′) of size SA + SB on M0..n
s.t.

F ′(x) =
{
FA(x) if x ≤ SA
FB(x− SA) if x > SA

and σ′(x) =
{
SA+SB

SB
· σA(x) if x ≤ SA

SA+SB

SB
· σB(x− SA) if x > SA

The multiplication on matrices corresponds to concatenation of pseudodistributions.

B Claim 10. Consider a (n,w)-ROBP [M ]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) of size SA on M0..n/2 and B be a matrix realized by matrix bundle (FB , σB) of size
SB on Mn/2..n. Fix a bijection π : [SA]× [SB ]→ [SA · SB ]. Then AB is realized by a matrix
bundle (F ′, σ′) of size SA · SB s.t. for every a ∈ [SA], b ∈ [SB ],

F ′(π(a, b)) = FA(a)‖FB(b) and σ′(π(a, b)) = σ(a) · σ(b).

3 Proof Overview

In this section we give an outline of our construction and proof. In Section 3.1, we briefly
recap how a sampler is used in [4] to achieve better seed length in the small-error regime.
We discuss our construction ideas in Section 3.2.

3.1 The sampler argument
Nisan’s generator and its variants recursively use a lemma of the following form.

I Lemma 11. Consider a (n,w)-ROBP [M ]{0,1}[n] . Let A be the matrix form of a distribution
on M0..n/2, and B be the matrix form of a distribution on Mn/2..n. Suppose s(A) = s(B) = s.
Then there exists a distribution whose matrix form C on M0..n of seed length s+O(log(w/δ))
such that

‖〈C〉 − 〈A〉 〈B〉‖max ≤ δ.
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This lemma is usually achieved with a pseudorandom object. For example, the INW
generator [15] uses a bipartite expander with degree poly(w/δ) to construct the distribution
C in the above lemma. That is, for every edge (x, y) in the expander G, they add A(x)B(y)
into C. A similar lemma can also be obtained with universal hash functions [23] or seeded
extractors [26]. By recursively constructing good approximations of M0..n/2 and Mn/2..n and
applying Lemma 11, one can obtain a PRG which has seed length O(logn · log(nw/ε)) (δ is
taken to be ε/n because of a union bound). Observe that in such constructions, one needs
to pay O(log(1/ε)) (in seed length) per level of recursion.

The crucial idea in [4] is to amortize this cost over all logn levels. What makes this
possible is the following argument, which we will refer to as the sampler argument. First we
define the notion of an averaging sampler.

I Definition 12. A function g : {0, 1}n × {0, 1}d → {0, 1}m is an (ε, δ)-(averaging) sampler
if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

The crucial observation in [4] is that if one uses a sampler to prove Lemma 11, the error
actually scales with the norm of one of the matrix forms.

I Lemma 13 ([4]). Consider a (n,w)-ROBP with matrix representation [M ]{0,1}[n] . Let A
and B be (pseudo)distributions in matrix form on M0..n/2 and Mn/2..n respectively. Let
n = sout(A), m = sout(B). Suppose ∀x ∈ {0, 1}n, ‖A(x)‖ ≤ 1 and ∀y ∈ {0, 1}m, ‖B(y)‖ ≤ 1.
Let g : {0, 1}n×{0, 1}d → {0, 1}m be a (ε, δ) sampler. Then there exists a (pseudo)distribution
C such that

‖〈C〉 − 〈A〉 〈B〉‖ ≤ O
(
w2
(
δ + εE

x
[‖A(x)‖]

))
.

Besides, C has outer seed length n = sout(A), and for every x ∈ {0, 1}n,

C(x) = E
s

[A(x)B (g(x, s))] .

Note that sin(C) = sin(A) + sin(B) + d.

The intuition behind this approximation is as follows. If we want to compute the matrix
product precisely, we take every A(x) and multiply it with Ey [B(y)]. However, with the help
of sampler, we can use x as our seed to select some samples from B, and take their average
as an estimate of Ey [B(y)]. The error of this approximation comes in two different way. For
those x which are not good choices of a seed for the sampler, the samples chosen with such
an x can deviate from the average arbitrarily. However, only δ fraction of x can be bad, so
they incur at most δ error. The second kind of error is the estimation error between average
of samples Es [B(g(x, s))] and the real average Ey [B(y)], which can be at most ε. Since this
gets multiplied with A(x), this kind of error actually scales with ‖A(x)‖. Although the first
kind of error (which is δ) does not benefit from ‖A‖ being small, in [4] they observe that,
the parameter δ has almost no influence on the seed length in some cases. To discuss this
more precisely, we first recall explicit constructions of samplers.

I Lemma 14 ([27, 10]). For every δ, ε > 0 and integer m, there exists a space efficient
(ε, δ)-sampler f : {0, 1}n × {0, 1}d → {0, 1}m s.t. d = O(log log(1/δ) + log(1/ε)) and
n = m+O(log(1/δ)) +O(log(1/ε)).

Note that in Lemma 13, s(C) = s(A) + d + sin(B). Therefore if n ≥ m + O(log(1/δ)) +
O(log(1/ε)), δ has almost no impact on the seed length.
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To use the above ideas, it boils down to working with matrices with small norm, and
making sure that every multiplication is “unbalanced” enough so that δ has no impact. [4]
applies a delicate telescoping sum trick (which they called “delta sampler”) to divide an
ε-approximation into a base approximation with 1/poly(n) error and several “correcting
terms” which have small norm. By carefully choosing the samplers and discarding all the
non-necessary terms, they roughly ensure the following properties: first, a matrix with large
seed length must have small norm; second, every matrix multiplication is unbalanced enough
so that δ has no impact on the seed length.

With these properties and the sampler argument, they show that the total seed length is
bounded by Õ(log(1/ε) + logn log(nw)).

3.2 Our construction
In executing the ideas sketched above, the construction and analysis in [4] turns out to be
quite complicated and involved. One thing which complicates the construction and analysis
is its bottom-up nature. That is, when multiplying two terms, they create more terms with
the telescoping sum trick. Moreover, in the telescoping sum trick one needs to choose the
parameters of each sampler very carefully to make sure the seed length of each term does
not exceed its “smallness”.

Our first step toward a simpler construction is the following top-down formula, which we
will apply recursively to compute an approximation of M0..n:

I Lemma 15. Let ‖·‖ be a sub-multiplicative matrix norm, and A,B be two matrices s.t.
‖A‖ , ‖B‖ ≤ 1. Let k ∈ N and γ < 1. For every 0 ≤ i ≤ k, let Ai be a γi+1-approximation
of A, and let Bi be a γi+1-approximation of B. Then

k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i

is a ((k + 2)γk+1 + (k + 1)γk+2)-approximation of AB.

Proof. We have,∥∥∥∥∥(
k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i)−AB

∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=0

(A−Ai)(B −Bk−i)−
k−1∑
i=0

(A−Ai)(B −Bk−1−i) + (Ak −A)B +A(Bk −B)

∥∥∥∥∥
≤

k∑
i=0
‖A−Ai‖ · ‖B −Bk−i‖ +

k−1∑
i=0
‖A−Ai‖ · ‖B −Bk−1−i‖

+ ‖Ak −A‖ · ‖B‖ + ‖A‖ · ‖Bk −B‖
≤ (k + 2)γk+1 + (k + 1)γk+2 J

This formula shares an important property with the BCG construction: we never need a
γk-approximation (which implies large seed length) on both sides simultaneously. The benefit
of our top-down formula is that we are treating the PRPD as one object instead of the sum
of many different terms. One obvious effect of such treatment is we don’t need to analyze
the “smallness” of each term and the accuracy of the whole PRPD separately.



E. Chattopadhyay and J.-J. Liao 25:9

In this top-down formula, we do not explicitly maintain small-norm matrices as in [4].
However, observe that in the proof of Lemma 15, we are using the fact that Ak−A is a small
norm matrix. Our goal is to apply the sampler argument (Lemma 13) on these “implicit”
small-norm matrices. The following is our main technical lemma.

I Lemma 16 (main lemma, informal). Let A,B ∈ Rw×w, k ∈ N and γ < 1. Suppose
for every i ≤ k there exists pseudodistribution Ai,Bi such that Ex [‖Ai(x)−A‖] ≤ γi+1,
Ex [‖Bi(x)−B‖] ≤ γi+1, and ‖Ai(x)‖ , ‖Bi(x)‖ ≤ 1 for every x. Then there exists a pseudo-
distribution Ck such that

E
x

[
‖Ck(x)−AB‖ ≤ O(γ)k+1] ,

where Ck(x) =
∑
i+j=k Ax,iBx,j −

∑
i+j=k−1Ax,iBx,j. Ax,i and Bx,i are defined as follows.

If i > dk/2e, Ax,i = Ai(x) and Bx,i = Bi(x).
If i ≤ dk/2e, Ax,i = Es

[
Ai(gi(x, s))

]
and Bx,i = Es

[
Bi(gi(x, s))

]
, where gi is a

(γi+1, γk+1)-sampler, and Ai,Bi denote the “flattened” form of Ai and Bi.

We leave the explanation of “flattened” for later and explain the intuition behind the
lemma first. Our goal is to construct Ck such that Ck(x) is a good approximation of AB on
average over x. We know that Ai and Bi are γi+1-approximation of A and B on average.
Our hope is to use x to draw samples Ai and Bi from Ai and Bi, and apply the formula
in Lemma 15 to get a good approximation of AB. In particular, a natural choice would
be setting Ax,i = Ai(x) and Bx,i = Bi(x) for every i ≤ k. However, if there exists a term
Ax,iBx,j such that Ax,i and Bx,j are both bad approximation for a large enough fraction of
x, we cannot guarantee to get a O(γk+1)-approximation on average.

To avoid the above case, for every i ≤ dk/2e we use a sampler to approximate 〈Ai〉 and
〈Bi〉. This ensure that the chosen samples Ax,i and Bx,i are good with high probability. This
guarantees that in each term Ax,iBx,j , at least one of Ax,i or Bx,j will be a good choice
with high probability over x. If Ax,i is a good choice with high probability, we can apply
the average-case guarantee on Bx,i to get an average-case guarantee for Ck, and vice versa.
(Indeed, this is the sampler argument.) Therefore we can ensure that Ck(x) is good on
average. Note that we only apply a sampler on Ai (or Bi) when i ≤ dk/2e, which means Ai
(or Bi) has small seed length. Therefore we don’t need to add too much redundant seed to
make the sampler argument work.

In executing the above sketched idea, we run into the following problem: in each
multiplication, the inner seed on both sides aggregates to the upper level. If we start with
pseudodistributions with non-zero inner seed in the bottom level, the inner seed would
become Ω(n) in the topmost level. Therefore we need a way to limit the aggregation of
inner seed.

In [4], they run into a similar problem. To deal with this, they apply a different
multiplication rule, “outer product”, in some special cases to deal with this. However, the
outer product does not seem applicable in our construction. Nevertheless, we observe that
whenever we use a sampler to select matrix Ax,i, we only care about whether 〈Ai〉 is close to
A, and we don’t need most of Ai(x) to be close to A anymore. Therefore we will “flatten”
Ai whenever we apply a sampler. That is, recall that each Ai(x) is realized by the average of
some matrices, Ey [Ai(x, y)]. We define the flattened form of Ai, denoted by Ai, such that
Ai(x‖y) = Ai(x, y). Observe that

〈
Ai
〉

= 〈Ai〉 and sin(Ai) = 0. This guarantees that the
inner seed length of Ai will not aggregate in Ck. Moreover, while the flattening will increase
the outer seed length of Ai, this is almost for free since we only flatten Ai when i ≤ dk/2e,
i.e. when Ai has relatively small seed length. As a result, this operation also helps us save a
O(log log(1/ε)) factor in the seed length.

CCC 2020



25:10 Optimal Error Pseudodistributions for Read-Once Branching Programs

We conclude by briefly discussing the seed length analysis. First note that we set
γ = 1/poly(n) to make sure that the error is affordable after a union bound. Now consider
the inner seed length. Consider a term AiBj such that i ≥ j. In this term, part of the inner
seed of C is passed to Ai, and the other is used for the sampler on Bj . Since the seed length
of the sampler only needs to be as large as the “precision gap” between Ai and Ck, the inner
seed length of Ck can be maintained at roughly O(k log(1/γ)) = O(log(1/ε)). However, after
each multiplication, there’s actually a O(log(nw/γ)) = O(log(nw)) additive overhead. Note
that this is necessary since the k = 0 case degenerates to the INW generator. Therefore after
logn levels of recursion, the inner seed length will be O(log(1/ε) + logn · log(nw)).

Besides, we also need the outer seed length of Ck to be long enough so that we can apply
a sampler on Adk/2e and Bdk/2e. The seed length caused by approximation accuracy ε can be
bounded similarly as the inner seed length. However, the O(logn · log(nw)) inner seed length
will be added to the outer seed length several times, because of the flattening operation.
Nevertheless, since we only do flattening for Ai and Bi where i ≤ dk/2e, this ensures that
the flattening operation happens at most log k times. So the total outer seed length will be
bounded by O(log(1/ε) + log k · logn · log(nw)) = O(log(1/ε) + log log(1/ε) · logn · log(nw)),
which is bounded by O(log(1/ε) + log log(nw) · logn · log(nw)) since O(log(1/ε)) is the
dominating term when log(1/ε) ≥ log3(nw).

4 Preliminaries

4.1 Averaging samplers
I Definition 17. A function g : {0, 1}n × {0, 1}d → {0, 1}m is a (ε, δ) (averaging) sampler
if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

It’s easy to show that samplers also work for f with general range by scaling and shifting.

B Claim 18. Let g : {0, 1}n×{0, 1}d → {0, 1}m be a (ε, δ)-sampler, and let ` < r ∈ R. Then
for every f : {0, 1}m → [`, r],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε(r − `)] ≥ 1− δ.

Proof. Let f ′ be the function such that f ′(y) = (f(y)− `)/(r − `). Observe that the range
of f ′ is in [0, 1]. By definition of sampler,

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f ′(g(x, s))]− E
y∈{0,1}m

[f ′(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

By multiplying (r − `) on both sides of the inequality inside the probability above we prove
the claim. C

In our construction, we will use the following sampler which is explicitly computable with
small space.

I Lemma 19 ([27, 10]). For every δ, ε > 0 and integer m, there exists a (ε, δ)-sampler
f : {0, 1}n×{0, 1}d → {0, 1}m s.t. d = O(log log(1/δ)+ log(1/ε)) and n = m+O(log(1/δ))+
O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed in space O(m+ log(1/δ) +
log(1/ε)).
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I Remark 20. The original sampler in [27] has a restriction on ε. Such a restriction will
cause a 2O(log∗(nw/ε)) factor in our construction, as in [4]. However, [27] pointed out that
the restriction is inherited from the extractor in [33], which breaks down when the error is
extremely small. As observed in [10], this restriction can be removed by plugging in a more
recent extractor construction in [12]. Note that there exists a space-efficient implementation
of [12] in [19], so the resulting sampler is also space-efficient. For completeness we include a
proof in Appendix B.

4.2 Matrix norms
As in [4], we will use the infinity norm in this paper.

I Definition 21. For every matrix A ∈ Rw×w, ‖A‖ = maxi
∑
j |Ai,j |.

We record some well known properties of the infinity norm.

B Claim 22. Let A,B ∈ Rw×w, c ∈ R. Then
‖cA‖ = |c| ‖A‖
‖A‖ + ‖B‖ ≤ ‖A+B‖
‖AB‖ ≤ ‖A‖ ‖B‖
maxi,j |Ai,j | ≤ ‖A‖
If A is stochastic, then ‖A‖ = 1

Note that for any (n,w)-ROBP represented by w×w matrices M{0,1}[n] , ‖Mi..j‖ = 1 for every
0 ≤ i ≤ j ≤ n.

5 Approximate Matrix Multiplication via Samplers

In this section we formally prove the sampler arguments which will be used in our construction.
Our proof strategy resembles that of [4], with the following two crucial differences. First,
we will define two different notions of “smallness” for our flattening idea. Second, in our
construction we need the case where we use samplers to select matrices on both sides
(Lemma 27).

We will consider mappings A : {0, 1}n → Rw×w which correspond to the implicit small
norm matrices we discussed in the previous section. Borrowing notation from Definition 5,
we use 〈A〉 to denote Ex [A(x)]. First we define two different norms for the mapping A. The
robust norm is similar to the notion of “smallness” in [4], i.e. the average of norm of A(x),
while the norm of A is simply the norm of 〈A〉, i.e. the norm of average of A(x).

I Definition 23. For every function A : {0, 1}n → Rw×w, we define the norm of A to
be ‖A‖ =

∥∥Ex∈{0,1}n [A(x)]
∥∥, and the robust norm of A to be ‖A‖r = Ex∈{0,1}n [‖A(x)‖].

Besides, we define the weight of A to be µ(A) = maxx ‖A(x)‖.

B Claim 24. ‖A‖ ≤ ‖A‖r ≤ µ(A).

Proof. ‖A‖ ≤ ‖A‖r is by sub-additivity of ‖·‖, and ‖A‖r ≤ µ(A) since ‖A‖r is the average
of values no larger than µ(A). C

Next we show a simple lemma which will be used later. That is, a sampler for functions with
range [0, 1] is also a sampler for matrix-valued functions, where the error is measured with
infinity norm.
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I Lemma 25. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g : {0, 1}n×
{0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]− 〈A〉
∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

Proof. Let E(y) = A(y)− 〈A〉. For every i, j ∈ [w], observe that

max
y
E(y)i,j −min

y
E(y)i,j = max

y
A(y)i,j −min

y
A(y)i,j

By the property of sampler it follows that

Pr
x∈{0,1}n

[∣∣∣E
s

[E(g(x, s))i,j ]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− δ.

Using a union bound,

Pr
x∈{0,1}n

[
∀i, j ∈ [w],

∣∣∣E
s

[E(g(x, s))i,j ]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− w2δ.

Thus by definition of the infinity norm, we can conclude that

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[E(g(x, s))]
∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

which by sub-additivity of ‖·‖ implies

Pr
x∈{0,1}n

[∥∥∥E
s

[A(g(x, s))]
∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ. J

I Corollary 26. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g :
{0, 1}n × {0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]
∥∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ.

Proof. By sub-additivity of ‖·‖,
∥∥Es∈{0,1}d [A(g(x, s))]− 〈A〉

∥∥ ≤ 2wµ(A)ε implies∥∥Es∈{0,1}d [A(g(x, s))]
∥∥ ≤ ‖〈A〉‖ + 2wµ(A)ε. The claim now directly follows from

Lemma 25. J

Now we introduce three different matrix multiplication rules. The first one is applying a
sampler on both sides, and the second and third are applying sampler on only one side.

I Lemma 27 (symmetric product). Consider A : {0, 1}n → Rw×w and B : {0, 1}m → Rw×w.
Let f : {0, 1}k×{0, 1}dA → {0, 1}n be a (δ, εA) sampler, and g : {0, 1}k×{0, 1}dB → {0, 1}m
be a (δ, εB) sampler. Then

E
z

[∥∥∥∥ Ex,y [A(f(z, x))B(g(z, y))]
∥∥∥∥] ≤ 2w2δµ(A)µ(B)+(‖A‖ + 2wµ(A)εA) (‖B‖ + 2wµ(B)εB) .

Proof. Let

EA =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
,

and

EB =
{
z :
∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB
}
.
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Define E = EA ∪ EB . By Lemma 26 and union bound, Prz [z ∈ E] < 2w2δ. Therefore

E
z

[∥∥∥∥ E
x,y

[A(f(z, x))B(g(z, y))]
∥∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥∥ E
x,y

[A(f(z, x))B(g(z, y))]
∥∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥∥Ex [A(f(z, x))]E
y

[B(g(z, y))]
∥∥∥∥]

≤ 2w2δµ(A)µ(B) + E
z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ∥∥∥∥Ey [B(g(z, y))]

∥∥∥∥]
≤ 2w2δµ(A)µ(B) +

(
‖A‖ + 2wµ(A)εA

) (
‖B‖ + 2wµ(B)εB

)
.

The second last inequality is by the fact that ‖·‖ is non-negative and sub-multiplicative. J

I Lemma 28 (left product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
g : {0, 1}k × {0, 1}dB → {0, 1}m be a (δ, εB) sampler. Then

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥] ≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

Proof. Let

E =
{
z :
∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB
}
.

By Lemma 26, Prz [z ∈ E] < w2δ. Therefore

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E
z 6∈E

[
‖A(z)‖

∥∥∥∥Ey [B(g(z, y))]
∥∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] E
z 6∈E

[‖A(z)‖] · (‖B‖ + 2wµ(B)εB)

≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

The third last inequality is by sub-multiplicativity of ‖·‖, the second last inequality is by
non-negativity of ‖·‖, and the last inequality is by the fact that

Pr [z 6∈ E] · E
z 6∈E

[‖A(z)‖] = E
z

[‖A(z)‖ · 1(z 6∈ E)] ≤ ‖A‖r . J

I Lemma 29 (right product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
f : {0, 1}k × {0, 1}dA → {0, 1}n be a (δ, εA) sampler. Then

E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] ≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) ‖B‖r .

Proof. Let

E =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
.

By Lemma 26, Prz [z ∈ E] < w2δ. Therefore
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E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E
z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ‖B(z)‖

]
≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) · Pr [z 6∈ E] E

z 6∈E

[
‖B(z)‖

]
≤ w2δµ(A)µ(B) +

(
‖A‖ + 2wµ(A)εA

)
‖B‖r . J

6 Main Construction

In this section we show our main construction and prove its correctness. We first introduce
several definitions.

I Definition 30. For every mapping A : {0, 1}n → Rw×w and every matrix A ∈ Rw×w, we
define A−A to be the mapping s.t. (A−A)(x) = A(x)−A.

I Definition 31. Consider A ∈ Rw×w and A : {0, 1}n → Rw×w. A is a ε-approximator
of A if ‖Ex [A(x)]−A‖ ≤ ε, i.e. ‖A −A‖ ≤ ε. A is a ε-robust approximator of A if
Ex [‖A(x)−A‖] ≤ ε, i.e. ‖A −A‖r ≤ ε.

Now we define a robust PRPD. Note that a (n,w, ε)-robust PRPD (G, ρ) is also a µ(G, ρ)-
bounded (n,w, ε)-PRPD.

I Definition 32. (G, ρ) : {0, 1}sout ×{0, 1}sin × [µ]→ {0, 1}n×R is a (n,w, ε)-robust PRPD
if for every (n,w)-ROBP and its matrix representation [M ]{0,1}[n] the following holds. Let
A : {0, 1}sout × {0, 1}sin → Rw×w denote the mapping

A(x, y) = E
i∈[µ]

[
ρ(x, y, i) ·MG(x,y,i)

0..n

]
.

Every ρ(x, y, i) is either µ or −µ. In other word, A(x, y) is the summation of transition
matrices with coefficient ±1.
Let Â denote the mapping Â(x) = Ey [A(x, y)]. Then Â is a ε-robust approximator for
M0..n.

We say µ is the weight of (G, ρ), denoted by µ(G, ρ). sout is the outer seed length of (G, ρ),
denoted by sout(G, ρ). sin is the inner seed length of (G, ρ), denoted by sin(G, ρ). We write
s(G, ρ) = sout(G, ρ) + sin(G, ρ) for short. We say (G, ρ) is explicit if it can be computed in
O(s(G, ρ)) space.

We say A is the matrix form of (G, ρ) on M0..n, and the definition of sout, sin, µ on (G, ρ)
also apply to A. We say Â is the robust matrix form of (G, ρ) on M0..n.

I Remark 33. The above definition is similar to Definition 5, but each matrix A(x, y) is
realized with µ matrices instead of one matrix. These µ matrices will never be separated even
after flattening. We do this in order to ensure that the matrix form always take bit-strings
as input. This ensures that we can increase the outer and inner seed length of A arbitrarily:
we can construct the new mapping A′ : {0, 1}s′out × {0, 1}s′in such that A′(x, y) = A(xp, yp)
where xp is the length-sout(A) prefix of x and yp is the length-sin(A) prefix of y. In other
word, A′ computes the output only with prefix of necessary length of the input, and ignore
the remaining bits. It is easy to verify that A′ is also the matrix form of a (n,w, ε)-robust
PRPD.
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The following is some additional basic properties about robust PRPD and its flattened form.

B Claim 34. Let (G, ρ) : {0, 1}sout ×{0, 1}sin × [µ]→ {0, 1}n×R be a (n,w, ε)-robust PRPD.
For every (n,w)-ROBP M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n the following holds.

Let Â be the robust matrix form of (G, ρ) on M0..n. Then µ(Â) ≤ µ(G, ρ).
Let A denote the matrix form of (G, ρ) on M0..n. Let A : {0, 1}sout+sin → Rw×w denote
the mapping A(x‖y) = A(x, y). We say A is the flattened matrix form of (G, ρ) on M0..n.
Then A is an ε-approximator for M0..n, and µ(A) ≤ µ(G, ρ).

Proof. Recall that for every string r ∈ {0, 1}n, ‖Mr
0..n‖ = 1. By sub-additivity of ‖·‖ we

have ‖A(x, y)‖ ≤ µ(G, ρ) for every x, y, which implies µ(A) ≤ µ(G, ρ). By sub-additivity
and scalability of ‖·‖, we have µ(A′) ≤ µ(A). To show that A is a ε-approimxator of M0..n,
observe that A′ is also an ε-approximator of M0..n by Claim 24, and note that 〈A〉 = 〈A′〉.

C
Now we prove our main lemma. The following lemma allows us to construct robust PRPDs
for (2m,w) ROBPs from robust PRPDs for (m,w) ROBPs, without increasing the seed
length too much. We will recursively apply this lemma for logn levels to get a (n,w, ε)-robust
PRPD. The basic idea is as described in Lemma 16.

I Lemma 35. Suppose there exists sout, sin such that the following conditions hold.
For every 0 ≤ i ≤ k, there exists a (m,w, γi+1)-robust PRPD (Gi, ρi) s.t. µ(Gi, ρi) ≤(
m−1
i

)
and sout(G, ρ) ≤ sout. Moreover, for every 0 ≤ i ≤ dk/2e, s(Gi, ρi) ≤ sout.

For every i ≤ dk/2e, there exists a (εi, δ)-sampler gi : {0, 1}sout ×{0, 1}di → {0, 1}s(Gi,ρi),
where εi ≤ γi+1/(w ·

(
m−1
i

)
) and δ ≤ γk+1/(w2 ·

(2m−1
i

)
).

For every i ≥ j ≥ 0 s.t. i+ j ≤ k, if j ≤ i ≤ dk/2e, then di + dj ≤ sin. If i > dk/2e, then
sin(Gi, ρi) + dj ≤ sin.

Then there exists a (2m,w, (11γ)k+1)-robust PRPD (G, ρ) s.t. sout(G, ρ) = sout, sin(G, ρ) =
sin and µ(G, ρ) ≤

(2m−1
k

)
.

Proof. Fix any (2m,w)-ROBP with matrix representation M
{0,1}
[2m] . Let A = M0..m and

B = Mm..2m. For every 0 ≤ i ≤ k, let Ai, Âi,Ai denote the matrix form, robust matrix form
and flattened matrix form of (G, ρ) on M0..m respectively. Let Bi, B̂i,Bi denote the matrix
form, robust matrix form and flattened matrix form of (G, ρ) on Mm..2m respectively. By
definition, Âi and B̂i are γi+1-robust approximator for A and B respectively. By Claim 34,
Ai and Bi are γi+1-approximator for A and B respectively. Moreover, we will increase the
outer seed length of Ai and Bi to match the length of the given input when necessary. (See
Remark 33)

Now for every x, y we define a mapping Ck : {0, 1}sout × {0, 1}sin → Rw×w as follows.
Note that Ck corresponds to the matrix form of (G, ρ) on M0..2m.
(1) For every 0 ≤ i ≤ dk/2e, let ai be the prefix of y of length di and bi be the suffix of y of

length di. Define Ax,y,i = Ai(gi(x, ai)) and Bx,y,i = Bi(gi(x, bi)).
(2) For every dk/2e < i ≤ k, let ai be the prefix of y of length sin(Ai) and bi be the suffix of

y of length sin(Bi). Define Ax,y,i = Ai(x, ai) and Bx,y,i = Bi(x, bi).
(3) Define Ck(x, y) =

∑
i+j=k Ax,y,iBx,y,j −

∑
i+j=k−1Ax,y,iBx,y,j .

Note that for every i+ j ≤ k, prefix ai and suffix bj of y never overlap.
By expanding every Ax,y,iBx,y,j term with distributive law, we can see that each small

term in Ax,y,iBx,y,j has coefficient ±1, which satisfies the first condition of robust PRPD.
Moreover, the total number of terms after expanding is

µ(Ck) ≤
∑
i+j=k

(
m− 1
i

)
·
(
m− 1
j

)
+

∑
i+j=k−1

(
m− 1
i

)
·
(
m− 1
j

)
=
(

2m− 1
k

)
.
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It remains to show that Ck satisfies the second condition of robust PRPD, i.e. Ey [Ck(x, y)]
is a good approximation of M0..2m = AB on average over x. Observe that

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥] = E

x

[∥∥∥∥Ey [Ck(x, y)−AB]
∥∥∥∥]

≤
∑
i+j=k

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

+
∑

i+j=k−1
E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

+ E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]
∥∥∥∥]+ E

x

[∥∥∥∥Ey [A(Bx,y,k −B)]
∥∥∥∥] ,

by decomposing Ck(x, y)− AB with the equation in the proof of Lemma 15 and applying
sub-additivity of ‖·‖.

First we consider the last two terms. Since ‖B‖ = 1, by sub-multiplicativity we have

E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]
∥∥∥∥] ≤ E

x

[∥∥∥∥Ey [Ax,y,k −A]
∥∥∥∥] .

Now consider two cases. If k ≥ 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A]
∥∥∥∥] = E

x

[∥∥∥Âk(x)−A
∥∥∥] ≤ γk+1

by definition. If k < 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A] ·B
∥∥∥∥] = E

x

[∥∥∥∥Eak

[
Ak(gk(x, ak))−A

]∥∥∥∥ ·B] .
Apply Lemma 29 on Ak − A and the dummy mapping B s.t. B(x) = B for every x,
we can derive that the above formula is bounded by w2δ

(
m−1
k

)
+ 3γi+1. For the term

Ex
[
‖Ey [A(Bx,y,k −B)]‖

]
we can get the same bound with a similar proof.

Now consider the terms in the form Ex
[
‖Ey [(Ax,y,i −A)(Bx,y,j −B)]‖

]
.

First consider the case i, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

= E
x

[∥∥∥∥Eai

[
Ai(gi(x, ai))−A

]
E
bj

[
Bk(gj(x, bj))−B

]∥∥∥∥] (since ai, bj don’t overlap)

≤ 2w2δ ·
(
m− 1
i

)
·
(
m− 1
j

)
+ 9γi+j+2. (by Lemma 27)

Next consider the case i > dk/2e, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

= E
x

[∥∥∥∥Âi(x) · E
bj

[
Bk(gj(x, bj))−B

]∥∥∥∥] (since ai, bj don’t overlap)

≤ w2δ ·
(
m− 1
i

)
·
(
m− 1
j

)
+ 3γi+j+2. (by Lemma 29)
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Similarly for the case that i ≤ dk/2e, j > dk/2e we can show that

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥] ≤ w2δ ·

(
m− 1
i

)
·
(
m− 1
j

)
+ 3γi+j+2

by Lemma 28. Finally, note that the case i, j > dk/2e does not exist because i+ j ≤ k.
Taking the summation of all the cases, we get

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥]

≤ 2w2δ ·

 ∑
i+j=k

(
m− 1
i

)(
m− 1
j

)
+

∑
i+j=k−1

(
m− 1
i

)(
m− 1
j

)
+
(
m− 1
k

)
+ (k + 1) · 9γk+2 + k · 9γk+1 + 2 · 3γk+1

≤ 4w2δ ·
(

2m− 1
k

)
+ (9k + 9)γk+2 + (9k + 6)γk+1

≤ (10k + 11)γk+1

≤ (11γ)k+1.

Moreover, note that AB = M0..2m, and the construction of Ck does not depend on the
matrices M{0,1}[2m] . (See Section 2 for how the arithmetic operations in Ck(x, y) are translated
back to operations on pseudo-distributions.) Therefore there exists a (2m,w, (11γ)k+1)-robust
PRPD (G, ρ). J

Finally we analyze the seed length of the recursive construction, and present the main
theorem.

I Theorem 36. There exists an explicit (n,w, ε)-robust PRPD (G, ρ) such that
sout(G, ρ) = O

(
log(1/ε) + logn log(nw) log

(
log(1/ε)

logn

))
sin(G, ρ) = O

(
log(1/ε) + logn log(nw) log

(
log(1/ε)

logn

))
µ(G, ρ) = poly(1/ε)

Moreover, for every B the approximator G has the same corresponding pseudodistribution.

Proof. Let c be the constant such that for every ε, δ > 0 there exists a (ε, δ)-sampler
g : {0, 1}n×{0, 1}d → {0, 1}m such that n = m+ c log(1/ε) + c log(1/δ) and d = c log(1/ε) +
c log log(1/δ), as guaranteed in Lemma 19. WLOG assume that n is a power of 2. Define
γ = 1/n4. For every 0 ≤ h ≤ logn, every k ≥ 0, we will inductively prove that there exists a
(2h, w, (11hγ)k+1)-robust PRPD (Gh,k, ρh,k) with the following parameters.

If k ≤ 1, sout(Gh,k, ρh,k) ≤ h · (3ck log(n/γ) + 7c log(w/γ))
If k > 1, sout(Gh,k, ρh,k) ≤ 4ck log(n/γ) + (dlog ke+ 1) · h · (10c log(w/γ))
If k ≤ 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + 4c log(w/γ)
If k > 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + h · (4c log(kw/γ))
µ(Gh,k, ρh,k) ≤ max(1,

(2h−1
k

)
)

We will write sout,h,k = sout(Gh,k, ρh,k) and sin,h,k = sout(Gh,k, ρh,k) for short. First
consider the terminal case 2k ≥ 2h or h = 0. In this case we simply take sout,h,k = 0,
sin,h,k = 2h ≤ 2k and µ(Gh,k, ρh,k) = 1 s.t. Gh,k(x, y, i) = y and ρh,k(x, y, i) = 1. For the
other cases, we show that we can get the intended parameters by constructing (Gh,k, ρh,k)
with the recursion in Lemma 35. Note that based on the induction hypothesis we can
assume Ga,h−1,k and Ga+2h−1,h−1,k have exactly the same parameters, so we consider the
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parameter of Ga,h−1,k only. We have seen that the bound for µ(Gh,k, ρh,k) is correct. First
we show that the bound for sin,h,k is correct. Recall that in the recursion we take parameters
di = c log(1/εi) + c log log(1/δ) ≤ ci log(n/γ) + 2c log(knw/γ), based on the fact that(2h−1

i

)
≤ ni. Now consider the restriction on sin(Gk) in our recursion. For i + j ≤ k and

j ≤ i ≤ dk/2e, we need

di + dj ≤ ck log(n/γ) + 4c log(knw/γ) ≤ sin,h,k

which is true. For i+ j ≤ k and i > dk/2e, we need

sin,h−1,i + dj ≤ ci log(1/γ) + (h− 1) · 4c log(inw/γ) + (cj log(1/γ) + 2c log(knw/γ))
≤ ck log(1/γ) + h · 4c log(knw/γ)
≤ sin,h,k

which is also true. Moreover, observe that when k ≤ 1 it is always the case that i, j ≤ dk/2e.
Therefore the third condition is also true. Finally we show that the bound for sout,h,k is also
correct. First observe that the restriction sout,h−1,i ≤ sout,h,k is trivially true. Then the only
condition left is that for every i ≤ dk/2e,

sout,h−1,i + sin,h−1,i + c log(1/δ) + c log(1/εi) ≤ sout,h,k.

Since sout,h−1,i ≤ sout,h−1,dk/2e and sin,h−1,i ≤ sin,h−1,dk/2e for every i, it suffices to show
that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e) ≤ sout,h,k.

First we consider k ≤ 1, which is the case that dk/2e = k. Then

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)
≤ sout(Ga,h−1,k) + 3ck log(n/γ) + 7c log(n/γ)
≤ h · (3ck log(n/γ) + 7c log(n/γ))
≤ sout,h,k.

Finally we consider the case k > 1. Observe that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)

≤ sout,h−1,dk/2e + sin,h−1,dk/2e + 3k + 1
2 · c log(n/γ) + 3c log(w/γ)

≤ sout,h−1,dk/2e + (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4c · k + 1
2 · log(n/γ) +

(
dlogdk2 ee+ 1

)
· (h− 1) · (10c log(nw/γ))

+ (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4ck log(n/γ) +
(
dlogdk2 ee+ 1

)
· (h− 1) · (10c log(nw/γ)) + h · 10c log(nw/γ)

≤ sout,h,k.

In the last inequality we use the fact that dlog ke = dlog(dk/2e)e+ 1 for every k > 1.
Finally, note that (11lognγ) = nlog2 11 · n−4 ≤ n−0.5. By taking h = logn and k =

log(1/ε)
log(1/n0.5) , we get a (n,w, ε)-robust PRPD. J

I Remark 37. To get the seed length we claimed in Theorem 4, observe that the log(1/ε) term
is dominating when log(1/ε) ≥ log3(nw). Therefore we can simply replace the log log(1/ε)
factor on the O(logn log(nw)) term with log log(nw).



E. Chattopadhyay and J.-J. Liao 25:19

7 Discussion and Open Questions

We discuss some natural questions that arise from our work.
In our construction, we applied the sampler argument in [4] without constructing small-
norm matrices explicitly. This is probably hinting that negative weight is not essentially
required for the sampler argument. Is it possible to apply the sampler argument to
construct a PRG (instead of PRPD) with improved dependency on error?
Is there an explicit PRPD which matches the seed length of the hitting set generator
in [13], i.e. O(log(w/ε)) when n = poly log(w)? A possible direction is to adapt our
construction to a t-ary recursion tree where t = log1−Ω(1)(n) instead of a binary tree, as
in [25, 1]. However, a direct adaption requires us to apply samplers on (t− 1)-children in
each recursion, and for every sampler we need to pay some randomness for “inner seed”
which cannot be recycled. In our construction we see that the inner seed of a sampler
contains a logw term. Therefore in each recursion we need to pay at least (t− 1) logw
which is too expensive. Is it possible to make the sampler argument work with a shorter
inner seed?
Is it possible to improve the seed length to Õ(log2 n+ log(w/ε)), even in some restricted
settings? We note that there are two things which cause the Ω(logn · logw) term in our
construction. The first one is the inner seed of sampler, which is related to the question
above. The second one is the restriction on the outer seed length, which is analogous to
“entropy loss” if we view the samplers as extractors. Note that [26] shows how to “recycle
entropy” in the INW generator in some restricted settings, but it is not clear how to
apply the extractor-type analysis of INW generator in our construction.
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A Using PRPDs in the Saks-Zhou Scheme

In this section, we will briefly introduce Saks and Zhou’s proof for BPL ⊆ L3/2 [29] and
Armoni’s trick for replacing Nisan’s PRG with any PRG in this proof [1]. Then we will see
why a poly(nw/ε)-bounded PRPD suffices for this scheme. Since our purpose here is to go
over the possible difference between using PRGs and PRPDs in this scheme, we will only
include a sketch of Saks and Zhou’s proof. We recommend interested readers to check [29, 1]
for formal proofs and also [14] for a beautiful summary.

A.1 Saks and Zhou’s Scheme
It is well-known that derandomizing BPL can be reduced to approximating Mn where M is
any n×n stochastic matrix. The first step of Saks and Zhou is to turn Mn into the following
recursive computation:

I Fact 1. Let n1, n2 be integers such that nn2
1 = n. Define M0 = M , and Mi = Mn1

i−1 for
every positive integer i. Then Mn2 = Mn.
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To approximate Mn2 , it suffices to compute Mi = Mn1
i−1 with small enough error in each step.

However, if we need s bits of space to approximate the n1-th power of a stochastic matrix, we
will need O(sn2) bits of space in total. This doesn’t really save any space (over approximating
Mn directly) if we approximate Mn1

i−1 with PRGs such as Nisan’s generators. The first idea
of Saks and Zhou is to utilize the “high probability” property of Nisan’s generator:

I Lemma 38 ([23]). For every n,w, ε there exists an algorithm P̂own which takes a w × w
(sub)stochastic matrix M and a string y ∈ {0, 1}O(logn log(nw/ε)) as input, and outputs a
w × w matrix such that

Pr
y

[∥∥∥P̂own(M,y)−Mn
∥∥∥

max
< ε
]
≥ 1− ε

in space O(log(nw/ε)).

In other word, derandomization with Nisan’s generator has the following structure. First
it fixes an “offline randomness” y ∈ {0, 1}r and considers it as a part of input. Then it
takes s bits of additional “processing space” to compute an approximation of Mn. Then
the output will be a good approximation with high probability over y. (This is called an
“offline randomized algorithm” in [29].) Furthermore s� r. With these properties, the main
idea of Saks and Zhou is to reuse the same offline randomness for each level of recursion.
If computing Mn1 takes r bits of offline randomness and s bits of processing space, then
computing Mn will take r bits of offline randomness and O(sn2) bits of processing space.
The space complexity would be O(r + sn2) which is better than approximating Mn directly
since the offline randomness part was the original bottleneck.

However, there’s a problem in this construction: if we compute M̂1 = P̂own1(M,y), and
try to use P̂own1(M̂1, y) to approximate M2 = Mn1

1 , it might be possible that P̂own1(M̂1, y)
is always a bad approximation because M̂1 depends on y. To resolve this issue, the second
idea of Saks and Zhou is to break the dependency with a randomized rounding operation.
We will borrow the name “snap” from [14] for this operation.

I Definition 39. Given value x ∈ R, string y ∈ {0, 1}d, define

Snapd(x, y) = max(bx · 2d − 2−dyc · 2−d, 0).

For a w × w matrix M , define Snapd(M,y) to be the matrix M ′ such that M ′i,j =
Snapd(Mi,j , y) for every i, j ∈ [w].

In other word, in a snap operation, we randomly perturb the matrix with a offset in [0, 2−2d],
then round the entries down to d bits of precision. It’s not hard to prove the following lemma:

I Lemma 40 ([29]). For any matrix M,M ′ such that ‖M −M ′‖max ≤ ε,

Pr
y

[Snapd(M,y) 6= Snapd(M ′, y)] ≤ w2(2dε+ 2−d).

Proof. The snap operation is equivalent to randomly choose a grid of length 2−d and round
each value to the closest grid point the left. Therefore two values a, b are rounded to different
points only if there is a grid point between them, which happens with probability at most
2d|a− b|+ 2−d. By union bound and the fact that ‖M −M ′‖max ≤ ε the lemma follows. J
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With the lemma above, we can see that by taking M̂1 = Snapd(P̂own1(M,y), z) instead,
M̂1 will be equivalent to Snapd(Mn1 , z) with high probability, which is independent of y.
Therefore we can use y as the offline randomness to compute the n1-th power of M̂1. Moreover,
if the rounding precision is high enough, the snapped matrix is still a good approximation.
Finally we get Saks-Zhou theorem:

I Lemma 41 ([29]). Let n1, n2 be integers such that nn2
1 = n. Suppose there exists an offline

randomized algorithm P̂own1 which takes r bits of randomness and s bits of processing space
such that for every substochastic matrix M ,

Pr
x

[∥∥∥P̂own1(M,y)−Mn1
∥∥∥

max
≤ ε
]
≥ 1− ε.

Now consider uniform random bits y ∈ {0, 1}r and z1, z2, . . . , zn2 ∈ {0, 1}d. Let M̂0 = M ,
and M̂i = Snapd(P̂own1(M̂i−1, y), zi) for every i ∈ [n2]. Then with probability at least
1−O(w2n2(2dε+ 2−d)) over y, z1, . . . , zn2 ,∥∥∥M̂n2 −Mn

∥∥∥ ≤ nw2−d+1.

Moreover, the space complexity of computing M̂n2 is O(r + n2(s+ d)).

Proof sketch. Define M0 = M , Mi = Snap((Mi−1)n1 , zi). By union bound, the following
events happen simultaneously with probability 1−O(w2n2(2dε+ 2−d)):
1. For every i ∈ [n2],

∥∥∥P̂own1(Mi−1, y)− (Mi−1)n1

∥∥∥
max
≤ ε.

2. For every i ∈ [n2], conditioned on M̂i−1 = Mi−1 and
∥∥∥P̂own1(Mi−1, y)−Mi−1

n1
∥∥∥

max
≤ ε,

M̂i = Mi.
When the above events occur, we have M̂n2 = Mn2 . Moreover, note that for every i ∈ [n2]∥∥Mi − (Mi−1)n1

∥∥
max ≤ 2−d+1.

To see why this is true, observe that in a snap operation we change the given value by at
most 2−2d from perturbation and 2−d from rounding. 2 This implies∥∥Mi − (Mi−1)n1

∥∥ ≤ 2−d+1,

where ‖·‖ denotes the matrix infinity norm. By Lemma 5.4 in [29],∥∥Mn2 −Mn
∥∥ ≤ nw2−d+1.

For the space complexity, observe that we can compute M̂n2 with n2 levels of recursive calls,
and each recursive call takes O(s + d) bits. Moreover, we need r bits to store the offline
randomness. Therefore the space complexity is O(n2(s+ d) + r) J

If we take n2 =
√

logn, n1 = 2
√

logn, d = O(log(n)) and ε = 2−2d and plugging in Nisan’s
generator, the above lemma shows that BPL ⊆ L3/2.

2 Note that capping the lowest possible value to be 0 can only reduce the error, because the snapped
value was non-negative.
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A.2 Armoni’s Trick
We saw that in Saks and Zhou’s proof, we need a “offline randomized algorithm” for
substochastic matrix exponentiation such that when given r bits of randomness as additional
input, the algorithm only requires additional s � r bits of space to compute a good
approximation with high probability. This is in fact the only place where we need PRGs in
Saks and Zhou’s proof. However, not every PRG has such property, so it might be hard to tell
whether an improvement over Nisan’s PRG will actually give a better derandomization for
BPL. Fortunately, Armoni [1] observed that one can turn any PRG into a derandomization
algorithm with the required property by simply composing the PRG with an averaging
sampler.

Before we go through Armoni’s claim, first we generalize Lemma 41 for a larger class of
algorithms P̂ow.

IDefinition 42. We say an offline randomized algorithm requires s bits of sensitive processing
space and t bits of reusable processing space if

During the execution of this algorithm, only t bits of processing space is required.
Before each time a bit is read from the real input (not including the offline randomness),
only s bits of processing space is being used at the time.

In the above definition, think of each input bit as generated from a recursive call. Thus
the “reusable processing space” can be interpreted as “recursion-friendly processing space”,
which can be erased before every recursive call. With this new definition we can generalize
Lemma 41 as follows:

I Lemma 43 ([29], generalized). Let n1, n2 be integers such that nn2
1 = n. Suppose there exists

an offline randomized algorithm P̂own1 which takes r bits of randomness, s bits of sensitive
processing space and t bits of reusable processing space, such that for every substochastic
matrix M ,

Pr
x

[∥∥∥P̂own1(M,y)−Mn1
∥∥∥

max
≤ ε
]
≥ 1− ε.

Now consider uniform random bits y ∈ {0, 1}r and z1, z2, . . . , zn2 ∈ {0, 1}d. Let M̂0 = M ,
and M̂i = Snapd(P̂own1(M̂i−1, y), zi) for every i ∈ [n2]. Then with probability at least
1−O(w2n2(2dε+ 2−d)) over y, z1, . . . , zn2 ,∥∥∥M̂n2 −Mn

∥∥∥ ≤ nw2−d+1.

Moreover, the space complexity of computing M̂n2 is O(r + t+ n2(s+ d)).

We omit the proof because it’s Exactly the same as Lemma 41.
For technicality, we also need to define a ROBP with larger “step size”.

I Definition 44. A (n,w, d)-ROBP is a ROBP of n layers, w nodes in each layer, and 2d
branches from each node.

That is, a (n,w, d)-ROBP is a ROBP which can read d bits at once. Note that derandomizing
(n,w, d)-ROBP corresponds to derandomizing the exponentiation of a stochastic matrix
which has d bits of precision in each entry.

Now we are ready to introduce Armoni’s Lemma.

I Lemma 45 ([1]). Suppose there exists an explicit PRG for (n,w + 1, log(3nw/ε))-ROBP
with error ε/3 which has seed length s. Then there exists an offline randomized algorithm
which approximates the n-th power of any substochastic matrix within error ε with probability
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at least 1 − ε. Moreover, such algorithm requires s + O(log(w/ε)) bits of randomness,
O(s + O(log(w/ε))) bits of reusable processing space and O(log(nw/ε)) bits of sensitive
processing space.

Proof. Given an inputM , first we round each entry down to d = log(3nw/ε) bits of precision.
Then we will get a substochastic matrix M ′ such that each entry of M ′ is a multiple of 2−d,
and ‖M −M ′‖max ≤ ε/3nw. Then we have

‖Mn − (M ′)n‖max ≤ ‖M
n − (M ′)n‖ ≤ n ‖M −M ′‖ ≤ nw ‖M −M ′‖max ≤

ε

3 .

Then we construct a (n,w + 1, d)-ROBP B as follows. For each t ∈ [n], we connect
k edges from node (t − 1, i) to node (t, j) if M ′i,j = k · 2−d. Then for each node (t − 1, i)
which doesn’t have 2d outgoing edges yet, we connect more edges from (t− 1, i) to a dummy
node (t, w + 1). For each dummy node we connect 2d edges to the dummy node in the
next layers. It is easy to observe that (M ′n)i,j is exactly the probability that we start a
random walk from (0, i) and reach (n, j). Now for every i, j ∈ [w], define Bi,j(x) to be the
indicator for whether we will reach (t, j) if we start from (0, i) and follow x ∈ ({0, 1}d)n.
Then Ex [Bi,j(x)] = (M ′n)i.j . Take the given PRG G, we have∣∣∣E

r
[Bi,j(G(r))]− E

x
[Bi,j(x)]

∣∣∣ ≤ ε

3 .

Now define the offline randomized algorithm P̂ow to be

P̂ow(M,y)i,j = E
z

[Bi,j(G(Samp(y, z)))] ,

where Samp is a (ε/3, ε/w2)-sampler. By definition of sampler, with probability at least
(1− (ε/w2)) over the choice of y, we have∣∣∣P̂ow(M,y)i,j − E

r
[Bi,j(G(r))]

∣∣∣ ≤ ε

3 .

By union bound, with probability at least (1− ε),∥∥∥P̂ow(M,y)i,j − E
r

[Bi,j(G(r))]
∥∥∥

max
≤ ε

3

for every i, j ∈ [w]. Therefore by triangle inequality we have∥∥∥P̂ow(M,y)−Mn
∥∥∥

max
≤ ε

with probability at least 1− ε.
Finally we compute the complexity of P̂ow. By Lemma 19, the required randomness in

this offline randomized algorithm is s+O(log(1/ε) + log log(w/ε)). The required processing
space is the processing space for samplers and PRGs. Observe that the only sensitive data is
the second input for sampler (i.e. z); the current node in the ROBP, which takes log(nw)
bits to store; and a d-bit block in G(Samp(y, z)) indicating which entry of M we should
check. Therefore the required sensitive processing space is only O(log(nw/ε)) bits. J

With Armoni’s sampler trick, if we have any PRG for (n,w + 1, log(3nw/ε))-ROBP,
we can always plug it into the Saks-Zhou scheme regardless of whether it has the high-
probability property. Specifically, as suggested in [4], if we have a PRG of seed length
O(log2(n) + log4/3(w/ε)), we can even prove that BPL ⊆ L4/3.

CCC 2020



25:26 Optimal Error Pseudodistributions for Read-Once Branching Programs

A.3 Saks-Zhou-Armoni Scheme with PRPDs
Finally we see how to apply a PRPD in the above scheme.

I Lemma 46. Suppose there exists an explicit poly(nw/ε)-bounded PRPD (G, ρ) for (n,w+
1, log(3nw/ε))-ROBP with error ε/3 which has seed length s. Then there exists an offline
randomized algorithm which approximates the n-th power of any substochastic matrix within
error ε with probability at least 1− ε. Moreover, such algorithm requires s+O(log(w/ε)) bits
of randomness, O(s+O(log(w/ε))) bits of reusable processing space and O(log(nw/ε)) bits
of sensitive processing space.

Proof. The proof is basically the same as Lemma 45, with the following two difference.
P̂ow(M,y)i,j is defined as Ez [ρ(Samp(y, z)) ·Bi,j(G(Samp(y, z)))] instead.
If (G, ρ) is k-bounded, then we will choose Samp as a (ε/6k, ε/w2) sampler instead.

It’s not hard to verify the correctness. (With Claim 18 which shows that samplers can also
be used for functions with output range [−k, k].) The required sensitive processing space is
increased to O(log(nw/ε) + log(k)), which is still O(log(nw/ε)) if k = poly(nw/ε). J

One may notice that there might have negative output in our new definition of P̂ow. However,
this is not a problem when applying Saks-Zhou argument because we only rely on the non-
negativeness of matrices Mi, which is independent of the approximation algorithm we use.
With the above lemma we have the following corollary, which better motivates the problem
of getting improved seed length for PRPDs:

I Corollary 47. If there exists a poly(nw/ε)-bounded explicit PRPD for (n,w, d)-ROBP
with error ε which has seed length O(log2(n) + (log(w/ε) + d)4/3), then BPL ⊆ L4/3.

Proof. Apply the Saks-Zhou scheme (Lemma 43), and take n1 = 2log2/3(n), n2 = log1/3(n),
d = 10 log(n) and ε = 2−2d. The required subprocedure P̂ow would be approximating the
n1-th power of n× n substochastic matrices within error ε. By Lemma 46, there exists an
offline randomized algorithm which approximates Mn1 within error ε = 2−2d = poly(1/n),
which requires sensitive processing space O(log(n)) and offline randomness + reusable
processing space O(log2(n1) + log4/3 n) = O(log4/3(n)). Therefore the total space complexity
is O(log(n) · n2 + log4/3(n)) = O(log4/3(n)). J

I Remark 48. Note that while we only construct PRPDs for (n,w)-ROBP in this paper, it
is possible to adapt our construction to get PRPDs for (n,w, d)-ROBP with seed length
O(logn log(nw) log log(nw) + log(1/ε) +d): simply replace the base case with a sampler with
d-bit output. Since it doesn’t imply better derandomization for BPL anyway, we keep d = 1
for simplicity.

B Proof of Lemma 19

I Lemma 49 (Lemma 19, restated. [27, 10]). For every δ, ε > 0 and integer m, there exists
a (ε, δ)-sampler f : {0, 1}n × {0, 1}d → {0, 1}m s.t. d = O(log log(1/δ) + log(1/ε)) and
n = m + O(log(1/δ)) + O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed in
space O(m+ log(1/δ) + log(1/ε)).

We will use the equivalence between seeded randomness extractor and oblivious sampler
by Zuckerman [33]. To achieve the parameter we need, we need a “high-entropy seeded
extractor” such that the seed length only depends on entropy loss but not the length of
source. We will use the standard “block-source” construction for high-entropy extractor
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which can be found in [11, 27]. For simplicity, we will use simple composition instead of
zig-zag composition [27] because we are not aiming for optimal entropy loss. We will use the
following standard lemmas for the extractor construction. Some of the following lemmas are
implicit in their original source, and we recommend the readers to see [12, 32] for a proof.

I Definition 50 ([8]). (X1, X2) is a (k1, k2)-block source if X1 is a k1-source, and for every
x1 ∈ Supp(X), X2 conditioned on X1 = x1 is a k2-source.

I Lemma 51 ([11]). Let X ∈ {0, 1}n be a (n−∆) source. Then for every integer 0 ≤ t ≤ n,
X is ε-close to a (t−∆, n− t−∆− log(1/ε))-block source (X1, X2) where X1 ∈ {0, 1}t and
X2 ∈ {0, 1}n−t.

I Lemma 52 ([25]). Let E1 : {0, 1}n1 × {0, 1}d → {0, 1}d2 be a (k1, ε1) extractor and E2 :
{0, 1}n2×{0, 1}d2 → {0, 1}m be a (k2, ε2) extractor. Define E((x1, x2), s) = E1(x2, E2(x1, s)).
Then for every (k1, k2)-block source (X1, X2) ∈ {0, 1}n1 × {0, 1}n2 , E((X1, X2), Ud) is
(ε1 + ε2)-close to uniform.

I Lemma 53 ([11]). For every ε,∆ > 0 and integer n there exists a (n −∆, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}n with d = O(∆ + log(1/ε)), and for every x, y, E(x, y) can be
computed in space O(n+ log(1/ε)).

I Lemma 54 ([12, 19]). For every ε > 0, integer m > 0 and n ≥ 2m, there exists a (2m, ε)
extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logm+ log(1/ε)), and for every x, y,
E(x, y) can be computed in space O(m+ log(1/ε)).

I Lemma 55 ([33]). Every (n− log(1/δ)− 1, ε)-extractor is a (ε, δ)-sampler.

Now we show how to construct the sampler we need, and that it is indeed space efficient.

Proof. Let ∆ = log(1/δ) + 1. Let E1 : {0, 1}m × {0, 1}d1 → {0, 1}m be an (m −∆, ε/3)-
extractor from Lemma 53, w.l.o.g. assume that d1 ≥ ∆ + log(3/ε). Then let E2 : {0, 1}3d1 ×
{0, 1}d → {0, 1}d1 be an (2d1, ε/3)-extractor from Lemma 54. Then we claim that E :
{0, 1}m+3d1 × {0, 1}d → {0, 1}m, defined as E((x1, x2), s) = E1(x1, E2(x2, s)), is a (m +
3d1 −∆, ε) extractor, and hence a (ε, δ) sampler by Lemma 55.

To prove the claim, consider any (m + 3d1 − ∆)-source X. By Lemma 51, X is
(ε/3)-close to a (m − ∆, 3d1 − ∆ − log(3/ε))-block source (X1, X2) ∈ {0, 1}3d1 × {0, 1}m.
By Lemma 52, E1(X1, E2(X2, Ud)) is 2ε/3-close to uniform. Since E(X,Ud) is ε/3-
close to E1(X1, E2(X2, Ud)), by triangle inequality it is ε-close to uniform. Moreover,
d = O(log(d1/ε)) = O(log log(1/δ) + log(1/ε)), n = m+ 3d1 = m+O(log(1/δ) + log(1/ε)),
and the required space to compute E is O(m+d1+log(1/ε)) = O(m+log(1/ε)+log(1/δ)). J
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The fundamental Minimum Circuit Size Problem is a well-known example of a problem that is
neither known to be in P nor known to be NP-hard. Kabanets and Cai [18] showed that if MCSP
is NP-hard under “natural” m-reductions, superpolynomial circuit lower bounds for exponential
time would follow. This has triggered a long line of work on understanding the power of reductions
to MCSP.

Nothing was known so far about consequences of NP-hardness of MCSP under general Turing
reductions. In this work, we consider two structured kinds of Turing reductions: parametric honest
reductions and natural reductions. The latter generalize the natural reductions of Kabanets and
Cai to the case of Turing-reductions. We show that NP-hardness of MCSP under these kinds of
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1 Introduction

The Minimum Circuit Size Problem (MCSP) is a fundamental problem in computational
complexity that has been studied in various forms since the 1950s [24, 1]. Given the truth
table of a Boolean function f and a parameter s, the question is whether f has Boolean
circuits of size at most s. It is easy to see that MCSP is in NP: we can simply guess a circuit
C of size at most s, and verify that for each input of f that C computes f correctly. Since
we are given the truth table of f explicitly, this verification can be done in polynomial time.

MCSP is a rare example of a natural problem in NP for which we neither know that the
problem is in P nor that it is NP-complete. There is some evidence that the problem is
not in P. The celebrated results on “natural proofs” by Razborov and Rudich [23] can be
interpreted as saying that MCSP is not in P if one-way functions exist [18, 2].

Regarding the question of NP-completeness, however, the evidence is more mixed. It is
reported that Levin delayed publishing his seminal results on NP-completeness because he
was hoping to show that MCSP is NP-complete [8]. More than 50 years later, we still have
no idea.
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It has been known for a while that the analogue of MCSP for DNFs, where we ask whether
the function corresponding to a given truth table has small DNFs, is NP-complete [20, 10, 5].
Intuitively it would appear that checking if a given function has small circuits is at least as
hard a problem as checking if a given function has small DNFs. But it does not seem easy to
make this intuition precise in terms of giving a reduction from the latter to the former1.

Looking at the proof that the analogue of MCSP for DNFs is NP-hard, one notices that
an essential component of the reduction is an explicit function, namely Parity, that is hard
for DNFs. This leads one to wonder whether the difficulty of coming up with an NP-hardness
reduction for MCSP is related to the difficulty of proving Boolean circuit lower bounds for
explicit functions.

Kabanets and Cai show that the answer is yes, in an influential paper [18] which led to a
resurgence of interest in MCSP among complexity theorists. They define a notion of “natural
reduction” to MCSP. A natural reduction is a many-one reduction in which the parameter
as well as the size of the output depend only on the size of the input. Kabanets and Cai
observe that standard reductions showing NP-hardness of various well-studied problems are
natural in this sense. They then show that any natural reduction of SAT to MCSP implies
that exponential time requires super-polynomial size Boolean circuits. Note that this does
not give evidence against NP-hardness. However, given the well-known difficulty of proving
circuit lower bounds for exponential time, it does indicate that arguing for NP-hardness of
MCSP via natural reductions is likely to be difficult.

The work of Kabanets and Cai has led to a long line of results on reductions to MCSP
and their implications [2, 3, 4, 7, 21, 17, 16, 6, 22, 15, 14]. Much of this work has focused on
reductions implementable within low-depth complexity classes [7, 21, 6, 22] or on many-one
and truth-table reductions [7, 21, 17, 16].

In this work, our focus is on polynomial-time Turing reductions to MCSP, for which very
little is known. On the one hand, we are motivated by the question of NP-hardness of MCSP,
and whether more powerful reductions help in this regard. Allender and Das [3] showed
that every problem in Statistical Zero Knowledge reduces to MCSP via probabilistic Turing
reductions, so at least for some problems that are believed to be hard, Turing reductions
have been found to be useful in reducing to MCSP.

On the other hand, from the perspective of complexity theorists who care about circuit
lower bounds, we find the connections between reductions to MCSP and circuit lower bounds
intriguing, and would like to understand the extent to which these connections hold.

1.1 Our Results
We consider two kinds of structured Turing reductions - parametric honest reductions, which
were defined in the context of many-one reductions by Hitchcock and Pavan [17], and natural
reductions, which generalize the notion defined by Kabanets and Cai [18]. Parametric honest
reductions are Turing reductions where there is a polynomial lower bound on the parameter
of each query, as a function of input size. Natural reductions are Turing reductions where
the parameter of any query made on an input only depends on the size of the input.

Our first main result shows that NP-completeness of MCSP under parametric honest
Turing reductions implies super-polynomial circuit lower bounds for E.

I Theorem 1. If MCSP is NP-hard under parametric honest Turing reductions, then E 6⊆
SIZE(poly).

1 Similar issues come up when trying to prove hardness of properly learning Boolean circuits.
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We remark that every language in P reduces to MCSP under parametric honest Turing
reductions, so we crucially need to exploit the assumption that we reduce from hard languages
in NP in order to derive the conclusion of Theorem 1.

Our second main result shows that NP-completeness of MCSP under natural Turing
reductions implies super-polynomial circuit lower bounds for E.

I Theorem 2. If MCSP is NP-hard under natural Turing reductions, then E 6⊆ SIZE(poly).

The proof of Theorem 2 builds upon the ideas of Theorem 1, but is significantly more
involved technically, and requires several new ideas.

We next describe the main ideas behind our proofs.

1.2 Main Ideas
Our starting point is the idea of Kabanets and Cai [18] for deriving circuit lower bounds
from structured many-one reductions. Suppose we could efficiently generate NO instances of
any length for some language L that reduces to MCSP via an m-reduction. We could hope
to efficiently generate truth tables of hard functions as follows: we generate a NO instance
xn of L of length n, and then apply the m-reduction f from L to MCSP to generate a truth
table yn and a parameter sn. Since xn is a NO instance of L and f is an m-reduction, we
are guaranteed that y does not have circuits of size s.

If s is large, say at least nε for some constant ε, then we are done, since we have efficiently
generated a truth table y of a Boolean function that does not have sub-exponential size
Boolean circuits as a function of its input length. But a priori we do not have control over the
parameter s associated with y. Imagine for example a reduction that magically knows that
each xn is a NO instance and therefore produces sn so small that it gives us no non-trivial
information about circuit lower bounds.

Kabanets and Cai get around this problem by considering natural reductions, where
the parameter sn depends only on the input length n. Now there are two cases: either
all but finitely many input lengths yield small parameter sn ≤ log(n)log log(n), or infinitely
many input lengths yield parameter sn > log(n)log log(n). In the first case, Kabanets and Cai
use a standard indirect diagonalization argument to argue that circuit lower bounds follow.
In the second case, we directly get hard truth tables for infinitely many n by composing
the reduction with the efficient generation of NO instances. Thus, in either case, we get
E 6⊆ SIZE(poly).

Note that in the case where infinitely many input lengths yield hard parameters, the
Kabanets-Cai argument does not actually exploit the hardness of the language L from which
we are reducing. The argument works equally well starting from a language in polynomial
time. When we deal with Turing reductions rather than m-reductions, this feature of their
argument is an issue, since any language L in P can be decided trivially by Turing reductions
that ignore the answers to any queries they ask and simulate the polynomial-time algorithm
for L directly to arrive at an answer.

Let us consider first the case of parametric honest reductions. Parametric honesty means
that we don’t need to worry about the parameter being small. Suppose that SAT reduces to
MCSP via a parametric honest Turing reduction implemented by an oracle machine M . Our
first idea is simple: we define a simulation A of SAT which simply runs M and answers all
queries of M by “yes”. This algorithm A clearly runs in polynomial time. If it is correct on
all but finitely many instances, we have that NP = P and we can then derive circuit lower
bounds using a standard indirect diagonalization technique.
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If A is wrong on infinitely many instances, however, it is not obvious how to use this.
Here we exploit the main idea of Gutfreund, Shaltiel and Ta-Shma [12], who show how any
efficient algorithm A that fails to solve SAT can be used to efficiently produce, for infinitely
many n, a small set of instances S of sizes polynomially related to n, such that A fails on
some instance in S. This is very useful for us, as an instance on which A fails must ask a
query to M that is answered incorrectly. But since we always answer queries by “yes” in A, a
query is only answered incorrectly if the true answer is “no”, i.e., if the string y that is queried
is the truth table of a hard Boolean function. We don’t know which of the queries this is, but
we do know that there is a first wrongly answered query, and that by the parametric honesty
condition, this query has large parameter. Hence, by simply concatenating the queries asked
by A on the instances in S, we obtain hard truth tables of size poly(n) for infinitely many n,
and this enables us to conclude that E requires super-polynomial size circuits.

This is the argument for the proof of Theorem 1. The assumption of parametric honesty
is an important part of this argument. For the proof of Theorem 2, where we consider natural
reductions, we need to work much harder and use several new ideas.

We would like to adopt the following strategy. Suppose there is a natural Turing-reduction
from SAT to MCSP. Choose a “threshold” parameter s and try to solve SAT by running
the reduction and answering all queries with parameter less than the threshold correctly by
doing brute force search, and all queries with parameter greater than the threshold by “yes”.

Either this simulation succeeds, or it fails. If it succeeds, and the threshold parameter s
is small, NP is easy, and using the standard indirect diagonalization argument, we get that E
requires large circuits. If it fails, we would like to argue that we can efficiently find instances
on which the simulation fails. Such an instance must ask queries with parameters larger than
the threshold that are wrongly answered “yes”, so the concatenation of such queries must be
a hard truth table.

To efficiently find instances on which the simulation fails, we can again to try to use the
strategy of [12]. Unfortunately, there is a catch. The time taken by the algorithm of [12] to
find hard instances is at least the time taken for the simulation, which is exponential in s.
It might be that the parameter for queries on these instances is just slightly larger than s.
Thus we will take time exponential in s to find truth tables requiring circuits only slightly
larger than s, which won’t give us sufficiently strong circuit lower bounds for E.

To remedy this issue, we consider two different simulations, M and M ′. M is guaranteed
to be correct and proceeds by just evaluating queries using brute force search. If M is
relatively efficient, we are in good shape, as we can use indirect diagonalization to get the
consequence we want. If M is not always efficient, we get an infinite sequence of input
lengths on which large parameter queries are made. Here “large” means at least s, where
s is super-polylogarithmic in n, but still small enough so that the indirect diagonalization
helps us get circuit lower bounds in case M succeeds.

In fact, by using the paddability of SAT in our argument, we get not just an infinite
sequence of input lengths yielding large parameters, but a sequence of long intervals, within
which all input lengths yield large parameters. This will be important later, as the [12]
algorithm does not produce hard instances at a given input length, but rather at one of two
input lengths which are polynomially related.

The simulation M ′ will use a smaller parameter threshold s′, chosen so that s′ is
superpolylogarithmic in n, but also so that s is superpolynomial in s′. The simulation M ′
implements our initial idea: we answer queries with parameter at most s′ by brute force
search, and other queries by “yes”.
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Now either this simulation is correct on all but finitely many input lengths, or it fails on
infinitely many. If it is correct on all but finitely many input lengths, we can use indirect
diagonalization as before, but it is not clear how to use the failure on infinitely many, without
more structural information on where the failures occur.

So we argue instead as follows, using a notion of “robust simulation” introduced in [11].
If the simulation is correct, robustly often, than we can carry the indirect diagonalization
through. Otherwise, the simulation fails on at least one input length in every large enough
sequence of input lengths. Using the large stretches of input lengths with large parameters
from our first simulation, we get that there are infinitely many long sequences of input
lengths where the simulation M ′ fails and the corresponding parameters of queries are large.

Now we use the strategy of [12]. We use simulation M ′ itself to find a small set of inputs
on which M ′ fails, and on which the parameter of correctly produced queries is at least s.
M ′ will take time only exponential in s′, and since s is super-polynomial in s′, the time
taken to find this small set of inputs will be sub-exponential in s. By concatenating the
queries made on this small set of inputs, we get a hard truth table, and hence can arrive at
our desired conclusion.

There are numerous technical details which we have ignored in the above discussion, but
hopefully this description helps in understanding the proof of Theorem 2.

1.3 Related Work
As mentioned earlier in the Introduction, there have been several works in recent years
studying reductions to MCSP and their consequences. We briefly survey this work in the
context of our results. We focus on work that either shows interesting consequences of
hardness for MCSP under certain types of reductions, or unconditionally rules out hardness,
as this is closest in spirit to our work here.

Kabanets and Cai [18] defined natural m-reductions, and showed that NP-hardness of
MCSP under natural m-reductions implies super-polynomial circuit lower bounds for E.
Murray and Williams [21] showed unconditionally that MCSP is unconditionally not NP-
hard under very efficient local reductions where each output bit only depends on a limited
number of input bits. In fact, their technique even rules out P-hardness of MCSP under
local reductions. They also show that NP-hardness of MCSP under m-reductions (without
the “natural” constraint of [18]) implies EXP 6= ZPP. Hitchcock and Pavan showed that
NP-hardness of MCSP under general truth-table reductions implies EXP 6= ZPP. Allender,
Holden and Kabanets [7] consider the question of hardness for various oracle versions of
MCSP and show some unlikely consequences of hardness under efficient reductions when the
oracle is powerful.

The work that is closest to ours is that of Hirahara and Watanabe [16], who also consider
Turing-reductions to MCSP. They consider a kind of reduction they call “oracle-independent”,
and show that no language outside of P reduces to MCSP using an oracle-independent
reduction. However, there are examples of useful reductions known that are not oracle-
independent [6] 2. It is also shown in [16] that Turing-hardness of approximating the minimum
circuit size implies EXP 6= ZPP. We note that the hardness of approximation factors required
for this result are large - the assumption is that it is hard to approximate the logarithm of
the circuit size to within any constant factor. Moreover, [16] do not derive a circuit lower
bound from this assumption, but the weaker statement that EXP 6= ZPP.

2 On the other hand, we are not aware of any hardness results for MCSP using reductions that are not
natural.
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2 Preliminaries

2.1 Basic Notions

We refer to the book by Arora and Barak [9] for definitions of standard complexity classes.
Given a circuit class C, we use C[s(n)] to refer to the class of functions computed by

C-circuits of size s(n).
Given a language L ⊆ {0, 1}∗, co-L denotes the complement of L. Given language L and

n ∈ N, Ln is used to refer to L ∩ {0, 1}n.
Given a set S ⊆ N and languages L and L′, we say L agrees with L′ on S if for all n ∈ S,

Ln = L′n.
A time-constructible function T : N→ N is a function such that there is a Turing machine

transducer M , which for each n, on input 1n halts with output T (n) within O(T (n)) steps.
We need a generalization of the notion of robustly-often simulation from [11]. Given

g : N→ N, a set S ⊆ N is called g-robust if for each constant k, there is m ∈ N such that for
all n such that m ≤ n ≤ g(m)k, n ∈ S. Note that any g-robust set is also poly(g)-robust.

Given a function g, a language L and a complexity class C, we say L is g-robustly often
in C if there is L′ ∈ C for which there is a g-robust set S such that L agrees with L′ on S.
Given function g and complexity classes C and C′, we say that C is g-robustly often in C′ if
for all languages L ∈ C, L is g-robustly often in C′. We use the term “robustly often” as a
synonym for g-robustly often with g the identity function.

The proposition below is a parameterized version of Theorem 12 in [11].

I Proposition 3. Let T be a time-constructible function such that T (n) ≥ n for all n. If
SAT is T (poly(n))-robustly often in DTIME(T ), then Σ2P is robustly often in
DTIME(T (poly(T (poly(n)))).

The following is a simple application of standard diagonalization [13].

I Proposition 4. Let T be a time-construtible function such that T = o(2n). Then E is not
robustly often in DTIME(T ).

2.2 Resource-Bounded Kolmogorov Complexity

We study various notions of resource-bounded Kolmogorov complexity, and associated decision
problems.

Fix a universal Turing machine U . The Kt complexity of a string is defined as follows:
Kt(x) = min{|p|+ log(t)|U(p) halts and outputs x within t steps}.

In the MKtP problem, the instance is a string x together with a parameter s, and the
question is whether Kt(x) ≤ s.

It is known that MKtP is complete for E under polynomial-size truth-table reductions [2],
but completeness under uniform polynomial-time reductions is unknown.

In the MCSP problem, the instance is a string x together with a parameter s, and the
question is whether x is the truth table of a Boolean function with circuit complexity at
most s.

MCSP is easily seen to be in NP, but it is unknown whether MCSP is NP-hard. A
brute-force search strategy of trying all circuits C of size at most s and checking if any of
them computes the function with truth table x can easily be implemented to run in time
poly(|x|)sO(s).
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2.3 Reductions
We will work with constrained notions of polynomial-time Turing reduction.

I Definition 5. A polynomial-time Turing reduction from a language L to MCSP or MKtP
is called parametric honest if there is a constant ε > 0 such that for every x ∈ {0, 1}∗, every
query made by the reduction on x has parameter bounded below by |x|ε.

Note that parametric honesty is not implied by the standard notion of honesty for
polynomial-time reductions, which only requires the output length to be bounded below by
some polynomial in the input length. Implicit in the definition is that the lower bound on
parameters of queries is only required to hold when previous queries are answered correctly;
when queries are answered wrongly, “all bets are off”.

I Definition 6. A polynomial-time Turing reduction from a language L to MCSP or MKtP is
called natural if for any input x ∈ {0, 1}∗, the parameter of any query made by the reduction
on x depends only on |x|.

This notion of naturalness generalizes the notion used by Kabanets and Cai for m-
reductions to Turing reductions. In fact, it is slightly weaker than their notion when
restricted to m-reductions, since it does not constrain the length of the output, merely the
parameter. As with the definition of parametric honesty, the condition on parameters is only
required to hold when previous queries are answered correctly.

Naturalness is incomparable to parametric honesty - parametric honesty allows the
parameter to vary but restricts its range of variation, while naturalness allows the parameter
to have a large range of variation but insists that it is the same for all queries made on any
input of a given length.

3 Parametric Honest Reductions

Our first result unconditionally rules out hardness of MKtP for E under parametric honest
Turing reductions. For many results on hardness of MCSP and consequences thereof, MKtP
is a “test case” where analogous results can be shown unconditionally and where the ideas
are often simpler [8, 16].

I Theorem 7. MKtP is not hard for E under parametric honest Turing reductions.

Proof. Let L be a tally set that is in E but not in P. The existence of such a tally set L
follows by a standard diagonalization argument.

Now suppose, for the purpose of contradiction, that MKtP is hard for E under parametric
honest Turing reductions. This implies that there is an oracle Turing machine M running in
time at most cnk, where c and k ≥ 1 are constants, such that M decides L correctly with
oracle access to MKtP, and moreover there is a constant ε > 0 such that each query made
by M on an input of length n has parameter at least nε. We show how to use M to decide
L ∈ P, contrary to the assumption on L.

Consider the following polynomial-time machine A that attempts to decide L. Given
input 0n, A runs the oracle machine M , answering each query made by M with “yes”. When
the simulation of M is complete, A accepts iff M accepts. Since M is polynomial-time, so is
A. We show that A correctly decides L for large enough n.

Given input 0n,M makes some sequence of oracle queries q1, q2 . . . qt during the simulation
by A, where 0 ≤ t ≤ cnk. We show that for each i, qi has Kt complexity O(log(n)). Observe
that qi can be generated by the universal machine U implicit in the definition of Kt complexity
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in time poly(n) given descriptions of i, n and the oracle machine M : it simply needs to
run M on 0n answering the first i− 1 queries made by M with “yes”, and then output the
i’th query. The description length required is O(log(n)) since i ≤ cnk, and moreover the
time taken by U is polynomial in n, hence using the definition of Kt complexity, we have an
O(log(n)) upper bound on the Kt complexity of qi. Let C be a constant such that the Kt
complexity of each qi is bounded above by C log(n).

By the assumption that the reduction is parametric honest, the parameter of qi is at
least nε, which for large enough n is greater than C log(n). Hence for large enough n and
for each i, it follows that A’s assumed answer for the oracle query qi is correct for each i,
and hence that A outputs the same answer as M would given the true oracle MKtP. Since
M is an oracle Turing machine correctly implementing a reduction from L to MKtP, A is a
polynomial-time Turing machine correctly deciding L for large enough n, contradicting the
assumption on L. J

We now re-state and prove Theorem 1.

I Theorem 8. If MCSP is NP-hard under parametric honest Turing reductions, then E 6⊆
SIZE(poly).

Proof. Suppose that MCSP is NP-hard under parametric honest Turing reductions. Let M
be a polynomial-time oracle Turing reduction implementing a parametric honest reduction
from SAT to MCSP, and let ε be a constant such that the parameter of any query made by
M on any SAT instance of length x is bounded below by |x|ε.

Consider the following polynomial-time machine A which attempts to decide SAT. On an
input x of SAT, A runs the oracle Turing machine M . Assume wlog that all queries asked by
M have length a power of two - any queries for which this is not the case may be eliminated
by assuming the answer is ’no’. For every query asked by M with length a power of two,
A assumes the answer is “yes”, and continues the simulation of M . When the simulation
concludes, A accepts iff M accepts.

Clearly A runs in polynomial time. If A decides SAT correctly, then we have that NP = P.
Hence the Polynomial Hierarchy collapses to P. But this implies that E 6⊆ SIZE(poly); if the
contrary were true, then E would collapse to the Polynomial Hierarchy using the Karp-Lipton
theorem for E, and hence to P, contradicting the hierarchy theorem for deterministic time.

Suppose now that NP 6= P. In particular, this means that there are infinitely many
instances on which A does not decide SAT correctly. If not, we could hardcode the finitely
many instances on which A fails to compute SAT into a new polynomial-time machine A′
which runs in polynomial time and solves SAT correctly on all instances, contradicting the
assumption that NP 6= P.

Now, we can use the main result of Gutfreund, Shaltiel and Ta-Shma. They show that
if NP 6= P, then for any polynomial-time algorithm A that fails to compute SAT, there is
a polynomial-time Turing machine B and a constant d, such on input 1n, B outputs three
instances x1, x2, x3 each of length n or length nd such that for infinitely many n, A fails to
decide SAT correctly on at least one of these three instances.

We show how to use B to argue again that E 6⊆ SIZE(poly). Consider the three instances
x1, x2, x3 output by B on input 1n. For each i, 1 ≤ i ≤ 3, let Qi be the concatenation of all
queries made by M when M is simulated by A on input xi. Let Y be the concatenation of
Q1, Q2, Q3. Note that |Y | = poly(n), since M is a polynomial-time oracle Turing machine.
Also note that each query made by M on an input of length n has parameter at least nε,
by the parametric honesty of the reduction, as long as all previous queries were answered
correctly. Each such query was assumed by A to have a “yes” answer. It could not be the
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case that all such answers were correct for all queries made by M on inputs x1, x2, x3 - if
they were, then A would correctly solve SAT on x1, x2, x3, using the fact that M implements
a correct polynomial-time Turing reduction from SAT.

Thus we get that there is a first query made by M on one of x1, x2, x3 that has parameter
at least nε and is wrongly answered “yes”. Fix such a query y. Since M implements a Turing
reduction from SAT to MCSP, y is the truth table of a Boolean function on O(log(n)) bits
that requires circuits of size nε. We have that y is a substring of Y , hence Y must also
require circuits of size Ω(nε). We are using here the simple fact that if y is a substring (with
length a power of two) of the truth table Y of a Boolean function with circuits of size s, then
y is the truth table of a Boolean function with circuits of size O(s).

Hence, for infinitely many n, on input 1n, we can compute the truth table Y of a Boolean
function on O(log(n)) bits such that the function requires circuits of size nε, i.e., of exponental
size in the length of the input to the Boolean function. This implies E 6⊆ SIZE(poly). J

4 Natural Reductions

We require a technical lemma allowing us to use indirect diagonalization based on robustly-
often simulations.

I Lemma 9. Let T : N→ N be a time-constructible function such that T (poly(T (poly(n)))) =
o(2n). If SAT is T (poly(n))-robustly often in time T (n), then E 6⊆ SIZE(poly).

Proof. Suppose SAT is T (poly(n))-robustly often in time T (n). By Proposition 3, we have
that Σ2P is robustly often in time T (poly(T (poly(n)))). Assume for the sake of contradiction
that E ⊆ SIZE(poly). The Karp-Lipton theorem for E, credited to Meyer [19], implies that
E collapses to Σ2P. Note that if T is time-constructible, T ′ = T (poly(T (poly(n)))) is also
time-constructible. Thus we have that E is robustly often in time T ′ for a time-constructible
T ′ = o(2n), contradicting Proposition 4. J

We now re-state and prove Theorem 2. In the proof below, we use the fact that SAT
is paddable - there is a polynomial-time computable padding function f such that for each
x ∈ {0, 1}∗, and for each m ≥ |x|, |f(x, 1m)| = m and f(x, 1m) is in SAT iff x is in SAT.
Of course, this depends on the encoding of SAT, but it suffices for us that there is some
encoding for which paddability is true in the form above, and all other standard properties
of SAT continue to hold.

I Theorem 10. If MCSP is NP-hard under natural Turing-reductions, then E 6⊆ SIZE(poly)

Proof. Suppose that MCSP is NP-hard under natural Turing reductions. Let M be an oracle
Turing machine implementing a natural reduction from SAT to MCSP. By the definition of
natural reduction, this means that there is a function s : N→ N such that all queries of M
on input of size n for SAT have parameter s(n). If there are no queries that M makes on an
input of size n, we set s(n) = 0.

Let s1(n) = log(n)log log(n), and s2(n) = log(n)log log log(n). Moreover let r(n) = nlog(n).
We define two Turing machines M1 and M2 that attempt to decide SAT using the oracle
machine M .

Machine M1 operates as follows. On input x of size n, M1 computes strings x1 . . . xr(n)−n,
where xi = f(x, 1n+i). Here f is the padding function for SAT. Let x0 = x. M1 iteratively
does the following starting with i = 0. It simulates M on xi. If an oracle query is made with
parameter k, it checks if k is at most s1(n + i). Note that since M implements a natural
reduction, k = s(n+ i). If k is at most s1(n+ i), it solves the corresponding MCSP instance
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by brute force search in time at most poly(n + i)2s1(n+i)2 and continues the simulation.
Note that any succeeding queries must also have parameter at most s1(n+ i), therefore the
simulation continues to completion. M1 accepts iff M accepts. If no oracle queries are made,
then too the simulation continues to completion, and M1 returns the same answer as M .

In case the parameter k for a query is greater than s1(n + i), M1 increments i, and
repeats the process, as long as i ≤ r(n)− n. If i > r(n)− n, M1 simply runs the simulation
of M on x to completion, now answering all queries by brute-force search regardless of the
parameter size.

B Claim. Either SAT is decidable in time poly(r(n))2s1(r(n))2 , or there is an infinite sequence
of disjoint intervals Ij = [nj , n′j) of input lengths such that n′j = r(nj) for each j, and
moreover for each j, if n ∈ Ij , then s(n) > s1(n).

We establish the Claim. Suppose that SAT is not decidable in time poly(r(n))2s1(r(n))2 .
We argue that for any n0 ∈ N, there exists an input length n > n0 such that s(n) ≥ s1(n),
and moreover s(m) ≥ s1(m) for every n < m < r(n). Indeed, if this were not the case, for
every n > n0 one of the iterations of M1 would succeed for some i < r(n)−n, and this would
mean that the entire simulation would complete in time at most poly(r(n))2s1(r(n))2 . Note
that when the simulation completes, it does solve SAT correctly, as M is an oracle Turing
reduction correctly reducing SAT to MCSP, and any completing simulation uses correct
answers to oracle queries.

Now we pick the intervals Ij inductively as follows. Let n1 be the least integer such that
s(m) > s1(m) for every n1 ≤ m ≤ r(n1), and let n′1 = r(n1). Inductively, suppose we have
picked n1 . . . nj . We pick nj+1 to be the least integer such that nj+1 > r(nj), and moreover
s(m) > s1(m) for each nj+1 ≤ m ≤ r(nj+1). Such an integer exists by the argument of the
previous paragraph. Let n′j+1 = r(nj), and set Ij = [nj , n′j). This sequence of intervals is
clearly disjoint, and satisfies the property in the Claim.

The first disjunct of the Claim implies that E 6⊆ SIZE(poly), using Lemma 9 and the fact
that T (n) = poly(r(n))ns1(r(n)) is time-constructible and satisfies T (poly(T (poly(n)))) =
o(2n), for the given choice of r and s1. Hence, in the rest of our proof, we assume that the
second disjunct holds, i.e., that there is an infinite sequence of long intervals within which
each input length generates queries with a large parameter.

Now we define machine M2. On input x of length n, M2 uses M to try to solve the search
version of SAT, i.e., to find a satisfying assignment for x if one exists. M2 uses the standard
search-to-decision reduction for SAT based on self-reducibility, simulating M to answer any
decision questions as described below. In order to find a satisfying assignment for x, this
search-to-decision procedure might call the decision procedure for SAT on inputs x′ such that
|x′| < |x|; in such cases, M2 pads up x′ to length |x| by using the padding function f(x′, 1|x|)
and runs the simulation of M on f(x′, 1|x|). This guarantees that all inputs on which M
is run during the simulation have the same length. At the end of the search-to-decision
procedure, if a satisfying assignment is successfully found, M2 accepts, else it rejects.

Next we describe how M2 uses M to decide if an input is in SAT. M2 simulates the oracle
machine M on the input. If M asks a query with parameter greater than s2(n), M2 assumes
the answer is “yes” and continues the simulation. If M asks a query with parameter at most
s2(n), M2 solves the query by brute force search and continues the simulation. At the end of
the simulation, M2 accepts iff M accepts.

M2 always halts within time poly(n)2s2(n)2 . Unlike machine M1, machine M2 is not
guaranteed to solve SAT correctly. However, since M2 has been modified to solve the search
version of SAT, the only way M2 can make a mistake on x is to answer “no” when the true
answer is “yes”. We will argue that whether or not M2 solves SAT correctly, circuit lower
bounds follow.
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We consider two cases. The first is that there is a 2s2(n)3 -robust set S on which M2 solves
SAT correctly. In this case, we can apply Lemma 9 with T (n) = poly(n)2s2(n)2 , noting that
T is time-constructible and that T (poly(n)) < 2s2(n)3 for large enough n. Thus we get that
E 6⊆ SIZE(poly) in this case.

The remaining case is that there is no 2s2(n)3-robust set S on which M2 solves SAT
correctly. In this case, we apply the main idea of [12], using in addition our assumption that
there is an infinite sequence {Ij} of disjoint intervals [nj , r(nj)) of input lengths such that
for each j and n ∈ [nj , r(nj)), we have that s(n) > s1(n).

If there is no 2s2(n)3-robust set S on which M2 solves SAT correctly, there must be a
constant k such that for each n, there is m < 2ks2(n)3 such that M2 fails to solve SAT
correctly on some input of length m. Now we use the existence of the sequence {Ij} of
intervals from the Claim. Since r(n) = nlog(n) is significantly larger than 2ks2(n)3 for large
enough n, it follows that there is an infinite sequence of input lengths {mi} such that the
following hold: (i) M2 fails to solve SAT correctly on some input x of length mi such that
M on input x asks a query with parameter at least s1(mi) (ii) For all input lengths m such
that mi ≤ m ≤ 2s2(mi)4 , s(m) ≥ s1(m).

Now we apply the main idea of [12], by attempting to use the simulation M2 itself to find
a small set of inputs for which M2 fails to decide SAT correctly on at least one of these inputs.
We define a Turing machine A as follows. On input 1m, A formulates the question of whether
there is an instance of size m on which M2 fails to solve SAT correctly and asks a query with
parameter at least s2(m) as an instance y of SAT. Since M2 runs in time poly(n)2s2(n)2 ,
such an instance y of size at most 2s2(m)3 for large enough m can be computed in time at
most 2s2(m)3 . A then runs M2 on y to find a satisfying assignment for y, as in the proof
of the main result of [12]. For all m = mi for some i, either A succeeds, in which case it
finds an instance x of length m on which M2 fails, or it finds a set of at most three instances
y1, y2, y3 such that |yj | = |y| for each 1 ≤ j ≤ 3, and M2 fails on at least one of these three
instances. Note that by item (ii) in the para above, in the first case x must ask some query
with parameter at least s1(m) that is answered wrongly, and in the second case, one of
y1, y2, y3 must ask some query with parameter at least s1(|y|) that is answered wrongly. In
either case, a wrongly answered query must be the truth table of a hard function. In the
first case, we have that the concatenation Zi of all queries asked by x is the truth table of a
function on O(log(m)) input bits that does not have circuits of size s1(m), and in the second
case we have that the concatenation Zi of all queries asked by y1, y2, y3 must be the truth
table of a function on O(log(|y|)) input bits that does not have circuits of size s1(|y|). A
outputs Zi.

In either case, A runs in time poly(|Zi|)2s2(|Zi|)3 and outputs a string Zi that does not
have circuits of size s1(|Zi|). Since s2(|Z|) = s1(|Z|)o(1), this implies that E 6⊆ SIZE(poly). J

5 Open Problems

The main open problem is to derive circuit lower bounds from unrestricted Turing reductions
from SAT to MCSP. One obstacle here is that we don’t we know that MKtP is not hard for
E under Turing reductions - this is a potentially simpler “test case” that could be indicative.
We note that [16] have shown that a gap version of MKtP is not hard for E, when the gap
between the upper and lower thresholds for Kt-complexity is ω(log(n)).

An easier problem is to derive circuit lower bounds from unrestricted many-one reductions
from SAT to MCSP. Even this is unknown, though we do know that such reductions imply
EXP 6= ZPP [21, 17].
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Abstract
To study the question under which circumstances small solutions can be found faster than by
exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint
satisfaction with size constraint exactly k. More precisely, we aim to determine, for any finite
constraint family, the optimal running time f(k)ng(k) required to find satisfying assignments that
set precisely k of the n variables to 1.

Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs,
we give an almost tight characterization of g(k) into four regimes:
1. Brute force is essentially best-possible, i.e., g(k) = (1± o(1))k,
2. the best algorithms are as fast as current k-clique algorithms, i.e., g(k) = (ω/3± o(1))k,
3. the exponent has sublinear dependence on k with g(k) ∈ [Ω( 3√

k), O(
√

k)], or
4. the problem is fixed-parameter tractable, i.e., g(k) = O(1).

This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx,
Computational Complexity 2005). Our most interesting technical contribution is a f(k)n4

√
k-time

algorithm for SubsetSum with precedence constraints parameterized by the target k – particularly
the approach, based on generalizing a bound on the Frobenius coin problem to a setting with
precedence constraints, might be of independent interest.
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1 Introduction

Extensive research in complexity theory has established methods to give precise qualitative
results on the computational hardness of problems. In this context, a basic question that we
would like to answer is: When are there algorithms better than a brute force search, and if
there are, how much improvement is possible compared to brute force? In problem settings
where the task is to find a solution of size k, typically it is easy to obtain algorithms with
running time of the form O(nk+O(1)) by a brute force search of every possible solution. In
such cases, beating brute force could involve having an algorithm with a term (1− ε)k+O(1)
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27:2 A Fine-Grained Perspective into Boolean Constraint Satisfaction

in the exponent for some ε > 0, or having sublinear (e.g, O(k/ log k) or O(
√
k)) dependence

on k in the exponent, or we might be able to completely remove k from the exponent of n
with an f(k)nO(1) time algorithm.

In this paper, we study the above question in the context of the class of Boolean Constraint
Satisfaction problems. Fixing a constraint family F of Boolean functions, the task is to
determine an assignment to Boolean variables x1, . . . , xn satisfying a given conjunction of
constraints of the form f(xi1 , . . . , xir) with f ∈ F and i1, . . . , ir ∈ [n]. Here, the natural
notion of the solution size k is the number of variables set to 1 and we consider the task
of determining a satisfying assignment with precisely k ones. This class indeed contains
a variety of problems: basic graph problems such as the vertex cover problem (F consists
of the binary OR) and the independent set problem in graphs (F consists of the binary
NAND) or d-uniform hypergraphs (F consists of the d-ary NAND), but also other natural
problems such as a formulation of SubsetSum parameterized by the target k (F consists
of binary equality)1, finding a solution of a (sparse) linear system over GF(2) where each
linear equality involves at most a constant number r of variables and the solution must have
precisely k ones (F consists of all linear constraints of arity at most r), as well as finding
a closed set of size k in a directed graph (F consists of the binary implication). Note that
the last problem can be seen to be equivalent to a variant of SubsetSum that prescribes
precedence constraints on the items and uses an unary encoding for all item sizes.

The time complexity inside this class varies widely: Vertex cover is famously fixed-
parameter tractable when parameterized by k, with a best current running time bound
of O(kn + 2O(k)) [16]. It is even simpler to solve the SubsetSum formulation in time
O(m + k2) = O(n2) (where m is the number of edges in the graph) by a straightforward
algorithm2. The fastest known algorithm for independent set [29], however, relies on the
sophisticated techniques for matrix multiplication, and achieves a running time of O(n(ω/3)k)
for k divisible by 3, where ω ≤ 2.373 is the matrix multiplication exponent. For finding closed
sets of size k, a surprisingly simple O(nk/2)-time algorithm3 improves over brute force even
without matrix multiplication, but a priori there is little indication for the optimality of this
approach. Finally, for finding independent sets in 3-uniform hypergraphs, no substantially
faster-than-brute-force algorithm is known.

The central purpose of this paper is to give a detailed understanding of the time complexity
of Boolean constraint satisfaction parameterized by solution size k, particularly when k is
considered a (large) constant: How precisely can we determine the running time f(k)ng(k),
with g(k) as small as possible? Note that for large constant k, we have f(k)ng(k) = O(ng(k))
and aim to determine its optimal polynomial-time complexity.

A classification of the second author [28] resolves the qualitative question for which F
the problem is solvable in FPT time (assuming FPT 6= W[1]), i.e., when g(k) can be bounded
by a constant independent of k. In particular, from this classification, we obtain that among

1 To see the correspondence, note that if F consists of the binary equality, SAT(F) asks to find a union
of connected components of total size k. By representing each connected component by its size (after
linear-time preprocessing), this is precisely the SubsetSum problem with target k.

2 Determine all connected components in time O(m) and solve a SubsetSum instance on the component
sizes in time O(k2) using Bellman’s pesudopolynomial-time algorithm or recent improvements [23, 8].

3 Without loss of generality, it suffices to solve the following problem: given a node-weighted DAG
G = (V, E) and k ∈ N, find a weight-k subset S ⊆ V such that u ∈ S and (u, v) ∈ E implies v ∈ S. If S
contains a set S′ of at most k/2 sources (i.e., vertices that have no incoming edges from other vertices
in S), we can simply guess S′ and check that S′ and the set of all descendants of S′ have total weight k.
If S contains no such set S′ of size at most k/2, we can guess all ≤ k/2 non-sources S′′, remove all
incoming edges to S′′ and find a weight-(k − |S′′|) set of vertices with out-degree 0.
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the above examples, vertex cover, SubsetSum with target k, and the sparse linear systems
over GF(2) can be solved in time f(k)nc, while for independent set (in both graphs and
hypergraphs) as well as SubsetSum with precedence constraints, the exponent of n must
depend on k (unless FPT = W[1]). Can we obtain tight bounds on g(k) when it must depend
on k? In particular, can we determine for which F the brute-force O(nk+c)-time solution is
essentially optimal?

1.1 Our Results
Let us formally state our problems and results.

I Problem 1.1. Let F be a finite constraint family of Boolean functions. The problem
SAT(F) asks to determine whether a given formula φ on Boolean variables x1, . . . , xn is
satisfiable by an assignment with k ones, where φ is a conjunction of m constraints C of the
form f(x), where f : {0, 1}r → {0, 1} is a constraint function in F and x is an r-tuple of
variables among x1, . . . , xn.

Note that if all f ∈ F have arity bounded by r, then there are at most O(nr) possible
constraints, and exhaustive search solves SAT(F) in time O(nk+r).

We will show that the complexity of SAT(F) is tightly characterized by the set of functions
expressible as restrictions of constraint functions f ∈ F . To formally introduce this concept,
let f : {0, 1}r → {0, 1} be an arbitrary Boolean function. We say that g : {0, 1}s → {0, 1} is a
restriction of f if it is obtained from g by replacing each argument of f by either the constant 0,
the constant 1, or an argument of g, i.e., we can partition [r] into X1, . . . , Xs, Z0, Z1 such
that

g(x1, . . . , xs) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1).

Here,
Y︷ ︸︸ ︷

y . . . y denotes plugging in y for all (not necessarily contiguous) positions Y ⊆ [r], see
Section 2.

I Definition 1.2. Let g : {0, 1}d → {0, 1} be an arbitrary Boolean function. A constraint
family F represents g if there is some f ∈ F such that g is a restriction of f . If F does not
represent g, we say that F avoids g.

Let IMPL : {0, 1}2 → {0, 1} and NANDd : {0, 1}d → {0, 1} be the binary implication
and d-ary NAND function, respectively, i.e.,

IMPL(y1, y2) := y1 ∨ y2,

NANDd(y1, . . . , yd) :=
∧d

i=1
yi.

In [28], it is shown that assuming FPT 6= W[1], SAT(F) is solvable in FPT time f(k)nc
if and only if F is weakly separable, which is a condition equivalent to F avoiding NAND2
and IMPL. We show an almost tight characterization of g(k) (under plausible assumptions
from fine-grained complexity theory) that depends only on whether or not F represents
IMPL, NAND2 or NANDd for higher order d ≥ 3. Specifically, we obtain the following main
theorem, illustrated in Figure 1.

I Theorem 1.3. Let F be a finite constraint family.
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Figure 1 Overview over our main results. The parts of the diagram to the right of the vertical
IMPL line depict F representing IMPL, while the parts to the left avoid IMPL. Analogously, the
parts of the diagram above a NANDd line depict NANDd-representing F , while those below avoid
NANDd. For each cell, we illustrate our (typically matching) algorithmic and hardness results,
together with a problem that is complete for this cell (in a certain sense). For clarity of presentation,
we drop additional f(k)nc-factors of stated running times.

1. [FPT regime]
If F avoids both NAND2 and IMPL, then there is a computable f(k) and constant cF
such that SAT(F) can be solved in time f(k)ncF .

2. [Subexponential regime]
If F represents IMPL, but avoids NAND2, then there is a computable f(k) and constant cF
such that SAT(F) can be solved in time f(k)n4

√
k+cF ;

furthermore, for no computable f(k) and constants cF , ε > 0, SAT(F) can be solved in
time f(k)n(ω/6−ε) 3√

k+cF , unless the k-clique conjecture fails.
3. [Clique regime]

If F represents NAND2, but avoids NAND3, then there is a computable f(k) and con-
stant cF such that SAT(F) can be solved in time f(k)n(ω/3)k+cF ;
furthermore for no computable f(k) and constants cF , ε > 0, SAT(F) can be solved in
time f(k)n(ω/3−ε)k+cF , unless the k-clique conjecture fails.

4. [Brute-force regime]
If F represents NAND3, then for no computable f(k) and constants cF , ε > 0, SAT(F)
can be solved in time f(k)n(1−ε)k+cF , unless the 3-uniform k-HyperClique conjecture fails.

That is, we only have four regimes: g(k) is either constant, sublinear in k with a value
between essentially (ω/6) 3

√
k and 4

√
k, the clique detection bound of essentially (ω/3)k, or

the brute force bound of essentially k. Note that we do not try to optimize the bounds
on f(k), which generally are bounded by rO(k3), where r is the arity of F .

Let us briefly discuss our hardness assumptions and their plausibility (for a detailed
discussion, we refer to Section 2.1): The k-clique conjecture postulates that there is no
O(n(ω/3−ε)k+c) time algorithm for detecting a k-clique in a given graph, with a matching
upper bound of O(n(ω/3)k+1) known since 1985 [29]. By now, it has been used, e.g., to
justify (conditional) optimality of Valiant’s parser for context free grammars [2] and to give
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conditional lower bounds for string problems [10, 1], average-case settings [5], and more.
Notably, the only k-clique algorithm known to break brute force by a polynomial factor
makes crucial use of fast matrix multiplication techniques – unfortunately, these techniques
do not extend to finding cliques in hypergraphs. This has led to the d-uniform HyperClique
conjecture (for arbitrary d ≥ 3): This conjecture states that there is no algorithm beating
brute force, i.e., no O(n(1−ε)k+c)-time algorithm, for detecting a k-clique in a given d-uniform
hypergraph. It has been used to expose hardness of problems in sparse graphs [27], for
first-order queries to relational databases (specifically, in model-checking [9] and enumeration
contexts [13]), and for the orthogonal vectors problem [3]; furthermore, it is known that its
refutation requires giving a O((2− ε)n)-time algorithm for Max-3SAT – we refer to [2, 27]
for more detailed discussions of the plausibility of the (d-uniform Hyper-)Clique conjecture.

Interestingly, our classification does not fundamentally rely on the validity of the d-
uniform HyperClique conjecture: If, for some d ≥ 3, the d-uniform HyperClique conjecture is
eventually refuted, we obtain faster-than-brute-force algorithms for all NANDd+1-avoiding
families!

Coarser Classification. While we state our results under very fine-grained hardness as-
sumptions on clique and hyperclique detection, we may also state a coarser classification
assuming only the assumption that k-clique cannot be solved in time f(k)no(k). Already
under this assumption, which is implied by the Exponential Time Hypothesis (see [14, 15]),
our reductions and algorithms show that there exists an FPT regime where g(k) is a constant,
a subexponential regime where g(k) is between Ω( 3

√
k) and O(

√
k), and a linear regime

where g(k) = Θ(k). However, based on the Exponential Time Hypothesis only, we cannot
distinguish problems solvable in time f(k)n(1±o(1))k and f(k)n(ω/3±o(1))k, and thus cannot
differentiate in the linear regime.

Examples. From our general classification, we can draw some interesting specific corollaries
(assume here that k is a large constant):

3-SAT: Finding satisfying assignments with k ones for 3-CNF formulas (F consists of all
ternary functions with a single falsifying assignment) requires brute force time n(1−o(1))k

under the 3-uniform HyperClique conjecture. However, if we drop a single function
from F (specifically NAND3, i.e., each constraint must have at most two negative literals),
the problem can be solved in time O(n(ω/3)k+c), which is essentially optimal under the
k-Clique conjecture.
Subexponential cases: We obtain nO(

√
k)-time algorithms for interesting special cases:

Beyond precedence-constrained SubsetSum with target k (i.e, SAT({IMPL})), this
includes SAT({f}) with f(y1, y2, y3) := y1 ⇒ (y2 ∨ y3), and, more generally, every
finite set of dual-Horn constraints (i.e., constraints that can be represented by clauses
with at most a single negative literal)4. This also includes examples beyond dual-
Horn constraints such as SAT({IMPL, f ′}) with f ′ being defined by f ′(y1, y2, y3) = 1 iff
(y1, y2, y3) ∈ {(0, 0, 0), (1, 0, 1), (1, 1, 0)}. Interestingly, all of these problems have the same
(conditionally optimal) time complexity of f(k)nΘ(kα) with 1/3 ≤ α ≤ 1/2; determining
the precise value of α remains a challenge for future work.

4 It is known that a constraint is dual-Horn if and only if it its satisfying assignments are closed under
union, which immediately implies that it cannot contain NAND2 as a restriction.
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1.2 Technical Overview
We give an overview of the technical challenges that are handled in our work, from the
highest running time regime to the lowest running time regime:

Brute-force regime. It is straightforward to obtain hardness for NAND3-representing fami-
lies by the following intuitive approach: To reduce from k-clique in a 3-uniform hypergraph G,
we let xi denote whether we include vertex vi in our k-clique. By the standard observation
that a clique in a hypergraph G is an independent set of its complement graph G, we only
need to ensure that for each edge e = (va, vb, vc) of G, not all vertices are included in
our clique, i.e., NAND3(xa, xb, xc) holds. Since F represents NAND3, we can express this
constraint using an appropriate restriction of some f ∈ F . Here, there is a technical issue
of how we can generate the constants 0 or 1 to obtain the desired restrictions – using not
particularly difficult, but careful constructions, we show that we can always simulate these
constants as needed (Section 6).

Moderately hard regime. While the hardness of NAND3-representing families is straight-
forward, it is surprising that this condition is in fact necessary for the brute-force approach
to be (conditionally) optimal: If NAND3 is not representable, we give a f(k)n(ω/3)k+cF -time
algorithm via reduction to k-Clique.

The essential idea for this reduction is the following win-win argument. Let us denote
by ax,y the weight-2 assignment setting only x and y to 1. Fix any weight-k satisfying
assignment a. If there are two variables xi = xi′ = 1 in a such that axi,xi′ is not satisfying,
then we can use this pair of variables to “guide” our search towards a. We guess xi, xi′ ,
identify a falsified constraint (of arity r) and guess an additional third variable from the at
most r unguessed variables in this constraint. This means that by guessing two variables
(n2 possibilities), we obtain an additional variable almost for free (guessing r possibilities).
That is, in the considered case we can identify 3 variables of a with a guess of rn2 possibilities,
which is a significant gain compared to the n3 possibilities of brute force. Otherwise, if a
has no such pair of variables, we observe that a satisfies already a simpler formula that
uses only NAND2’s: specifically, the conjunction of NAND(xi, xi′) for all i, i′ such that
assignment axi,xi′ violates the original formula. Furthermore, we show that since NAND3
is not representable, any solution of the simpler formula indeed remains a solution of the
original formula.

Interestingly, this reduction generalizes also to hypergraphs so that a refutation of the
d-uniform HyperClique conjecture would give a f(k)n(1−ε)k+cF -time algorithm for NANDd+1-
avoiding families.

On the hardness side, analogously to the brute-force regime, it is rather straightforward
to show that k-clique running time is indeed necessary for NAND2-representing constraint
families (see Section 6), which thus concludes a tight bound on g(k) of essentially (ω/3)k in
this regime.

Mildly hard regime. This is the technically most interesting regime. If NAND2 is not
representable, then SAT(F) might still not have an FPT algorithm, specifically, if it represents
IMPL. Implicit in the W[1]-hardness proof in [28] is a fine-grained lower bound of nΩ(log k)

under the k-clique conjecture. By giving a careful adaptation of the lower bound of [28], we
can strengthen this lower bound to nΩ( 3√

k). While it is conceivable that this lower bound
can be strengthened to nΩ(

√
k), the structure of the construction suffers from a fundamental

obstacle that makes a lower bound beyond nΩ(
√
k) seem unlikely. This raises the suspicion that
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a no(k)-time algorithm for NAND2-avoiding families could exist – and indeed, we manage to
develop a nO(

√
k)-time algorithm, which is perhaps the most interesting technical contribution

of our paper.
To illustrate our approach, consider the problem Weighted DAG Implications: Given

a DAG G = (V,E) with node weights w : V → N and a parameter k ∈ N, the task is to
find a set S ⊆ V such that (1) u ∈ S and (u, v) ∈ E implies v ∈ S and (2) S has total
weight

∑
s∈S w(s) = k. Without edges, this problem simplifies to SubsetSum which we

could solve in poly(k) time [23, 8]. However, to enable a generalization to our precedence
setting, we describe a different approach based on a combinatorial property inspired by the
famous Frobenius coin problem: Given coins of denominations 2 ≤ d1 < d2 < · · · < d` with
gcd(d1, . . . , d`) = 1, what is the largest number x not representable as x =

∑`
i=1 αidi for

some non-negative values αi ≥ 0? A proof attributed to Schur (see [7, 30, 21]) yields an upper
bound of x ≤ (d1 − 1)(d` − 1). Consequently, if w1 ≤ · · · ≤ w` with gcd(w1, . . . , w`) | k are
the weights occurring in an edgeless G, and w` ≤

√
k, then there always exists a set S of total

weight k, provided each weight occurs sufficiently often (say, at least k times). Thus, if we
can preprocess the instance such that each weight is bounded by

√
k and occurs sufficiently

often, we can determine the answer to the instance by simply computing the gcd of the
weights. Intuitively, this is possible in time nO(

√
k) by guessing the O(

√
k) vertices of weight

larger than
√
k, as well as brute-forcing vertices of each weight class containing only few

vertices.
Interestingly, this approach can be lifted to the setting with precedence constraints. To

this end, assume that the graph consists of layers V1, . . . , V` such that each Vi consists of
a sufficiently large number of vertices of weight wi and that all edges respect the layering
(i.e., an edge between a vertex in Vi and a vertex in Vj implies i > j). We show the following
property, which gives a generalization of Schur’s bound to the precedence setting:

If for each vertex v, the total weight of its descendants (including v itself) is at most
√
k/2,

then there exists a solution of total size k if and only if gcd(w1, . . . , w`) | k.

By an nO(
√
k)-time preprocessing analogous to the intuitive arguments for the edge-less case,

we can ensure that the preconditions are satisfied. We give the details of this approach in
Section 3.

The above algorithmic insight solves the Weighted DAG Implications problem in
time O(n4

√
k). To obtain such a bound for all NAND2-avoiding families, we use a randomized

reduction to Weighted DAG Implications. On a very high level, the approach is to create
a Weighted DAG Implications instance G that contains only solutions that satisfy the
given formula φ by iteratively choosing random implications consistent with certain solutions
of φ. Doing this in an appropriate manner, a fixed feasible solution survives this process
with 1/f(k) probability, which gives an algorithm running in time essentially O(f(k)n4

√
k).

We give the details in Section 4.

Fast regime. For the remaining regime of families avoiding both IMPL and NAND2, an
f(k)nc-time algorithm follows from [28], concluding the characterization.

1.3 Related work
Dichotomy theorems for constraint satisfaction have a rich history, starting with Schaefer’s
Theorem classifying Boolean Constraint Satisfaction Problems (CSPs) into either polynomial-
time solvable or NP-complete [31]. The subsequent Dichotomy conjecture [20], which
postulated that Schaefer’s Theorem can be extended to any constant domain size beyond
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Boolean, was resolved positively only recently by Bulatov [11] and Zhuk [34]. Further
classifications have been investigated in a number of related settings, including quantified
CSP (see, e.g., [18, 35]) and optimization variants (see, e.g. [17, 22]). Parameterizing by the
solution size (as we do here), corresponding dichotomies have been obtained for Boolean [28]
and larger domain sizes [12, 26], with a characterization of kernelization for Boolean domain
given in [24] and a study of parameterized approximability given in [6]. A parameterized
dichotomy for related local search tasks has been given in [25].

On a conceptual level, our work is related to a fine-grained classification result for model-
checking first-order properties with a bounded number of quantifiers [9], where a fine-grained
dichotomy under the 3-uniform HyperClique conjecture is given. Note, however, that the
hardness criterion and techniques developed there are substantially different due to the
different nature of the problem settings.

1.4 Open Problems
The main open problem raised by our work is to close the gap in the subexponential regime:
Can we solve Implications = SAT({IMPL}) already in f(k)nO( 3√

k) or can we improve our
lower bound to f(k)nΩ(

√
k)? Note that by our reductions, improved bounds directly transfer

to all NAND2-avoiding families.
Second, a natural direction is to extend our classification beyond the Boolean domain,

i.e., give a fine-grained perspective building on [12, 26].
Finally, interesting related settings include natural problem variants with different size

restrictions (at most k or at least k), local search tasks as well as optimization settings with
weights on the variables or on the constraints.

2 Preliminaries

We write [n] := {1, . . . , n} and for any set S and integer d, let
(
S
d

)
denote the set of d-element

subsets of S.
For a finite constraint family F , we say its arity r is the maximum arity of a function

f ∈ F . Since in the constraints of SAT(F), we may use variables in arbitrary order, we use
the following notation for convenience: For any f : {0, 1}r → {0, 1} and partition X1, . . . , Xs

of [r], we write

f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs)

to denote the value of f(u1, . . . , ur) where we plug in xj for each ui with i ∈ Xj . Corre-
spondingly g : {0, 1}d → {0, 1} can be obtained as a restriction of f if and only if there is a
partition X1, . . . , Xd, Z0, Z1 of [r] such that

g(x1, . . . , xd) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xd︷ ︸︸ ︷
xd . . . xd,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1).

We say that an assignment a : [n]→ {0, 1} has weight k if
∑n
i=1 a(i) = k. Furthermore,

we say that a is dominated by an assignment a′ : [n] → {0, 1}, written a ≤ a′, if for all
i ∈ [n], we have a(i) ≤ a′(i). For a subset S ⊆ [n], we let aS denote the assignment that sets
a(i) = 1 if and only if i ∈ S. We let ones(a) := {xi | a(i) = 1} denote the set of 1-variables
of a. For any constraint C = f(x) where x = (xi1 , . . . , xir) with i1, . . . , ir ∈ [n], we let
vars(C) = {xi1 , . . . , xir} denote the variable set involved in C.
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All graphs considered in this paper are simple, i.e., we disallow multiple edges and self-
loops. If G = (V,E) is a directed graph, we call S ⊆ V a closed set if for all (u, v) ∈ E, we
have that u ∈ S implies that v ∈ S. We say that v is a descendant of u if v is reachable by a
path from u and let D(u) denote the set of descendants of u (including u itself). Analogously,
if v is a descendant of u, we call u an ancestor of v. We extend the notation naturally to
sets S ⊆ V by defining D(S) :=

⋃
u∈S D(u). For a graph G = (V,E) with node weights

w : V → N and S ⊆ V , we write w(S) :=
∑
v∈S w(v). For any S ⊆ V , we let G[S] denote

the subgraph of G induced by S, i.e., the subgraph obtained by deleting all vertices in V \ S
and adjacent edges.

2.1 Hardness Assumptions

Let k-clique denote the following problem: Given a (simple) undirected graph G = (V,E),
determine whether there is a clique of size k, i.e., S ⊆ V, |S| = k such that for all {u, v} ∈

(
S
2
)

we have {u, v} ∈ E. A simple algorithm [29] solves k-clique in time O(n(ω/3)k) when k is
divisible by 3, which extends to time O(nbk/3cω+(k mod 3)) for arbitrary k (for more precise
bounds, see [19]). This running time is conjectured to be best possible, in the following
sense.

I Hypothesis 2.1 (k-Clique Conjecture). For no c, ε>0 and f(k), there is an f(k)n(ω/3−ε)k+c-
time algorithm for k-Clique.5

As without the use of matrix multiplication, no O(n(1−ε)k+c)-time algorithms are known, a
variant of the conjecture postulates that there are even no O(n(1−ε)k+c)-time combinatorial
algorithms, i.e., algorithms avoiding the sophisticated algebraic techniques underlying current
matrix multiplication algorithms.

By now, the k-clique conjecture has been used to explain hardness barriers in various
contexts, such as the optimality of Valiant’s parser for context-free grammar recognition [2],
pattern matching in uncompressed and compressed strings [10, 1], average-case hardness [5]
and more. For a more detailed discussion of this hardness assumption, we refer to [2].

The k-clique problem naturally extends to hypergraphs: Given a d-uniform hypergraph
G = (V,E), the d-uniform k-HyperClique problem asks to determine whether there is a
(hyper-)clique of size k, i.e., S ⊆ V, |S| = k such that for all subsets S′ ∈

(
S
d

)
, we have S′ ∈ E.

I Hypothesis 2.2 (d-Uniform k-HyperClique Conjecture). Let d ≥ 3. For no c, ε > 0 and f(k),
there is an f(k)n(1−ε)k+c-time algorithm for d-uniform k-HyperClique.

Similarly to the k-Clique conjecture, this hardness conjecture reveals hardness barriers in
a number of contexts, such as hardness for problems on sparse graphs [27], for deciding or
enumerating answers to first-order queries [9, 13] and for the study of fine-grained average-case
complexity [5]. It is known that it implies the Orthogonal Vectors conjecture [3], however,
refuting this conjecture requires (at least) to give an O((2− ε)n)-time exact algorithm for
Max3SAT; for details and further discussion of the plausibility of this conjecture, see [27].

5 Note: sometimes, the k-clique conjecture is stated as

inf{F | 3k-clique can be solved in time nF k+o(1) for all (sufficiently large) constant k} = ω,

which can be seen to be equivalent to the above formulation via a standard self-reduction for k-clique.
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3 Algorithm for Implications

In this section, we give an algorithm for the problem Implications = SAT({IMPL}) that is
much faster than brute force and achieves O(

√
k) dependence of k in the exponent n. For

convenience, we reduce Implications to the following problem. (Recall that for any graph
G = (V,E), we say that S ⊆ V is closed, if for all (u, v) ∈ E, we have u ∈ S implies v ∈ S.)

I Problem 3.1 (Weighted DAG Implications). Given a DAG G = (V,E) with node
weights w : V → N and parameter k ∈ N, determine whether there is a closed set S ⊆ V of
weight exactly k, i.e., w(S) = k.

The easy reduction works as follows. For each variable xi, we introduce a corresponding
vertex xi of weight 1 and introduce an edge (xi, xj) for every implication constraint xi ⇒ xj
of φ. We contract each strongly connected component C = {v1, v2, . . . , v`} in G to a single
vertex vC of weight

∑`
i=1 w(vi) in time O(n+m) = O(n2) [33]. Observe that the resulting

graph is a DAG which has a closed set of weight k if and only if φ has satisfying assignment
of weight k.

Recall that for any v ∈ V , we let D(v) denote the set of descendants of v, i.e., the set of
nodes reachable from v (including v).

As we will formally argue later, by a f(k)nO(
√
k)-time preprocessing it is not difficult to

preprocess a Weighted DAG Implications instance into the following form, which we
call Frobenius instance, as it admits a combinatorial characterization of solvability that is
analogous to Schur’s bound for the Frobenius coin problem.

I Definition 3.2. A Frobenius instance with parameter k is a weighted directed graph
G = (V,E,w) with ` parts V = V1 ∪ V2 ∪ · · · ∪ V` and weight function w : V → N such that
the following properties hold:
(P1) there are weights w1, . . . , w` such that w(v) = wi for all v ∈ Vi and i ∈ [`].
(P2) for any edge (u, v) ∈ E, we have u ∈ Vi and v ∈ Vj for some ` ≥ i > j ≥ 1,
(P3) for all i ∈ [`], we have |Vi| ≥ k,
(P4) for all v ∈ V , we have w(D(v)) ≤

√
k/2.

Intuitively, the necessary preprocessing follows from the following arguments: To en-
sure (P4), note that any weight-k closed set S has at most

√
2k many vertices v ∈ S with

w(D(v)) >
√
k/2, which we can exhaustively enumerate with nO(

√
k)-time overhead. By

suitably arranging remaining nodes among the layers, it is straightforward to ensure (P1),
(P2) and additionally that ` ≤ f(k), since by (P4), each node has at most O(

√
k) descendants.

Finally, to ensure (P3), if any part Vi is small (i.e., |Vi| < k), we can exhaustively try out
including any subset of Vi, introducing an overhead of only 2O(k) per Vi; since ` ≤ f(k), this
additional overhead is bounded by f(k)2O(k).

If a Frobenius instance had no edges, then Schur’s bound on the Frobenius coin problem
implies that it has a solution if and only if gcd(w1, . . . , w`) | k. We prove that this criterion
holds even in the setting of precedence constraints.

I Lemma 3.3. Let G be a Frobenius instance with parameter k. Then G has a closed set of
weight k if and only if gcd(w1, . . . , w`) | k.

Proof. Since gcd(w1, . . . , w`) | w(S) for any S ⊆ V , the condition gcd(w1, . . . , w`) | k is
necessary for G to have a closed set of weight k.

We show that this condition is also sufficient via induction on `. In the base case ` = 1,
let S ⊆ V1 = V be an arbitrary subset of k/w1 vertices (note that by k/w1 ≤ k ≤ |V1|, such
a set indeed exists). By construction, S has weight |S|w1 = k and is closed, as G cannot
contain any edges.
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Thus let us assume that the claim holds for all `′ ≤ ` − 1 and consider a Frobenius
instance with d′ := gcd(w1, . . . , w`) | k. Let d := gcd(w1, . . . , w`−1). We may assume that
d - k; otherwise, already the Frobenius instance G[V1 ∪ · · · ∪ V`−1] satisfies the assumption
gcd(w1, . . . , w`−1) | k and we obtain a closed set by inductive hypothesis.

Intuitively, we want to use the variables in V` to reach the target weight k modulo d;
then we can reduce to a simpler instance where every weight (including the target weight) is
divided by d. Note that we may assume

2 ≤ d ≤
√
k/2, (1)

where the lower bound follows from d - k and the upper bound follows from d≤ mini∈[`−1] wi ≤√
k/2, as w(v) ≤ w(D(v)) ≤

√
k/2 for any v ∈ V .

Let b be the smallest non-negative integer such that b · w` ≡ k (mod d). Such an integer
exists and satisfies b < d: By Bézout’s identity, since gcd(w`, d) = d′ | k, there are coefficients
β, γ such that βw` + γd = k, and thus any b with b ≡ β (mod d) achieves the desired
congruence.

Let S ⊆ V` be an arbitrary subset of size b < d; such a set indeed exists as d ≤
√
k/2 ≤

k ≤ |V`|. We observe that S satisfies

w(D(S)) ≤
∑
s∈S

w(D(s)) ≤ |S|
√
k/2 ≤ d

√
k/2 ≤ k

2 , (2)

where we used (P4) for the second inequality, and (1) for the last inequality. Consider
the graph G′ = (V ′, E′) obtained as a copy from G from which we delete V` ∪ D(S) and
define the node weights w′(v′) = w(v)/d for any v ∈ V \ (V` ∪ D(S)). We claim that G′
is a Frobenius instance with parameter k′ := (k − w(D(S)))/d (observe that k′ is indeed
integer, as w(D(S)) ≡ bw` ≡ k (mod d), and that k′ ≥ 0 by (2)). If this is indeed the case,
then by inductive hypothesis G′ has a closed set S′ with w′(S′) = k′, since the gcd of the
weights w′ is 1. Observe that by construction, D(S) ∪ S′ is a closed set in G of weight
w(D(S)) + d · w′(S′) = w(D(S)) + (k − w(D(S))) = k, as desired.

It remains to prove that G′ is indeed a Frobenius instance with parameter k′. First,
observe G′ has `−1 layers V ′i := Vi \D(S), i ∈ [`−1] and that w′ is well defined, as d | wi for
all i ∈ [`− 1]. Conditions (P1) and (P2) of being Frobenius are fulfilled as G′ is a subgraph
of G. To see (P3), note that

|V ′i | ≥ |Vi| − |D(S)| ≥ |Vi| − w(D(S)) ≥ k − w(D(S)) ≥ k′.

To see (P4), we observe that by (2) and (1), we have

k′ = k − w(D(S))
d

≥ k − k/2
d

= k

2d ≥
k

d2 .

Thus, for any v′ ∈ V ′, we obtain

w′(D(v′)) ≤ w(D(v))
d

≤
√
k/2
d

=
√

k

2d2 ≤
√
k′/2,

where we used condition (P4) of G in the second inequality. Thus, G′ is indeed a Frobenius
instance with parameter k′, concluding the claim and thus the proof of our lemma. J

The above criterion is the main technical tool in the algorithmic result of the session.
What remains is to show that the instance can be preprocessed in a way that it becomes a
Frobenius instance.
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I Theorem 3.4. We can solve Weighted DAG Implications in time f(k)n4
√
k.

Proof. Consider the following recursive algorithm, which proceeds in 4 steps:
Step 1: For every v ∈ V with w(D(v)) ≥

√
k/2, we return YES if a recursive call

determines that G[V \D(v)] has a closed set of weight k − w(D(v)); otherwise, we delete v
and all its ancestors from G. From now on, G satisfies w(D(v)) ≤

√
k/2 for all v ∈ V .

Step 2: We construct layers L1, . . . , L√k/2 by the following iterative process: for every

i = 1, . . . ,
√
k/2, we let Li consists of all vertices in V \ (L1 ∪ · · · ∪ Li−1) whose outgoing

edges end in L1 ∪ · · · ∪ Li−1. Note that L1, . . . , L√k/2 partitions V ; in particular, every
vertex is included in some Li, since if there was a vertex v ∈ V \ (L1 ∪ · · · ∪ L√k/2), then by

construction there exists a path from v containing strictly more than
√
k/2 vertices, leading

to the contradiction w(D(v)) ≥ |D(v)| >
√
k/2.

We observe that each layer Li can be partitioned into sublayers Li,j , j ∈ {1, . . . ,
√
k/2}

such that each v ∈ Li,j has weight w(v) = j: there can be no vertex of larger weight,
as otherwise w(D(v)) ≥ w(v) >

√
k/2 yields a contradiction. We consider layers Li,j in

increasing lexicographic order of (i, j): If |Li,j | < k, then for every v ∈ Li,j , we return YES
if a recursive call determines that G[V \ D(v)] contains a closed set of size k − w(D(v)),
and otherwise we delete v and all its ancestors from G. Observe that by the lexicographic
ordering, we never delete vertices from already processed layers, so that at the end of the
process, each Li,j is either empty or contains at least k vertices.

Step 3: We let V1, . . . , V` be an enumeration of all non-empty sublayers Li,j by the
lexicographic order on (i, j) so that any vertex v ∈ Vi has only edges to vertices in V1∪· · ·∪Vi−1.
Observe that by construction, this yields a Frobenius instance. Let w1, . . . , w` be the weights
of the Frobenius instance. We return YES if gcd(w1, . . . , w`) | k and NO otherwise.

Using Lemma 3.3, the correctness of the algorithm is easy to see.

B Claim 3.5. The above algorithm is correct.

Proof. If the algorithm returns YES, indeed there is a closed set of size k: If we return
YES in Steps 1 or 2, we have found a vertex v and a closed set S′ in G[V \D(v)] of size
k − w(D(v)), which yields a closed set S′ ∪D(v) in G of size k, as desired. Otherwise, we
have arrived at a Frobenius instance and returned YES since gcd(w1, . . . , w`) | k, which
implies that G has a closed set of size k by Lemma 3.3.

Conversely, fix a closed set S of size k, and we show that the algorithm returns YES: If S
contains a vertex v investigated in Steps 1 or 2, then the recursive call to G[V \D(v)] (for the
first such vertex v) will find a solution of size |S| − w(D(v)) (note that D(v) ⊆ S if v ∈ S).
Otherwise, we have arrived at a Frobenius instance which must satisfy gcd(w1, . . . , w`) by
Lemma 3.3, and we return YES. C

Finally, we need to bound the running time of the recursive algorithm. The analysis
relies on the observation that the algorithm makes at most n recursive calls with a parameter
decrease of at least

√
k/2, and at most O(k2) recursive calls with a parameter decrease

of one.

B Claim 3.6. The above algorithm can be implemented in time f(k)n4
√
k.

Proof. Let U be the set of vertices of small layers (|Li,j | < k) considered in Step 2. We observe
that the above algorithm can be implemented recursively with the following recurrence on
its running time T (n, k) on instances with n vertices and parameter k.

T (n, k) ≤
∑

v∈V,w(D(v))≥
√
k/2

T (n, k − w(D(v))) +
∑
u∈U

T (n, k − w(D(u))) +O(n2)
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We claim by induction on k that this yields a bound of T (n, k) ≤ f(k)n4
√
k for some

f(k) = kO(k). It is not difficult to see that for k ≤ 2, we can solve the problem in time
O(n2) = O(n4

√
k), yielding the base case. For k ≥ 3, we thus obtain the following bound, using

that in Step 2, we process less than k vertices for each “small” sublayer Li,j , 1 ≤ i, j ≤
√
k/2,

i.e., |U | ≤ k(k/2) = k2/2,

T (n, k) ≤ O(n · f(k −
√
k/2)n4

√
k−
√
k/2 + k2f(k − 1)n4

√
k−1 + n2)

≤ (f(k)/2)(n4
√
k−
√
k/2+1 + n4

√
k) ≤ f(k)n4

√
k,

where the second bound follows from choosing f(k) = kO(k) large enough to ensure k2f(k −
1) ≤ f(k)/2 and the last bound follows from the observation that 4

√
k −

√
k/2 + 1 ≤ 4

√
k if

and only if (
4
√
k −

√
k/2 + 1

)2
≤ 16k

⇐⇒ 16(k −
√
k/2) + 8

√
k −

√
k/2 + 1 ≤ 16k

⇐⇒ 8
√
k −

√
k/2 + 1 ≤ 16

√
k/2,

where the last inequality holds since 8
√
k + 1 ≤ 16

√
k/2 as k ≥ 3. C

Claims 3.5 and 3.6 show the correctness of our algorithm for Weighted DAG Implications.
By the reduction described at the beginning of the section, a similar algorithm follows for
Implications. J

4 Algorithms for NAND2-avoiding F : Reduction to Implications

In this section, we show that for any NAND2-avoiding constraint family F , we can reduce
SAT(F) to Implications. Specifically, we obtain the following theorem.

I Theorem 4.1. Let F be a NAND2-avoiding constraint family and let TIMPL(n, k) denote
the optimal running time to solve Implications. There is a constant cF and computable
f(k) such that we can solve SAT(F) in time f(k)(TIMPL(n, k) + ncF ) logn.

Together with Theorem 3.4, this gives an f(k)n4
√
k+cF -time algorithm for any NAND2-

avoiding constraint family F .
To prove the above theorem, we prepare some notation and helpful facts. Let φ be an

arbitrary formula. For any assignment a, we call a′ a minimal satisfying extension of a, if
a′ satisfies φ, a ≤ a′, and no other satisfying assignment a′′ /∈ {a, a′} fulfills a ≤ a′′ ≤ a′.
The following lemma shows that there are only f(k) many minimal extensions of weight at
most k, and these minimal extensions can be computed in time f(k)nc for some constant c
independent of k. Intuitively, this follows by using the bounded search tree technique over
violated constraints, where the depth of the search tree is bounded by k and each branching
step has at most r possibilities.

I Lemma 4.2 ([12, Lemma 2.3]). Let F be a finite constraint family of bounded arity r.
There is a constant c′F such that given any instance φ of SAT(F) and assignment a, there
are at most O(rk) minimal extensions of a of weight k, and we can compute these extensions
in time O(rknc′F ).
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As an immediate useful consequence, we obtain that for our algorithmic results, we
may assume without loss of generality that F is 0-valid, i.e., each f ∈ F is satisfied by the
all-zeroes assignment.

I Corollary 4.3 (see also [28, Lemma 4.1]). We can reduce any instance of SAT(F) with
parameter k to O(rk) many instances of SAT(F ′) with a parameter bounded by k, where F ′
is the set of all 0-valid f ′ that are represented by F .

By definition, if F does not represent NAND2, then also F ′ does not represent NAND2,
and it remains to give an f(k)(TIMPL(n, k) + ncF ) logn-time algorithm for 0-valid NAND2-
avoiding F .

In the remainder of this section, we will use the graph formulation of the Implications
problem: We are given a directed graph G = (V,E) and the task is to find a closed set S
(recall that S is closed, if for all (u, v) ∈ E we have that u ∈ S implies v ∈ S) of size k.
Recall that for any vertex set S ⊆ V , D(S) denotes the set of descendants of any vertex
s ∈ S (including the vertices in S).

Our aim is the following: Given a formula φ of SAT(F), we give a randomized construction
of an Implications instance G such that
(i) any closed set S in G corresponds to a satisfying assignment of φ, and
(ii) with large enough probability, G contains a closed set of size k if φ has a weight-k

solution.
To this end, we let V = {x1, . . . , xn} and recall that, for any set S ⊆ V , we let aS : [n]→ {0, 1}
denote a corresponding assignment with aS(i) = 1 iff xi ∈ S. From now on, we often
synonymously speak of closed sets S ⊆ V in G and the corresponding assignment aS for φ.

The rough outline is as follows: we start with the graph G = (V, ∅), and try to repeatedly
“fix” some closed set S that violates φ, by determining a (random) implication consistent
with a minimal satisfying extension of S. The main insight is that if F avoids NAND2, then
it suffices to make sure that all sets D(v) for v ∈ V are satisfying and this will automatically
ensure that every closed set is satisfying.

Let us formally describe the algorithm:
1. Given φ, initialize G = (V,E) with V = {x1, . . . , xn} and E = ∅.
2. While there exists some v ∈ V such that aD(v) violates φ, do the following:

a. Compute the set Av of minimal satisfying extensions of aD(v) of weight at most k.
b. Let X consist of all xi ∈ V \D(v) such that there is some a ∈ Av with a(i) = 1.
c. If X = ∅, delete all ancestors of v (including v) from G. Otherwise, pick x uniformly

at random from X and add the edge (v, x) to E.

The important properties of the algorithm are captured in the following lemma.

I Lemma 4.4. Let F be a finite 0-valid constraint family. There is a constant cF and a
function g(k) such that the following properties hold.
(P1) During the process, each vertex v is considered at most k times in the while loop. Thus,

the algorithm can be implemented to run in time O(g(k)ncF ).
(P2) If φ has a satisfying assignment of weight k, then with probability at least g(k)−1, there

is a closed set S in G of size k.
(P3) If F avoids NAND2, any closed set S ⊆ V in the constructed graph yields a satisfying

assignment aS for φ.

Proof. For (P1), note that whenever v ∈ V is considered in the while loop, it is either
deleted, or an edge (v, x) with x /∈ D(v) is added to the graph. Thus, when v is considered
for the k-th time, we have |D(v)| ≥ k, and thus there can be no satisfying extension of aD(v)



M. Künnemann and D. Marx 27:15

of weight at most k. Consequently, we must have Av = ∅, and thus X = ∅, which forces v to
be deleted. Thus, we have at most kn iterations of the while loop, where each iteration can
be implemented in time O(rknc′F ) by Lemma 4.2.

For (P2), assume that there is a set S of size k such that aS satisfies φ. We show that
with large enough probability, we will maintain as invariant that D(v) ⊆ S for every v ∈ S,
and thus S will be a closed set in G. To this end, we first observe that for D(v) ⊆ S to hold
for all v ∈ S, it suffices that the following property holds:

In each iteration that considers a vertex v ∈ S, the selected vertex x is in S. (3)

Indeed, if this is the case, then no v ∈ S is ever deleted. Furthermore, we have that D(v) ⊆ S
for all v ∈ S, and thus S is a closed set in G. It remains to give a lower bound on the
probability that (3) holds throughout the process.

To this end, consider the event that some v ∈ V is considered in the while loop, conditioned
that (3) has not been violated in a previous iteration. Under this event, D(v) ⊆ S, and thus
there is a minimal satisfying extension D(v) ( S′ ⊆ S such that aS′ satisfies φ and thus
aS′ ∈ Av. Let s ∈ S′ \D(v) be arbitrary, then s ∈ X by construction (note that s has not
been deleted). By Lemma 4.2, we have that |Av| ≤ O(rk). Since each a ∈ Av has weight
at most k, this yields |X| ≤ k|Av| ≤ O(krk). Thus, the probability that the random choice
is x = s is at least 1/|X| ≥ Ω(1/(krk)). Finally, we observe that by (P1), for each v ∈ S,
there are at most k iterations considering v, where each iteration has a probability of at least
Ω(1/(krk)) of not violating (3). Thus, we obtain that (3) holds with probability at least
Ω(1/(krk)k|S|) = Ω(1/(krk)k2), and the claim follows by setting g(k) := (krk)−k2 .

Finally, for (P3), note that at the end of the process, the property holds that

For all (remaining) v ∈ V, aD(v) satisfies φ. (4)

We will leverage this fact to show that aS satisfies φ for all closed sets S = D(v1)∪ ...∪D(v`)
for v1, . . . , v` ∈ V . We first transform the graph G to a DAG by contracting all strongly
connected components C = {v1, . . . , vc} to a single vertex vC representing the set C. Note
that the closed sets in the DAG remain in a one-to-one correspondence to the closed sets
of the original graph (and the corresponding assignments to φ), thus this transformation is
without loss of generality. Thus, we may assume that G has a topological ordering v1, . . . , vn′

of its vertices (n′ ≤ n). We will prove by induction on i = n′, ..., 1 that for all closed sets
S ⊆ {vi, ..., vn′}, aS satisfies φ.

For the base case i = n′, we only need to verify that (i) the all-0 assignment satisfies φ,
which holds by 0-validity of F , and (ii) that avn′ satisfies φ, which holds by (4) (as D(vn′) =
{vn′}). Thus, for i < n′, let us assume that the claim holds for i+ 1. Consider any closed set
U ⊆ {vi, . . . , vn′}. If U does not contain vi, the claim follows by inductive assumption, thus
let us assume that vi ∈ U and thus U ⊇ D(vi), as U is closed. If U = D(vi), aU satisfies φ
by (4). Thus, it remains to consider U ) D(vi), for which we assume for contradiction
that aU violates φ. Let W := U \ D(vi), and note that D(W ) ⊆ U is a closed set in
{vi+1, . . . , vn′}. Thus, by inductive assumption, aD(W ) satisfies φ. Furthermore, observe that
Z := D(vi)∩D(W ) is a closed set in {vi+1, . . . , vn′} (since the intersection of any two closed
sets yields a closed set). Thus, aZ satisfies φ by inductive assumption. It remains to show
that the fact that aD(vi), aD(W ) and aZ = aD(vi)∩D(W ) all satisfy φ, while aU = aD(vi)∪D(W )
violates φ, gives a contradiction to F avoiding NAND2.

To this end, let C be a constraint violated by aU and note that C = f(xi1 , . . . , xir)
for some f ∈ F and i1, . . . , ir ∈ [n]. Note that we can view f as f : {0, 1}Vc → {0, 1} for
some appropriate variable set VC . We show how to obtain NAND2 as a restriction of f by
partitioning VC into X ′ := (D(vi) \ Z) ∩ VC , Y ′ := (D(W ) \ Z) ∩ VC , Z1 := Z ∩ VC , Z0 :=
VC \ (X ′ ∪ Y ′ ∪ Z1) and observing that

CCC 2020



27:16 A Fine-Grained Perspective into Boolean Constraint Satisfaction

f(
X′︷ ︸︸ ︷

0 . . . 0,
Y ′︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1, [since aZ satisfies C]
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 1, [since aD(vi) satisfies C]
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1, [since aD(W ) satisfies C]
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 0. [since aD(W )∪D(vi) violates C] J

It remains to give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Corollary 4.3, we may assume without loss of generality that F
is 0-valid. We repeat the following process g(k) many times: We use the above algorithm
to generate an Implications instance G, and return YES if G contains a closed set of
size k, which we determine using an optimal Implications algorithm. If none of the g(k)
iterations were successful, we return NO. Note that this approach can be implemented in time
g(k)O(g(k)ncF + TIMPL(n, k)) by (P1), and correctly decides the instance with probability
at least 1− (1− 1/g(k))g(k) ≥ 1− 1/e by (P2) and (P3).

The algorithm described above can be derandomized using the standard technique of
Color Coding [4]. In each iteration when vertex v is considered, a random vertex x is selected
from a set X of at most K = O(krk) vertices. As each vertex is considered at most k times,
we can represent the random choices by a function r : V → [K]k, with the meaning that
r(v) is the vector of choices made when considering vertex v. As discussed in the proof of
Lemma 4.4, when considering vertices v ∈ S, these random choices need to be consistent
with S to ensure that S is a closed set in the resulting graph. That is, for each v ∈ S there
is a vector c(v) ∈ [K]k such that if the random choice satisfies r(v) = c(v) for every v ∈ S,
then S is a closed set.

We say that a family H of functions h : [n] → [k] is a (n, k)-perfect family of hash
functions if for every S ⊆ V of size k, there is an h ∈ H that is injective on S, i.e., assigns
different values to different elements of S. It is known that a (n, k)-perfect family of size
2O(k) logn can be computed in time 2O(k)n logn [4]. The derandomized algorithm would
first compute such a family H over V and would iteratively go through every h ∈ H and
function q : [k]→ [K]k. For a given choice of h and q, we define the function r(v) = q(h(v))
and run the randomized algorithm using this function r instead of the random choices. It is
easy to see that the definition of (n, k)-perfect hash functions implies that there is at least
one choice of h and q where r(v) is exactly the prescribed value c(v) for every v ∈ S and
therefore the randomized algorithm correctly finds the solution S. As we are considering
at most |H| = 2O(k) logn functions h and Kk2 different functions q, there is a function f(k)
such that the total running time is at most f(k) logn times a single run of the randomized
algorithm. J

5 Algorithms for NAND-representing F : Reduction to Clique

In this section, we develop algorithm for constraint families that might represent NAND2,
but avoid NANDd for some d ≥ 3. To this end, we give a reduction to (d− 1)-uniform Hyper-
Clique for NANDd-avoiding families, giving in particular a f(k)n(ω/3)k+cF -time algorithm
for NAND3-avoiding families.

We first start with a natural reduction of SAT(F) for any F with arity bounded by r
to r-uniform HyperClique, based on color-coding. To this end, let Td-HC(n, k) denote the
optimal running time of finding a k-clique in a d-uniform hypergraph.

I Proposition 5.1. Let F be a constraint family of arity at most r. Then SAT(F) can be
solved in time f(k)(n2r + Tr-HC(n, k)) logn.
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Proof. Let φ be an arbitrary SAT(F) formula. Observe that any constraint C of φ depends
only on a set vars(C) ⊆ {x1, . . . , xn} of at most r variables. For an assignment a, we let
C(a) ∈ {0, 1} denote whether C is satisfied by a.

We first show how to determine, given a partition of x1, . . . , xn into k sets X1, . . . , Xk,
whether there is a solution that sets precisely one variable in each Xi to true. To this end, we
construct a hypergraph G with vertex setX1∪X2∪· · ·∪Xk and the following set of hyperedges:
we include each possible hyperedge e = {xj1 , . . . , xjr} with xj1 ∈ Xj1 , . . . , xjr ∈ Xjr and
distinct j1, . . . , jr ∈ [k] unless there exists a clause C with vars(C) ⊆ Xj1 ∪ · · · ∪Xjr which
is violated by the assignment that sets precisely the variables e = {xj1 , . . . , xjr} to 1, i.e.,
C(ae) = 0.

We claim that H := {xi1 , . . . , xik} with xi1 ∈ X1, . . . , xik ∈ Xk yields a k-clique in G if
and only if the assignment aH satisfies φ. Indeed, assume that there is a clause C violated by
aH . Note that as C has arity at most r, we have vars(C) ⊆ Xj1 ∪ · · · ∪Xjr for some distinct
i1, . . . , ir ∈ [k] (if C involves variables of less than r sets, we may use arbitrary additional
sets). Thus, e := {xj1 , . . . , xjr} cannot be an edge in G, since aH violates C, ae and aH
agree on vars(C), and thus also ae violates C. Conversely, if there is some e := {xi1 , . . . , xir}
with distinct i1, . . . , ir ∈ [k] such that e is not an edge in G, then there exists some clause C
with vars(C) ⊆ Xi1 ∪ · · · ∪Xir which is violated by ae. Since aH and ae agree on vars(C),
we conclude that also aH violates C and thus φ.

To create the desired k-partition of variables, we use a (deterministic) color-coding scheme:
Let H be a (n, k)-perfect family of hash functions h : [n]→ [k] – recall that this means that for
any S = {s1, . . . , sk} ⊆ [n], there exists some h ∈ H such that {h(s1), . . . , h(sk)} = {1, . . . , k}.
Known efficient constructions [32, 4] produce such assignments with ` = 2O(k) log(n) in time
2O(k)n logn. Given this family, we create for each h ∈ H the k-partition X(h)

1 , . . . , X
(h)
k with

X
(h)
j = {xs | h(s) = j} and solve the corresponding r-uniform HyperClique instance in time

Tr-HC(n, k). If any of these instances returns a solution, then indeed φ has a satisfiable
assignment of weight k. Conversely, if aS is a weight-k satisfying assignment for φ, then by
construction, there exists a hash function h ∈ H such that |S∩X(h)

j | = 1 for j = 1, . . . , k, and
thus the corresponding r-uniform HyperClique instance indeed contains a solution. For each
of the 2O(k) log(n) hash functions, the time to construct and solve the d-uniform HyperClique
instance is bounded by O(n2r + Tr-HC(n, k)), concluding the claim. J

The main result in this section is the following reduction from NANDd+1-avoiding
constraint families to d-uniform HyperClique.

I Theorem 5.2. Let d ≥ 2 and F be an NANDd+1-avoiding constraint family. If there are
constants γ ≥ d/(d+1) and c, and a computable g(k) such that d-uniform HyperClique can be
solved in time g(k)nγk+c, then there is a constant c′ and computable g′(k) such that SAT(F)
can be solved in time g′(k)nγk+c′ .

In particular, since we can find k-cliques in graphs in timeO(nω3 k+1), we obtain an g(k)nω3 k+c′ -
time algorithm for solving SAT(F) for all NAND3-avoiding constraint families. Similarly, if
for d ≥ 3 the d-uniform HyperClique conjecture is refuted by exhibiting a g(k)n(1−ε)k+c-time
algorithm for some constants 0 < ε < 1/(d+ 1) and c, we would obtain a g′(k)n(1−ε)k+c′ -time
algorithm for SAT(F) for NANDd+1-avoiding families F .

In the remainder of the section, we give the proof of Theorem 5.2. The main task of the
algorithm is to detect robust assignments, defined as follows.

I Definition 5.3. Let a : [n]→ {0, 1} be a weight-k assignment that satisfies φ. We say that
a is d-robust if there is no assignment a′ ≤ a of weight at most d that violates φ.
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The first step of the algorithm is the easier task of detecting satisfying assignments that
are not d-robust (if there exists any): Intuitively, an assignment that is not d-robust offers
an advantage to find it: Assume we correctly guess an assignment a′ ≤ a of weight w ≤ d

such that some clause C is violated by a′, then to extend a′ to the satisfying assignment a,
we know that at least one additional variable in C must be set to true. By bruteforcing over
the at most r−w ≤ r many possibilities, we gain an advantage. Specifically, by enumerating
O(nwr) = O(nw) many possibilities, we can fix w + 1 true variables in our solution.

Let T (n, k) denote the time our algorithms takes to solve an arbitrary SAT(F) instance for
a NANDd+1-avoiding family F . In a preprocessing step, we first enumerate all assignments a′
of weight at most d. If there exists a clause Ca′ that is violated by a′, then we enumerate
all variables x ∈ vars(Ca′) \ ones(a′) (recall that vars(C) is the set of variables involved
in C and ones(a) denotes the set of variables set to 1 under a). We recursively determine
satisfiability of the formula φa′,x obtained by restricting all variables in ones(a′)∪{x} to true.
Disregarding the time to determine existence of violated clauses Ca′ , this step takes time

d∑
w=0

∑
weight-w

assignment a′

∑
x∈vars(Ca′ )\ones(a′)

T (n, k − (w + 1)) ≤
d∑

w=0
O(nw)T (n, k − (w + 1)). (5)

To determine a violated clause Ca′ (if it exists) for all weight-(≤ d) assignments a′, we simply
traverse each clause C, determine the at most

∑d
w=0

(
r
w

)
= O(1) weight-(≤ d) assignments

violating C and store C as violated for each of these assignments (if no other clause is already
stored). This step takes time O(m) = O(nr) in the beginning.

After this preprocessing, it remains to consider d-robust assignments. To determine
whether a d-robust assignment satisfies φ, we define a formula φd that is satisfied only by
satisfying assignments of φ, and particularly by all d-robust satisfying assignments of φ. To
this end, let Fd contain all assignments of weight at most d that violate some clause C of φ,
and define

φd :=
∧
a∈Fd

NAND(ones(a)).

I Lemma 5.4. The constructed formula φd has the following properties:
(P1) If F is NANDd+1-avoiding, then any satisfying assignment a of φd is a satisfying

assignment of φ.
(P2) If a is a d-robust satisfying assignment of φ, then a satisfies φd.

Proof. To prove (P1), we will make use of the following property.

B Proposition 5.5. Let F be a NANDd+1-avoiding family. Then if an assignment a violates
some clause C (chosen from F), there is an assignment a′ ≤ a of weight at most d that
violates C.

Proof. We prove the claim via induction on the weight w of the clause C under a. If w ≤ d,
the claim trivially holds. To prove the inductive step, we may assume for contradiction
that there is an assignment a of weight w ≥ d+ 1 violating some clause C = f(x̄), but no
assignment a′ ≤ a of weight at most w − 1 violates C. We will show that NANDd+1 can be
obtained as a restriction of f . To this end, choose some set S ⊆ ones(a)∩vars(C) of size d+1
(which is possible as w ≥ d+ 1), and partition vars(C) into S, Z1 := (ones(a) ∩ vars(C)) \ S
and Z0 := vars(C) \ (S ∪ Z1). Observe that we have
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f(
S︷ ︸︸ ︷

y1 . . . yd+1,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1) = 1, if (y1, . . . , yd+1) 6= (1, . . . , 1)

f( 1 . . . 1 , 0 . . . 0, 1 . . . 1) = 0. [since a violates C]

where the first line follows since no assignment a′ ≤ a of weight at most w − 1 violates C,
yielding a contradiction. C

To prove (P1), assume that an assignment a violates some clause C of φ. Since F is
NANDd+1-avoiding, by Proposition 5.5 there exists an assignment a′ ≤ a of weight at most d
such that a′ violates C. Thus, φd contains a clause NAND(ones(a′)), which is violated by a,
as a′ ≤ a.

To prove (P2), assume for contradiction that a d-robust assignment a satisfies φ but
not φd. Then there is some a′ ∈ Fd such that NAND(ones(a′)) is violated by a, i.e., a′ ≤ a.
As a′ ∈ Fd, there must be a clause C of φ that is violated by a′ ≤ a, which proves that a is
not d-robust and thus yields a contradiction. J

Note that φd is a SAT(F ′) formula with constraint family F ′ = {NANDj | 2 ≤ j ≤
d} of arity d. Thus, by Proposition 5.1, we can determine satisfiability of φd in time
f(k)(n2d + Td-HC(n, k)) logn. We obtain the following recurrence by combining (5), the
O(m)-time preprocessing to determine violated classes Ca′ , and f(k)(n2d +Td-HC(n, k)) logn
to solve φd:

T (n, k) = O(m) + f(k)(n2d + Td-HC(n, k)) logn+
d∑

w=0
O(nw)T (n, k − (w + 1)) (6)

Assume that there are γ ≥ d/(d+ 1) and c such that Td-HC(n, k) ≤ g(k)nγk+c. We will
show that T (n, k) = g′(k)O(nγk+c′) for any c′ > max{c, 2r} and g′(k) = f(k)g(k).

We prove the claim via induction on k. The base case is k < c′, in which case we can solve
SAT(F) in time f(k)(n2r + Tr-HC(n, k)) logn = f(k)O((n2r + nk) logn) ≤ O(nc′), satisfying
the claim. Thus, let us assume that k ≥ c′ and that the claim holds for all k′ ≤ k − 1.
Using (6), we obtain

T (n, k) ≤ O(m) + f(k)(n2d + g(k)nγk+c) logn+ g′(k)
(

d∑
w=0

O(nw)nγ(k−w+1)+c′
)

≤ g′(k) logn · O
(
n2r + nγk+c +

d∑
w=0

nw+γ(k−(w+1))+c′
)

≤ g′(k) logn · O
(
n2r + nγk+c + nγk+c′

)
= g′(k)O(nγk+c′),

where in the second line, we used that g′(k) = f(k)g(k), and in the last line we used that
γ(w + 1) ≥ w as γ ≥ d/(d + 1) ≥ w/(w + 1) for w ≤ d, as well as our choice of c′ which
satisfies c′ > c and γk + c′ ≥ c′ > 2r.

6 Hardness Results

In this section, we give our hardness results. To this end, we first consider Implications =
SAT(IMPL) and give a f(k)n(ω/6−o(1)) 3√

k-lower bound under the k-clique conjecture. Af-
terwards, we handle the case of NANDd- or IMPL-representing families, by reducing from
d-uniform (Hyper)Clique or Implications, respectively.
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6.1 Hardness for Implications
I Theorem 6.1. If Implications can be solved in time f(k)n(ω/6−ε) 3√

k+c for some ε > 0, c
and f(k), then the k-Clique conjecture fails.

Proof. Let G = (V,E) be an undirected graph. We construct an Weighted DAG Impli-
cations instance G′ = (V ′, E′, w′) with parameter k′ = k ·K +

(
k
2
)
with K :=

(
k
2
)

+ 1 as
follows. The vertex set V ′ is the disjoint union of vertex nodes V ′V := {vu | u ∈ V } and edge
nodes V ′E := {ve | e ∈ E}. For every e = {u,w} ∈ E, we introduce the edges (ve, vu), (ve, vw)
to E′. Furthermore, we set the weights of vertex nodes to K, and the weights of edge nodes
to 1.

B Claim 6.2. There is a closed set X of weight k′ in G′ if and only if there is a k-clique in G.

Proof. Let C = {v1, . . . , vk} be a k-clique in G. Observe that X = {vu | u ∈ C} ∪ {ve | e ∈(
C
2
)
} is a closed set in G′ of weight |C|K +

(|C|
2
)

= k ·K +
(
k
2
)

= k′.
For the converse, assume that X is a closed set in G′ of weight k′. Setting XV := X ∩ V ′V

and XE := X ∩ V ′E , we show the following sequence of facts:
1) XE ⊆

(
XV
2
)
: note that X is only closed if for all v{u,w} ∈ XE , we have vu, vw ∈ XV .

2) |XV | = k and |XE | =
(
k
2
)
: note that if |XV | < k, then |XE | ≤

(
k−1

2
)
by 1) and thus the

weight of X is |XV |K + |XE | ≤ (k − 1)K +
(
k−1

2
)
< kK +

(
k
2
)

= k′. Furthermore, if
|XV | > k, then the weight of X is at least |XV |K ≥ (k+ 1)K = kK +

(
k
2
)

+ 1 > k′. Thus,
we have |XV | = k, and hence we must have |XE | =

(
k
2
)
for |XV |K + |XE | = k′ to hold.

3) XV forms a k-clique in G: Facts 1) and 2) require that XE =
(
XV
2
)
, which implies that

E contains all edges between vertices of XV .
The last statement concludes the proof of the claim. C

Assume that for some c and ε > 0, there is an Implications algorithm running in
time f(k)n(ω/6−ε) 3√

k+c. Given a k-clique instance G, we run the above reduction to create
a Weighted DAG Implications instance G′ with parameter k′ ≤ (k + 1)(

(
k
2
)

+ 1) =
(k3 + k + 2)/2 ≤ k3 for k ≥ 2. Observe that G′ has O(n2) nodes and can be converted to
an equivalent Implications instance G′′ with the same parameter k′ and O(k2n2) nodes
by simulating each node weight w by a cycle of w nodes. Now, we determine whether
G′′ has a closed set of weight k′ ≤ k3 using the Implications algorithm and thus decide
k-clique in time f(k3)O((k2n2)(ω/6−ε)k+c) = f(k3)kO(k)n(ω/3−2ε)k+2c, refuting the k-Clique
conjecture. J

6.2 Hardness for SAT(F)
In this section, we give our hardness results for general constraint families F by reducing
from (d-uniform Hyper-)Clique either via the independent set problem or via Implications.

To obtain these results, we frequently have to plug-in constant 0s or 1s to obtain our
desired constraints. Technically, this is a non-trivial step, as we need to enforce some variables
to be assigned fixed values without blowing up the number of variables or the weight of the
desired solution. To facilitate our proofs, we first formalize the problem variant that allows
us to plug-in constants freely.

I Definition 6.3. Let F be an arbitrary constraint family and Σ ⊆ {0, 1}. The problem
SATΣ(F) asks to determine whether a given formula φ with Boolean variables x1, . . . , xn
has a satisfying assignment of weight k, where φ is a conjunction of m constraints of the
form f(x), where f : {0, 1}r → {0, 1} is a constraint function in F and x is an r-tuple
over {x1, . . . , xn} ∪ Σ (any variable or constant c ∈ Σ may be used repeatedly). Note that
SAT∅(F) = SAT(F).
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Ideally, we would like to show that SAT{0,1}(F) is equivalent to SAT(F). More specifically,
we would like to employ reductions of the following form.

I Definition 6.4. Let F be an arbitrary constraint family, and Σ,Σ′ ⊆ {0, 1} be disjoint.
We say that SATΣ(F) expresses Σ′, if there is a constant c such that the following holds: For
any formula φ of SATΣ∪Σ′(F) and parameter k, we can compute, in linear time, a formula
φ′ of SATΣ(F) with parameter k′ := k+ c such that φ has a satisfying assignment of weight k
if and only if φ′ has a satisfying assignment of weight k′.

Indeed, for 0-invalid F , we can show that SAT(F) expresses {0, 1} (this is straightforward
and was already shown in [28]). For 0-valid F , however, expressing the constant 1 in general
appears impossible. To still give tight hardness results for F whenever it represents a hard
function g, we make use of a stronger notion that captures whether we can obtain g already as
a restriction that avoids the constant 1. Formally, let f : {0, 1}r → {0, 1}, g : {0, 1}s → {0, 1}
be arbitrary Boolean functions. We say that a function f contains g as a 0-restriction if
g is obtained from f by replacing each argument of f either by an argument of g or the
constant 0, i.e., we can partition [r] into X1, . . . , Xs, Z0 such that

g(x1, . . . , xs) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs,

Z0︷ ︸︸ ︷
0 . . . 0).

Using careful constructions, we can prove the following central technical lemma.

I Lemma 6.5. Let F be an arbitrary constraint family and let g be IMPL or NANDd for
some d ≥ 2. If some f ∈ F contains g as a restriction, then SAT(F) expresses {0, 1}, or
SAT(F) expresses 0 and f contains g already as a 0-restriction.

Postponing the proof of the above lemma to the Sections 6.3 and 6.4, we can give the
proof of our hardness results.

I Theorem 6.6 (Hardness for SAT(F)). Let F be a constraint family.
1. If F represents IMPL, then SAT(F) cannot be solved in time f(k)n(ω/6−ε) 3√

k+c for any
computable f(k) and constants c, ε > 0, unless the k-Clique conjecture fails.

2. If F represents NAND2, then SAT(F) cannot be solved in time f(k)n(ω/3−ε)k+c for any
computable f(k) and constants c, ε > 0, unless the k-Clique conjecture fails.

3. If F represents NANDd with d ≥ 3, then SAT(F) cannot be solved in time f(k)n(1−ε)k+c

for any computable f(k) and constants c, ε > 0, unless the d-uniform HyperClique
conjecture fails.

Proof. First, we observe that Implications reduces to SAT(IMPL) such that

TImplications(n, k) ≤ O(TSAT(IMPL)(n, k)). (7)

Indeed, given any directed graph G = (V,E) with V = {v1, . . . , vn}, we define the formula φ
with variables x1, . . . , xn and the set of constraints obtained by including xi ⇒ xj for all
(vi, vj) ∈ E. Note that for any S ⊆ [n], {vi}i∈S is a valid set in G iff aS is a satisfying
assignment of φ, yielding (7).

Similarly, we observe that the d-uniform HyperClique problem reduces to SAT(NANDd)
such that

Td-HC(n, k) ≤ O(TSAT(NANDd)(n, k)). (8)
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Indeed, given any d-uniform hypergraph G = (V,E) with |V | = n, we define the for-
mula φ with variables x1, . . . , xn and the constraints obtained by including, for each distinct
vi1 , . . . , vid ∈ V such that (vi1 , . . . , vid) /∈ E, the constraint NANDd(xi1 , . . . , xid). Observe
that (vi1 , . . . , vik) ∈ V k is a hyperclique in G iff the weight-k assignment with xi` = 1 for all
` ∈ [k] satisfies φ, yielding (8).

It remains to show that whenever some f ∈ F contains g ∈ {IMPL} ∪ {NANDd | d ≥ 2}
as a restriction, then there is a computable f ′(k) and constant c′ such that

TSAT(g)(n, k) ≤ f ′(k) · TSAT (F)(n, k + c′). (9)

Indeed, if SAT(F) expresses {0, 1}, then

TSAT(g)(n, k) ≤ O(TSAT{0,1}(F)(n, k)) ≤ f ′(k)O(TSAT(F)(n, k + c′)).

Here the first inequality follows by replacing each occurrence of a constraint g(xi1 , . . . , xid) of
SAT(g) by the corresponding restriction f(g1(xi1 , . . . , xid), . . . , gr(xi1 , . . . , xid)) of
SAT{0,1}(F). The second inequality follows from the definition of SAT(F) expressing {0, 1}.

In the other case, SAT(F) expresses only 0, but f contains g already as a 0-restriction.
Then we have

TSAT(g)(n, k) ≤ O(TSAT{0}(F)(n, k)) ≤ f ′(k)O(TSAT(F)(n, k + c′)),

as replacing each occurrence of a constraint g(xi1 , . . . , xid) of SAT(g) by the corresponding
restriction f(g1(xi1 , . . . , xid), . . . , gr(xi1 , . . . , xid)) does not require the use of the constant 1.
The second inequality again follows from the definition of SAT(F) expressing 0.

As a consequence, by (7) and (9), a f(k) · O(n(ω/6−ε) 3√
k+c) SAT(F) algorithm for an

IMPL-representing family F would then give an Implications algorithm running in time

f(k)f ′(k)O(n(ω/6−ε) 3√k+c′+c) = f ′′(k)O(n(ω/6−ε) 3√
k+c′′),

where f ′′(k) = f(k)f ′(k) and c′′ ≤ c + 3
√
c′. This would refute the k-Clique conjecture by

Theorem 6.1, concluding 1.
Similarly, a f(k) · O(nγk+c) SAT(F) algorithm for an NANDd-representing family F

would give a d-uniform HyperClique algorithm running in time

f(k)f ′(k)O(nγk+c+c′) = f ′′(k)O(nγk+c′′),

where f ′′(k) = f(k)f ′(k) and c′′ = c+ c′. This yields 2. and 3. by the k-Clique or d-uniform
HyperClique conjecture, respectively. J

In the remainder of the section, we prove Lemma 6.5. We split the proof in two cases,
depending on whether f is 0-invalid (Lemma 6.7) or 0-valid (Corollary 6.14).

6.3 Proof of Lemma 6.5: 0-invalid case
Let f be such that we can obtain IMPL or NANDd for d ≥ 2 as a restriction. Note that if it
contains NANDd, d > 2 then it also must contain NAND2 as a restriction.

In this section, we consider the case that f(y1, . . . , yr) is not 0-valid, i.e., the all-zeroes
assignment u1 = · · · = ur = 0 does not satisfy f .

I Lemma 6.7. If f contains IMPL or NAND2 as a restriction and f is 0-invalid, then
SAT(F) expresses {0, 1}.
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The above result in fact follows from the following claim.

B Claim 6.8. Let f be as above. Given a parameter k′, we can compute, in time O(k′), a
formula φ0,1 of SAT(F) with variables y, z1, . . . , zk′+1 such that the only satisfying assignment
of weight at most k′ is y = 1, z1 = · · · = zk′+1 = 0.

Indeed, let us assume the above claim, and take any formula φ of SAT{0,1}(F) with
parameter k. We construct φ0,1 with parameter k′ := k + 1 and define the formula φ′

on variable set x1, . . . , xn, y, z1, . . . , zk′+1 where we include all constraints of φ0,1 and all
constraints of φ, replacing each use of the constant 0 by z1 and each use of the constant 1
by y. This yields a formula of SAT(F) with the property that for any weight-k solution
x1, . . . , xn of φ, the corresponding assignment that sets y = 1 and z1 = · · · = zk′+1 = 0 is a
weight-(k + 1) solution of φ′. Conversely, any (k + 1)-weight solution of φ′ must set y = 1
and z1 = 0 by the above claim, and hence the assignment to x1, . . . , xn must also satisfy φ.
Observe that this proves Lemma 6.7.

Proof of Claim 6.8. We first give a set of constraints that enforces y = 1. To this end, let
S ⊆ [r] be such that aS satisfies f ; observe that S exists and is non-empty (otherwise f
contains neither IMPL nor NAND2 as a restriction). For each j = 1, . . . , k′ + 1, define the
constraint Cj obtained by plugging in y for each ui with i ∈ S (i.e., all arguments set to 1
under aS), and zj for all other values. We claim that any weight-(≤ k′) assignment satisfying∧k′+1
j=1 Cj sets y = 1: by the weight restriction, at least one of z1, . . . , zk′+1 must be equal

to 0, say zj∗ . Then setting y = 0 would falsify Cj∗ , as then all its arguments are 0. Note,
however, that the desired assignment y = 1, z1 = · · · = zk′+1 = 0 satisfies

∧k′+1
j=1 Cj .

It remains to give additional constraints enforcing that zj = 0 for all j ∈ [k′ + 1]. As
a first step, we find S ( T such that f(aS) = 1 but f(aT ) = 0: Since f represents IMPL
or NAND2, there is a partition of [r] into X,Y, Z0, Z1 such that one of the following set of
equalities hold:

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 0.

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 0.

In both cases, the first and fourth line yield sets S ( T with f(aS) = 1 and f(aT ) = 0
(specifically, for S = Z1 and T = X ∪ Z1 or for S = Z1 and T = X ∪ Y ∪ Z1).

Given such S, T , for each j, j′ ∈
([r]

2
)
, we define the constraint C ′j,j′ obtained from

f(u1, . . . , ur) by plugging-in y for all ui with i ∈ S, zj for all i ∈ T \ S and zj′ for all other i.
Note that any satisfying assignment of weight at most k sets at least one of z1, . . . , zk′+1
to 0, say zj∗ . Observe that the constraint C ′j,j∗ is satisfied iff zj = 0, as setting zj to
0 or 1 corresponds to the assignments aS (satisfying) or aT (unsatisfying), respectively.
Furthermore, observe that setting y = 1 and z1 = · · · = zk′+1 = 0 indeed satisfies all
C ′j,j′ . This concludes the claim that the only satisfying assignment of weight at most k′ is
y = 1, z1 = · · · = zk′+1 = 0. C

6.4 Proof of Lemma 6.5: 0-valid case
In this section, we consider the case that f(y1, . . . , yr) is 0-valid, i.e., the all-zeroes assignment
u1 = · · · = ur = 0 satisfies f . We first observe that we can still express at least the constant 0.

I Lemma 6.9. If some f ∈ F contains IMPL or NAND2 as a restriction and f is 0-valid,
then SAT(F) expresses 0.
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Proof. Observe that it suffices to show how to construct, given a parameter k, a formula
on variables z1, . . . , zk+1 such that the only satisfying assignment of weight at most k sets
z1 = · · · = zk+1 = 0.

To this end, assume first that f is not satisfied by the all-ones assignment. Then, the
formula

∧k+1
i=1 f(zi, . . . , zi) is trivially only satisfied by the assignment z1 = · · · = zk+1 = 0.

Otherwise, observe that there must be a non-empty set S ( [r] such that aS does not
satisfy f (otherwise f would be a trivial constraint and could contain neither of IMPL and
NAND2). For each i, i′ ∈ [k + 1], we define the constraint Ci,i′ obtained by using zi for all
arguments in S, and zi′ for all arguments not in S. Observe that Ci,i′ ∧ Ci′,i forces zi = zi′ ,
and thus z1 = · · · = zk+1, which is satisfied by an assignment of weight at most k if and only
if the common value is 0. J

Interestingly, for 0-valid f , containing IMPL as a restriction is equivalent to containing
IMPL already as a 0-restriction.

I Lemma 6.10. If f contains IMPL as a restriction and is 0-valid, then f contains IMPL
already as a 0-restriction.

Proof. Since f : {0, 1}r → {0, 1} contains IMPL as a restriction, we can partition [r] into
sets X,Y, Z0, Z1 and write

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 0.

(10)

Assume first that

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

1 . . . 1,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

0 . . . 0) = 0. (11)

Then, we obtain IMPL as a 0-restriction by setting X ′ := Y, Y ′ := Z1, Z
′ := X ∪ Z0 and

observing that

f(
X′=Y︷ ︸︸ ︷
0 . . . 0,

Y ′=Z1︷ ︸︸ ︷
0 . . . 0,

Z′=X∪Z0︷ ︸︸ ︷
0 . . . 0 ) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by (11)]

Otherwise, if (11) does not hold, then we obtain IMPL as a 0-restriction by setting X ′ :=
X ∪ Z1, Y

′ := Y,Z ′ := Z0 and observing that

f(
X′=X∪Z1︷ ︸︸ ︷

0 . . . 0 ,

Y ′=Y︷ ︸︸ ︷
0 . . . 0,

Z′=Z0︷ ︸︸ ︷
0 . . . 0) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [by ¬(11)]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by (10)]

J

It remains to handle the case that f contains NANDd as a restriction. We first observe
that if f contains IMPL as a 0-restriction, then SAT0(F) even expresses the constant 1.
(Thus, afterwards, we may assume that f does not contain IMPL as a 0-restriction.)
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I Lemma 6.11. If some f ∈ F contains IMPL as a 0-restriction, then SAT0(F) expresses 1.

Proof. Given any formula φ of SAT{0,1}(F) on variables x1, . . . , xn, we construct a formula φ′
on variables x1, . . . , xn, y as follows: Since some f ∈ F contains IMPL as a 0-restriction, we
can express, for any variables v, v′, the implication v ⇒ v′ by a corresponding constraint of
SAT0(F). We construct n such constraints to enforce

∧n
j=1(xj ⇒ y). Subsequently, we may

use y to replace any use of the constant 1 to convert the constraints of φ to constraints of
the SAT0(F)-formula φ′.

To argue correctness, note that any satisfying weight-k assignment of φ yields a satisfying
weight-(k + 1) assignment of φ′ by setting y = 1. Conversely, note that any weight-(k + 1)-
assignment of φ′ must set y = 1 (since k ≥ 1 implies that at least one variable xi is set to
one, which enforces y = 1 by the corresponding implication xi ⇒ y) and thus corresponds to
a weight-k assignment to x1, . . . , xn satisfying φ. J

In the remainder of this section, we assume that f contains NANDd as a restriction,
but does not contain IMPL as a 0-restriction, and the aim is to find NANDd already as a
0-restriction.

I Lemma 6.12. For any 0-valid f , if f does not contain IMPL as a 0-restriction, then
whenever f(aS) = f(aT ) = 1 with S ⊆ T , then f(aT\S) = 1.

Proof. If S = T , there is nothing to show, so let S ( T and assume for contradiction that
f(aT\S) = 0. We obtain IMPL as a 0-restriction as follows:

f(
X=T\S︷ ︸︸ ︷
0 . . . 0 ,

Y=S︷ ︸︸ ︷
0 . . . 0,

Z=[r]\T︷ ︸︸ ︷
0 . . . 0 ) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [f(aS) = 1]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [f(aT ) = 1]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by assumption]

This yields the claim. J

We can finally obtain NANDd as a 0-restriction.

I Lemma 6.13. If f contains NANDd as a restriction, does not contain IMPL as a 0-
restriction and is 0-valid, then f contains NANDd already as a 0-restriction.

Proof. Since f : {0, 1}r → {0, 1} contains NANDd as a restriction, we can partition [r] into
sets X1, . . . , Xd, Z0, Z1 such that XI :=

⋃
i∈I Xi with I ⊆ [d] satisfies:

f(aXI∪Z1) =
{

0 if I = [d],
1 if I ( [d].

(12)

We claim that the partition X ′i := Xi for i < d, X ′d := Xd∪Z1, Z ′ := Z0 provides NANDd

as a 0-restriction: Letting X ′I :=
⋃
i∈I X

′
i, this follows from

f(aX′
I
) =

{
0 if I = [d],
1 if I ( [d].

(13)

To verify (13), note first that f(aX′[d]
) = f(aX[d]∪Z1) = 0 by (12). Second, let I ( [d].

If d ∈ I, then f(aX′
I
) = f(aXI∪Z1) = 1 by (12). Otherwise, if d /∈ I, then we have

f(aX′
I
) = f(aXI ) = 1 by Lemma 6.12 (for this, note that f does not contain IMPL as

0-restriction and that f(aXI∪Z1) = f(aZ1) = 1). This concludes the claim. J
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The proof of this section is summarized in the following corollary.

I Corollary 6.14. If f contains g ∈ {IMPL}∪
⋃
d≥2{NANDd} and f is 0-valid, then SAT(f)

expresses {0, 1}, or SAT(f) expresses 0 and contains g as a 0-restriction.

Proof. If g = IMPL, then f contains g already as a 0-restriction by Lemma 6.10 and SAT(f)
expresses {0, 1} by Lemmas 6.9 and 6.11.

If g = NANDd, then either f also contains IMPL as a 0-restriction, in which case SAT(f)
expresses {0, 1} by Lemmas 6.9 and 6.11, or it does not contain IMPL as a 0-restriction, and
thus f contains g as a 0-restriction by Lemma 6.13 and SAT(f) expresses 0 by Lemma 6.9. J
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Abstract

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas
and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering
the challenge to establish strong lower bounds in the regime between balanced constant-degree
expanders as in [Ben-Sasson and Wigderson ’01] and highly unbalanced, dense graphs as in [Raz ’04]
and [Razborov ’03, ’04]. We obtain our results by revisiting Razborov’s pseudo-width method for
PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the
power of the pseudo-width method, and we believe it could potentially be useful for attacking also
other longstanding open problems for resolution and other proof systems.
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28:2 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

1 Introduction

In one sentence, proof complexity is the study of efficient certificates of unsatisfiability for
formulas in conjunctive normal form (CNF). In its most general form, this is the question of
whether coNP can be separated from NP or not, and as such appears out of reach for current
techniques. However, if one instead focuses on concrete proof systems, which can be thought
of as restricted models of nondeterministic computation, this opens up the view to a rich
landscape of results.

One line of research in proof complexity has been to prove superpolynomial lower
bounds for stronger and stronger proof systems, as a way of approaching the distant goal
of establishing NP 6= coNP. A perhaps even more fruitful direction, however, has been to
study different combinatorial principles and investigate what kind of reasoning is needed to
efficiently establish the validity of these principles. In this way, one can quantify the “depth”
of different mathematical truths, measured in terms of how strong a proof system is required
to prove them.

In this paper, we consider the proof system resolution [10], in which one derives new
disjunctive clauses from the formula until an explicit contradiction is reached. This is arguably
the most well-studied proof system in proof complexity, for which numerous exponential
lower bounds on proof size have been shown (starting with [19, 31, 13]). Yet many basic
questions about resolution remain stubbornly open. One such set of questions concerns the
pigeonhole principle (PHP) stating that there is no injective mapping of m pigeons into n
holes if m > n. This is one of the simplest, and yet most useful, combinatorial principles in
mathematics, and it has been topic of extensive study in proof complexity.

When studying the pigeonhole principle, it is convenient to think of it in terms of a
bipartite graph G = (U

.
∪ V,E) with pigeons U = [m] and holes V = [n] for m ≥ n + 1.

Every pigeon i can fly to its neighbouring pigeonholes N(i) as specified by G, which for now
we fix to be the complete bipartite graph Km,n with N(i) = [n] for all i ∈ [m]. Since we wish
to study unsatisfiable formulas, we encode the claim that there does in fact exist an injective
mapping of pigeons to holes as a CNF formula consisting of pigeon axioms

P i =
∨

j∈N(i)

xij for i ∈ [m] (1a)

and hole axioms
Hi,i′

j = (xij ∨ xi′j) for i 6= i′ ∈ [m], j ∈ N(i) ∩N(i′) (1b)

(where the intended meaning of the variables is that xi,j is true if pigeon i flies to hole j).
To rule out multi-valued mappings one can also add functionality axioms

F ij,j′ = (xij ∨ xij′) for i ∈ [m], j 6= j′ ∈ N(i) , (1c)

and a further restriction is to include surjectivity or onto axioms

Sj =
∨

i∈N(j)

xij for j ∈ [n] (1d)

requiring that every hole should get a pigeon. Clearly, the “basic” pigeonhole principle (PHP)
formulas with clauses (1a) and (1b) are the least constrained. As one adds clauses (1c) to
obtain the functional pigeonhole principle (FPHP) and also clauses (1d) to get the onto
functional pigeonhole principle (onto-FPHP), the formulas become more overconstrained and
thus (potentially) easier to disprove, meaning that establishing lower bounds becomes harder.
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A moment of reflection reveals that onto-FPHP formulas are just saying that complete
bipartite graphs with m left vertices and n right vertices have perfect matchings, and so
these formulas are also referred to as perfect matching formulas.

Another way of varying the hardness of PHP formulas is by letting the number of pigeonsm
grow larger as a function of the number of holes n. What this means is that it is not necessary
to count exactly to refute the formulas. Instead, it is sufficient to provide a precise enough
estimate to show that m > n must hold (where the hardness of this task depends on how
much larger m is than n). Studying the hardness of such so-called weak PHP formulas gives
a way of measuring how good different proof systems are at approximate counting. A second
application of lower bounds for weak PHP formulas is that they can be used to show that
proof systems cannot produce efficient proofs of the claim that NP * P/poly [24, 28].

Yet another version of more constrained formulas is obtained by restricting what choices
the pigeons have for flying into holes, by defining the formulas not over Km,n but sparse
bipartite graphs with bounded left degree – such instances are usually called graph PHP
formulas. Again, this makes the formulas easier to disprove in the sense that pigeons are
more constrained, and it also removes the symmetry in the formulas that plays an essential
role in many lower bound proofs.

Our work focuses on the most challenging setting in terms of lower bounds, when all of
these restrictions apply: the PHP formulas contain both functionality and onto axioms, the
number of pigeons m is very large compared to the number of holes n, and the choices of
holes are restricted by a sparse graph. But before discussing our contributions, let us review
what has been known about resolution and pigeonhole principle formulas. We emphasize that
what will follow is a brief and selective overview focusing on resolution only – see Razborov’s
beautiful survey paper [26] for a discussion of upper and lower bounds on PHP formulas in
other proof systems.

1.1 Previous Work
In a breakthrough result, which served as a strong impetus for further developments in
proof complexity, Haken [19] proved a lower bound exp(Ω(n)) on resolution proof length
for m = n+ 1 pigeons. Haken’s proof was for the basic PHP formulas, but easily extends
to onto-FPHP formulas. This result was simplified and improved in a sequence of works
[12, 7, 8, 32] to a lower bound of the form exp

(
n2/m

)
, which, unfortunately, does not yield

anything nontrivial for m = Ω
(
n2) pigeons.

Buss and Pitassi [11] showed that the pigeonhole principle does in fact get easier for
resolution when m becomes sufficiently large: namely, for m = exp

(
Ω
(√
n logn

))
PHP

formulas can be refuted in length exp
(
O
(√
n logn

))
. This is in contrast to what holds for

the weaker subsystem tree-like resolution, for which the formulas remain equally hard as the
number of pigeons increases, and where the complexity was even sharpened in [11, 15, 17, 9]
to an exp(Ω(n logn)) length lower bound.

Obtaining lower bounds beyond m = n2 pigeons for non-tree-like resolution turned out
to be quite challenging. Haken’s bottleneck counting method fundamentally breaks down
when the number of pigeons is quadratic in the number of holes, and the same holds for the
celebrated length-width lower bound in [8]. Some progress was made for restricted forms
of resolution in [30] and [22], leading up to an exp

(
nε
)
lower bound for so-called regular

resolution. In a technical tour de force, Raz [23] finally proved that general, unrestricted
resolution requires length exp

(
nε
)
to refute the basic PHP formulas even with arbitrary

many pigeons. Razborov followed up on this in three papers where he first simplified and
slightly strengthened Raz’s result in [25], then extended it to FPHP formulas in [27] and
lastly established an analogous lower bound for onto-FPHP formulas in [28].
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28:4 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

More precisely, what Razborov showed is that for any version of the PHP formula with
m pigeons and n holes, the minimal proof length required in resolution is exp

(
Ω
(
n/ log2m

))
.

It is easy to see that this implies a lower bound exp
(
Ω
(

3
√
n
))

for any number of pigeons – for
m = exp

(
O
(

3
√
n
))

we can appeal directly to the bound above, and if a resolution proof would
use exp

(
Ω
(

3
√
n
))

pigeons, then just mentioning all these different pigeons already requires
exp
(
Ω
(

3
√
n
))

distinct clauses. It is also clear that considering complexity in terms of the
number of holes n is the right measure. Since any formula contains a basic PHP subformula
with n+1 pigeons that can be refuted in length exp(O(n)), we can never hope for exponential
lower bounds in terms of formula size as the number of pigeons m grows to exponential.

So far we have stated results only for the standard PHP formulas over Km,n, where any
pigeon can fly to any hole. However, the way Ben-Sasson and Wigderson [8] obtained their
result was by considering graph PHP formulas over balanced bipartite expander graphs of
constant left degree, from which the lower bound for Km,n easily follows by a restriction
argument. It was shown in [20] that an analogous bound holds for onto-FPHP formulas,
i.e., perfect matching formulas, on bipartite expanders. In this context is is also relevant
to mention the exponential lower bounds in [1, 16] on mutilated chessboard formulas, which
can be viewed as perfect matching formulas on balanced, sparse bipartite graphs with very
bad expansion. At the other end of the spectrum, Razborov’s PHP lower bound in [28] for
highly unbalanced bipartite graphs also applies in a more general setting than Km,n: namely,
for any graph where the minimal degree of any left vertex is δ, the minimal length of any
resolution proof is exp

(
Ω
(
δ/ log2m

))
. Thus, for graph PHP formulas we have exponential

lower bounds on the one hand [8] for m � n2 pigeons, where each pigeon is adjacent to
a constant number of holes, and on the other hand [28] for any number of pigeons given
that each pigeon is adjacent to a polynomial nΩ(1) number of holes, but nothing has been
known in between these extremes. In [28], Razborov asks whether a “common generalization”
of the techniques in [8] and [27, 28] can be found “that would uniformly cover both cases?”
Urquhart [33] also discusses Razborov’s lower bound technique, but notes that “the search
for a yet more general point of view remains a topic for further research.”

1.2 Our Results

In this work, we give an answer to the questions raised in [28, 33] by presenting a general
technique that applies for any number of pigeons m all the way from linear to weakly
exponential, and that establishes exponential lower bounds on resolution proof length for
all flavours of graph PHP formulas (including perfect matching formulas) even over sparse
graphs.

Let us state below three examples of the kind of lower bounds we obtain – the full, formal
statements will follow in later sections. Our first theorem is an average-case lower bound for
onto-FPHP formulas with slightly superpolynomial number of pigeons.

I Theorem 1 (Informal). Let G be a randomly sampled bipartite graph with n right vertices,
m = no(logn) left vertices, and left degree Θ

(
log3m

)
. Then refuting the onto-FPHP for-

mula (a.k.a. perfect matching formula) over G in resolution requires length exp
(
Ω
(
n1−o(1)))

asymptotically almost surely.

Note that as the number of pigeons grow larger, it is clear that the left degree also has to
grow – otherwise we will get a small number of pigeons constrained to fly to a small number
of holes by a birthday paradox argument, yielding a small unsatisfiable subformula that can
easily be refuted by brute force.
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If the number of pigeons increases further to weakly exponential, then randomly sampled
graphs no longer have good enough expansion for our technique to work, but there are
explicit constructions of unbalanced expanders for which we can still get lower bounds.

I Theorem 2 (Informal). There are explicitly constructible bipartite graphs G with n right
vertices, m = exp

(
O
(
n1/16)) left vertices, and left degree Θ

(
log4m

)
such that refuting the

perfect matching formula over G requires length exp
(
Ω
(
n1/8−ε)) in resolution.

Finally, for functional pigeonhole principle formulas we can also prove an exponential
lower bound for constant left degree even if the number of pigeons is a large polynomial.

I Theorem 3 (Informal). Let G be a randomly sampled bipartite graph with n right vertices,
m = nk left vertices, and left degree Θ

(
(k/ε)2). Then refuting the functional pigeonhole

principle formula over G in resolution requires length exp
(
Ω
(
n1−ε)) asymptotically almost

surely.

1.3 Techniques
At a very high level, what we do in terms of techniques is to revisit the pseudo-width
method introduced by Razborov for functional PHP formulas in [27]. We strengthen this
method to work in the setting of sparse graphs by combining it with the closure operation on
expander graphs in [4, 3], which is a way to restore expansion after a small set of (potentially
adversarially chosen) vertices have been removed. To extend the results further to perfect
matching formulas, we apply a “preprocessing step” on the formulas as in [28]. In what
remains of this section, we focus on graph FPHP formulas and give an informal overview of
the lower bound proof in this setting, which already contains most of the interesting ideas
(although the extension to onto-FPHP also raises significant additional challenges).

Let FPHP(G) denote the functional pigeonhole principle formula over the graph G

consisting of clauses (1a)–(1c). A first, quite naive (and incorrect), description of the proof
structure is that we start by defining a pseudo-width measure on clauses C that counts
pigeons i that appear in C in many variables xij for distinct j. We then show that any short
resolution refutation of FPHP(G) can be transformed into a refutation where all clauses have
small pseudo-width. By a separate argument, we establish that any refutation of FPHP(G)
requires large pseudo-width. Hence, no short refutations can exist, which is precisely what
we were aiming to prove.

To fill in the details (and correct) this argument, let us start by making clear what
we mean by pseudo-width. Suppose that the graph G has left degree ∆. In what follows,
we identify a mapping of pigeon i to a neighbouring hole j with the partial assignment ρ
such that ρ(xi,j) = 1 and ρ(xi,j′) = 0 for all j′ ∈ N(i) \ {j}. We denote by di(C) the
number of mappings of pigeon i that satisfy C. Note that if C contains at least one negated
literal xi,j , then di(C) ≥ ∆− 1, and otherwise di(C) is the number of positive literals xi,j
for j ∈ N(i). Given a judiciously chosen “filter vector” ~d = (d1, . . . , dm) for di ≈ ∆ and a
“slack” δ ≈ ∆/ logm, we say that pigeon i is heavy in C if di(C) ≥ di − δ and super-heavy
if di(C) ≥ di. We define the pseudo-width of a clause C to be the number of heavy pigeons
in C.

With these definitions in hand, we can give a description of the actual proof:
1. Given any resolution refutation π of FPHP(G) in small length L, we argue that all clauses

can be classified as having either low or high pseudo-width, where an important additional
guarantee is that the high-width clauses not only have many heavy pigeons but actually
many super-heavy pigeons.
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28:6 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

2. We replace all clauses C with many super-heavy pigeons with “fake axioms” C ′ ⊆ C

obtained by throwing away literals from C until we have nothing left but a medium
number of super-heavy pigeons. By construction, the set A of such fake axioms is
of size |A| ≤ L, and after making the replacement we have a resolution refutation π′

of FPHP(G) ∪ A in low pseudo-width.
3. However, since A is not too large, we are able to show that any resolution refutation of

FPHP(G) ∪ A must still require large pseudo-width. Hence, L cannot be small, and the
lower bound follows.
Part 1 is similar to [27], but with a slight twist. We show that if the length of π is

L < 2w0 and if we choose δ ≤ ε∆ logn/ logm, then there exists a vector ~d = (d1, . . . , dm)
such that for all clauses in π either the number of super-heavy pigeons is at least w0 or else
the number of heavy pigeons is at most O

(
w0 · nε

)
. The proof of this is by sampling the

coordinates di independently from a suitable probability distribution and then applying a
union bound argument. Once this has been established, part 2 follows easily: we just replace
all clauses with at least w0 super-heavy pigeons by (stronger) fake axioms. Including all
fake axioms A yields a refutation π′ of FPHP(G) ∪ A (since we can add a weakening rule
deriving C from C ′ ⊆ C to resolution without loss of generality) and clearly all clauses in π′
have pseudo-width O

(
w0 · nε

)
.

Part 3 is where most of the hard work is. Suppose that G is an excellent expander
graph, so that for some value r all left vertex sets U ′ of size

∣∣U ′∣∣ ≤ r have at least
(1− ε logn/logm)∆|U ′| unique neighbours on the right-hand side. We show that, under the
assumptions above, refuting FPHP(G)∪A requires pseudo-width Ω

(
r · logn/logm

)
. Tuning

the parameters appropriately, this yields a contradiction with part 2.
Before outlining how the proof of part 3 goes, we remark that the requirements we place

on the expansion of G are quite severe. Clearly, any left vertex set U can have at most
∆|U ′| neighbours in total, and we are asking for all except a vanishingly small fraction of
these neighbours to be unique. This is why we can etablish Theorem 1 but not Theorem 2
for randomly sampled graphs. We see no reason to believe that the latter theorem would
not hold also for random graphs, but the expansion properties required for our proof are so
stringent that they are not satisfied in this parameter regime. This seems to be a fundamental
shortcoming of our technique, and it appears that new ideas would be required to circumvent
this problem.

In order to argue that refuting FPHP(G) ∪ A in resolution requires large pseudo-width,
we want to estimate how much progress the resolution derivation has made up to the point
when it derives some clause C. Following Razborov’s lead, we measure this by looking at
what fraction of partial matchings of all the heavy pigeons in C do not satisfy C (meaning,
intuitively, that the derivation has managed to rule out this part of the search space). It
is immediate by inspection that all pigeons mentioned in the real axiom clauses (1a)–(1c)
are heavy, and any matching of such pigeons satisfies the clauses. Thus, the original axioms
in FPHP(G) do not rule out any matchings. Also, it is easy to show that fake axioms rule
out only an exponentially small fraction of matchings, since they contain many super-heavy
pigeons and it is hard to match all of these pigeons without satisfying the clause. However,
the contradictory empty clause ⊥ rules out 100% of partial matchings, since it contains no
heavy pigeons to match in the first place.

What we would like to prove now is that for any derivation in small pseudo-width it holds
that the derived clause cannot rule out any matching other than those already eliminated
by the clauses used to derive it. This means that the fake axioms together need to rule out
all partial matchings, but since every fake axiom contributes only an exponentially small
fraction they are too few to achieve this. Hence, it is not possible to derive contradiction in
small pseudo-width, which completes part 3 of our proof outline.
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There is one problem, however: the last claim above is not true, and so what is outlined
above is only a fake proof. While we have to defer the discussion of what the full proof
actually looks like in detail, we conclude this section by attempting to hint at a couple of
technical issues and how to resolve them.

Firstly, it does not hold that a derived clause C eliminates only those matchings that
are also forbidden by one of the predecessor clauses used to derive C. The issue is that a
pigeon i that is heavy in both predecessors might cease to be heavy in C – for instance, if C
was derived by a resolution step over a variable xi,j . If this is so, then we would need to
show that any matching of the heavy pigeons in C can be extended to match also pigeon i
to any of its neighbouring holes without satisfying both predecessor clauses. But this will
not be true, because a non-heavy pigeon can still have some variable xi,j occurring in both
predecessors. The solution to this, introduced in [27], is to do a “lossy counting” of matchings
by associating each partial matching with a linear subspace of some suitable vector space,
and then to consider the span of all matchings ruled out by C. When we accumulate a
“large enough” number of matchings for a pigeon i, then the whole subspace associated to i
is spanned and we can stop counting.

But this leads to a second problem: when studying matchings of the heavy pigeons in C
we might already have assigned pigeons i′1, . . . , i′w that occupy holes where pigeon i might
want to fly. For standard PHP formulas over complete bipartite graphs this is not a problem,
since at least n− w holes are still available and this number is “large enough” in the sense
described above. But for a sparse graph it will typically be the case that w � ∆, and
so it might well be the case that pigeons i′1, . . . , i′w are already occupying all the ∆ holes
available for pigeon i according to G. Although it is perhaps hard to see from our (admittedly
somewhat informal) discussion, this turns out to be a very serious problem, and indeed it is
one of the main technical challenges we need to overcome.

To address this problem we consider not only the heavy pigeons in C, but also any other
pigeons in G that risk becoming far too constrained when the heavy pigeons of C are matched.
Inspired by [4, 3], we define the closure to be a superset S of the heavy pigeons such that
when S and the neighbouring holes of S are removed it holds that the residual graph is still
guaranteed to be a good expander. Provided that G is an excellent expander to begin with,
and that the number of heavy pigeons in C is not too large, it can then be shown that an
analogue of the original argument outlined above goes through.

1.4 Outline of This Paper

We review the necessary preliminaries in Section 2 and introduce two crucial technical tools in
Section 3. The lower bounds for weak graph FPHP formulas are then presented in Section 4,
after which the perfect matching lower bounds follow in Section 5. We conclude with a
discussion of questions for future research in Section 6. We refer to the full-length version of
this paper for any details missing in this extended abstract.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation x (a negative literal). A clause C = `1 ∨ · · · ∨ `w is a disjunction of literals. We
write ⊥ to denote the empty clause without any literals. A CNF formula F = C1 ∧ · · · ∧Cm
is a conjunction of clauses. We think of clauses and CNF formulas as sets: order is irrelevant
and there are no repetitions. We let Vars(F ) denote the set of variables of F .

CCC 2020
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A resolution refutation π of an unsatisfiable CNF formula F , or resolution proof for (the
unsatisfiability of) F , is an ordered sequence of clauses π = (D1, . . . , DL) such that DL = ⊥
and for each i ∈ [L] either Di is a clause in F (an axiom) or there exist j < i and k < i such
that Di is derived from Dj and Dk by the resolution rule

B ∨ x C ∨ x
B ∨ C . (2)

We refer to B∨C as the resolvent of B∨x and C ∨x over x, and to x as the resolved variable.
For technical reasons it is sometimes convenient to also allow clauses to be derived by the
weakening rule

C
D

[C ⊆ D] (3)

(and for two clauses C ⊆ D we will sometimes refer to C as a strengthening of D).
The length L(π) of a refutation π = (D1, . . . , DL) is L. The length of refuting F is

minπ:F `⊥{L(π)}, where the minimum is taken over all resolution refutations π of F . It is
easy to show that removing the weakening rule (3) does not increase the refutation length.

A partial assignment or a restriction on a formula F is a partial function ρ : Vars(F )→
{0, 1}. The clause C restricted by ρ, denoted C�ρ, is the trivial 1-clause if any of the literals
in C is satisfied by ρ and otherwise it is C with all falsified literals removed. We extend this
definition to CNF formulas in the obvious way by taking unions. For a variable x ∈ Vars(F )
we write ρ(x) = ∗ if x /∈ dom(ρ), i.e., if ρ does not assign a value to x.

We write G = (V,E) to denote a graph with vertices V and edges E, where G is always
undirected and without loops or multiple edges. Moreover, for bipartite graphs we write
G = (U

.
∪V,E), where edges in E have one endpoint in the left vertex set U and the other in

the right vertex set V . A partial matching ϕ in G is a subset of edges that are vertex-disjoint.
Let V (ϕ) = {v | ∃e ∈ ϕ : v ∈ e} be the vertices of ϕ and for v ∈ V (ϕ) denote by ϕv the
unique vertex u such that {u, v} ∈ ϕ. A vertex v is covered by ϕ if v ∈ V (ϕ). If ϕ is a partial
matching in a bipartite graph G = (U

.
∪ V,E), we identify it with a partial mapping of U

to V . When referring to the pigeonhole formula, this mapping will also be identified with an
assignment ρϕ to the variables defined by

ρϕ(xi,j) =


∗ if i /∈ dom(ϕ),
0 if i ∈ dom(ϕ) and ϕ(i) 6= j,
1 if i ∈ dom(ϕ) and ϕ(i) = j.

(4)

Given a vertex v ∈ V(G), we write NG(v) to denote the set of neighbours of v in the
graph G and ∆G(v) = |NG(v)| to denote the degree of v. We extend this notion to sets and
denote by NG(S) = {v | ∃ (u, v) ∈ E for u ∈ S} the neighbourhood of a set of vertices S ⊆ V .
The boundary, or unique neighbourhood, ∂G(S) = {v ∈ V \ S : |NG(v) ∩ S| = 1} of a set of
vertices S ⊆ V contains all vertices in V \ S that have a single neighbour in S. We will
sometimes drop the subscript G when the graph is clear from context. We denote by G \ U
the subgraph of G induced by the vertex set V \ U .

A graph G = (V,E) is an (r,∆, c)-expander if all vertives v ∈ V have degree at most ∆
and for all sets S ⊆ V , |S| ≤ r, it holds that |N(S) \ S| ≥ c · |S|. Similarly, G = (V,E) is
an (r,∆, c)-boundary expander if all vertices v ∈ V have degree at most ∆ and for all sets
S ⊆ V , |S| ≤ r, it holds that |∂(S)| ≥ c · |S|. For bipartite graphs, the degree and expansion
requirements only apply to the left vertex set: G = (U

.
∪V,E) is an (r,∆, c)-bipartite expander

if all vertices u ∈ U have degree at most ∆ and for all sets S ⊆ U , |S| ≤ r, it holds that
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|N(S)| ≥ c · |S|, and an (r,∆, c)-bipartite boundary expander if for all sets S ⊆ U , |S| ≤ r, it
holds that |∂(S)| ≥ c · |S|. For bipartite graphs we will only ever be interested in bipartite
notions of expansions, and so which kind of expansion is meant will always be clear from
context. A simple but useful observation is that

|N(S) \ S| ≤ |∂(S)|+ ∆|S| − |∂(S)|
2 = ∆|S|+ |∂(S)|

2 , (5)

since all non-unique neighbours in N(S) \ S have at least two incident edges. This implies
that if a graph G is an (r,∆, (1− ξ)∆)-expander then it is also an (r,∆, (1−2ξ)∆)-boundary
expander.

We often denote random variables in boldface and write X ∼ D to denote that X is
sampled from the distribution D.

For n,m,∆ ∈ N, we denote by G(m,n,∆) the distribution over bipartite graphs with
disjoint vertex sets U = {u1, . . . , um} and V = {v1, . . . , vn} where the neighbourhood of
a vertex u ∈ U is chosen by sampling a subset of size ∆ uniformly at random from V .
A property is said to hold asymptotically almost surely on G(f(n), n,∆) if it holds with
probability that approaches 1 as n approaches infinity.

For the right parameters, a randomly sampled graph G ∼ G(m,n,∆) is asymptotically
almost surely a good boundary expander as stated next.

I Lemma 4. Let m,n and ∆ be large enough integers such that m > n ≥ ∆. Let ξ, χ ∈ R+ be
such that ξ < 1/2, ξ lnχ ≥ 2 and ξ∆ lnχ ≥ 4 lnm. Then for r = n/(∆ ·χ) and c = (1− 2ξ)∆
it holds asymptotically almost surely for a randomly sampled graph G ∼ G(m,n,∆) that G is
an (r,∆, c)-boundary expander.

We will also consider some parameter settings where randomly sampled graphs do not have
strong enough expansion for our purposes, but where we can resort to explicit constructions
as follows.

I Theorem 5 ([18]). For all positive integers m, r ≤ m, all ξ > 0, and all constant ν > 0,
there is an explicit (r,∆, (1 − ξ)∆)-expander G = (U

.
∪ V,E), with |U | = m, |V | = n,

∆ = O
(
((logm)(log r)/ξ)1+1/ν) and n ≤ ∆2 · r1+ν .

I Corollary 6. Let κ, ε, ν be positive constants, κ < 1
8 , and let n be a large enough integer.

Then there is an explicit graph G = (U
.
∪ V,E), with |U | = m = 2Ω(nκ) and |V | ≤ n, that is

an (n
1

1+ν−
4κ
ν ,∆, (1− 2ξ)∆)-boundary expander for ξ = ε logn

logm and ∆ = O(log2(1+1/ν)m).

3 Two Key Technical Tools

In this section we review two crucial technical ingredients of the resolution lower bound
proofs.

3.1 Pigeon Filtering
The following lemma is a generalization of [27, Lemma 6]. The difference is that we have an
additional parameter α (which is implicitly fixed to α = 2 in [27]) that allows us to get a
better upper bound on the numbers ri. This turns out to be crucial for us – we discuss this
in more detail in Section 4.
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I Lemma 7 (Filter lemma). Let m,L ∈ N+ and suppose that w0, α ∈ [m] are such that
w0 > lnL and w0 ≥ α2 ≥ 4. Further, let ~r(1), . . . , ~r(L) be integer vectors, each of the form
~r(`) = (r1(`), . . . , rm(`)). Then there exists a vector ~r = (r1, . . . , rm) of positive integers
ri ≤

⌊ logm
logα

⌋
− 1 such that for all ` ∈ [L] at least one of the following holds:

1.
∣∣{i ∈ [m] : ri(`) ≤ ri}

∣∣ ≥ w0 ,
2.
∣∣{i ∈ [m] : ri(`) ≤ ri + 1}

∣∣ ≤ O(α · w0) .

Proof sketch. We first define a weight function W (~r) for vectors ~r = (r1, . . . , rm) as

W (~r) =
∑
i∈[m]

α−ri . (6)

In order to establish the lemma, it is sufficient to show that there exist constants γ and γ′
and a vector r = (r1, . . . , rm) such that for all ` ∈ [L] the implications

W (~r(`)) ≥ γ′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri}| ≥ w0 , (7a)

W (~r(`)) ≤ γ′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri + 1}| ≤ γαw0 (7b)

hold. Let t =
⌊ logm

logα
⌋
− 1 and let µ be a probability distribution on [t] given by Pr[rrr = i] =

β · α−i for all i ∈ [t], where β = α−1
1−α−t . Let us write ~r~r~r = (r1r1r1, . . . , rmrmrm) to denote a random

vector with coordinates sampled independently according to µ. We claim that for every
` ∈ [L] the implications (7a) and (7b) are true asymptotically almost surely. The proof of
this fact follows by applying Chernoff bounds as in [27]. A union bound argument over all
vectors in {~r(`) : ` ∈ [L]} for both cases shows that for γ′ ≥ 13 and γ ≥ 5γ′ there exists a
choice of ~r = (r1, . . . , rm) such that both implications (7a) and (7b) hold. J

3.2 Graph Closure
A key concept in our work will be that of a closure of a vertex set, which seems to have
originated in [4, 3]. Intuitively, for an expander graph G, the closure of T ⊆ V (G) is a suitably
small set S that contains T such that G \ S is an expander. In order to have a definition
that makes sense for both expanders and bipartite expanders, we define Vexp(G) to be the
set of vertices of G that expand, that is, if G = (V,E) is an expander then Vexp(G) = V , and
if G = (U

.
∪ V,E) is a bipartite expander then Vexp(G) = U .

I Definition 8 (Closure). For an expander graph G and vertex sets S ⊆ Vexp(G) and
U ⊆ V (G), we say that the set S is (U, r, ν)-contained if |S| ≤ r and

∣∣∂(S) \ U
∣∣ < ν · |S|.

For any expander graph G and any set T ⊆ Vexp(G) of size |T | ≤ r, we will let closurer,ν(T )
denote an arbitrary but fixed maximal set such that T ⊆ closurer,ν(T ) ⊆ Vexp(G) and
closurer,ν(T ) is (N(T ), r, ν)-contained.

Note that the closure of any set T of size |T | ≤ r as defined above does indeed exist,
since T itself is (N(T ), r, ν)-contained.

I Lemma 9. Suppose that G is an (r,∆, c)-boundary expander and that T ⊆ Vexp(G) has
size |T | ≤ k ≤ r. Then |closurer,ν(T )| < k∆

c−ν .

Proof. By definition we have that
∣∣∂(closurer,ν(T ))\N(T )

∣∣ < ν · |closurer,ν(T )|. Furthermore,
since |closurer,ν(T )| ≤ r by definition, we can use the expansion property of the graph to derive
the inequality

∣∣∂(closurer,ν(T ))\N(T )
∣∣ ≥ |∂(closurer,ν(T ))|−|N(T )| ≥ c · |closurer,ν(T )|−k∆.

Note that we also use the fact that the neighbourhood of T is of size at most k∆. The
conclusion follows by combining both statements. J
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Suppose G is an excellent boundary expander and that T ⊆ Vexp(G) is not too large.
Then Lemma 9 shows that the closure of T is not much larger. And if the closure is not too
large, then after removing the closure and its neighbourhood from the graph we are still left
with a decent expander, a fact which will play a key role in the technical arguments in later
sections. The following lemma makes this intuition precise.

I Lemma 10. For G an (r,∆, c)-boundary expander, let T ⊆ Vexp(G) be such that |T | ≤ r
and |closurer,ν(T )| ≤ r/2, let G′ = G \

(
closurer,ν(T ) ∪ N(closurer,ν(T ))

)
and Vexp(G′) =

Vexp(G) ∩ V (G′). Then any set S ⊆ Vexp(G′) of size |S| ≤ r/2 satisfies |∂G′(S)| ≥ ν|S|.

Proof. Suppose the set S ⊆ Vexp(G′) is of size |S| ≤ r/2 and does not satisfy |∂G′(S)| ≥ ν|S|.
Since closurer,ν(T ) is also of size at most r/2, we have that the set (closurer,ν(T ) ∪ S) is
(N(T ), r, ν)-contained in G. But this contradicts the maximality of closurer,ν(T ). J

4 Lower Bounds for Weak Graph FPHP Formulas

We now proceed to establish lower bounds on the length of resolution refutations of functional
pigeonhole principle formulas defined over bipartite graphs. We write G = (VP

.
∪ VH , E) to

denote the graph over which the formulas are defined andM to denote the set of partial
matchings on G (also viewed as partial mappings of VP to VH). Let us start by making more
precise some of the technical notions discussed in the introduction (which were originally
defined in [25]).

For a clause C and a pigeon i we denote the set of holes j with the property that C is
satisfied if i is matched to j by

NC(i) = {j ∈ VH | e = {i, j} ∈ E and ρ{e}(C) = 1} (8)

and we define the ith pigeon degree ∆C(i) of C as ∆C(i) = |NC(i)|. We think of a pigeon i
with large ∆C(i) as a pigeon on which the derivation has not made any significant progress
up to the point of deriving C, since the clause rules out very few holes. The pigeons with
high enough pigeon degree in a clause are the heavy pigeons of the clause as defined next.

I Definition 11 (Pigeon weight, pseudo-width and
(
w0, ~d

)
-axioms). Let C be a clause and

let ~d = (d1, . . . , dm) and ~δ = (δ1, . . . , δm) be two vectors of positive integers such that ~d is
elementwise greater than ~δ. We say that pigeon i is ~d-super-heavy for C if ∆C(i) ≥ di and
that pigeon i is (~d, ~δ)-heavy for C if ∆C(i) ≥ di − δi. When ~d and ~δ are understood from
context, which is most often the case, we omit the parameters and just refer to super-heavy
and heavy pigeons. Pigeons that are not heavy are referred to as light pigeons. The set of
pigeons that are super-heavy for C is denoted by

P~d(C) = {i ∈ [m] | ∆C(i) ≥ di}

and the set of pigeons that are heavy for C is denoted by

P~d,~δ(C) = {i ∈ [m] | ∆C(i) ≥ di − δi} .

The pseudo-width of C is the number of heavy pigeons in C and the pseudo-width of a
resolution refutation π, denoted by w~d,~δ(π), is maxC∈π w~d,~δ(C). Finally, we will refer to
clauses C with precisely w0 super-heavy pigeons, i.e., such that |P~d(C)| = w0, as

(
w0, ~d

)
-

axioms.
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Note that according to Definition 11 super-heavy pigeons are also heavy. Making the
connection back to the introduction, the “fake axioms” mentioned there are nothing other
than

(
w0, ~d

)
-axioms.

Now that we have all the notions needed, let us give a detailed proof outline. Given a
short resolution refutation π of the formula FPHP(G), we use the Filter lemma (Lemma 7) to
get a filter vector ~d = (d1, . . . , dm) such that each clause either has many super-heavy pigeons
or there are not too many heavy pigeons (for an appropriately chosen vector ~δ). Clearly,
clauses that fall into the second case of the filter lemma have bounded pseudo-width. On the
other hand, clauses in the first case may have very large pseudo-width. In order to obtain a
proof of low pseudo-width, these clauses are strengthened to

(
w0, ~d

)
-axioms and added to

a special set A. This then gives a refutation π′ that refutes the formula FPHP(G) ∪ A in
bounded pseudo-width. The following lemma summarizes the upper bound on pseudo-width
that we obtain.

I Lemma 12. Let G = (VP
.
∪ VH , E) be a bipartite graph with |VP | = m and |VH | = n;

let π be a resolution refutation of FPHP(G); let w0, α ∈ [m] be such that w0 > log L(π)
and w0 ≥ α2 ≥ 4, and let ~δ = (δ1, . . . , δm) be defined by δi = ∆G(i) logα

logm . Then there
exists an integer vector ~d = (d1, . . . , dm), with δi < di ≤ ∆G(i) for all i ∈ VP , a set of(
w0, ~d

)
-axioms A with |A| ≤ L(π), and a resolution refutation π′ of FPHP(G)∪A such that

w~d,~δ(π
′) = O(α · w0).

As mentioned above, this upper bound is a straightforward application of Lemma 7. We
defer the formal proof to a later point in this section. What we will need from Lemma 12 is
that a resolution refutation of FPHP(G) in length less than 2w0 can be transformed into a
refutation of FPHP(G) ∪ A in pseudo-width at most O(α · w0).

The second step in the proof is to show that any resolution refutation π of FPHP(G)∪A
requires large pseudo-width. The high-level idea is to define a progress measure on clauses
C ∈ π by counting the number of matchings on P~d,~δ(C) that do not satisfy C. We then show
that in order to increase this progress measure we need large pseudo-width. The following
lemma states the pseudo-width lower bound.

I Lemma 13. Let ξ ≤ 1/4 and m,n, r,∆ ∈ N; let G = (VP
.
∪ VH , E) with |VP | = m and

|VH | = n be an (r,∆, (1− 2ξ)∆)-boundary expander, and let ~δ = (δ1, . . . , δm) be defined by
δi = 4∆G(i)ξ. Suppose that ~d = (d1, . . . , dm) is an integer vector such that δi < di ≤ ∆G(i)
for all i ∈ VP . Let w0 be an arbitrary parameter and A be an arbitrary set of

(
w0, ~d

)
-axioms

with |A| ≤ (1 + ξ)w0 . Then every resolution refutation π of FPHP(G) ∪ A must satisfy
w~d,~δ(π) ≥ rξ/4.

In one sentence, the lemma states that if the set of “fake axioms” A is not too large, then
resolution requires large pseudo-width to refute FPHP(G) ∪ A. Note that this lemma holds
for any filter vector and not just for the one obtained from Lemma 12.

In order to prove Lemma 13, we wish to define a progress measure on clauses that indicates
how close the derivation is to refuting the formula (i.e., it should be small for axiom clauses
but large for contradiction). A first attempt would be to define the progress of a clause C as
the number of ruled-out matchings (i.e., matchings that do not satisfy C) on the pigeons
mentioned by C. This definition does not quite work, but we can refine it by counting
matchings less carefully. Namely, if for a pigeon i there are more than ∆G(i) − di + δi/4
holes to which it can be mapped without satisfying C, then we think of C as ruling out all
holes for this pigeon. Since the pigeon degree of a light pigeon i is at most di − δi, such a
pigeon will certainly have at least ∆G(i)− di + δi ≥ ∆G(i)− di + δi/4 holes to which it can
be mapped, and the “lossy counting” will ensure that all holes are considered as ruled out.
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We realize this “lossy counting” through a linear space Λ, in which each partial matching ϕ
is associated with a subspace λ(ϕ). Roughly speaking, the progress λ(C) of a clause C is
then defined to be the span of all partial matchings that are ruled out by C. We design the
association between matchings and subspaces so that the contradictory empty clause ⊥ has
λ(⊥) = Λ but so that the span of all the axioms span({λ(A) | A ∈ FPHP(G) ∪ A}) is a
proper subspace of Λ. This implies that in a refutation π of FPHP(G) ∪ A there must exist
a resolution step deriving a clause C from clauses C0 and C1 such that the linear space of
the resolvent λ(C) is not contained in span(λ(C0), λ(C1)). But the main technical lemma of
this section (Lemma 20) says that for any derivation in low pseudo-width the linear space
of the resolvent is contained in the span of the linear spaces of the clauses being resolved.
Hence, in order for π to be a refutation it must contain a clause with large pseudo-width,
and this establishes Lemma 13.

So far our argument follows that of Razborov very closely, but it turns out we cannot
realize this proof idea if we only keep track of heavy and light pigeons. Let us attempt a
proof of the claim in Lemma 20 that low-width resolution steps cannot increase the span to
illustrate what the problem is. The interesting case is when there is a pigeon i that is heavy
for C0 or C1 but not for their resolvent C. Then, following Razborov, for any matching ϕ on
the heavy pigeons of C that fails to satisfy C, we need to be able to extend ϕ in at least
∆G(i)− di + δi/4 different ways to a matching including also pigeon i that falsifies either C0
or C1. If this can be done, then we think of C0 and C1 as together ruling out (essentially)
all holes for i, and the linear space associated with C will be contained in the span of the
spaces for C0 and C1. The problem, though, is that ϕ may send all heavy pigeons to the
neighbourhood of pigeon i. In this scenario, there might be very few holes, or even no holes,
to which i can be mapped when extending ϕ, and even our lossy counting will not be able to
pick up enough holes for the argument to go through. We resolve this problem by not only
considering the heavy pigeons but a larger set of relevant pigeons including all pigeons i′
that can become overly constrained when some matching on the heavy pigeons shrinks the
neighbourhood of i′ too much. Formally, the closure of the set of heavy pigeons, as defined
in Definition 8, is the notion that we need.

4.1 Formal Statements of Graph FPHP Formula Lower Bounds
Deferring the proofs of all technical lemmas for now, let us state our lower bounds for graph
FPHP formulas and see how they follow from Lemmas 12 and 13 above.

I Theorem 14. Let m = |U | and n = |V | and suppose that G = (U
.
∪ V,E) is an

(
r,∆,

(
1−

logα
2 logm

)
∆
)
-boundary expander for α ∈ [m] such that 8 ≤ α3

logα = o
(

r
logm

)
. Then resolution

requires length exp
(

Ω
(
r log2 α
α log2 m

))
to refute FPHP(G).

Note that, on the one hand, the larger α is, the more relaxed we can be with respect to
the expansion requirements, and hence the set of formulas to which the lower bound applies
becomes larger. On the other hand, the strength of the lower bound deteriorateswith α.
Hence, we need to choose α carefully to find a good compromise between these two concerns.

Proof of Theorem 14. Let ξ = logα
4 logm and let w0 = ε0rξ

α for some small enough ε0 > 0.
We note that the choice of parameters and the condition on α ensure that 4 ≤ α2 ≤ w0.
Furthermore, in terms of ξ, the graph G is an (r,∆, (1− 2ξ)∆)-boundary expander.

We proceed by contradiction. Suppose π is a resolution refutation with L(π) < 2ε′w0ξ for
a small enough constant ε′ > 0. Applying Lemma 12 we get a set of

(
w0, ~d

)
-axioms A with

|A| ≤ L(π) and a resolution refutation π′ of FPHP(G) ∪ A such that w~d,~δ(π
′) ≤ Kαw0 for

some large enough constant K.
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Note that |A| ≤ L(π) < 2ε′w0ξ ≤ (1 + ξ)w0 for ε′ < 1/2. Applying Lemma 13 to π′ yields
a pseudo-width lower bound of rξ/4. We conclude that

rξ/4 ≤ w~d,~δ(π
′) ≤ Kαw0 = ε0Krξ . (9)

Choosing ε0 <
1

4K yields a contradiction. J

The following corollary summarizes our claims for random graphs.

I Corollary 15. Let m and n be positive integers and let ∆ : N+ → N+ and ε : N+ → [0, 1] be
any monotone functions of n such that n < m ≤ n(ε/16)2 logn and n ≥ ∆ ≥

(
16 logm
ε logn

)2
. Then

asymptotically almost surely resolution requires length exp
(
Ω
(
n1−ε)) to refute FPHP(G) for

G ∼ G
(
m,n,∆

)
.

Proof sketch. We first note that it is sufficient to prove the claim for m = n(ε/16)2 logn and
∆ =

(
(16 logm)/(ε logn)

)2. By applying Lemma 4 for χ = α = nε/4 and ξ = logα
4 logm , we

conclude that asymptotically almost surely, G ∼ G (m,n,∆) is an
(
n1−ε/2,∆, (1 − 2ξ)∆

)
-

boundary expander. Theorem 14 then gives a length lower bound of exp
(
Ω
(
n1−ε)). J

The following two corollaries are simple consequences of Corollary 15, optimizing for
different parameters. The first corollary gives the strongest lower bounds, while the second
minimizes the degree.

I Corollary 16. Let m,n be such that m ≤ no(logn). Then asymptotically almost surely
resolution requires length exp

(
Ω
(
n1−o(1))) to refute FPHP(G) for G ∼ G (m,n, logm).

Proof. Let m = nf(n), where f(n) = o(logn). Applying Corollary 15 for ε = 16
√

f(n)
logn = o(1)

we get the desired statement. J

I Corollary 17 (Restatement of Theorem 3). Let k and n be positive integers and let m = nk

and ε ∈ R+. Then asymptotically almost surely resolution requires length exp
(
Ω
(
n1−ε)) to

refute FPHP(G) for G ∼ G
(
m,n,

( 16k
ε

)2).
Proof. We appeal to Corollary 15 with ∆ =

( 16k
ε

)2, m = nk and ε constant. A short
calculation shows that all conditions are met. J

Our final corollary shows that we can get meaningful lower bounds even for a weakly
exponential number of pigeons. Unfortunately, the statement does not hold for random
graphs.

I Corollary 18. Let κ < 3/2−
√

2 and ε > 0 be constant and n be integer. Then there is a
family of explicitly constructible graphs G with m = 2Ω(nκ) and left degree O

(
log1/

√
κ(m)

)
such that resolution requires length exp

(
Ω
(
n1−2

√
κ(2−

√
κ)−ε)) to refute FPHP(G).

Proof. Let G be the graph from Corollary 6 with ν = 2
√
κ

1−2
√
κ
. An appeal to Theorem 14

using the graph G yields the desired lower bound. J
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4.2 A Pseudo-Width Upper Bound for Graph FPHP Formulas with
Extra Axioms

Let us now prove Lemma 12. For this proof, let us identify VP with [m]. For every clause C
in the refutation π, let ~r(C) = (r1(C), . . . , rm(C)) be the vector where each coordinate is
given by

ri(C) =
⌊

∆G(i)−∆C(i)
δi

⌋
+ 1 . (10)

We apply the filter lemma (Lemma 7) to the set of vectors {~r(C) | C ∈ π}. Denote by
~r = (r1, . . . , rm) a vector as guaranteed to exist by Lemma 7. Let

di = ∆G(i)− dδirie+ 1 . (11)

A short calculation establishes that di is the smallest integer such that
⌊∆G(i)−di

δi

⌋
+ 1 ≤ ri.

Note that every pigeon i ∈ [m] such that ri(C) ≤ ri is super-heavy for C. Also, every
heavy pigeon of a clause C satisfies that ri(C) ≤ ri + 1.

To obtain a refutation π′ that satisfies the conclusions of the lemma, we consider every
clause C ∈ π and either add a strengthening of C to the

(
w0, ~d

)
-axiom set A or conclude

that the pseudo-width of C is small enough that the clause can stay in π′. More concretely,
we make a case distinction whether ~r(C) satisfies case 1 of Lemma 7 or only case 2. In one
case C can be strengthened to a

(
w0, ~d

)
-axiom, while in the other the pseudo-width of C is

bounded:
1. C satisfies

∣∣{i ∈ [m] | ri(C) ≤ ri}
∣∣ ≥ w0: As every pigeon i ∈ [m] with ri(C) ≤ ri also

satisfies ∆C(i) ≥ di, we can strengthen this clause to a
(
w0, ~d

)
-axiom and add it to A.

This reduces the pseudo-width of this clause to w0.
2. C satisfies

∣∣{i ∈ [m] | ri(C) ≤ ri+ 1}
∣∣ ≤ O(α ·w0): As every heavy pigeon always satisfies

ri(C) ≤ ri + 1, the pseudo-width of C is O(α · w0).
This concludes the proof as |A| ≤ L(π) and the pseudo-width of π′ is O(α·w0) by construction.

4.3 A Pseudo-Width Lower Bound for Graph FPHP Formulas with
Extra Axioms

We continue to the proof of Lemma 13. Using Definition 8, we define the set of relevant
pigeons of a clause C as

closure(C) = closurer,(1−3ξ)∆(P~d,~δ(C)) , (12)

where P~d,~δ(C) denotes the set of (~d, ~δ)-heavy pigeons for C as defined in Definition 11. By
definition, the closure of a set T contains T itself but is only defined if |T | ≤ r. However,
if
∣∣P~d,~δ(C)

∣∣ ≥ r ≥ rξ/4 then we already have the lower bound claimed in the lemma, and
so we may assume that the closure is well defined for all clauses in the refutation π. This
implies, in particular, that for every clause C ∈ π we have P~d,~δ(C) ⊆ closure(C).

Let us next construct the linear space Λ and describe how matchings are mapped into it.
Fix a field F of characteristic 0 and for each pigeon i ∈ VP let Λi be a linear space over F
of dimension ∆G(i)− di + δi/4. Let Λ be the tensor product Λ =

⊗
i∈VP Λi and denote by

λi : VH 7→ Λi a function with the property that any subset of holes J ⊆ VH of size at least
dim(Λi) spans Λi. In other words, for J as above we have that Λi = span(λi(j) : j ∈ J).
This is how we will realize the idea of “lossy counting.” For J ⊆ VH such that |J | ≤ dim(Λi)
we have exact counting dim(span({λi(j) | j ∈ J})) = |J |, but when |J | > dim(Λi) gets large
enough we have dim(span({λi(j) | j ∈ J})) = dim(Λi).
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In order to map functions VP 7→ VH into Λ, we define λ : V VPH 7→ Λ by λ(j1, . . . , jm) =⊗
i∈VP λi(ji), where will we abuse notions slightly in that we identify a vector with the

1-dimensional space spanned by this vector. For a partial function ϕ : VP 7→ VH , we let λ(ϕ)
be the span of all total extensions of ϕ (not necessarily matchings), or equivalently

λ(ϕ) =
⊗

i∈dom(ϕ)

λi(ϕi)⊗
⊗

i6∈dom(ϕ)

Λi . (13)

Recall thatM is the set of all partial matchings on the graph G and that we interchangeably
think of partial matchings as partial functions ϕ : VP → VH or as Boolean assignments ρϕ as
defined in (4). For each clause C, we are interested in the partial matchings ϕ ∈ M with
domain dom(ϕ) = closure(C) such that ρϕ does not satisfy C. We refer to the set of such
matchings as the zero space of C and denote it by

Z(C) = {ϕ ∈M | dom(ϕ) = closure(C) ∧ ρϕ(C) 6= 1} . (14)

We associate C with the linear space

λ(C) = span({λ(ϕ) | ϕ ∈ Z(C)}) . (15)

Note that contradiction is mapped to Λ, i.e., λ(⊥) = Λ.
We assert that the span of the axioms span({λ(A) | A ∈ FPHP(G) ∪ A}) is a proper

subspace of Λ.

I Lemma 19. If |A| ≤ (1 + ξ)w0 , then span({λ(A) | A ∈ FPHP(G) ∪ A}) ( Λ.

Accepting this claim without proof for now, this implies that in π there is some resolution
step deriving C from C0 and C1 where the subspace of the resolvent is not contained in the
span of the subspaces of the premises, or in other words λ(C) * span(λ(C0), λ(C1)). Our
next lemma, which is the heart of the argument, says that this cannot happen as long as the
closures of the clauses are small.

I Lemma 20. Let C be a clause derived from clauses C0 and C1. If it is the case that
max{|closure(C0)|, |closure(C1)|, |closure(C)|} ≤ r/4, then λ(C) ⊆ span(λ(C0), λ(C1)).

Since contradiction cannot be derived while the closure is of size at most r/4, any
refutation π must contain a clause C with |closure(C)| > r/4. But then Lemma 9 implies
that C has pseudo-width at least rξ/4, and Lemma 13 follows. All that remains for us is to
establish Lemmas 19 and 20.

Proof of Lemma 19. We need to show that the axioms FPHP(G) ∪A do not span all of Λ.
We start with the axioms in FPHP(G).

Let A be pigeon axiom P i as in (1a) or a functionality axiom F ij,j′ as in (1c). Note that i
is a heavy pigeon for A. Clearly, there are no pigeon-to-hole assignments for pigeon i that
do not satisfy A. Thus there are no matchings on closure(A) that do not satisfy A. We
conclude that λ(A) = ∅. If instead A is a hole axiom Hi,i′

j as in (1b), then we can observe
that ∆G(i) − 1 ≥ di − δi since δi = 4ξ∆G(i) ≥ 2ξ∆ ≥ 1 (by boundary expansion). This
implies that A has two heavy pigeons. Observe that there are no matchings on these two
pigeons that do not satisfy A. Thus Z(A) = ∅ and we conclude that λ(A) = ∅.

Now consider the
(
w0, ~d

)
-axioms in A. We wish to show that any A ∈ A can only span a

very small fraction of Λ. We can estimate the the number of dimensions λ(A) spans by

dimλ(A) ≤
∏

i/∈P~d(A)

dim Λi ·
∏

i∈P~d(A)

(∆G(i)− di) . (16)
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closure(C)

closure(C1)

closure(C0)

D
dom(ϕ′)

Figure 1 Depiction of relations between closure(C), closure(Ci), i = 1, 2, dom(ϕ′) and D in proof
of Lemma 20.

Hence the fraction of the space Λ that A may span is bounded by

dimλ(A)
dim Λ ≤

∏
i∈P~d(A)

∆G(i)− di
∆G(i)− di + δi/4

≤ (1− ξ)w0 . (17)

As |A| ≤ (1 + ξ)w0 we can conclude that not all of Λ is spanned by the axioms. J

Proof of Lemma 20. For conciseness of notation, let us write S01 = closure(C0)∪closure(C1)
and S = closure(C). In order to establish the lemma, we need to show for all ϕ ∈ Z(C) that

λ(ϕ) ⊆ span(λ(C0), λ(C1)) . (18)

To comprehend the argument that will follow below, it might be helpful to refer to the
illustration in Figure 1.

Denote by ϕ′ the restriction of ϕ to the domain S ∩ S01 and note that C is not satisfied
under ρϕ′ . Also, observe that if a matching η extends a matching η′, then λ(η) is contained
in λ(η′). This is so since for any pigeon i ∈ dom(η) \ dom(η′) we have from (13) that η′
picks up the whole subspace Λi while η only gets a single vector. Thus, if we can show that
λ(ϕ′) ⊆ span(λ(C0), λ(C1)), then we are done as ϕ extends ϕ′ and hence λ(ϕ) ⊆ λ(ϕ′).

Let D = S01 \ S and denote byMD the set of matchings that extend ϕ′ to the domain
D and do not satisfy C. Since each matching ψ ∈MD fails to satisfy C, by the soundness of
the resolution rule we have that it also fails to satisfy either C0 or C1. Assume without loss
of generality that ψ does not satisfy C0 and denote by ψ′ the restriction of ψ to the domain
of closure(C0). From (14) we see that ψ′ ∈ Z(C0) and therefore λ(ψ) ⊆ λ(ψ′) ⊆ λ(C0).

So far we have argued that for all ψ ∈MD it holds that λ(ψ) ⊆ span(λ(C0), λ(C1)). Let
λ(MD) = span(λ(ψ) | ψ ∈ MD). If we can show that the set of matchings MD is large
enough for λ(MD) = λ(ϕ′) to hold, then the lemma follows. In other words, we want to
show that λ(MD) projected to ΛD =

⊗
i∈D Λi spans all of the space ΛD .

To argue this, note first that D is completely outside the closure(C). Furthermore, by
assumption we have |closure(C)| ≤ r/4 and |D| ≤ |S01| ≤ r/2. An application of Lemma 10
now tells us that

|∂G\(closure(C)∪N(closure(C)))(D)| ≥ (1− 3ξ)∆|D| . (19)
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28:18 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

By an averaging argument, there must exist a pigeon i1 ∈ D that has more than (1− 3ξ)∆
unique neighbours in ∂G\(closure(C)∪N(closure(C)))(D). The same argument applied to D \ {i1}
show that some pigeon i2 has more than (1−3ξ)∆ unique neighbours on top of the neighbours
reserved for pigeon i1. Iterating this argument, we derive by induction that for each pigeon
i ∈ D we can find (1− 3ξ)∆ distinct holes in N(D). Since all pigeons in D are light in C, it
follows that at most di − δi mappings of pigeon i can satisfy the clause C. Hence, there are
at least

(1− 3ξ)∆− (di − δi) ≥ (1− 3ξ)∆G(i)− di + 4ξ∆G(i) ≥ ∆G(i)− di + δi/4 (20)

many holes to which each pigeon in D can be sent, independently of all other pigeons in D,
without satisfying C. As we have that dim(Λi) = ∆G(i)−di+ δi/4, we conclude that λ(MD)
projected to ΛD spans the whole space. This concludes the proof of the lemma. J

5 Lower Bounds for Perfect Matching Principle Formulas

In this section, we show that the perfect matching principle formulas defined over even highly
unbalanced bipartite graphs require exponentially long resolution refutations if the graphs
are expanding enough.

Just as in [28], our proof is by an indirect reduction to the FPHP lower bound, and
therefore there is a significant overlap in concepts and notation with Section 4. However,
since there are also quite a few subtle shifts in meaning, we restate all definitions in full
below to make the exposition in this section self-contained and unambiguous.

We first review some useful notions from [25]. Let G = (V,E) denote the graph over which
the formulas are defined. For a clause C and a vertex v ∈ V (G), let the clause-neighbourhood
of v in C, denoted by NC(v), be the vertices u ∈ V (G) with the property that C is satisfied
if v is matched to u, that is,

NC(v) = {u ∈ V | e = {u, v} ∈ E and ρ{e}(C) = 1} . (21)

For a set V ⊆ V (G) let NC(V ) be the union of the clause-neighbourhoods of the vertices in
V , i.e., NC(V ) =

⋃
v∈V NC(v) and let the vth vertex degree of C be

∆C(v) = |NC(v)| . (22)

We think of a vertex v with large degree ∆C(v) as a vertex on which the derivation has
not made any progress up to the point of deriving C, since the clause rules out very few
neighbours. The vertices with high enough vertex degree in a clause are the heavy vertices of
the clause as defined next.

I Definition 21 (Vertex weight, pseudo-width and
(
w0, ~d

)
-axioms). Let ~d = (d1, . . . , dm+n)

and ~δ = (δ1, . . . , δm+n) be two vectors such that ~d is elementwise greater than ~δ. We say that
a vertex v is ~d-super-heavy for C if ∆C(v) ≥ dv and that vertex v is (~d, ~δ)-heavy for C if
∆C(v) ≥ dv − δv. When ~d and ~δ are understood from context we omit the parameters and
just refer to super-heavy and heavy vertices. Vertices that are not heavy are referred to as
light vertices. The set of vertices that are super-heavy for C is denoted by

V~d(C) = {v ∈ V | ∆C(v) ≥ dv} (23)

and the set of heavy vertices for C is denoted by

V~d,~δ(C) = {v ∈ V | ∆C(v) ≥ dv − δv} . (24)
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The pseudo-width w~d,~δ(C) = |V~d,~δ(C)| of a clause C is the number of heavy vertices in it,
and the pseudo-width of a resolution refutation π is w~d,~δ(π) = maxC∈π w~d,~δ(C). We refer to
clauses C with precisely w0 super-heavy vertices as

(
w0, ~d

)
-axioms.

To a large extent, the proof of the lower bounds for perfect matching formulas follows
the general idea of the proof of Theorem 14: given a short refutation we first apply the filter
lemma to obtain a refutation of small pseudo-width; we then prove that in small pseudo-width
contradiction cannot be derived and can thus conclude that no short refutation exists. In
more detail, given a short resolution refutation π, we use the filter lemma (Lemma 7) to get
a filter vector ~d = (d1, . . . , dm+n) such that each clause either has many super-heavy vertices
or not too many heavy vertices (for an appropriately chosen vector ~δ). Clearly, clauses that
fall into the second case of the filter lemma have bounded pseudo-width. Clauses in the
first case, however, may have very large pseudo-width. In order to obtain a proof of low
pseudo-width, these latter clauses are strengthened to

(
w0, ~d

)
-axioms and added to a special

set A. This then gives a refutation π′ that refutes the formula PM (G) ∪ A in bounded
pseudo-width as stated in the next lemma.

I Lemma 22. Let G = (VL
.
∪ VR, E) be a bipartite graph with |VL| = m and |VR| = n; let

π be a resolution refutation of PM (G); let w0, α ∈ [m+ n] be such that w0 > log L(π) and
w0 ≥ α2 ≥ 4, and let ~δ = (δ1, . . . , δm+n) be defined by δv = ∆G(v) logα

log(m+n) for v ∈ V (G). Then
there exists an integer vector ~d = (d1, . . . , dm+n), with δv < dv ≤ ∆G(v) for all v ∈ V (G), a
set of

(
w0, ~d

)
-axioms A with |A| ≤ L(π), and a resolution refutation π′ of PM (G) ∪ A such

that L(π′) ≤ L(π) and w~d,~δ(π
′) ≤ O(α · w0).

The proof of the above lemma is omitted as it is syntactically equivalent to the proof
of Lemma 12. Until this point, we have almost mimicked the proof of Theorem 14. The
main differences will appear in the proof of the counterpart to Lemma 22, which states a
pseudo-width lower bound.

I Lemma 23. Assume for ξ ≤ 1/64 and m,n, r,∆ ∈ N that G = (VL
.
∪ VR, E) is

an (r,∆, (1− 2ξ) ∆)-boundary expander with |VL| = m, |VR| = n, ∆ ≥ logm/ξ2, and
min{∆G(v) : v ∈ VR} ≥ r/ξ. Let ~δ = (δv | v ∈ V (G)) be defined by δv = 64∆G(v)ξ and
suppose that ~d = (dv | v ∈ V (G)) is an integer vector such that δv < dv ≤ ∆G(v) for
all v ∈ V (G). Fix w0 such that 64 ≤ w0 ≤ rξ − logn and let A be an arbitrary set of(
w0, ~d

)
-axioms with |A| ≤ (1 + 16ξ)w0/8. Then every resolution refutation π of PM (G) ∪ A

has either length L(π) ≥ 2w0/32 or pseudo-width w~d,~δ(π) ≥ rξ.

The proof of the above lemma is based on a sort of reduction to the FPHP(G) case.
The idea, due to Razborov [28], is to first pick a partition of the vertices of G that looks
random to every clause in the refutation and then simulate the FPHP(G) lower bound on this
partition. In our setting, however, this process gets quite involved. Already implementing
the partition idea of Razborov is non-trivial: for a fixed clause C some vertices that are light
may be super-heavy with respect to the partition, and we do not have an upper bound on the
pseudo-width any longer. The insight needed to solve this issue is to show that by expansion
there are not too many such vertices per clause, and then adapt the closure definition to
take these vertices into account.

Another issue we run into is that the span argument from Section 4 cannot be applied
to all the vertices in the graph. Instead, for the vertices in VR, we need to resort to the
span argument from [27]. Moreover, vertices in the neighbourhood of D (as defined in the
proof of Lemma 20) may already be matched and we are hence unable to attain enough
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matchings. Our solution is to consider a “lazy” edge removal procedure from the original
matching, which with a careful analysis can be shown to circumvent the problem. We refer
to the full-length version of this paper for the proof of Lemma 23.

5.1 Formal Statements of Perfect Matching Formula Lower Bounds
Let us state the lower bounds we obtain for the perfect matching formulas.

I Theorem 24. Let G = (U
.
∪ V,E) be a bipartite graph with m = |U | and n = |V |. Suppose

that G is an (r,∆, (1− 2ξ) ∆)-boundary expander for ∆ ≥ log(m+n)
ξ2 and ξ = logα

64 log(m+n)

where α ≥ 2 and α3

logα = o
(

r
log(m+n)

)
, which furthermore satisfies the degree requirement

min{∆G(v) : v ∈ V } ≥ r/ξ. Then resolution requires length exp
(

Ω
(

r log2 α
α log2(m+n)

))
to refute

the perfect matching formula PM (G) defined over G.

We remark that this theorem also holds if we replace the minimum degree constraint
of V with an expansion guarantee from V to U . We state the theorem in the above form
as we want to apply it to the graphs from [18] for which we have no expansion guarantee
from V to U .

Proof of Theorem 24. Let w0 = ε0rξ
α , for some small enough ε0 > 0 . Suppose for the sake of

contradiction that π is a resolution refutation of PM (G) such that L(π) < (1+16ξ)w0/8. Since
w0 > log L(π), by Lemma 22 we have that there exists an integer vector ~d = (d1, . . . , dm+n),
with δv < dv ≤ ∆G(v), a set of

(
w0, ~d

)
-axioms A with |A| ≤ L(π) < (1 + 16ξ)w0/8, and a

resolution refutation π′ of PM (G) ∪ A such that L(π′) ≤ L(π) and w~d,~δ(π
′) ≤ Kαw0 for

some large enough constant K. Since L(π′) < (1 + 16ξ)w0/8 ≤ 2w0/32, by Lemma 23, we
have that w~d,~δ(π

′) ≥ rξ ≥ αw0/ε0. Choosing ε0 < 1/K, we get a contradiction and, thus,

L(π) ≥ (1 + 16ξ)w0/8 = exp
(

Ω
(
rξ2

α

))
. J

As in Section 4, we have a general statement for random graphs.

I Corollary 25. Let m and n be positive integers, let ∆ : N+ → N+ and ε : N+ →
[0, 1] be any monotone functions of n such that n3 < m ≤ n(ε/128)2 logn and n ≥ ∆ ≥
log(m + n)

(
128 log(m+n)

ε logn

)2
. Then asymptotically almost surely resolution requires length

exp
(
Ω
(
n1−ε)) to refute PM (G) for G ∼ G

(
m,n,∆

)
.

Proof sketch. It suffices to prove the claim for m = n(ε/128)2 logn and ∆ = log(m + n) ·(
(128 log(m+ n))/(ε logn)

)2. By applying Lemma 4 for χ = α = nε/4 and ξ = logα
64 logm , we

conclude that asymptotically almost surely, G ∼ G (m,n,∆) is an
(
n1−ε/2,∆, (1 − 2ξ)∆

)
-

boundary expander. Furthermore, by the Chernoff inequality asymptotically almost surely
all right vertices have degree at least n · 64 log(m+n)

ε logn . Thus, Theorem 24 gives a length lower
bound of exp

(
Ω
(
n1−ε)) as claimed. J

The following corollary is a simple consequence of Corollary 25, optimizing for the
strongest lower bounds.

I Corollary 26 (Restatement of Theorem 1). Let m,n be such that m ≤ no(logn). Then
asymptotically almost surely resolution requires length exp

(
Ω
(
n1−o(1))) to refute PM (G) for

G ∼ G
(
m,n, 8 log2m

)
.
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Proof. Let m = nf(n), where f(n) = o(logn). Applying Corollary 25 for ε = 128
√

f(n)
logn =

o(1), we get the desired statement. J

Our final corollary shows that we even get meaningful lower bounds for highly unbalanced
bipartite graphs. As was the case for FPHP(G), the required expansion is too strong to hold
for random graphs with such large imbalance, but does hold for explicitly constructed graphs
from [18].

I Corollary 27 (Restatement of Theorem 2). Let κ < 3/2−
√

2 and ε > 0 be constants, and let
n be an integer. Then there is a family of (explicitly constructible) graphs G with m = 2Ω(nκ)

and left degree O(log1/
√
κ(m)), such that resolution requires length exp(Ω(n1−2

√
κ(2−

√
κ)−ε))

to refute PM (G).

Proof. Let G be the graph from Corollary 6 with ν = 2
√
κ

1−2
√
κ
. In order to apply Theorem 24

we need to satisfy the minimum right degree constraint. A simple way of doing this is by
adding n2 edges to G such that each vertex on the right has exactly n incident edges added
while each vertex on the left has at most one incident edge added. This will leave us with
a graph which has large enough right degree while each left degree increased by at most
one. The additional edges may reduce the boundary expansion a bit, but a short calculation
shows that by choosing ξ = logα

128 log(m+n) in Corollary 6, we can still guarantee the needed
boundary expansion for Theorem 24. The corollary bound follows. J

6 Concluding Remarks

In this work, we extend the pseudo-width method developed by Razborov [27, 28] for proving
lower bounds on severely overconstrained CNF formulas in resolution. In particular, we
establish that pigeonhole principle formulas and perfect matching formulas over highly
unbalanced bipartite graphs remain exponentially hard for resolution even when these graphs
are sparse. This resolves an open problem in [28].

The main technical difference in our work compared to [27, 28] goes right to the heart
of the proof, where one wants to argue that resolution in small pseudo-width cannot make
progress towards a derivation of contradiction. Here Razborov uses the global symmetry
properties of the formula, whereas we resort to a local argument based on graph expansion.
This argument needs to be carefully combined with a graph closure operation as in [4, 3]
to ensure that the residual graph always remains expanding as matched pigeons and their
neighbouring holes are removed. It is this change of perspective that allows us to prove lower
bounds for sparse bipartite graphs with the size m of the left-hand side (i.e., the number of
pigeons) varying all the way from linear to exponential in the size n of the right-hand size
(i.e., the number of pigeonholes), thus covering the full range between [8] on the one hand
and [23, 27, 28] on the other.

One shortcoming of our approach is that the sparse expander graphs are required to have
very good expansion – for graphs of left degree ∆, the size of the set of unique neighbours of
any not too large left vertex set has to scale like (1− o(1))∆. We would like to prove that
graph PHP formulas are hard also for graphs with constant expansion (1 − ε)∆ for some
ε > 0, but there appear to be fundamental barriers to extending our lower bound proof to
this setting.

Another intriguing problem left over from [28] is to determine the true resolution com-
plexity of weak PHP formulas over complete bipartite graphs Km,n as m→∞. The best
known upper bound from [11] is exp

(
O
(√
n logn

))
, whereas the lower bound in [27, 28] is
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exp
(
Ω
(

3
√
n
))
. It does not seem unreasonable to hypothesize that exp

(
Ω
(

2
√
n
))

should be the
correct lower bound (ignoring lower-order terms), but establishing such a lower bound again
appears to require substantial new ideas.

We believe that one of the main contributions of our work is that it again demonstrates
the power of Razborov’s pseudo-width method, and we are currently optimistic that it could
be useful for solving other open problems for resolution and other proof systems.

For resolution, an interesting question mentioned in [28] is whether pseudo-width can be
useful to prove lower bounds for formulas that encode the Nisan–Wigderson generator [3, 29].
Since the clauses in such formulas encode local constraints, we hope that techniques from
our paper could be helpful. Another long-standing open problem is to prove lower bounds
on proofs in resolution that k-clique free sparse graph do not contain k-cliques, where the
expected length lower bound would be nΩ(k). Here we only know weakly exponential lower
bounds for quite dense random graphs [6, 21], although an asymptotically optimal nΩ(k)

lower bound has been established in the sparse regime for the restricted subsystem of regular
resolution [5].

Finally, we want to highlight that for the stronger proof system polynomial calculus [2, 14]
no lower bounds on proof size are known for PHP formulas with m ≥ n2 pigeons. It would
be very interesting if some kind of “pseudo-degree” method could be developed that would
finally lead to progress on this problem.
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1 Introduction

Groups and word problems. The word problem of a finitely generated group G is the most
fundamental algorithmic problem in group theory [28, 42]. Recall that a group G with
identity element 1 is finitely generated (f.g. for short) if there is a finite set Σ ⊆ G such
that every element of G can be written as a product of elements of Σ; this product can be
formally written as a word from Σ∗. For technical reasons we assume that 1 ∈ Σ (which
is needed for padding reasons) and that for every a ∈ Σ also the inverse a−1 belongs to Σ;
such a generating set Σ is called standard. We have a natural involution on Σ∗ defined by
(a1 · · · an)−1 = a−1

n · · · a−1
1 for ai ∈ Σ (which is the same as forming inverses in the group).

For words u, v ∈ Σ∗ we write u =G v if u and v are equal in G; sometimes we just say u = v
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in G. The word problem for G, WP(G) for short, is the question whether u =G 1 holds for
a given word u ∈ Σ∗. In this formulation the word problem depends on the generating set Σ,
but it is well-known that the complexity/decidability status of the word problem does not
depend on Σ.

The original motivation for the word problem came from topology and group theory [14]
within Hilbert’s “Entscheidungsproblem”. Nevertheless, it also played a role in early computer
science when Novikov and Boone constructed finitely presented groups with an undecidable
word problem [10, 40]. Still, in many classes of groups it is (efficiently) decidable, a prominent
example being the class of linear groups: Lipton and Zalcstein [36] (for linear groups over a
field of characteristic zero) and Simon [44] (for linear groups over a field of prime characteristic)
showed that their word problem is in LOGSPACE. A striking connection between the word
problem for groups and complexity theory was established by Barrington [3]: for every finite
non-solvable group G, the word problem of G is complete for ALOGTIME, which is the same
as DLOGTIME-uniform NC1. Moreover, the reduction is as simple as it could be: every
output bit depends on only one input bit. Thus, one can say that ALOGTIME is completely
characterized via group theory. Moreover, this idea has been extended to characterize ACC0

by solvable monoids [4]. On the other hand, the word problem of a finite p-group is in
ACC0[p], so Smolensky’s lower bound [45] implies that it is strictly easier than the word
problem of a finite non-solvable group.

Barrington’s construction is based on the observation that an and-gate can be simulated by
a commutator. This explains the connection to non-solvability. In this light, it seems natural
that the word problem of finite p-groups is not ALOGTIME-hard: they are all nilpotent, so
iterated commutators eventually become trivial. For infinite groups, a construction similar to
Barrington’s was used by Robinson [41] to show that the word problem of a non-abelian free
group is ALOGTIME-hard. Since by [36] the word problem of a free group is in LOGSPACE,
the complexity is narrowed down quite precisely (although no completeness is known).

Strongly efficiently non-solvable groups and ALOGTIME. The first contribution of this
paper is to identify the essence of Barrington’s and Robinson’s constructions. For this we
introduce a strengthened condition of non-solvability. Here [h, g] = h−1g−1hg denotes the
commutator of h and g.

I Definition 1. We call a group G with the finite standard generating set Σ uniformly
strongly efficiently non-solvable (uniformly SENS) if there is a constant µ ∈ N and words
gd,v ∈ Σ∗ for all d ∈ N, v ∈ {0, 1}≤d such that
(a) |gd,v| = 2µd for all v ∈ {0, 1}d,
(b) gd,v =

[
gd,v0, gd,v1

]
for all v ∈ {0, 1}<d (here we take the commutator of words),

(c) gd,ε 6= 1 in G, and
(d) given v ∈ {0, 1}d, a positive integer i encoded in binary with µd bits, and a ∈ Σ one can

decide in DLINTIME (see Section 3 for a definition of DLINTIME) whether the i-th letter
of gd,v is a.

If G is required to only satisfy (a)–(c), then G is called SENS.

In a SENS group G, non-solvability is witnessed by efficiently computable balanced nested
commutators of arbitrary depth that are non-trivial in G. The class of (uniformly) SENS
groups enjoys several nice properties: in particular, the definition is independent of the choice
of the generating set, it is inherited from subquotients (quotients of subgroups) and it is
preserved under forming the quotient by the center of a group (see Lemmas 12–14). By
following Barrington’s arguments we show:
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I Theorem 2. Let G be uniformly SENS. Then WP(G) is hard for ALOGTIME un-
der DLOGTIME-reductions (and also DLOGTIME-uniform projection reductions or AC0-
reductions).

That means that for every non-solvable group G, the word problem for G is ALOGTIME-hard,
unless the word length of the G-elements witnessing the non-solvability grows very fast (in
the full version [5] we give an example of a non-solvable group where the latter happens) or
these elements cannot be computed efficiently. For Theorem 2 the padding letter 1 in the
generating set for G is important; otherwise, we only get a TC0-many-one reduction.

Examples of SENS groups. Finite non-solvable groups and non-abelian free groups are
easily seen to be uniformly SENS; this was essentially shown by Barrington (for finite non-
solvable groups) and Robinson (for non-abelian free groups) in their ALOGTIME-hardness
proofs for the word problem. We go beyond these classes and present in the full version [5] a
general criterion that implies the uniform SENS-condition. As an application, we can show
ALOGTIME-hardness of the word problems for several famous groups:

I Corollary 3. The word problems for the following groups are hard for ALOGTIME:
Thompson’s groups,
weakly branched self-similar groups with a finitely generated branching subgroup.

Thompson’s groups F < T < V (introduced in 1965) belong due to their unusual
properties to the most intensively studied infinite groups. From a computational perspective
it is interesting to note that all three Thompson’s groups are co-context-free (i.e., the set
of all non-trivial words over any set of generators is a context-free language) [33]. This
implies that the word problems for Thompson’s groups are in LOGCFL. To the best of our
knowledge no better upper complexity bound is known. Weakly branched groups form an
important subclass of the self-similar groups [39], containing several celebrated groups like
the Grigorchuk group (the first example of a group with intermediate word growth) and the
Gupta-Sidki groups. We also show that the word problem for so-called contracting self-similar
groups is in LOGSPACE. This result is well-known, but to the best of our knowledge no proof
has appeared in the literature. The Grigorchuk group as well as the Gupta-Sidki groups are
known to be contracting and have finitely generated branching subgroups, so Corollary 3
leaves only a small range for the complexity of their word problems.

The proof of the general result implying Corollary 3 is deferred to the full version [5]
(we give a sketch in Section 4). Nevertheless, in this work we present direct proofs that
Thompson’s groups F and the Grigorchuk group are SENS, which yields Corollary 3 for
these special cases.

In [31, Theorem 7], König and the third author showed that the word problem of
f.g. solvable linear group is in TC0. They asked the question whether there is a dichotomy in
the sense that the word problem of a linear group either is in TC0 or ALOGTIME-hard. As
another application of the SENS condition, we can answer this question affirmatively using
the famous Tits’ alternative [46]:

I Corollary 4. For every f.g. linear group the word problem either is in DLOGTIME-uniform
TC0 or the word problem is ALOGTIME-hard.

Circuit value problems for groups. In the second part of the paper we study the circuit value
problem for a finitely generated group G, CVP(G) for short. Fix a standard generating set
Σ for G. The input for CVP(G) is a circuit in which input gates are labelled with generators
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from Σ and every non-input gate computes the group-product of its two predecessor gates (we
have to distinguish the left and right predecessor gate since G is in general not commutative).
There is a distinguished output gate and the question is whether it evaluates to 1. In the
group-theoretic literature, the circuit value problem for G is usually called the compressed
word problem [38]. The reason for this is that one can evaluate a circuit G of the above form
also in the free monoid Σ∗; it then corresponds to a context-free grammar that generates
a single word w. The circuit G can be seen as a compressed representation of this word w.
The circuit value problem is the succinct version of the word problem, where the input word
is represented by a circuit.

Circuit value problems for finite groups have been studied in [8]. It was shown that
CVP(G) is P-complete for finite non-solvable groups (by a Barrington style argument) and
in NC2 for finite solvable groups. The circuit value problem for linear groups is tightly related
to PIT (polynomial identity testing, i.e., the question whether a circuit over a polynomial
ring evaluates to the zero-polynomial; see e.g. [43]): For every f.g. linear group the circuit
value problem reduces in polynomial time to PIT for Z[x] or F[x] and hence belongs to coRP,
the complement of randomized polynomial time [38, Theorem 4.15]. Moreover, the circuit
value problem for the group SL3(Z) is equivalent to PIT for Z[x] with respect to polynomial
time reductions [38, Theorem 4.16].

From a group theoretic viewpoint, the circuit value problem is interesting not only because
it is a natural succinct version of the word problem, but also because several classical word
problems efficiently reduce to circuit value problems. For instance, the word problem for
a finitely generated subgroup of Aut(G) reduces in polynomial time to the circuit value
problem for G [38, Theorem 4.6]. Similar statements hold for certain group extensions [38,
Theorems 4.8 and 4.9]. This motivates the search for groups in which the circuit value
problem can be solved in polynomial time. This applies to finitely generated nilpotent groups
[31] (for which the circuit value problem can be even solved in NC2), hyperbolic groups [27]
and virtually special groups [38]. The latter are defined as finite extensions of subgroups
of right-angled Artin groups and form a very rich class of groups containing for instance
Coxeter groups [21], fully residually free groups [51] and fundamental groups of hyperbolic
3-manifolds [1].

Recently, Wächter and the fourth author constructed an automaton group (a finitely
generated group of tree automorphism, where the action of generators is defined by a Mealy
automaton) with a PSPACE-complete word problem and EXPSPACE-complete circuit value
problem [49]. The group arises by encoding a Turing machine into a group; in particular, one
cannot call this group natural. In this paper, we exhibit several natural groups (that were
intensively studied in other parts of mathematics) with a PSPACE-complete circuit value
problem (and a word problem in LOGSPACE). The two main ingredients for our construction
is the uniform SENS-property defined above and the wreath product construction.

Circuit value problems for wreath products. The wreath product G oH is a fundamental
construction in group theory and semigroup theory; important applications are the Krasner–
Kaloujnine embedding theorem in group theory and the Krohn-Rhodes decomposition
theorem in semigroup theory. The formal definition of wreath products can be found in
Section 2. We are interested in the circuit value problem for wreath products of the form
G o Z (for G f.g.). Such groups are also called lamplighter groups (the classical lamplighter
group is (Z/2) o Z). The following result was shown in [38] (for G non-abelian) and [32] (for
G abelian via a reduction to polynomial identity testing).

I Theorem 5 (c.f. [32, 38]). If G is a f.g. group, then
CVP(G o Z) is coNP-hard if G is non-abelian and
CVP(G o Z) belongs to coRP (co-randomized polynomial time) if G is abelian.
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Our main result for the circuit value problem in wreath products pinpoints the exact
complexity of CVP(G oZ) for the case that G has a trivial center (recall that the center Z(G)
of the group G is the normal subgroup consisting of all elements g ∈ G that commute with
every element from G). Theorem 6 below uses the concept of leaf languages [11, 23, 25, 26, 29],
which is formally defined in Appendix A. For a language K ⊆ Γ∗ over a finite alphabet Γ
one considers nondeterministic polynomial time machines M that after termination print
a symbol from Γ on every computation path. Moreover, one fixes a linear ordering on the
transition tuples of M . As a consequence the computation tree T (x) for a machine input x
becomes a finite ordered tree. The corresponding leaf string leaf(M,x) is obtained by listing
symbols from Γ that are printed in the leafs of T (x) from left to right. The class LEAF(K)
consists of all languages L for which there exists a nondeterministic polynomial time machines
as described above such that x ∈ L if and only if leaf(M,x) ∈ K. As a prototypical example
note that NP = LEAF({0, 1}∗1{0, 1}∗). Here, we are interested in leaf language classes where
K is the word problem for a f.g. group. For this we identify the word problem with the
language WP(G,Σ) = {w ∈ Σ∗ | w =G 1}. One can easily show that the generating set Σ
has no influence on the class LEAF(WP(G,Σ)) (see Lemma 30 in the appendix). Hence, we
simply write LEAF(WP(G)). We are actually interested in the class ∀LEAF(WP(G)), where
for a complexity class C we denote by ∀C the class of all languages L such that there exists a
polynomial p(n) and a language K ∈ C with L = {u | ∀v ∈ {0, 1}p(|u|) : u#v ∈ K} (hence,
for instance ∀P = coNP and ∀PSPACE = PSPACE). Our main result for the circuit value
problem in wreath products is:

I Theorem 6. Let G be a f.g. non-trivial group with center Z = Z(G).
CVP(G o Z) belongs to ∀LEAF(WP(G)).
CVP(G o Z) is hard for the class ∀LEAF(WP(G/Z)).

In particular, if Z = 1, then CVP(G o Z) is complete for ∀LEAF(WP(G)).

PSPACE-complete circuit value problems. From Theorem 6 we derive PSPACE-complete-
ness of the circuit value problem for some interesting groups:

I Corollary 7. The circuit value problem for the following groups is PSPACE-complete:
(i) wreath products G o Z where G is finite non-solvable or free of rank at least two,
(ii) Thompson’s groups,
(iii) the Grigorchuk group, and
(iv) all Gupta-Sidki groups.

In order to derive this corollary from Theorem 6 we also need a kind of padded version of
Theorem 2 saying that PSPACE is contained in LEAF(WP(G/Z(G))) (this yields PSPACE-
hardness of CVP(G o Z) for every SENS group G). For Thompson’s groups, the Grigorchuk
group, and the Gupta-Sidki groups we also use a certain self-embedding property: for all
these groups G a wreath product G oA embeds into G for some A 6= 1. Thompson’s group
F has this property for A = Z [19]. For the Grigorchuk group and the Gupta-Sidki groups
(and, more generally, weakly branched groups whose branching subgroup is finitely generated
and has elements of finite order) we show that one can take A = Z/p for some p ≥ 2.

Some of the proofs can be found only in the full version [5] of this paper. The proof of
Theorem 6 can be found in the appendix.

CCC 2020



29:6 ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems

2 Background from group theory

For group elements g, h ∈ G or words g, h ∈ Σ∗ we write gh for the conjugate h−1gh and [h, g]
for the commutator h−1g−1hg. We call g a d-fold nested commutator, if d = 0 or g = [h1, h2]
for (d − 1)-fold nested commutators h1, h2. A subquotient of a group G is a quotient of a
subgroup of G.

Wreath products. We consider groups G that act on a set X on the left or right. For
g ∈ G and x ∈ X we write xg ∈ X (resp., gx) for the result of a right (resp., left) action. An
important case arises when G = Sym(X) is the symmetric group on a set X, which acts on
X on the right.

A fundamental group construction that we shall use is the wreath product: given groups
G and H acting on the right on sets X and Y respectively, their wreath product G oH is a
group acting on X × Y . We start with the restricted direct product G(Y ) (the base group) of
all mappings f : Y → G having finite support supp(f) = {y | f(y) 6= 1} with the operation
of pointwise multiplication. The group H has a natural left action on G(Y ): for f ∈ G(Y )

and h ∈ H, we define hf ∈ G(Y ) by (hf)(y) = f(yh). The corresponding semidirect product
G(Y ) oH is the wreath product G oH. In other words:

Elements of G oH are pairs (f, h) ∈ G(Y ) ×H; we simply write fh for this pair.
The multiplication in G oH is defined as follows: Let f1h1, f2h2 ∈ G oH. Then f1h1f2h2 =
f1
h1f2h1h2, where the product f1

h1f2 : y 7→ f1(y)f2(yh1) is the pointwise product.
The wreath product G o H acts on X × Y by (x, y)fh = (xf(y), yh). The wreath product
defined above is also called the (restricted) permutational wreath product. There is also the
variant where G = X, H = Y and both groups act on themselves by right-multiplication,
which is called the (restricted) regular wreath product (or standard wreath product). A subtle
point is that the permutational wreath product is an associative operation whereas the
regular wreath product is in general not. The term “restricted” refers to the fact that the
base group is G(Y ), i.e., only finitely supported mappings are taken into account. If G(Y ) is
replaced by GY (i.e., the set of all mappings from Y to G with pointwise multiplication),
then one speaks of an unrestricted wreath product. For Y finite this makes of course no
difference. We will only deal with restricted wreath products. The action of G on X is
usually not important for us, but it is nice to have an associative operation. The right group
H will be either a symmetric group Sym(Y ) acting on the right on Y or a (finite or infinite)
cyclic group acting on itself by gh = g + h. Thus, if H is cyclic, the permutational wreath
product and the regular wreath product (both denoted by G oH) coincide. Nevertheless,
be aware that G o (H oH) = (G oH) oH holds only for the permutational wreath product
even if H is cyclic. Note that if G is generated by Σ and H is generated by Γ then G oH is
generated by Σ ∪ Γ.

Richard Thompson’s groups. In 1965 Richard Thompson introduced three finitely pre-
sented groups F < T < V acting on the unit-interval, the unit-circle and the Cantor set,
respectively. Of these three groups, F received most attention (the reader should not confuse
F with a free group). This is mainly due to the still open conjecture that F is not amenable,
which would imply that F is another counterexample to a famous conjecture of von Neumann
(a counterexample was found by Ol’shanskii). A standard reference for Thompson’s groups
is [12]. The group F consists of all homeomorphisms of the unit interval that are piecewise
affine, with slopes a power of 2 and dyadic breakpoints. Famously, F has a finite presentation
with two generators: F = 〈x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉. Very convenient is
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also the following infinite presentation: F = 〈x0, x1, x2, . . . | xxi

k = xk+1(i < k)〉. The group
F is orderable (so in particular torsion-free), its derived subgroup [F, F ] is simple and the
center of F is trivial. Important for us is the following fact:

I Lemma 8 ([19, Lemma 20]). The group F contains a subgroup isomorphic to F o Z.

Hence, the limit group H∞ =
⋃
i≥0 Hi, where H0 = Z and Hi+1 = Hi o Z, is contained in F .

Weakly branched groups. We continue our list of examples with an important class of
groups acting on rooted trees. For more details, [6, 39] serve as good references. Let X be a
finite set. The free monoid X∗ serves as the vertex set of a regular rooted tree with an edge
between v and vx for all v ∈ X∗ and all x ∈ X. The group W of automorphisms of this tree
naturally acts on the set X of level-1 vertices, and permutes the subtrees hanging from them.
Exploiting the bijection X+ = X∗ ×X, we thus have an isomorphism

ϕ : W →W o Sym(X) = WX o Sym(X), (1)

mapping g ∈W to elements f ∈WX and π ∈ Sym(X) as follows: π is the restriction of g to
X ⊆ X∗, and f is uniquely defined by (xv)g = xπvf(x). We always write g@x for f(x) and
call it the state (or coordinate) of g at x. If X = {0, . . . , k} we write g = 〈〈g@0, . . . , g@k〉〉π.

I Definition 9. A subgroup G ≤ W is self-similar if ϕ(G) ≤ G o Sym(X). In other words:
the actions on subtrees xX∗ are given by elements of G itself. A self-similar group G is
weakly branched if there exists a non-trivial subgroup K ≤ G with ϕ(K) ≥ KX . In other
words: for every k ∈ K and every x ∈ X the element acting as k on the subtree xX∗ and
trivially elsewhere belongs to K. A subgroup K as above is called a branching subgroup.

Note that we are weakening the usual definition of “weakly branched”: indeed it is usually
additionally required that G act transitively on Xn for all n ∈ N. This extra property is not
necessary for our purposes, so we elect to simply ignore it. In fact, all the results concerning
branched groups that we shall use will be proven directly from Definition 9.

Note also that the join 〈K1 ∪ K2〉 of two branching subgroups K1 and K2 is again a
branching subgroup. Hence, there exists a maximal branching subgroup. It immediately
follows from the definition that, if G is weakly branched, then for every v ∈ X∗ there is in G
a copy of its branching subgroup K whose action is concentrated on the subtree vX∗.

There exist important examples of f.g. self-similar weakly branched groups, notably the
Grigorchuk group G, see [17]. It may be described as a self-similar group in the following
manner: it is a group generated by {a, b, c, d}, and acts on the rooted tree X∗ for X = {0, 1}.
The action, and therefore the whole group, are defined by the restriction of ϕ to G’s generators:
ϕ(a) = (0, 1), ϕ(b) = 〈〈a, c〉〉, ϕ(c) = 〈〈a, d〉〉, and ϕ(d) = 〈〈1, b〉〉, where we use the notation
(0, 1) for the non-trivial element of Sym(X) (that permutes 0 and 1) and 〈〈w0, w1〉〉 for a tuple
in G{0,1} ∼= G×G. We record some classical facts:

I Lemma 10. The Grigorchuk group G is infinite, torsion, weakly branched, and all its finite
subquotients are 2-groups (so in particular nilpotent). It has a f.g. branching subgroup.

Other examples of f.g. self-similar weakly branched groups with a f.g. branching subgroup
include the Gupta-Sidki groups [20], the Hanoi tower groups [18], and all iterated monodromy
groups of degree-2 complex polynomials [7] except z2 and z2 − 2.
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Contracting self-similar groups. Recall the notation g@x for the coordinates of ϕ(g). We
iteratively define g@v = g@x1 · · ·@xn for any word v = x1 · · ·xn ∈ X∗. A self-similar group
G is called contracting if there is a finite subset N ⊆ G such that, for all g ∈ G, we have
g@v ∈ N whenever v is long enough (depending on g), see also [39, Definition 2.11.1].

If G is a f.g. contracting group with word norm ‖ · ‖ (i.e., for g ∈ G, ‖g‖ is the length of
a shortest word over a fixed generating set of G that represents g), then a more quantitative
property holds: there are constants 0 < λ < 1, h ≥ 1 and k ≥ 0 such that for all g ∈ G
we have ‖g@v‖ ≤ λ‖g‖ + k for all v ∈ Xh; see e.g. [28, Proposition 9.3.11]. Then, for
c = −h/ log λ and a possibly larger k we have g@v ∈ N whenever |v| ≥ c log ‖g‖ + k. It
is well-known and easy to check that the Grigorchuk group, the Gupta-Sidki groups and
the Hanoi tower group for three pegs are contracting. The following result has been quoted
numerous times, but has never appeared in print. We give a proof in the full version [5]. A
proof for the Grigorchuk group may be found in [16]:

I Proposition 11. Let G be a f.g. contracting self-similar group. Then WP(G) can be solved
in LOGSPACE (deterministic logarithmic space).

For the proof of Proposition 11 one shows that if an element g of a contracting self-similar
group G acts as the identity on all words v ∈ X∗ of length O(log ‖g‖), then g = 1.

3 Complexity theory

Since we also deal with sublinear time complexity classes, we use Turing machines with
random access. Such a machine has an additional index tape and some special query states.
Whenever the Turing machine enters a query state, the following transition depends on the
input symbol at the position which is currently written on the index tape in binary notation.
We use the abbreviations DTM/NTM/ATM for deterministic/non-deterministic/alternating
Turing machine. We define the following complexity classes:

DLINTIME: the class of languages that can be accepted by a DTM in linear time.
DLOGTIME: the class of languages that can be accepted by a DTM in logarithmic time.
ALOGTIME: the class of languages that can be accepted by an ATM in logarithmic time.
It is well-known that ALOGTIME = DLOGTIME-uniform NC1, see [47] for details.
APTIME: the class of languages that can be accepted by an ATM in polynomial time.
We have APTIME = PSPACE.

A function f : Γ∗ → Σ∗ is DLOGTIME-computable if there is some polynomial p with |f(x)| ≤
p(|x|) for all x ∈ Γ∗ and the set Lf = {(x, a, i) | x ∈ Γ∗ and the i-th letter of f(x) is a}
belongs to DLOGTIME. Here i is a binary encoded integer. A DLOGTIME-reduction is a
DLOGTIME-computable many-one reduction.

The class AC0 (resp. TC0) is defined as the class of languages (respectively functions)
accepted (respectively computed) by circuits of constant depth and polynomial size with
not-gates and unbounded fan-in and- and or-gates (resp. unbounded fan-in threshold-gates).

4 Efficiently non-solvable groups and ALOGTIME

Recall the definition of a SENS (strongly efficiently non-solvable) group from Definition 1;
(a)–(d) refer to this definition in the following. We start with some observations:

A SENS group is clearly non-solvable, so the terminology makes sense. In the full
version [5] we give an example of a f.g. group that is non-solvable, has decidable word
problem, but is not SENS. The construction is inspired from [50].
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If one can find suitable gd,v of length at most 2µd, then these words can always be padded
to length 2µd thanks to the padding letter 1.
It suffices to specify gd,v for v ∈ {0, 1}d; the other gd,v are then defined by Condition (b).
We have |gd,v| = 2µd+2(d−|v|) for all v ∈ {0, 1}≤d. Thus, all gd,v have length 2O(d).
Equivalently to Condition (d), we can require that given v ∈ {0, 1}d and a binary encoded
number i with µd bits, one can compute the i-th letter of gd,v in DLINTIME.

Proof sketch for Theorem 2. The proof of Theorem 2 essentially follows Barrington’s proof
that the word problem of finite non-solvable groups is ALOGTIME-hard [3]. The entire
proof can be found in the full version [5], where we also state a non-uniform version of
Theorem 2. Since the proof for the uniform case is not difficult but tedious, in this sketch we
primarily focus on the non-uniform version, which only gives us hardness via (non-uniform)
AC0-reductions instead of DLOGTIME-reductions.

Like in Barrington’s proof, we start with an ALOGTIME-machine (resp. NC1-circuit) and
construct a family of so-called G-programs. Since we are dealing with finitely generated, but
infinite groups, we have to adapt the definition of G-programs slightly.

Fix a finite standard generating set Σ of G. A G-program P of length m and input length
n is a sequence of instructions 〈ij , bj , cj〉 for 0 ≤ j ≤ m− 1 where ij ∈ [1..n] and bj , cj ∈ Σ.
On input of a word x = x1 · · ·xn ∈ {0, 1}∗, an instruction 〈ij , bj , cj〉 evaluates to bj if xij = 1
and to cj otherwise. The evaluation of a G-program is the product (in the specified order) of
the evaluations of its instructions, and is denoted with P [x] ∈ Σ∗.

Let M be an ALOGTIME-machine in input normal form [47, Lemma 2.41], i. e., every
computation path queries at most one input bit andM halts immediately after the query. For
every input size n, the computation tree ofM translates immediately into a Boolean circuit of
depth d ∈ O(logn). Moreover, M can be normalized such that this circuit is a fully balanced
binary tree meaning that the gates of the circuit are indexed by the set {0, 1}≤d, where {0, 1}<d

are the inner gates (where ε is the output gate, which counts here as an inner gate) and {0, 1}d

are the leaves (input gates). We can assume that all inner gates are nand-gates (where the
Boolean function nand : {0, 1}2 → {0, 1} is defined by nand(0, 0) = nand(0, 1) = nand(1, 0) = 1
and nand(1, 1) = 0) and each leaf is labelled by a possibly negated input variable or constant
via an input mapping qn : {0, 1}d → [1..n]× {0, 1} × {0, 1}. The meaning of this mapping is
as follows: if the input to the circuit is the bit string x1x2 · · ·xn and qn(v) = 〈i, a, b〉, then
the input gate v ∈ {0, 1}d evaluates to a (resp., b) if xi = 1 (resp., xi = 0).

The family of circuits obtained this way can be shown to be DLOGTIME-uniform in
an even stronger sense than the usual definition (see e. g. [47]). For the sake of a simpler
description, we fix the input length n and write C for the n-input circuit of depth d ∈ O(logn).
W. l. o. g. for every x ∈ {0, 1}n, we have x ∈ L(M) if and only if the output gate of C evaluates
to 0 on input x.

For each gate v ∈ {0, 1}≤d, let gv = gd,v as in Definition 1. We construct two G-programs
Pv and P−1

v (both of input length n) such that for every input x ∈ {0, 1}n we have

Pv[x] =G

{
gv if gate v evaluates to 1,
1 if gate v evaluates to 0,

(2)

and P−1
v [x] = Pv[x]−1 in G. Notice that gvP−1

v [x] = gv if v evaluates to 0 and gvP−1
v [x] = 1,

otherwise. Thus, gvP−1
v is a G-program for the “negation” of Pv. Moreover, by Equation (2),

Pε evaluates to 1 on input x if and only if the output gate evaluates to 0 which by our
assumption is the case if and only if x ∈ L.
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The construction of the Pv and P−1
v is straightforward: For an input gate v ∈ {0, 1}d with

qn(v) = 〈i, a, b〉 we define Pv to be a G-program evaluating to gv or 1 depending on the i-th
input bit. More precisely, write gv = a1 · · · am with ai ∈ Σ. If qn(v) = 〈i, a, b〉 for i ∈ [1..n] and
a, b ∈ {0, 1}, we set Pv = 〈i, aa1 , ab1〉 · · · 〈i, aam, abm〉 and P−1

v = 〈i, a−am , a−bm 〉 · · · 〈i, a−a1 , a−b1 〉.
For a nand-gate v with inputs from v0 and v1, we define

Pv = gv[Pv1, Pv0] = gvP
−1
v1 P

−1
v0 Pv1Pv0,

P−1
v = [Pv0, Pv1]g−1

v = P−1
v0 P

−1
v1 Pv1Pv1g

−1
v ,

where the gv and g−1
v represent constant G-programs evaluating to gv and g−1

v , respectively,
irrespective of the actual input (such constant G-programs consist of triples of the form
〈1, a, a〉 for a ∈ Σ). These constant G-programs are defined via the commutator identities
gv =

[
gv0, gv1

]
for v ∈ {0, 1}<d in Definition 1.

Clearly, by induction we have Pv[x]−1 = P−1
v [x] in G (for every input x). Let us show

that Equation (2) holds: For an input gate v ∈ {0, 1}d, Equation (2) holds by definition.
Now, let v ∈ {0, 1}<d. Then, by induction, we have the following equalities in G:

Pv[x] = gv[Pv1[x], Pv0[x]] =
{
gv if v0 or v1 evaluates to 0,
gv[gv1, gv0] if v0 and v1 evaluate to 1,

=
{
gv if v evaluates to 1,
1 if v evaluates to 0.

Note that [gv1, gv0] = [gv0, gv1]−1 = g−1
v for the last equality. Thus, Pv satisfies Equation (2).

For P−1
v the analogous statement can be shown with the same calculation. For a leaf

v ∈ {0, 1}d, we have |gv| ∈ 2O(d) = nO(1) by Condition (a) from Definition 1 (recall that
d ∈ O(logn)). Hence, P−1

v and Pv have polynomial length in n. Finally, also Pε has
polynomial length in n.

This gives us a non-uniform AC0-reduction (more precisely, a projection reduction) of
L(M) to WP(G). In order to obtain a DLOGTIME-reduction, we apply essentially the same
construction. However, we need to introduce some padding so that the function mapping
an index i encoded in binary to the i-th instruction of Pε can be computed in DLINTIME.
In order to show the last point, we need condition (d) of the uniform SENS definition
(Definition 1). J

Let us next state some algebraic properties of SENS groups. The proofs of the following
three lemmas are straightforward.

I Lemma 12. The property of being (uniformly) SENS is independent of the choice of the
standard generating set.

I Lemma 13. If Q = H/K is a f.g. subquotient of a f.g. group G and Q is (uniformly)
SENS, then G is also (uniformly) SENS.

I Lemma 14. If G is (uniformly) SENS, then G/Z(G) is (uniformly) SENS.

The following result is, for G = A5, the heart of Barrington’s argument:

I Lemma 15. If G is a finite non-solvable group, then G is uniformly SENS.
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Proof. Let us first show the statement for a non-abelian finite simple group G. By the proof
of Ore’s conjecture [34], every element of G is a commutator. This means that we may choose
gε 6= 1 at will, and given gv we define gv0, gv1 by table lookup, having chosen once and for
all for each element of G a representation of it as a commutator. Computing gv requires |v|
steps and bounded memory.

If G is finite non-solvable, then any composition series of G contains a non-abelian simple
composition factor Gi/Gi+1. Hence, we can apply Lemma 13. J

We remark that a direct proof of Lemma 15 without using the deep result [34] is also not
difficult, but requires some more work.

By Lemmas 13 and 15, every group having a finite non-solvable subquotient is uniformly
SENS. Since every free group of rank n ≥ 2 projects to a finite non-solvable group, we get:

I Corollary 16. A f.g. free group of rank n ≥ 2 is uniformly SENS.

This result was essentially shown by Robinson [41], who showed that the word problem of
a free group of rank two is ALOGTIME-hard. He used a similar commutator approach as
Barrington. One can prove Corollary 16 also directly by exhibiting a free subgroup of infinite
rank whose generators are easily computable. For example, in the free group F2 = 〈x0, x1〉
take gd,v = x−v0 x1x

v
0 for v ∈ {0, 1}d viewing the string v as a binary encoded number (the

other gd,v for v ∈ {0, 1}<d are then defined by the commutator identity in Definition 1),
and appropriately padding with 1’s. It is even possible to take the gd,v of constant length:
consider a free group F = 〈x0, x1, x2〉 of rank 3 and the elements gd,v = xv mod 3 with v read
as the binary representation of an integer. It is easy to see that the nested commutator gd,ε
is non-trivial.

A dichotomy for linear groups. Instead of Corollary 4, we prove a slightly more detailed
result. Recall that a group G is called C1-by-C2 for group classes C1 and C2 if G has a normal
subgroup K ∈ C1 such that G/K ∈ C2.

I Theorem 17. For every f.g. linear group the word problem is in DLOGTIME-uniform TC0

or ALOGTIME-hard. More precisely: let G be a f.g. linear group.
If G is finite solvable, then WP(G) belongs to DLOGTIME-uniform ACC0.
If G is infinite solvable, then WP(G) is complete for DLOGTIME-uniform TC0 (via
uniform AC0-Turing-reductions).
If G is solvable-by-(finite non-solvable), then WP(G) is complete for ALOGTIME (via
DLOGTIME-reductions).
In all other cases, WP(G) is ALOGTIME-hard and in LOGSPACE.

Note that we can obtain a similar dichotomy for hyperbolic groups: they are either virtually
abelian or contain a non-abelian free subgroup. In the first case, the word problem is in
DLOGTIME-uniform TC0, in the second case it is ALOGTIME-hard.

Proof. Let G be f.g. linear. First of all, by [36, 44], WP(G) belongs to LOGSPACE. By Tits
alternative [46], G either contains a free subgroup of rank 2 or is virtually solvable. In the
former case, WP(G) is ALOGTIME-hard by Corollary 16 and Theorem 2. Let us now assume
that G is virtually solvable. Let K be a solvable subgroup of G of finite index. By taking the
intersection of all conjugates of K in G, we can assume that K is a normal subgroup of G.
If also G/K is solvable, then G is solvable. Hence, WP(G) is in DLOGTIME-uniform ACC0

(if G is finite) or, by [31], complete for DLOGTIME-uniform TC0 (if G is infinite). Finally,
assume that the finite group G/K is non-solvable (thus, G is solvable-by-(finite non-solvable).
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By Lemmas 13 and 15, G is uniformly SENS, and Theorem 2 implies that WP(G) is
ALOGTIME-hard. Moreover, by [41, Theorem 5.2], WP(G) is AC0-reducible to WP(K) and
WP(G/K). The latter belongs to ALOGTIME and WP(K) belongs to DLOGTIME-uniform
ACC0 if K is finite and to DLOGTIME-uniform TC0 if K is infinite (note that K as a finite
index subgroup of G is f.g. linear too). In all cases, WP(G) belongs to ALOGTIME. J

New examples of SENS groups. In order to get new examples of (uniformly) SENS groups,
we use the following result on groups with a certain self-embedding property with respect to
wreath products.

I Theorem 18. Let G be a finitely generated group with G oH ≤ G for some non-trivial
group H. Then G is uniformly SENS.

As an immediate consequence of this theorem and Lemma 8, we obtain:

I Corollary 19. Thompson’s groups F < T < V are uniformly SENS.

By the following result, Grigorchuk’s group and the Gupta-Sidki groups are uniformly SENS.

I Theorem 20. Let G be a weakly branched self-similar group, and assume that it admits a
f.g. branching subgroup K. Then K and hence G are uniformly SENS.

In the long version [5] we derive Theorems 18 and 20 from a single result. Roughly speaking,
it states that a f.g. group G is uniformly SENS if G contains a subgroup 〈h0, h1, h2, . . .〉 that
acts on a tree X∗ (where X can be also infinite) in such a way that there exist x−1, x, x1 ∈ X
with the following properties for all k ≥ 0:
(i) hk only acts non-trivially on the subtree below xk and
(ii) the three tree nodes xkx−1, xkx, and xkx1 are consecutive in the orbit of hk.
In addition, hk must be of word length 2O(k) (with respect to the generators of G) and the
symbol in hk at a certain position must be computable in linear time.

Theorem 18 can be derived from this statement as follows: we can use the embedding
G o H ≤ G in order to find in G a subgroup 〈h0, h1, . . . 〉 ∼= (· · · o Z) o Z or 〈h0, h1, . . . 〉 ∼=
(· · · o (Z/p)) o (Z/p). This subgroup acts in a canonical way on the tree X∗ for X = Z or
X = Z/p. Let the element hk be a generator of the (k + 1)-st cyclic factor from the right.
Then h0 cyclically permutes the children of the root ε, and, more generally, hk cyclically
permutes the children of the node 0k and stabilizes all other nodes. Using an appropriate
padding, the symbols of the hk are computable in linear time, so we can apply the above
mentioned result from the long version [5]. For weakly branched self-similar groups, after
overcoming some minor technical difficulties, the proof follows the same outline.

Direct proofs for Thompson’s and Grigorchuk’s groups. One can also prove the uniform
SENS property for Thompson’s group F directly. Recall the infinite presentation F =
〈x0, x1, x2, . . . | xxi

k = xk+1(i < k)〉.

I Proposition 21. Let g = x3x
−1
2 ∈ F and define cv for v ∈ {0, 1}∗ inductively via

cε = ε, cv0 = x1cv, and cv1 = x−1
0 x1cv.

Finally, for d ∈ N and v ∈ {0, 1}≤d let gd,v = gcv . Then gd,v = [gd,v0, gd,v1] for all d ∈ N
and v ∈ {0, 1}≤d and gε = g 6= 1 in F . In particular, G is uniformly SENS.
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Proof. Obviously, we have gε = g in F . Moreover, since x2 6= x3 (which follows directly from
the normal form theorem for F ; see e.g. [12, Corollary 2.7]), we have g 6= 1 in F (Condition
(c) of Definition 1). The identity g = [g, gx−1

0 ]x1 = [gx1 , gx
−1
0 x1 ] is straightforward to check.

Thus, we obtain Condition (b):

gd,v = gcv = [gx1cv , gx
−1
0 x1cv ] = [gcv0 , gcv1 ] = [gd,v0, gd,v1].

Moreover, since |gd,v| = |g|+ 2 |cv| ≤ |g|+ 4d, we can pad with the identity symbol writing
gv,d as a word of length 2µd for some proper constant µ ∈ N in order to meet Condition (a)
(be aware that the lengths need to be computed over a finite standard generating set Σ, e. g.
Σ =

{
1, x0, x

−1
0 , x1, x

−1
1
}
). This shows that F is SENS.

Condition (d) of Definition 1 is also straightforward to check by introducing some more
padding: we slightly change the definition of the cv by setting cε = ε, cv0 = 1x1cv, and cv1 =
x−1

0 x1cv where 1 ∈ Σ. This new cv represents the same group element as the old cv, but now
we have |cv| = 2 |v| for all v ∈ {0, 1}∗ and all letters at even positions are x1, while letters at
odd positions are either 1 or x−1

0 (the (2j + 1)-st letter of cv depends on the (|v| − j)-th bit
of v). Notice that we have |gd,v| = |g|+ 2 |cv| = |g|+ 4d.

On input of v ∈ {0, 1}d, i ∈ N (encoded with µd bits), and a ∈ Σ, first decide whether
1 ≤ i ≤ 2d, or 2d < i ≤ 2d+ |g|, or 2d+ |g| < i ≤ 4d+ |g|, or i > 4d+ |g|. This clearly can
be done in DLINTIME (recall that g is a constant). Now assume that 1 ≤ i ≤ 2d (i. e., i
points into the leading c−1

v of gd,v = c−1
v gcv). If i is odd, one accepts if and only if a = x−1

1 ;
if i is even, one accepts if and only if the i/2-th bit of v is zero and a = 1 or if the i/2-th bit
of v is one and a = x0. The other cases are similar. J

For the special case of Grigorchuk’s group we give below an alternative proof for the
uniform SENS property, where the gd,v are of constant length.

I Proposition 22. Consider in the Grigorchuk group G = 〈a, b, c, d〉 the elements x = (abad)2

and y = xb = babadabac. Define inductively zv ∈
{
x, y, x−1, y−1} for v ∈ {0, 1}∗: zε = x

and if zv is defined, then we define zv0 and zv1 according to the following table:

zv zv0 zv1

x x−1 y−1

x−1 y−1 x−1

y y x

y−1 x y

For every d ∈ N and v ∈ {0, 1}≤d let gd,v = zv for |v| = d and gd,v = [gd,v0, gd,v1] for |v| < d.
We then have gd,ε 6= 1 in G. In particular, G is uniformly SENS.

Proof. That x 6= 1 6= y is easy to check by computing the action of x and y on the third
level of the tree. Now the following equations are easy to check in G:

[x, y] =
〈〈

1,
〈〈

1, y−1〉〉〉〉 [x−1, y−1] = 〈〈1, 〈〈1, x〉〉〉〉
[y, x] = 〈〈1, 〈〈1, y〉〉〉〉 [y−1, x−1] =

〈〈
1,
〈〈

1, x−1〉〉〉〉
Hence, [zv0, zv1] = 〈〈1, 〈〈1, zv〉〉〉〉. The checks are tedious to compute by hand, but easy in the
GAP package FR (note that vertices are numbered from 1 in GAP and from 0 here):

gap> LoadPackage("fr");
gap> AssignGeneratorVariables(GrigorchukGroup);
gap> x := (a*b*a*d)^2; y := x^b;
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gap> Assert(0,Comm(x,y) = VertexElement([2,2],y^-1));
gap> Assert(0,Comm(x^-1,y^-1) = VertexElement([2,2],x));
gap> Assert(0,Comm(y,x) = VertexElement([2,2],y));
gap> Assert(0,Comm(y^-1,x^-1) = VertexElement([2,2],x^-1));

We claim that gd,ε 6= 1 in G. The equation [zv0, zv1] = 〈〈1, 〈〈1, zv〉〉〉〉 immediately implies that
gd,v acts as zv on the subtree below vertex 12(d−|v|) and trivially elsewhere. In particular, gd,ε
acts as zε = x 6= 1 on the subtree below vertex 12d and is non-trivial. With this definition,
the gd,v satisfy the definition of a SENS group. Moreover, given some v ∈ {0, 1}d, gd,v can be
computed in time O(d) by a deterministic finite automaton with state set

{
x±1, y±1}. J

5 Circuit value problems for wreath products

This section provides further details regarding Theorem 6. We start with two applications for
Mod-classes (applications for PSPACE can be found in the next section). For a complexity
class C we define the class ModmC by L ∈ ModmC if there exists a polynomial p(n) and a
language K ∈ C such that L =

{
u
∣∣ |{v ∈ {0, 1}p(|u|) : u#v ∈ K}| 6≡ 0 mod m

}
.

I Example 23. IfG is a finite non-abelian p-group, then LEAF(WP(G)) ⊆ Modp · · ·ModpP =
ModpP ⊆ LEAF(WP(G)) by [22, Satz 4.32], [9, Theorem 6.7], and [24, Theorem 2.2] and
likewise LEAF(WP(G/Z(G))) = ModpP. Hence, in this case CVP(G o Z) is complete for
∀ModpP.

I Example 24. Consider the symmetric group on three elements S3. By [24, Example 2.5]
we have LEAF(WP(S3)) = Mod3Mod2P (also written as Mod3⊕P). Since S3 has trivial
center, it follows that CVP(S3 o Z) is complete for ∀Mod3⊕P.

In the rest of the section, we outline the proof of Theorem 6; full details can be found in the
appendix. The first statement of Theorem 6 (that CVP(G o Z) belongs to ∀LEAF(WP(G)))
is the easy part: Let Σ be a standard generating set for G and fix a generator t for Z. Then
Γ = Σ ∪ {t, t−1} is a standard generating set for G o Z. Consider a circuit over the wreath
product G o Z whose input gates are labelled with generators from Γ. We can evaluate this
circuit also in the free monoid Γ∗ and obtain a word w ∈ Γ∗ as the evaluation of the output
gate. We have to verify that w = 1 in G oZ. One first checks in polynomial time whether the
exponent sum of t in w is zero. If not, the algorithm rejects, otherwise the word w represents
in G o Z a function f : Z → G with finite support. One can easily compute in polynomial
time two binary encoded integers i, j such that supp(f) is contained in [i..j] (the integer
interval from i to j). It remains to verify that ∀x ∈ [i..j] : f(x) = 1. The ∀-quantifier over
[i..j] corresponds to the ∀-part in ∀LEAF(WP(G)). Finally, for a specific number x ∈ [i..j]
the machine then produces a leaf string wx ∈ Σ∗ such that wx represents the group element
f(x) ∈ G. Basically, the machine branches to all positions p in the word w and prints the
symbol a at that position p, if (i) a ∈ Σ and (ii) the exponent sum of all t’s in the prefix up
to position p− 1 in w is x (this can be checked in polynomial time). Otherwise, the machine
prints the padding letter 1.

The hard part of Theorem 6 is showing hardness for ∀LEAF(WP(G/Z(G))). The proof for
this uses some of the techniques from the paper [37], where a connection between leaf strings
and string compression was established. Instead of going into the details (which can be found
in Appendix C) we want to explain another perspective on the theorem. Let us restrict to
the case that the center of G is trivial; hence the circuit value problem for G o Z is complete
for ∀LEAF(WP(G)). Also fix a standard generating set Γ for G. Recall that a circuit over
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the group G can be seen also as a succinct representation of a string over the alphabet Γ,
which is obtained by evaluating the circuit in the free monoid Γ∗. The circuit value problem
for G then asks whether this word belongs to WP(G). Leaf languages correspond to an even
more succinct form of string compression by Boolean circuits. A Boolean circuit C with n
inputs represents the binary string of length 2n, where the i-th symbol is 1 if and only if C
evaluates to true under the i-th truth assignment. In order to represent an arbitrary string
w ∈ Γ∗ by a Boolean circuit one has to (i) fix an encoding of the symbols from Γ by binary
strings and (ii) specify in addition to the circuit also the length of w. It is then well-known
that the question whether a string specified by a Boolean circuit belongs to a fixed language
K is complete for LEAF(K) (strictly speaking this is only true if LEAF(K) is replaced by the
corresponding balanced leaf language class, but for K = WP(G) this makes no difference
due to the padding letter 1; see Appendix A). Compression by Boolean circuits is much more
succinct than compression by group circuits. For instance, for a finite non-solvable group G,
LEAF(WP(G)) = PSPACE but CVP(G) is P-complete. Roughly speaking, Theorem 6 says
that compression by group circuits over the wreath product G o Z has the same power as
compression by Boolean circuits over the group G.

6 PSPACE-complete circuit value problems

In this section we apply Theorem 6 to SENS groups. The results are summarized in Corollary 7
from the introduction. The proofs of this section can be found in the full version [5].

The following result can be derived from Theorem 2 using a padding argument (recall
that PSPACE = APTIME). Another point of view is that Lemma 25 generalizes the inclusion
PSPACE ⊆ LEAF(WP(G)) for a finite simple group (in which case equality holds) [25]. Note
that, by Lemma 14, G/Z(G) is uniformly SENS if G is uniformly SENS.

I Lemma 25. If G is uniformly SENS, then PSPACE ⊆ LEAF(WP(G/Z(G))).

From Theorem 6 and Lemma 25 we get:

I Corollary 26. If G is uniformly SENS, then CVP(G o Z) is PSPACE-hard.

We can apply Corollary 26 to wreath products G o Z where G is finite non-solvable or free
of rank n ≥ 2 (statement i in Corollary 7 from the introduction). In this case, the word
problem for G o Z can be solved in LOGSPACE (which follows from a transfer theorem for
wreath products [48] and the fact the word problem for finite groups and free groups can be
solved in LOGSPACE [36]). This in turn implies that CVP(G o Z) belongs to PSPACE.

For Thompson’s group F we have F oZ ≤ F (Lemma 8). Moreover, F is uniformly SENS
(Corollary 19). Hence, Corollary 26 shows that CVP(F ) is PSPACE-hard. Furthermore,
CVP(F ) belongs to PSPACE. This follows from the fact that F is co-context-free, i.e., the
complement of the word problem of F is a context-free language [33] (this is independent of
the finite generating set). We obtain statement ii in Corollary 7.

Finally, statements iii and iv from Corollary 7 are consequences of the following result:

I Corollary 27. If G is a weakly branched torsion group whose branching subgroup is f.g.,
then CVP(G) is PSPACE-hard. If, in addition, G is contracting, then CVP(G) is PSPACE-
complete.

Proof sketch. The second statement follows easily from the first statement since for a
contracting group the word problem belongs to LOGSPACE (Proposition 11), which implies
that the circuit value problem belongs to PSPACE (see Lemma 34 in the appendix). For the
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first statement, the main observation is that the hardness proof for the second statement
of Theorem 6 (see Appendix C) uses only a subinterval of the integers whose length is
exponentially bounded in the input length. This means that it suffices to find a copy of
G o(Z/pn) in G for each n and some fixed p ≥ 2. Moreover, the embedding ϕ : G o(Z/pn)→ G

must be circuit-efficient in the sense that for every generator a of G o (Z/pn) one can compute
from n (given in unary notation) a circuit Gn,a for ϕ(a). For the case of a weakly branched
torsion group G whose branching subgroup K is finitely generated we cannot show the
existence of such a circuit-efficient embedding for G itself, but we can prove it for K (in fact,
it suffices to show an embedding K o (Z/p) ≤ K, which can then be iterated n-times in order
to get the embedding K o (Z/pn) ≤ K). This implies that the circuit value problem for K
(and hence for G) is PSPACE-hard. J

7 Conclusion and open problems

We have added an algorithmic constraint (uniformly SENS) to the algebraic notion of being
a non-solvable group, which implies that the word problem is ALOGTIME-hard. Using this,
we produced several new examples of non-solvable groups with an ALOGTIME-hard word
problem. However, the question remains open whether every non-solvable group has an
ALOGTIME-hard word problem, even if it is not SENS. We showed that for every contracting
self-similar group the word problem belongs to LOGSPACE. Here, the question remains
whether there exists a contracting self-similar group with a LOGSPACE-complete word
problem. In particular, is the word problem for the Grigorchuk group LOGSPACE-complete?
(We proved that it is ALOGTIME-hard.) Also the precise complexity of the word problem
for Thompson’s group F is open. It is ALOGTIME-hard and belongs to LOGCFL; the latter
follows from [33]. In fact, from the proof in [33] one can deduce that the word problem for F
belongs to LOGDCFL (the closure of the deterministic context-free languages with respect to
LOGSPACE-reductions).
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A Leaf languages

In the following, we introduce more details concerning leaf languages that were briefly
explained in the introduction. An NTM M with input alphabet Γ is called adequate, if (i) for
every input x ∈ Γ∗, M does not have an infinite computation on input x, (ii) the finite set of
transition tuples of M is linearly ordered, and (iii) when terminating M prints a symbol α(q)
from a finite alphabet Σ, where q is the current state of M . For an input x ∈ Γ∗, we define
the computation tree by unfolding the configuration graph ofM from the initial configuration.
By condition (i) and (ii), the computation tree can be identified with a finite ordered tree
T (x) ⊆ N∗. For u ∈ T (x) let q(u) be the M -state of the configuration that is associated with
the tree node u. Then, the leaf string leaf(M,x) is the string α(q(v1)) · · ·α(q(vk)) ∈ Σ+,
where v1, . . . , vk are all leaves of T (x) listed in lexicographic order.

A complete binary tree is a rooted tree, where every non-leaf node has a left and a
right child, and every path from the root to a leaf has the same length. An adequate
NTM M is called balanced, if for every input x ∈ Γ∗, the computation T (x) (produced
by M on input x) is a complete binary tree. In Section 3 we defined the complexity
class LEAF(K) = {LEAF(M,K) | M is an adequate polynomial time NTM} for a language
K ⊆ Σ∗. Let us define the subclass

bLEAF(K) = {LEAF(M,K) |M is a balanced polynomial time NTM}.

Both classes LEAF(K) and bLEAF(K) are closed under polynomial time reductions. We
clearly have bLEAF(K) ⊆ LEAF(K). The following result was shown in [29] by padding
computation trees to complete binary trees.

I Lemma 28. Assume that K ⊆ Σ∗ is a language such that Σ contains a symbol 1 with the
following property: if uv ∈ K for u, v ∈ Σ∗ then u1v ∈ K. Then LEAF(K) = bLEAF(K).

In particular, we obtain the following lemma:

I Lemma 29. Let G be a finitely generated group and Σ a finite standard generating set for
G. Then LEAF(WP(G,Σ)) = bLEAF(WP(G,Σ)).

Moreover, we have:

I Lemma 30. Let G be finitely generated group and Σ, Γ finite standard generating sets for
G. Then LEAF(WP(G,Σ)) = LEAF(WP(G,Γ)).

Proof. Consider a language L ∈ LEAF(WP(G,Σ)). Thus, there exists an adequate polyno-
mial time NTM M such that L = LEAF(M,WP(G,Σ)). We modify M as follows: If M
terminates and prints the symbol a ∈ Σ, it enters a small nondeterministic subcomputation
that produces the leaf string wa, where wa ∈ Γ∗ is a word that evaluates to the same group
element as a. Let M ′ be the resulting adequate polynomial time NTM. It follows that
LEAF(M,WP(G,Σ)) = LEAF(M ′,WP(G,Γ)). J

As remarked in the main part, Lemma 29 allows to just write LEAF(WP(G)) (as well as
bLEAF(WP(G))). In [25] it was shown that PSPACE = LEAF(WP(G)) for every finite
non-solvable group.

B Compressed words and the circuit value problem

We mentioned in the introduction that the circuit value problem for a f.g. group G can be
seen as a succinct version of the word problem, where the input word is succinctly represented
by a context-free grammar that produces exactly one word. Such a context-free grammar is

CCC 2020



29:20 ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems

also called a straight-line program in the literature on string compression. This alternative
viewpoint on the circuit value problem turns out to be convenient for our proofs. In the
following we will elaborate this viewpoint.

A straight-line program (SLP for short) over the alphabet Σ is a triple G = (V, ρ, S),
where V is a finite set of variables such that V ∩ Σ = ∅, S ∈ V is the start variable, and
ρ : V → (V ∪Σ)∗ is a mapping such that the relation {(A,B) ∈ V ×V : B occurs in ρ(A)} is
acyclic. For the reader familiar with context free grammars, it might be helpful to view the
SLP G = (V, ρ, S) as the context-free grammar (V,Σ, P, S), where P contains all productions
A→ ρ(A) for A ∈ V . The definition of an SLP implies that this context-free grammar derives
exactly on terminal word, which will be denoted by val(G). Formally, one can extend ρ to a
morphism ρ : (V ∪ Σ)∗ → (V ∪ Σ)∗ by setting ρ(a) = a for all a ∈ Σ. The above acyclicity
condition on ρ implies that for m = |V | we have ρm(w) ∈ Σ∗ for all w ∈ (V ∪ Σ)∗. We then
define valG(w) = ρm(w) (the string derived from the sentential form w) and val(G) = valG(S).
We define the size of the SLP G as the total length of all right-hand sides: |G| =

∑
A∈V |ρ(A)|.

SLPs offer a succinct representation of words that contain many repeated substrings. For
instance, the word (ab)2n can be produced by the SLP G = ({A0, . . . , An}, ρ, An) with
ρ(A0) = ab and ρ(Ai+1) = AiAi for 0 ≤ i ≤ n− 1.

The word ρ(A) is also called the right-hand side of A. Quite often, it is convenient
to assume that all right-hand sides are of the form a ∈ Σ or BC with B,C ∈ V . This
corresponds to the well-known Chomsky normal form for context-free grammars. There is a
simple linear time algorithm that transforms an SLP G with val(G) 6= ε into an SLP G′ in
Chomsky normal form with val(G) = val(G′), see e.g. [38, Proposition 3.8].

The circuit value problem CVP(G) for a f.g. group G (as defined in the introduction) is
equivalent to the following problem, where Σ is a finite standard generating set for G:
Input: an SLP G over the alphabet Σ.
Question: does val(G) = 1 hold in G?
It is an easy observation that the computational complexity of the circuit value problem
for G does not depend on the chosen generating set Σ: More precisely, if we denote for a
moment with CVP(G,Σ) the circuit value problem for the specific generating set Σ, then for
all generating sets Σ and Σ′ for G, CVP(G,Σ) is LOGSPACE-reducible to CVP(G,Σ′) [38,
Lemma 4.2]. The circuit value problem for G is also known as the compressed word problem
for G [38].

We need a couple of known results for SLPs. For this we use the following notations on
strings (which will be also needed in Appendix C). Take a word w = a0 · · · an−1 ∈ Σ∗ over
the alphabet Σ (n ≥ 0, a0, . . . , an−1 ∈ Σ). For 0 ≤ i < n let w[i] = ai and for 0 ≤ i ≤ j < n

let w[i : j] = aiai+1 · · · aj . Moreover w[: i] = w[0 : i]. Note that in the notations w[i] and
w[i : j] we take 0 as the first position in w. This will be convenient in Appendix C. Finally,
with |w|a = |{i | ai = a}| we denote the number of occurrences of a in w.

I Lemma 31 (c.f. [13]). For every SLP G we have |val(G)| ≤ 3|G|/3.

I Lemma 32 ([38, Chapter 3]). The following problems can be solved in polynomial time,
where G is an SLP over a terminal alphabet Σ, a ∈ Σ, and p, q ∈ N are numbers given in
binary notation:

Given G, compute the length |val(G)| of the word val(G).
Given G and a, compute the number |val(G)|a of occurrences of a in val(G).
Given G and p, compute the symbol val(G)[p] ∈ Σ (in case 0 ≤ p < |val(G)| does not hold,
the algorithm outputs a special symbol).
Given G and p, q, compute an SLP for the string val(G)[p : q] (in case 0 ≤ p ≤ q < |val(G)|
does not hold, the algorithm outputs a special symbol).
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I Lemma 33 (c.f. [38, Lemma 3.12]). Given a symbol a0 ∈ Σ and a sequence of morphisms
ϕ1, . . . , ϕn : Σ∗ → Σ∗, where every ϕi is given by a list of the words ϕi(a) for a ∈ Σ, one
can compute in LOGSPACE an SLP for the word ϕ1(ϕ2(· · ·ϕn(a0) · · · )).

The next lemma follows easily by evaluating a given SLP and then running an algorithm
for the “ordinary” word problem:

I Lemma 34. If G is a finitely generated group such that WP(G) can be solved in polyloga-
rithmic space, then CVP(G) belongs to PSPACE.

C Additional details for Section 5

This section presents a detailed proof of Theorem 6. Instead of circuits over groups we will
use the equivalent framework of SLPs from Appendix B. The proof of the lower bound in
Theorem 6 uses some of the techniques from the paper [37], where a connection between leaf
strings and SLPs was established. In Sections C.1–C.3 we will introduce these techniques.
The proof of Theorem 6 will be given in Appendix C.4.

Let us first fix some general notations. For integers i ≤ j we write [i..j] for the interval
{z ∈ Z | i ≤ z ≤ j}. In the following, we will identify a bit string α = a1a2 · · · an
(a1, . . . , an ∈ {0, 1}) with the vector (a1, a2, . . . , an). In particular, for another vector
s = (s1, s2, . . . , sn) ∈ Nn we will write α · s =

∑n
i=1 ai · si for the scalar product. Moreover,

we write
∑
s for the sum s1 + s2 + · · ·+ sn.

C.1 Subsetsum problems
A sequence (s1, . . . , sn) of natural numbers is super-decreasing if si > si+1 + · · · + sn for
all 1 ≤ i ≤ n. For example, (s1, . . . , sn) with si = 2n−i is super-decreasing. An instance of
the subsetsum problem is a tuple (t, s1, . . . , sk) of binary encoded natural numbers. It is a
positive instance if there are a1, . . . , ak ∈ {0, 1} such that t = a1s1 + · · ·+ aksk. Subsetsum
is a classical NP-complete problem, see e.g. [15]. The super-decreasing subsetsum problem is
the restriction of subsetsum to instances (t, s1, . . . , sk), where (s1, . . . , sk) is super-decreasing.
In [30] it was shown that super-decreasing subsetsum is P-complete.1 We need a slightly
generalized version of the construction showing P-hardness that we discuss in Appendix C.2.

C.2 From Boolean circuits to super-decreasing subsetsum
For this section, we have to fix some details on Boolean circuits. Let us consider a Boolean
circuit C with input gates x1, . . . , xm and output gates y0, . . . , yn−1.2 We view C as a
directed acyclic graph with multi-edges (there can be two edges between two nodes); the
nodes are the gates of the circuit. The number of incoming edges of a gate is called its
fan-in and the number of outgoing edges is the fan-out. Every input gate xi has fan-in
zero and every output gate yi has fan-out zero. Besides the input gates there are two more
gates c0 and c1 of fan-in zero, where ci carries the constant truth value i ∈ {0, 1}. Besides
x1, . . . , xm, c0, c1 every other gate has fan-in two and computes the nand of its two input
gates. Moreover, we assume that every output gate yi is a nand-gate. For a bit string
α = b1 · · · bm (b1, . . . , bm ∈ {0, 1}) and 0 ≤ i ≤ n− 1 we denote with C(α)i the value of the
output gate yi when every input gate xj (1 ≤ j ≤ m) is set to bj . Thus, C defines a map
{0, 1}m → {0, 1}n.

1 In fact, [30] deals with the super-increasing subsetsum problem. But this is only a nonessential detail.
For our purpose, super-decreasing sequences are more convenient.

2 It will be convenient for us to number the input gates from 1 and the output gates from 0.
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We assume now that C is a Boolean circuit as above with the following additional
property that will be satisfied later: For all input bit strings α ∈ {0, 1}m there is exactly
one i ∈ [0..n− 1] such that C(α)i = 1. Using a refinement of the construction from [30] we
compute in LOGSPACE q0, . . . , qn−1 ∈ N and two super-decreasing sequences r = (r1, . . . rm)
and s = (s1, . . . , sk) for some k (all numbers are represented in binary notation) with the
following properties:

The r1, . . . , rm are pairwise distinct powers of 4.
For all 0 ≤ i ≤ n− 1 and all α ∈ {0, 1}m: C(α)i = 1 if and only if there exists δ ∈ {0, 1}k
such that δ · s = qi + α · r.

Let us first add for every input gate xi two new nand-gates x̄i and ¯̄xi, where ¯̄xi has the same
outgoing edges as xi. Moreover we remove the old outgoing edges of xi and replace them by
the edges (xi, x̄i), (c1, x̄i) and two edges from x̄i to ¯̄xi. This has the effect that every input
gate xi has a unique outgoing edge. Clearly, the new circuit computes the same Boolean
function (basically, we introduce two negation gates for every input gate). Let g1, . . . , gp
be the nand-gates of the circuit enumerated in reverse topological order, i.e., if there is an
edge from gate gi to gate gj then i > j. We denote the two edges entering gate gi with
e2i+n−2 and e2i+n−1. Moreover, we write ei (0 ≤ i ≤ n−1) for an imaginary edge that leaves
the output gate yi and whose target gate is unspecified. Thus, the edges of the circuit are
e0, . . . , e2p+n−1. We now define the natural numbers q0, . . . , qn−1, r1, . . . rm, s1, . . . , sk with
k = 3p:

Let I = {j | ej is an outgoing edge of the constant gate c1 or a nand-gate}. For 0 ≤ i ≤
n− 1 we define the number qi as

qi =
∑

j∈I\{i}

4j .

Recall that ei is the unique outgoing edge of the output gate yi.
If ej is the unique outgoing edge of the input gate xi then we set ri = 4j . We can choose
the reverse topological sorting of the nand-gates in such a way that r1 > r2 > · · · > rm
(we only have to ensure that the target gates x1, . . . , xm of the input gates appear in the
order xm, . . . , x1 in the reverse topological sorting of the nand-gates).
To define the numbers s1, . . . , sk we first define for every nand-gate gi three numbers t3i,
t3i−1 and t3i−2 as follows, where Ii = {j | ej is an outgoing edge of gate gi}:

t3i = 42i+n−1 + 42i+n−2 +
∑
j∈Ii

4j

t3i−1 = 42i+n−1 − 42i+n−2 = 3 · 42i+n−2

t3i−2 = 42i+n−2

Then, the tuple (s1, . . . , sk) is (t3p, t3p−1, t3p−2, . . . , t3, t2, t1), which is indeed super-
decreasing (see also [30]). In fact, we have si − (si+1 + · · ·+ sk) ≥ 4n−1 for all i ∈ [1..k].
To see this, note that the sets Ii+1, . . . , Ik are pairwise disjoint. This implies that the
n− 1 low-order digits in the base-4 expansion of si+1 + · · ·+ sk are zero or one.

In order to understand this construction, one should think of the edges of the circuit carrying
truth values. Recall that there are 2p + n edges in the circuit (including the imaginary
outgoing edges of the output gates y0, . . . , yn−1). A number in base-4 representation with
2p+ n digits that are either 0 or 1 represents a truth assignment to the 2p+ n edges, where
a 1-digit represents the truth value 1 and a 0-digit represents the truth value 0. Consider an
input string α = b1 · · · bm ∈ {0, 1}m and consider an output gate yi, i ∈ [0..n− 1]. Then the
number N := 4i + qi + b1r1 + · · ·+ bmrm encodes the truth assignment for the circuit edges,
where:
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all outgoing edges of the constant gate c1 carry the truth value 1,
all outgoing edges of the constant gate c0 carry the truth value 0,
the unique outgoing edge of an input gate xi carries the truth value bi,
all outgoing edges of nand-gates carry the truth value 1.

We have to show that C(α)i = 1 if and only if there exists δ ∈ {0, 1}k such that δ · s =
N − 4i. For this we apply the canonical algorithm for super-decreasing subsetsum with
input (N, s1, . . . , sk). This algorithm initializes a counter A to N and then goes over the
sequence s1, . . . , sk in that order. In the j-th step (1 ≤ j ≤ k) we set A to A− sj if A ≥ sj .
If A < sj then we do not modify A. After that we proceed with sj+1. The point is that this
process simulates the evaluation of the circuit on the input values b1, . . . , bm. Thereby the
nand-gates are evaluated in the topological order gp, gp−1, . . . , g1. Assume that gj is the gate
that we want to evaluate next. In the above algorithm for super-decreasing subsetsum the
evaluation of gj is simulated by the three numbers t3j , t3j−1, and t3j−2. At the point where
the algorithm checks whether t3j can be subtracted from A, the base-4 digits at positions
2j + n, . . . , 2p+ n− 1 in the counter value A have been already set to zero. If the digits at
the next two high-order positions 2j + n− 1 and 2j + n− 2 are still 1 (i.e., the input edges
e2j+n−2 and e2j+n−1 for gate gj carry the truth value 1), then we can subtract t3j from A.
Thereby we subtract all powers 42j+n−1, 42j+n−2 and 4h, where eh is an outgoing edge for
gate gj . Since gate gj evaluates to zero (both input edges carry 1), this subtraction correctly
simulates the evaluation of gate gj : all outgoing edges eh of gj (that were initially set to the
truth value 1) are set to the truth value 0. On the other hand, if one of the two digits at
positions 2j + n− 1 and 2j + n− 2 in A is 0 (which means that gate gj evaluates to 1), then
we cannot subtract t3j from A. If both digits at positions 2j + n− 1 and 2j + n− 2 in A are
0, then also t3j−1 and t3j−2 cannot be subtracted. On the other hand, if exactly one of the
two digits at positions 2j + n− 1 and 2j + n− 2 is 1, then with t3j−1 and t3j−2 we can set
these two digits to 0 (thereby digits at positions < 2j + n− 2 are not modified).

Assume now that yj (j ∈ [0..n− 1]) is the unique output gate that evaluates to 1, i.e., all
output gates yj′ with j′ 6= j evaluate to zero. Then after processing all weights s1, . . . , sk
we have A = 4j (we will never subtract 4j). We have shown that there exists δ ∈ {0, 1}k
such that δ · s+ 4j = N . Hence, if i = j (i.e., C(α)i = 1) then δ · s = N − 4i. Now assume
that i 6= j. In order to get a contradiction, assume that there is δ′ ∈ {0, 1}k such that
δ′ · s+ 4i = N . We have δ 6= δ′ and δ · s+ 4j = δ′ · s+ 4i, i.e, δ · s− δ′ · s = 4i − 4j . Since
i, j ∈ [0..n− 1], we get |δ · s− δ′ · s| < 4n−1. But si − (si+1 + · · · sk) ≥ 4n−1 for all i ∈ [1..k]
implies that |δ · s− δ′ · s| ≥ 4n−1.

C.3 From super-decreasing subsetsum to straight-line programs

In [35] a super-decreasing sequence t = (t1, . . . , tk) of natural numbers is encoded by the
string S(t) ∈ {0, 1}∗ of length

∑
t+ 1 such that for all 0 ≤ p ≤

∑
t:

S(t)[p] =
{

1 if p = α · t for some α ∈ {0, 1}k,
0 otherwise.

(3)

Note that in the first case α is unique. Since t is a super-decreasing sequence, the number of
1’s in the string S(t) is 2k. Also note that S(t) starts and ends with 1. In [35] it was shown
that from a super-decreasing sequence t of binary encoded numbers one can construct in
LOGSPACE an SLP for the word S(t).
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C.4 Proof of Theorem 6
Let us fix a regular wreath product of the form G o Z for a finitely generated group G. Such
groups are also known as generalized lamplighter groups (the lamplighter group arises for
G = Z2). Throughout this section, we fix a set of standard generators Σ for G and let τ = 1
be the generator for Z. Then Σ∪{τ, τ−1} is a standard generating set for the wreath product
G o Z. In G o Z the G-generator a ∈ Σ represents the mapping fa ∈ G(Z) with fa(0) = a and
fa(z) = 1 for z 6= 0. For a word w ∈ (Σ ∪ {τ, τ−1})∗ we define η(w) := |w|τ − |w|τ−1 . Thus,
the element of G o Z represented by w is of the form fτη(w) for some f ∈ G(Z). Recall the
definition of the left action of Z on G(Z) from Section 2 (where we take H = Y = Z). For
better readability, we write c◦f for cf (c ∈ Z, f ∈ G(Z)). Hence, we have (c◦f)(z) = f(z+c).
If one thinks of f as a bi-infinite word over the alphabet G, then c ◦ f is the same word but
shifted by −c.

The following intuition might be helpful: Consider a word w ∈ (Σ ∪ {τ, τ−1})∗. In G o Z
we can simplify w to a word of the form τz0a1τ

z1a2 · · · τzk−1akτ
zk (with zj ∈ Z, aj ∈ Σ),

which in G o Z can be rewritten as

τz0a1τ
z1a2 · · · τzk−1akτ

zk =
( k∏
j=1

τz0+···+zj−1ajτ
−(z0+···+zj−1)) τz0+···+zk .

Hence, the word w represents the group element

( k∏
j=1

(z0 + · · ·+ zj−1) ◦ faj

)
τz0+···+zk .

This gives the following intuition for evaluating τz0a1τ
z1a2 · · · τzk−1akτ

zk : In the beginning,
every Z-position carries the G-value 1. First, go to the Z-position −z0 and multiply the
G-element at this position with a1 (on the right), then go to the Z-position −z0 − z1 and
multiply the G-element at this position with a2, and so on.

Proof of Theorem 6. The easy part is to show that the circuit value problem for G o Z
belongs to ∀LEAF(WP(G)). In the following, we make use of the statements from Lemma 32.
Let G be an SLP over the alphabet Σ ∪ {τ, τ−1} and let fτη(val(G)) ∈ G o Z be the group
element represented by val(G). By Lemma 32 we can compute η(val(G)) in polynomial time.
If η(val(G)) 6= 0 then the Turing-machine rejects by printing a non-trivial generator of G
(here we need the assumption that G is non-trivial). So, let us assume that η(val(G)) = 0.
We can also compute in polynomial time two integers b, c ∈ Z such that supp(f) ⊆ [b..c].
We can take for instance b = −|val(G)| and c = |val(G)|. It suffices to check whether for all
x ∈ [b..c] we have f(x) = 1. For this, the Turing-machine branches universally to all binary
encoded integers x ∈ [b..c] (this yields the ∀-part in ∀LEAF(WP(G))). Consider a specific
branch that leads to the integer x ∈ [b..c]. From x and the input SLP G the Turing-machine
then produces a leaf string over the standard generating set Σ of G such that this leaf string
represents the group element f(x) ∈ G. For this, the machine branches to all positions
p ∈ [0..|val(G)|−1] (if p < q < |val(G)| then the branch for p is to the left of the branch for q).
For a specific position p, the machine computes in polynomial time the symbol a = val(G)[p].
If a is τ or τ−1 then the machine prints 1 ∈ Σ. On the other hand, if a ∈ Σ then the machine
computes in polynomial time d = η(val(G)[: p]). This is possible by first computing an SLP
for the prefix val(G)[: p]. If d = −x then the machine prints the symbol a, otherwise the
machine prints the trivial generator 1. It is easy to observe that the leaf string produced in
this way represents the group element f(x).
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Let us now prove hardness for ∀LEAF(WP(G/Z(G))) with respect to LOGSPACE-reduc-
tions. By Lemma 29 it suffices to show that CVP(G o Z) is hard for the balanced class
∀bLEAF(WP(G/Z(G))). Let a0, . . . , an−1 be an arbitrary enumeration of the standard
generators in Σ. Fix a language L ∈ ∀bLEAF(WP(G/Z(G))). From the definition of the
class ∀bLEAF(WP(G/Z(G))) it follows that there exist two polynomials p1 and p2 and a
balanced polynomial time NTM M running in time p1 + p2 that outputs a symbol from Σ
after termination and such that the following holds: Consider an input word z for M and let
m1 = p1(|z|), m2 = p2(|z|), m = m1 +m2, and T (z) be the corresponding computation tree
of M on input z. It is a complete binary tree of height m. Its node set can be identified with
the bit strings in {0, 1}≤m, where v0 (resp., v1) is the left (resp., right) child of v ∈ {0, 1}<m.
For every leaf α ∈ {0, 1}m let us denote with λ(α) the symbol from Σ that M prints when
reaching the leaf α. Then we have: z ∈ L if and only if for all β ∈ {0, 1}m1 the string

λβ :=
∏

γ∈{0,1}m2

λ(βγ) (4)

represents a group element from the center Z(G). Here (and in the following), the product
in the right-hand side of (4) goes over all bit strings of length m2 in lexicographic order. Our
construction consists of five steps:

Step 1. Note that given a bit string α ∈ {0, 1}m, we can compute in polynomial time the
symbol λ(α) ∈ Σ by following the computation path specified by α. Using the classical
Cook-Levin construction (see e.g. [2]), we can compute from the input z and a ∈ Σ in
LOGSPACE a Boolean circuit Cz,a with m input gates x1, . . . , xm and a single output gate
y0 such that for all α ∈ {0, 1}m: Cz,a(α)0 = 1 if and only if λ(α) = a. By taking the disjoint
union of these circuits and merging the input gates, we can build a single circuit Cz with
m input gates x1, . . . , xm and n = |Σ| output gates y0, . . . , yn−1. For every α ∈ {0, 1}m and
every 0 ≤ i ≤ n− 1 the following holds: Cz(α)i = 1 if and only if λ(α) = ai.

Step 2. Using the construction from Appendix C.2 we can compute from the circuit Cz in
LOGSPACE numbers q0, . . . , qn−1 ∈ N and two super-decreasing sequences r = (r1, . . . , rm)
and s = (s1, . . . , sk) with the following properties:

The r1, . . . , rm are pairwise distinct powers of 4.
For all 0 ≤ i ≤ n− 1 and all α ∈ {0, 1}m we have: λ(α) = ai if and only if Cz(α)i = 1 if
and only if there is δ ∈ {0, 1}k such that δ · s = qi + α · r.

Note that for all α ∈ {0, 1}m there is a unique i such that Cz(α)i = 1. Hence, for all
α ∈ {0, 1}m there is a unique i such that qi + α · r is of the form δ · s for some δ ∈ {0, 1}k.
For this unique i we have λ(α) = ai.

We split the super-decreasing sequence r = (r1, . . . , rm) into the two sequences r1 =
(r1, . . . , rm1) and r2 = (rm1+1, . . . , rm). For the following consideration, we need the following
numbers:

` = max
{∑

r1 + max{q0, . . . , qn−1}+ 1,
∑
s−

∑
r2 −min{q0, . . . , qn−1}+ 1

}
(5)

π = `+
∑
r2 (6)

The binary encodings of these numbers can be computed in LOGSPACE (since iterated
addition, max, and min can be computed in LOGSPACE). The precise value of ` will be only
relevant at the end of step 4.
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Step 3. By the result from [35] (see Appendix C.3) we can construct in LOGSPACE from
the three super-decreasing sequences r1, r2 and s three SLPs G1, G2 and H over the alphabet
{0, 1} such that val(G1) = S(r1), val(G2) = S(r2) and val(H) = S(s) (see (3)). For all
positions p ≥ 0 (in the suitable range) we have:

val(G1)[p] = 1 ⇐⇒ ∃β ∈ {0, 1}m1 : p = β · r1

val(G2)[p] = 1 ⇐⇒ ∃γ ∈ {0, 1}m2 : p = γ · r2

val(H)[p] = 1 ⇐⇒ ∃δ ∈ {0, 1}k : p = δ · s

Note that |val(G1)| =
∑
r1 + 1, |val(G2)| =

∑
r2 + 1, and |val(H)| =

∑
s+ 1.

Step 4. We build in LOGSPACE for every 0 ≤ i ≤ n − 1 an SLP Hi from the SLP H by
replacing in every right-hand side of H every occurrence of 0 by τ−1 and every occurrence of 1
by aiτ−1. Let Ti be the start variable ofHi, let S1 be the start variable of G1, and let S2 be the
start variable of G2. We can assume that the variable sets of the SLPs G1,G2,H0, . . . ,Hn−1
are pairwise disjoint. We next combine these SLPs into a single SLP I. The variables of I
are the variables of the SLPs G1,G2,H0, . . . ,Hn−1 plus a fresh variable S which is the start
variable of I. The right-hand sides for the variables are defined below. In the right-hand sides
we write powers τp for integers p whose binary encodings can be computed in LOGSPACE.
Such powers can be produced by small subSLPs that can be constructed in LOGSPACE too.

In all right-hand sides of G1 and G2 we replace all occurrences of the terminal symbol 0
by the Z-generator τ .
We replace every occurrence of the terminal symbol 1 in a right-hand side of G1 by S2τ

`,
where ` is from (5).
We replace every occurrence of the terminal symbol 1 in a right-hand side of G2 by στ ,
where

σ = τ q0T0τ
h−q0τ q1T1τ

h−q1 · · · τ qn−1Tn−1τ
h−qn−1 (7)

and h =
∑
s + 1 is the length of the word val(H) (which is −η(valI(Ti)) for every

i ∈ [0..n− 1]). Note that η(valI(σ)) = 0.
Finally, the right-hand side of the start variable S is S1τ

−d where d :=
∑
r1 + 1 + 2m1 ·π.

(note that d = η(valI(S1))).
Before we explain this construction, let us first introduce some notations.

Let u := valI(S2). We have η(u) = |val(G2)|. Hence, the group element represented by u
can be written as fuτ |val(G2)| for a mapping fu ∈ G(Z).
Let v := valI(σ), where σ is from (7). Note that η(v) = 0. Hence, the group element
represented by v is a mapping fv ∈ G(Z). Its support is a subset of the interval from
position −max{q0, . . . , qn−1} to position

∑
s−min{q0, . . . , qn−1}.

For β ∈ {0, 1}m1 let bin(β) be the number represented by β in binary notation (thus,
bin(0m1) = 0, bin(0m1−11) = 1, . . . , bin(1m1) = 2m1 − 1). Moreover, let

pβ := −bin(β) · π.

First, note that η(val(I)) = 0. This is due to the factor τ−d in the right-hand side of the
start variable S of I. Hence, the group element represented by val(I) is a mapping f ∈ G(Z).
The crucial claim is the following:

B Claim. For every β ∈ {0, 1}m1 , f(pβ) is the group element represented by the leaf string
λβ from (4).
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Proof of the claim. In the following, we compute in the restricted direct product G(Z). Recall
that the multiplication in this group is defined by the pointwise multiplication of mappings.

Since we replaced in G1 every 1 in a right-hand side by S2τ
`, which produces uτ ` in I

(which evaluates to fuτπ+1), the mapping f is a product (in the restricted direct product
G(Z)) of shifted copies of fu. More precisely, for every β′ ∈ {0, 1}m1 we get the shifted copy(

β′ · r1 + bin(β′) · π
)
◦ fu (8)

of fu. The shift distance β′ · r1 + bin(β′) ·π can be explained as follows: The 1 in val(G1) that
corresponds to β′ ∈ {0, 1}m1 occurs at position β′ · r1 (the first position is 0) and to the left
of this position we find bin(β′) many 1’s and β′ · r1 − bin(β′) many 0’s in val(G1). Moreover,
every 0 in val(G1) was replaced by τ (shift by 1) and every 1 in val(G1) was replaced by uτ `
(shift by `+ |val(G2)| = π + 1). Hence, the total shift distance is indeed (8). Also note that
if β′ ∈ {0, 1}m1 is lexicographically smaller than β′′ ∈ {0, 1}m1 then β′ · r1 < β′′ · r1. This
implies that

f =
∏

β′∈{0,1}m1

(
β′ · r1 + bin(β′) · π

)
◦ fu =

∏
β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦ fu.

Let us now compute the mapping fu. Recall that we replaced in G2 every occurrence of 1 by
στ , where σ is from (7) and derives to v. The 1’s in val(G2) occur at positions of the form
γ · r2 for γ ∈ {0, 1}m2 and if γ ∈ {0, 1}m2 is lexicographically smaller than γ′ ∈ {0, 1}m2 then
γ · r2 < γ′ · r2. We therefore get

fu =
∏

γ∈{0,1}m2

(γ · r2) ◦ fv.

We obtain

f =
∏

β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦ fu

=
∏

β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦

∏
γ∈{0,1}m2

(γ · r2 ◦ fv)

=
∏

β′∈{0,1}m1

∏
γ∈{0,1}m2

(
β′ · r1 + γ · r2 − pβ′

)
◦ fv

and hence

f(pβ) =
∏

β′∈{0,1}m1

∏
γ∈{0,1}m2

fv(pβ − pβ′ + β′ · r1 + γ · r2).

We claim that for all β 6= β′ and all γ ∈ {0, 1}m2 we have

fv(pβ − pβ′ + β′ · r1 + γ · r2) = 1. (9)

Let us postpone the proof of this for a moment. From (9) we get

f(pβ) =
∏

γ∈{0,1}m2

fv(β · r1 + γ · r2).

Consider a specific γ ∈ {0, 1}m2 and let α = βγ and p = β · r1 + γ · r2 = α · r. From the
definition of v = valI(σ) it follows that for all x ∈ Z, fv(x) is a product of those group
generators ai such that x = −qi + δ · s for some δ ∈ {0, 1}k. For the position p this means
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that qi + α · r = δ · s. By our previous remarks, there is a unique such i ∈ [0..n− 1] and for
this i we have λ(α) = ai. Hence, we obtain fv(p) = λ(α) = λ(βγ) and thus

f(pβ) =
∏

γ∈{0,1}m2

λ(βγ) = λβ .

It remains to show (9). To get this identity, we need the precise value of ` from (5) (so far,
the value of ` was not relevant). Assume now that β 6= β′, which implies

|pβ − pβ′ | ≥ π = `+
∑

r2.

Hence, we either have

pβ − pβ′ + β′ · r1 + γ · r2 ≥ `+
∑

r2 + β′ · r1 + γ · r2

≥ `+
∑

r2

>
∑

s−min{q0, . . . , qn−1}

or

pβ − pβ′ + β′ · r1 + γ · r2 ≤ −`−
∑

r2 + β′ · r1 + γ · r2

≤ −`+
∑

r1

< −max{q0, . . . , qn−1},

where the strict inequalities follow from our choice of `. Recall that the support of the
mapping fv is contained in [−max{q0, . . . , qn−1}..

∑
s−min{q0, . . . , qn−1}]. This shows (9)

and hence the claim. C

Step 5. By the above claim, we have f(pβ) ∈ Z(G) for all β ∈ {0, 1}m1 if and only if
λβ ∈ Z(G) for all β ∈ {0, 1}m1 , which is equivalent to z ∈ L. The only remaining problem is
that the word val(I) produces some “garbage” group elements f(x) on positions x that are
not of the form pβ . Note that for every g ∈ G \ Z(G), there is a generator ai ∈ Σ such that
the commutator [g, ai] is non-trivial. We now produce from I an SLP I−1 such that val(I−1)
represents the inverse element of f ∈ G(Z), which is the mapping g with g(x) = f(x)−1 for
all x ∈ Z. To construct I−1, we have to reverse every right-hand side of I and replace every
occurrence of a symbol a0, . . . , an−1, τ, τ

−1 by its inverse.
It is easy to compute in LOGSPACE for every i ∈ [0..n− 1] an SLP for the word

wi :=
(
aiτ

π
)2m1

τ−2m1 ·π.

Then the group element represented by wi is the mapping fi ∈ G(Z) whose support is
the set of positions pβ for β ∈ {0, 1}m1 and fi(pβ) = ai for all β ∈ {0, 1}m1 . We can
also compute in LOGSPACE an SLP for the word w−1

i . We then built in LOGSPACE SLPs
J0, . . . ,Jn−1 such that val(Ji) = val(I−1)w−1

i val(I)wi. Hence, the word val(Ji) represents
the group element gi ∈ G(Z), where gi(x) = 1 for all x ∈ Z \ {pβ | β ∈ {0, 1}m1} and
gi(pβ) = f(pβ)−1a−1

i f(pβ)ai = [f(pβ), ai].
Finally, we construct in LOGSPACE an SLP J such that

val(J ) = val(J0) τ val(J1) τ val(J2) · · · τ val(Jn−1) τ−n+1.
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We can assume that n ≤ `+
∑
r2 = π (n is a constant and we can always make ` bigger).

Then val(J ) evaluates to the group element g ∈ G(Z) with g(x) = 1 for x ∈ Z \ {pβ − i | β ∈
{0, 1}m1 , 0 ≤ i ≤ n − 1} and g(pβ − i) = gi(pβ) = [f(pβ), ai] for 0 ≤ i ≤ n − 1. Hence, if
f(pβ) ∈ Z(G) for all β ∈ {0, 1}m1 then val(J ) = 1 in G o Z. On the other hand, if there is a
β ∈ {0, 1}m1 such that f(pβ) ∈ G \Z(G) then there is an ai such that [f(pβ), ai] 6= 1. Hence
g(pβ − i) 6= 1 and val(J ) 6= 1 in G o Z. This concludes the proof of Theorem 6. J
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Abstract
In this paper, we give simple optimal lower bounds on the one-way two-party communication
complexity of approximate Maximum Matching and Minimum Vertex Cover with deletions. In our
model, Alice holds a set of edges and sends a single message to Bob. Bob holds a set of edge deletions,
which form a subset of Alice’s edges, and needs to report a large matching or a small vertex cover in
the graph spanned by the edges that are not deleted. Our results imply optimal space lower bounds
for insertion-deletion streaming algorithms for Maximum Matching and Minimum Vertex Cover.

Previously, Assadi et al. [SODA 2016] gave an optimal space lower bound for insertion-deletion
streaming algorithms for Maximum Matching via the simultaneous model of communication. Our
lower bound is simpler and stronger in several aspects: The lower bound of Assadi et al. only holds
for algorithms that (1) are able to process streams that contain a triple exponential number of
deletions in n, the number of vertices of the input graph; (2) are able to process multi-graphs; and
(3) never output edges that do not exist in the input graph when the randomized algorithm errs.
In contrast, our lower bound even holds for algorithms that (1) rely on short (O(n2)-length) input
streams; (2) are only able to process simple graphs; and (3) may output non-existing edges when
the algorithm errs.
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1 Introduction

Streaming algorithms for processing massive graphs have been studied for two decades [16].
In the most traditional setting, the insertion-only model, an algorithm receives a sequence of
the edges of the input graph in arbitrary order, and the objective is to solve a graph problem
using as little space as possible. The insertion-only model has received significant attention,
and many problems, such as matchings (e.g. [26, 13, 21, 27, 18, 24, 31, 12]), independent
sets (e.g. [15, 14, 9, 10]), and subgraph counting (e.g. [20, 11, 7]), have since been studied in
this model. See [29] for an excellent survey.
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In 2012, Ahn et al. [1] introduced the first techniques for addressing insertion-deletion
graph streams, where the input stream consists of a sequence of edge insertions and deletions.
They showed that many problems, such as Connectivity and Bipartiteness, can be solved using
the same amount of space as in insertion-only streams up to poly-logarithmic factors. Various
other works subsequently gave results of a similar flavor and presented insertion-deletion
streaming algorithms with similar space complexity as their insertion-only counterparts
for problems including Spectral Sparsification [22] and ∆ + 1-coloring [3]. Konrad [23] and
Assadi et al. [5] were the first to give a separation result between the insertion-only graph
stream model and the insertion-deletion graph stream model: While it is known that a
2-approximation to Maximum Matching can be computed using space O(n logn) in insertion-
only streams, Konrad showed that space Ω(n 3

2−4ε) is required for an nε-approximation in
insertion-deletion streams, and Assadi et al. gave a lower bound of n2−3ε−o(1) for such an
approximation. Assadi et al. also presented an Õ(n2−3ε) space algorithm that matches their
lower bound up to lower order terms, which establishes that their lower bound is optimal (a
different algorithm that matches this lower bound is given by Chitnis et al. [8]).

Both Konrad and Assadi et al. exploit an elegant connection between insertion-deletion
streaming algorithms and linear sketches. Ai et al. [2], building on the work of Yi et al.
[28], showed that insertion-deletion graph streaming algorithms can be characterized as
algorithms that essentially solely rely on the computation of linear sketches of the input
stream. A consequence of this result is that space lower bounds for insertion-deletion
streaming algorithms can also be proved in the simultaneous model of communication, since
linear sketches can be implemented in this model. This provides an alternative to the more
common approach of proving streaming lower bounds in the one-way model of communication.
In particular, the lower bounds by Konrad and Assadi et al. are proved in the simultaneous
model of communication.

From a technical perspective, this model has various attractive features, however, it comes
with a major disadvantage: The characterization of Ai et al. only holds for insertion-deletion
streaming algorithms that (1) are able to process “very long” input streams, i.e., input
streams of triple exponential length in n, the number of vertices of the input graph, and
(2) are able to process multi-graphs. In particular, this characterization does not hold for
insertion-deletion streaming algorithms that rely on the assumption that input streams are
short and the graph described by the input stream is always simple. Consequently, the lower
bounds of Konrad and Assadi et al. do not hold for such algorithms.

Our Results. In this work, we prove an optimal space lower bound for Maximum Matching
in insertion-deletion streams via the one-way two-party model of communication. Our lower
bound construction yields insertion-deletion streams of length O(n2) and does not involve
multi-edges. Our lower bound therefore also holds for streaming algorithms that are designed
for short input streams and simple graphs for which the characterization by Ai et al. does
not hold. Furthermore, the optimal lower bound by Assadi et al. [5] only holds for streaming
algorithms that never output non-existing edges when the (randomized) algorithms fail. We
do not require this restriction.

Our lower bound method is simple and more widely applicable. Using the same method,
we also give an optimal lower bound for Minimum Vertex Cover, showing that computing
a nε-approximation requires Ω(n2−2ε) space. Assadi and Khanna mention in [4] that the
n2−3ε−o(1) space lower bound for Maximum Matching given in [5] also applies to Minimum
Vertex Cover. Our lower bound therefore improves on this result by a factor of nε+o(1).
Furthermore, we show that our lower bound is optimal up to a factor of logn: We give a
very simple deterministic insertion-deletion streaming algorithm for Minimum Vertex Cover
that uses space O(n2−2ε logn).
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While the main application of our lower bounds in the one-way two-party communication
model are lower bounds for insertion-deletion graph streaming algorithms, we believe that
our lower bounds are of independent interest. Indeed, the one-way two-party communication
complexity of Maximum Matching without deletions has been addressed in [13], and our result
can therefore also be understood as a generalization of their model to incorporate deletions.

The Simultaneous Model of Communication. The lower bounds by Konrad [23] and
Assadi et al. [5] are proved in the simultaneous model of communication. In this model, a
typically large number of parties k hold not necessarily disjoint subsets of the edges of the
input graph. Each party Pi sends a message Mi to a referee, who then outputs the result
of the protocol. The connection between insertion-deletion streaming algorithms and linear
sketches by Ai et al. [2] then implies that a lower bound on the size of any message Mi yields
a lower bound on the space requirements of any insertion-deletion streaming algorithm.

In the lower bound of Assadi et al. [5] for Maximum Matching, each party Pi holds
the edges Ei of a dense subgraph, which itself constitutes a Ruzsa-Szemerédi graph, i.e., a
graph whose edge set can be partitioned into large disjoint induced matchings. All previous
streaming lower bounds for approximate Maximum Matching rely on realizations of Ruzsa-
Szemerédi graphs [13, 23, 5]. Their construction is so that only a single induced matching of
every party Pi is useful for the construction of a global large matching. Due to symmetry
of the construction, the parties are unable to identify the important induced matching and
therefore need to send large messages that contain information about most of the induced
matchings to the referee for them to be able to compute a large global matching. Interestingly,
none of the parties hold edge deletions in their construction.

The One-way Model of Communication. In this paper, we give a lower bound in the
one-way two-party model of communication. In this model, Alice holds a set of edges E of
the input graph and sends a message M to Bob. Bob holds a set of edge deletions D ⊆ E and
outputs a large matching in the graph spanned by the edges E \D. A standard reduction
shows that a lower bound on the size of message M also constitutes a lower bound on
the space requirements of an insertion-deletion streaming algorithm. The two models are
illustrated in Figure 1.

Referee result

P1 P2 . . . Pk

E1 ⊆ E E2 ⊆ E Ek ⊆ E

M1 M2 Mk
Alice Bob result

M

E D ⊆ E

Figure 1 The simultaneous (left) and the one-way two-party (right) models of communication.

Our Techniques. To prove our lower bound, we identify that an insertion-deletion streaming
algorithm for Maximum Matching or Minimum Vertex Cover can be used to obtain a one-way
two-party communication protocol for a two-dimensional variant of the well-known Augmented
Index problem that we denote by Augmented Bi-Index, or BInd in short. In an instance of BInd,
Alice holds an n-by-n binary matrix A ∈ {0, 1}n×n. Bob is given a position (x, y) ∈ [n− k]2
and needs to output the bit Ax,y. Besides (x, y), he also knows the k-by-k submatrix of A
with upper left corner at position (x, y), however with the bit at position (x, y) missing – we
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will denote this k-by-k submatrix with (x, y) missing by AS(x,y). We show that this problem
has a one-way communication complexity of Ω((n − k)2) by giving a reduction from the
Augmented Index problem.

To obtain a lower bound for Maximum Matching, we show that Alice and Bob can construct
a protocol for BInd given an insertion-deletion streaming algorithm for Maximum Matching.
In our reduction, we will consider instances with k = n−Θ(n1−ε), for some ε > 0. Consider
the following attempt: Suppose that the input matrix A is a uniform random binary matrix
and that Ax,y = 1 (we will get rid of these assumptions later). Alice and Bob interpret the
matrix A as the incidence matrix of a bipartite graph G. Bob interprets the “1” entries
in the submatrix AS(x,y) outside the diagonal, i.e., all “1” entries except those in positions
{(x+j, y+j) : 0 ≤ j < k}, as edge deletions F . The graph G−F has a large matching: Since
the diagonal of AS(x,y) is not deleted, and each entry in the diagonal is 1 with probability
1/2, we expect that half of all potential edges in the diagonal of S(x, y) are contained in
G−F and thus form a matching of size Θ(k) = Θ(n−n1−ε). An nε-approximation algorithm
for Maximum Matching would therefore report Ω(n1−ε) of these edges. Suppose that the
algorithm reported Ω(n1−ε) uniform random edges from the diagonal in AS(x,y) (we will also
get rid of this assumption). Then, by repeating this scheme Θ(nε) times in parallel, with
large constant probability the edge corresponding to Ax,y is reported at least once, which
allows us to solve BInd. This reduction yields an optimal Ω(n2−3ε) space lower bound for
insertion-deletion streaming algorithm for Maximum Matching, since Θ(nε) parallel executions
are used to solve a problem that has a lower bound of Ω((n− k)2) = Ω(n2−2ε).

In the description above, we assumed that (1) A is a uniform random binary matrix;
(2) Ax,y = 1; and (3) the algorithm outputs uniform random positions from the diagonal of
AS(x,y). To eliminate (1) and (2), Alice and Bob first sample a uniform random binary matrix
X ∈ {0, 1}n×n from public randomness and consider the matrix obtained by computing the
entry-wise XOR between A and X, i.e., matrix A ⊕ X, instead. Observe that A ⊕ X is
a uniform random binary matrix (independently of A), and with probability 1

2 , property
(2), i.e., (A ⊕ X)x,y = 1, holds. Regarding assumption (3), besides computing the XOR
A⊕X, Alice and Bob also sample two random permutations σ1, σ2 : [n]→ [n] from public
randomness. Alice and Bob permute the rows and columns of A ⊕ X using σ1 and σ2,
respectively. Then, no matter which elements from the permuted relevant diagonal of A⊕X
are reported by the algorithm, due to the random permutations, these elements could have
originated from any other position in this diagonal. This in turn makes every element along
the diagonal equally likely to be reported, including the position (x, y) (in the unpermuted)
matrix that we are interested in.

Our reduction for Minimum Vertex Cover is similar but simpler. We show that only a
constant number of parallel executions of an insertion-deletion streaming are required.

Further Related Work. Hosseini et al. [17] were able to improve on the “triple exponential
length” requirement of the input streams for a characterization of insertion-deletion streaming
algorithms in terms of linear sketches by Li et al. [28] and Ai et al. [2]. They showed that
in the case of XOR-streams and 0/1-output functions, input streams of length O(n2) are
enough.

Very recently, Kallaugher and Price [19] showed that if either the stream length or
the maximum value of the stream (e.g. the maximum multiplicity of an edge in a graph
stream) are substantially restricted, then the characterization of turnstile streams as linear
sketches cannot hold. For these situations they discuss problems where linear sketching is
exponentially harder than turnstile streaming.
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Besides the Maximum Matching problem, the only other separation result between the
insertion-only and the insertion-deletion graph stream models that we are aware of is a recent
result by Konrad [25], who showed that approximating large stars is significantly harder in
insertion-deletion streams.
Outline. We give a lower bound on the communication complexity of Augmented Bi-Index
in Section 2. Then, in Section 3, we show that a one-way two-party communication protocol
for Maximum Matching can be used to solve Augmented Bi-Index, which yield an optimal
space lower bound for Maximum Matching in insertion-deletion streams. We conclude with a
similar reduction for Minimum Vertex Cover in Section 4, which also implies an optimal space
lower bound for Minimum Vertex Cover in insertion-deletion streams.

2 Augmented Bi-Index

In this section, we define the one-way two-party communication problem Augmented Bi-Index
and prove a lower bound on its communication complexity.

I Problem 1 (Augmented Bi-Index). In an instance of Augmented Bi-Index BIndn,kδ we have
two players denoted Alice and Bob. Alice holds a binary matrix A ∈ {0, 1}n×n. Bob holds
indices x, y ∈ [n− k] and the incomplete1 binary matrix AS(x,y) where

S(x, y) = {(i, j) ∈ [n]2 | (x ≤ i < x+ k) and (y ≤ j < y + k)} \ {(x, y)} .

Alice sends a single message M to Bob who must output Ax,y with probability at least 1− δ.

Our lower bound proof consists of a reduction from the well-known Augmented Index
problem, which is known to have large communication complexity.

I Problem 2 (Augmented Index). In an instance of Augmented Index Indnδ we have two
players denoted Alice and Bob. Alice holds a binary vector V ∈ {0, 1}n. Bob holds an index
` ∈ [n] and the vector suffix V>` = (V`+1, V`+2, · · · , Vn). Alice sends a single message M to
Bob who must output V` with probability at least 1− δ.

As a consequence of Lemma 13 in [30], we can see that this problem has linear commu-
nication complexity (see also Lemma 2 in [6] for a more direct proof technique).

I Theorem 3 (e.g. [30]). For δ < 1/3, any randomised one-way communication protocol
which solves Indnδ must communicate Ω(n) bits.

We are now ready to prove our lower bound for Augmented Bi-Index.

I Theorem 4. For δ < 1/3, any randomised one-way communication protocol which solves
BIndn,kδ must communicate Ω((n− k)2) bits.

Proof. Let P be a communication protocol for BIndn,kδ that uses messages of length at most
S(n, k) bits. We will show how P can be used to solve Ind(n−k)2

δ with the same message size.
Let V, ` be any instance of Ind(n−k)2

δ . Alice builds the matrix A ∈ {0, 1}n×n by placing
the bits of V in lexicographical order in the top-left (n− k)-by-(n− k) region:

Ai,j =
{
Vj+(n−k)(i−1) for i, j ∈ [n− k]
0 otherwise

.

This packing is illustrated in Figure 2(a).

1 We use AS to refer to the collection of entries indexed by the set S, so AS = (Ai,j)(i,j)∈S .
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V1 V2 V3 V4 V5 0 0 0 0
V6 V7 V8 V9 V10 0 0 0 0
V11 V12 V13 V14 V15 0 0 0 0
V16 V17 V18 V19 V20 0 0 0 0
V21 V22 V23 V24 V25 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(a) Example packing of the bits of V into
matrix A with n = 9 and k = 4.

V`

AS(x,y)

(b) Bob can construct the area AS(x,y)
given V>`, which is part of his input.

Figure 2 The construction of A and AS(x,y) in Theorem 4.

Alice runs protocol P on A and sends the resulting message M to Bob. Now, Bob has
the message M , the index ` ∈ [(n− k)2] and the suffix V>`. Let x, y ∈ [n− k] be the unique
pair of integers such that ` = y + (n− k)(x− 1). Observe that Ax,y = V`.

For Bob to be able to complete protocol P he needs to provide AS(x,y). Because of the
way we packed the entries of V onto A, the overlap between V and AS(x,y) is a subset of the
entries of V>` (see Figure 2(b) for an illustration). Therefore Bob can complete the protocol
and determine Ax,y = V` with probability at least 1 − δ. By Theorem 3, it must be that
S(n, k) = Ω((n− k)2). J

3 Maximum Matching

Let A be a C-approximation insertion-deletion streaming algorithm for Maximum Matching
that errs with probability at most 1/10. We will now show that A can be used to solve
BIndn,kδ .

3.1 Reduction

Let A ∈ {0, 1}n×n, x ∈ [n − k] and y ∈ [n − k] be an instance of BIndn,kδ . Alice and Bob
first sample a uniform random binary matrix X ∈ {0, 1}n×n and random permutations
σ1, σ2 : [n]→ [n] from public randomness. Alice then computes matrix A′ which is obtained
by first computing the entry-wise XOR of A and X, denoted by A ⊕ X, and then by
permuting the rows and columns of the resulting matrix by σ1 and σ2, respectively. Next,
Alice interprets A′ as the incidence matrix of a bipartite graph G(A′). Alice runs algorithm
A on a random ordering of the edges of G(A′) and sends the resulting memory state to Bob.

Next, Bob also computes the entry-wise XOR between the part of the matrix A that he
knows about, AS(x,y), and X, followed by applying the permutations σ1 and σ2. In doing so,
Bob knows the matrix entries of A′ at positions (σ1(i), σ2(j)) for every (i, j) ∈ S(x, y). He
can therefore compute the subset ES of the edges of G(A′) with

ES = {(σ1(i), σ2(j)) ∈ [n]2 | (i, j) ∈ S(x, y) and A′(σ1(i), σ2(j)) = 1} .
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Furthermore, let Ediag ⊆ ES be the set of edges (σ1(i), σ2(j)) so that (i, j) lies on the
same diagonal in A as (x, y), or, in other words, there exists an integer 1 ≤ q ≤ k − 1 such
that (x + q, y + q) = (i, j). Then, let Edel = ES \ Ediag. Bob continues the execution of
algorithm A, as follows: for every edge e ∈ Edel, Bob introduces an edge deletion of e, in
random order.

Let M ′ be the matching returned by A. From M ′ Bob computes the matching M as
follows: If |M ′ ≤ 0.99 k

2C | then Bob sets M = ∅. Otherwise, Bob sets M to be a uniform
random subset of M ′ of size exactly 0.99 k

2C .

Parallel Executions. Alice and Bob execute the previous process ` = 100·C times in parallel.
Let M i, Xi, σi1 and σi2 be M , X, σ1 and σ2 that are used in run i, respectively. Let Qi be
the indicator random variable that is 1 iffM i contains the edge (σi1(x), σi2(y)). We also define
p =

∑
iQi to be the total number of times the edges (σi1(x), σi2(y)) are reported. Whenever

the edge (σi1(x), σi2(y)) is reported, we interpret this to be a claim that Ax,y = ¬Xi
x,y. So

depending on the value of Xi
x,y, this acts as a claim that Ax,y = 0 or Ax,y = 1. We define

p0 =
∑
i:Qi=1 X

i
x,y (which counts how often Ax,y = 0 was claimed) and let p1 = p− p0 (the

number of times Ax,y = 1 was claimed). Bob outputs 1 as his estimator for Ax,y if p1 ≥ p0
and 0 otherwise.

3.2 Analysis
Let G be the bipartite graph with incidence matrix A⊕X, and let

F = {(i, j) ∈ S(x, y) | (A⊕X)i,j = 1 and @ q s.t. (i, j) = (x+ q, y + q)} .

Then the graph G− F is isomorphic to the graph G(A′)− Edel. In particular, G(A′)− Edel
is obtained from G − F by relabeling the vertex sets of the two bipartitions using the
permutations σ1 and σ2.

We will first bound the maximum matching size in G(A′)− Edel. To this end, we will
bound the maximum matching size in G− F , which is easier to do:

I Lemma 5. With probability 1− 1
k10 , the graph G(A′)− Edel is such that:

0.99k2 ≤ µ(G(A′)− Edel) ≤ 1.01k2 + 2(n− k) ,

where µ(G) denotes the matching number of G, i.e., the size of a maximum matching.

Proof. We will consider the graph G− F instead, since it is isomorphic to G(A′)−Edel and
has the same maximum matching size.

First, observe that G is a random bipartite graph where every edge is included with
probability 1

2 . Let U and V denote the bipartitions in G, and consider the subsets U ′ =
[x, x + k) and V ′ = [y, y + k). Observe that in the vertex induced subgraph G[U ′ ∪ V ′]
all edges are deleted in F except those that connect the vertices x+ i and y + i, for every
0 ≤ i ≤ k − 1. By a Chernoff bound, the number of edges and thus the maximum matching
size in G[U ′ ∪ V ′] is bounded by:

0.99 · k2 ≤ µ(G[U ′ ∪ V ′]) ≤ 1.01 · k2 ,

with probability 1− 1
k10 .
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Observe that, with probability 1− 1
k10 , the neighborhood Γ(U ′) is such that

0.99 · k2 ≤ |Γ(U ′)| ≤ 1.01 · k2 + (n− k) .

The set U ′ can therefore be matched to at most 1.01 · k2 + (n− k) vertices in V . We thus
obtain

µ(G− F ) ≤ 1.01 · k2 + 2(n− k) ,

since we may also be able to match all n− k vertices of U \ U ′. J

I Lemma 6. Suppose that Mi 6= ∅. Then:
0.99
2C −

2(n− k)
k

≤ P [Qi = 1] ≤ 0.99
2C .

Proof. First, by construction of our reduction, since Mi 6= ∅ we have |Mi| = 0.99 k
2C . Let

U ′i = σi1([x, x+ k)) and V ′i = σi2([y, y + k)) .

Let M̃i be the set of edges of Mi connecting vertices in U ′i to V ′i . Observe that there are
2(n− k) vertices in the graph outside the set U ′i ∪ V ′i . We thus have

|Mi| − 2(n− k) ≤ |M̃i| ≤ |Mi| .

Next, since the permutations σi1, σi2 are chosen uniformly at random, any edge of M̃i may
have originated from any of the diagonal entries in AS(x,y). Hence, M̃i claims the bits of at
least |Mi| − 2(n− k) and at most |Mi| uniform random positions in the diagonal of AS(x,y).
Every entry in the diagonal of AS(x,y) is thus claimed with the same probability. Since the
diagonal of AS(x,y) is of length k, this probability is at least

|Mi| − 2(n− k)
k

=
0.99 k

2C − 2(n− k)
k

= 0.99
2C −

2(n− k)
k

,

and at most

|Mi|
k

=
0.99 k

2C
k

= 0.99
2C . J

I Theorem 7. Let A be a nε-approximation insertion-deletion streaming algorithm for
Maximum Matching that errs with probability at most 1/10 and uses space s. Then there
exists a communication protocol for BIndn,n−

1
40n

1−ε

0.05 that communication O(nε · s) bits.

Proof. Let C = nε and let k = n − 1
40n

1−ε. First, by Lemma 5, with probability 1 − 1
k10 ,

the graph G(A′)− Edel contains a matching of size at least 0.99k/2. By a union bound, the
probability that this graph is of at least this size in each of the ` iterations is at least 1− `

k10 .
Suppose from now on that this event happens.

Let `1 be the number of times the algorithm A succeeds, and let `0 be the number of
times A errs. Then, ` = `0 + `1. Whenever A succeeds, since A is a C-approximation
algorithm, the matching M ′i is of size 0.99 k

2C , which further implies that Mi is of size exactly
0.99 k

2C . Since the algorithm must return a correct matching, every time we have a claim (i.e.
Qi = 1), the claimed bit value must be correct. Thus, by Lemma 6, we get a correct claim
on Ax,y with probability at least

0.99
2C −

2(n− k)
k

= 0.99
2nε −

2( 1
40n

1−ε)
n− 1

40n
1−ε ≥

0.99
2nε −

1
40n

1−ε

n
= 0.99

2nε −
1

40nε ≥
2

5nε ,
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where we used the inequality 2x
y−x ≥

x
y , which holds for every y > x. We thus expect to see

the correct bit claimed at least `1 · 2
5nε times in total. On the other hand, incorrect claims of

the bit value can only occur when the algorithm errs. In the worst case, A will make as many
false claims as possible - so we assume the algorithm never results in Mi = ∅ when it errs.
Lemma 6 also allows us to bound the probability of an incorrect claim for this bad algorithm
by 0.99

2nε . We thus expect to see the wrong bit value claimed at most `0 · 0.99
2C ≤

`0
2nε times.

Recall that ` = 100nε. Then, by standard concentration bounds, the probability that
`0 ≥ 2 · `10 is at most 1

100 (recall that the error probability of A is at most 1
10 ). Suppose now

that `0 ≤ 1
5` holds, which also implies that `1 ≥ 4

5`. We thus expect to learn the correct bit
at least

4
5100nε · 2

5nε = 32

times, and using a Chernoff bound, it can be seen that the probability that we learn the
correct bit less than 21 times is at most 0.02. Similarly, we expect to learn the incorrect bit
at most

1
5100nε · 1

2nε = 10

times, and by a Chernoff bound, it can be seen that the probability that we learn the incorrect
bit at least 20 times is at most 0.01. Our algorithm therefore succeeds if all these events
happen. Taking a union bound over all failure probabilities that occurred in this proof, we
see that our algorithm succeeds with probability

1− 100nε

k10 − 0.01− 0.02− 0.01 ≥ 0.95 . J

Since by Theorem 4, BIndn,n−
1

40n
1−ε

0.05 has randomized one-way communication complexity
Ω(n2−2ε), by Theorem 7 we obtain our main result of this section:

I Corollary 8. Every insertion-deletion nε-approximation streaming algorithm for Maximum
Matching that errs with probability at most 1

10 requires space Ω(n2−3ε).

4 Minimum Vertex Cover

Let B be a C-approximation insertion-deletion streaming algorithm for Minimum Vertex
Cover that succeeds with probability 1− 1/400. Similar to the previous section, we will now
show how B can be used to solve BIndn,kδ .

4.1 Reduction
Let A ∈ {0, 1}n×n, x ∈ [n− k] and y ∈ [n− k] be an instance of BIndn,kδ . The reduction for
Minimum Vertex Cover is very similar to the reduction for Maximum Matching presented in
the previous section. Alice’s behaviour is in fact identical:

First, Alice and Bob sample a uniform random binary matrix X ∈ {0, 1}n×n and random
permutations σ1, σ2 : [n] → [n] from public randomness. Alice then computes matrix A′
which is obtained by first computing A ⊕ X and then permuting the rows and then the
columns of the resulting matrix by σ1 and σ2, respectively. Alice interprets A′ as the incidence
matrix of a bipartite graph G(A′). Alice then runs algorithm B on a random ordering of the
edges of G(A′) and sends the resulting memory state to Bob.
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Next, Bob also computes the entry-wise XOR between the part of the matrix A that he
knows about and X, followed by applying the permutations σ1 and σ2. In doing so, Bob
knows the matrix entries of A′ at positions (σ1(i), σ2(j)) for every (i, j) ∈ S(x, y). He can
therefore compute the subset ES of the edges of G(A′) with

ES = {(σ1(i), σ2(j)) ∈ [n]2 | (i, j) ∈ S(x, y) and A′(σ1(i), σ2(j)) = 1} .

Next, Bob continues the execution of B and introduces deletions for all edges in ES in
random order. Observe that this step is different to the reduction for Maximum Matching.
Let I be the vertex cover produced by B.

Parallel Executions. Alice and Bob run the procedure above 40 times in parallel. Denote
by Ii, Xi, EiS , A′i, σi1, and σi2 the variables I,X,ES , A′, σ1 and σ2 used in iteration i.
Furthermore, let Qi be the indicator variable that is 1 iff {σi1(x), σi2(y)} ∩ Ii 6= ∅, i.e., the
potential edge (σi1(x), σi2(y)) is covered by the vertex cover.

If there exists a run j with Qj = 0, then Bob predicts Ax,y = Xx,y (if there are multiple
such runs then Bob breaks ties arbitrarily). Otherwise, Bob returns fail and the algorithm
errs.

4.2 Analysis
The first lemma applies to every parallel run j. For simplicity of notation, we will omit the
superscripts that indicate the parallel run in our random variables.

We first show an upper bound on the size of a minimum vertex cover in G(A′)− ES .

I Lemma 9. The size of a minimum vertex cover in G(A′)− ES is at most 2(n− k) + 1.

Proof. Let U, V be the bipartitions of the graph G(A′)−ES , let U ′ = {σ1(a) : a ∈ [x, x+k)}
and let V ′ = {σ2(b) : b ∈ [y, y + k)}. Observe that (G(A′)− ES)[U ′ ∪ V ′] contains at most
one edge: The potential edge between σ1(x) and σ2(y). A valid vertex cover of G(A′)− ES
is therefore (U \ U ′) ∪ (V \ V ′) + σ1(x), which is of size 2(n− k) + 1. J

Next, we prove the key property of our reduction: We show that if A′σ1(x),σ2(y) = 0 (or
equivalently, Ax,y ⊕Xx,y = 0) then neither σ1(x) nor σ2(y) is in the output vertex cover
with large probability.

I Lemma 10. Assume that algorithm B does not err in run j. Suppose that A′j
σj1(x),σj2(y)

= 0.
Then the probability that Qj = 1 is at most

3C · (2(n− k) + 1)
k

.

Proof. Consider the set D = {(σj1(x+ i), σj2(y+ i)) | 0 ≤ i ≤ k− 1}, i.e., the positions of the
diagonal of S(x, y) ∪ {x, y} permuted by σj1 and σj2. Then, since A′j is a uniform random
matrix, with probability at least 1 − 1

k10 , the “permuted diagonal” A′jD contains at least
0.99k/2 entries with value 0, or, in other words, graph G(A′j)−EjS contains at least 0.99k/2
non-edges in the positions of the permuted diagonal D. By Lemma 9, the size of a minimum
vertex cover in G(A′j)−EjS is at most 2(n− k) + 1, and since B has an approximation factor
of C, the vertex cover Ij is of size at most C · (2(n−k) + 1). Hence, at most C · (2(n−k) + 1)
non-edges in D can be covered in Ij . However, since the permutations are random, the
probability that the non-edge (σj1(x), σj2(y)) is covered, which is identical to the event Qj = 1,
is therefore at most

C · (2(n− k) + 1)
0.99k/2 ≤ 3C · (2(n− k) + 1)

k
. J
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I Theorem 11. Let B be a nε-approximation insertion-deletion streaming algorithm for
Minimum Vertex Cover that uses space s and errs with probability at most 1/400. Then, there
exists a communication protocol for BIndn,n−

1
20n

1−ε

1
3

that communicates O(s) bits.

Proof. Let k = n − 1
40n

1−ε and let C = nε. Consider the reduction given in the previous
subsection. First, observe that since B errs with probability at most 1/400, by the union
bound the probability that B errs at least once in the 40 parallel executions of our reduction
is at most 1

10 . We assume from now on that the algorithm never errs.
Observe that the matrices A′j are random matrices. Hence, the probability that there

exists at least one run i with A′i
σi1(x),σi2(y) = 0 is at least 1− ( 1

2 )40. Suppose that this event
happens. Let run i be so that A′i

σi1(x),σi2(y) = 0. Then, by Lemma 10, the probability that the
non-edge (σi1(x), σi2(y)) is covered by Ii, or in other words, the probability that Qi = 1, is at
most

3C · (2(n− k) + 1)
k

=
3nε · ( 1

20n
1−ε + 1)

n− 1
40n

1−ε =
3

20n+ 3nε

n− 1
40n

1−ε = 3
20 + o(1) .

Observe that whenever Qi = 0, the algorithm outputs Xi
x,y as a predictor for Ax,y. Since

the algorithm B does not err, we have Ax,y ⊕ Xi
x,y = 0. This implies that Ax,y = Xi

x,y,
which establishes correctness.

Last, we need to bound the error probability of our algorithm. First, the probability that
at least one of the 40 runs fails is at most 1

10 . Next, the probability that none of the runs are
such that A′j

σj1(x),σj2(y)
= 0 is at most ( 1

2 )40. Furthermore, the probability that Qi = 1 when
A′i
σi1(x),σi2(y) = 0 is at most 3

20 + o(1). Applying the union bound, we see that the overall
error probability of our algorithm is at most

1
10 + (1

2)40 + 3
20 + o(1) ≤ 1

3 ,

for large enough n. J

Since by Theorem 4, BIndn,n−
1

40n
1−ε

1
3

has a communication complexity of Ω(n2−2ε), we obtain
the following result:

I Corollary 12. Every insertion-deletion nε-approximation streaming algorithm for Minimum
Vertex Cover with error probability at most 1

400 requires space Ω(n2−2ε).

4.3 Insertion-deletion Streaming Algorithm for Minimum Vertex Cover
We now sketch a simple deterministic nε-approximation insertion-deletion streaming algorithm
for Minimum Vertex Cover on general graphs that uses space O(n2−2ε logn). Let G = (V,E)
be the graph described by the input stream. The algorithm proceeds as follows:

Algorithm 1 A simple deterministic nε-approximation insertion-deletion streaming algorithm for
Minimum Vertex Cover.

1. Arbitrarily partition V into subsets V1, V2, . . . , Vn1−ε , each of size nε.
2. Consider the multi-graph G′ obtained from G by contracting the sets Vi into vertices.
3. While processing the stream: For each pair of vertices Vi, Vj in G′ deterministically

maintain the number of edges connecting Vi to Vj .
4. Post-processing: Compute a minimum vertex cover I ′ in the multi-graph G′.
5. Return I = ∪Vj∈I′Vj as the vertex cover in G.
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Analysis: Regarding space, the dominating space requirement is the maintenance of the
number of edges between every pair Vi, Vj . Since there are n2−2ε such pairs, this requires
space O(n2−2ε · logn).

Concerning the approximation factor, let I∗ be a minimum vertex cover in G. Recall that
I ′ is an optimal cover in G′ and hence |I ′| ≤ |I∗| (edge contractions cannot increase the size
of a minimum vertex cover). Since every set Vj is of size nε, the computed vertex cover I is
of size at most |I ′| · nε ≤ |I∗|nε, which proves the approximation factor. By construction of
the algorithm, every edge is covered.

I Theorem 13. There is a deterministic nε-approximation insertion-deletion streaming
algorithm for Minimum Vertex Cover that uses space O(n2−2ε logn).
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Abstract
A longstanding open question is whether there is an equivalence between the computational task of
determining the minimum size of any circuit computing a given function and the task of producing
a minimum-sized circuit for a given function. While it is widely conjectured that both tasks require
“perebor,” or brute-force search, researchers have not yet ruled out the possibility that the search
problem requires exponential time but the decision problem has a linear time algorithm.

In this paper, we make progress in connecting the search and decision complexity of minimizing
formulas. Let MFSP denote the problem that takes as input the truth table of a Boolean function
f and an integer size parameter s and decides whether there is a formula for f of size at most s.
Let Search-MFSP denote the corresponding search problem where one has to output some optimal
formula for computing f .

Our main result is that given an oracle to MFSP, one can solve Search-MFSP in time polynomial
in the length N of the truth table of f and the number t of “near-optimal” formulas for f , in
particular O(N6t2)-time. While the quantity t is not well understood, we use this result (and some
extensions) to prove that given an oracle to MFSP:

there is a deterministic 2O( N
log log N

)-time oracle algorithm for solving Search-MFSP on all but a
o(1)-fraction of instances, and
there is a randomized O(2.67N )-time oracle algorithm for solving Search-MFSP on all instances.

Intriguingly, the main idea behind our algorithms is in some sense a “reverse application” of the
gate elimination technique.
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1 Introduction

In his fascinating historical account, Trakhtenbrot [20] describes the early developments of
the Russian cybernetics program. Beginning in the 1950s, this program was largely driven by
a desire to understand the necessity of “perebor,” or brute-force, in solving various problems
related to complexity minimization. What Trakhtenbrot calls “Task 1” in [20] is an analogue1
of what is now commonly referred to as the Minimum Circuit Size Problem, MCSP. In his
article, Trakhtenbrot delineates two versions of “Task 1”: an “existential version,” where

1 We say analogue since Task 1 was defined in the slightly different model of switching circuits.
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given a Boolean function f one must compute the minimum number of gates needed in a
circuit computing f , corresponding to MCSP and a “constructive version,” where one must
produce such an optimal circuit for f , corresponding to Search-MCSP.

Both versions were conjectured to require “perebor,” or brute-force to solve. However,
while it is clear that if perebor is required for MCSP then perebor must also be required for
Search-MCSP, it is a longstanding open question (since at least 1999 [10]) to prove a reverse
implication: that is, to show that if Search-MCSP requires brute-force to solve, then MCSP
requires brute-force.

Indeed, this question is closely related to another major open question surrounding
MCSP: is MCSP NP-complete? Despite being an open problem since the discovery of NP-
completeness2 in the 1970s and numerous fascinating papers studying MCSP, we still know
little about the computational complexity of MCSP. The problem is known to lie in NP, but
even formal evidence supporting or opposing the NP-completeness of MCSP is lacking. This
is in contrast to other prominent problems that are believed to be intractable yet are not
known to be NP-complete (such as integer factorization or the discrete logarithm3).

However, a remarkable line of research demonstrates that a proof that MCSP is NP-
complete would have significant ramifications. For example, Murray and Williams [14] show
that it would imply the breakthrough complexity separation EXP 6= ZPP, and Hirahara [8]
shows that it implies a worst-case to average case reduction for NP (if the hardness holds for
an approximate version of MCSP).

An NP-completeness proof for MCSP would also resolve the “search versus decision”
question mentioned at the beginning of this paper. In particular, since SAT is known to
have a polynomial-time search to decision reduction, MCSP being NP-complete would imply
that MCSP would also have a polynomial-time search to decision reduction. Hence, the time
complexity of computing MCSP and Search-MCSP would be equivalent up to a polynomial.

Because of this, Kabanets and Cai observed that finding a search to decision reduction
for MCSP is, in fact, a necessary step to showing that MCSP is NP-complete, and left finding
such a reduction as an open question. Indeed, it is a bit unnerving (at least to the author)
that researchers have not yet ruled out the possibility that MCSP has a linear-time algorithm
but solving Search-MCSP requires exponential-time! The present work was born out of a
motivation to (at least partially) mediate this large gap.

Alas, while we fail to improve the status of this question for MCSP, we make consider-
able progress in connecting the search and decision complexity of the analogous Formula
Minimization Problem, MFSP.

1.1 Prior Work
In light of the numerous research papers studying MCSP and its variants, we do not attempt
to survey the full body of literature but rather concentrate on those works related to search
to decision reductions and MFSP. We point a reader interested in a more detailed overview
to Allender’s excellent new survey [1] and the references therein.

Search to decision reductions for MCSP. There are two main prior works for search to
decision reductions for MCSP-like problems. Both provide algorithms that find approximately
optimal circuits that are efficient as long as MCSP has efficient algorithms. Interestingly,

2 [4] cites a personal communication from Levin that he delayed publishing his initial NP-completeness
results in hopes of showing MCSP is NP-complete.

3 Intriguingly, it is known [18, 2] that both of these problems reduce to MCSP under randomized reductions!
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both algorithms require that MCSP actually has efficient algorithms and seemingly fail if they
are “only” provided oracle access to MCSP (the reason is that the approximately optimal
circuit that these algorithms output actually include a small MCSP circuit within them).

The first prior work is a celebrated paper by Carmosino, Impagliazzo, Kabanets, and
Kolokolova [6] that establishes connections between algorithms for MCSP-like problems and
PAC-learning of circuits. In their paper, they show the following theorem.

I Theorem 1 (Carmosino, Impagliazzo, Kabanets, and Kolokolova [6]). Suppose MCSP ∈ BPP.
Then there is a randomized polynomial-time algorithm that, given the truth table of a function
f with n-bit inputs, outputs a circuit C of size at most poly(s) such that C(x) = f(x) for all
but a 1

poly(n) fraction of inputs x, where s is the minimum size of any circuit computing f .

Building on [6], Hirahara [8] proved a breakthrough worst-case to average-case reduction
for an approximation version of MCSP. In said paper, Hirahara shows the following theorem.

I Theorem 2 (Hirahara [8]). Suppose for some ε > 0 that one can approximate MCSP to
within a factor of N1−ε in randomized polynomial-time (where N is the length of the truth
table). Then there is some ε′ > 0 such that, given a length-N truth table for computing f ,
one can, in randomized polynomial-time, output a circuit for computing f (exactly) whose
size is within a N1−ε′ factor of being optimal.

Using similar ideas, Santhanam [19] independently obtained a comparable search-to-
decision reduction (with somewhat better parameters than Theorem 2) for AveMCSP, a
natural variant of MCSP where one asks for the smallest circuit computing a function on a
0.9-fraction of the inputs.

We find it interesting that “approximate” search to decision reductions for MCSP have
been a building block in these celebrated results. It seems to suggest that further exploring
the interplay between the search and decision versions of MCSP could be a fruitful direction.

Hardness of MFSP. As with MCSP, we have good reason to believe that MFSP is intract-
able, since it is in some sense “hard” for cryptography computable in NC1.

I Theorem 3 (Razborov and Rudich [17], Kabanets and Cai [10]). If MFSP ∈ P, then there
are no pseudorandom function generators computable in NC1.

Allender, Koucký, Ronneburger, and Roy [4] build on this connection to show that MFSP is
hard to approximate if factoring Blum integers is intractable.

Despite the strength of this cryptographic hardness connection, we know very little about
the complexity of MFSP unconditionally. Indeed, part of the difficulty is that it seems
difficult to design reductions that make use of an MFSP (or MCSP) oracle, since we do not
understand the model of formulas (or circuits) very well. Until very recently [7], it was even
open whether MFSP was in AC0[2]!

One reason for focusing on MFSP is that one might expect it to be an easier problem to
analyze than MCSP since formulas are somewhat better understood than circuits. In support
of this intuition, we know that the formula minimization problem for DNFs and DNF ◦ XOR
formulas are NP-complete [13, 9] and that the natural Σ2 variant of MFSP is complete for
Σ2 [5].

However, counter to this intuition, there are some cases in which it has been more difficult
to prove hardness for MFSP than for MCSP. While it is known that MCSP is hard for SZK
under randomized reductions [3], it remains open to prove such a result for MFSP. We take
this as further evidence of the subtleties involved in designing reductions for MFSP.

CCC 2020
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1.2 Our Results
In contrast to prior results, we examine the case of having to exactly solve Search-MFSP,
that is, producing an exactly optimal (instead of approximately optimal) formula.

We define MFSP over the model of DeMorgan formulas (formulas with AND and OR
gates) where the size of a formula is the number of leaf nodes in its binary tree. Our main
results are robust to changes in the model however. In particular, unless otherwise stated,
all our results also extend to the case when gates are from the full binary basis B2 and to
the case when the notion of size is the number of wires or the number of gates.

Our main result is to show that one can efficiently find an optimal formula for a given
function f using an oracle to MFSP when f has a small number of “near-optimal formulas”
(we say what this means after our theorem statement).

I Theorem 4 (also Theorem 33). There is an algorithm solving Search-MFSP using an oracle
to MFSP that given a length-N truth table of a function f runs in time O(N6t2) where t is
the number of “near-optimal” formulas computing f .

Defining ”near-optimal” formulas. We now define what we mean by “near-optimal” for-
mulas. Let L(f) denote the minimum size of any formula computing f . We say a formula ϕ
is a near-optimal formula for f : {0, 1}n → {0, 1} if ϕ has size at most L(f) + n+ 1.

Furthermore, in counting the number of near-optimal formulas, we consider formulas that
are isomorphic as labelled binary trees to be the same formula. This avoids counting many
trivially equivalent formulas as distinct near-optimal formulas. See Section 2.2 for a precise
definition.

Bounding the number of near-optimal formulas. Unfortunately, we do not understand
the quantity t in Theorem 4 very well. However, using the nearly tight upper bounds by
Lozhkin [11] on the maximum formula size required to compute an n-input function, we get
that with high probability a random function on n-inputs has at most

2O( N
log log N )

many near-optimal formulas where N = 2n.
Thus, we have the following corollary.

I Corollary 5 (also Corollary 34). There is an algorithm A for solving Search-MFSP on all
but a o(1) fraction of instances that runs in time 2O( N

log log N ) using an oracle to MFSP.

Corollary 5 has a nice interpretation with respect to the perebor conjecture. The queries
algorithm A (run on a truth table input of length N) makes to its MFSP-oracle can be
answered using a deterministic brute-force algorithm in time 2(1+o(1))N . In particular, the
queries A makes are of length at most 2N and have complexity at most (1 + o(1)) N

log logN .
On the other hand, the naive brute-force algorithm for Search-MFSP on an input of length
N runs in time 2(1+o(1))N . Thus, we have the following further corollary.

I Corollary 6 (Informal). If the brute-force algorithm for Search-MFSP is essentially optimal
on average, then the brute-force algorithm for MFSP is essentially optimal in the worst-case
on a large subset of instances (in particular queries of length 2N with complexity at most
(1 + o(1)) N

log logN ).

It would be nice to improve the running-time of the algorithm in Corollary 5. The bound
that t ≤ 2O( N

log log N ) for a random function hardly seems tight. In fact, in the setting of
Kolmogorov complexity, one can prove that a random string of length N has only poly(N)
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many near-optimal descriptions with high probability (this is because the worst-case upper
bound for Kolmogorov complexity is much tighter than the one for formulas). If we could
prove an analogous result for formulas, then Corollary 5 would give a polynomial-time search
to decision reduction for a random function!

Solving Search-MFSP in the worst-case. We also give a reduction that shows that even in
the worst-case, one can get exponential savings over the brute-force algorithm for Search-MFSP
by using a MFSP-oracle. In light of Theorem 4, a natural approach is split into two cases:

If there are a lot of near-optimal formulas for f , then just guess random formulas and see
if they compute f .
If there are not a lot of near-optimal formulas for f , then run the algorithm in Theorem 4.

However, this approach will only be able to output a near-optimal formula for computing
f , and we desire to solve Search-MFSP exactly.

We manage to overcome this issue and prove the following theorem.

I Theorem 7 (also Theorem 41). There is a randomized algorithm for solving Search-MFSP
using an oracle to MFSP that runs in O(2.67N ) time on instances of length N .

By examining the queries that this algorithm makes to MFSP, we get the following
consequence regarding the perebor conjecture.

I Corollary 8 (Informal). If brute-force is essentially optimal for solving Search-MFSP, then
any algorithm solving MFSP can give at most an ε power speed up over the brute-force
algorithm where ε = 1

7 .

A bottom-up approach for DeMorgan formulas. All of the results mentioned so far are
proved by building an optimal formula for a function in a “top-down” way (i.e. starting from
the output gate and working its way down to the tree leafs). It is natural to wonder if a
“bottom-up” approach could also work.4

Indeed, we give such a bottom-up reduction for solving Search-MFSP using an oracle to
MFSP that is efficient on average. Unfortunately, the guarantees we prove on the running
time on this bottom-up algorithm are weaker than the guarantees provided in Theorem 4.
Moreover, the proof of correctness for the algorithm requires our formulas to be DeMorgan
formulas and not, say, B2 formulas. Still, we include this result because we think the algorithm
is interesting and because it makes use of the following lemma (which is the part where
DeMorgan formulas are crucial) that may be of independent interest. Roughly speaking, the
lemma shows that optimal DeMorgan formulas must not have too large depth.

I Lemma 9 (also Lemma 53). Suppose ϕ is an optimal DeMorgan formula for a function on
n-inputs. Then the depth of ϕ is at most O( 2n

n logn ).

1.3 Techniques and Proof Overviews
The top-down approach. As mentioned earlier, our reduction works in a top-down manner.
We formalize this as follows. For any Boolean function f on n-inputs, we define the set
OptSubcomps(f) to consist of elements of the form {g,O, h} – where g, h : {0, 1}n → {0, 1}
and O ∈ {∧,∨} – satisfying the property that there exists an optimal formula ϕ for computing
f such that ϕ = ϕgOϕh where ϕg and ϕh are subformulas computing g and h respectively.

4 The idea that a bottom-up approach could also be an efficient way to solve Search-MFSP was given to
me by Ryan Williams.

CCC 2020
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We can naturally define the Decomposition Problem, denoted DecompProblem as follows:
Given: a non-trivial5 function f ,
Output: some element of OptSubcomps(f).

Our two main reductions work by solving the DecompProblem. It is easy to show that one
can solve Search-MFSP efficiently by recursively calling an DecompProblem oracle to build
an optimal formula gate-by-gate from top to bottom. (See Theorem 20 for details.)

Thus, we now focus on trying to solve DecompProblem.

A high level approach to solving DecompProblem. Our two top-down reductions will use
a similar approach to solving DecompProblem. (Actually, our worst-case reduction will use
three different approaches, but this will be one of them.)
1. Find an efficient “test” that functions in6 an optimal subcomputation of f pass, but not

too many other functions pass.
2. Efficiently build the (not too long) list Candidates of functions that pass the “test.”
3. Iterate through all pairs of functions in Candidates and each possible gate, and check if

this constitutes an element of OptSubcomps(f).

We first describe how we do Item 3 since it is simpler and then describe our “test” for
Item 1. Our method for Item 2 will be different in both reductions.

Item 3: checking membership in OptSubcomps(f). Given access to a MFSP oracle it is
actually very easy to check whether some {g,O, h} is an element of OptSubcomps(f) or not.
In Lemma 21 we observe that {g,O, h} ∈ OptSubcomps(f) if and only if f(x) = g(x)Oh(x)
for all x and L(f) = L(g) + L(h).

Item 1: the Select[f, g] test. The idea for our “test” is based on the gate elimination
technique and the implications gate elimination has on the Select[·, ·] function defined as
follows. Given functions f, g : {0, 1}n → {0, 1}, we define Select[f, g] : {0, 1}n×{0, 1} → {0, 1}
by

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1.

Our test for whether g might be part of an optimal subcomputation for f will be whether
the quantity

L(Select[f, g])− L(f)

is small – in particular, no more than a parameter C. The exact value of C will depend on
the reduction (we use this test in all three of our reductions with a different value for C), but
to give a reader some idea, C will be an element of {1, n+ 2, 10 · 2n

n } where n is the number
of input bits f takes.

5 here by non-trivial we mean a function that cannot be computed by a formula of size one
6 In case it is not clear, we say a function g is in an optimal subcomputation for f if there exists a gate O
and function h such that {g,O, h} is an element of OptSubcomps(f).
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Now, we needed our test to have two properties:
Property 1: any function that is in an optimal subcomputation for f must pass this test,
and
Property 2: this test does not accept too many other functions.

With regards to Property 1, we show in Lemma 23 that if {g,O, h} ∈ OptSubcomps(f),
then L(Select[f, g]) ≤ L(f) + 1 and L(Select[f, h]) ≤ L(f) + 1.

We can give the relatively straightforward proof that L(Select[f, g]) ≤ L(f) + 1 here.
Suppose that {g,O, h} ∈ OptSubcomps(f). To avoid some case analysis, assume that O = ∧.
Then there exists an optimal formula ϕ = ϕg ∧ϕh such that ϕg computes g and ϕh computes
h. Then the formula ϕg(x) ∧ (ϕh(x) ∨ z) computes Select[f, g](x, z) and has size L(f) + 1.

For Property 2, our test must be such that the set of all functions q satisfying

L(Select[f, q])− L(f) ≤ C

is not too large. In Lemma 24, we show that the number of such q is bounded by

O(t · 2C−1N logN)

where N is the length the truth table of f and t is the number of distinct formulas (modulo
an isomorphism between formulas defined in Section 2.2) computing f of size L(f) + C − 1 .
(In the case that C = n+ 2, t is the number of “near-optimal” formulas discussed earlier in
Section 1.2.)

The intuition behind this proof is to use gate elimination. In more detail, if ϕ is a formula
of size L(f) + C computing Select[f, g], then we can set z = 0 in ϕ and eliminate between
one and C gates from ϕ to obtain a new formula ϕ′ of size at most L(f) + C − 1 computing
f . Hence, we can describe ϕ (and hence g) by first describing ϕ′ (a small-ish formula for f)
and the gates that need to be added back to ϕ′ in order to obtain ϕ.

While this intuition is relatively straightforward, the proof itself is surprisingly tedious.
In particular, the intuition, as stated, only gives a bound with a NC factor dependence on
C. To achieve the stated bound with a 2C factor dependence on C requires some details.
Moreover, this dependence on C is important since a NC dependence would make Theorem 4
have a quasipolynomial dependence on t instead of a polynomial dependence.

Our top-down deterministic reduction. We now outline how the deterministic algorithm
in Theorem 4 works to solve DecompProblem on an input f .

We have already introduced the some of the ideas for the algorithm in Theorem 4. In detail,
let BestFunctions be the set of functions that are in an optimal subcomputation of f . Let
GoodFunctions denote the set of functions g that pass the test L(Select[f, g])− L(f) ≤ n+ 2
(for this algorithm we set C = n+2). From our previous discussions, we know that the size of
GoodFunctions can be bounded by a quantity related to the number of near-optimal formulas
for f , and we know that GoodFunctions contains all the functions in BestFunctions.

Later we explain how to construct the list GoodFunctions. Note though that once
the list GoodFunctions is constructed, we can then iterate through all pairs of functions
in GoodFunctions and efficiently check if they yield an optimal subcomputation, as we
discussed previously.

Hence, the missing piece is to efficiently enumerate the elements of GoodFunctions. In
fact, we do not quite need to enumerate all the elements of GoodFunctions. It suffices
to enumerate a subset, that we call Candidates, of GoodFunctions that contains all the
elements of BestFunctions. Informally, one can think of the Candidates subset as a set of
“good enough functions.”

CCC 2020
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The key observation is as follows. If q is a function on n-inputs and one defines the truth
table Tq,i of length 2n that is equal to q on its first i bits and equals one on the remaining
bits, then

L(Tq,i) ≤ L(q) + n+ 1

since one can compute Tq,i by computing q, computing whether the input is greater than i,
and ORing these two values. The Select[·, ·] function actually respects this observation in
a nice way. In particular, since functions g in BestFunctions satisfy the stronger property
that L(Select[f, g])− L(f) ≤ 1, one can show that if g ∈ BestFunctions, then

L(Select[f, Tg,i]) ≤ L(f) + n+ 2

for all i. In other words, if g ∈ BestFunctions, then Tg,i is in GoodFunctions for all i.
Using this fact, we can construct a subset Candidates of GoodFunctions that contains all

the elements of BestFunctions by bit-by-bit extending a set of prefixes PartialCandidates
that pass our test (and prefixes of functions in BestFunctions do pass our test) until these
prefixes become full functions.

In more detail, we start with a set PartialCandidates that initially only contains the
empty prefix. While PartialCandidates is non-empty, we remove a prefix γ from it and
try to extend it by one bit. That is, for each bit b ∈ {0, 1}, we consider γb obtained by
appending b to γ. We then see if the prefix γb “passes our test” by seeing if the truth table
Tγb

, obtained by padding γb with ones until it has length 2n, has the property

L(Select[f, Tγb
]) ≤ L(f) + n+ 2.

If so, we either add γb to Candidates or back to PartialCandidates depending on whether
the string γb is of length 2n or not. We continue until PartialCandidates is empty. The full
details can be found in Algorithm 2.

Our top-down randomized worst-case reduction. The algorithm in Theorem 7 uses three
different strategies for finding an optimal subcomputation in the worst-case using an oracle
to MFSP. We give a a rough overview of each of these three parts.

Suppose the input to the algorithm is a function f on n-inputs. First, the algorithm picks
22N/3 random formulas of size L(f) and checks if any of these formulas compute f . If so,
we are done. Otherwise, we know that the number of optimal formulas for f cannot be too
large (in particular, is upper bounded by roughly 2N/3 with high probability).

In the second part, we construct a set of candidate functions that pass a test. The
guarantee on the number of optimal formulas from the previous step ensures that the size of
the set

{g : L(Select[f, g]) ≤ L(f) + 1}

is bounded by O(2N/3), and we know that all functions that are in an optimal subcomputation
for f are in this set. Hence, what we would like to do is enumerate the functions in this set,
however, the author does not know how to do this efficiently. Instead, we examine the subset
of functions in this set that have not too large complexity. That is, we iterate through all
functions with complexity at most 2

3 ·
2n

logn and build

Candidates = {g : L(Select[f, g])− L(f) ≤ 1 and L(g) ≤ 2
3 ·

2n

logn}.

This takes time O(22N/3). We then try to find a pair of functions in Candidates that form
an optimal subcomputation.
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If we succeed, we are done. Otherwise, we know that there exists an optimal subcompu-
tation {g,O, h} of f where h has complexity greater than 2

3 ·
2n

logn . This also implies that g
has complexity at most (1 + o(1)) 2n

3 logn since L(f) = L(g) + L(h) and L(f) ≤ (1 + o(1)) 2n

logn .
In the third part, we look for such an “unbalanced” subcomputation as follows. We

iterate through each g in Candidates with complexity at most (1 + o(1)) 2n

3 logn and each
O ∈ {∧,∨} and try to find a matching h by considering each h satisfying f = gOh. We argue
that this is efficient because the the set of h satisfying the constraint that f = gOh is not
too large (in particular, of size at most 2N/3). The reason for why this set must be small is
that the constraint that f = gOh actually forces many of the values of h to a fixed zero/one
value. Indeed, we argue that a large number of values must be “forced,” since if only a small
number of values of h were “forced,” then a theorem of Pippenger [16] ensures that there
would be a function h of too small complexity (smaller than 2

3 ·
2n

logn ) that satisfied f = gOh,
which would contradict that fact that the second part of the algorithm failed.

A bottom-up approach. Our final algorithm takes a different approach than our previous
reductions, working bottom-up instead of top-down. The basic idea of the bottom-up
approach is as follows. Begin with the set Candidates of all functions computed by formulas
of size one. For each pair of functions g, h in Candidates and each O ∈ {∧,∨}, compute the
function q = gOh. Next, see if gOh is an optimal formula for q using the MFSP oracle. If
so, use some one-sided heuristic (that never gives an incorrect NO answer) to test if q is
computed by some gate in an optimal formula for f , and add q to Candidates if it passes
this heuristic. Repeat this process until f is added to Candidates, in which case one can
construct an optimal formula for f by tracing back through the functions that led to it.

The difficulty in this approach is in finding an appropriate heuristic that significantly
prunes the search space of possible candidates. A natural contender for such a heuristic, in
light of our previous algorithms, is testing if L(Select[f, q])− L(f) is small. However, if our
only guarantee is that q is computed by some gate in some optimal formula ϕ for f , the
best upper bound we manage to prove for the quantity L(Select[f, q])− L(f) is linear in the
depth of ϕ.

Luckily, Lemma 53 shows that the depth of ϕ cannot be too large. In particular, if ϕ
is an optimal DeMorgan formula, then the depth of ϕ is bounded by O( 2n

n ) where n is the
number of inputs f takes. At a high-level, the proof of this lemma works by saying that if a
formula has very large depth, then there are many small subformulas that lie along a path in
the binary tree of ϕ. Because there are so many of these small subformulas, there must be
a pair that compute the same function, and this can be used to produce a slightly smaller
formula.

Using this lemma, we show that the above bottom-up approach runs in time quadratic in
the number of formulas for computing f that are within O( 2n

n ) of being optimal, additively.

1.4 Open Questions
There are several intriguing questions raised by this work. Looking at our main theorem,
the most obvious question is whether one can improve the bound we give on the number of
near-optimal formulas for a random function. Our bound hardly seems correct, although its
hard to imagine how one could do better with current techniques.

Perhaps an indirect approach could work. Is there any operation one can apply to a
function in order to reduce the number of optimal formulas it has? It seems plausible
that multiple applications of the Select[·, ·] function might cut down the number of optimal
formulas.
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Another idea would be to try to modify the heuristic “tests” in our reduction. At their
heart, all our “tests” are powered by the gate elimination technique. It seems reasonable
that more powerful lower bound techniques (which we indeed do have for formulas) might
lead to better heuristics and thus more efficient search-to-decision reductions.

There is also the question this paper began with: can one prove a non-trivial exact search
to decision reduction for MCSP? The difficulty in adopting our approach to MCSP is that
there are just too many ways to add a single gate to a circuit, which ruins the bounds we get
on the number of functions passing our Select[f, g] test. Is there any way to get around this?

Taking a step back, one can also ask what role relativization plays in the search versus
decision question. Can one show that there is an oracle relative to which MCSP or MFSP can
be solved in linear time, but the corresponding search problem requires exponential time?

Finally, can one extend Lemma 9 to the case of formulas over B2 or even just prove a
better bound for DeMorgan formulas?

1.5 Organization
In Section 2, we fix our notation and definitions, including our notion of formula isomorphism.
In Section 3, we introduce the top-down approach and outline our basic strategy for solving
Search-MFSP. Section 4 introduces the Select[·, ·] function and proves bounds on number of
functions that pass “tests” related to the Select[·, ·] function. Section 5 gives a deterministic
search to decision reduction for MFSP and shows it is efficient on average. Section 6 then
gives a reduction that works in the worst case. Finally, Section 7 demonstrates a bottom-up
approach for trying to solve Search-MFSP.

2 Preliminaries

For a positive integer n, we let [n] denote the subset of integers {1, . . . , n}.

2.1 DeMorgan Formulas and Formula Size
Our notion of formulas will be DeMorgan formulas. A DeMorgan formula ϕ on n-inputs of
size s is given by:

a directed rooted binary tree on the vertex set [2s − 1], specified by a subset Eϕ ⊆
[2s− 1]× [2s− 1] of edges, and
a gate labeling function τϕ : [2s− 1]→ {∧,∨} ∪ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}

where τ takes values in {∧,∨} on the internal nodes in ϕ and τ takes values in

{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}

on the leaf nodes in ϕ. The edges in Eϕ point from inputs towards outputs. We note that
our definition implicitly uses the fact that a binary tree with s leaf nodes has s− 1 internal
nodes. We also note that in our definition we do not need to specify the “left” and “right”
child of an internal node since our gate set {∧,∨} is made up of symmetric functions. We
will define a notion of formula isomorphism in Section 2.2.

We will use the notation |ϕ| to denote the size of a formula ϕ (i.e. the number of leaves in
the binary tree underlying ϕ). Given a Boolean function f , we denote the minimum formula
size of f by

L(f) = min{|ϕ| : ϕ is a formula computing f}.

We say a formula ϕ is an optimal formula for a Boolean function f , if ϕ computes f and
|ϕ| = L(f).
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We note, however, that all of our results except the ones presented in Section 7 apply
equally well to formulas with arbitrary fan-in-two gates (i.e. the formulas over the B2 basis).
Moreover, all our results are hold for other size notions such as gates and wires.

2.2 Optimal Formulas and Formula Isomorphism
Since our results will depend on the number of formulas satisfying certain properties, we will
be clear about when exactly we are saying formulas are distinct in our count.

In particular, as we have defined formulas, one can obtain many optimal formulas from a
single optimal formula by relabeling the nodes in underlying binary tree.

Thus, it will be useful to define an isomorphism on formulas and only count formulas
modulo this isomorphism. In particular, we will define two formulas to be isomorphic if they
are isomorphic as labelled binary trees.

In order to properly define this, we introduce some notation. If ϕ is a formula of size s
with an underlying edge set Eϕ and a labelling function τϕ and σ : [2s− 1]→ [2s− 1] is a
permutation, then we let ψ = σ(ϕ) be the formula of size s whose edge set Eψ is given by

Eψ = {(σ(i), σ(j)) : (i, j) ∈ Eϕ}

and whose labelling function τψ is given by

τψ(σ(i)) = τϕ(i).

We say two formulas ϕ and ϕ′ are isomorphic if |ϕ| = |ϕ′| and there is a permutation σ
such that ϕ′ = σ(ϕ).

From each equivalence class of isomorphic formulas, we pick a single representative that
we call the canonical formula for that equivalence class. Note that for our purposes we do
not need that this canonical formula to be computable, as we will just be using them in our
analysis. Then we define CanonOptkFormulas(f) to be the set of canonical formulas that are
optimal for computing f up to an additive k-term. In other words

CanonOptkFormulas(f) = {ϕ : ϕ is a canonical formula and |ϕ| ≤ L(f) + k}.

2.3 MFSP, Search-MFSP and Conventions on n and N

We now define the Minimum Formula Size Problem denoted MFSP.

I Definition 10 (MFSP). We define the problem MFSP as follows
Given: a truth table of a Boolean function f and an integer size parameter s ≥ 1
Determine: if L(f) ≤ s.

We define the search version of MFSP analogously.

I Definition 11 (Search-MFSP). Search-MFSP is the problem defined as follows:
Given: a truth table of a Boolean function f
Output: a formula ϕ of size L(f) computing f .

We note that MFSP ∈ NP since given a minimum-sized formula as a witness, one can
check that this indeed computes f efficiently since the truth table of f is provided and every
function has a formula of size at most the length of its truth table (see Theorem 13).

When describing a function f that is an input to MFSP, one naturally wants to denote
by n two different quantities: the number of variable inputs to a function f and the length of
the truth table of f (which is the true input length for MFSP). We maintain the convention
throughout this paper that n denotes the input arity of f and N = 2n denotes the length of
the truth table of f .
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2.4 Useful Facts About Formulas
We will make use of some basic facts about formulas in our work. First, one can easily bound
the number of formulas of size at most s.

I Proposition 12. The number of formulas on n-inputs of size at most s is at most
2s logn(1+o(1))

We also know tight upper bounds on the maximum formula complexity of a n-input
function.

I Theorem 13 (Lozhkin [11] improving on Lupanov [12]). Let f : {0, 1}n → {0, 1}. Then

L(f) ≤ 2n

logn (1 +O( 1
logn ))

Combining the size upper bound in Theorem 13 with the bound on the number of formulas
of size s, we get the following proposition.

I Proposition 14 (Random functions have not too many near optimal formulas). Let n and
k be positive integers. Let N = 2n. Assume k = O( 2n

log2 n
). Then all but a o(1)-fraction of

n-input Boolean functions f satisfy

|CanonOptkFormulas(f)| = 2O( N
log log N ).

Proof. Theorem 13 say that every n-input function has a formula of size at most

2n

logn (1 +O( 1
logn )).

Thus, any formula for computing n-input function that is within an additive k of being
optimal has size at most s where

s ≤ k + 2n

logn (1 +O( 1
logn )) = 2n

logn (1 +O( 1
logn )).

Proposition 12 implies that the number of formulas of size at most s is upper bounded by

2s logn(1+o(1)) = 2N(1+O( 1
log log N )).

Hence, since there are 2N Boolean functions on n-inputs, it follows that in expectation a
random function has at most

2O( N
log log N )

formulas within k of being optimal. The desired claim then follows by an application of
Markov’s inequality. J

We note that the bound given by Proposition 14 is actually counting formulas that are
isomorphic to each other as distinct. Unfortunately removing this redundancy does not
improve on the bound in Proposition 14. However, the fact that our results rely on the
number of distinct formulas up to isomorphism means that there is no obvious obstruction
to better bounds being proved and hence to our algorithms being more efficient.

We will also make use of the fact that integer comparison can be implemented by
linear-sized formulas.
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I Proposition 15 (Small formulas for integer comparison). Let y ∈ {0, 1}n. Let GrtrThany :
{0, 1}n → {0, 1} be the function given by GrtrThany(x) = 1 if and only if x > y in the usual
lexicographic order on {0, 1}n. Then L(GrtrThany(x)) ≤ n.

Proof. We work by induction on n. If n = 1, then clearly L(GrtrThany) = 1 (either it is 0
if y = 1 or it equals x if y = 0).

Now suppose n > 1. Let x1, . . . , xn and y1, . . . , yn denote the bits of x and y respectively
where x1 and y1 denotes the highest order bit. Let x′, y′ ∈ {0, 1}n−1 be given by x′ = x2 . . . xn
and y′ = y2 . . . yn respectively.

Now, x > y if and only if one of the following two statements is true:
x1 > y1, or
x1 = y1 and x′ > y′.

Since x1, y1 ∈ {0, 1}, this is equivalent to

x > y ⇐⇒ (x1 > y1) ∨ (x′ > y′).

By induction this means L(GrtrThany) ≤ 1 + n− 1 = n. J

2.5 Partial Functions and their Formula Size
Partial functions will be a crucial building block in our reductions. A partial Boolean function
is a function γ : {0, 1}n → {0, 1, ?} for some integer n ≥ 1. We denote partial functions using
Greek letters such as γ and µ, although sometimes we resort to the Roman alphabet with a
? subscript such as h?.

In contrast, we say a Boolean function f : {0, 1} → {0, 1} is total Boolean function
(though we allow for a partial Boolean function to indeed be total).

We say a total Boolean function g agrees with a partial Boolean function γ if

γ(x) ∈ {0, 1} =⇒ γ(x) = g(x).

One can naturally define the minimum formula size of a partial Boolean function γ as
follows

L(γ) = min{L(g) : g is a total function that agrees with γ}.

The following theorem regarding the formula complexity of partial functions will be useful
in our randomized worst-case reduction.

I Theorem 16 (Pippenger [16]). Let γ : {0, 1}n → {0, 1, ?} be a partial function. Let
p? = |γ−1(?)|

2n . Then,

L(γ) ≤ (1 + o(1)) · (1− p?) 2n

logn.

3 The Top-Down Approach

Our two main reductions both take a “top-down” approach to finding an optimal formula.
That is, given a function f , they try to find functions g and h such that g and h are the two
functions fed into the final output gate in an optimal formula for f and then recursing.

This is formalized as follows.
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I Definition 17 (Optimal Subcomputations Set). Let f : {0, 1}n → {0, 1}. We define the set
of optimal subcomputations for f , denoted OptSubcomps(f), as follows.

Let g, h : {0, 1}n → {0, 1} be Boolean functions of the same arity as f and O ∈ {∧,∨}.
Then {g,O, h} ∈ OptSubcomps(f) if and only if there exists an optimal formula ϕ = ϕgOϕh
for computing f such that ϕg computes g and ϕh computes h.

We note that in this definition we are implicitly using that the gate set {∧,∨} is symmetric
with respect to its inputs.

We say a function g is in an optimal subcomputation for f if g is contained in some
element of OptSubcomps(f). In other words, g is in an optimal subcomputation for f if there
exists an h and O such that {g,O, h} ∈ OptSubcomps(f).

It is easy to see that OptSubcomps(f) is almost always non-empty.

I Proposition 18. Let f : {0, 1}n → {0, 1} such that L(f) ≥ 2. Then OptSubcomps(f) is
non-empty.

Next, we can define the problem of finding an optimal subcomputation.

I Definition 19 (Decomposition Problem). The Decomposition Problem, DecompProblem is
as follows:

Given: the truth table of a Boolean function f satisfying L(f) ≥ 2
Output: some element of OptSubcomps(f).

It is easy to see that DecompProblem is equivalent to Search-MFSP. DecompProblem can
be easily solved with an oracle to Search-MFSP. The following recursive procedure shows
the reverse direction.

I Theorem 20 (Search-MFSP reduces to DecompProblem). There is a deterministic O(N2)-
time algorithm for solving Search-MFSP on inputs of length N given access to an oracle that
solve DecompProblem on instances of length N .

Proof. The pseudocode for this reduction is written in Algorithm 1.

Algorithm 1 Reduction from Search-MFSP to DecompProblem.

procedure FindOptFormula(f)
. Given the length-N truth table of a function f that takes n-inputs and oracle access to
DecompProblem return an optimal formula for f .

if there exists a size one formula ϕ computing f then
return ϕ.

end if
Let {g,O, h} be the output returned by the oracle DecompProblem(f).
Recursively compute the formula ϕg ← FindOptFormula(g).
Recursively compute the formula ϕh ← FindOptFormula(h).
return the formula given by ϕgOϕh.

end procedure

The correctness of this algorithm is easy to see as long as one is able to bound the number
of recursive calls the algorithm makes. To see that the number of recursive calls is bounded
by O(N), notice that each iteration of the algorithm reveals one more gate in the optimal
formula for f . Thus, since L(f) = O(N), we have that there are at most O(N) recursive
calls. J
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Our goal is now to try to solve DecompProblem (i.e. find an element of OptSubcomps(f))
given an oracle to MFSP. Recall from the introduction that our high-level approach is as
follows
1. Find an efficient “test” that functions that in an optimal subcomputation of f pass but

not too many other functions pass.
2. Efficiently build the (not too long) list Candidates of things that pass the test.
3. Iterate through all pairs of elements in Candidates and all possible gates, and efficiently

check if this yields an element of OptSubcomps(f).

Item 1 will be the subject of Section 4, Item 2 will be different in our two main reductions,
and Item 3 is provided by the next lemma.

I Lemma 21 (Test membership in OptSubcomps(f) efficiently with MFSP). Let f, g, h :
{0, 1}n → {0, 1}. Then

{g,O, h} ∈ OptSubcomps(f) ⇐⇒ f = gOh and L(f) = L(g) + L(h).

Proof. We prove the forward direction first. Suppose that {g,O, h} ∈ OptSubcomps(f).
Then there exists an optimal formula ϕ = ϕgOϕh for computing f such that ϕg computes g
and ϕh computes h. Clearly this implies that f = gOh.

Moreover, |ϕ| = |ϕg| + |ϕh|. On the other hand, since ϕ is optimal, we have that
|ϕ| = L(f), |ϕg| = L(g), and |ϕh| = L(h). (Otherwise, one could build a smaller formula
for f by replacing ϕg or ϕh with a smaller formula computing the same function.) Hence
L(f) = L(g) + L(h).

For the reverse direction, suppose that L(f) = L(g) + L(h) and f = gOh. Let ϕg and ϕh
be optimal formulas for g and h. Then ϕ = ϕgOϕh clearly computes f and has size L(f).
Hence {g,O, h} ∈ OptSubcomps(f). J

4 Using gate elimination to find functions in an optimal
subcomputation

Our approach to solving DecompProblem involves finding a “test” that functions in an optimal
subcomputation pass but not too many other functions pass. The test will be based off the
following function.

I Definition 22 (Select[·, ·]). Let f, g : {0, 1}n → {0, 1}. We define the function Select[f, g] :
{0, 1}n × {0, 1} → {0, 1} by

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1

We emphasize that Select[f, g] function is only defined when f and g have the same arity.
Now, our “test” will be to see if the quantity

L(Select[f, g])− L(f)

is small (how small will depend on our reduction).
Indeed, for functions in an optimal subcomputation, this quantity is exactly one!7

7 We will only prove that it is as most one, but the reader can check that if g 6= f that a gate elimination
argument actually implies equality.
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I Lemma 23. Suppose g is in an optimal subcomputation for f . Then

L(Select[f, g]) ≤ L(f) + 1.

Proof. Since g is in an optimal subcomputation for f , there exists an optimal formula
ϕ = ϕg Oϕh such that ϕg computes g. If O = ∧, then

ϕg ∧ (ϕh ∨ z)

is a formula for Select[f, g] of size L(f) + 1. Otherwise O = ∨. Then

ϕg ∨ (ϕh ∧ ¬z)

is a formula for Select[f, g] of size L(f) + 1. J

On the other hand, the number of functions that “pass this test” can be upper bounded
in terms of |CanonOptkFormulas(f)|.

I Lemma 24. Let k be a positive integer. Let f : {0, 1}n → {0, 1}. Assume L(f) ≥ 2. Let
TestPassers = {g : L(Select[f, g])− L(f) ≤ k + 1}. Then

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN)

where N = 2n.

Proof. At a high-level the idea is that, given a formula ϕ of size L(f) + k + 1 for computing
Select[f, g], one can replace the z-leaves in ϕ with 0-leaves to obtain a formula ϕ′ of size
L(f) + k+ 1 for computing f with at least one constant leaf. One can then use a careful gate
elimination argument to remove precisely one constant leaf from ϕ′ to obtain a formula ϕ′′
that still computes f but has size L(f) + k. On the other hand, one can reverse this process
by adding some constant leaf and gate to ϕ′′ and then replacing some subset of the constant
leaves by z-leaves.

This gives us a way to describe any g that passes the test, and thus allows us to bound
the number of such g. In our bound, the O(|CanonOptkFormulas(f)|) factor corresponds to
the choices for ϕ′′, the O(N logN) corresponds to the number of ways to add a new constant
leaf and gate to ϕ′′ in order to obtain ϕ′, and the O(2k) factor comes from the number of
ways to chose a subset of the (at most k) 0-leaves in ϕ′ into z-leaves.

In detail, we prove this statement by giving a series of injections. At a high-level First,
let P denote the set of canonical formulas computing f with size exactly L(f) + k + 1 and
with at least one constant-labelled leaf node in the formula.

We will give an injection from TestPassers to P × [2k+1]. Before defining our injection,
we will need the following claims and definitions.

B Claim 25. Suppose ϕ computes Select[f, g] and f 6= g, then ϕ has at least one leaf node
labelled by z or ¬z.

Proof. If ϕ does not have any {z,¬z} labelled leaves, then the output of ϕ does not depend
on z. But this contradicts that ϕ computes Select[f, g] since Select[f, g] does depend on the
z input because f 6= g. C

B Claim 26. Suppose ϕ ∈ P . Then ϕ has at most (k + 1)-many leaf nodes labelled by
constants {0, 1}.
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Proof. Since ϕ ∈ P , we know that |ϕ| = L(f) + k + 1 and ϕ computes f . Since L(f) ≥ 2, we
know that |ϕ| ≥ k + 3.

If ϕ had more than (k + 1)-many constant labelled leaves, it follows by a standard gate
elimination argument (note here it is important that |ϕ| ≥ k + 3) that there is a ϕ′ that
computes the same function as ϕ such that

|ϕ′| < |ϕ| − (k + 1) < L(f).

But then ϕ would be a formula of size less than L(f) computing f which is a contradiction.
C

We will also need the following definitions. Given a formula ϕ that can take z-variables
as input, we define Substitutez=0(ϕ) to be the formula ϕ′ given by replacing the z-labeled
leaves in ϕ with 0-labels and replacing the (¬z)-labeled leaves in ϕ with 1-labels.

We note that the Substitutez=0 operation in some sense respects formula isomorphisms.

B Claim 27. Let ϕ be a formula of size s that takes a z-variable as input. Let σ : [2s− 1]→
[2s− 1] be a permutation. Then

σ ◦ Substitutez=0(ϕ) = Substitutez=0 ◦ σ(ϕ)

Proof. The proof is essentially just applying the definition to both sides and seeing that the
resulting edge sets and labelling functions are equal. C

We can also define a reverse operation to Substitutez=0 as follows. Given a formula ϕ and a
subset S of leaf nodes in ϕ that are labelled by constants {0, 1}, define Unsubstitutez=0(ϕ′, S)
to be the formula ϕ given by replacing 0-labeled leaves in S with z-labels leaves and by
replacing 1-labeled leaves in S with (¬z)-labels.

Indeed, the following claim whose proof we omit is easy to see.

B Claim 28. For all formulas ϕ there exists a set S such that

ϕ = Unsubstitutez=0(Substitutez=0(ϕ), S).

Being more precise, S is a subset of the leaf nodes in Substitutez=0(ϕ) that are labelled by
constants.

Now we are ready to describe our injection from TestPassers→ P × [2k+1] on an input
g ∈ TestPassers. Since g ∈ TestPassers, there is a ϕ of size L(f) + k + 1 computing
Select[f, g]. Let ϕ′ = Substitutez=0(ϕ). Clearly ϕ′ computes f since ϕ computes Select[f, g].
Let ϕ′ denote the canonical formula isomorphic to ϕ′. Then there exists a permutation σ
such that

ϕ′ = σ(ϕ′)
= σ ◦ Substitutez=0(ϕ)
= Substitutez=0 ◦ σ(ϕ)

where the last equality comes from Claim 27. Thus, using Claim 28, we know that there
exists a subset S of the leaf nodes of ϕ′ labelled by constants such that

Unsubstitutez=0(ϕ′, S) = σ(ϕ).
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Moreover, the set S can be viewed as an element of [2k+1] because ϕ′ has at most k + 1
leaf nodes labelled by constants. In particular, by construction, we have that

|ϕ′| = |ϕ|′ = |ϕ| = L(f) + k + 1,

and that ϕ′ computes f , so Claim 26 ensures that ϕ′ has at most k + 1 many leaf nodes
labelled by constants.

Hence, we define the output of our injection from TestPassers to P × [2k+1] on input
g ∈ TestPassers to be (ϕ′, S).

We must prove that this is indeed an injection. Towards this end, we claim that
Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g]. From this claim it is easy to see
that this must be an injection.

B Claim 29. Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g].

Proof. S was chosen so that

Unsubstitutez=0(ϕ′, S) = σ(ϕ).

Thus, Unsubstitutez=0(ϕ′, S) computes the same function as σ(ϕ) which in turn computes
the same function as ϕ, which computes Select[f, g] as desired. C

From this injection, we get that

|TestPassers| ≤ 2k+1 · |P |.

Next, we give an injection from P to the set

CanonOptkFormulas(f)× [2L(f)]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.

To do this we will define an operation DropLeaf(ϕ, i) that takes as input a formula ϕ of
size s ≥ 2 and a leaf node i ∈ [2s− 1] from ϕ and outputs the formula ϕ′ given as follows.
We will first describe ϕ′ informally and then give the formal description. ϕ′ is obtained by
deleting the leaf node i and making the output of the node ip that i fed into simply the other
node that was being fed into ip.

Now, we formally describe ϕ′. Let ip ∈ [2s− 1] be the internal node that i has an edge to
in ϕ (we know this exists because |ϕ| ≥ 2). If needed, apply a permutation to ϕ so i = 2s− 1
and ip = 2s− 2. Let u ∈ [2s− 3] be the other node in ϕ that feeds into vp. Let ϕ′ be the
formula given by the edge set

E′ = (E ∩ ([2s− 3]× [2s− 3])) ∪ { (u, vpp) : vp feeds into vpp in ϕ}

and the labelling function

τ ′ = τ |[2s−3].

For example if ϕ = (x1∨x2)∧x3 and 1 was then index of the x1 leaf, then DropLeaf(ϕ, 1) =
x2 ∧ x3.

We show this operation in some sense commutes with formula isomorphisms.

B Claim 30. Let ϕ be formula of size s. Let i be the index a leaf node in ϕ, and let
σ : [2s− 3]→ [2s− 3] be a permutation. Then there exists an integer i′ and a permutation
σ′ : [2s− 1]→ [2s− 1] such that

DropLeaf(σ′(ϕ), i′) = σ ◦ DropLeaf(ϕ, i)
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Proof. From our definition of DropLeaf(·, ·), we can assume without loss of generality that
i = 2s− 1 and that the internal node that i feeds into in ϕ is ip = 2s− 2.

Then the claim follows from letting σ be equal to σ′ on [2s − 3] and letting σ be the
identity on {2s− 2, 2s− 1} and applying the various definitions. C

We can also define a kind of inverse operation AddLeaf function that takes the following
four inputs

a formula ϕ′ on n-inputs of size s,
a node i in the tree given by ϕ′,
a gate O ∈ {∧,∨}, and
a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn},

and outputs the formula ϕ of size s+1 given as follows. First, we give an informal description
and then given a formal definition.

Intuitively, AddLeaf is adding a new O-gate into ϕ′ between the i-node and wherever i
was being output to (if i has an output), whose other input is a new `-labeled leaf.

We define ϕ formally as follows. We will use 2s + 1 to add in our new leaf and 2s to
add in our new gate. The edge set Eϕ of ϕ is given by taking Eϕ′ and adding in the edges
(2s + 1, 2s) and (i, 2s) and then, if there is a node ip that i feeds into in ϕ′, adding in an
edge (2s, ip) and removing the (i, ip) edge. The node labelling τϕ of ϕ is given by

τϕ(i) =


τϕ′ , if i ∈ [2s− 1]
O , if i = 2s
` , if i = 2s+ 1

It is easy to see that AddLeaf can reverse a DropLeaf(·, ·) operation.

B Claim 31. Let ϕ be a formula of size at least two. Let i be the index of a leaf
node in ϕ. Then there exists an integer j, a gate O ∈ {∧,∨}, and a leaf label ` ∈
{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that

AddLeaf( DropLeaf(ϕ, i), j,O, `) = ϕ

One of the main steps in our injection will be provided by the following claim.

B Claim 32. Let ϕ ∈ P . Then there is an i such that ϕ′ = DropLeaf(ϕ, i) is a size (L(f) + k)
formula for computing f .

Proof. Let ϕ ∈ P . Then there is some internal node j in ϕ that takes as input a leaf node
indexed by i satisfying τϕ(i) = b ∈ {0, 1}. We will assume b = 0 (the proof in the b = 1 case
is similar).

Let ϕj be the the subformula computed at node j, and let Oj = τϕ(j) ∈ {∧,∨} be the
gate label of j. We already know that the ith leaf node feeds into ϕj . Let k be the other
node feeding into j, and let ϕk be the subformula computed at node k. We split into cases
depending on whether Oj is an ∧-gate or a ∨-gate.

First, let us suppose Oj is a ∨-gate. Then the formula ϕj as a function is equivalent
to the formula 0 ∨ ϕk which is equivalent as a function to ϕk. Hence it follows that
ϕ′ = DropLeaf(ϕ, i) is an (L(f) + k)-size formula (since we removed the ith leaf) computing
f (since ϕj and ϕk compute the same function).

Now, suppose that it is a ∧-gate. Then the output of ϕj is always zero. Since |ϕj | ≥ 2,
there exists some subformula ϕ2 of ϕj of size 2 (i.e. there is some node in ϕv that has two
leaves as children and ϕ2 is the subformula computed at that node). Since ϕ2 has two leaves,
there exists one leaf index i′ such that i′ 6= i (i.e. this leaf node is not the ith leaf node we
were considering before).
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Then we claim that ϕ′ = DropLeaf(ϕ, i′) is an (L(f) + k)-size formula computing f . It
is easy to see that |ϕ′| is an (L(f) + k)-size formula since we removed the i′th leaf node.
To see that ϕ′ still computes f , note that the 0-labeled ith leaf node in ϕ still exists in
ϕ′. If the gate node j was removed by the DropLeaf(·, ·) operation, then the output wire
of ϕj that computed the 0 function in ϕ has been replaced by the 0-leaf i in ϕ′ which still
computes the 0 function, so ϕ′ must still compute f . If the gate node v was not removed by
the DropLeaf(·, ·) operation, then the output corresponding gate to v in ϕ′ is still computing
0 (since it is an ∧-gate with a 0 input), so ϕ′ still computes f . C

Now we can finally describe the injection from P to the set

CanonOptkFormulas(f)× [2L(f) + 2k − 1]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.

Given an input ϕ in P , we have by Claim 32 that there exists a least i-value such that
ϕ′ = DropLeaf(ϕ, i) is a formula computing f of size L(f) + k. Let ϕ′ be the canonical
formula isomorphic to ϕ′. Then we have that ϕ′ ∈ CanonOptkFormulas(f) and we have that
there are permutations σ and σ′ and an integer i′ such that

ϕ′ = σ(ϕ′)
= σ ◦ DropLeaf(ϕ , i)
= DropLeaf(σ′(ϕ), i′)

where the last equality comes from Claim 30.
Hence, by Claim 31, we have that there exists a gate index j ∈ [2L(f) + 2k − 1], a gate

O ∈ {∧,∨}, and a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that

AddLeaf(ϕ′, j,O, `,D) = σ′(ϕ).

In other words, AddLeaf(ϕ′, j,O, `,D) outputs a formula isomorphic to ϕ.
Thus, we set the output of the injection on input ϕ to be (ϕ′, j,O, `,D). The fact that

this is an injection from P is ensured by the fact that AddLeaf(ϕ′, j,O, `,D) is isomorphic to
ϕ and the fact that P contains only canonical formulas.

Hence, we get that

|P | ≤ |CanonOptkFormulas(f)| · 2(L(f) + k) · 2 · (2n+ 1)
≤ O(|CanonOptkFormulas(f)|(N + k) logN).

Combining this with upper bound on TestPassers in terms of P , we get that

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN) J

5 A deterministic reduction that works on average

We will now use the tools developed in Section 3 and Section 4 to give a search to decision
reduction that is efficient on functions with few near-optimal formulas.

I Theorem 33. There is a deterministic algorithm solving Search-MFSP on inputs of length
N given access to an oracle that solves MFSP on instances of length 2N that runs in time
O(|CanonOptn+1Formulas(f)|2 ·N6 log2 N) where n = logN .

Before we prove Theorem 33, we state a corollary that follows from the bound on the
size of CanonOptkFormulas(f) for a random function given in Proposition 14.
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I Corollary 34. There is a deterministic algorithm solving Search-MFSP on inputs of length
N given access to an oracle that solves MFSP on instances of length 2N that runs in time
2O( N

log log N ) on all but a o(1)-fraction of instances.

Proof of Corollary 34. This corollary follows by combining the algorithm in Theorem 33
with the recursive algorithm for Search-MFSP given in Theorem 20 and using Proposition 14
to bound |CanonOptn+1Formulas(f)| by 2O( N

log log N ) for a random function.
There is actually a subtlety in appealing to Theorem 20 in that the running time of the

algorithm in Theorem 33 has a dependence on the number near-optimal formulas of its input.
Hence, we need to argue that when the algorithm in Theorem 20 makes recursive calls to
the algorithm in Theorem 20 on functions g other than the original input f that g also has
few near-optimal formulas. However, this is not a problem since it is easy to see that if a
function g is computed by some gate in an optimal formula for f (as it must be if a recursive
call is made to g), then the number of near-optimal formulas for g is at most the number of
near-optimal formulas for f (since one can create a near optimal formula for f by taking the
optimal formula for f that computes g at some gate and replacing the subformula at that
gate with a near-optimal formula for g). J

Proof of Theorem 33. We provide the pseudocode of our DecompProblem algorithm in
Algorithm 2, which we recommend the reader look at before proceeding.

5.1 Correctness of Algorithm 2
In this subsection we show that Algorithm 2 has the desired input/output behavior.

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n.

Part 1: building Candidates. First, we will prove some loop invariants that will help us
show that Candidates and PartialCandidates(i) contain those functions we are interested
in and do not contain many more things.

The following claim shows that the x? described on Line 10 always exists and that
the ?-values of partial functions in PartialCandidates(i) always have an easily computable
structure.

B Claim 35. Before and after each iteration of the while loop, it is true that if γ ∈
PartialCandidates(i), then

γ(x) =? ⇐⇒ x ≥ i (interpreting i as a binary string in {0, 1}n in the natural way),
and consequently |γ−1({0, 1})| = i.

Proof. Clearly the claim is satisfied before the first iteration of the while loop when i = 0
and PartialCandidates(i) = {AllUnknown}.

Now, we must argue inductively. Suppose 1 ≤ i ≤ N and γ′ ∈ PartialCandidates(i).
Then, it follows that there is some γ ∈ PartialCandidates(i−1) and some b ∈ {0, 1} such
that γ′ = γb where γb is as defined in the pseudocode. That is, γb is equal to γ except that
the first ?-value (which occurs at x?old = i− 1 by the inductive hypothesis) is replaced by a b.
Thus, we have

γ′(x) =? ⇐⇒ γ(x) =? ∧ (x 6= x?old) ⇐⇒ x > x?old ⇐⇒ x ≥ i

where the first equivalence comes from the definition of γb = γ′ and the second equivalence
comes from the fact that x?old = i− 1. C
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Algorithm 2 A deterministic search to decision reduction for MFSP whose run time depends on
the number of “near-optimal formulas”.

1: procedure OptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2:
3: Part 1: Building a Candidates list
4: Let allUnknown : {0, 1}n → {0, 1, ?} be given by allUnknown(x) =? for all x.
5: Set PartialCandidates(0) = {allUnknown}.
6: Set i = 0.
7: while i < N do
8: Set PartialCandidates(i+1) = ∅.
9: for all γ ∈ PartialCandidates(i) and for all b ∈ {0, 1} do
10: Let x? be the lexicographically first input satisfying γ(x?) =?.

11: Let γb : {0, 1}n → {0, 1, ?} be given by γb(x) =
{
b , if x = x?

γ(x) , otherwise.

12: Let gγb
be the (total) function given by gγb

(x) =
{

1 , if γb(x) =?
γb(x) , otherwise.

13: if L(Select[f, gγb
]) ≤ L(f) + n+ 2 then

14: Add γb to PartialCandidates(i+1).
15: end if
16: end for
17: Set i = i+ 1.
18: end while
19: Set Candidates = PartialCandidates(N).
20:
21: Part 2: Finding an optimal pair within Candidates
22: for all pairs g, h ∈ Candidates and for all gates O ∈ {∧,∨} do
23: if L(g) + L(h) = L(f) and f = gOh then
24: return {g,O, h} .
25: end if
26: end for
27: end procedure

Next, we show that the PartialCandidates(i) never contains “redundant” partial functions.

B Claim 36. Before and after each iteration of the while loop, it is true that if γ′ and γ′′
are distinct elements of PartialCandidates(i), then no total function agrees with both γ′
and γ′′.

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) only
contains the single partial function AllUnknown, so the claim clearly holds.

Now we must show that the claim holds inductively. Assume 1 ≤ i ≤ N . For contradiction,
suppose there was some total function q that agrees with distinct elements µ and µ′ from
PartialCandidates(i). It follows that there exists some b, b′ ∈ {0, 1} and some (possibly not
distinct) γ, γ′ ∈ PartialCandidates(i−1) such that µ = γb and µ′ = γ′b′ (using the notation
from the pseudocode where these functions γb and γ′b′ are given by replacing the output of
the first ?-valued input in γ or γ′ respectively with a b-value or b′-value respectively). It
follows that q must also agree with γ and γ′.
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Either γ 6= γ′ or not. If γ 6= γ′, then q agrees with two distinct elements from
PartialCandidates(i−1) which contradicts the inductive hypothesis.

Now suppose that γ = γ′. Then it must be that b 6= b′ (otherwise, µ = µ′ and we assumed
they are distinct). But then, we have then γ and γ′ have the same first ?-valued input x?, so

b = µ(x?) = q(x?) = µ′(x?) = b′

which contradicts that b 6= b′. C

Moreover, PartialCandidates(i) only contains partial functions that can be completed
to total functions that pass a certain test.

B Claim 37. Before and after each iteration of the while loop, it is true that if γ ∈
PartialCandidates(i) then there exists a function g on n-inputs that agrees with γ such that

L(Select[f, g]) ≤ L(f) + n+ 2.

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0)
only contains one partial function (AllUnknown). The function f clearly agrees with
AllUnknown, and it is easy to see that L(Select[f, f ]) = L(f) ≤ L(f) + n + 1, as desired.
Thus, the claim holds before the first iteration of the while loop.

Moreover, the claim clearly continues holding inductively because before any γb is added
to PartialCandidates(i), we check to see if the function gγb

satisfies

L(Select[f, gγb
]) ≤ L(f) + n+ 2

and gγb
agrees with γb by construction. C

Finally, we show that PartialCandidates(i) always contains the partial functions we
want.

B Claim 38. Suppose some function q is in an optimal subcomputation for f . Then before
and after each iteration of the while loop there is a γ ∈ PartialCandidates(i) such that q
agrees with γ. Moreover, once part 1 is finished, q ∈ Candidates

Proof. Fix some q as in the statement of the claim.
Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) contains

the all-? partial function AllUnknown, so q agrees with AllUnknown and the claim holds.
Now, we must show the claim holds inductively. Assume 1 ≤ i ≤ N . Then by induction

there exists a γ ∈ PartialCandidates(i−1) such that q agrees with γ. Let b = q(i− 1). Then
q agrees with γb as defined in the pseudocode (replacing the first ?-value in γ with a b-value)
since Claim 35 implies that

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.

Thus, if we could show γb ∈ PartialCandidates(i), we would be done with showing the first
part of the claim. From the pseudocode, it is clear γb ∈ PartialCandidates(i) if

L(Select[f, gγb
]) ≤ L(f) + n+ 2,

where gγb
is as defined in the code (the function given by replacing the ?-values in γb with

ones) which we now prove.
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We already noted that

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.

Thus, appealing to Claim 35, we know that γb(x) =? ⇐⇒ x > x? where x? ∈ {0, 1}n is the
binary string equivalent to i−1 (note that 0 ≤ i−1 ≤ N−1 so this makes sense). Hence, since
q agrees with γb, we have that gγb

(x) = q(x) ∨GrtrThanx?(x) where GrtrThanx?(x) = 1 if
and only if x > x?.

Thus, we have that

Select[f, gγb
](x, z) =

{
f(x) , if z = 0
gγb

(x) , if z = 1

= Select[f, q](x, z) ∨ (z ∧GrtrThanx?(x))

Since {g,O, h} ∈ OptSubcomps(f), we know that L(Select[f, q]) = L(f) + 1 by Lemma 23,
and Proposition 15 implies that L(GrtrThanx?) ≤ n. Hence, we have that

L(Select[f, gγb
]) ≤ L(f) + n+ 2.

Finally, we show that q ∈ Candidates after part 1 finishes. Clearly, it suffices to show
that q ∈ PartialCandidates(N) after part 1 finishes. We have already shown that there is a
γ ∈ PartialCandidates(N) such that γ agrees with q. However, Claim 35 implies that γ is a
total function and hence it equals q, so q ∈ PartialCandidates(N). C

Part 2: Finding a g, h pair within Candidates. First, we note that any output by
Algorithm 2 must be correct.

B Claim 39. Any value Algorithm 2 outputs must be an element of OptSubcomps(f).

Proof. Any output {g,O, h} of Algorithm 2 must satisfy f = gOh and L(f) = L(g) + L(h)
which implies {g,O, h} ∈ OptSubcomps(f) by Lemma 21. C

Finally, we show that Algorithm 2 must output a value.

B Claim 40. Algorithm 2 must output a value (on input f).

Proof. Since L(f) ≥ 2, we have that OptSubcomps(f) is non-empty. Let {g,O, h} ∈
OptSubcomps(f).

Claim 38 implies that {g, h} ⊆ Candidates. On the other hand, Lemma 21 implies that
L(f) = L(g) + L(h) and f = gOh. Thus, it is clear that part 2 will either output {g,O, h} or
output a value before that. C

5.2 Running Time of Algorithm 2

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n. We break the running
time analysis into the two pieces of the algorithm.
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Part 1. It is easy to see that the run time of part 1 can be bounded by

O(N +
∑
i∈[N ]

N · |PartialCandidates(i)|)

where |PartialCandidates(i)| indicates the size of PartialCandidates(i) after Algorithm 2
is finished adding elements to it.

Moreover, we can bound the quantity |PartialCandidates(i)| as follows. Claim 37 implies
that every partial function in PartialCandidates(i) must be consistent with some total
function g on n-inputs satisfying

L(Select[f, g]) ≤ L(f) + n+ 2.

On the other hand, Claim 36 implies that any single (total) function can agree with at most
partial function in PartialCandidates(i). Hence, we have that

|PartialCandidates(i)| ≤ |{g : L(Select[f, g]) ≤ L(f) + n+ 2}|

and Lemma 24 implies that

|{g : L(Select[f, g]) ≤ L(f) + n+ 2}| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).

Thus, we have that part 1 runs in time at most O(|CanonOptn+1Formulas(f)| ·N4 logN).
Moreover, part 1 only makes oracle calls of length at most 2N (to calculate L(Select[f, gγb

])).

Part 2. It is easy to see that this part runs in time O(N · |Candidates|2). Hence, since
Candidates = PartialCandidates(N), the analysis in part 1 above implies that

|Candidates| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).

Thus, part 2 runs in time at most

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N).

Moreover, part 2 only makes oracle calls of length N .

In total. Putting it all together, we have that Algorithm 2 runs in time at most

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N)

and only makes oracle queries of length 2N . J

6 A worst-case randomized reduction

We now present a worst-case search to decision reduction for MFSP.

I Theorem 41. There is a randomized algorithm solving Search-MFSP on inputs of length
N in time O(2.67N ) given access to an oracle that solves MFSP on instances of length 2N .

Proof. We prove this theorem by giving an oracle algorithm solving DecompProblem and
appealing to Theorem 20. We provide the pseudocode of our algorithm in Algorithm 3, which
we recommend the reader look at before proceeding.
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Algorithm 3 A randomized worst-case search to decision reduction for MFSP.

1: procedure WorstCaseOptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2: Set s = 2
3 ·

2n

logn
3: Set t = 22N/3

4:
5: Part 1: Try random formulas
6: for i = 1, . . . , t do
7: Let Gi be a uniformly random binary tree with L(f)-leaves. (Section 6.2 discusses

how to sample Gi.)
8: Turn Gi into a uniformly random formula ϕi by picking uniformly random gates

from {∧,∨} and uniformly random input leaves from {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.
9: if ϕi computes f then
10: Write ϕi = ϕi,1Oϕi,2.
11: Let g and h be the function computed by ϕi,1 and ϕi,2 respectively.
12: if L(f) = L(g) + L(h) then
13: return {g,O, h}.
14: end if
15: end if
16: end for
17:
18: Part 2: Generate a small list of candidates for g
19: Set SmallFuncs = {g : g is a Boolean function with n-inputs and L(g) ≤ s}.
20: Set Candidates = {g ∈ SmallFuncs : L(Select[f, g]) ≤ L(f) + 1}.
21:
22: Part 3: Try to find a g, h pair within Candidates
23: for each pair of functions (g, h) ∈ Candidates and for each gate O ∈ {∧,∨} do
24: if f = gOh and L(f) = L(g) + L(h) then
25: return {g,O, h}.
26: end if
27: end for
28:
29: Part 4: Try to find a g, h pair by looking at functions h satisfying f = gOh
30: Set SmallCandidates = {g ∈ Candidates : L(g) ≤ L(f)− s}.
31: for each function g ∈ SmallCandidates and for each O ∈ {∧,∨} do
32: if ∀x ∈ {0, 1}n ∃b ∈ {0, 1} such that g(x)Ob = f(x) then
33: Let h?,g : {0, 1}n → {0, 1, ?} be the unique partial function on n-inputs such

that ∀ h, f = gOh ⇐⇒ h agrees with h?,g.
34: for each total function h that agrees with h?,g do
35: if f = gOh and L(f) = L(g) + L(h) then
36: return {g,O, h}.
37: end if
38: end for
39: end if
40: end for
41: end procedure
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6.1 Correctness of Algorithm 3
In this section, we prove that Algorithm 3 has the desired input/output behavior. In our
analysis, we will use s and t as parameters which we will set to the optimal values (which
are written in the pseudocode) in Section 6.2 where we do the running time analysis for
Algorithm 3.

Fix some function f on n-inputs with L(f) ≥ 2. We analyze the algorithm in parts.

Part 1. Since ϕi is chosen to have L(f) leaves and the algorithm in part 1 checks if ϕi
computes f before returning any value, the following claim is clear.

B Claim 42. Any output by Algorithm 3 returned in part 1 must be an element of
OptSubcomps(f).

Moreover, we can lower bound the probability that Algorithm 3 returns a value in part 1
as follows. Recall that CanonOpt0Formulas(f) is the set of optimal canonical formulas for f .
We will show that part 1 succeeds if this set is large.

B Claim 43. If t ≥ 5 · 2N(1+o(1))

|CanonOpt0Formulas(f)| , then part 1 of Algorithm 3 will return a value at
least 99% of time.

Proof. Since we are picking each s-leaf formula ϕi uniformly at random, the probability that
any fixed formula computes f is at least

|CanonOpt0Formulas(f)|
the total number of formulas with L(f) leaves

Combining Theorem 13 with Proposition 12 upper bounds the denominator by 2N(1+o(1)), so

Pr[ϕi computes f ] ≥ |CanonOpt0Formulas(f)|
2N(1+o(1)) .

Since each of these ϕi are chosen independently, we have that

Pr[∃i ∈ [t] such that ϕi computes f ] ≥ 1− (1− |CanonOpt0Formulas(f)|
2N(1+o(1)) )t

≥ 1− e−t·
|CanonOpt0Formulas(f)|

2N(1+o(1))

≥ 1− e−5

≥ .99

Hence, with probability at least 99%, part 1 will find a ϕi computing f at which point it
will clearly return a value. C

Part 2. In part 2, Algorithm 3 constructs the Candidates set. We prove two claims about
this set. First, that it contains the functions we care about, and second that its size can be
bounded using the size of the CanonOpt0Formulas(f) set.

B Claim 44. Suppose g is in an optimal subcomputation for f . Then L(g) ≤ s =⇒ g ∈
Candidates.

Proof. Since L(g) ≤ s, we know that g ∈ SmallFuncs. Next, since g is in an optimal
subcomputation for f , we have by Lemma 23 that

L(Select[f, g]) ≤ L(f) + 1,

so g is an element of Candidates. C
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B Claim 45.

|Candidates| = O(|CanonOpt0Formulas(f)| ·N logN)

Proof. By construction, we have that

Candidates ⊆ {g : L(Select[f, g]) = L(f) + 1}.

On the other hand, Lemma 24, we have that

|{g : L(Select[f, g]) = L(f) + 1}| ≤ O(|CanonOpt0Formulas(f)| ·N logN) C

Part 3. In Part 3, Algorithm 3 tries to find a g, h pair by looking within the Candidates
set. We show this works as long as there is a {g,O, h} ∈ OptSubcomps(f) where L(g) and
L(h) are small.

First, we note that part 3 can only return correct answers.

B Claim 46. Any output returned by Algorithm 3 in part 3 will be an element of
OptSubcomps(f).

Proof. In order for a {g,O, h} value to be returned in part 3 it must satisfy f = gOh and
L(f) = L(g) + L(h). Thus, by Lemma 21, we know {g,O, h} ∈ OptSubcomps(f). C

Next, we give sufficient conditions on which part 3 will return an answer.

B Claim 47. If there exists an element {g′,O, h′} of OptSubcomps(f) such that

max{L(g′), L(h′)} ≤ s,

then Algorithm 3 will return a value in part 3 or before.

Proof. Suppose there exists an element {g′,O, h′} of OptSubcomps(f) such that

max{L(g′), L(h′)} ≤ s,

and assume that this procedure has not returned a value before it reaches part 3. Then
by Claim 44, we have that both g′ and h′ are in Candidates. Moreover, since {g′,O, h′} ∈
OptSubcomps(f), we know that f = g′O′h′ and L(f) = L(g) + L(h) by Lemma 21. Hence it
is clear there are value the for loop will return an output if it reaches g = g′, h = h′, and
O = O′ (although it could return a value before that). C

Part 4. In the final part of Algorithm 3, we look for matching h functions for g candidates
with small complexity.

First, we note that any output returned by part 4 must be correct by essentially the same
proof as Claim 46 in part 3.

B Claim 48. Any output returned by Algorithm 3 in part 4 will be an element of
OptSubcomps(f).

Next, we show sufficient conditions for part 4 returning an answer.

B Claim 49. If s ≥ L(f)/2 and there exists a {g′,O, h′} ∈ OptSubcomps(f) such that
L(h′) ≥ s, then Algorithm 3 will return a value in part 4 or earlier.
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Proof. Using Lemma 21, we have L(f) = L(g′) + L(h′). Thus, since s ≥ L(f)/2 and L(h′) ≥ s,
we have that

L(g′) = L(f)− L(h′) ≤ L(f)− s ≤ 2s− s = s.

Hence, by Claim 44, we have that g′ ∈ Candidates. Moreover, since L(g′) ≤ L(f) − s, it
follows that g′ ∈ SmallCandidates. Thus, it is clear that part 4 will return a value if its for
loop ever reaches g = g′,O = O′, and h = h′ (though it could return a value before that).

C

In total. Finally, we can prove the correctness of the input/output behavior of Algorithm 3.

B Claim 50. If s ≥ L(f)/2, then Algorithm 3 (run on input f) returns an element of
OptSubcomps(f).

Proof. Put together, Claim 42, Claim 46, and Claim 48 ensures that any output returned by
Algorithm 3 must be an element of OptSubcomps(f).

Hence, it suffices to show that Algorithm 3 will always output a value. We divide
into two cases. Either there exists an element {g′,O, h′} ∈ OptSubcomps(f) such that
max{L(g′), L(h′)} ≤ s or not.

If there exists such an element, then Claim 47 ensures that Algorithm 3 will output a
value.

Now suppose that for all {g′,O, h′} ∈ OptSubcomps(f) we have max{L(g′), L(h′)} ≥ s.
Since L(f) ≥ 2, we know OptSubcomps(f) is non-empty by Proposition 18. Hence we can
fix some {g′,O, h′} ∈ OptSubcomps(f) satisfying max{L(g′), L(h′)} ≥ s. Without loss of
generality we can assume that L(g′) ≤ L(h′). Thus, we have that L(h′) ≥ s, and by hypothesis
s ≥ L(f)/2, so Claim 49 ensures Algorithm 3 outputs a value. C

Thus Algorithm 3 is correct as long as s ≥ L(f)/2. Indeed, in the next section we will set
s so that s ≥ max{L(f)/2 : f takes n-inputs}.

6.2 Runtime of Algorithm 3
In this subsection, we bound the runtime of Algorithm 3 and set s and t to the optimal
values. We analyze Algorithm 3 in its parts.

Part 1. The for loop in part 1 clearly runs t times, so we just need to bound the running
time of each iteration. Generating a uniformly random binary with L(f)-leaves can be done in
linear time (see [15] for a survey of various approaches). The other operations in the for loop
can clearly be done in time O(N + L(f)). Hence, all of part 1 runs in time O(t · (N + L(f))
which is O(t ·N) using the worst-case formula upper bound from Theorem 13.

Moreover, part 1 only makes oracle calls of length N (to calculate L(f)).

Part 2. Building the SmallFuncs set requires iterating through all formulas of size s
(which is bounded by 2(1+o(1))·s logn using Proposition 12) and then computing the truth
table of each of these size s formulas (which can be done in time O(Ns)). Hence, computing
SmallFuncs can be done in O(N · 2(1+o(1))·s logn) time. Moreover, |SmallFuncs| is clearly
upper bounded by the upper bound on the number of formulas of size s: 2(1+o(1))·s logn.

Next, building the Candidates set can be done in time O(|SmallFuncs|+N) = O(N ·
2(1+o(1))·s logn), and we use oracle calls of length 2N in this step (for Select[f, g]).
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Hence, part 2 runs in time O(N · 2(1+o(1))·s logn).
We will make use of the following claim later, which bounds the size of the Candidates

set if part 1 did not return a value.

B Claim 51. Fix some function f . Then with 99% probability (over the algorithm’s choice
of random formulas) either Algorithm 3 on input f returns before reaching part two or

|Candidates| ≤ 2N(1+o(1))

t
.

Proof. Suppose that Algorithm 3 reaches part two on input f and

|Candidates| > 2N(1+o(1))

t
.

Then Claim 45 implies that

2N(1+o(1))

t
= O(|CanonOpt0Formulas(f)|N logn)

which implies that

|CanonOpt0Formulas(f)| ≥ 2N(1+o(1))

t
.

Hence, Claim 43 implies that Algorithm 3 will return in part 1 with 99% probability. C

Part 3. It is easy to see that part 3 runs in time O(|Candidates|2 +N) and makes oracle
calls of length N .

Thus, using Claim 51, we have that with 99% probability part 3 runs in time 22N(1+o(1))

t2 .

Part 4. Computing SmallCandidates can be done in O(|Candidates|+N) time, and the
outer for loop runs at most O(|Candidates|) many times.

It remains to bound the running time of each iteration of the outer for loop. The if
condition can be checked in O(N) time. Constructing h?,g also takes O(N) time (similar to
the if condition, just iterate through each input x ∈ {0, 1}n and see which values of b ∈ {0, 1}
satisfy f(x) = g(x)Ob). Each iteration of the inner for loop takes O(N) time. Finally, the
inner for loop runs 2|h

−1
?,g

(?)| many times.
Thus, the total running time for part 4 is

O(|Candidates| · (N +N · 2maxg{|h−1
?,g

(?)|}))

time.
Moreover, we can bound the quantity maxg{|h−1

?,g(?)|} as follows.

B Claim 52. maxg{|h−1
?,g(?)|} ≤ (1 + o(1))(N − s logn).

Proof. Since any function h that agrees with h?,g satisfies gOh = f and, we have that

L(f) ≤ L(g) + L(h?,g).

Since L(g) ≤ L(f)− s (since g ∈ SmallCandidates), we have that

L(h?,g) ≥ s.
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On the other hand, the upper bound on the formula complexity of partial functions from
Theorem 16 implies that

L(h?,g) ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn.

Hence

s ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn

so

|h−1
?,g(?)| ≤ N − s logn

(1 + o(1)) ≤ (1 + o(1))(N − s logn). C

Thus, using Claim 51, we have that with 99% probability part 4 runs in 22N(1+o(1))

t2 .

O(2N(1+o(1))

t
·N · 2(1+o(1))(N−s logn)) = 2(1+o(1))(2N−s logn)

t

time.

In total. Thus, we get that with 99% probability Algorithm 3 runs in time

O(t ·N) +O(N · 2(1+o(1))·s logn) + 22N(1+o(1))

t2
+ 2(1+o(1))(2N−s logn)

t
.

Letting s = 2
3

2n

logn and t = 2 2
3N , we get that the running time is bounded by

2(1+o(1)) 2
3N .

Moreover, s will satisfy s ≥ L(f)/2 (as required for the correctness of the algorithm) for
all f with n-inputs when n is sufficiently large by Theorem 13. J

7 A “bottom-up” reduction for DeMorgan Formulas

In this section, we provide another algorithm for solving Search-MFSP that is also efficient
on average, though with worse guarantees than the one given by Theorem 33. Despite its
worse guarantees, we present the algorithm because it uses a different “bottom-up” approach
that we think is interesting.

We begin by proving a lemma that bounds the depth of optimal DeMorgan formulas.

I Lemma 53 (Large optimal DeMorgan formulas have not too large depth). Let f : {0, 1}n →
{0, 1}. Let ϕ be an optimal DeMorgan formula for computing f . Then the depth of f is at
most 10

n · 2
n for sufficiently large n.

Proof. Let d be a parameter we set later. For contradiction, suppose that ϕ is an optimal
formula for computing f with depth greater than d. Clearly then L(f) > d as well. For ϕ
to have depth greater than d, there must be gates O1, . . . ,Od−1 ∈ {∧,∨} and subformulas
ϕ1, . . . , ϕd such that

ϕ = ϕ1 O1 ϕ2 O2 . . . Od−1 ϕd

CCC 2020



31:32 Connecting Perebor Conjectures

where we evaluate gates from left to right, so this formula with parentheses would be

(. . . ((ϕ1 O1 ϕ2) O2 ϕ3) . . . ) Od−1 ϕd,

and |ϕi| ≥ 1 for all i ∈ [d]. In other words, consider a d-length path from some subformula
ϕ1 to the output gate gd−1 in the formula and let ϕ2, . . . , ϕd be all the subformulas in ϕ
from bottom to top (viewing the output gate as the top) intersecting this path. Similarly, let
O1, . . . ,Od−1 be the gates in order from bottom to top along this path.

Then, we have that

L(f) = |ϕ| ≥
∑
i∈[d]

|ϕi|.

Thus, we have that

Ei∈[d]\{1}[|ϕi|] ≤
L(f)− 1
d− 1 .

Hence by Markov’s inequality, we have that there exists a subset S ⊆ [d] \ {1} of size at
least d−1

2 such that for all i ∈ S we have |ϕi| ≤ 2 · L(f)−1
d−1 .

On the other hand the number of distinct formulas on n-inputs with size at most 2 · L(f)−1
d−1

is bounded by

22· L(f)−1
d−1 logn(1+o(1))

according to Proposition 12. Assume that we have chosen d so that

|S| ≥ d− 1
2 > 2

L(f)−1
d−1 logn(1+o(1)).

Then, by the pigeonhole principle, there exists i ≤ j ∈ S such that ϕi and ϕj compute the
same function. We can use this to get a contradiction to optimality as follows. Assume that
Oi−1 = Oj−1 = ∧ (the other cases are similar). Then, substituting in Oi−1 = Oj−1 = ∧ we
would have that the subformula of ϕ computed at Oi−1, that is

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj−1 ϕj Oj . . . Oi−1 ϕi,

equals the function computed by

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ ϕj Oj . . . ∧ ϕi

However if ϕi(x) = 0, then intuitively this formula outputs 0 no matter what happens on
the to the “left” of ϕi in the formula. Thus, we might as well assume on the “left” that
ϕi(x) = ϕj(x) = 1. Thus we get that the function computed at gate Oi−1 is also computed
by the following simplified formula:

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ 1 Oj . . . ∧ ϕi.

which equals

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj . . . ∧ ϕi.

Thus, while the original subformula of ϕ computed at gate Oi−1 given by

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj−1 ϕj . . . Oi−1 ϕi
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had size
∑
k∈[i] |ϕk|, the new equivalent formula given by

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj ϕj+1 . . . ∧ ϕi

has the smaller size
∑
k∈[i] |ϕk| − |ϕj | <

∑
k∈[i] |ϕk| which contradicts the optimality of ϕ

for f .
It remains to chose a value for d. We need to satisfy that

d− 1
2 > 22· L(f)−1

d−1 logn(1+o(1)).

By Theorem 13, we have that L(f) ≤ (1 + o(1)) 2n

logn . So setting d = 10
n · 2

n, we get that

22· L(f)−1
d−1 logn(1+o(1)) ≤ 22n(1/10+o(1)) ≤ d = 10

n
· 2n J

Using this lemma, we prove a “bottom-up” search to decision reduction for Search-MFSP.

I Theorem 54. There is a deterministic “bottom-up” algorithm solving Search-MFSP on
inputs of length N given access to an oracle that solves MFSP on instances of length 2N
that runs in time O(N3 · |CanonOpt( 10

n ·2n)Formulas(f)|2) where f is the input truth table of
length N .

Algorithm 4 A bottom up search to decision reduction.

1: procedure OptimalFormula(f)
. Given the length-N truth table of a function f that takes n-inputs, this procedure
finds an optimal formula computing f

2: Set Candidates(1) = ∅.
3: Let OptForm be a empty lookup table.
4: for each size one formula ϕ on n-inputs do
5: Let q be the function computed by ϕ.
6: Add q to Candidates(1).
7: Let OptForm(q) = ϕ.
8: end for
9: Set s = 1.
10: while s < L(f) do
11: Set Candidates(s+1) ← ∅.
12: for every pair g, h in Candidates and every gate O ∈ {∧,∨} do
13: Let q be the function computed by gOh.
14: if L(q) = L(g) + L(h) and L(Select[f, q]) ≤ L(f) + 10

n · 2
n then

15: Add q to Candidates(s+1).
16: Set OptForm(q) to the formula given by OptForm(g)OOptForm(h).
17: end if
18: end for
19: Set s = s+ 1.
20: end while
21: return OptForm(f).
22: end procedure
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Proof. The pseudocode for our reduction is presented in Algorithm 4.
Since this algorithm is weaker than the one presented in Theorem 33, we only sketch the

main observation needed to see that the “test” implicit in Algorithm 4 that

L(Select[f, q])− L(f) ≤ d ≤ 10
n
· 2n

is passed by any function q that is computed by some gate in an optimal formula. The bound
on the total number of functions that pass this test is given by Lemma 24.

Fix a function f on n-inputs and set N = 2n. The correctness of this algorithm follows
from showing that if ϕ is an optimal formula for f and q is an n-input function computed by
the ith gate node in ϕ, then

L(Select[f, q])− L(f) ≤ d

where d is the depth of ϕ. If there were the case, then

L(Select[f, q])− L(f) ≤ 10
n
· 2n

using the depth bound on optimal DeMorgan formulas from Lemma 53.
We now show that

L(Select[f, q])− L(f) ≤ d

by producing a formula ϕ′ for L(Select[f, q]) of size at most L(f) + d.
Before, we give our formula construction of ϕ′, we give an example of what our construction

does that will hopefully be enough to convince the reader. To give an example,if ϕ =
x1 ∨ x2 ∧ x3 and x1 computes q, then ϕ′ = x1 ∨ (x2 ∧ ¬z) ∧ (x3 ∨ z).

We formally construct ϕ′ as follows. Recall we assumed that ϕ has depth d that q is the
function computed by the ith gate in ϕ. Then, we can write

ϕ = ϕiOi+1ϕi+1Oi+2 . . .Okϕk

(associating from left to right) where k ≤ d and ϕi, . . . , ϕk+1 are subformulas of ϕ and
Oi, . . . ,Ok are the gates connecting those subformulas in ϕ and ϕi computes q.

We can then construct ϕ′ by replacing each ϕj in ϕ for i+ 1 ≤ j ≤ k with a new formula
ϕ′j given by

ϕ′j =
{
ϕj ∧ ¬z, if Oj = ∨
ϕj ∨ z, if Oj = ∧

.

Then

ϕ′ = ϕiOi+1ϕ
′
i+1Oi+2 . . .Okϕ

′
k

computes Select[f, q] because these ϕ′j are chosen so that Oj will always just output its other
input when z = 1.

Hence,

L(Select[f, q])− L(f) ≤ d J
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Abstract
Buhrman, Cleve and Wigderson (STOC’98) observed that for every Boolean function f : {−1, 1}n →
{−1, 1} and • : {−1, 1}2 → {−1, 1} the two-party bounded-error quantum communication complexity
of (f ◦ •) is O(Q(f) log n), where Q(f) is the bounded-error quantum query complexity of f . Note
that the bounded-error randomized communication complexity of (f ◦ •) is bounded by O(R(f)),
where R(f) denotes the bounded-error randomized query complexity of f . Thus, the BCW simulation
has an extra O(log n) factor appearing that is absent in classical simulation. A natural question is
if this factor can be avoided. Razborov (IZV MATH’03) showed that the bounded-error quantum
communication complexity of Set-Disjointness is Ω(

√
n). The BCW simulation yields an upper

bound of O(
√

n log n). Høyer and de Wolf (STACS’02) showed that this can be reduced to clog∗ n

for some constant c, and subsequently Aaronson and Ambainis (FOCS’03) showed that this factor
can be made a constant. That is, the quantum communication complexity of the Set-Disjointness
function (which is NORn ◦ ∧) is O(Q(NORn)).

Perhaps somewhat surprisingly, we show that when • = ⊕, then the extra log n factor in the
BCW simulation is unavoidable. In other words, we exhibit a total function F : {−1, 1}n → {−1, 1}
such that Qcc(F ◦ ⊕) = Θ(Q(F ) log n).

To the best of our knowledge, it was not even known prior to this work whether there existed a
total function F and 2-bit function •, such that Qcc(F ◦ •) = ω(Q(F )).
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1 Introduction

Classical communication complexity, introduced by Yao [24], is aptly called the “swiss-
army-knife” for understanding, especially the limitations of, classical computing. Quantum
communication complexity holds the same promise with regards to quantum computing.
Yet, there are many problems that remain open. One broad theme is to understand the
fundamental differences between classical randomized and quantum protocols, especially for
computing total functions.

Recall a standard way to derive a communication problem from a function f : {−1, 1}n →
{−1, 1}. Each input bit of f is encoded between the two players Alice and Bob, using an
instance of a binary primitive, denoted by • : {−1, 1} × {−1, 1} → {−1, 1}, giving rise to the
communication problem of evaluating f ◦•. Each input bit to f is obtained by evaluating • on
the relevant bit of Alice and that of Bob, i.e.

(
f ◦ •

)(
x, y
)

= f
(
• (x1, y1), . . . , •(xn, yn)

)
and

x, y are each n-bit strings given to Alice and Bob respectively. Many well known functions
in communication complexity are derived in this way: Set-Disjointness is NOR ◦ ∧, Inner-
Product being PARITY ◦ ∧, Equality being NOR ◦ ⊕.1 Set-Disjointness is also a standard
total function where quantum protocols provably yield a significant cost saving over their
classical counterpart.

A natural and well studied question in this regard is what is the relationship between the
query complexity of f and the communication problem of f ◦ •, when the • is ∧ or ⊕. This
question has been studied for particular interesting functions or special classes of functions.
Classically, it is folklore that

Rcc(f ◦ •
)

= O(R(f)),

where R(f) denotes the bounded-error randomized query complexity of f and Rcc(f ◦ •)
denotes the bounded-error randomized communication complexity for computing f ◦ •. In
an influential work, Buhrman, Cleve and Wigderson [9] observed that a general and natural
recipe exists for constructing a quantum communication protocol for f ◦ •, using a quantum
query algorithm for f as a black-box.

I Theorem 1 ([9]). For any Boolean function f : {−1, 1}n → {−1, 1}, we have

Qcc
(
f ◦ •

)
= O

(
Q(f) · logn

)
,

where • is either ∧ or ⊕.

Here Q(f) denotes the bounded-error quantum query complexity of f , and Qcc(f ◦ •)
denotes the bounded-error quantum communication complexity for computing f ◦ •. We
remark here that the BCW simulation works for any constant-sized primitive • : {−1, 1}k ×
{−1, 1}k → {−1, 1}, but the focus of this paper is on the case where k = 1. Thus in the
quantum world one incurs a logarithmic factor in the natural BCW simulation while no
such factor is needed in the randomized setting. The basic question that arises naturally
and which we completely answer in this work, is the following: analogous to the classical
model, can this multiplicative logn blow-up in the communication cost be always avoided
by designing quantum communication protocols that more cleverly simulate quantum query
algorithms?

1 Here ∧ and ⊕ are the AND function and the XOR functions on 2 bits, respectively.
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A priori, it is not clear what the answer to this question ought to be. For certain
special functions and some classes of functions, quantum protocols exist where the logn
factor can be saved. Theorem 1 implies a communication upper bound of O(

√
n logn) for

the Set-Disjointness function. Høyer and de Wolf [15] designed a quantum protocol for
Set-Disjointness of cost O(

√
nclog∗ n), speeding up the BCW simulation significantly. Later,

Aaronson and Ambainis [1] gave a more clever protocol that only incurred a constant factor
overhead from Grover’s search using more involved ideas, matching an Ω(

√
n) lower bound

due to Razborov [20].
For partial functions, tightness of the BCW simulation is known in some settings. For

example, consider the Deutsch-Jozsa (DJ) problem, where the input is an n-bit string with
the promise that its Hamming weight is either 0 or n/2, and DJ outputs −1 if the Hamming
weight is n/2, and 1 otherwise. DJ has quantum query complexity 1 whereas the exact
quantum communication complexity of (DJ ◦ ⊕) is logn. Note that it is unclear whether the
logn factor loss here is additive or multiplicative.2 Montanaro, Nishimura and Raymond [19]
exhibited a partial function for which the BCW simulation is tight (up to constants) in the
exact and non-deterministic quantum settings. They also observed the existence of a total
function for which the BCW simulation is tight (up to constants) in the unbounded-error
setting.

As far as we know, there was no (partial or total) Boolean-valued function f known
prior to our work for which the bounded-error quantum communication complexity of f ◦ •
(i.e. Qcc(f ◦ •)) is even ω(Q(f)), where • is either ∧ or ⊕.

In this paper, we exhibit the first total function witnessing the tightness of the BCW
simulation in arguably the most well-known quantum model, which is the bounded-error
model.

I Theorem 2. There exists a total function F : {−1, 1}n → {−1, 1} for which,

Qcc(F ◦ ⊕) = Θ(Q(F ) logn). (1)

The statement above does not necessarily guarantee that a function exists that both
satisfies Equation 1 and has bounded-error quantum query complexity (as a function of n)
arbitrarily close to n. We answer this question by proving a more general result, from which
Theorem 2 follows.

I Theorem 3 (Main Theorem). For any constant 0 < δ < 1, there exists a total function
F : {−1, 1}n → {−1, 1} for which Q(F ) = Θ(nδ) and

Qcc(F ◦ ⊕) = Θ(Q(F ) logn).

1.1 Overview of our approach and techniques
To demonstrate the tightness of the BCW simulation for a total function in the quantum
bounded-error setting we have to find a function F such that Qcc(F ◦ •) = Θ(Q(F ) logn) for
some choice of • (that is, either • is ∧ or ⊕). This requires us to prove an upper bound of
Q(F ) and a lower bound on Qcc(F ◦ •). We consider the case when • is the ⊕ function.

2 Indeed, there are well-known situations where complexity of 1 vs. log n can be deceptive. The classical
private-coin randomized communication complexity of Equality is Θ(log n), whereas the public-coin
cost is well known to be O(1). Newman’s Theorem shows that this difference in costs, in general, is not
multiplicative but merely additive.
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For the inner function the ⊕ function is preferred over the ∧ function for one crucial
reason: we have an analytical technique for proving lower bounds on Qcc(F ◦ ⊕), due to
Lee and Shraibman [18]. They reduced the problem of lower bounding the bounded-error
quantum communication complexity of (F ◦ ⊕) to proving lower bounds on an analytic
property of F , called its approximate spectral norm. The ε-approximate spectral norm of F ,
denoted by ‖F̂‖1,ε, is defined to be the minimum `1-norm of the coefficients of a polynomial
that approximates F uniformly to error ε (see Definition 18). Lee and Shraibman [18] showed
that Qcc(F ◦⊕) = Ω(log ‖F̂‖1,1/3). Thus, the lower bound on Theorem 3 follows immediately
from our result below.

I Theorem 4. For any constant 0 < δ < 1, there exists a total function F : {−1, 1}n →
{−1, 1} for which Q(F ) = Θ(nδ) and

log
(
‖F̂‖1,1/3

)
= Θ(Q(F ) logn).

I Remark 5. It is interesting to note that, in contrast, it is well known that the extra logn
factor does not appear for classical randomized query complexity. That is, if R(F ) denotes
the bounded-error randomized query complexity of F , then log(‖F̂‖1,1/3) = O(R(F )). This
indicates a significant structural difference between the classical and quantum query models.

There are not many techniques known to bound the approximate spectral norm of a
function. This sentiment was expressed both in [18] and in the work of Ada, Fawzi and Hatami
[2]. On the other hand, classical approximation theory offers tools to prove bounds on a simpler
and better known concept called approximate degree which has been invaluable, particularly
for quantum query complexity. The ε-approximate degree of f , denoted by d̃egε(f), is the
minimum degree required by a real polynomial to uniformly approximate f to error ε (see
Definition 17). Recently, two of the authors [11] devised a way of lifting approximate degree
bounds to approximate spectral norm bounds. We first show here that technique works a bit
more generally, to yield the following: let ADDRm,t : {−1, 1}m → [t] be a (possibly partial)
addressing function (see Definition 13). For any function f : {−1, 1}n → {−1, 1}, define the
(partial) function fADDRm,t : {−1, 1}n×t×{−1, 1}n×m → {−1, 1} as follows (formally defined
in Definition 15):

fADDRm,t (x, y) = f
(
x1,ADDRm,t(y1), x2,ADDRm,t(y2), . . . , xn,ADDRm,t(yn)

)
.

Our main result on lower bounding the spectral norm is stated below.

I Lemma 6 (extending [11]). Let t > 1 be any integer, ADDRm,t be any (partial) addressing
function and f : {−1, 1}n → {−1, 1} be any function. Then,

log
(
‖ ̂fADDRm,t‖1,1/3

)
= Ω

(
d̃eg(f) log t

)
.

The functions F constructed for the proof of Theorem 4 are completions of instances of
PARITYADDR`,` , and hence Lemma 6 yields lower bounds on the approximate spectral norm
of F in terms of the approximate degree of PARITY (which is known to be maximal).

For the upper bound on Q(F ) we use two famous query algorithms - Grover’s search [14]
and the Bernstein-Vazirani algorithm [7]. The use of these algorithms for upper bounding
Q(F ) is in the same taste as in the work of Ambainis and de Wolf [3] although their motivation
was quite different than ours. Interestingly, Ambainis and de Wolf used their function to
pin down the minimal approximate degree of a total Boolean function, all of whose input
variables are influential.
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1.2 Intuition behind the function construction
From Theorem 1 it is known that for all Boolean functions f, Qcc(f ◦⊕) ≤ O(Q(f) logn).
In order to prove a matching lower bound, we construct a Boolean function F on n

variables such that ‖F̂‖1,1/3 = 2Ω(Q(F ) logn) (Theorem 4). From Theorem 22, this shows
that Qcc(F ◦ ⊕) = Ω(log ‖F̂‖1,1/3) = Ω(Q(F ) logn). We want to additionally ensure
that Q(F ) = Θ(nδ) for a given constant 0 < δ < 1. A formal definition of F is given in
Figure 1, we attempt to provide an overview on how we arrived at this function below.
Assume δ is a constant that is least 1/2, else the argument follows along similar lines by
ignoring suitably many input variables when defining the function. A natural first attempt
is to try to construct a composed function of the form F = fADDR, for some addressing
function ADDR (see Definition 13) with Ω(n1−δ) many target bits, for which Q(fADDR) =
Θ(d̃eg(f)). For the lower bound we use Lemma 6 to show that log ‖f̂ADDR‖1,1/3 =
Ω(d̃eg(f) log(n1−δ)) = Ω(d̃eg(f) logn).
Given the upper bound target, we are led to a natural choice of addressing function.
We refer the reader to Definition 13 for the definition of an addressing function and the
selector function of an addressing function. Let HADDn1−δ be the (n1−δ, n1−δ)-addressing
function defined as follows. Fix an arbitrary order on the n1−δ-bit Hadamard codewords
(see Definition 12) , say w1, . . . , wn1−δ . Define the selector function of HADDn1−δ , which
we denote g, by g(wi) = i for all i ∈ [n1−δ], and g(x) = ? for x 6= wi for any i ∈ [n1−δ].
For any function f on nδ/2 bits, the partial function fHADD

n1−δ on n inputs has quantum
query complexity O(Q(f)+nδ/2), as we sketch in the next step. We select f appropriately
such that this is Θ(Q(f)). Finally, we define the total function F = fHADD

n1−δ to be the
completion of fHADD

n1−δ that evaluates to −1 on the non-promise inputs of fHADD
n1−δ .

We choose the outer function to be f = PARITYnδ/2 to ensure Q(F ) = Θ(nδ). To prove
the upper bound on Q(F ), we crucially use the Bernstein-Vazirani and Grover’s search
algorithms.

Run nδ/2 instances of the Bernstein-Vazirani algorithm [7], one on each block. This
algorithm guarantees that if the address variables were all Hadamard codewords, then
we would receive the correct indices of the target variables with probability 1, and just
nδ/2 queries.
In the next step, we run Grover’s search [14, 8] on two n/2-bit strings to test whether
the output of the first step was correct. If it was correct, we succeed with probability
1, and proceed to query the nδ/2 selected target variables and output the parity of
them. If it was not correct, Grover’s search catches a discrepancy with probability at
least 2/3 and we output −1, succeeding with probability at least 2/3 in this case.
The nδ/2 invocations of the Bernstein-Vazirani algorithm use a total of nδ/2 queries,
Grover’s search uses another O(

√
n) queries, and the final parity (if Grover’s search

outputs that the strings are equal) uses another nδ/2 queries, for a cumulative total of
O(nδ +

√
n) = O(nδ) queries (recall that we assume δ ≥ 1/2).

1.3 Other implications of our result
Zhang [26] showed that for all Boolean functions f , there must exist gadgets •i, each either
∧ or ∨, such that Qcc(f(•1, . . . , •n)) = Ω(poly(Q(f))). For monotone f , they showed that
either Qcc(f ◦ ∧) = Ω(poly(Q(f))) or Qcc(f ◦ ∨) = Ω(poly(Q(f))). They also state that it is
unclear how tight the BCW simulation is. Our result implies that there exists a function for
which it is tight up to constants (on composition with ⊕).

CCC 2020



32:6 Quantum Query-To-Communication Simulation Needs a Logarithmic Overhead

F =

PARITY

HADD` HADD`

k/2

2`

·· ·

x11 · · · x1` y11 · · · y1` y k
2 `· · ·y k

2 1x k
2 `· · ·x k

2 1

Address bits Target bits

Figure 1 k = nδ, ` = n1−δ. If the address bits of an input to the r’th HADD` is the j’th
Hadamard codeword, then yrj is selected. If on an input, there exists at least one HADD` for which
the address bits do not correspond to a Hadamard codeword, F outputs −1. Else it outputs the
parity of the k/2 selected target bits.

Another implication of our result is related to the Entropy Influence Conjecture, which
is an interesting question in the field of analysis of Boolean functions, posed by Friedgut
and Kalai [13]. This conjecture is open for general functions. A much weaker version of this
conjecture is called the Min-Entropy Influence Conjecture. For the statement of the conjecture
we need to consider the Fourier expansion of Boolean functions f : {−1, 1}n → {−1, 1} as

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where {χS : S ⊆ [n]} are the parity functions (χS(x) = Πi∈Sxi, when x = (x1, . . . , xn) ∈
{−1, 1}n) and {f̂(S) : S ⊆ [n]} are the corresponding Fourier coefficients.

I Conjecture 7 (Min-Entropy Influence Conjecture). For any Boolean function f : {−1, 1}n →
{−1, 1} there exists a non-zero Fourier coefficient f̂(S) such that

log
(

1/|f̂(S)|
)

= O(I(f)),

where I(f) denotes the influence (or average sensitivity) of f (I(f) =
∑
S⊆[n] |S|f̂(S)2).

While this conjecture is also open, some attempts have been made to prove it and
various implications of it [5, 16]. One interesting implication of the Min-Entropy Influence
Conjecture that is still open is that the min-entropy of the Fourier spectrum (that is,
log
(

1/maxS⊆[n] |f̂(S)|
)
) is less than O(Q(f)). In [5] using a primal-dual technique it was

shown that the min-entropy of the Fourier spectrum is less than a constant times log(‖f̂‖1,ε),
where the constant depends on ε. Thus if it were the case that log(‖f̂‖1,ε) = O(Q(f)),
we would have upper bounded the min-entropy of Fourier spectrum by O(Q(f)). As
d̃eg(f) ≤ 2Q(f) [6], the following was stated in [5] as a possible approach and was left as an
open problem.

I Question 8 ([5, Section 4]). Is it true that for all Boolean functions f : {−1, 1}n → {−1, 1},

log(‖f̂‖1,ε) = O(d̃eg(f))?
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While their conjecture holds true for certain special classes of functions like the symmetric
functions (proof given in Appendix A), our result in this paper nullifies this approach for
general Boolean functions, since Theorem 4 yields the following along with the fact that
d̃eg(f) ≤ 2Q(f) [6].

I Theorem 9. For any constant 0 < δ < 1, there exists a total function F : {−1, 1}n →
{−1, 1} for which d̃eg(F ) = O(nδ) and

log ‖F̂‖1,1/3 = Ω(d̃eg(F ) logn).

2 Preliminaries

For any positive integer n, we denote the set {1, . . . , n} by [n]. For d ≤ n we use the notation(
n
≤d
)

:=
(
n
0
)

+ · · ·+
(
n
d

)
. Note that

(
n
≤d
)
< (n+ 1)d.

In this section we review the necessary preliminaries. We first review some basic notions
of Fourier analysis on the Boolean cube. Consider the vector space of functions from {−1, 1}n
to R, equipped with an inner product defined by

〈f, g〉 := Ex∈{−1,1}n [f(x)g(x)] = 1
2n

∑
x∈{−1,1}n

f(x)g(x)

for every f, g : {−1, 1}n → R. For any set S ⊆ [n], define the associated parity function χS by
χS(x) =

∏
i∈S xi. The set of parity functions {χS : S ⊆ [n]}, forms an orthonormal basis for

this vector space. Thus, every function f : {−1, 1}n → R has a unique multilinear expression
as f =

∑
S⊆[n] f̂(S)χS . The coefficients {f̂(S) : S ⊆ [n]} are called the Fourier coefficients

of f . We also use the notation PARITYn to denote the function χ[n] : {−1, 1}n → {−1, 1}.

I Fact 10 (Parseval’s Identity). For any function f : {−1, 1}n → R, we have
∑
S⊆[n] f̂(S)2 =∑

x∈{−1,1}n
f(x)2

2n .

I Definition 11 (Spectral Norm). For any function f : {−1, 1}n → R, define its spectral
norm, which we denote ‖f̂‖1, to be the sum of absolute values of the Fourier coefficients of
f . That is, ‖f̂‖1 :=

∑
S⊆[n]

∣∣f̂(S)
∣∣.

I Definition 12 (Hadamard Codeword). If an `-bit string (x1, . . . , x`) ∈ {−1, 1}` (alternat-
ively, view the indices of x as subsets of [log `]) is of the form xS =

∏
i∈S zi for all S ⊆ [log `]

for some z ∈ {−1, 1}log `, then define such an x = x1 . . . x` to be the `-bit Hadamard codeword
h(z) of the (log `)-bit string z.

2.1 Addressing functions
IDefinition 13 ((m, k)-addressing function). We define a (partial) function f : {−1, 1}m+k →
{−1, 1, ?} to be an (m, k)-addressing function if there exists g : {−1, 1}m → {[k] ∪ ?} such
that

f(x1, . . . , xm, y1, . . . , yk) = yg(x1,...,xm) if g(x1, . . . , xm) ∈ [k], f(x1, . . . , xm, y1, . . . , yk) =
? otherwise.
For all j ∈ [k], there exists (x1, . . . , xm) ∈ {−1, 1}m such that g(x1, . . . , xm) = j.

We call the variables {x1, . . . , xm} the address variables and the variables {y1, . . . , yk}
the target variables. The function g is called the selector function of f .
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I Definition 14 (Indexing Function). The Indexing function, which we denote by INDk, is
a (k, 2k)-addressing function defined by IND(x1, . . . , xk, y1, . . . , y2k) = ybin(x), where bin(x)
denotes the integer represented by the binary string x1, . . . , xk.

I Definition 15 (Composition with addressing functions). For any function f : {−1, 1}n →
{−1, 1} and an (m, k)-addressing function ADDR, define the (partial) function fADDR :
{−1, 1}n(m+k) → {−1, 1, ?} by fADDR(x1, y1, . . . , xn, yn) ={

f(ADDR(x1, y1), . . . ,ADDR(xn, yn)) if ∀i ∈ [n],ADDR(xi, yi) ∈ {−1, 1}
? otherwise.

where xi ∈ {−1, 1}m and yi ∈ {−1, 1}k for all i ∈ [n].

I Definition 16 (Hadamard Addressing Function). We define the Hadamard addressing
function, which we denote HADD` : {−1, 1}2` → {−1, 1, ?}, as follows. Fix an arbitrary
order on the `-many Hadamard codewords of (log `)-bit strings, say w1, . . . , w`. Define the
selector function of HADD` by

g(x) =
{
i if x = wi for some i ∈ [`]
? otherwise.

Note that HADD` is an (`, `)-addressing function.

2.2 Polynomial approximation
I Definition 17 (Approximate Degree). The ε-approximate degree of f : {−1, 1}n →
{−1, 1, ?}, denoted by d̃egε(f) is defined to be the minimum degree of a real polynomial
p : {−1, 1}n → R that satisfies

∣∣p(x)− f(x)
∣∣ ≤ ε for all x ∈ {−1, 1}n for which f(x) ∈

{−1, 1}.3 That is,

d̃egε(f) := min{d : deg(p) ≤ d,
∣∣p(x)− f(x)

∣∣ ≤ ε ∀x ∈ {−1, 1}n for which f(x) ∈ {−1, 1}}.

Henceforth, we will use the notation d̃eg(f) to denote d̃eg1/3(f).

I Definition 18 (Approximate Spectral Norm). The approximate spectral norm of a function
f : {−1, 1}n → {−1, 1, ?}, denoted by ‖f̂‖1,ε is defined to be the minimum spectral norm of
a real polynomial p : {−1, 1}n → R that satisfies

∣∣p(x)− f(x)
∣∣ ≤ ε for all x ∈ {−1, 1}n for

which f(x) ∈ {−1, 1}.

‖f̂‖1,ε := min{‖p̂‖1 :
∣∣p(x)− f(x)

∣∣ ≤ ε for all x ∈ {−1, 1}n for which f(x) ∈ {−1, 1}}.

I Lemma 19 ([10]). Let f : {−1, 1}n → {−1, 1} be a total function. Then for all constants
0 < δ, ε < 1 we have d̃egε(f) = Θ(d̃egδ(f)). The constant hidden in the Θ notation depends
on δ and ε.

The following is a standard upper bound on the approximate spectral norm of a Boolean
function in terms of its approximate degree.

3 When dealing with partial functions, another notion of approximation is sometimes considered, where
the approximating polynomial p is required to have bounded values even on the non-promise inputs of
f . For the purpose of this paper, we do not require this constraint.
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B Claim 20. For all total functions f : {−1, 1}n → {−1, 1}, we have log ‖f̂‖1,1/3 =
O(d̃eg(f) logn).

Proof. Let d denote the approximate degree of f . Take any 1/3-approximating polynomial of
degree d, say p, to f . Then,

∑
S⊆[n]

∣∣p̂(S)
∣∣ ≤√( n≤d) ·√∑S:|S|≤d p̂(S)2 ≤ 4/3 · (n+ 1)d/2 =

2O(d logn), where the first inequality follows by the Cauchy-Schwarz inequality, the second
inequality follows by Parseval’s identity (Fact 10) and the fact that the absolute value of p is
at most 4/3 for any input x ∈ {−1, 1}n. C

It is easy to exhibit functions f : {−1, 1}n → {−1, 1} such that log ‖f̂‖1,1/3 = Ω(d̃eg(f)).
Bent functions satisfy this bound, for example.

Building upon ideas in [17], the approximate spectral norm of f ◦ IND1 was shown to be
bounded below by 2Ω(d̃eg(f)) in [11].

I Theorem 21 ([11]). Let f : {−1, 1}n → {−1, 1} be any function. Then ‖ ̂f ◦ IND1‖1,1/3 ≥
2c·d̃eg2/3(f) for any constant c < 1− 3/d̃eg2/3(f).

2.3 Communication complexity
The classical model of communication complexity was introduced by Yao in [24]. In this
model two parties, say Alice and Bob, wish to compute a function whose output depends
on both their inputs. Alice is given an input x ∈ X , Bob is given y ∈ Y, and they want to
jointly compute the value of a given function F (x, y) by communicating with each other.
Alice and Bob individually have unbounded computational power and the number of bits
communicated is the resource we wish to minimize. Alice and Bob communicate using a
protocol that is agreed upon in advance. In the randomized model, Alice and Bob have
access to unlimited public random bits and the goal is to compute the correct value of F (x, y)
with probability at least 2/3 for all inputs (x, y) ∈ X × Y. The bounded-error randomized
communication complexity of a function F , denoted Rcc(F ), is the number of bits that must
be communicated in the worst case by any randomized protocol to compute the correct value
of the function F (x, y), with probability at least 2/3, for every (x, y) ∈ X × Y.

The quantum model of communication complexity was introduced by Yao in [25]. We
refer the reader to the survey [23] for details. The bounded-error quantum communication
complexity of a function F , denoted Qcc(F ) is the number of bits that must be communicated
by any quantum communication protocol in the worst case to compute the correct value of
the function F (x, y), with probability at least 2/3, for every (x, y) in domain of F . Buhrman,
Cleve and Wigderson [9] observed a quantum simulation theorem, which gives an upper
bound on the bounded-error quantum communication complexity of a composed function of
the form f ◦ ∧ or f ◦ ⊕ in terms of the bounded-error quantum query complexity of f (see
Theorem 1).

Lee and Shraibman [18] showed that the bounded-error quantum communication com-
plexity of f ◦ ⊕ is bounded below by the logarithm of the approximate spectral norm of f .
Also see [11] for an alternate proof.

I Theorem 22 ([18]). For any Boolean function f : {−1, 1}n → {−1, 1},

Qcc(f ◦ ⊕) = Ω(log ‖f̂‖1,1/3).

We remark that to the best of our knowledge, it is not known whether the same lower
bound holds on the bounded-error quantum communication complexity of f ◦ ∧.
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3 Proof of Theorem 3

In this section, we prove Theorem 3. We first formally define the function we use.

3.1 Definition of the function
If δ < 1/2, then ignore the last n− 2n2δ bits of the input, and define the following function
on the first 2nδ bits of the input. The same argument as in Sections 3.2 and 3.3 give the
required bounds for Theorem 3 and Theorem 4. Hence, we may assume without loss of
generality that δ ≥ 1/2.

Define the partial function f : {−1, 1}n → {−1, 1, ?} by f = PARITYHADD
n1−δ

nδ/2 . Define
F to be the completion of f that evaluates to −1 on the non-promise domain of f (see
Figure 1).

3.2 Upper bound
In this section, we prove the following.

B Claim 23. For F : {−1, 1}n → {−1, 1} defined as in Section 3.1, we have Q(F ) = Θ(nδ).

The upper bound follows along the lines of a proof in [3], and the lower bound just uses the
fact that F is at least as hard as PARITYnδ/2.

Proof. For convenience, set ` = n1−δ and k = nδ. Recall that an input to F is viewed as
(x11, . . . , x1,`, y11, . . . , y1,`, . . . , x k

2 1, . . . , x k2 `
, y k

2 1, . . . , y k2 `
). The following is an O(nδ)-query

quantum algorithm computing F . Note that since δ ≥ 1/2, we have k = Ω(`).
1. Run k/2 instances of the Bernstein-Vazirani algorithm on the (k/2)-many input strings

(x11, . . . , x1`), . . . , (x k
2 1, . . . , x k2 `

) to obtain k/2 strings z1, . . . , zk/2.
2. Run Grover’s search [14, 8] to check equality of the two strings: h(z1), . . . , h(z`) and

x11, . . . , x1`, . . . , x k
2 1, . . . , x k2 `

, i.e. to check whether the addressing bits of the input are
indeed all Hadamard codewords which are output by the first step.

3. If the step above outputs that the strings are equal, then query the k/2 selected variables
and output their parity. Else, output −1.

If the input was indeed of the form as claimed in the first step, then Bernstein-Vazirani
outputs the correct z1, . . . , z` with probability 1, and Grover’s search verifies that the
strings are equal with probability 1. Hence the algorithm is correct with probability 1
in this case.
If the input was not of the claimed form, then the two strings for which equality is to
be checked in the second step are not equal. Grover’s search catches a discrepancy
with probability at least 2/3. Hence, the algorithm is correct with probability at least
2/3 in this case.

The correctness of the algorithm is argued above, and the cost is k/2 queries for the first
step, O(

√
k`) queries for the second step, and at most k/2 for the third step. Thus, we have

Q(F ) = O(k +
√
k`) = O(k), since k = Ω(`). The upper bound in the lemma follows.

For the lower bound, we argue that F is at least as hard as PARITYk/2. To see this
formally, set all the address variables such that the selected target variables are the first
target variable in each block. Under this restriction, F equals PARITY(y11, . . . , y k

2 1). Thus
any quantum query algorithm computing F must be able to compute PARITYk/2, and thus
Q(F ) = Ω(k). C
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I Remark 24. The same argument as above works when the function f is defined to be
gHADD` for any g : {−1, 1}nδ → {−1, 1} satisfying d̃eg(g) = Ω(nδ), and F is the completion
of f that evaluates to −1 on all non-promise inputs. The same proof of Theorem 3 also goes
through, but we fix g = PARITYnδ/2 for convenience.

3.3 Lower bound
In this section, we first prove Lemma 6. We require the following observation.

I Observation 25. For any S ⊆ [n] and any j ∈ S, we have Exj∼{−1,1}[χS(x)] = 0, where
xj is distributed uniformly over {−1, 1}.

Proof of Lemma 6. Let F = fADDRm,t . Recall that our goal is to show that log ‖F̂‖1,1/3 =
Ω(d̃eg(f) log t). We may assume d̃eg(f) ≥ 1, because the lemma is trivially true otherwise.

Towards a contradiction, suppose there exists a polynomial P of spectral norm strictly
less than 2 1

10 d̃eg0.99(f) log t uniformly approximating F to error 1/3 on the promise inputs
(recall that from Lemma 19, we have d̃eg(f) = Θ(d̃eg0.99(f))).

Let ν be a distribution on the address bits of ADDRm,t such that ν is supported only on
assignments to the address variables that do not select ?, and is the uniform distribution
over these assignments. Let µ = νn be the product distribution over the address bits of the
addressing functions in F .

For any assignment z of the address variables from the support of µ, define a relevant
(target) variable, with respect to z, to be one that is selected by z. Analogously, define a
target variable to be irrelevant if it is not selected by z. Define a monomial to be relevant
if it does not contain irrelevant variables, and irrelevant otherwise.
Note that for any target variable, the probability with which it is selected is exactly 1/t.
In the analysis that follows in this proof, we are interested in the set of target variables that
are present in a monomial χS , which we denote by Starget. Also define the target-degree of
S to be |Starget|, i.e. the degree of a monomial χS when restricted to the target variables.
Thus under any assignment z drawn from µ, for any monomial of the function P of
target-degree t ≥ d̃eg0.99(f), the probability that it is relevant is at most 1/td̃eg0.99(f).
Hence

E
z∼µ

[`1-norm of relevant monomials w.r.t. z in P of target-degree ≥ d̃eg0.99(f)]

=
∑

|Starget|≥d̃eg0.99(f)

|P̂ (S)| Pr
z∼µ

[χS is relevant w.r.t. z]

≤ max
|Starget|≥d̃eg0.99(f)

{ Pr
z∼µ

[χS is relevant w.r.t. z]} · ‖P̂‖1

<
1

td̃eg0.99(f)
· 2 1

10 d̃eg0.99(f) log t = 2(− 9
10 )d̃eg0.99(f) log t <

3
5 ,

where the second last inequality holds because of Claim 20 and the last inequality holds
because t ≥ 2 and d̃eg0.99(f) ≥ 1.
Fix an assignment to the address variables from the support of µ such that under this
assignment, the `1-norm of relevant monomials in P of degree ≥ d̃eg0.99(f) is less than
3/5.
Note that under this assignment (in fact under any assignment in the support of µ), the
restricted F is just the function f on the n variables selected by the addressing functions.
Denote by P1 the polynomial on the target variables obtained from P by fixing address
variables as per this assignment.

CCC 2020
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Drop the relevant monomials of degree ≥ d̃eg0.99(f) from P1 to get a polynomial P2,
which uniformly approximates the restricted F (which is f on n variables) to error
1/3 + 3/5 < 0.99.
Take expectation over irrelevant variables (from the distribution where each irrelevant
variable independently takes values uniformly from {−1, 1}). Under this expectation,
the value of F does not change (since irrelevant variables do not affect F ’s output by
definition), and all irrelevant monomials of P2 become 0 (using Observation 25 and
linearity of expectation). Hence, under this expectation we have E[P2] = P3, where
P3 is a polynomial of degree strictly less than d̃eg0.99(f). Furthermore, P3 uniformly
approximates f to error less than 0.99 which is a contradiction. J

As a corollary of Lemma 6, we obtain a lower bound on the approximate spectral norm
of F , where F is defined as in Section 3.1. This yields a proof of Theorem 4.

Proof of Theorem 4. Construct F as in Section 3.1. Claim 23 implies Q(F ) = Θ(nδ).
Let f = PARITYHADD

n1−δ
nδ/2 . Lemma 6 implies that ‖f̂‖1,1/3 = Ω(nδ logn).

Since F is a completion of f , we have ‖F̂‖1,1/3 = Ω(nδ logn), which proves the lower
bound in Theorem 4. The upper bound follows from Theorem 1. J

We are now ready to prove our main theorem.

Proof of Theorem 3. It immediately follows from Theorem 4 and Theorem 22. J

4 Conclusions

We conclude with the following points: first, we find our main result somewhat surprising
that simulating a query algorithm by a communication protocol in the quantum context has
a larger overhead than in the classical context. Second, it is remarkable that this relatively
fine overhead of logn can be detected using analytic techniques that are an adaptation of
the generalized discrepancy method. Third, the function that we used in this work is an
XOR function. Study of this class of functions is proving to be very insightful. A recent
example is the refutation of the log-approximate-rank conjecture [12] and even its quantum
version [4, 22]. Our work further advocates the study of XOR functions.

An open question that remains is whether there exists a Boolean function F : {−1, 1}n →
{−1, 1} such that Qcc(F ◦ ∧) = Ω(Q(F ) logn). Or does there exist a better quantum
communication protocol for (F ◦ ∧) that does not incur the logarithmic factor loss?

It is easy to verify that the constructions of F that yield Theorem 4 for any fixed constant
0 < δ < 1, also satisfy d̃eg(F ) = Θ(nδ). Recall that Theorem 9 states that such functions
F satisfy log ‖F̂‖1,1/3 = Ω(d̃eg(F ) logn). This gives a negative answer to Question 8 ([5,
Section 4]), where it was asked if any degree-d approximating polynomial to a Boolean
function of approximate degree d has spectral norm at most 2O(d) (it is interesting to note
that their conjecture holds true for symmetric functions, which we prove in Appendix A).
Thus to prove min-entropy of the Fourier spectrum of a Boolean function is upper bounded
by approximate degree, it cannot follow from their observation that min-entropy is upper
bounded by the logarithm of the approximate spectral norm. The following remains an
interesting and important open problem: (how) can one prove that the min-entropy of the
Fourier spectrum of a Boolean function is upper bounded by a constant multiple of its
approximate degree? Such an inequality is implied by the Fourier Entropy Influence (FEI)
Conjecture.
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A Upper bound on the approximate spectral norm of symmetric
functions

Recall from Section 1.3 that Theorem 9 gives a negative answer to Question 8, where it was
asked if for all Boolean functions of approximate degree d, there exists an approximating
polynomial with spectral norm 2O(d). We show in this section that the upper bound in
Question 8 does hold true for symmetric functions.

I Definition 26 (Multilinear Polynomial). A function φ : Rn → R is a multilinear polynomial
if φ is of the form:

φ(x1, . . . , xn) =
∑
S⊆[n]

aS
∏
i∈S

xi

where aS ∈ R.

I Definition 27 (Spectral Norm of a Multilinear Polynomial). Let φ : Rn → R be a multilinear
polynomial of the form φ(x1, . . . , xn) =

∑
S⊆[n] aS

∏
i∈S xi. The spectral norm of φ, denoted

by ‖φ‖1, is defined as

‖φ‖1 =
∑
S⊆[n]

|aS |.

I Fact 28 (Properties of Spectral Norm of Multilinear Polynomials). Let f, g : Rn → R be any
symmetric polynomials and let α ∈ R be any real number. Then,
1. ‖αf‖1 = |α|‖f‖1,
2. ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1,
3. ‖fg‖1 ≤ ‖f‖1‖g‖1.

I Lemma 29. Let S ⊆ [n] and χS : {−1, 1}n → R be the symmetric multilinear polynomial
defined as

χS(x1, . . . , xn) =
∏
i∈S

(1− xi)
2 .

Then ‖χS‖1 = 1.

https://doi.org/10.1016/S0304-3975(02)00377-8
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Proof. Since for all i ∈ [n], the spectral norm of (1−xi)
2 = 1, the proof follows from 28 (3). J

I Definition 30 (Symmetric Multilinear Polynomial). A multilinear polynomial φ : Rn → R
is said to be symmetric if φ(x1, . . . , xn) = φ(xσ(1), . . . , xσ(n)) for all (x1, . . . , xn) ∈ X and
σ ∈ Sn.

Sherstov [21] showed the following upper bound on the spectral norm of symmetric
multilinear polynomials.

B Claim 31 ([21]). Let φ : Rn → R be a symmetric multilinear polynomial. Then

‖φ‖1 ≤ 8deg(φ) max
x∈{0,1}n

|φ(x)|.

I Lemma 32. Let f : {−1, 1}n → {−1, 1} be a symmetric Boolean function. Then

log(‖f‖1,1/3) = O(d̃eg(f)).

Proof. Let f ′ : {0, 1}n → {−1, 1} be defined as f ′(x1, . . . , xn) = f
( 1−x1

2 , . . . , 1−xn
2
)
. It

is not hard to show, since we have done a linear transformation on the input domain,
that d̃eg(f ′) = d̃eg(f). Let p′ be a polynomial that 1/3-approximates the symmetric
function f ′. By symmetrization we can assume that p′ is symmetric, and is of the form
p′(x) =

∑
S⊆[n] aS

∏
i∈S xi.

Define the polynomial p : {−1, 1}n → R as follows:

p(x1, . . . , xn) = p′
(

1− x1

2 , . . . ,
1− xn

2

)
.

Clearly p is a 1/3-approximation to f since p′ is a 1/3-approximation to f ′ and we can write

p(x) =
∑
S⊆[n]

aS
∏
i∈S

(1− xi)
2 .

Thus we can upper bound the `1-norm of p as follows:

‖p‖1 =

∥∥∥∥∥∥
∑
S⊆[n]

aS
∏
i∈S

(1− xi)
2

∥∥∥∥∥∥
1

≤
∑
S⊆[n]

∥∥∥∥∥aS∏
i∈S

(1− xi)
2

∥∥∥∥∥
1

(2)

≤
∑
S⊆[n]

∣∣aS∣∣
∥∥∥∥∥∏
i∈S

(1− xi)
2

∥∥∥∥∥
1

(3)

=
∑
S⊆[n]

∣∣aS∣∣ = ‖p′‖1, (4)

where Equation (2) follows from Fact 28 (2), Equation (3) follows from Fact 28 (1) and
Equation (4) follows from 29.

Hence, log(‖f‖1,1/3) ≤ log(‖p‖1) ≤ log(‖p′‖1) = O(deg(p′)), where the last equality
follows by Claim 31 since p′ is symmetric. Since p′ was assumed to have degree deg(p′) =
d̃eg(f), the lemma follows. J
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1 Introduction

Polynomial factoring is a classical question in algebra. For factoring multivariate polynomials,
we have to specify a model for representing polynomials. A standard model in algebraic
complexity to represent polynomials are arithmetic circuits (aka straight-line programs).
Other well known models are arithmetic branching programs (ABP), arithmetic formulas,
dense representations, where the coefficients of all n-variate monomials of degree ≤ d are
listed, or sparse representations, where only the non-zero coefficients are listed. Given a
polynomial in some model, one can ask for efficient algorithms for computing its factors
represented in the same model. That leads to the following question.

I Question (Factor size upper bound). Given a polynomial of degree d and size s in a
representation, do all of its factors have size poly(s, d) in the same representation?

For example in the dense representation the size of the input polynomial and the output
factors is the same, namely

(
n+d
d

)
, for n-variate polynomials of degree d. But for other

representations, the factor of a polynomial may take larger size than the polynomial itself.
For example, in the sparse representation the polynomial xd − 1 has size 2, but its factor
1 + x+ · · ·+ xd−1 has size d.

Arithmetic circuits. The algebraic complexity class VP contains all families of polynomi-
als {fn}n that have degree poly(n) and arithmetic circuits of size poly(n). Kaltofen [11]
showed that VP is closed under factoring: Given a polynomial f ∈ VP of degree d computed
by an arithmetic circuit of size s, all its factors can be computed by an arithmetic circuit of
size poly(s, d).

© Amit Sinhababu and Thomas Thierauf;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amitks@cse.iitk.ac.in
mailto:thomas.thierauf@uni-ulm.de
https://doi.org/10.4230/LIPIcs.CCC.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 Factorization of Polynomials Given by Arithmetic Branching Programs

Arithmetic branching programs. Kaltofen’s [11] proof technique for circuit factoring does
not directly extend to formulas or ABPs. The construction there results in a circuit, even if
the input polynomial is given as a formula or an ABP. Converting a circuit to an arithmetic
formula or an ABP may cause super-polynomial blow-up of size.

Analogous to VP, classes VF and VBP contain families of polynomials that can be
computed by polynomial-size arithmetic formulas and branching programs, respectively.
Note that the size also bounds the degree of the polynomials in these models. Arithmetic
branching programs are an intermediate model in terms of computational power, between
arithmetic formulas and arithmetic circuits,

VF ⊆ VBP ⊆ VP .

ABPs are interesting in algebraic complexity as they essentially capture the power of linear
algebra, for example they can efficiently compute determinants. ABPs have several equivalent
characterizations. They can be captured via iterated matrix multiplication, weakly-skew
circuits, skew circuits, and determinants of a symbolic matrices. See [14] for an overview of
these connections.

Proof technique. A standard technique to factor multivariate polynomials has typically
two main steps. The first step uses Hensel lifting to lift a factorization to high enough
precision, starting from two coprime univariate factors. The second step, sometimes called
the jump step or reconstruction step, consists of reconstructing a factor from a corresponding
lifted factor by solving a system of linear equations.

The earlier works for polynomial factorization use a version of Hensel lifting, where in
each iteration the lifted factors remain monic. It seems as this version is not efficient for
ABPs. We observe that monicness of the lifted factor is not necessary for the jump step.
This allows us to use a simple version of Hensel lifting that is efficient for ABPs.

Another point in some earlier works is that, in a pre-processing step, the input polynomial
is transformed into a square-free polynomial. It is not clear how to achieve this transfor-
mation with small ABPs. We get around this problem by observing that square-freeness
is not necessary. It suffices to have one irreducible factor of multiplicity one. This weaker
transformation can be computed by small ABPs.

Finally, we use the fact that the determinant can be computed efficiently by ABPs.

I Remark 1. Whatever ABP we construct, the same can be done for circuits. Hence, as a
by-product, we also literally provide another proof for the classical circuit factoring result of
Kaltofen.

Comparison with prior works. There are several proofs of the closure of VP under factors
[9, 10, 11, 1, 2, 12, 16, 6, 3]. None of the previous proofs directly extends to the closure
of VBP, i.e. branching programs, under factors.

Recently, Dutta, Saxena, and Sinhababu [6] and also Oliveira [16] considered factoring
in restricted models like formulas, ABPs and small depth circuits. They reduce polynomial
factoring to approximating power series roots of the polynomial to be factored. Then they
use versions of Newton iteration for approximating the roots. Let x = (x1, . . . , xn). If p(x, y)
is the given polynomial and q(x) is a root w.r.t. y, i.e. p(x, q(x)) = 0, Newton iteration
repeatedly uses the following recursive formula to approximate q:

yt+1 = yt −
p(x, yt)
p′(x, yt)

.
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If p is given as a circuit, the circuit for yt+1 is constructed from the circuit of yt. For the
circuit model, we can assume that p(x, y) has a single leaf node y where we feed yt. But
for formula and branching programs, we may have d many leaves labeled by y, where d is
the degree of p in terms of y. As we cannot reuse computations in formula or branching
programs, we have to make d copies of yt in each round. This leads to dlog d blow-up in size.

Oliveira [16] used the idea of approximating roots via an approximator polynomial function
of the coefficients of a polynomial. This gives good upper bound on the size of factors of
ABPs, formulas, and bounded depth circuits under the assumption that the individual degrees
of the variables in the input polynomial are bounded by a constant.

Recently, Chou, Kumar, and Solomon [3] proved closure of VP under factoring using
Newton iteration for several variables for a system of polynomial equations. This approach
also faces the same problem for the restricted models.

Instead of lifting roots, another classical technique for multivariate factoring is Hensel
lifting, where factors modulo an ideal are lifted. Hensel lifting has a slow version, where the
power of the ideal increases by one in each round. The other version due to Zassenhaus [21]
is fast, the power of the ideal gets doubled in each round.

Kaltofen’s [11, 10] proofs uses slow versions of Hensel lifting iteratively for d rounds,
where d is the degree of the given polynomial. That leads to an exponential blow-up of size
in models where the previous computations cannot be reused, as using previous lifts twice
would need two copies each time. .

Kopparty, Saraf, and Shpilka [12] use the standard way of doing fast Hensel lifting for
log d rounds, where in each round the lifted factors are kept monic. To achieve this, one
has to compute a polynomial division with remainder. Implementing this version of Hensel
lifting for ABPs or formulas seems to require to make d copies of previous computations in
each round. Thus, that way would lead to a dlog d size blow-up. Also, they compute the gcd
of polynomials, for which a priori no size upper bound was known for ABP or formulas.

Here, we use a classic version of fast Hensel lifting, that needs log d rounds and additionally
in each round we have to make copies of previous computations only constantly many times.
As we mentioned earlier, we avoid to maintain the monicness, and also gcd-computations.

Though various versions of Hensel lifting (factorization lifting) and Newton iteration
techniques (root lifting) are equivalent in a mathematical sense [19], it is interesting that the
former gives a better factor size upper bound for the model of ABP.

Application in hardness vs. randomness. Closure under factoring is used in the hardness
vs. randomness trade-off results in algebraic complexity. See for example the excellent survey
of Kumar and Saptharishi [13] for details on this topic. The celebrated result of Kabanets
and Impagliazzo [8, Theorem 7.7] showed that a sufficiently strong lower bound for arithmetic
circuits would derandomize polynomial identity testing (PIT). The proof of derandomization
uses a hard polynomial as well as the upper bound on the size of factors of a polynomial
computed by the circuit [11]. As a corollary of our result, we get a similar statement in
terms of ABPs: An exponential (or super-polynomial) lower bound for ABPs for an explicit
multilinear polynomial yields quasi-poly (or sub-exponential) black-box derandomization of
PIT for polynomials in VBP.

Closure under factoring is relevant in the connection between algebraic complexity and
proof complexity [7]. If a class C is closed under factoring, then the following holds. If a
polynomial is hard for the class C, then all its nonzero multiples are hard for C. Lower bounds
for all the nonzero multiples of an explicit hard polynomial may lead to lower bounds for
ideal proof systems [7].

CCC 2020
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2 Preliminaries

We consider multivariate polynomials over a field F of characteristic 0. A polynomial p is
called square-free, if for any non-constant irreducible factor q, the polynomial q2 is not a
factor of p.

By deg(p) we denote the total degree of p. Let x and z = (z1, . . . , zn) be variables and
p(x, z) be a (n + 1)-variate polynomial. Then we can view p as a univariate polynomial
p =

∑
i ai(z)xi over K[x], where K = F[z]. The x-degree of p is denoted by degx(p). It is

the highest degree of x in p. Polynomial p is called monic in x, if the coefficient adx(z) is a
nonzero constant, where dx = degx(p).

By poly(n) we denote the class of polynomials in n ∈ N.
We denote by I = 〈x〉 the ideal of polynomials generated by x over the ring F[x, z]. The

k-th power of the ideal I is the ideal Ik = 〈xk〉.

Computational models. An arithmetic circuit is a directed acyclic graph, whose leaf nodes
are labeled by the variables x1, . . . , xn and various constants from the underlying field.
The other nodes are labeled by sum gates or product gates. A node labeled by a variable
or constant computes the same. A node labeled by sum or product compute the sum or
product of the polynomials computed by nodes connected by incoming edges. The size of an
arithmetic circuit is the total number of its edges.

An arithmetic formula is a special kind of arithmetic circuit. A formula has the structure
of a directed acyclic tree. Every node in a formula has out-degree at most one. As we can
not reuse computations in a formula, it is considered to be weaker than circuits.

An arithmetic branching program (ABP) is a layered directed acyclic graph with a single
source node and a single sink node. An edge of an ABP is labeled by a variable or a constant
from the field. The weight corresponding to a path from the source to the sink is the product
of the polynomials labeling the edges on the path. The polynomial f(x1, . . . , xn) computed
by the ABP is the sum of the weights of the all possible paths from source to sink.

The size of an ABP is the number of its edges. The size of the smallest ABP computing f
is denoted by sizeABP(f). The degree of a polynomial computed by an ABP of size s is at
most poly(s).

Properties of ABPs. Univariate polynomials have small ABPs. Let p(x) be a univariate
polynomial of degree d. It can be computed by an ABP of size 2d+ 1, actually even by a
formula of that size.

For univariate polynomials p(x), q(x), the extended Euclidian algorithm computes the
gcd h = gcd(p, q) and also the Bézout-coefficents, polynomials a, b such that ap + bq = h,
where deg(a) < deg(q) and deg(b) < deg(p). Let p have the larger degree, d = deg(p) ≥
deg(q). Then clearly also deg(h),deg(a),deg(b) ≤ d, and consequently, all these polynomials,
p, q, h, a, b have ABP-size at most 2d+ 1.

Let p(x), q(x) be multivariate polynomials in x = (x1, . . . , xn). For the ABP-size with
respect to addition and multiplication, we have
1. sizeABP(p+ q) ≤ sizeABP(p) + sizeABP(q),
2. sizeABP(pq) ≤ sizeABP(p) + sizeABP(q).

For the sum of two ABPs Bp, Bq one can put Bp and Bq in parallel by merging the two
source nodes of Bp and Bq into one new source node, and similar for the two sink nodes. For
the product, one can put Bp and Bq in series by merging the sink of Bp with the source of Bq.
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Another operation is substitution. Let p(x1, . . . , xn) and q1(x), . . . , qn(x) be polynomials.
Let sizeABP(qi) ≤ s, for i = 1, . . . , n. Then we have

sizeABP(p(q1, . . . , qn)) ≤ s · sizeABP(p).

To get an ABP for p(q1(x), . . . , qn(x)), replace an edge labeled xi in the ABP Bp for p by
the ABP Bqi

for qi.
It is known that the determinant of a symbolic matrix of dimension n can be computed

by an ABP of size poly(n) [15]. By substitution, the entries of the matrix can itself be
polynomials computed by ABPs.

Resultant. Given two polynomials p(x,y) and q(x,y) in variables x and y = (y1, . . . , yn),
consider them as polynomials in x with coefficients in F[y]. The resultant of p and q w.r.t. x,
denoted by Resx(p, q), is the determinant of the Sylvester matrix of p and q. For the definition
of the Sylvester matrix, see [20]. Note that Resx(p, q) is a polynomial in F[y].

Basic properties of the resultant are that it can be represented as a linear combination
of p and q, and that it provides information about the gcd of p and q.

I Lemma 2 (See [20]). Let p(x,y) and q(x,y) be polynomials of degree ≤ d and h = gcd(p, q).
1. deg(Resx(p, q)) ≤ 4d2,
2. ∃u, v ∈ F[x,y] up+ vq = Resx(p, q),
3. Resx(p, q) = 0 ⇐⇒ degx(h) > 0.

Note that the problem whether Resx(p, q) = 0 is a polynomial identity test (PIT), because
Resx(p, q) ∈ F[y]. It can be solved in a randomized way by the DeMillo-Lipton-Schwartz-
Zippel Theorem (see [4] and the references therein for more details and history of this
theorem).

I Theorem 3 (Polynomial Identity Test). Let p(x) be an n-variate nonzero polynomial of
total degree d. Let S ⊆ F be a finite set. For α ∈ Sn picked independently and uniformly
at random,

Pr[ p(α) = 0 ] ≤ d

|S|
.

3 Pre-processing Steps and Algebraic Tool Kit

Before we start the Hensel lifting process, a polynomial should fulfill certain properties that
the input polynomial might not have. In this section, we describe transformations of a
polynomial that achieve these properties such that ABPs can compute the transformation
and its inverse, and factors of the polynomials are maintained.

We also explain how to compute homogeneous components and how to solve linear systems
via ABPs. We show how handle the special case when the given polynomial is just a power
of an irreducible polynomial.

3.1 Computing homogeneous components and coefficients of a
polynomial

Let p(x, z) be polynomial of degree d in variables x and z = (z1, . . . , zn). Let Bp be an
ABP of size s that computes a polynomial p. Write p as a polynomial in x, with coefficients
from F[z],
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p(x, z) =
d∑
i=0

pi(z)xi .

We show that all the coefficients pi(z) have ABPs of size poly(s, d).
The argument is similar to Strassen’s homogenization technique for arithmetic circuits,

an efficient way to compute all the homogeneous components of a polynomial. The same
technique can be used for ABPs (see [17, Lemma 5.2 and Remark]). Here we sketch the
proof idea.

Each node v of Bp we split into d+ 1 nodes v0, . . . , vd, such that node vi computes the
degree i part of the polynomial computed by node v, for i = 0, 1, . . . , d. Consider an edge e
between node u and v in Bp.

If e is labeled with a constant c ∈ F or a variable zi, then we put an edge between ui
and vi with label c or zi, respectively.
If e is labeled with variable x, then we put an edge between ui and vi+1 with label 1.

The resulting ABP has one source node and d + 1 sink nodes. The i-th sink node com-
putes pi(z).

For each edge of Bp we get either d or d + 1 edges in the new ABP. Hence, its size is
bounded by s(d+ 1).

I Lemma 4 (Coefficient extraction). Let p(x, z) =
∑d
i=0 pi(z)xi be a polynomial. Then

sizeABP(pi) ≤ (d+ 1) sizeABP(p), for i = 0, 1, . . . , d.

The technique can easily be extended to constantly many variables. For two variables,
consider p(x, y,z) =

∑
i,j pi,j(z)xiyj . Then, from an ABP of size s for p we get ABPs for

the coefficients pi,j(z) of size s(d+ 1)2 similarly as above.
In homogenization, we want to compute the homogeneous components of p. That is, write

p(z) =
∑d
i=0 pi(z), where deg(pi) = i. From an ABP Bp for p we get ABPs for the pi’s

similarly as above: In the definition of the new edges, only for constant label, we put the
edge from ui to vi. In case of any variable label zj , we put the edge from ui to vi+1 with
label zj . Then the i-th sink node computes pi(z). The size is bounded by s(d+ 1).

I Lemma 5 (Homogenization). Let p(z) =
∑d
i=0 pi(z) be a polynomial with deg(pi) = i, for

i = 0, 1, . . . , d. Then sizeABP(pi) ≤ (d+ 1) sizeABP(p), for i = 0, 1, . . . , d.

3.2 Computing q from p = qe

A special case is when the given polynomial p(x) is a power of one irreducible polynomial q(x),
i.e., p = qe, for some e > 1. This case is handled separately. Kaltofen [10] showed how to
compute q for circuits, ABPs, and arithmetic formulas. Here, we give a short proof from
Dutta [5].

I Lemma 6. Let p = qe, for polynomials p(x), q(x). Then sizeABP(q) ≤ poly(sizeABP(p)).

Proof. We may assume that p is nonzero; otherwise the claim is trivial. We want to apply
Newton’s binomial theorem to compute q = p1/e. For this we need that p(0, . . . , 0) = 1. If
this is not the case, we first transform p as follows.
1. If p(0, . . . , 0) = 0, let α = (α1, . . . , αn) be a point where p(α) 6= 0. By the PIT-Theorem,

a random point α will work, with high probability. Now we shift the variables and work
with the shifted polynomial p̃(x) = p(x+α).
Still, p̃(0, . . . , 0) might be different from 1. In this case, we also apply the next item to f̃ .
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2. If p(0, . . . , 0) = a0 6= 0, then we work with p̃(x) = p(x)/a0. Then p̃(0, . . . , 0) = 1.
Note that both transformations are easily reversible. Hence, in the following we simply
assume that p(0, . . . , 0) = 1.

By Newton’s binomial theorem, we have

q = p1/e = (1 + (p− 1))1/e =
∞∑
i=0

(
1/e
i

)
(p− 1)i . (1)

Note that p1/e is a polynomial of degree d = deg(q). Since p − 1 is constant free, the
terms (p− 1)j in the RHS of (1) have degree > d, for j > d . Thus (1) turns into a finite
sum modulo the ideal 〈x〉d+1,

q =
d∑
i=0

(
1/e
i

)
(p− 1)i mod 〈x〉d+1 . (2)

Let sizeABP(p) = s. For the polynomial Q =
∑d
i=0
(1/e
i

)
(p− 1)i from (2), we clearly have

sizeABP(Q) ≤ poly(s). Finally, to get q = Q mod 〈x〉d+1, we have to truncate the terms in Q
with degree > d. This can be done by computing the homogeneous components of Q as
described in Lemma 5. We conclude that sizeABP(q) ≤ poly(s). J

3.3 Reducing the multiplicity of a factor
In the earlier works on bivariate and multivariate polynomial factoring, typically the problem
is reduced to factoring a square-free polynomial. This is convenient at various places in the
Hensel lifting process. The technique to reduce to the square-free case is via taking the gcd of
the input polynomial and its derivative. However, for getting upper bounds on the ABP-size
of the factors, we want to avoid gcd-computations, because no polynomial size upper bound
for the gcd of two ABPs is known.

We avoid this problem by observing that we do not need the polynomial to be square-free.
As we will see, it suffices to have one irreducible factor with multiplicity one, and another
coprime factor.

Let p(x) be the given polynomial, for x = (x1, . . . , xn). The special case that p is a power
of one irreducible polynomial we just handled in Section 3.2. Hence, we may assume that p
has at least two irreducible factors. So let p = qe p0, where q is irreducible and coprime to p0.

Consider the derivative of p w.r.t. some variable, say x1.

∂p

∂x1
= qe−1

(
(e− 1) ∂q

∂x1
p0 + q

∂p0

∂x1

)
. (3)

Note that q does not divide the factor
(

(e− 1) ∂q
∂x1

p0 + q ∂p0
∂x1

)
in (3). Hence, the multiplicity

of factor q in ∂p
∂x1

is reduced by one compared to p.
For the ABP-size, we write p as a polynomial in x1, i.e. p(x) =

∑d
i=0 aix

i
1, where the

coefficients ai are polynomials in x2, . . . , xn. By Lemma 4, when p has an ABP of size s,
then the coefficients ai can be computed by ABPs of size s′ = s(d+ 1). We observe that then
the coefficients of the derivative polynomial ∂p

∂x1
=
∑d
i=1 iaix

i−1
1 have ABPs of size s′ + 1.

We repeat taking derivatives k = e − 1 times and get ∂kp
∂xk

1
, which has the irreducible

factor q with multiplicity one, as desired.
The coefficients of ∂

kp
∂xk

1
can be computed by ABPs of size s′ + 1. This yields an ABP of

size poly(s) that computes ∂kp
∂xk

1
.
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3.4 Transforming to a monic polynomial
Given any polynomial p(z) in variables z = (z1, . . . , zn), there is a standard trick to make
it monic in a new variable x by applying a linear transformation on the variables: for
α = (α1, . . . , αn) ∈ Fn, let

τα : zi 7→ αix+ zi,

for i = 1, . . . , n. Let pα(x, z) be the resulting polynomial. Note that p and pα have the same
degree. We show that pα(x, z) is monic in x, for a random transformation τα.

I Lemma 7 (Transformation to monic). Let p(z) be polynomial of total degree d. Let S ⊆ F
be a finite set. For α ∈ Sn picked independently and uniformly at random,

Pr[ pα(x, z) is monic in x ] ≥ 1− d

|S|
.

Proof. Consider the terms of degree d in p. Let β = (β1, . . . , βn) such that |β| =
∑n
i=1 βi = d.

We denote the term zβ = zβ1
1 · · · zβn

n . Then the homogeneous component of degree d in p
can be written as ad(z) =

∑
|β|=d cβz

β. Note that ad is a nonzero polynomial.
Now consider the transformed polynomial pα. We have degx(pα) = d and the coefficient

of xd in pα is ad(α) =
∑
|β|=d cβα

β. When we pick α at random, ad(α) will be a nonzero
constant with probability ≥ 1− d

|S| by the PIT-Theorem, and in this case pα(x, z) is monic
in x. J

Given an ABP of size s that computes p(z), we can construct another ABP of size 3s
that computes pα(x, z). For the new ABP replace edge labeled by zi by the ABP computing
αix+ zi. For each old edge, this requires adding two new edges with labels αi and x.

3.5 Handling the starting point of Hensel lifting
After doing the above pre-processing steps on the given polynomial p(z), we call the trans-
formed polynomial f(x, z). We can assume that f of degree d can be factorized as f = gh,
where g and h are coprime and g is irreducible. In the first step of Hensel lifting, we
factorize the univariate polynomial f(x, 0, . . . , 0) ≡ f(x, z) (mod z). Now, clearly we have
the factorization f(x, 0, . . . , 0) = g(x, 0, . . . , 0)h(x, 0, . . . , 0), but these two factors might not
be coprime. In this case we do another transformation.
I Remark. Although it would suffice for our purpose to start with two coprime factors, the
transformation below produces one irreducible factor.

Let g0 be an irreducible factor of g(x, 0, . . . , 0). Then we have for some univariate
polynomial h′0(x) and for h0(x) = h′0(x)h(x, 0, . . . , 0),

g ≡ g0 h
′
0 (mod z),

f ≡ g0 h0 (mod z) .

We want that g0 is coprime to h′0 and h0. Directly, this might not be the case because
all factors of f(x, 0, . . . , 0) might have multiplicity > 1. However, we argue how to ensure
this after a random shift α of f . That is, we consider the function f(x, z +α)

1. First, we show how to achieve that g0 is coprime to h′0.
Since g is irreducible, it is also square-free, and hence, gcd(g, ∂g∂x ) = 1. By Lemma 2, the
resultant r(z) = Resx(g, ∂g∂x ) is a polynomial of degree ≤ 4d2 and r(z) 6= 0. Hence, at a
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random point α ∈ [8d2]n, we have r(α) 6= 0 with high probability. At such a point α,
we have that g(x,α) is square-free. Therefore, g(x, z) is square-free modulo (z −α), or,
equivalently, g(x, z +α) is square-free modulo z. Hence, when we define g0 and h′0 from
g(x, z +α) instead of g(x, z), they will be coprime.

2. Similarly, we can achieve that g0 is coprime to h0. By the first item, it now suffices to
get g0 coprime to h(x, 0, . . . , 0).
For showing this, we use that g0 is coprime to h′0 and prove that g(x, 0, . . . , 0) is coprime to
h(x, 0, . . . , 0). Consider the resultant of g and h w.r.t. x, the polynomial r′(z) = Resx(g, h)
has degree ≤ 4d2. Since g and h are coprime, r′(z) 6= 0. Hence, at a random point
α ∈ [8d2]n, we have r′(α) 6= 0 with high probability, and hence g(x,α) and h(x,α) are
coprime univariate polynomials. Therefore, g(x, z) and h(x, z) are coprime modulo (z−α),
or, equivalently, g(x, z +α) and h(x, z +α) are coprime modulo z.

Combining the two items, a random point α ∈ [8d2]n will fulfill both properties with high
probability. So instead of factoring f(x, z), we do a coordinate transformation z 7→ z +α
and factor f(x, z + α) instead. From these factors, we easily get the factors of f(x, z) by
inverting the transformation. Note also that when f(x, z) is monic in x, the same holds
for f(x, z +α).

In the next section, we do another transformation on the input polynomial. We apply a
map on the variables that maps x to x and zi is mapped to yzi, for a new variable y and
i = 1, . . . , n. Then we factorize the transformed polynomial modulo y. Note that in this case,
going modulo y has the same effect of going modulo z. So we can use the above argument to
ensure the starting condition for Hensel lifting is satisfied.

3.6 Reducing multivariate factoring to the bivariate case
Factoring multivariate polynomials can be reduced to the case of bivariate polynomials (see
[12]). Let x, y and z = (z1, . . . , zn) be variables and let f(x, z) be the given polynomial.
With f ∈ F[x, z], we associate the polynomial f̂ ∈ F[x, y,z] defined by

f̂(x, y,z) = f(x, yz1, . . . , yzn) .

The point now is to consider f̂ as a polynomial in F[z][x, y], that is, as a bivariate polynomial
in x and y with coefficients in F[z]. We list some properties.
1. f(x, z) = f̂(x, 1, z),
2. deg(f̂) ≤ 2 deg(f),
3. f monic in x =⇒ f̂ monic in x,
4. f = gh =⇒ f̂ = ĝ ĥ,
5. f̂ = g′ h′ =⇒ f = g′(x, 1, z)h′(x, 1, z).

By property 4, factors of f yield factors of f̂ . The following lemma shows that also the
irreducibility of the factors is maintained.

I Lemma 8. Let f be monic in x and g be a non-trivial irreducible factor of f . Then ĝ is a
non-trivial irreducible factor of f̂ .

Proof. By property 4 above, ĝ is a factor of f̂ . We argue that ĝ is irreducible.
Let ĝ = uv be a factorization of ĝ. By item 5 above, this yields a factorization of g as

g = u(x, 1, z) v(x, 1, z). Since g is monic in x, the same holds for ĝ, and therefore also for
factors u, v. Hence, either u or v must be constant, because otherwise they would provide a
non-trivial factorization of g. J
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Thus, to get an ABP for an irreducible factor g of f , first we show that there is an ABP
for the irreducible factor ĝ. This yields an ABP for g by substituting g = ĝ(x, 1, z).

Given an ABP Bf of size s for f , we get an ABP B
f̂
for f̂ by putting an edge labeled y

in series with every edge labeled zi in Bf , so that B
f̂
computes yzi at every place where Bf

uses zi. Hence, the size of B
f̂
is at most 2s.

3.7 Solving a linear system with polynomials as matrix entries
We show how to solve a linear system Mv = 0 for a polynomial matrix M with entries
from F[z] given as ABPs. We are seeking for a nonzero vector v. Note that such a v exists
over the ring F[z] iff it exists over the field F(z).

Except for minor modifications, this follows from classical linear algebra. Kopparty, Saraf,
and Shpilka [12, Lemma 2.6] have shown the same result for circuits. The proof works as
well for ABPs.

I Lemma 9 (Solving linear systems [12]). Let M = (mi,j(z))i,j be a polynomial matrix of
dimension k×m and variables z = (z1, . . . , zn), where the entries are polynomials mi,j ∈ F[z]
that can be computed by ABPs of size s.

Then there is an ABP of size poly(k,m, s) computing a nonzero vector v ∈ F[z]m such
that Mv = 0 (if it exists).

Proof. After swapping rows of M , we ensure that the j × j submatrix Mj that consists of
the first j rows and the first j columns has full rank, iteratively for j = 1, 2, . . . .

For j = 1 this means to find a nonzero entry in the first column and swap that row with
the first row. If the first column is a zero-column, then v =

(
1 0 · · · 0

)T is a solution
and we are done. To extend from j to j + 1, suppose we have ensured that Mj has full
rank. Now we search for a row from row j + 1 on, such that after a swap with row j + 1,
the submatrix Mj+1 has full rank. This can be tested by Lemma 3. If no such row exists,
then the process stops at j. If j = m then M has full rank and the zero vector is the only
solution. Otherwise, assume the above process stops with j < m.

Now Cramer’s rule can be used to find the unique solution u =
(
u1 u2 · · · uj

)T of
the system

Mju =
(
m1,j+1 m2,j+1 · · · mj,j+1

)T
.

We have ui = detMi
j

detMj
, where M i

j is the matrix obtained by replacing the i-th column of Mj

by the vector
(
m1,j+1 · · · mj,j+1

)T . Now, define

v =
(

detM1
j detM2

j · · · detM j
j −detMj 0 · · · 0

)T
.

Then v is a solution to the original system. Its entries are determinants of matrices with entries
computed by ABPs of size s. Hence, all the entries of v have ABPs of size poly(k,m, s). J

4 Factors of Arithmetic Branching Programs

In this section, we prove that ABPs are closed under factoring.

I Theorem 10. Let p be a polynomial over a field F with characteristic 0. For all factors q
of p, we have

sizeABP(q) ≤ poly(sizeABP(p)) .
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We prove Theorem 10 in the rest of this section. First observe that it suffices to prove
the poly(s) size upper bound for the irreducible factors of p. This yields the same bound for
all the factors. The case when p = qe is proved in Section 3.2. So it remains to consider the
general case when p = pe1

1 · · · pem
m , for m ≥ 2, where p1, . . . , pm are the different irreducible

factors of p. We want to prove an ABP size upper bound for an irreducible factor, say p1.
We start by several transformations on the input polynomial p(z), where z = (z1, . . . , zn).

1. As described in Section 3.3, taking k = e1 − 1 times the derivative w.r.t. some variable,
say z1, we get the polynomial p′(z) = ∂kp(z)

∂zk
1

, where the factor p1 has multiplicity 1.
2. Next, by Lemma 7, we transform p′(z) to a polynomial p′′(x, z) that is monic in x, for

a new variable x. Thereby also the factors of p′(z) are transformed, maintaining their
irreducibilty and multiplicity. The degree of p′′ is twice the degree of p′.

3. At this point, we may have to shift the variables z as described in Section 3.5 to ensure
the properties needed for starting the Hensel lifting. This shift preserves the monicness
and the irreducibility of the factors.

4. Finally, the transformation to a bivariate polynomial is explained in Section 3.6. This
yields polynomial p′′′(x, y,z), with new variable y and monic in x. We rewrite p′′′ as a
polynomial in x and y with coefficients in the ring K = F[z] and call the representation f .
That is, f(x, y) ∈ K[x, y]. By Lemma 8, the tranformation maintains irreducible factors.
Note also that by the definition of p′′′ we have f(x, 0) = p′′′(x, 0, 0, . . . , 0) = f(x, y) mod y,
so that f(x, y) mod y is univariate.

The main part now is to factor f(x, y) ∈ K[x, y], say f = gh, where g ∈ K[x, y] is
irreducible and coprime to h ∈ K[x, y], and f, g, h are monic in x and have x-degree ≥ 1.
Let d be the total degree of f in x, y.

From the factor g of f , we will recover the factor f1 of p by reversing the above transfor-
mations. We show that g can be computed by an ABP of size poly(s). It follows that the
irreducible factor f1 has an ABP of size poly(s).

The basic strategy is to first factor the univariate polynomial f mod y, and then apply
Hensel lifting to get a factorization of f mod yt, for large enough t. Finally, from the lifted
factors modulo yt, we compute the absolute factors of f .

4.1 Hensel lifting
There are various versions of Hensel lifting in the literature (see for example [18]). In our
case, an ABP should be able to perform several iterations of the lifting. Therefore we use
the lifting in a way suitable for ABPs. In particular, in contrast to other presentations, we
will not maintain the monicness of the lifted factors.

Hensel lifting works over rings R modulo an ideal I ⊆ R. In our case, R = K[x, y], where
K = F[z], and I = 〈y〉t, for some t ≥ 1.

I Definition 11 (Lifting). Let R be a ring and I ⊆ R be an ideal. Let f, g, h, a, b ∈ R such
that f ≡ gh (mod I) and ag + bh ≡ 1 (mod I). Then we call g′, h′ ∈ R a lift of g, h with
respect to f , if
(i) f ≡ g′h′ (mod I2),
(ii) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
(iii) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

I Remark. The three conditions in Definition 11 are the invariants when iterating the lifting.
Note that the last condition is actually redundant. It follows from the assumptions together

with the second condition. This can be seen in the proof of Lemma 12 below, where a lift
g′, h′ from g, h is constructed, together with a′, b′. When we show that condition (iii) holds,
we do not use the specific form of g′, h′ constructed there, it suffices to have condition (ii).
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I Lemma 12 (Hensel Lifting). Let R be a ring and I ⊆ R be an ideal. Let f, g, h, a, b ∈ R
such that f ≡ gh (mod I) and ag + bh ≡ 1 (mod I). Then we have:
1. (Existence). There exists a lift g′, h′ of g, h w.r.t. f .
2. (Uniqueness). For any other lift g∗, h∗ of g, h w.r.t. f , there exists a u ∈ I such that

g∗ ≡ g′ (1 + u) (mod I2) and h∗ ≡ h′ (1− u) (mod I2).

Proof. We first show the existence part. Let
1. e = f − gh,
2. g′ = g + be and h′ = h+ ae,
3. c = ag′ + bh′ − 1,
4. a′ = a(1− c) and b′ = b(1− c).

We verify that g′, h′ is a lift of g, h. Because f ≡ gh (mod I), we have e = f − gh ≡ 0
(mod I). In other words, e ∈ I. It follows that g′ ≡ g (mod I) and h′ ≡ h (mod I).

Next we show that f ≡ g′h′ (mod I2).

f − g′h′ = f − (g + be)(h+ ae)
= f − gh− e (ag + bh)− abe2

≡ e− e (ag + bh) (mod I2)
≡ e (1− (ag + bh)) (mod I2)
≡ 0 (mod I2)

In the second line, note that e2∈ I2. The last equality holds because e∈ I and 1−(ag+bh)∈ I.
Now, we verify that a′g′ + b′h′ ≡ 1 (mod I2). First, observe that

c = ag′ + bh′ − 1
≡ ag + bh− 1 (mod I)
≡ 0 (mod I)

Hence, c ∈ I and we conclude that a′ ≡ a (mod I) and b′ ≡ b (mod I). Now,

a′g′ + b′h′ − 1 = a (1− c)g′ + b (1− c)h′ − 1
= ag′ + bh′ − 1− c (ag′ + bh′)
= c− c (ag′ + bh′)
= c (1− (ag′ + bh′))
≡ 0 (mod I2)

The last equality holds because c ∈ I and 1− (ag′ + bh′) ≡ −c ≡ 0 (mod I).
For the uniqueness part, let g∗, h∗ be another lift of g, h. Let α = g∗− g′ and β = h∗−h′.

By Definition 11 (ii), we have g′ ≡ g ≡ g∗ (mod I) and h′ ≡ h ≡ h∗ (mod I), and therefore
α, β ∈ I.

We first show

βg′ + αh′ ≡ 0 (mod I2). (4)

βg′ + αh′ = βg′ + (g∗ − g′)h′

= βg′ + g∗h′ − g′h′

≡ βg′ + g∗h′ − g∗h∗ (mod I2)
≡ βg′ − βg∗ (mod I2)
≡ −αβ (mod I2)
≡ 0 (mod I2)
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Define u = a′α − b′β. Because α, β ∈ I, also u ∈ I. Then, by (4) and because
a′g′ + b′h′ ≡ 1 (mod I2), we have

g′(1 + u) = g′(1 + (a′α− b′β))
= g′ + a′g′α− b′g′β
≡ g′ + a′g′α+ b′h′α (mod I2)
≡ g′ + α (mod I2)
≡ g∗ (mod I2).

Similarly, we get h∗ ≡ h′(1− u) (mod I2). J

For the ABP-size, recall that the size just adds up when doing additions or multiplications.
Hence, when f, g, h, a, b have ABPs of size≤ s and we construct ABPs for g′, h′, a′, b′ according
to steps 1 - 4 in the above proof, then we get ABPs of size O(s).

I Remark. In the monic version of Hensel Lifting there is a division in addition to the 4
steps from above. When we assume that g is monic, we can compute polynomials q and r
such that g′ − g = qg + r, where degx(r) < degx(g). Then one can show that ĝ = g + r and
ĥ = h′(1 + q) are a lift of g, h w.r.t. f . Moreover, when g, h are monic, so are ĝ, ĥ. Also
the Bézout-coefficients â, b̂ can be computed. For ĉ = aĝ + bĥ − 1, let â = a(1 − ĉ) and
b̂ = b(1− ĉ).

The advantage of the monic version is that the result is really unique. There is no 1 + u

factor between monic lifts. The disadvantage is the extra division which would blow up the
ABP-size too much.

4.2 Iterating Hensel lifting
Let f = gh, where g is irreducible and coprime to h, and f, g, h are monic in x with
x-degree ≥ 1.

To start the Hensel lifting procedure, we factor the univariate polynomial f(x, 0) =
f mod y as f(x, 0) = g0(x)h0(x), where g0 is a divisor of g mod y, and coprime to h0, and
degx(g0) ≥ 1. Recall that by the pre-processing in Section 3.5, we may assume that there is
such a decomposition of f(x, 0).

By the Euclidian algorithm, there are polynomials a0(x), b0(x) such that a0g0 + b0h0 = 1.
Hence, for I0 = 〈y〉, we have a0g0 + b0h0 ≡ 1 (mod I0) and initiate Hensel lifting with

f ≡ g0h0 (mod I0).

We iteratively apply Hensel lifting to g0, h0 as described in the proof of Lemma 12. Each
time, the ideal gets squared. Let Ik = I2k

0 . That is, we get polynomials gk, hk such that

f ≡ gkhk (mod Ik),

and gk, hk is a lift of gk−1, hk−1 w.r.t. f . The following lemma states that gk divides g
modulo Ik, for all k ≥ 0. In a sense, the gk’s approximate g modulo increasing powers of y.

I Lemma 13. With the notation from above, for all k ≥ 0 and some polynomial h′k,

g ≡ gkh′k (mod Ik) and hk ≡ hh′k (mod Ik).

Moreover, gk, h′k is a lift of gk−1, h
′
k−1 w.r.t. g and degx(h′k) ≤ degx(hk) = 2O(k), for k ≥ 1.
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Proof. The proof is by induction on k ≥ 0. For the base case, we have that g0 divides g
modulo I0, as explained above. Thus, for some polynomial h′0 that is coprime to g0, we have

g ≡ g0h
′
0 (mod I0),

Hence, we have h0 ≡ h′0h (mod I0). Note that h′0 can be just 1.
For the inductive step, assume that

g ≡ gk−1h
′
k−1 (mod Ik−1) and hk−1 ≡ hh′k−1 (mod Ik−1). (5)

Let g′k, h′′k be a lift of gk−1, h
′
k−1 w.r.t. g, so that in particular

g′kh
′′
k ≡ g (mod Ik). (6)

We claim that then g′k, h h′′k is a lift of gk−1, h h
′
k−1, i.e., of gk−1, hk−1 by (5), w.r.t. f .

B Claim 14. g′k, h h
′′
k is a lift of gk−1, hk−1 w.r.t. f .

Proof. We check the three conditions for a lift in Definition 11. For the product condition (i),
we have by (6)

g′k hh
′′
k = (g′k h′′k)h ≡ gh (mod Ik).

For condition (ii), we have g′k ≡ gk−1 (mod Ik−1) by assumption and similarly

hh′′k ≡ hh′k−1 ≡ hk−1 (mod Ik−1).

By the remark after Definition 11, the condition (iii) already follows now. This proves
Claim 14. C

Recall that also gk, hk is a lift of gk−1, hk−1. Hence, by the uniqueness property of Hensel
lifting, there is a u ∈ Ik−1 such that

g′k ≡ gk (1 + u) (mod Ik) and hh′′k ≡ hk (1− u) (mod Ik) (7)

Now observe that we can move the factor 1 + u: we have that gk (1 + u), h h′′k is a lift of
gk−1, hk−1, then also gk, h h′′k (1 + u) is a lift of gk−1, hk−1.

B Claim 15. gk, h h
′′
k (1 + u) is a lift of gk−1, hk−1 w.r.t. f .

Proof. We check the conditions for a lift in Definition 11. The first two of them are trivial:
moving the factor 1 + u clearly does not change the product. Because u ∈ Ik−1 we still have
the equality with the factors gk−1 and hk−1 modulo Ik−1, respectively.

By the remark after Definition 11, the third condition already follows, but it also easy to
check now:

Let a, b ∈ R such that agk + bhk ≡ 1 (mod Ik). It follows by (7) that

agk + bh h′′k(1 + u) ≡ agk + bhk(1− u)(1 + u) ≡ agk + bhk(1− u2) ≡ 1 (mod Ik).

This proves Claim 15. C
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Now, define h′k = h′′k(1 + u). Note that

h′k ≡ h′′k ≡ h′k−1 (mod Ik−1). (8)

By (7), we have

hh′k ≡ hh′′k (1 + u) ≡ hk(1− u)(1 + u) ≡ hk (mod Ik). (9)

By (9) we have

f = gh ≡ gkhk ≡ gkhh′k (mod Ik). (10)

It follows from (10) that gh ≡ gkh′kh (mod Ik). Now we want to cancel h in the last equation
and conclude that g ≡ gkh′k (mod Ik). This we can do because h is monic in x, it does not
contain a factor y, i.e. h 6∈ I0. Hence, together with (8), we conclude that gk, h′k is a lift of
gk−1, h

′
k−1 w.r.t. g.

For the x-degree of h′k, consider the equation hk ≡ hh′k (mod Ik). Since h is monic in x
the highest x-degree term in the product hh′k will survive the modulo operation. Therefore
degx(h′k) ≤ degx(h) + degx(h′k) = degx(hk).

To bound the degree of hk observe that in each round of the Hensel lifting, the maximum
possible degree is bounded by a constant multiple (≤ 5) of the maximum degree in the
previous round. After k iterations, the degree of the lifted factors is therefore bounded
by 2O(k). J

For the ABP-size, we observed at the end of Section 4.1 that the size increases by a
constant factor in one iteration. Hence, after k iterations, the size increases by a factor 2O(k).

4.3 Factor reconstruction for ABP
We show how to get the absolute factor g of f from the lifted factor. This is called the jump
step in Sudan’s lecture notes [18]. The difference to the earlier presentations is that our lifted
factor might not be monic.

Let f = gh, where f has degree d, factor g is irreducible and coprime to h, and f, g, h
are monic in x. In the previous section, we started with a factorization f ≡ g0h0 (mod I0),
where g0 is irreducible and coprime to h0. Moreover, g ≡ g0h

′
0 (mod I0), for some h′0 such

that h0 = hh′0 (mod I0).
Then we apply Hensel lifting, say t-times, for some t to be determined below. By

Lemma 13, we get a factorization f ≡ gtht (mod It) such that

g ≡ gth′t (mod It), (11)

for some h′t such that ht ≡ hh′t (mod It).
Equation (11) gives us a relation between the known gt and the unknown g, via the

unknown h′t. We set up a linear system of equations to find a polynomial g̃ ∈ K[x, y] that is
monic in x and has minimal degree in x such that

g̃ ≡ gth̃ (mod It), (12)

for some polynomial h̃. We give some more details to the linear system below, after the next
lemma. Before, we show that g̃ is indeed the factor we were looking for, for large enough t.

I Lemma 16. g̃ = g, for t ≥ log (4d2 + 1).

CCC 2020



33:16 Factorization of Polynomials Given by Arithmetic Branching Programs

Proof. Consider the resultant r(y) = Resx(g, g̃). We show that r(y) = 0. Then it follows
from Lemma 2 that g and g̃ share a common factor with positive x-degree. Since g is
irreducible it must be a divisor of g̃. Since both of them are monic and have the same
x-degree, we get equality g̃ = g, up to constant multiples.

To argue that r(y) = 0, recall from Lemma 2 that the resultant can be written as
r(y) = ug + vg̃, for some polynomials u and v. By (11) and (12), we have

ug + vg̃ ≡ gt(uh′t + vh̃) (mod It)

Consider gt and w = uh′t + vh̃ as polynomials in y with coefficients in x. Suppose
gt = c0(x) + c1(x)y + . . . + cd′(x)yd′ . By the properties of Hensel lifting, we have gt ≡ g0
(mod I0), and therefore c0(x) = g0(x). Recall that g0 is non-constant, deg(g0) ≥ 1.

Let j ≥ 0 be the least power of y that appears in w and let its coefficient be wj(x).
Suppose for the sake of contradiction that j < 2t. Then the least power of y in gtw is also j,
and its coefficient is g0(x)wj(x), which is a nonzero polynomial in x.

The monomials present in g0(x)wj(x)yj cannot be canceled by other monomials in gtw
because they have larger y-degree. It follows that gtw mod It is not free of x. On the other
hand, r(y) ≡ gtw (mod It) and r(y) ∈ K[y] is a polynomial with no variable x. This is a
contradiction.

We conclude that j ≥ 2t, which means that w ≡ 0 (mod It). Hence, we get r(y) ≡ 0
(mod It). Recall that deg(r) ≤ 4d2. Now we choose t ≥ log (4d2 + 1). Then we can conclude
that indeed r(y) = 0. J

Details for setting up the linear system. Equation (12) can be used to set up a homogeneous
system of linear equations. For the degree bounds of the polynomials, let dx = degx(g) and
dy = degy(g). We may assume that we know dx and dy. Let Dx = degx(gt) and Dy = 4d2,
where d = deg(f). Let D′x = degx(ht). Recall from Lemma 13 that degx(h̃) ≤ D′x. Let

gt =
∑

i≤Dx,j≤Dy

ci,j x
iyj ,

g̃ = xdx +
∑

i<dx,j≤dy

ri,j x
iyj ,

h̃ =
∑

i≤D′
x,j≤Dy

si,j x
iyj ,

where the coefficients ci,j , ri,j , si,j are polynomials in the variables z1, . . . , zn. To ensure that
g̃ is monic, we set the coefficient of xdx in g̃ to be 1.

Note that we have an ABP that computes gt. Hence, there are ABPs for computing the
coefficients ci,j of gt by Lemma 4. The coefficients ri,j , si,j of g̃ and h̃ we treat as unknowns.
Equation (12) now becomes∑

i≤dx,j≤dy

ri,jx
iyj ≡

∑
i≤Dx,j≤Dy

ci,jx
iyj

∑
i≤D′

x,j≤Dy

si,jx
iyj (mod y2d2+1) (13)

Now we equate the coefficients of the monomials xkyl on both sides in (13). Then we get
(Dx +D′x + 1)(Dy + 1) homogeneous linear equations in dx(dy + 1) + (D′x + 1)(Dy + 1) many
unknowns ri,j and si,j . This system can be expressed in the form Mv = 0, for a matrix M
and unknown vector v.

By Lemma 9, an ABP can efficiently compute a solution vector v of polynomials from
F[z]. Note that by (11), a nontrivial solution is guaranteed to exist. From v, we get the
coefficients ri,j of g̃, and hence of the factor g.
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4.4 Size Analysis
We summarize the bound on the ABP-size of the factor computed. Given polynomial p of
degree dp and sizeABP(p) = s. We have seen that the pre-processing transformations yield
a polynomial f of degree df ≤ 2dp and sizeABP(f) = poly(s). Then we do t = log (2d2

f + 1)
iterations of Hensel lifting. The initial polynomials f0, g0, h0 have ABP-size bound by 2df .
Hence, the polynomials after the last iteration have ABP-size bounded by 2t poly(s) =
poly(s, dp) = poly(s).

From the lifted factor we construct the actual factor of f . This step involves solving a
linear system. We argued that the resulting polynomial g has ABP-size poly(s).

Finally, we reverse the transformations from the beginning and get a factor of p that has
an ABP of size poly(s). This finishes the proof of Theorem 10.

5 Applications

5.1 Root Finding
Given a polynomial p ∈ F[x,y], the root finding problem asks for a polynomial r ∈ F[y] such
that p(r(y),y) = 0. By a lemma of Gauß, r is a root of p iff x− r(y) is an irreducible factor
of p. By Theorem 10, when p is given by an ABP, we get an ABP for x − r(y). Setting
x = 0 and inverting the sign gives an ABP for r(y).

I Corollary 17. The solutions of the root finding problem for a polynomial p given by an
ABP can be computed by ABPs of size poly(sizeABP(p)).

5.2 Hardness vs. Randomness
As an application of Theorem 10, we get that lower bounds for ABPs imply a black-box
derandomization of polynomial identity tests (PIT) for ABPs, similar to the result of Kabanets
and Impagliazzo [8, Theorem 7.7] for arithmetic circuits.

I Theorem 18 (Hitting-set from hard polynomial ). Let {qm}m≥1 be a multilinear polynomial
family such that qm is computable in time 2O(m), but has no ABP of size 2o(m). Then one
can compute a hitting set for ABPs of size s in time sO(log s).

The proof is similar to the proof given by Kabanets and Impagliazzo [8, Theorem 7.7] for
circuits. At one point, they invoke Kaltofen’s factor result for circuits. This can be replaced
now by Theorem 10 for ABPs. Finally, from a given ABP of size s with n variables, we can
get another ABP of size poly(s) and logn variables by replacing the original variables by a
hitting set generator, n polynomials computed by small size ABPs. This final composition
step also goes through for ABPs. We will give more details in the final version of the paper.

6 Conclusion and Open Problems

We prove that the class of polynomials computed by ABPs is closed under factors. As a
direct corollary, we get that the gcd of two polynomials computed by small-sized ABPs has
small ABP size.

Our proof seems not to extend to the model of arithmetic formulas. The bottleneck is
the last step, as the determinant of a symbolic matrix (xi,j)n×n may not have poly(n) size
formulas. One way to avoid computing the determinant is by making the lifted factor monic
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in each round of Hensel lifting. But the direct implementation of monic Hensel lifting leads
to a quasi-poly blow-up of formula size because it involves polynomial division in each step.
So the closure of formulas under factors remains an open problem.

If one could show that arithmetic formulas are not closed under factors, i.e. if some
polynomial f(x1, . . . , xn) exists that requires formula of size ≥ nlogn, but has a nonzero
multiple of formula-size poly(n), then, by our result, VF would be separated from VBP and
by Kaltofen’s result, VF would be separated from VP.

Besides arithmetic formulas, there are other models for which poly(s, d) upper bound on
the size of factors are not known. For example, read-once oblivious arithmetic branching
programs (ROABP) and constant depth arithmetic circuits.
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Abstract
We consider the task of proving integer infeasibility of a bounded convex K in Rn using a general
branching proof system. In a general branching proof, one constructs a branching tree by adding an
integer disjunction ax ≤ b or ax ≥ b + 1, a ∈ Zn, b ∈ Z, at each node, such that the leaves of the
tree correspond to empty sets (i.e., K together with the inequalities picked up from the root to leaf
is empty).

Recently, Beame et al (ITCS 2018), asked whether the bit size of the coefficients in a branching
proof, which they named stabbing planes (SP) refutations, for the case of polytopes derived from
SAT formulas, can be assumed to be polynomial in n. We resolve this question in the affirmative,
by showing that any branching proof can be recompiled so that the normals of the disjunctions have
coefficients of size at most (nR)O(n2), where R ∈ N is the radius of an `1 ball containing K, while
increasing the number of nodes in the branching tree by at most a factor O(n). Our recompilation
techniques works by first replacing each disjunction using an iterated Diophantine approximation,
introduced by Frank and Tardos (Combinatorica 1986), and proceeds by “fixing up” the leaves of
the tree using judiciously added Chvátal-Gomory (CG) cuts.

As our second contribution, we show that Tseitin formulas, an important class of infeasible SAT
instances, have quasi-polynomial sized cutting plane (CP) refutations. This disproves a conjecture
that Tseitin formulas are (exponentially) hard for CP. Our upper bound follows by recompiling the
quasi-polynomial sized SP refutations for Tseitin formulas due to Beame et al, which have a special
enumerative form, into a CP proof of the same length using a serialization technique of Cook et al
(Discrete Appl. Math. 1987).

As our final contribution, we give a simple family of polytopes in [0, 1]n requiring exponential
sized branching proofs.
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1 Introduction

A principal challenge in SAT solving is finding short proofs of unsatisfiability of SAT formulas.
This task is particularly important in the automatic verification of computer programs, where
incorrect runs of the program or bugs (e.g., divide by zero) can be encoded as satisfying
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34:2 On the Complexity of Branching Proofs

assignments to SAT formulas derived from the program specification. In this case, the
corresponding formula is an UNSAT instance if the corresponding program is correct, or at
least devoid of certain types of bugs.

The study of how long or short such UNSAT proofs can be is the main focus of the field
of proof complexity. Indeed, popular SAT algorithms, such as DPLL search, i.e. branching
on variables combined with unit propagation, or Conflict Driven Clause Learning (CDCL),
implicitly generate infeasibility proofs in standard proof systems such as Resolution or
Cutting Planes. From the negative perspective, lower bounds on the length of UNSAT proofs
in these systems automatically imply lower bounds on the running time of the corresponding
SAT algorithms. On the positive side, understanding which UNSAT instances have short
proofs can inspire the design of good heuristics and algorithms for trying to find such proofs
automatically.

The analoguous problem in the context of Integer Programming (IP) is that of showing
that a linear system of inequalities has no integer solutions. This problem also encapsulates
SAT: for a formula Φ(x) := ∧j∈[m]Cj(x), where Cj(x) = ∨i∈Lj

xi ∨i∈L̄j
x̄i, j ∈ [m], Φ is

unsatisfiable if and only if the linear system∑
i∈Lj

xi +
∑
i∈L̄j

(1− xi) ≥ 1, j ∈ [m] (SAT-LP)

0 ≤ xi ≤ 1, i ∈ [n]

has no integer solutions (in this case {0, 1}). IP solvers such as CPLEX or Gurobi
routinely produce such infeasibility proofs in the so-called proof of optimality phase of the
solution process. More precisely, once a solver has found a candidate optimal solution x∗ to
an integer linear program

min cx subject to Ax ≤ b,x ∈ Zn (IP)

optimality is proved by showing that the linear system

cx < cx∗ (IP-LP)
Ax ≤ b

has no integer solutions. In practice, this is most often achieved by a mixture of Branch
& Bound and Cutting Planes. We note that most applications are modelled using mixed
integer linear programs (MIP), where a decision variable xi can be continuous (xi ∈ R),
binary (xi ∈ {0, 1}) or general integer (xi ∈ Z), with binary and continuous variables being
the most common.

1.1 Branching Proofs
For proving infeasibility of a SAT formula or an integer linear program, where we denote
the continuous relaxation of the feasible region by K ⊆ Rn (e.g., (SAT-LP) or (IP-LP)), the
most basic strategy is to build a search tree based on so-called variable branching. That
is, we build a rooted binary tree T , where at each internal node v we choose a “promising”
candidate integer variable xi and create two children vl, vr corresponding either side of the
disjunction xi ≤ b (left child vl) and xi ≥ b+ 1 (right child vr), for some b ∈ Z. The edge
from the parent to its child is labelled with the corresponding inequality. If xi is binary, one
always sets b = 0, corresponding to branching on xi = 0 or xi = 1. To each node is associated
its continuous relaxation Kv, corresponding to K together with the inequalities on the edges
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of the unique path from the root to v in T . To be a valid proof of integer infeasibility, we
require that the continuous relaxation Kv be empty at every leaf node v ∈ T . We then call
the proof tree T as above a variable branching proof of integer infeasibility for K. We will
consider the length of branching proof, interpreted as the “number of lines” of the proof, to
be equal to the number of nodes in T , which we denote |T |.

When applied to a SAT formula as in (SAT-LP), a variable branching tree T as above
is in correspondance with a run of DPLL search, noting that LP infeasibility of a node is
equivalent to unit propagation (i.e., iteratively propagating the values of variables appearing
in single literal clauses) yielding a conflict1. Similarly when applied to an integer program as
in (IP-LP) for which the optimal value is known, the above is equivalent to standard Branch
and Bound.

Branching on General Integer Disjunctions. To obtain a more general proof strategy one
may examine a richer class of disjunctions. Instead of branching only on variables as above,
one may also branch on a general integer disjunction ax ≤ b or ax ≥ b+ 1, where a ∈ Zn
and b ∈ Z, noting that any integer point x ∈ Zn must satisfy exactly one of these inequalities.
One may then define branching proofs of infeasibility for K using general integer disjunctions
exactly as above, which we call general branching proofs. We note that in principle, the
continuous relaxation K can be arbitrary, i.e. it need not be a polytope. In this work, we
will in fact consider the case where K is a compact convex set in Rn. Furthermore, it is easy
to extend branching proofs to the case of mixed integer infeasibility, where we want to certify
that K ∩ Zk ×Rn−k = ∅, that is, where only the first k variables are restricted to be integer.
In this setting, one need only restrict the disjunctions ax ≤ b or ≥ b to have support on the
integer variables; precisely, we enforce a ∈ Zk × {0}n−k, b ∈ Z.

As formalized above, the attentive reader may have noticed that there is no mechanism to
“certify” the emptiness of the leaf nodes of the tree. In many cases, such certificates can be
appended to the leaves yielding a certified branching proof, however their exact form will differ
depending on the representation of K (e.g., LP, SOCP or SDP). In the important case where
the continuous relaxation is a polytope K = {x ∈ Rn : Cx ≤ d}, emptiness of a leaf node
can indeed be certified efficiently using a so-called Farkas certificate of infeasibility. Let T be
branching proof for K and let v ∈ T be a leaf node with Kv = {x ∈ Rn : Cx ≤ d,Avx ≤ bv},
where Avx ≤ bv represents all the inequalities induced by the branching decisions on the
path from the root to v. Then, by Farkas’s lemma Kv = ∅ iff there exists multipliers
λv := (λv,1,λv,2) ≥ 0, known as a Farkas certificate, such that λv,1C + λv,2Av = 0 and
λv,1d + λv,2b < 0. Therefore, for a polyhedral feasible region, we may certify the branching
proof by labeling each leaf node v ∈ T with its Farkas certificate λv.

For a variable branching proof T , especially for {0, 1} IPs, the tree size |T | is arguably
the most important measure of the complexity of the proof. However, for a general branching
proof T , the tree size |T | ignores the “complexity” of the individual disjunctions. Note that
we have not a priori set any restrictions on the size of the coefficients for the disjunctions
ax ≤ b or ≥ b+ 1 used in the nodes of the tree. To accurately capture this complexity, we
will also measure the number of bits needed to write down the description of T , which we
denote by 〈T 〉. Here, 〈T 〉 includes the bit-size of all the disjunctions ax ≤ b or ≥ b+ 1 used

1 Note that if unit propagation finds a conflict at a node of the tree, the corresponding node LP
(i.e. (SAT-LP) with some variables fixed to 0 or 1) is also infeasible. If unit propagation terminates
without a conflict, then setting all non-propagated variables to 1/2 yields a feasible LP solution since
every surviving clause has at least 2 literals.
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34:4 On the Complexity of Branching Proofs

in T . For a certified branching proof, as introduced above, we also include the bit-length of
the infeasibility certificates at the leaves to 〈T 〉. Understanding how large the coefficients
need to be to ensure near-optimal tree size will be one of the principal interests of this work.

Applications of General Branching. While variable branching is the most prevalent in
practice, due to its simplicity and ease of implementation, it is well-known that branching
on general integer disjunctions can lead to much smaller search trees. In practice, general
branching is used when certain simple constraints such as

∑n
i=1 xi = 1, xi binary, are present

in the model, which is part of the family of specially ordered set constraints [3]. In this
context, one may branch on

∑n/2
i=1 xi = 0 or

∑n/2
i=1 xi = 1 to a get a more balanced search

tree. A more recent idea of Fischetti and Lodi [11], known as local branching, is to branch
on disjunctions which control the Hamming distance to the best incumbent solution x∗,
e.g.

∑
i:x∗

i
=0 xi +

∑
i:x∗

i
=1(1 − xi) ≤ k or ≥ k + 1. This provides a very effective way of

controlling the search neighborhood, and allows one to find improving solutions more quickly.
From the theoretical side, a seminal result is that of Lenstra [17], who gave a fixed

dimension polynomial time algorithm for Integer Programming based on basis reduction
and general branching. Relating to branching proofs, his result directly implies that every
integer free compact convex set admits a general branching proof of length O(f(n)n), where
f(n), the so-called flatness constant, is the supremum of the lattice width over integer
free compact convex set in dimension n. It is known that f(n) = Õ(n4/3) [2, 22] and
f(n) = Ω(n). We note that already in R2, there are simple integer free polytopes, e.g.,
{x ∈ R2 : x1 − x2 = 1/2, 0 ≤ x1 ≤ k}, for k ∈ N, with arbitrarily long variable branching
proofs. Inspired by Lenstra’s result, there has been a line of work on the use of basis
reduction techniques to reformulate IPs so that they become “easy” for variable branching.
This approach has been successfully theoretically analyzed for certain classes of knapsack
problems as well as random IPs (see [20] for a survey) and experimentally analyzed on various
classes of instances [1, 16]. There has also been experimental work on how to come up with
good general branching directions in practice using heuristic methods [19, 18, 14].

1.2 Cutting Planes
Another fundamental proof system, studied extensively within both the IP and SAT contexts
are cutting planes (CP) proofs. The most fundamental class of cutting planes are so-called
Chvátal-Gomory (CG) cuts, which are the principal class studied within SAT and one of the
most important classes of cuts in IP [13].

CG cuts for a set K ⊆ Rn are derived geometrically as follows. Assume that the
inequality ax ≤ r, a ∈ Zn, r ∈ R, is valid for K, that is, x ∈ K ⇒ ax ≤ r. Then,
the inequality ax ≤ brc is valid for K ∩ Zn, since x ∈ Zn implies that ax ∈ Z. Given
a ∈ Zn, the strongest cut of this form one can derive for K is clearly ax ≤ bsupz∈K azc.
We therefore denote this cut to be the CG cut of K induced by a, and we use the notation
CG(K,a) := {x ∈ K : ax ≤ bsupz∈K azc} to denote applying the CG cut induced by a to
K. We may extend this to an ordered list L = (a1, . . . ,ak), letting CG(K,L) be the result
of applying the CG cuts induced by a1, . . . ,ak to K one by one in this order (from left to
right).

In terms of certifying such cuts, if K = {x ∈ Rn : Cx ≤ d}, C ∈ Qm×n,d ∈ Qm, is a
polyhedron, then by Farkas’s lemma, every CG cut can be obtained as a conic combination
of the constraints after rounding down the right hand side. That is, for each λ ≥ 0 such that
λC ∈ Zn, we have the corresponding CG cut λCx ≤ bλdc, and every CG cut for K can be
derived in this way.
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A cutting plane proof (CP) of integer infeasibility for K ⊆ Rn can now be described
as a list L = (a1, . . . ,aN ), ai ∈ Zn, such that CG(K,L) = ∅. In this context, the number
of CG cuts N denotes the length of the CP proof. When K = {x ∈ Rn : Cx ≤ d} is a
polyhedron as above, to get a certified proof, we can augment L with multipliers λ1 ∈
Rm+ ,λ2 ∈ Rm+1

+ , . . . ,λN+1 ∈ Rm+N
+ (we still refer to the length of L as N in this case).

Letting Li := (a1, . . . ,ai), i ∈ [N ], the multipliers λi ∈ Rm+i−1
+ , 0 ≤ i ≤ N , certify the cut

aix ≤ bsup{aiz : z ∈ CG(K,Li−1)}c, in the manner described in the previous paragraph,
using the the original inequalities Cx ≤ d (the first m components of λi) and the previous
cuts ajx ≤ bsup{ajz : z ∈ CG(K,Lj−1)}c, j ∈ [i− 1]. Finally, λN+1 ∈ Rm+N

+ provides the
Farkas certificate of infeasibility for CG(K,L), using the original system together with all
the cuts.

As with branching proofs, it is important to be able to control the bit-size 〈L〉 of a CP
proof and not just its length (i.e., the number of cuts in the list L). Here 〈L〉 corresponds to
the number of bits needed to describe 〈a1, . . . ,aN 〉, as well as 〈λ1, . . . ,λN+1〉 for a certified
proof. When K = {x ∈ Rn : Cx ≤ d} is a polyhedron as above, a fundamental theorem of
Cook, Coullard and Turán [7] is that any CP proof L of integer infeasibility for K can be
recompiled into a certified CP proof L′, such that N := |L| = |L′| and 〈L′〉 = poly(N,L),
where L := 〈C,d〉 is the number of bits needed to describe the linear system defining K.
Thus, for CP proofs on polyhedra, one can, without loss of generality, assume that the
bit-size of a CP proof is polynomially related to its length and the bit-size of the defining
linear system.

In terms of general complexity upper bounds, another important theorem of [7] is that
every integer free rational polytope K ⊆ Rn admits a CP proof of infeasibility of length
O(f(n)n), where f(n) is the flatness constant. This bound was achieved by showing that a
run of Lenstra’s algorithm can effectively be converted into a CP proof.

To relate CP and branching proofs, there is a simple disjunctive characterization of CG
cuts. Namely, ax ≤ b, a ∈ Zn, b ∈ Z is a CG cut for K iff {x ∈ K : ax ≥ b+ 1} = ∅. That
is, if and only if the right side of the disjunction ax ≤ b or ≥ b+ 1 is empty for K. From
this observation, one can easily show that any CP proof of infeasibility can be converted into
a branching proof of infeasibility with only an O(1) factor blowup in length (see [5] for a
formal proof).

1.3 Complexity of Branching Proofs
Despite its long history of study within IP, general branching has only recently been studied
from the SAT perspective. In [5], Beame et al rediscovered the concept of general branching
proofs in the context SAT, naming them stabbing planes (SP) refutations, and analyzed
them from the proof complexity perspective. To keep with this nomenclature, we use the
term stabbing planes (SP) refutations to refer specifically to a certified branching proofs of
infeasibility for SAT formulas. In terms of results, they showed that SP refutations can size
or depth simulate CP proofs and showed that they are equivalent to Krajíček’s [15] tree-like
R(CP) refutations. They further gave lower bounds and impossibility results, showing an
Ω(n/ logn) lower bound on the depth of SP refutations and showed that SP refutations
cannot be balanced.

Lastly, they provided upper bounds on the length of SP refutations, showing that any
Tseitin formula has a quasi-polynomial sized SP refutation. We recall that a Tseitin formula
is indexed by a constant degree graph G = (V,E) and a set of parities lv ∈ {0, 1}, v ∈ V ,
satisfying

∑
v∈V lv ≡ 1 mod 2. The variables x ∈ {0, 1}E index the corresponding subset

of edges where the assignment x is a satisfying assignment iff
∑
e∈E:v∈e xe ≡ lv mod 2,
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34:6 On the Complexity of Branching Proofs

∀v ∈ V . Note that such a formula is clearly unsatisfiable, since the sum of degrees of any
(sub)graph is even whereas

∑
v∈V lv is odd by assumption. For such formulas, Beame et al

gave a 2∆(n∆)O(logn) length SP refutations, where ∆ is the maximum degree of G. A long
standing conjecture [4, 5] is that Tseitin formulas are hard for cutting planes, and thus the
above was seen as evidence that SP refutations are strictly stronger than CP. We note that
exponential lower bounds for CP were first proven by Pudlák [21], who showed how to derive
CP lower bounds from monotone circuit lower bounds. The corresponding monotone circuit
problem for Tseitin formulas is easy however, and hence cannot be used for proving strong
lower bounds.

Beame et al [5] left open some very natural proof complexity theoretic questions about
branching proofs, which highlighted fundamental gaps in our understanding of the proof
system. Their first question relates to the relationship between bit-size 〈T 〉 and length |T |
of an SP proof. Precisely, they asked whether one can always assume that the bit size of
an SP refutation is bounded by a polynomial in the dimension and the length of the proof,
that is, can an SP refutation be “recompiled” so that it satisfies this requirement without
increasing its length by much. As mentioned previously, the corresponding result for CP
refutations was already shown by Cook et al [7], though the techniques there do not seem to
apply to SP. Their second question was whether one could show a separation between CP
and SP, which would follow if Tseitin formulas are (say exponentially) hard for CP. Lastly,
they asked whether one can prove super-polynomial lower bounds for SP.

1.4 Our Contributions
In this work, we give answers to many of the questions above. Firstly, we resolve Beame et
al’s bit-size vs length question affirmatively. Secondly, we show that Tseitin formulas have
quasi-polynomial size CP proofs, showing that they do not provide an exponential separation
between CP and SP. Lastly, we give a very simple family of n-dimensional (mixed-)integer
free polytopes for which any branching proof has size exponential in n. We describe these
contributions in detail below.

Bit-size of Branching Proofs. As our first main contribution, we resolve Beame et al’s
bit-size vs length question, by proving the following more general result:

I Theorem 1. Let K ⊆ Rn be an integer free compact convex set satisfying K ⊆ RBn1 ,
where Bn1 is the `1 ball and R ∈ N. Let T be a branching proof of integer infeasibility
for K. Then, there exists a branching proof T ′ for K, such that |T ′| ≤ O(n|T |), and
where every edge e of T ′ is labeled by an inequality a′ex ≤ b′e, a′e ∈ Zn, b′e ∈ Z, where
max{‖a′e‖∞, |b′e|} ≤ (10nR)(n+2)2 . Moreover, 〈T ′〉 = O(n3 log2(nR)|T |).

The above theorem says that at the cost of increasing the number of nodes in the
branching tree by a factor O(n), one can reduce the coefficients in the normals of the
disjunctions to (10nR)(n+2)2 . In particular, since a′e, b′e are integral, they can be described
with O(n3 log2(nR)) bits. We note that the final bound on 〈T ′〉 ends up being better than
O(n3 log2(nR)|T ′|) = O(n4 log2(nR)|T |), due to the fact that “extra” nodes we need in T ′
use smaller disjunctions needing only O(n2 log2(nR)) bits. In the context of SAT, the desired
bound on the coefficients of SP proofs follows directly from the fact that any SAT polytope,
as in (SAT-LP), is contained inside [0, 1]n ⊆ nBn1 .

As mentioned in the previous subsection, one would generally want a branching proof
to come with certificates of infeasibility for the leaf nodes. For a rational polytope K, the
following corollary bounds the cost of extending the branching proof produced by Theorem 1
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to a certified branching proof. Precisely, the bit-size of the final certified proof can be made
proportional to the size of the original tree, the bit-encoding length of the defining system
for K and a polynomial in the dimension.

I Corollary 2. Let K = {x ∈ Rn : Cx ≤ d} be rational polytope with C ∈ Qm×n,d ∈ Qm
having bit-size L := 〈C,d〉. Let T be a branching proof for K. Then there exists a certified
branching proof T ′ for K such that |T ′| ≤ O(n)|T | and 〈T ′〉 = O(n6L)|T |.

The bit-size L := 〈C,d〉 of K in Corollary 2 shows up for two related reasons. Firstly,
we need L to upper bound the `1 circumradius R of K, which is in turn used to bound
the bit-size of the disjunctions in Theorem 1. For a rational polytope K, R is in fact
always upper bounded by 2O(L). We stress that 2O(L) more directly upper bounds the `1
norm of the vertices of K, which in turns upper bounds the `1 circumradius of K only
under the assumption that K is indeed bounded (i.e., that K is polytope and not just a
polyhedron). However, it is well known that for a rational polyhedron K, K ∩ Zn = ∅
iff K ∩ 2O(L)Bn1 ∩ Zn = ∅ (see Schrijver [24] Chapter 17). Therefore, the boundedness
assumption above is essentially without loss of generality. More precisely, one can simply
add box constraints −2O(L) ≤ xi ≤ 2O(L), i ∈ [n], to the description of K, which increases
the description length by an O(n) factor. The second reason for needing L is to bound the
bit-complexity of the Farkas infeasibility certificates at the leaves of the modified branching
tree. By standard bounds, such a certificate has bit-size bounded by O(n) times the bit
description length of a minimal infeasible subsystem (over the reals) at the corresponding
leaf. By Helly’s theorem, a minimal infeasible subsystem has at most n + 1 inequalities
consisting of a subset of the inequalities defining K and the inequalities from branching,
where each of these inequalities has bit-size at most O(n3L) by Theorem 1.

Sketch of Theorem 1. We now give some intuition about the difficulties in proving The-
orem 1, which is technically challenging, and sketch the high level proof ideas.

We first note that any disjunction ax ≤ b or ≥ b+ 1, where a has very large coefficients,
only cuts off a very thin slice of K. In particular, the width of the band b ≤ ax ≤ b + 1
is exactly 1/‖a‖2. Thus, it is perhaps intuitive that any “optimal” proof should use wide
disjunctions instead of thin ones, and hence should have reasonably small coefficients. This
intuition turns out to be false however, as the angle of a disjunction can in fact be more
important than its width for a proof of optimal length.

The following simple 2 dimensional example shows that if one wishes to exactly preserve
the length of a branching proof, then large coefficients are unavoidable even for sets of
constant radius. Examine the line segment

K = {(x1, x2) : Mx1 + x2 = 1/2, 0 ≤ x2 ≤ 2}

for M ≥ 1. Clearly, branching on Mx1 + x2 ≤ 0 or ≥ 1 certifies integer infeasibility in one
step. Now let a ∈ Z2 be any branching direction that also certifies infeasibility in one step.
Then, the width of K with respect to a must be less than one:

max
x∈K

ax− min
x∈K

ax = |2(a2 − a1/M)| < 1.

Now if a2 6= 0, then |a1| ≥M/2, so ‖a‖∞ ≥M/2. If a2 = 0, then we should let a = (1, 0),
since this choice yields the widest possible disjunctions under this restriction. Branching on
a = (1, 0) cannot certify infeasibility in one step however, since x = (0, 1/2) ∈ K and ax = 0.

CCC 2020
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To recompile a proof T using only small coefficients, we are thus forced to make do with
a discrete set of disjunction angles that may force us to increase the length of the proof.
Given an arbitrary branching direction a, the standard tool for approximating the direction
of a using small coefficients is so-called Diophantine approximation (see Lemma 13). Thus,
the natural first attempt would be to take every disjunction ax ≤ b or ≥ b + 1 in T and
replace it by its small coefficient Diophantine approximation a′x ≤ b′ or ≥ b′ + 1 to get T ′.
As shown above, there are examples where any such small coefficient T ′ will no longer be
valid, namely some of the leaf nodes may become feasible.

Let v ∈ T be a leaf node with relaxation Kv = {x ∈ K : Ax ≤ b} = ∅ and corresponding
approximation v′ ∈ T ′ withKv′ = {x ∈ K : A′vx ≤ b′v} 6= ∅. To transform T ′ to a valid proof,
we must therefore add branching decisions to T ′ below v′ to certify integer-freeness of Kv′ .
From here, the main intuitive observation is that since Pv := Avx ≤ bv and Pv′ := A′vx ≤ b′v
have almost the same inequalities, Pv′ ∩K should be very close to infeasible.

By inspecting a Farkas-type certificate of infeasibility fo K ∩ Pv (see section 2.4), for a
good enough Diophantine approximation Pv′ to Pv, one can in fact pinpoint an inequality
of Pv′ , say a′v,1x ≤ b′v,1, such that replacing b′v,1 by b′v,1 − 1 makes K ∩ Pv′ empty. This
uses the boundedness of K, i.e., K ⊆ RBn1 , and that the disjunctions induced by the rows
of A′ are much wider than those induced by A. Note that the emptiness of a′v,1x ≤ b′1,v − 1
corresponds to saying that a′v,1x ≥ b′v,1 is a valid CG cut for K ∩ Pv′ . Furthermore, this CG
cut has the effect of reducing dimension by one since now a′v,1x = b′v,1.

Given the above, it is natural to hope than one can simply repeat the above strategy
recursively. Namely, at each step, we try to find a new CG cut induced by a row of A′ which
reduces dimension of K ∩ Pv′ by one. Unfortunately, as stated, the strategy breaks down
after one step. The main problem is that, after the first step, we have no “information”
about av,1x ≤ bv,1 restricted to a′v,1x = b′v,1. Slightly more precisely, we no longer have
a proxy for av,1x ≤ bv,1 in Pv′ that allows us to push this constraint “backwards” on the
subspace a′v,1x = b′v,1. Since we must somehow compare Pv′ to Pv to deduce infeasibility,
this flexibility turns out to be crucial for being able to show the existence of a dimension
reducing CG cut.

To fix this problem, we rely on a more sophisticated iterated form of Diophantine
approximation due to Frank and Tardos [12]. At a high level (with some simplification), for
a disjunction ax ≤ b or ≥ b+ 1, a ∈ Zn, b ∈ Z, we first construct of sequence of Diophantine
approximations a1, . . . ,ak ∈ Zn, containing a in their span, which intuitively represent the
highest to lower order bits of the direction of a. From here, we carefully choose a sequence
b1, . . . , bk ∈ Z indexing inequalities aix ≤ bi, i ∈ [k], which allow us to get better and better
approximations of ax ≤ b. Since we are in reality replacing the disjunction ax ≤ b or ≥ b+ 1,
we will in fact need a sequence that somehow approximates both sides of the disjunction at
the same time. This will correspond to requiring that a “flipped” version of the sequence,
namely aix ≥ bi, i ∈ [k− 1], and akx ≥ bk + 1, gives improving approximations of ax ≥ b+ 1.
Restricting attention to just the ax ≤ b side, we will show the existence of improving “error
levels” γ1 ≥ γ2 ≥ · · · ≥ γk = 0, such that ‖x‖1 ≤ R,alx ≤ bl,aix = bi, i ∈ [l − 1] ⇒ ax ≤
b+γl. Furthermore, we will ensure that branching on alx ≤ bl−1, not only reduces the error
bound αl, but in fact implies a far stronger inequality than ax ≤ b. Precisely, we will require
‖x‖1 ≤ R,alx ≤ bl− 1,aix = bi, i ∈ [l− 1]⇒ ax ≤ b−nγl. Hence, once we have learned the
equalities aix = bi, i ∈ [l−1], al becomes a suitable proxy for a which we can use to push the
constraint ax ≤ b “backwards”. Note that if l = k, we have in fact fully learned ax ≤ b since
αk = 0. If l < k and ax ≤ b is the “closest inequality to infeasibility” in the current relaxation,
corresponding to the inequalities in Pv′ for some leaf v′ together with the additional equalities
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as above, we will be able to guarantee that the CG cuts induced by al and −al induce the
new equality alx = bl. Note that if we always manage to reduction dimension by at least 1,
we will terminate with an infeasible node after adding at most n+ 1 pairs of CG cuts. So far,
we have discussed replacing a disjunction ax ≤ b or ≥ b+ 1 by sequence instead of a single
disjunction, and the latter is what is actually needed. For this purpose, the new disjunction
will have the form a′x ≤ b′ or ≥ b′ + 1 where a′ =

∑k
i=1M

k−iai and b′ =
∑k
i=1M

k−ibi for
M chosen large enough. This is chosen to ensure that ‖x‖1 ≤ R,a′x ≤ b′,aix = bi, i ∈ [l− 1]
“almost implies” alx ≤ bl, with a symmetric guarantee for the flipped sequence. The full list
of (a′, b′, k, a1, b1, γ1, . . . , ak, bk, γk) satisfying the requisite properties is what we call a valid
substitution sequence of ax ≤ b (see definition (24)). The main difficulty in constructing and
analyzing the disjunction a′x ≤ b′ or ≥ b′ + 1, is that each side of the disjunction should
induce a valid substitution sequence for the corresponding side of ax ≤ b or ≥ b+ 1. That
is, we need to work for “both sides” at once. As the remaining details technical, we defer
further discussion of the proof to Section 3 of the paper.

As an interesting point of comparison, we note that in constrast to Theorem 1 the
recompilation result of [7] does not give a length independent bound on the size of normals
of the CG cuts it produces (e.g., depending only on the `1 radius of K). An interesting
question is whether one can give length independent bounds for CP proofs based only on the
bit-complexity L of the starting system. Perhaps one avenue for such a reduction, would be
to first convert the CP proof to a branching proof and try to apply the techniques above.
The main issue here is that first reduction phase above, which approximates each disjunction
in the tree with a small coefficient one, need not preserve the CP structure. Namely, after the
replacement, it is not clear how to guarantee that every disjunction in the replacement tree
has at least one “empty” side (note that this problem is compounded by the approximation
errors going up the tree).

Upper Bounds for Tseitin formulas. As our second contribution, we show that Tseitin
formulas have quasi-polynomial CP proofs, refuting the conjecture that these formulas are
(exponentially) hard for CP.

I Theorem 3. Let G = (V,E) be an n-vertex graph, lv ∈ {0, 1}, for v ∈ V , be parities and Φ
be the corresponding Tseitin formula. Then Φ has a CP refutation of length 2∆(n∆)O(logn),
where ∆ is the maximum degree of G.

To prove the theorem our main observation is that the quasi-polynomial SP proof of
Beame et al [5] is of a special type, which we dub an enumerative branching proof, that can
be automatically converted to a CP proof of the same size.

We define an enumerative branching proof for a compact convex set K to correspond,
as before, to a tree T with root r and root relaxation Kr := K. At every node v ∈ T
with Kv 6= ∅, we choose a branching direction av ∈ Zn \ {0} and immediately branch on all
possible choices b ∈ Z that intersect the current relaxation Kv. Note that tree T need no
longer be binary. Formally, we first label v with the bounds lv, uv ∈ R satisfying

{avx : x ∈ Kv} ⊆ [lv, uv].

From here, we create a child node vb, for every b ∈ Z such that lv ≤ b ≤ uv. The edge
e = {v, vb} is now labeled with the equality avx = b and the updated relaxation becomes
Kvb

= {x ∈ Kv : avx = b}. From here, each leaf node v ∈ T can be of two different types.
Either Kv = ∅, or if Kv 6= ∅, the interval [lv, uv] is defined and does not contain integer points,
i.e., buvc < lv. A tree T satisfying the above properties is a valid enumerative branching
proof of integer infeasibility for K.
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It is an easy exercise to check that any enumerative branching proof can be converted
to a standard branching proof incurring only a constant factor blowup in the number of
nodes. Theorem 3 follows directly from the observation that the Beame et al SP proof is
enumerative together with the following simulation result.

I Theorem 4. Let K ⊆ Rn be a compact convex set. Let T be an enumerative branching proof
of K. Then there exists L = (a1, . . . ,aN ) ∈ Zn such that CG(K,L) = ∅ and N ≤ 2|T | − 1.

While in the above generality the result is new, the main ideas (at least for rational
polytopes) are implicit in Cook et al [7]. In particular, their proof that any integer free rational
polytope admits a CP proof of length at most O(f(n)n) in effect treats Lenstra’s algorithm as
an enumerative branching proof which they serialize to get a CP proof. Theorem 4 shows that
their serialization technique is fully general and in fact can be applied to any enumerative
branching proof. To get a certified CP proof of small bit-size from Theorem 4 for a rational
polyhedron K, we note that it suffices to apply the recompilation technique of Cook et al [7]
to the output of Theorem 4. While there is some technical novelty in the generalization to
arbitrary compact convex sets, we feel the main contribution of Theorem 4 is conceptual.
As evidenced by Theorem 3, the formalization of enumerative branching proofs and their
relationship to CP can be a useful tool for constructing CP proofs.

We now sketch the main ideas for serializing an enumerative branching proof T for K.
We start from the root r ∈ T , with branching direction ar ∈ Zn and {arx : x ∈ K} ⊆ [lr, ur].
The idea is to iteratively “push” the hyperplane Hb = {x ∈ Rn : arx = b}, with b initialized
to ur, backwards through K, until K is empty (i.e., iteratively decreasing b until it goes
below lr). The first push is given by the CG cut induced by ar which pushes Hur

to Hburc.
That is, b ← bbc. Since b is now integral, we can no longer decrease b just using CG cuts
induced by ar. At this point, we note that the subtree Trb

of T rooted at the child rb is a
valid branching proof for K ∩Hb. We can thus apply the procedure recursively on K ∩Hb

and Trb
to “chop off” K ∩Hb. For this purpose, one crucially needs to be able to lift CG

cuts applied to the face K ∩Hb to CG cuts one can apply to K that have the same effect on
K ∩Hb. Such a lifting lemma is classical for rational polyhedra [6] and was established more
recently for compact convex sets in [10], a variant of which we use here. Applying the lifted
CG cuts to K, we can thus guarantee that K ∩Hb = ∅. This allows us to push once more
with the cut induced by ar, pushing Hb to Hb−1. The process now continues in a similar
fashion until K is empty. We note that the enumerative structure is crucial here, as it allows
one to keep the “action” on the boundary K throughout the entire proof.

Lower Bounds for Branching Proofs. As our final contribution, we give a simple family
of n-dimensional (mixed-)integer free polytopes which require branching proofs of length
exponential in n.

I Theorem 5. The integer-free SAT polytope

Pn := {x ∈ [0, 1] :
∑
i∈S

xi +
∑
i6∈S

(1− xi) ≥ 1,∀S ⊆ [n]}

requires branching proofs of length 2n/n.

The above example is due to Cook et al [7], which they used to give a 2n/n lower bound
for CP. In the above theorem, we show that their lower bound technique extends to branching
proofs. As it is very simple and short, we give the full proof below.
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Proof. The first observation is that Pn is “integer critical”, namely, removing any constraint
from Pn makes the polytope integer feasible. In particular, removing

∑
i∈S xi+

∑
i6∈S(1−xi) ≥

1, for any S ⊆ [n], makes the vector 1S̄ , the indicator of the complement of S, feasible.
Let T denote any branching proof for Pn. For any leaf node v of T , by Farkas’s lemma,

the infeasibility of the continuous relaxation (Pn)v is certified by at most n+ 1 constraints.
Since Pn is non-empty, at most n of these constraints can come from the description of Pn.
Letting N denote the number of leaves of T , one can therefore certify the infeasibility of each
leaf of T using at most nN original constraints from Pn. If nN < 2n, then T would certify
the integer infeasibility of Pn with at least one constraint removed. By integer criticality of
Pn, this is impossible. Therefore |T | ≥ N ≥ 2n/n, as needed. J

One notable criticism of the above example is that it already has 2n constraints. Thus,
the length of the proof is simply proportional to the initial representation. Interestingly, Pn
has a very simple extended formulation in R2n requiring only O(n) constraints. In particular,
a direct computation reveals that

Pn = {x ∈ [0, 1]n : ‖(x1 − 1/2, . . . , xn − 1/2)‖1 ≤ n/2− 1}

= {x ∈ [0, 1]n : ∃y ∈ [0, 1]n,
n∑
i=1

yi ≤ n/2− 1,±(xi − 1/2) ≤ yi, i ∈ [n]}.

Combining the above with Theorem 5, we immediately get an exponential lower bound
for proving the mixed-integer infeasibility of a compactly represented polytope. We note
that in this setting, the lower bound is indeed exponential in the description length of P .

I Corollary 6. Let Qn = {(x,y) ∈ [0, 1]2n :
∑n
i=1 yi ≤ n/2− 1,±(xi − 1/2) ≤ yi, i ∈ [n]}.

Then any branching proof of mixed-integer infeasibility for Qn, proving Qn ∩ Zn × Rn = ∅,
has length at least 2n/n.

To see the above, recall that a mixed-integer branching proof for Qn only branches on
integer disjunctions supported on the first n variables. Thus, it is entirely equivalent to a
branching proof for the projection of Qn onto these variables, namely, to a branching proof
for Pn.

As a final remark, we note that in the extended space, Qn does in fact have a very short
proof of infeasibility using only n split cuts, which are perhaps the most important class
of cutting planes in practice (in fact, the most generically effective cuts are the Gomory
mixed-integer cuts (GMI), which are equivalent to split cuts for rational polyhedra [8]).
Roughly speaking, a split cut here is any linear inequality that is valid for both sides ax ≤ b
or ≥ b+ 1, a ∈ Zn, b ∈ Z, of an integer disjunction. In particular, yi ≥ 1/2 is a valid split
cut for Qn, for i ∈ [n], since it is valid for xi ≤ 0 and xi ≥ 1. These n splits together imply
that

∑n
i=1 yi ≥ n/2, and thus adding them to Qn makes the system infeasible.

1.5 Conclusions
In this work, we have continued the proof complexity theoretic study of branching proofs
started in [5], establishing analogues of the CP results in [7] for branching proofs. In the
process, we have clarified basic properties of the branching proof system, including how to
control the size of coefficients, how to simulate important classes of branching proofs using
CP, and how to construct elementary lower bound examples for them. We hope that these
results will help motivate a further study of this important proof system.
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In terms of open questions, there are many. On the lower bound side, in the context of
SAT, the example we use has exponentially many clauses. It would be much more interesting
to find polynomial sized formulas with exponential sized branching proofs. In the context of
integer programming, as mentioned previously, the best known algorithms for general integer
programming require nO(n) time. A very interesting question is whether one can find an
example of an integer free compact convex set K ⊆ Rn, requiring branching proofs of size
nΩ(n). Such a lower bound would show that Lenstra-type algorithms for IP, which in fact
yield enumerative branching proofs, cannot be substantially improved. We note that this
still leaves open the possibility that so-called Kannan-type algorithms can do much better
(see [9] Chapter 7 for a reference). In terms of upper bounds, a natural question is whether
one can leverage the simulation of enumerative branching proofs by CP to give new upper
bounds beyond Tseitin formulas. It was shown by Cook et al [7] that for SAT, CP can be
simulated by extended resolution. A natural question is whether stabbing planes can also be
simulated by extended resolution. Lastly, as mentioned previously, it would be interesting to
establish length independent bounds for the coefficients of the normals in CP proofs.

1.6 Organization
In Section 2, we collect basic notation, formalize the definition of branching proofs and cover
the necessary tools from Diophantine approximation. In Section 3, we present our branching
proof recompilation theorem, which ensures that the bit-size of branching proofs can be
polynomially bounded. In Section 4, we show how to simulate enumerative branching proofs
via CP, and apply this simulation to get a quasi-polynomial CP bound for Tseitin formulas.

2 Preliminaries

Basic Notation. The natural numbers are denoted by N, the reals and non-negative reals
by R,R+ respectively. For m ∈ N, we denote the set {1, . . . ,m} by [m]. Vectors x ∈ Rn are
denoted in bold and scalars by x ∈ R. The standard basis vectors of Rn are denoted by
ei, i ∈ [n]. Given two vectors x,y ∈ Rn, we write xy :=

∑n
i=1 xiyi for their inner product.

The `1 and `∞ norm of x are ‖x‖1 =
∑n
i=1 |xi| and ‖x‖∞ = maxi∈[n] |xi| respectively. We

denote the `1 ball in Rn by Bn1 = {x ∈ Rn : ‖x‖1 ≤ 1}. For a vector x = (x1, . . . , xn) ∈ Rn,
we let bxe := (bx1e, . . . , bxne) denote the vector whose coordinates are those of x rounded to
the nearest integer.

Since we shall study convex bodies lying in the l1 ball of some radius R ∈ N, it is helpful
to define the following shorthand notation: for a set of linear inequalities Ax ≤ b and a
vector c, the expression Ax ≤ b⇒R cx ≤ d stands for

{x ∈ Rn : ‖x‖1 ≤ R,Ax ≤ b} ⊆ {x ∈ Rn : ‖x‖1 ≤ R, cx ≤ d}.

I Definition 7 (Halfspace, Hyperplane). For a ∈ Rn, b ∈ R, we define the halfspace Ha,b =
{x ∈ Rn : ax ≤ b} and the hyperplane H=

a,b = {x ∈ Rn : ax = b}.

I Definition 8 (Support Function). Let K ⊆ Rn. The support function hK : Rn → R is
defined as hK(a) := supx∈K ax. The support function is always convex and is continuous if
K is non-empty and bounded. If K is non-empty and compact, the supremum in hK(a) is
always attained. By convention, if K = ∅ we define hK(a) = −∞, ∀a ∈ Rn.

For K ⊆ Rn non-empty and compact and a ∈ Rn, we define the supporting hyperplane of
K induced by a to be H=

K(a) := {x ∈ Rn : ax = hK(a)}. We define the set of maximizers of
a in K to be FK(a) := K ∩H=

K(a).
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2.1 Bit-Sizes
I Definition 9 (Bit-size). The notation 〈x〉 is reserved for the number of bits required to
express the object x, or the bit-size of x. We build up the precise definitions as follows:

For r ∈ Q, r = p/q, p ∈ Z, q ∈ Z, q > 0, 〈r〉 := 1 + dlog(|p|+ 1)e + dlog(q + 1)e. Next,
for c ∈ Qn with c = (c1, c2 . . . cn), 〈c〉 := n +

∑n
i=1〈c1〉. Similarly for matrices A ∈ Qm×n,

〈A〉 := mn+
∑m
i=1
∑n
j=1〈Aij〉. 〈A,B〉 is simply 〈A〉+ 〈B〉 when these terms are well-defined.

For a labeled rooted tree T with n nodes and m edges E[T ], and where edges e ∈ E[T ]
have labels Le and nodes v have labels Lv, and if the labels belong to a class for which the
bit-size has already been defined, then 〈T 〉 := n+m+

∑
e∈E[T ]〈Le〉+

∑
v∈T 〈Lv〉.

2.2 Branching Proofs
I Definition 10 (Branching Proof). A branching proof of integer infeasibility for a convex
set K ⊆ Rn is represented by a rooted binary tree T with root r := rT . Each node v ∈ T
is labeled with (av, bv),av ∈ Zn, bv ∈ Z and has two children nodes: the left child vl and
right child vr. Since the inner product of two integer vectors is an integer, the integer lattice
Zn can be partitioned into {x ∈ Zn : avx ≤ bv}, {x ∈ Zn : avx ≥ bv + 1}. This partition is
referred to as the integer disjunction given by (av, bv).

Every edge e ∈ E[T ] is labeled with an inequality aex ≤ be. A left edge el = {v, vl} is
labeled with avx ≤ bv. Thus we have ae = av, be = bl. However, a right edge er = {v, vr} is
labeled with avx ≥ bv + 1, so that ae = −av, be = −b1 − 1.

For each node v ∈ T , we define PT (v) to be the the unique path from the root r of T to v.
Also define for each v a polyhedron Pv = {x ∈ Rn : Avx ≤ bv} where the rows of Av are given
by av,e, e ∈ E[PT (v)], and the coordinates of bv are bv,e, e ∈ E[PT (v)]. Let Kv := K ∩ Pv.
Note that Kr = K.

For T to be a proof of integer infeasibility for K, we require that every leaf v ∈ T (v is a
leaf if its has no children) satisfies Kv = ∅.

We denote the length of the branching proof by |T |, which is defined to be the number of
nodes of T . The size of a branching proof 〈T 〉 is simply its bit-size as a labeled rooted tree as
given above in definition 9.
I Definition 11 (Certified Branching Proof). Suppose K = {x ∈ Rn : Cx ≤ d},C ∈ Qr×n,d =
Qr belongs to the class of rational polyhedra. A certified branching proof of integer infeasibility
for K is a standard branching proof T of infeasibility of K, but where every leaf node v
of T is also labeled with a Farkas certificate λv ∈ Qr+mv , λi ≥ 0,∀i ∈ [r + mv], where
now Kv = {x ∈ Rn : Cx ≤ d,Av ≤ bv}, for Av ∈ Rmv×n,bv ∈ Rmv , mv = |PT (v)|. Let
λv = (λv,1,λv,2),λv,1 ∈ Qr,λv,2 ∈ Qmv . The requirement that every Kv = ∅ for a leaf nodes
v is certified by requiring λv,1C + λv,2Av = 0,λv,1d + λv,2bv < 0.

The bit-size of a certified branching proof is its bit-size when viewed as a labeled rooted
tree.

I Definition 12 (Enumerative Branching Proof). For a compact convex set K, an enumerative
branching proof consists of a tree T with root r and root relaxation Kr := K. Every node
v ∈ T is labeled with (av, lv, uv), where av ∈ Zn, lv, uv ∈ Q satisfying

{avx : x ∈ Kv} ⊆ [lv, uv].

There is a child of v denoted vb for every b ∈ Z, lv ≤ b ≤ uv, and the edge e = {v, vb} is
labeled with the equality avx = b. The relaxation at Kvb

becomes {x ∈ Kv : avx = b}.
T is a valid enumerative branching proof of infeasibility if every leaf node v ∈ T satisfies

Kv = ∅ or Kv 6= ∅ but [lv, uv] contains no integer points, i.e., buvc < lv.
〈T 〉 is again simply the bit-size of T as a labeled rooted tree.
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2.3 Simultaneous Diophantine Approximation
The existence of a rational vector of small bit-size that well approximates an arbitrary real
vector is of prime importance in this paper. For this purpose, we shall require standard tools
from Diophantine approximation (see [23] for a reference). The following is a slightly adapted
version of the Dirichlet’s simultaneous approximation theorem, which will be convenient for
our purposes. We provide a proof for completeness.

I Lemma 13. Let a ∈ Rn satisfy ‖a‖∞ = 1 and let N ≥ 1. Then, there exists a positive
integer l ≤ Nn such that a′ := blae satisfies

‖la − a′‖∞ < 1/N and ‖a′‖∞ = l ≥ 1.

Proof. Let C = {Iz : z ∈ [N ]n} denote the collection of Nn half-open cubes forming a
partition of [0, 1)n, where Iz = ×ni=1[(zi − 1)/N, zi/N) for z ∈ [N ]n. For x = (x1, . . . , xn) ∈
Rn, let [x] = x − bxc ∈ [0, 1)n denote the fractional part of x. Examine the sequence
[0a], [1a], . . . , [Nna]. Since the sequence has length Nn + 1 and each element of the sequence
lands in one of the cubes in C, by the pigeonhole principle there must be distinct indices l1, l2,
0 ≤ l1 < l2 ≤ Nn and z ∈ [N ]n such that [l1a], [l2a] ∈ Iz. Since Iz − Iz = (−1/N, 1/N)n,
we note that ‖[l1a]− [l2a]‖∞ < 1/N . Let l = l2 − l1 and a′ = blae, where we note that
1 ≤ l ≤ Nn. For any i ∈ [n], we have that

|lai − blaie| = min
k∈Z
|lai − k| ≤ |(l1 − l2)ai − (bl1aic − bl2aic)| = |[l1ai]− [l2ai]| < 1/N.

In particular, ‖la − a′‖∞ = ‖la − blae‖∞ < 1/N , as needed. We now show that ‖a′‖∞ = l.
By assumption on a, there is a coordinate i ∈ [n] such that ai = 1 = ‖a‖∞. Thus, a′i =
blaie = l and ‖a′‖∞ ≥ l. For any j ∈ [n], also clearly have laj ∈ [−l, l]⇒ a′j = blaje ∈ [−l, l]
since l ∈ N. Thus, ‖a′‖∞ = l as needed. J

I Remark 14. For a ∈ Rn,a′ ∈ Zn, 1 ≤ l ≤ Nn as above, observe that ai = 0⇒ a′i = blaie =
0. Furthermore, ‖a′‖∞ = l ≤ Nn.

I Definition 15 (Diophantine Approximation of Precision N). For a vector a ∈ Rn \ {0} and
N ≥ 1, we say that a′ is a precision N Diophantine approximation of a if a′ satisfies the
conditions of Lemma 13 on inputs a/‖a‖∞ and N .

We note that in our application, we will set N = 10nR, where R is an integer upper
bound on the `1 radius of the convex set K ⊆ Rn whose branching proof we are modifying.

2.4 Farkas Certificates for General Convex Sets
A Farkas certificate λ ∈ Rm+ certifies the infeasibility of the system Ax ≤ b,A ∈ Rm×n,b ∈
Rm if λTA = 0,λTb = −1. It is possible to extend this definition to show a linear system is
infeasible whenever x ∈ K for a compact convex set K.

I Definition 16 (Generalized Farkas Certificate). Let K ⊆ Rn be a compact convex set, and
P := {x ∈ Rn : Ax ≤ b},A ∈ Rm×n,b ∈ Rm. λ ∈ Rm+ is a generalized Farkas certificate of
infeasibility for K ∩ P if

min
x∈K

λT(Ax− b) > 0

I Lemma 17. With the notation of definition 16, K ∩ P = ∅ if and only if there exists a
generalized Farkas certificate λ ∈ Rm+ of its infeasibility. Furthermore, if one generalized
Farkas certificate exists, then so does one with at most n+ 1 non-zero coordinates.
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Proof. That a generalized Farkas certificate implies infeasibility is trivial.
Now let us suppose K ∩P = ∅. K is compact and convex by assumption, and P is clearly

closed and convex. Therefore, there exists a strictly separating hyperplane cx = d so that K
and P lie on “opposite sides” of this hyperplane. More precisely, cx− d > 0 for x ∈ K, and
cx− d < 0 for x ∈ P .

cx < d for every x ∈ P means the system Ax ≤ b,−cx ≤ −d is infeasible. Let (λ, γ) ≥ 0
be a (conventional) Farkas certificate of the infeasibility of this system: λTA = γc,λTb < γd.
We now claim that λ ≥ 0 is a generalized Farkas certificate of infeasibility for K ∩P . Firstly,
if γ = 0, we have that minx∈K λ

T(Ax− b) = −λTb > 0. If γ > 0, then

x ∈ K ⇒ γ(cx− d) > 0⇒ λT(Ax− b) > 0.

In particular, minx∈K λ
T(Ax− b) > 0, noting that the minimum is indeed achieved since K

is compact.
By Caratheodory’s theorem, there exists a generalized Farkas certificate of at most n+ 1

non-zero coordinates whenever a generalized Farkas certificate exists. J

Although the correctness of a conventional Farkas certificate can be verified with simple
matrix multiplication, this is not the case for a generalized Farkas certificate. In particular,
one must exactly solve the (convex) minimization problem in definition 16 to verify the
certificate. This is why the notion of a certified branching proof is sensible only for specific
classes of compact convex sets, such as polyhedra.

The following lemma will be crucial for enabling us to deduce infeasibility information
for “nearby” polyhedra. The proof relies upon the existence of generalized Farkas certificates
as defined above.

I Lemma 18. Let K ⊆ Rn be a compact convex set and let P = {x ∈ Rn : Ax ≤ b},A ∈
Rm×n,b ∈ Rm, be a polyhedron satisfying P ∩ K = ∅. For ε ∈ Rm, define Pε :=
{x ∈ Rn : Ax ≤ b + ε}. Then, for any ε ∈ Rm, either K ∩ Pε = ∅, or there exists j ∈ [m]
such that εj > 0 and K ∩ Pε−(n+1)εjej

= ∅.

Proof. We assume that K ∩ Pε 6= ∅, since otherwise there is nothing to prove.
Let λ ∈ Rm+ be a generalized Farkas certificate of infeasibility for K ∩ P with at most

n + 1 non-zero coordinates as guaranteed by Lemma 17. Let j∗ = arg maxj∈[m] εjλj . We
claim that εj∗λj∗ > 0. Assume not, then εjλj ≤ 0 for all i ∈ [m]. In particular,

min
x∈K

λT(Ax− b− ε) = min
x∈K

λT(Ax− b)− λTε > −λTε ≥ 0. (2.1)

Thus, λ is a generalized Farkas certificate of infeasibility for K ∩ Pε. But this contradicts
our assumption that K ∩ Pε 6= ∅. Therefore, we must have that εj∗λj∗ > 0. In particular,
since λ ≥ 0, we have that εj∗ > 0 and λj∗ > 0.

We now show that λ is in fact a valid generalized Farkas certificate of infeasibility for
K ∩ Pε−(n+1)εj∗ej∗

. Let S = {j ∈ [m] : λj > 0}, and note that by assumption |S| ≤ n + 1.
Using a similar calculation to (2.1), we see that

min
x∈K

λT(Ax− b− ε+ (n+ 1)εj∗ej∗) > −λTε+ (n+ 1)εj∗λj∗

= −
∑
j∈S

εjλj + (n + 1)εj∗λj∗ ≥ (n + 1 − |S|)εj∗λj∗ ≥ 0.

Since λ is a valid certificate of infeasibility, we have thatK∩Pε−(n+1)εj∗ej∗
= ∅, as needed. J
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2.5 Chvátal-Gomory Cuts

I Definition 19 (Chvátal-Gomory Cut). For a ∈ Zn, the CG cut of K induced by a is the
halfspace Hcg

K (a) := Ha,bhK(a)c. We define CG(K,a) := K ∩ Hcg
K (a) to be the result of

applying the CG cut induced by a to K.
This definition is extended to an ordered list L = (a1, . . . ,ak) of integer vectors as

CG(K,L) := CG(CG(K,a1), (a2, . . . ,ak)). That is, we first apply the CG cut induced by
a1 to K yielding CG(K,a1), then we apply the CG cut induced by a2 to CG(K,a1) yielding
CG(K, (a1,a2)), and so forth. By convention, CG(K, ∅) = K, that is, applying the empty
list of CG cuts does nothing to K.

The following lifting lemma, adapted from [10], shows that CG cuts on a “rational face”
F of K can be lifted to a CG cut of K having the same effect on the face. We note that
lifting is also possible from “irrational faces” [10], however this requires intersecting multiple
CG cuts to achieve the desired effect. The corresponding lemma for rational polyhedra is
classical [6].

We include its proof for clarity and completeness. The proof follows the standard approach
of adding a large integer multiple of the normal vector to F to the cut.

I Lemma 20 (Lifting CG cuts). Let K ⊆ Rn be a non-empty compact set. Let c ∈ Zn,
F := FK(c) and assume that hK(c) ∈ Z. Then for any a ∈ Zn, there exists N ≥ 0 such that

Hcg
K (a + ic) ∩H=

K(c) = Hcg
F (a) ∩H=

K(c),∀i ≥ N.

For the proof, we will need the following technical lemma, which shows converge properties
of a sequence of maximizing faces.

I Lemma 21. Let K ⊆ Rn be a non-empty compact set. Let (ai)∞i=1 ∈ Rn be a convergent
sequence with a∞ := limi→∞ ai and let Fi := FK(ai), i ∈ N ∪ {∞}. Then, ∀ε > 0 there
exists Nε ≥ 1 such that ∀i ≥ Nε, Fi ⊆ F∞ + εBn1 .

Proof. For the sake of contradiction, let us assume that there exists a sequence (xi)∞i=1 and
an ε > 0 such that xi ∈ Fi and xi /∈ F∞ + εBn1 . Letting K ′ = closure(K \ (F∞ + εBn1 )), we
see that K ′ ⊆ K is compact and that K ′ ∩ F∞ = ∅. Furthermore, xi ∈ Fi ⊆ K ′, ∀i ∈ N.
Therefore, by compactness of K ′ there exists a convergent subsequence (xsi

)∞i=1 with limit
point y := limi→∞ xsi ∈ K ′. Note that by construction y ∈ K and y 6∈ F∞. Since K is
compact, its support function hK is continuous. By continuity of hK and the standard inner
product, we conclude that

v∞y = lim
i→∞

vsixsi = lim
i→∞

hK(vsi) ( since xsi ∈ Fsi)

= hK(v∞).

But then y ∈ F∞, a clear contradiction. The lemma thus follows. J

We now give the proof of the lifting lemma.
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Proof of Lemma 20. Firstly, if c = 0 then F = K and the statement trivially holds for
N = 0. Thus, we may assume that c 6= 0.

Let b = hF (a) and recall that Hcg
F (a) = {x ∈ Rn : ax ≤ bbc}. For i ≥ 0, let bi :=

hK(a +Nc)− ihK(c). From here, we see that

x ∈ Hcg
K (a + ic) ∩H=

K(c)⇔ (a + ic)x = bhK(a + ic)xc, cx = hK(c)
⇔ (a + ic)x ≤ bbi + ihK(c)c, cx = hK(c)
⇔ (a + ic)x ≤ bbic+ ihK(c), cx = hK(c)

(since ihK(c) ∈ Z)
⇔ ax ≤ bbic, cx = hK(c).

Given the above, it suffices to show that there exists N ≥ 0 such that bbic = bbc, ∀i ≥ N .
Since F is the set of maximizers of c in K, note that

bi = hK(a + ic)− ihK(c) ≥ hF (a + ic)− ihK(c) = hF (a) = b,∀i ≥ 0.

Letting ε1 = bb+ 1c − b > 0, note that bb′c = bbc for b′ ∈ [b, b + ε1). Given this, it now
suffices to show the existence of N ≥ 0 such that bi < b+ε1, for i ≥ N . Let Fi := FK(a + ic),
for i ∈ N . Since a/i+ c → c as i → ∞ and K is compact, by Lemma 21 for ε2 > 0 there
exists Nε2 ≥ 0 such that Fi ⊆ F + ε2Bn1 , for i ≥ Nε2 . For i ≥ Nε2 , we may thus choose
xi ∈ Fi and yi ∈ F satisfying ‖xi − yi‖1 ≤ ε2. From here, for i ≥ Nε2 we have that

bi = hK(a + ic)− ihK(c) = (a + ic)xi − ihK(c) ( since xi ∈ Fi)
≤ axi + ihK(c)− ihK(c) = a(xi − yi) + ayi ( since xi ∈ K)
≤ ‖x− y‖1‖a‖∞ + hF (a) ≤ ε2‖a‖∞ + b ( since yi ∈ F ) .

Setting ε2 := ε1/(2‖a‖∞) and N := Nε2 yields the desired bound. The lemma thus
follows. J

3 Bounding the coefficients of Branching Proofs

In this section, we show how to transform any branching proof T for a compact convex set
K ⊆ RBn1 into a branching proof T ′ having small coefficients with length |T ′| = O(n|T |).

The construction of T ′ is a two step process. In the first step, we substitute each integer
disjunction given by (a, b) by an approximation (a′, b′) with coefficients of size (nR)O(n2). This
bounds 〈T ′〉 while keeping |T ′| = |T |. We shall use the “iterated Diophantine approximation”
technique introduced by Frank and Tardos [12] to construct a′, b′ from a, b.

It is possible that the new inequalities are “stronger”; e.g., it is possible that for a′x ≤
b′ ⇒R ax ≤ b and a′x ≥ b′ + 1 ⇒R ax ≥ b + 1. However, one cannot always ensure
this, and in general we will only be able to guarantee that a′x ≤ b′ ⇒R ax ≤ b + ε and
a′x ≥ b′+ 1⇒R ax ≥ b+ 1− ε for some “small” ε > 0. As explained in the introduction, the
combined error from all the substitutions may render the continuous relaxations at the leaves
nonempty. In a second step, we “fix-up” these newly feasible leaf nodes by adding O(n)
judiciously chosen CG cuts to arrive at infeasible sets, causing the O(n) factor increase in |T ′|.
These cuts will be derived from so-called valid substitution sequences (see Definition 24) of
the original disjunctions in T , which we construct together with the replacement disjunctions
a′x ≤ b′ or ≥ b′ + 1 described above.

From here until the end of subsection 3.1, we explain the first step, showing how to
construct appropriate replacement disjunctions together with substitution sequences and how
to compute the initial (partial) replacement tree T ′ from T . In subsection 3.2, we explain
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the second step, showing how to construct the requisite O(n)-size CP proof of infeasibility
for each leaf node of T ′. Finally, in subsection 3.3, we give the proof of Theorem 1 which
combines both steps.

We begin with the following lemma, which collects the properties of Diophantine approx-
imations we will need to construct the replacement disjunctions and substitution sequences.
In particular, part (ii) of the lemma will be used to choose the vectors a1, . . . ,ak and right
hand sides b1, . . . , bk inducing the pair of inequality sequences (we think of one as the “flipped”
version of the other) a1x ≤ b1, . . . ,akx ≤ bk and a1x ≥ b1, . . . ,ak−1x ≥ bk−1,akx ≥ bk + 1
respectively used to approximate the left side ax ≤ b and right side ax ≥ b + 1 of an
initial disjunction. In this context, the disjunction (a, b) in the lemma will represent an
initial disjunction (a, b) after “projecting out” a1x = b1,. . . ,aix = bi, for some intermediate
i ∈ [k − 1], and a′, b′ will correspond to the next (ai+1, bi+1) in the sequence.

I Lemma 22. For any vector a ∈ Rn \ {0}, b ∈ R, R,N ∈ N, let a′ be a Diophantine
approximation of a of precision N , and let α = ‖a‖∞

‖a′‖∞ . Then the following statements hold:
(i) ∀b′ ∈ R,a′x ≤ b′ ⇒R ax ≤ α

(
b′ + R

N

)
and symmetrically, a′x ≥ b′ ⇒R ax ≥

α
(
b′ − R

N

)
.

(ii) When R
N < 1

4 , α ≥ 2, we can uniquely set b′ ∈ Z according to exactly one of following
cases:

(non-R-dominating case): −R‖a‖∞ − 1 < b < R‖a‖∞ and ∃ unique b′ ∈ Z, |b′| ≤
R ‖a′‖∞ ,

such that (b, b+ 1) ∩
[
α

(
b′ − R

N

)
, α

(
b′ + R

N

)]
6= ∅.

(R-dominating case): ∃ unique b′ ∈ Z,−R ‖a′‖∞ ≤ b′ ≤ R ‖a′‖∞ − 1,

such that (b, b+ 1) ⊆
(
α

(
b′ + R

N

)
, α

(
b′ + 1− R

N

))
,

or

b ≥ R ‖a‖∞ , b′ = R ‖a′‖∞ ,

or

b+ 1 ≤ −R ‖a‖∞ , b′ = −R ‖a′‖∞ − 1.

Furthermore, in the R-dominating case we have that

a′x ≤ b′ ⇒R ax ≤ b and a′x ≥ b′ + 1⇒R ax ≥ b+ 1.

Proof.
(i) By definition of a′,

∥∥ a
α − a′

∥∥
∞ < 1/N . We have for any b′ ∈ Z:

‖x‖1 ≤ R,a
′x ≤ b′ ⇒ a

α
x ≤ b′ + ( a

α
− a′)x ≤ b′ +

∥∥∥a
α
− a′

∥∥∥
∞
‖x‖1 ≤ b

′ + R

N
.

Summarizing, we have that

‖x‖1 ≤ R,a
′x ≤ b′ ⇒ ax ≤ α

(
b′ + R

N

)
.

By a symmetric argument, we also have

‖x‖1 ≤ R,a
′x ≥ b′ ⇒ ax ≥ α

(
b′ − R

N

)
.
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(ii) When R
N < 1

4 , the intervals of the form I(b′) := [α
(
b′ − R

N

)
, α
(
b′ + R

N

)
], b′ ∈ Z, are

pairwise disjoint. In fact, when α ≥ 2, they are more than unit distance apart. This
implies that the interval (b, b+ 1) cannot intersect more than one of the intervals I(b′),
b′ ∈ Z.
Let us now suppose −R‖a‖∞ − 1 < b < R‖a‖∞. We now show that only b′ ∈
[−R ‖a‖∞ , R ‖a‖∞] ∩ Z need be considered in this case.
For b′ = −R ‖a′‖∞, we have I(b′) = [Rα

(
‖a′‖∞ − 1

N

)
, Rα

(
‖a′‖∞ + 1

N

)
]. The left end

point −R ‖a‖∞ − Rα
N of I(−R ‖a′‖∞) lies to the left of b+ 1 on the real line because

−R ‖a‖∞ −
Rα

N
< −R ‖a‖∞ < b+ 1.

Similarly the right end point R ‖a‖∞ + Rα
N of I(R ‖a′‖∞) lies to the right of b as

R ‖a‖∞ + Rα

N
> R ‖a‖∞ > b.

Thus, either (b, b+ 1) intersects some Ib′ for b′ ∈ [−R ‖a′‖∞ , R ‖a′‖∞] ∩ Z or it lies in
between two such consecutive intervals Ib′ , Ib′+1: these are the non-dominating and
dominating cases respectively.
In the dominating case for b ∈ (−R ‖a‖∞ − 1, R ‖a‖∞), the fact that

(b, b+ 1) ⊆
(
α

(
b′ + R

N

)
, α

(
b′ + 1− R

N

))
implies b ≥ α

(
b′ + R

N

)
. Applying part (i) we see that

a′x ≤ b′ ⇒R ax ≤ α
(
b′ + R

N

)
⇒ ax ≤ b.

On the other side, b+ 1 ≤ α
(
b′ + 1− R

N

)
gives

a′x ≥ b′ + 1⇒R ax ≥ α
(
b′ + 1− R

N

)
⇒ ax ≥ b+ 1.

Now let us consider the situation where b ≥ R ‖a‖∞. Then ∀x ∈ RBn1 we have
ax ≤ ‖a‖∞ ‖x‖1 ≤ ‖a‖∞R ≤ b. Since this inequality holds for every vector in RBn1 ,
we have that a′x ≤ b′ ⇒R ax ≤ b ∀b′ ∈ R and in particular for b′ = R ‖a′‖∞.
Furthermore, for b′ = R ‖a′‖∞, a′x ≥ b′ + 1 does not hold for any x ∈ RBn1 and thus
a′x ≥ b′ + 1⇒R ax ≥ b+ 1.
The symmetric reasoning applies to case b+ 1 ≤ −R ‖a‖∞. Setting b′ = −R ‖a‖∞ − 1,
we firstly have that ax ≥ b+ 1 is a valid inequality for RBn1 and hence a′x ≥ b′+ 1⇒R

ax ≥ b + 1 trivially. Secondly, the system a′x ≤ b′, ‖x‖1 ≤ R is empty and hence
a′x ≤ b′ ⇒R ax ≤ b trivially as well. J

I Remark 23. In the sequel, we will say that (a′, b′) R-dominates or R-non-dominates (a, b)
when the corresponding case holds in Lemma 22. We will also drop label R- when R is clear
from context.

When applying the above lemma to an initial disjunction ax ≤ b or ≥ b + 1, the R-
dominating case above is a scenario in which the naive replacement of the disjunction ax ≤ b
or ≥ b+ 1→ a′x ≤ b′ or ≥ b′ + 1 by the “first pass” Diophantine approximation does the
job. Indeed, if every branching decision in T was dominated by its first pass Diophantine
approximation, then the naive replacements would be sufficient to obtain a branching proof
with bounded coefficients.
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Since domination does not always occur at the first level of approximation for an original
disjunction ax ≤ b or ≥ b + 1, we will require the use of an substitution sequence a1x ≤
b1, . . . ,a1x ≤ bk as described previously. The exact properties needed from this sequence
as well as the algorithm to compute it are provided in the next subsection. At a high level,
we continue creating additional levels of approximation until the dominating case occurs.
More precisely, for every level l ∈ [k], we will reduce the inequality ax ≤ b by subtracting
non-negative combinations of the equalities aix = bi, i ∈ [l−1], to get a “remainder inequality”
âlx ≤ b̂l. The remainder is then given as input to Lemma 22 to get next level approximator
alx ≤ bl. The final iteration k will correspond to the first time where the dominating case
occurs (i.e., all previous iterations are non-dominating).

Since we are interested in approximating not just an inequality but a disjunction, it
will be crucial that (non-)domination is well-behaved with respect to both sides of the
disjunction. For this purpose, we will heavily make use of the following “flip-symmetry” in
the definition of the R-domination and R-non-domination. Namely, if (a′, b′) dominates
(a, b), then (−a′,−b′ − 1) dominates (−a,−b− 1), and if (a′, b′) non-dominates (a, b) then
(−a′,−b′) non-dominates (−a,−b− 1). One can easily check that these symmetries follow
directly from simple manipulations of the definitions. These symmetries are what will allow
us to conclude that the substitution sequence a1x ≤ b1, . . . ,akx ≤ bk and its flipped version
a1x ≥ b1, . . . ,akx ≥ bk + 1 will yield good approximations to ax ≤ b and ax ≥ b + 1
respectively.

3.1 Step 1: Replacing Large Coefficient Branches by Small Coefficient
Approximations

Given a branching proof T of infeasibility for K ⊆ RBn1 , where R ∈ N, we begin the
construction of the replacement proof T ′ as follows:

We let T ′ be a tree with vertex set V ′ containing a vertex v′ for each v ∈ V [T ], and
an edge e′ = (v′, w′) for each e = (v, w) ∈ E[T ]. For each internal node v ∈ V [T ] with
children vl, vr, we compute through Algorithm 1 (see below) an approximation (av′ , bv′)
of the disjunction (av, bv) at v of precision R,N := 10nR,M := (10nR)n+2. We label the
left edge el = (v′, v′l) in T ′ by av′x ≤ bv′ and the right edge (v′, v′r) by av′x ≤ −bv′ − 1
(equivalently, av′x ≥ b′ + 1).

In this first phase of construction, note that T ′ retains the same tree structure as T .
Furthermore, note that the output of Algorithm 1 must serve equally well to approximate
avx ≤ bv and avx ≥ bv + 1 for v ∈ T .

The required properties of the replacements of the form ax ≤ b→ a′x ≤ b′ are collected
in the definition of a valid substitution sequence defined below. A valid substitution sequence
of (a, b) of precision R,N,M consists of, along with the approximations a′, b′, auxiliary
information in the form of integers k, b1, b2 . . . bk, integer vectors a1, . . .ak and nonnegative
reals γ1, . . . γk. While this auxiliary information is not included in the labels of T ′, it is
computed by Algorithm 1 (and hence its existence is guaranteed). Furthermore, the existence
of the valid substitution sequence is crucial for second part of the tree construction (see
subsection 3.2), where the inequalities from the substitution sequences are used to construct
CP proofs of infeasibility for the (possibly non-empty) leaves of T ′ above.

I Definition 24 (Valid Substitution Sequence). We define a valid substitution sequence of
an integer inequality ax ≤ b, a ∈ Zn \ {0}, b ∈ Z of precision R,N,M ∈ N to be a list

(a′, b′, k,a1, b1, γ1, . . . ,ak, bk, γk := 0),

where k ∈ [n+ 1] and a′,ai ∈ Zn, b′, bi ∈ Z, γi ∈ R+, for i ∈ [k], satisfying:
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1. ‖a′‖∞ ≤ NnMn+1, |b′| ≤ RNnMn+1 and
‖ai‖∞ ≤ 11nNn, |bi| ≤ R ‖ai‖∞ + 1, i ∈ [k].

2. For l ∈ [k − 1], we have

a′x ≤ b′,aix = bi,∀ i ∈ [l − 1]⇒R alx < bl + 1.

3. For l ∈ [k], we have

a′x ≤ b′,aix = bi,∀ i ∈ [l − 1]⇒R ax ≤ b+ γl.

4. For l ∈ [k − 1], we have

alx ≤ bl − 1,aix = bi,∀ i ∈ [l − 1]⇒R ax ≤ b− nγl.

I Remark 25. In light of property 3, the terms γi are measures of precision for our approx-
imation of ax ≤ b. If l1 < l2, property 3 when applied to l2 assumes more statements than
when applied l1. Intuitively, this suggests that the implications should also be stronger (or
at least not weaker). That is, one would expect γl2 ≥ γl1 . Indeed, this assumption can be
made without loss of generality. More precisely, if (a′, b′, k,a1, b1, γ1, . . . ,ak, bk, γk := 0) is a
valid substitution, then so is (a′, b′, k,a1, b1, γ̄1, . . . ,ak, bk, γ̄k), where γ̄i := minj∈[i] γi.

Algorithm 1 LongToShort(a, b, R, N, M).

Input: a ∈ Zn, b ∈ Z, R,N,M ∈ N such that R
N < 1

4 .
Output: a′ ∈ Zn, b′ ∈ Z, k ∈ N, and ai ∈ Zn, bi ∈ Z, γi ∈ R+, i ∈ [k], satisfying:
1. (a′, b′, k,a1, b1, γ1, . . . ,ak, bk, γk) is a valid substitution sequence

of ax ≤ b of precision R,M,N .
2. (−a′,−b′ − 1, k,−a1,−b1, γ1, . . . ,−ak−1,−bk−1, γk−1,−ak,−bk − 1, γk) is a

valid substitution sequence of −ax ≤ −b− 1 of precision R,M,N .

1 initialize â1 = a, b̂1 = b, j = 1;
2 while ‖âj‖∞ > 10nNn do
3 Set aj as a Diophantine approximation of âj of precision N ;
4 Apply Lemma 22 part (ii) to âj , b̂j ,aj , R,N to obtain bj ;
5 if (aj , bj) dominates (âj , b̂j) then
6 Set k = j, γk = 0,a′ =

∑k
i=1M

k−iai and b′ =
∑k
i=1M

k−ibi;
7 return a′, b′, k,ai, bi, γi, i ∈ [k];

8 Set αj = ‖âj‖∞
‖aj‖∞

, γj = 2αj

5n ;
9 Set âj+1 = âj − αjaj , b̂j+1 = b̂j − αjbj ;

10 Increment j;

11 Set k = j, γk = 0,ak = a −
∑k−1
i=1 bαieai, b̃k = b−

∑k−1
i=1 bαiebi;

12 Set bk =


b̃k : −R ‖ak‖∞ − 1 < b̃k < R ‖ak‖∞
−R ‖ak‖∞ − 1 : b̃k ≤ −R ‖ak‖∞ − 1
R ‖ak‖∞ : R ‖ak‖∞ ≤ b̃k

;

13 Set a′ =
∑k
i=1M

k−iai and b′ =
∑k
i=1M

k−ibi;
14 return a′, b′, k,ai, bi, γi, i ∈ [k];
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I Lemma 26. Algorithm 1 with input a, b, R,N,M such that N = 10nR,M = (10nR)n+2

terminates within k ≤ n+ 1 iterations and outputs valid substitution sequences of a, b and
−a,−b− 1 of precision R,N,M .

Proof. We begin by showing that the number of coordinates of âk+1 that are zero is strictly
greater than that of âk. At iteration j, let p be such that |(âj)p| = ‖âj‖∞. As aj is the
Diophantine approximation of âj , we know that |( âj

αj
−aj)p| = |(

‖aj‖∞
‖âj‖∞

âj)p−(aj)p| < 1/10nR.

By assumption, ( âj

‖âj‖∞
)p = ±1. Thus (‖aj‖∞

‖âj‖∞
âj)p ∈ Z, and so (‖aj‖∞

‖âj‖∞
âj)p = (aj)p. As a

result, (âj+1)p = 0. As observed in remark 1.2, any zero entry of âj is also zero for âj+1.
By this reasoning, either Algorithm 1 terminates with k ≤ n, or ân+1 = 0. The while

loop terminates as ‖ân+1‖∞ ≤ 10nNn. This proves that Algorithm 1 terminates within n+ 1
iterations.

We now show that Algorithm 1 outputs valid substitution sequences. For this purpose,
we first prove below that (a′, b′, k,a1, b1, γ1, . . . ,ak, bk, γk) is a valid substitution sequence
of ax ≤ b of precision R,M,N . After this, we will argue that the flipped version of this
sequence yields a valid substitution of −ax ≤ −b− 1 using the symmetries the algorithm.

1. When Algorithm 1 returns from line (7), we have ‖ai‖∞ ≤ Nn, i ∈ [k], since every ai is the
result of Diophantine approximation of precision N . Furthermore, since every bi, i ∈ [k], is
then the output of Lemma 22 part (ii), we also have |bi| ≤ R ‖ai‖∞+ 1 ≤ RNn+ 1,i ∈ [k].
Therefore,

‖a′‖∞ ≤
k∑
i=1

Mk−i ‖ai‖∞ ≤ N
n

k∑
i=1

Mk−i ≤ Nn
n∑
i=0

M i = NnM
n+1 − 1
M − 1 ≤ NnMn+1.

Similarly for b′, using R,N ≥ 1 and M ≥ 3,

|b′| ≤
k∑
i=1

Mk−i |bi| ≤ (RNn + 1)
k∑
i=1

Mk−i = (RNn + 1)M
n+1 − 1
M − 1 ≤ RNnMn+1.

When Algorithm 1 returns from line (14), ‖ai‖∞ ≤ Nn for every i ∈ [k − 1] and
‖âk‖ ≤ 10Nn. As in the previous case, we also have |bi| ≤ R ‖ai‖∞ + 1, i ∈ [k]. Note
that for i = k, this is enforced on line (12) of the algorithm. Furthermore, bk is indeed
an integer since R ∈ N and b̃k, ‖ak‖∞ ∈ Z by construction. To bound ‖ak‖∞, we first
note that

‖ak − âk‖∞ =

∥∥∥∥∥
k−1∑
i=1

(αi − bαie)ai

∥∥∥∥∥
∞

≤
k−1∑
i=1
‖(αi − bαie)ai‖∞ ≤ (k − 1)Nn ≤ nNn.

Since ‖âk‖∞ ≤ 10nNn, we get that

‖ak‖∞ ≤ ‖âk‖∞ + ‖ak − âk‖∞ ≤ 10nNn + nNn = 11nNn.

To bound ‖a′‖∞, by the triangle inequality

‖a′‖∞ ≤
k−1∑
i=1

Mk−i‖ai‖∞ + ‖a‖k ≤ Nn(
n∑
i=1

M i + 11n) (3.1)

= Nn(M
n+1 − 1
M − 1 + 11n− 1) ≤ Nn(2Mn+1

M − 1 + 11n− 1) ≤ NnMn+1,

where it can be easily be checked that the last inequality holds for M = (10nR)n+2 and
R,n ≥ 1. The bound on |b′| is computed in a manner similar to (3.1):
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|b′| ≤
k∑
i=1

Mk−i(R ‖ai‖∞ + 1) ≤ RNn(2Mn+1

M − 1 + 11n− 1) ≤ RNnMn+1.

2. Let l ∈ [k − 1]. When aix = bi,∀ i ∈ [l − 1], we have that

a′x ≤ b′ ⇔
k∑
i=l

Mk−iaix ≤
k∑
i=l

Mk−ibi ⇔ alx +
k∑

i=l+1
M l−iaix ≤ bl +

k∑
i=l+1

M l−ibi.

By the proof of part 1, ‖ai‖∞ ≤ Nn, bi ≤ R ‖ai‖∞ + 1, for i ∈ [k − 1]. Using these
bounds, we get that

alx+
k∑

i=l+1
M l−iai ≤ bl+

k∑
i=l+1

M l−ibi ⇒R alx ≤ bl+
k∑

i=l+1
M l−ibi+R

∥∥∥∥∥
k∑

i=l+1
M l−iai

∥∥∥∥∥
∞

.

(3.2)

The error in the last term is bounded by

k∑
i=l+1

M l−ibi +R

∥∥∥∥∥
k∑

i=l+1
M l−iai

∥∥∥∥∥
∞

≤ (2R+ 1)Nn

(
k−l∑
i=1

M−i

)
≤ (2R+ 1)Nn

M − 1 ≤ 1
10n,

(3.3)

where the last inequality is easily checked for M = (10nR)n+2 = Nn+2 and n,R ∈ N.
Combining (3.2) and (3.3), we conclude that

a′x ≤ b′,aix = bi, i ∈ [l − 1]⇒R alx ≤ bl + 1
10n < bl + 1, (3.4)

as needed.
3. We first deal with the case l = k. We have ak +

∑k−1
i=1 M

k−iai = a′ and bk +∑k−1
i=1 M

k−ibi = b′. So if aix = bi, ∀ i ∈ [k − 1], we have that a′x ≤ b′ ⇔ akx ≤ bk.
When Algorithm 1 returns from line (14), we have ak +

∑k−1
i=1 bαieai = a and b̃k +∑k−1

i=1 bαiebi = b by construction. By the same argument as above, under the assumption
aix = bi,∀ i ∈ [k − 1], we have that akx ≤ b̃k ⇔ ax ≤ b . It thus suffices to show that
akx ≤ bk ⇒R akx ≤ b̃k, recalling that γk = 0. This proceeds in an analoguous fashion
to the analysis of the dominating case in Lemma 22 part (ii). Firstly, by our choice of
bk on line (12), if −R ‖ak‖∞ − 1 < b̃k < R ‖ak‖∞ then bk = b̃k, so this case is trivial.
If b̃k ≥ R ‖ak‖∞, then bk = R ‖ak‖ and akx ≤ b̃k is valid inequality for RBn1 . Thus,
the implication akx ≤ bk ⇒R akx ≤ b̃k is again trivial. Lastly, if b̃k ≤ −R ‖ak‖∞ − 1,
then bk = −R ‖ak‖∞ − 1 and the system akx ≤ bk, ‖x‖∞ ≤ R is empty. In particular,
akx ≤ bk ⇒R akx ≤ b̃k, as needed.
Next, when the Algorithm 1 returns from line (7), by the guarantees of the R-dominating
case in Lemma 22 part (ii), we have that

akx ≤ bk ⇒R âkx ≤ b̂k.

Similarly to the previous case, under the assumption aix = bi, ∀ i ∈ [k − 1], we have
that a′x ≤ b′ ⇔ akx ≤ bk and ax ≤ b ⇔ âkx ≤ b̂k. The desired implication, a′x ≤ b′,
aix = bi, ∀ i ∈ [k − 1]⇒R ax ≤ b, thus follows.
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Now suppose l ∈ [k − 1]. From (3.4) in part 2, we have that

a′x ≤ b′,aix = bi, i ∈ [l − 1]⇒R alx ≤ bl + 1
10n.

By lemma 22 part (i) applied to âl+1 and al+1,

alx ≤ bl + 1
10n ⇒R âlx ≤ αl

(
bl + 1

10n + R

N

)
. (3.5)

Since l ∈ [k − 1], al, bl non-dominates âl, b̂l and thus by Lemma 22 part (ii),

(b̂l, b̂l + 1) ∩
[
αl

(
bl −

R

N

)
, αl

(
bl + R

N

)]
6= ∅.

In particular, we get that

αl

(
bl + R

N

)
= αl

(
bl −

R

N

)
+ αl(

2R
N

) ≤ b̂l + 1 + αl(
2

10n ). (3.6)

Using αl = ‖âl‖∞
‖al‖∞ ≥

10nNn

Nn = 10n combined with (3.6), we get that

αl

(
bl + 1

10n + R

n

)
≤ b̂l + 1 + αl

(
3

10n

)
≤ b̂l + αl

(
1

10n + 3
10n

)
(3.7)

= b̂l + αl(
2

5n ) = b̂l + γl,

where the last equality follows by definition of γl. Finally, under the assumption that
aix = bi,∀i ∈ [l − 1], observe that for any δ ∈ R, we have that

âlx ≤ b̂l + δ ⇔ ax ≤ b+ δ. (3.8)

The desired implication a′x ≤ b′,aix = bi,∀i ∈ [l−1]⇒R ax ≤ b+γl now follows directly
from the above combined with (3.4),(3.5) and (3.7).

4. Repeating the argument from part 3 starting from (3.5) with alx ≤ bl − 1, we have that

alx ≤ bl − 1⇒R âlx ≤ αl(bl − 1 + R

N
). (3.9)

Using (3.7) in part 3, we see that

αl(bl − 1 + R

N
) ≤ b̂l − αl + αl(

2
5n −

1
10n ) = b̂l − αl(1−

3
10n ). (3.10)

Recalling γl := αl( 2
5n ), observe that nγl = αl( 2

5 ) ≤ αl(1− 3
10n ) since n ≥ 1. Combining

together with (3.9), (3.10) and (3.8) from part 3, we conclude that

ax ≤ bl − 1,aix = bi,∀i ∈ [l − 1]⇒R ax ≤ b− αl(1−
3

10n ) ≤ b− nγl,

as needed.

We conclude the proof by showing that

(−a′,−b′ − 1, k,−a1,−b1, γ1, . . . ,−ak−1,−bk−1, γk−1,−ak,−bk − 1, γk)

is a valid substitution sequence of −ax ≤ −b − 1 of precision R,M,N . We have already
proved that Algorithm 1 correctly outputs a valid substitution sequence of a, b, so we are
done if we show that (−a′,−b′− 1, k,−a1,−b1, γ1, . . . ,−ak−1,−bk−1, γk−1,−ak,−bk− 1, γk)
could have been output by Algorithm 1 upon input −a,−b− 1.
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If ai is a Diophantine approximation of âi, then −ai is a Diophantine approximation of
−âi. Referring to Remark 23 as our next step: when j < k, (aj , bj) non-dominates (âj , b̂j),
(−aj ,−bj) also non-dominates (−âj ,−b̂j−1). As a ratio of norms, the αj values are identical
for both executions of Algorithm 1.

If Algorithm 1 with input a, b returned from line (7), then the algorithm with input
−a,−b−1 must also return from line (7). This is also a consequence of Remark 23: if (ak, bk)
dominates (âk, b̂k), then (−ak,−bk − 1) dominates (−âk,−b̂k − 1) and the algorithm returns
with the expected valid substitution sequence of −a,−b− 1.

If Algorithm 1 with input a, b returned from line (14), this means ‖âk‖∞ ≤ 10nNn.
Running Algorithm 1 with input −a,−b− 1 would give −âk, also obviously of small norm.
Line 11 would consequently give −a−

∑k−1
i=1 bαie(−ai) = −ak and −b−1−

∑k−1
i=1 bαie(−bi) =

−b̃k − 1. It now suffices to check that output of line (12) given −b̃k − 1 is −bk − 1, recalling
that bk is the output of line (12) on input b̃k. This follows by direct inspection, noting that
it is analoguous to the “flip-symmetry” of Lemma 22 part (ii). J

Replacing branches with large coefficients with their valid approximations reduces their
bit-size, since valid approximations have coefficients of size O(n2) log(nR). However, we are
not yet done. We do not yet have a valid branching proof as the convex sets Kv′ associated
to leaf nodes v′ of T ′ are not necessarily empty. We deal with this in Step 2.

3.2 Step 2: Adding Chvátal-Gomory (CG) Cuts to Trim the Leaves
We now show how to add CG cuts at each leaf of the current replacement tree T ′ for T ,
whose construction is described in the previous section, to ensure that all the leaf nodes in
the final tree have empty continuous relaxations. The final tree will simply simulate the
effect of the CG cuts applied to the leaves of T ′ using additional branching decisions (see
the proof of Theorem 1 in the next section).

Recall from the last section, that every leaf node v ∈ T has an associated leaf v′ ∈ T ′ in
the current replacement tree. The continuous relaxation for v′ is Kv′ = Pv′ ∩K (recall that
unlike Kv := Pv ∩K, Kv′ need not be empty), where the inequalities defining Pv′ are derived
from valid substitution sequences (as in Definition 24) of the original defining inequalities
for Pv. Given this setup, our task is to add “low-weight” CG cuts to Pv′ ∩K to derive the
empty set.

The main result of this section is a general procedure for deriving such CG cuts for
any polyhedron P ′ induced by valid substitution sequences of the defining inequalities of
a polyhedron P , where P satisfies K ∩ P = ∅. The procedure will return a list of at most
2(n+1) CG cuts, which is responsible for the O(n) factor blowup in the final tree size. Second,
the normals of these CG cuts will all come from the substitution lists for the inequalities
defining P , which ensures that they have low weight. The formal statement of this result is
given below:

I Theorem 27. Let K⊆RBn1 , R∈N, be a compact convex set, and let P ={x ∈ Rn : Ax ≤ b},
A ∈ Zm×n, b ∈ Zm, be a polyhedron satisfying P ∩K = ∅. For each defining inequality aix ≤
bi of P , for i ∈ [m], let (a′i, b′i, ki,ai,1, bi,1, γi,1, . . . ,ai,ki

, bi,ki
, γi,ki

) be a valid substitution
sequence of precision R,N := 10nR,M := (10nR)n+2. Let P ′ = {x ∈ Rn : A′x ≤ b′} be the
corresponding “substitution” polyhedron, where A′ ∈ Zm×n has rows a′1, . . . ,a′m and b′ ∈ Zm
has rows b′1, . . . , b′m.

Then, there exists an ordered list L := (aj1,p1 ,−aj1,p1 , . . . ,ajl,pl
,−ajl,pl

) ⊆ Zn, where
jr ∈ [m] and pr ∈ [kjr

− 1], r ∈ [l], satisfying CG(K ∩ P ′,L) = ∅ and |L| = 2l ≤ 2(n+ 1).
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Proof. To prove theorem 27, we give a procedure to construct such a list L in Algorithm 2.
To prove the theorem, it thus suffices to prove the correctness of Algorithm 2.

Algorithm 2 Generate CG Cuts.

Input: K,P := Ax ≤ b, P ′ := A′x ≤ b′, R,M,N ∈ N,
(a′i, b′i, ki,ai,1, bi,1, γi,1, . . . ,ai,ki , bi,ki , γi,ki), for i ∈ [m], a valid substitution
sequence of aix ≤ bi of precision R,M,N , as in theorem 27.

Output: An ordered list L := (aj1,p1 ,−aj1,p1 , . . . ,ajl,pl
,−ajl,pl

) satisfying
CG(K ∩ P ′,L) = ∅ and 0 ≤ l ≤ n+ 1.

1 initialize L = ∅, V = Rn, p(i) = 1, for i ∈ [m], and ε = (γ1,p(1), . . . , γm,p(m));
2 Define Pε := {x ∈ Rn : Ax ≤ b + ε};
3 while K ∩ Pε 6= ∅ and V 6= ∅ do
4 Apply Lemma 18 to K,P, ε to obtain j∗ ∈ [m] satisfying εj∗ > 0 and

K ∩ Pε−(n+1)εj∗ej∗
= ∅;

5 Append vectors aj∗,p(j∗),−aj∗,p(j∗) to the list L;
6 Update V ← V ∩ {x ∈ Rn : aj∗,p(j∗)x = bj∗,p(j∗)};
7 for j from 1 to m do
8 Increment p(j) to the largest integer p ∈ [kj ] satisfying

V ⊆ {x ∈ Rn : aj,ix = bj,i, 1 ≤ i < p};
9 εj ← γj,p(j);

10 return L;

To begin, we first give a high level description of the algorithm and explain the key
invariants it maintains. The algorithm proceeds in iterations, associated with runs of the
while loop on line 3. At each iteration, we append the pair of CG cuts induced by aj,p,−aj,p,
j ∈ [m], p ∈ [kj − 1], from one of our substitution lists to the end L. These cuts are chosen
so that after adding them to L, we can guarantee that CG(K ∩ P ′,L) satisfies the equality
aj,px = bj,p.

We keep track of these learned equalities using the affine subspace V ⊆ Rn, which is
initialized as V = Rn at the beginning of the algorithm. The principal invariant needed to
prove correctness of the algorithm is as follows: at the beginning of an iteration l ≥ 1, L, V
satisfy

(i) CG(K ∩ P ′,L) ⊆ V and dim(V ) ≤ n− l + 1.

The condition on the dimension of V above will be achieved by ensuring that the new equality
we add is not already implied by V . Precisely, the dimension of V will decrease by at least
one at every iteration where we pass the while loop check. Using (i), at the beginning of
iteration l = n+ 2 (i.e., after n+ 1 iterations) we will have that dim(V ) ≤ −1 and hence
CG(K ∩ P ′,L) ⊆ V = ∅. In particular, the while loop check V 6= ∅ will fail and we will
correctly terminate. Thus, assuming (i) holds, the algorithm always terminates after at most
n+ 1 iterations. Since we add only 2 CG cuts per iteration, the total number of cuts in the
list L will be at most 2(n+ 1) by the end the algorithm. To prove that (i) holds, we first
introduce two other important invariants.

To keep track of the learned equalities in each substitution list, we keep a counter
p(j) ∈ [kj ], for j ∈ [m]. For the second invariant, the algorithm maintains that at the
beginning of each iteration we have that

(ii) V = ∩j∈[m] ∩1≤i≤p(j)−1 {x ∈ Rn : aj,ix = bj,i},
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and that each p(j) ∈ [kj ],j ∈ [m], is maximal subject to the above equality. That is, for
each j ∈ [m], V satisfies all the equalities aj,ix = bj,i for i ∈ [p(j) − 1], and, if p(j) < kj ,
V does not satisfy aj,p(j)x = bp(j). The counters are initialized to p(1) = · · · = p(m) = 1
corresponding to V = Rn (i.e., we have not yet learned any equalities), which indeed yields
a maximal choice. That the affine space V can expressed in the above form is a simple
consequence of how we update it on line (6). Namely, we only update V when we add the
equality aj∗,p(j∗)x = bj∗,p(j∗) to V on line (6). Note that since εj∗ > 0 on line (4), we must
have p(j∗) < kj∗ , since otherwise εj∗ = γj∗,kj∗

= 0 (by definition of a valid substitution
sequence). Thus, we only add an inequality aj,px = bj,p, j ∈ [m], to V if 1 ≤ p < kj and
if V satisfies aj,ix = bj,i for all i ∈ [p − 1], as needed. Lastly, the required maximality is
directly ensured by line (8). This proves that (ii) is indeed maintained. Note that under
maximality, for each j ∈ [m] such that p(j) < kj , adding the equality aj,p(j)x = bp(j) to V
must reduce the dimension of V by at least one (more precisely, adding this equality either
makes V empty or reduces its dimension by exactly 1). We will use this in the proof of (i).

With this notation, we may state the final invariant, which will be a direct con-
sequence of the first two and the definition of a valid substitution sequence. Letting
ε := (γ1,p(i), . . . , γm,p(m)) denote the “error level” for each constraint of P (note that this
equality is maintained on line (9)), at the beginning of each iteration we maintain

(iii) CG(K ∩ P ′,L) ⊆ Pε,

where Pε := {x ∈ Rn : Ax ≤ b + ε}. Crucially, invariant (iii) justifies the first termination
condition K ∩ Pε = ∅, since if this occurs CG(K ∩ P ′,L) ⊆ K ∩ Pε = ∅. Note that for a
constraint j ∈ [m], with p(j) = kj , the effective error level εj = γj,kj = 0 (by definition of
valid substitution). That is, we have effectively “learned” the defining constraint ajx ≤ bj for
P for any j ∈ [m] with p(j) = kj . Clearly, once all the constraints of P have been learned,
we will have CG(K ∩ P ′,L) ⊆ K ∩ P = ∅, where the last equality is by assumption.

We now show that (iii) is a consequence of (i) and (ii). Let L,V ,p and ε be the state
at the beginning of some iteration l ≥ 1, and assume that (i) and (ii) hold. Then, for each
j ∈ [m], we have that

CG(K ∩ P ′,L) ⊆ K ∩ P ′ ∩ V ( by (i) andCG(K ∩ P ′,L) ⊆ K ∩ P ′) (3.11)
⊆ RBn1 ∩ {x ∈ Rn : a′jx ≤ b′j ,aj,ix = bj,i,∀ i ∈ [p(j)− 1]} (3.12)

( by (ii) and K ⊆ RBn1 )
⊆ {x ∈ Rn : ajx ≤ bj + γj,p(j)} ( by Definition 24 part 3. ) .

Since the above holds for all j ∈ [m], and εj = γj,p(j), for j ∈ [m], this proves invariant (iii).
Given the above, to prove correctness of algorithm it suffices to establish invariant (i).

We now show that invariant (i) holds by induction on the iteration l ≥ 1. Let L,V ,p and
ε denote the state at the beginning of some iteration l ≤ 1 for which (i) holds. Note that
(i) trivially holds for the base case l = 1 since V = Rn. By the reasoning in the previous
paragraphs, we also have that invariant (ii) and (iii) hold at the beginning of l. We must
now show that (i) holds at the beginning of iteration l + 1 under these assumptions. Clearly,
we may assume that we pass the while loop check K ∩ Pε 6= ∅ and V 6= ∅, since otherwise
there is nothing to prove.

Let j∗ ∈ [m] be the index satisfying εj∗ > 0 and K ∩Pε−(n+1)εj∗ej∗
= ∅ as guaranteed by

Lemma 18. This index indeed exists since we already checked that K ∩ Pε 6= ∅. As argued
for (ii), we also know that p(j∗) < kj∗ , which will ensure we have access to the required
inequalities from the valid substitution sequence of aj∗x ≤ bj∗ . Letting P ′L := CG(K ∩P ′,L),
to prove that (i) holds for l + 1, it now suffices to show that
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(a) CG(P ′L, (aj∗,p(j∗),−aj∗,p(j∗))) ⊆ {x ∈ Rn : aj∗,p(j∗)x = bj∗,p(j∗)},
(b) dim(V ∩ {x ∈ Rn : aj∗,p(j∗)x ≤ bj∗,p(j∗)}) ≤ dim(V )− 1.

As explained previously, (b) follows directly the maximality assumption in (ii). We may thus
focus on (a). To begin, using (i) and (ii) and the same analysis as in (3.11), we see that

P ′L ⊆ RBn1 ∩ {x ∈ Rn : a′j∗x ≤ b
′
j∗ ,aj∗,ix = bj∗,i,∀i ∈ [p(j∗)− 1]}

⊆ {x ∈ Rn : aj∗,p(j∗)x < bj∗,p(j∗) + 1},

where the last containment follows from Definition (24) part 2. In particular,

sup
x∈P ′L

aj∗,p(j∗)x < bj∗,p(j∗) + 1⇒ b sup
x∈P ′L

aj∗,p(j∗)xc ≤ bj∗,p(j∗), (3.13)

since bj∗,p(j∗) ∈ Z. From (3.13), we conclude that

CG(P ′L,aj∗,p(j∗)) ⊆ {x ∈ Rn : aj∗,p(j∗)x ≤ bj∗,p(j∗)}. (3.14)

From here, again using (i) and (ii), we have that

P ′L∩{x ∈ Rn : aj∗,p(j∗)x ≤ bj∗,p(j∗) − 1}
⊆ RBn1 ∩ {x ∈ Rn : aj∗,p(j∗)x ≤ bj,p(j∗) − 1,aj∗,ix = bj∗,i,∀ i ∈ [p(j∗)− 1]}
⊆ {x ∈ Rn : aj∗x ≤ bj∗ − nεj∗}, (3.15)

where the last containment follows from Definition (24) part 4 and εj∗ = γj∗,p(j∗). Noting
that

Pε ∩ {x ∈ Rn : aj∗x ≤ bj∗ − nεj∗} = Pε−(n+1)εj∗ej∗
,

by the guarantees of Lemma 18, invariant (iii) and (3.15), we therefore have that

P ′L ∩ {x ∈ Rn : aj∗,p(j∗)x ≤ bj∗,p(j∗) − 1} ⊆ K ∩ Pε−(n+1)εj∗ej∗
= ∅.

In particular, we must have that

sup
x∈P ′L

−aj∗,p(j∗)x < −bj∗,p(j∗) + 1⇒ b sup
x∈P ′L

−aj∗,p(j∗)xc ≤ −bj∗,p(j∗), (3.16)

since −bj∗,p(j∗) ∈ Z. From (3.16), we conclude that

CG(P ′L,−aj∗,p(j∗)) ⊆ {x ∈ Rn : −aj∗,p(j∗)x ≤ −bj∗,p(j∗)}. (3.17)

Property (a) now follows directly by combining (3.14) and (3.17). This concludes the proof
of invariant (i) and the proof of correctness of the algorithm. J

3.3 Proof of Theorem 1
Let N = 10nR,M = (10nR)n+2. Given T , we construct T ′ a labeled binary tree with the
same structure as that of T as described at the beginning of subsection 3.1. Recall that
for each internal node v ∈ T with associated disjunction (av, bv), we retrieve a pair of valid
substitution sequences from LongToShort(av, bv, R,N,M), yielding the precision R,N,M
sequence (a′v, b′v, kv,av,1, bv,1, γv,1, . . . ,av,k, bv,k, γv,k) for av ≤ bv and the corresponding flip
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(as in the output description of Algorithm 1) for −avx ≤ −bv − 1. For the corresponding
node v′ ∈ T ′, we create two children v′l, v′r and label the left edge (v′, v′l) with a′vx ≤ b′v and
the right edge (v′, v′r) with −a′vx ≤ −b′v − 1.

From the properties of a valid substitution sequence, we have that ‖a′v‖∞ ≤ NnMn+1

and |b′v| ≤ RNnMn+1. The choice of N = 10nR,M = (10nR)n+2 gives

‖a′v‖∞ ≤ (10nR)n(10nR)(n+2)(n+1) = (10nR)n
2+4n+2 and |b′v| ≤ R(10nR)n

2+4n+2.

Both of these quantities are upper bounded by (10nR)(n+2)2 . For x ∈ Zn, 〈x〉 ≤ n+n log(1 +
‖x‖∞), so the bit-size of each inequality is O(n3) log(nR).

Consider an arbitrary leaf node v′ ∈ T ′ with associated leaf node v ∈ T . Observe that by
construction

Pv′ = {x ∈ Rn : a′ex ≤ b′e, e ∈ E[PT ′(v′)]}

satisfies the hypotheses of Theorem 27, so that there exists a list, say Lv′ of integer vectors
such that CG(K ∩ P ′,Lv′) = ∅. More precisely, Lv′ = (aj1,p1 ,−aj1,p1 , . . . ,ajl,pl

,−ajl,pl
),

where l ≤ (n + 1) and ajr,pr
, jr ∈ [mv], pr ∈ [kj − 1], r ∈ [l], are taken from the valid

substitution sequences of precision R,N,M of the inequalities in the system Avx ≤ bv,
Av ∈ Qmv×n, bv ∈ Rmv×n, defining Pv. Note that by the properties of an R,M,N valid
substitution sequence, ‖ajr,pr‖∞ ≤ 11nNn, |bjr,pr | ≤ R11nNn + 1, r ∈ [l], and hence via the
same argument as above each (aj,r, bj,r) can be described using O(n2 log2(nR)) bits.

We now explain how to extend T ′ to a valid branching proof. For each leaf node v′ ∈ T ′,
we will build a branching proof of infeasibility for Kv′ of length O(n) which simulates the
effect of the CG cuts in Lv′ . By appending these sub-branching proofs to T ′ below each leaf
node v′, the extended T ′ clearly becomes a valid branching proof for K having length at
most |T ′| = O(n)|T | by construction.

The construction of the subtree at v′ using Lv′ = (aj1,p1 ,−aj1,p1 , . . . ,ajl,pl
,−ajl,pl

) (as
above) proceeds as follows. Starting from v′, we create two children v′l, v

′
r, and label the

edge (v′, v′l) with the inequality aj1,p1x ≤ bj1,p1 and the edge (v′, v′r) with the inequality
aj1,p1x ≥ bj1,p1 + 1. Recall that by the definition of a CG cut, the continuous relaxation
Kv′r

at the right child v′r is now empty. The construction now proceeds inductively on v′l
using the sublist (−aj1,p1 , . . . ,ajl,pl

,−ajl,pl
). Note that for every cut in L′, we add a left

and right child to the current left-most leaf of the partially constructed subtree, for which
the continuous relaxation of the newly added right child is always empty. At the end of
the construction, it is easy to see that the left-most leaf of the constructed subtree has
CG(Kv′ ,L′) as its continuous relaxation, which is empty by assumption. From here, we
immediately get that the constructed subtree yields a valid branching proof of infeasibility for
Kv′ , and that the number of nodes in the subtree distinct from v′ is exactly 2|Lv′ | ≤ 4(n+ 1).
Furthermore, we may bound the bit-size of this subtree by O(n3 log2(nR)), since it has O(n)
nodes and every edge is labeled with an inequality of bit-size O(n2 log2(nR)).

To bound the total bit-size 〈T ′〉 of the final branching proof T ′, we combine the bit-
size bound from the subtrees above together with the total bit-size of all the replacement
disjunctions of the form a′vx ≤ b′v or ≥ b′v + 1 (as above) labeling the outgoing edges of
nodes in T ′ associated with internal nodes of T . Given that each disjunction a′v ≤ b′v or
≥ b′v + 1 requires O(n3 log2(nR)) bits as explained above, their total bit-size is bounded
by O(n3 log2(nR)|T |). Furthermore, the bit-size contribution from all the subtrees in T ′
associated with leaf nodes of T is O(n3 log2(nR)|T |), since the number of these subtrees is
bounded by |T | and each has bit-size O(n3 log2(nR)) as explained above. Thus, the total
bit-size 〈T ′〉 = O(n3 log2(nR)|T |) as needed.
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3.4 Proof of Corollary 2
The primary tools for this proof will be the following well-known facts pertaining to the
bit-size of linear programs: (see [24] Chapter 10 for a thorough treatment):

I Lemma 28. Let A ∈ Qm×n,b ∈ Qm, c ∈ Qn.
1. For c ∈ Qn, if max{cx : Ax ≤ b} is finite, then it has size at most 4(〈A,b〉+ 〈c〉).
2. If the system λA = 0,λ ≥ 0 and λb < 0 is feasible, then there exists a solution λ of with

bit-size 〈λ〉 = O(n〈A〉).

I Remark 29. Part 2 of the above lemma in fact corresponds to a bound on the bit-size of
a generator λ of the relevant extreme ray of the cone λA = 0,λ ≥ 0, where we note that
a Farkas certificate of infeasibility for Ax ≤ b (if it exists) can always be chosen to be an
extreme ray of this cone. This is also the reason why the bit-size bound does not in fact
depend on 〈b〉.

Proof of Corollary 2. Since K = {x ∈ Rn : Cx ≤ d} is a polytope (i.e., bounded), we may
invoke lemma 28 part 1 to conclude that

max
x∈P
‖x‖1 = max

y∈{−1,1}n
max{yx : Cx ≤ d} ≤ 24(L+2n)

using that 〈y〉 ≤ 2n, for y ∈ {−1, 1}n, and that |a| ≤ 2〈a〉∀a ∈ Q. Therefore, K ⊆ RBn1
for R = 24L+8n. Theorem 1 applied with R = 24L+8n already gives us a T ′ with |T ′| ≤
O(n)|T |, and the bound on ‖·‖∞ for integer vectors gives the bit-size of every inequality
〈aex ≤ be〉 ≤ O(n3) log(n(R + 2)) = O(n3L). As a result, the branching proof T ′ has size
〈T ′〉 = nO(1)L|T |. However, T ′ is not yet a certified branching proof.

We are done if we can add to each leaf node v′ ∈ T ′ a Farkas certificate λv′ of small
size. Recall the continuous relaxation at v′ in T ′ is Kv′ = {x ∈ Rn : Cx ≤ d,Av′ ≤ b′}.
By assumption, we know that Kv′ = ∅, and thus by Farkas’s Lemma there exists λv′ :=
(λv′,1,λv′,2) ≥ 0 such that λv′,1C + λv′,2Av′ = 0 and λv′,1d + λv′,2b < 0. Thus, by
lemma 28 part 2, there exists a solution λv′ whose bit-complexity is upper bounded by
O(n〈C,Av′〉). This quantity may be large since we have not controlled the number of rows
Av′ . By Caratheodory’s theorem however, there exists a solution λv′ with at most n + 1
non-zero entries. Therefore, we can restrict our attention to a subset of rows of C and Av′
of cardinality at most n+ 1. As argued above, by Theorem 1 each row of Av′ has bit-size
at most O(n3 log2(nR)) = O(n3L), and by assumption 〈C〉 ≤ L. Thus, by restricting to the
appropriate sub-system, the bit-length of the non-zero entries of λv′ can be bounded by
O(n((n+ 1)n3L+ L)) = O(n5L), as needed.

Since the number of nodes in |T ′| = O(n|T |), the combined bit-size of the Farkas
certificates above is at most O(n6L|T |). This dominates the contribution of the disjunctions
to the bit-size of T ′, which by Theorem 1 is O(n3L|T |). Thus, the certified version of has
size 〈T ′〉 = O(n6L|T |), as needed. J

4 Simulating Enumerative Branching Proofs by Cutting Planes

In this section, we prove that enumerative branching proofs can be simulated by CP, and
give an application to Tseitin formulas (section 4.1).

To begin, we first extend the lifting lemma (Lemma 20) to a sequence of CG cuts. This
will allow us to use induction on subtrees of an enumerative branching proof.
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I Lemma 30 (Lifting Sequences of CG cuts). Let K ⊆ Rn be a non-empty compact set. Let
c ∈ Zn, F := FK(c) and assume that hK(c) ∈ Z. Let a1, . . . ,ak ∈ Zn. Then, there exists
n1, . . . , nk ≥ 0 such that

CG(K, (a1 + n1c, . . . ,ak + nkc)) ∩H=
K(c) = CG(F, (a1, . . . ,ak)) .

Proof. We prove the statement by induction on i. For i = 0, there are no CG cuts to
apply and the statement becomes K ∩H=

K(c) = F , which follows by definition. Now assume
1 ≤ i ≤ k with induction hypothesis

Ki−1 ∩H=
K(c) = Fi−1 (4.1)

where

Ki−1 := CG(K, (a1 + n1c, . . . ,ai−1 + ni−1c)) and Fi−1 := CG(F, (a1, . . . ,ai−1)).

We must prove the existence of ni ≥ 0 such that (4.1) holds for i. Firstly, if Fi−1 = ∅, then
regardless of the choice of ni ≥ 0, both the sets Fi and Ki ∩H=

K(c) will be empty since they
are both contained in Fi−1 = ∅. In particular, we may set ni = 0 and maintain the desired
equality.

So assume Fi−1 6= ∅. From here, since ∅ 6= Fi−1 ⊆ F , where we recall that F is the set
maximizers of c in K, and Fi−1 ⊆ Ki−1 ⊆ K, we have that

hK(c) ≥ hKi−1(c) ≥ hFi−1(c) = hK(c) ∈ Z.

In particular, H=
Ki−1

(c) = H=
K(c). Therefore, by the induction hypothesis (4.1)

Ki−1 ∩H=
Ki−1

(c) = Ki−1 ∩H=
K(c) = Fi−1 ,

that, Fi−1 is the set of maximizers of c in Ki−1. Furthermore, since Ki−1 is the intersection
of K with closed halfspaces and K is compact, Ki−1 is also compact. Therefore, we may
apply Lemma 20 to choose ni ≥ 0 satisfying

Hcg
Ki−1

(ai + nic) ∩H=
K(c) = Hcg

Fi−1
(ai) ∩H=

K(c). (4.2)

We use the above ni to define

Ki := Ki−1 ∩Hcg
Ki−1

(ai + nic) = CG(K, (a1 + n1c, . . . ,ai + nic)).

Intersecting both sides of (4.2) with Ki−1, we conclude that

Hcg
Ki−1

(ai + nic) ∩Ki−1 ∩H=
K(c) = Hcg

Fi−1
(ai) ∩Ki−1 ∩H=

K(c)⇔

Ki ∩H=
K(c) = Hcg

Fi−1
(ai) ∩ Fi−1 ⇔

Ki ∩H=
K(c) = Fi,

as needed. The lemma thus follows. J

We are now ready to prove the main result of this section, which shows that enumerative
branching proofs can be simulated by CP.

Proof of Theorem 4. Our procedure for converting enumerative branching proofs to CP
proofs is given by Algorithm 3. The proof of correctness of the procedure will yield the
theorem:

B Claim 31. Given an enumerative branching proof T of integer infeasibility for a compact
convex set K ⊆ Rn, Algorithm 3 correctly outputs a list L = (a1, . . . ,aN ) ∈ Zn satisfying
CG(K,L) = ∅ and |L| := N ≤ 2|T | − 1.

CCC 2020



34:32 On the Complexity of Branching Proofs

Proof.

Algorithm Outline. We first describe the algorithm at a high level and then continue with
a formal proof. The procedure traverses the tree T in order, visiting the children of each
node from right to left. We explain the process starting from the root node r ∈ T . To begin,
we examine its branching direction ar ∈ Zn and bounds lr ≤ ur satisfying

{arx : x ∈ K} ⊆ [lr, ur],

recalling that r has a child rb for each b ∈ [lr, ur] ∩ Z.
Starting at r, the procedure adds CG cuts to “chop off” the children of r moving from

right to left. In particular, it alternates between adding the CG induced by ar to K, which
will either make K empty or push the hyperplane H=

ar,b
, where b := hK(ar), to the next

child of r, and recursively adding CG cuts induced by the subtree Trb
rooted at the child rb

of r. The cuts computed on the subtree Trb
will be used to chop off the face K ∩H=

ar,b
from

K, which will require lifting cuts from the face to K using Lemma 30. Once the face has
been removed, we add the CG cut induced by ar to move to the next child. The process
continues until all the children have been removed and K is empty.

Algorithm 3 EnumToCP(K, T ).

Input: Compact convex set K ⊆ Rn, Enumerative branching proof T for K.
Output: List L of CG cuts satisfying CG(K,L) = ∅ and |L| ≤ 2|T | − 1.

1 initialize L = ∅, r ← root of T ;
2 if K = ∅ then
3 return ∅;
4 Retrieve branching direction ar ∈ Zn and bounds lr ≤ ur;
5 K ← CG(K,ar);
6 L ← (ar);
7 while lr ≤ hK(ar) do
8 b← hK(ar);
9 Trb

← subtree of T rooted at rb;
10 N ′ ← EnumToCP(FK(ar), Trb

);
11 N ← Lift CG cuts in N ′ from FK(ar) to K using Lemma 30;
12 K ← CG(K,N);
13 K ← CG(K,ar);
14 Append N,ar to L;
15 return L;

Analysis. We show correctness by induction on |T | ≥ 1. Let r ∈ T denote the root node
with branching direction ar ∈ Zn and bounds lr ≤ ur.

We prove the base case |T | = 1. If K = ∅, then no CG cuts are needed and clearly
0 ≤ 2|T | − 1 = 1. If K 6= ∅, then letting r be the root node, we must have [lr, ur] ∩ Z = ∅ ⇒
burc < lr. Since hK(ar) ∈ [lr, ur], the initializing CG cut we add on line 5 induced by ar
will make K empty. This follows since after the cut hK(ar) ≤ burc < lr. The algorithm thus
correctly returns L = (ar), where |L| = 1 = 2|T | − 1, as needed.

Now assume that |T | ≥ 2 and that the algorithm is correct for all smaller trees. If
K = ∅ or we do not enter the while loop on line 7, the algorithm correctly returns by the
above analysis. So we now assume that K 6= ∅ and that the algorithm performs at least one
iteration of the while loop.
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Let K0 denote the state of K at the beginning of the algorithm. Let Ki, bi, Li, for
i ≥ 1, denote the state of K, b, L at the beginning of the ith iteration of the while loop
on line 7 and let Ni, i ≥ 1, denote the state of L at the end the ith iteration. Let T ≥ 1
denote the last iteration (i.e., which passes the check of the while loop). By design of
the algorithm, it is direct to check that Ki = CG(K0,Li), Li+1 = (Li, Ni,ar) and that
bi = hKi(ar), ∀i ∈ [T ], where we define LT+1 to be the list of CG cuts returned by the
algorithm, KT+1 := CG(K0,LT+1) = ∅ and bT+1 := hKT +1(ar) = −∞. Note also that
Ki 6= ∅, ∀i ∈ [T ], since otherwise we would have terminated earlier.

To begin, we claim that

bi ∈ [lr, ur] ∩ Z,∀i ∈ [T ]. (4.3)

To see this, note first that for any compact convex set C either CG(C,ar) = ∅ and
hCG(C,ar)(ar) = −∞ or CG(C,ar) 6= ∅ and hCG(C,ar)(ar) = bhC(ar)c ∈ Z, where the
latter claim follows from convexity and compactness of CG(C,ar). Since we apply the CG
cut induced by ar to K directly before the while loop and at the end of every iteration, we
immediately get that bi = hKi(ar) ∈ Z, i ∈ [T ]. Furthermore, since ∅ 6= Ki ⊆ K0, ∀i ∈ [T ],
and {arx : x ∈ K0} ⊆ [lr, ur], we must also have bi ∈ [lr, ur].

Given (4.3), for each i ∈ [T ], we see that rbi is indeed a child of r. Let Trbi
, i ∈ [T ] denote

the subtree of T rooted at rbi
. We claim that

bi+1 ≤ bi − 1, i ∈ [T ], and |Ni| ≤ 2|Trbi
| − 1, i ∈ [T ]. (4.4)

To see this, first recall that Trbi
is a branching proof for K0 ∩H=

ar,bi
. In particular, since

Ki ⊆ K0, Trbi
is also a valid branching proof for Ki ∩H=

ar,bi
= FKi

(ar). By the induction
hypothesis the call to EnumToCP (FKi(ar), Trbi

) on line 10 therefore correctly returns a list
N ′i of CG cuts satistyfing CG(FKi

(ar), N ′i) = ∅ and |N ′i | ≤ 2|Trbi
| − 1. Furthermore, by

Lemma 30, the lifting Ni of N ′i to K computed on line 11 satisfies |Ni| = |N ′i | ≤ 2|Tri | − 1,
as needed, and CG(Ki, Ni) ∩H=

ar,bi
= CG(FKi

(ar), N ′i) = ∅. Letting K ′i = CG(Ki, Ni), by
compactness of K ′i we therefore must have hK′

i
(ar) < bi. Recalling that Ki+1 = CG(K ′i,ar),

we see that bi+1 = hKi+1(ar) ≤ bhK′
i
(ar)c ≤ bi − 1, as needed.

From the above, we see that the procedure clearly terminates in finite time and returns a
list LT+1 satisfying CG(K0,LT+1) = ∅. It remains to bound the size of |LT+1|. Since we
add 1 CG cut before the while loop, and at iteration i ∈ [T ], we add |Ni|+ 1 CG cuts, the
total number of cuts is

1 +
T∑
i=1
|Ni|+ 1 ≤ 1 +

T∑
i=1

2|Trbi
| ≤ 2|T | − 1,

where the last inequality follows since the sum is over subtrees rooted at distinct children of
r, noting that |T | = 1 +

∑
b∈[lr,ur]∩Z |Trb

|. This completes the proof. C

J

4.1 Upper Bounds for Tseitin Formulas
Proof of Theorem 3. As explained in the introduction, given Theorem 4, it suffices to show
that the Beame et al [5] SP refutation is in fact enumerative. We thus describe their refutation
briefly to make clear that this is indeed the case.

We start with a Tseitin formula indexed by a graph G = (V,E), of maximum degree ∆,
together with parities lv ∈ {0, 1}, v ∈ V , satisfying

∑
v∈V lv ≡ 1 mod 2. We recall that the

variables x ∈ {0, 1}E index the corresponding subset of edges where the assignment x is a
satisfying assignment iff

∑
e∈E:v∈e xe ≡ lv mod 2, ∀v ∈ V .
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The Beame et al refutation proceeds as follows. At the root node r, we first divide the
vertex set V = V r1 ∪ V r2 arbitrarily into two parts of near-equal size. We then branch on the
number of edges crossing the cut

x(E[V r1 , V r2 ]) :=
∑

{v1,v2}∈E,v1∈V r
1 ,v2∈V r

2

xv1,v2 ∈ [0, |E[V r1 , V r2 ]|].

Let c be the child with x(E[V r1 , V r2 ]) = b. c chooses ic ∈ {1, 2} such that
∑
v∈V r

ic

lv 6= b

mod 2, corresponding the set of vertices still containing a contradiction. From here, again c
partitions V ric = V c1 ∪ V c2 into two near-equal pieces. We now branch twice: we first branch
on the number of edges crossing the cut x(E[V c1 , V c2 ]), creating corresponding children, and
at each such child, we branch on number of edges crossing the cut x(E[V c1 , V \ V c1 ]). From
here, every child c′, two levels down from c, can decide which set of vertices V c1 or V c2 still
contains a contradiction. The process continues in a similar way until we find a contradicting
set corresponding to a single vertex v. At this point, one constructs a complete branching
tree on all possible values of the edges outgoing from v. This completes the description.

It is clear from the description, that every branching decision is enumerative. As shown
in Beame et al, the above SP refutation has length 2∆(n∆)O(logn). Theorem 4 shows that
one can convert it to a CP refutation of the same length. This completes the proof. J
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Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal
combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric
rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank
is an upper bound on the subrank of tensors and the independence number of hypergraphs. We
prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the
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1 Introduction

Tensors play a central role in computer science and mathematics. Motivated by problems
in algebraic complexity theory (e.g., the arithmetic complexity of matrix multiplication),
extremal combinatorics (e.g., the cap set problem and the Erdős–Szemerédi sunflower problem)
and quantum information theory (the resource theory of quantum entanglement), we introduce
and study a new tensor parameter called geometric rank. Like the many widely studied
notions of rank for tensors (rank, subrank, border rank, border subrank, flattening rank,
slice rank, analytic rank), geometric rank of tensors generalizes the classical rank of matrices.
In this paper, we:
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prove a number of basic properties and invariances of geometric rank,
develop several tools to reason about, and sometimes exactly compute, the geometric
rank,
show intimate connections between geometric rank and the other important notions of
rank for tensors,
and as a simple application of the above, we answer an old question of Strassen by showing
that the (border) subrank of m ×m matrix multiplication is at most d3m2/4e (this is
tight for border subrank; previously the border subrank of the matrix multiplication
tensor was known to lie between 3

4m
2 and (1− o(1))m2).

More generally, we believe that geometric rank provides an interesting new route to prove
upper bounds on subrank of tensors (and hence independence numbers of hypergraphs). Such
upper bounds are important in complexity theory in the context of matrix multiplication
and barriers to matrix multiplication, and combinatorics in the context of specific natural
hypergraphs (as in the cap set problem and the Erdős–Szemeredi sunflower problem).

1.1 Geometric rank
We define the geometric rank of a tensor as the codimension of the (possibly reducible)
algebraic variety defined by the bilinear forms given by the slices of the tensor. Here we use
the standard notions of dimension and codimension of affine varieties from algebraic geometry.
That is, for any tensor T = (Ti,j,k)i,j,k ∈ Fn1×n2×n3 with coefficients Ti,j,k in an algebraically
closed field F (e.g., the complex numbers C) and with 3-slices Mk = (Ti,j,k)i,j ∈ Fn1×n2 we
define the geometric rank GR(T ) as

GR(T ) = codim{(x, y) ∈ Fn1 × Fn2 | xTM1y = · · · = xTMn3y = 0}.

Viewing T as the trilinear map T : Fn1 × Fn2 × Fn3 → F : (x, y, z) 7→
∑
i,j,k Ti,j,k xiyjzk, we

can equivalently write the geometric rank of T as

GR(T ) = codim{(x, y) ∈ Fn1 × Fn2 | ∀z ∈ Fn3 : T (x, y, z) = 0}.

The definition of geometric rank is expressed asymmetrically in x, y and z. We will see,
however, that the codimensions of {(x, y) ∈ Fn1 × Fn2 | ∀z : T (x, y, z) = 0}, {(x, z) ∈
Fn1 × Fn3 | ∀y : T (x, y, z) = 0} and {(y, z) ∈ Fn2 × Fn3 | ∀x : T (x, y, z) = 0} coincide
(Theorem 4).

The motivation for this definition is a bit hard to explain right away. We arrived at it
while searching for a characteristic 0 analogue of the analytic rank of Gowers and Wolf [19]
(see Section 8).

I Example 1. We give an example of how to compute the geometric rank. Let T ∈ F2×2×2

be the tensor with 3-slices

M1 =
(

1 0
0 0

)
, M2 =

(
0 1
1 0

)
.

(This is sometimes called the W -tensor). One verifies that the algebraic variety V =
{(x, y) ∈ F2 × F2 | x1y1 = 0, x2y1 + x1y2 = 0} has the three irreducible components
{(x, y) ∈ F2×F2 | x1 = 0, x2 = 0}, {(x, y) ∈ F2×F2 | x1 = 0, y1 = 0} and {(x, y) ∈ F2×F2 |
y1 = 0, y2 = 0}. Each irreducible component has dimension 2 and thus V has dimension 2.
Hence GR(T ) = codimV = 4− 2 = 2. We will see more examples of geometric rank later
(Theorem 17).
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1.2 Overview: notions of tensor rank
Before discussing our results we give an introduction to some of the existing notions of rank
and their usefulness. Several interesting notions of rank of tensors have been studied in
mathematics and computer science, each with their own applications. As a warm-up we first
discuss the familiar situation for matrices.

Matrices

For any two matrices M ∈ Fm1×m2 and N ∈ Fn1×n2 we write M ≤ N if there exist matrices
A,B such that M = ANB. Defining the matrix rank R(M) of M as the smallest number r
such that M can be written as a sum of r matrices that are outer products (uivj)ij (i.e.,
rank-1 matrices), we see that in terms of the relation ≤ we can write the matrix rank as the
minimisation

R(M) = min{r ∈ N |M ≤ Ir},

where Ir is the r× r identity matrix. Matrix rank thus measures the “cost” of M in terms of
identity matrices. Let us define the subrank Q(M) of M as the “value” of M in terms of
identity matrices,

Q(M) = max{s ∈ N | Is ≤M}.

It turns out that subrank equals rank for matrices,

Q(M) = R(M).

Namely, if R(M) = r, then by using Gaussian elimination we can bring M in diagonal form
with exactly r nonzero elements on the diagonal, and so Ir ≤M . In fact, M ≤ N if and only
if R(M) ≤ R(N).

Tensors

For any two tensors S ∈ Fm1×m2×m3 and T ∈ Fn1×n2×n3 we write S ≤ T if there are matrices
A,B,C such that S = (A,B,C) · T where we define

(A,B,C) · T := (
∑
a,b,c

AiaBjbCkcTa,b,c)i,j,k.

Thus (A,B,C) · T denotes taking linear combinations of the slices of T in three directions
according to A, B and C. Let T ∈ Fn1×n2×n3 be a tensor. The tensor rank R(T ) of T is
defined as the smallest number r such that T can be written as a sum of r tensors that are
outer products (uivjwk)i,j,k. Similarly as for matrices, we can write tensor rank in terms of
the relation ≤ as the “cost” minimisation

R(T ) = min{r ∈ N |M ≤ Ir}

where Ir is the r × r × r identity tensor (i.e., the diagonal tensor with ones on the main
diagonal). Strassen defined the subrank of T as the “value” of T in terms of identity tensors,

Q(T ) = max{s ∈ N | Is ≤M}.

Naturally, since ≤ is transitive, we have that value is at most cost: Q(T ) ≤ R(T ). Unlike the
situation for matrices, however, there exist tensors for which this inequality is strict. One way
to see this is using the fact that a random tensor in Fn×n×n has tensor rank close to n2 whereas
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its subrank is at most n. Another way to see this is using the ranks R(i)(T ) := R(T (i))
of the matrices T (1) = (Ti,j,k)i,(j,k) ∈ Fn1×n2n3 , T (2) = (Ti,j,k)j,(i,k) ∈ Fn2×n1n3 , and
T (3) = (Ti,j,k)k,(i,j) ∈ Fn3×n1n2 obtained from T by grouping two of the three indices
together, since

Q(T ) ≤ R(i)(T ) ≤ R(T ).

Namely, it is not hard to find tensors T for which R(1)(T ) < R(2)(T ). We will now discuss two
upper bounds on the subrank Q(T ) that improve on the flattening ranks R(i)(T ). Then we will
discuss connections between subrank and problems in complexity theory and combinatorics.

Slice rank

In the context of the cap set problem, Tao [34] defined the slice rank of any tensor T as the
minimum number r such that T can be written as a sum of r tensors of the form (uiVjk)i,j,k,
(ujVik)i,j,k or (ukVij)i,j,k (i.e., an outer product of a vector and a matrix). In other words,
SR(T ) := min{R(1)(S1) + R(2)(S2) + R(3)(S3) : S1 + S2 + S3 = T}. Clearly slice rank is at
most any flattening rank, and Tao proved that slice rank upper bounds subrank,

Q(T ) ≤ SR(T ) ≤ R(i)(T ).

The lower bound connects slice rank to problems in extremal combinatorics, which we will
discuss further in Section 1.3. The slice rank of large Kronecker powers of tensors was studied
in [7] and [13], which lead to strong connections with invariant theory and moment polytopes,
and with the asymptotic spectrum of tensors introduced by Strassen [32].

Analytic rank

Gowers and Wolf [19] defined the analytic rank of any tensor T ∈ Fn1×n2×n3
p over the

finite field Fp for a prime p as AR(T ) := − logp bias(T ), where the bias of T is defined
as bias(T ) := E exp(2πi T (x, y, z)/p) with the expectation taken over all vectors x ∈ Fn1

p ,
y ∈ Fn2

p and z ∈ Fn3
p . The analytic rank relates to subrank and tensor rank as follows:

Q(T ) ≤ AR(T )
AR(I1) ≤ R(T )

where AR(I1) = − logp(1− (1− 1/p)2). The upper bound was proven in [6]. Interestingly,
the value of AR(T )/AR(I1) can be larger than maxi R(i)(T ) for small p. The lower bound
is essentially by Lovett [27]. Namely, Lovett proves that AR(T )/AR(I1) upper bounds the
size of the largest principal subtensor of T that is diagonal. (We will discuss this further in
Section 1.3.) Lovett moreover proved that AR(T ) ≤ SR(T ) and he thus proposes analytic
rank as an effective upper bound tool for any type of problem where slice rank works well
asymptotically. Lovett’s result motivated us to study other parameters to upper bound the
subrank, which led to geometric rank.

Another line of work has shown upper bounds on SR(T ) in terms of AR(T ). This was first
proven by Bhowmick and Lovett [5], with an Ackerman-type dependence. The dependence
was later improved significantly by Janzer [22]. Recently, Janzer [23] and Milićević [28]
proved polynomial upper bounds of SR in terms of AR. It is not known whether these
parameters can be related by a multiplicative constant.
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1.3 Connections of subrank to complexity theory and combinatorics
Arithmetic complexity of matrix multiplication and barriers

A well-known problem in computer science concerning tensors is about the arithmetic
complexity of matrix multiplication. Asymptotically how many scalar additions and mul-
tiplications are required to multiply two m × m matrices? The answer is known to be
between n2 and Cn2.37..., or in other words, the exponent of matrix multiplication ω is known
to be between 2 and 2.37... [26]. The complexity of matrix multiplication turns out to be
determined by the tensor rank of the matrix multiplication tensors 〈m,m,m〉 corresponding
to taking the trace of the product of three m×m matrices. Explicitly, 〈m,m,m〉 corresponds
to the trilinear map

∑m
i,j,k=1 xijyjkzki. In practice, upper bounds on the rank of the matrix

multiplication tensors are obtained by proving a chain of inequalities

〈m,m,m〉 ≤ T ≤ Ir

for some intermediate tensor T , which is usually taken to be a Coppersmith–Winograd tensor,
and an r that is small relatively to m. It was first shown by Ambainis, Filmus and Le Gall [3]
that there is a barrier for this strategy to give fast algorithms. This barrier was recently
extended and simplified in several works [7, 8, 2, 1, 14] and can be roughly phrased as follows:
if the asymptotic subrank of the intermediate tensor limn→∞Q(T⊗n)1/n is strictly smaller
than the asymptotic rank limn→∞R(T⊗n)1/n, then one cannot obtain ω = 2 via T . These
barriers rely on the fact that the asymptotic subrank of the matrix multiplication tensors is
maximal. Summarizing, the rank of the matrix multiplication tensors corresponds to the
complexity of matrix multiplication whereas the subrank of any tensor corresponds to the a
priori suitability of that tensor for use as an intermediate tensor. The upper bounds on the
asymptotic subrank used in the aforementioned results were obtained via slice rank or the
related theory of support functionals and quantum functionals [13].

Cap sets, sunflowers and independent sets in hypergraphs

Several well-known problems in extremal combinatorics can be phrased in terms of the
independence number of families of hypergraphs. One effective collection of upper bound
methods proceeds via the subrank of tensors. (For other upper bound methods, see e.g. the
recent work of Filmus, Golubev and Lifshitz [17].) A hypergraph is a a symmetric subset
E ⊆ V × V × V . An independent set of E is any subset S ⊆ V such that S does not induce
any edges in E, that is, E ∩ (S × S × S) = ∅. The independence number α(E) of E is
the largest size of any independence set in E. For any hypergraph E ⊆ [n] × [n] × [n], if
T ⊆ Fn×n×n is any tensor supported on E ∪ {(i, i, i) : i ∈ [n]}, then

α(E) ≤ Q(T ).

Indeed, for any independent set S of E the subtensor T |S×S×S is a diagonal tensor with
nonzero diagonal and T ≥ T |S×S×S . For example, the resolution of the cap set problem by
Ellenberg and Gijswijt [16], as simplified by Tao [34], can be thought of as upper bounding
the subrank of tensors corresponding to strong powers of the hypergraph consisting of the
edge (1, 2, 3) and permutations. The Erdős–Szemerédi sunflower problem for three petals
was resolved by Naslund and Sawin [29] by similarly considering the strong powers of the
hypergraph consisting of the edge (1, 1, 2) and permutations. In both cases slice rank was
used to obtain the upper bound. Another result in extremal combinatorics via analytic rank
was recently obtained by Briët [10].
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1.4 Our results
We establish a number of basic properties of geometric rank. These imply close connections
between geometric rank and other notions of rank, and thus bring in a new set of algebraic
geometric tools to help reason about the various notions of rank. In particular, our new
upper bounds on the (border) subrank of matrix multiplication follow easily from our basic
results.

Subrank and slice rank

We prove that the geometric rank GR(T ) is at most the slice rank SR(T ) of Tao [34] and at
least the subrank Q(T ) of Strassen [31] (see Theorem 6).

I Theorem 1. For any tensor T ,

Q(T ) ≤ GR(T ) ≤ SR(T ).

We thus add GR to the collection of tools to upper bound the subrank of tensors Q and in
turn the independence number of hypergraphs. We prove these inequalities by proving that
GR is monotone under ≤, additive under the direct sum of tensors, and has value 1 on the
trivial I1 tensor. We also give a second more direct proof of this inequality (Theorem 23).

Border subrank

We extend our upper bound on subrank to border subrank, the (widely studied) approximative
version of subrank.

The main ingredient in this extension is the following fact (which itself exploits the
algebraic-geometric nature of definition of GR): the set {T ∈ Fn×n×n | GR(T ) ≤ m} is
closed in the Zariski topology.1 In other words, geometric rank is lower-semicontinuous. This
implies that the geometric rank also upper bounds the border subrank Q(T ) (see Theorem 12).

I Theorem 2. For any tensor T ,

Q(T ) ≤ GR(T ).

As far as we know, GR is a new tensor parameter. We show that GR is not the same
parameter as Q, Q or SR (Remark 20 and Remark 22).

Matrix multiplication

In the study of the complexity of matrix multiplication, Strassen [31] proved that for the
matrix multiplication tensors 〈m,m,m〉 ∈ Fm2×m2×m2 the border subrank is lower bounded
by d 3

4m
2e ≤ Q(〈m,m,m〉). We prove that this lower bound is optimal by proving the

following (see Theorem 17).

I Theorem 3. For any positive integers e ≤ h ≤ `,

Q(〈e, h, `〉) = GR(〈e, h, `〉) =

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

In particular, we have Q(〈m,m,m〉) ≤ Q(〈m,m,m〉) = GR(〈m,m,m〉) = d 3
4m

2e for any
m ∈ N.

1 That is, the statement GR(T ) ≤ m is characterized by the vanishing of a finite number of polynomials.
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Our computation of GR here is a calcluation of the dimension of a variety. We do this
by studying the dimension of various sections of that variety, which then reduces to linear
algebraic questions about matrices (we are talking about matrix multiplication after all).

Our result improves the previously best known upper bound on the subrank of matrix
multiplication of Christandl, Lucia, Vrana and Werner [12], which was Q(〈m,m,m〉) ≤
m2 −m + 1. In fact, our upper bound on GR(〈e, h, `〉) exactly matches the lower bound
on Q(〈e, h, `〉) of Strassen [31], for any nonnegative integers e, h, and `. We thus solve the
problem of determining the exact value of Q(〈e, h, `〉).

Analytic rank

Finally, we establish a strong connection between geometric rank and analytic rank.
We prove that for any tensor T ∈ Zn1×n2×n3 ⊆ Cn1×n2×n3 with integer coefficients, the

geometric rank of T equals the liminf of the analytic rank of the tensors Tp ∈ Fn1×n2×n3
p

obtained from T be reducing all coefficients modulo p and letting p go to infinity over all
primes (see Theorem 24).

I Theorem 4. For every tensor T over Z we have

lim inf
p→∞

AR(Tp) = GR(T ).

This result is in fact the source of our definition of geometric rank. The analytic rank
of a tensor is defined as the bias of a certain polynomial on random inputs. By simple
transformations, computing the analytic rank over Fp reduces to computing the number of
solutions of a system of polynomial equations over Fp. Namely,

AR(Tp) = n1 + n2 − logp |{(x, y) ∈ Fn1
p × Fn2

p : Tp(x, y, ·) = 0}| .

This system of polynomial equations defines a variety, and it is natural to expect that the
dimension of the variety roughly determines the number of Fp-points of the variety. This
expectation is not true in general, but under highly controlled circumstances something like
it is true. This is how we arrived at the definition of geometric rank (which eventually turned
out to have very natural properties on its own, without this connection to analytic rank).

Actually establishing the above liminf result is quite roundabout, and requires a number
of tools from algebraic geometry and number theory. In particular, we do not know whether
this liminf can be replaced by a limit!

We stress that analytic rank is only defined for tensors over prime fields of positive
characteristic, whereas geometric rank is defined for tensors over any field. By the aforemen-
tioned result, geometric rank over the complex numbers can be thought of as an extension of
analytic rank to characteristic 0. Finding an extension of analytic rank beyond finite fields is
mentioned as an open problem by Lovett [27, Problem 1.10].

Organization of this paper
In the next section we formally define geometric rank. In Section 3, we give some alternative
definitions of geometric rank that help us reason about it. In Section 4 and Section 5 we show
the relationship between geometric rank, slice rank, subrank and border subrank. In Section 6
we use the established properties of geometric rank to give a proof of our upper bound on
the (border) subrank of matrix multiplication. In Section 7 we give a more direct proof of
the inequality between slice rank and geometric rank. Finally, in Section 8 we establish the
relationship between geometric and analytic ranks.
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2 Geometric rank

In this section we set up some general notation and define geometric rank. Let F be an
algebraically closed field.

Dimension and codimension

The notion of dimension that we use is the standard notion in algebraic geometry, and is
defined as follows. Let V ⊆ Fn be a (possibly reducible) algebraic variety. The codimension
codimV is defined as n− dimV . The dimension dimV is defined as the length of a maximal
chain of irreducible subvarieties of V [21]. In our proofs we will use basic facts about
dimension: the dimension of a linear space coincides with the notion from linear algebra, the
dimension is additive under the cartesian product, the dimension of a locally open set equals
the dimension of its closure and dimension behaves well under projections (x, y) 7→ y.

Notation about tensors

Let Fn1×n2×n3 be the set of all three-dimensional arrays

T = (Ti,j,k)i∈[n1],j∈[n2],k∈[n3]

with Ti,j,k ∈ F. We refer to the elements of Fn1×n2×n3 as the n1×n2×n3 tensors over F. To
any tensor T ∈ Fn1×n2×n3 we associate the polynomial T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)
in F[x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 ] defined by

T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3) =
∑
i∈[n1]

∑
j∈[n2]

∑
k∈[n3]

Ti,j,k xiyjzk

and the trilinear map Fn1 × Fn2 × Fn3 → F defined by

T (x, y, z) = T (x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3).

Geometric rank

I Definition 2. The geometric rank of a tensor T ∈ Fn1×n2×n3 , written GR(T ), is the
codimension of the set of elements (x, y) ∈ Fn1 × Fn2 such that T (x, y, z) = 0 for all z ∈ Fn3 .
That is,

GR(T ) := codim{(x, y) ∈ Fn1 × Fn2 | ∀z ∈ Fn3 : T (x, y, z) = 0}.

For any (x, y) ∈ Fn2×Fn3 we define the vector T (x, y, ·) = (T (x, y, ek))n3
k=1, where e1, . . . , en3

is the standard basis of Fn3 . In this notation the geometric rank is given by

GR(T ) = codim{(x, y) | T (x, y, ·) = 0}.

For later use we also define the vectors T (x, ·, z) = T (x, ej , z)j and T (·, y, z) = T (ei, y, z)i,
and we define the matrices T (x, ·, ·) = T (x, ej , ek)j,k, T (·, y, ·) = T (ei, y, ek)i,k and T (·, ·, z) =
T (ei, ej , z)i,j.

We defined the geometric rank of tensors with coefficients in an algebraically closed field.
For tensors with coefficients in an arbitrary field we naturally define the geometric rank via
the embedding of the field in its algebraic closure.
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Computer software

One can compute the dimension of an algebraic variety V ⊆ Fn using computer software like
Macaulay2 [20] or Sage [30]. This allows us to easily compute the geometric rank of small
tensors. For example, for Example 1 in the introduction over the field F = C, one verifies in
Macaulay2 with the commands

R = CC[x1,x2,y1,y2];
dim ideal(x1*y1, x2*y1 + x1*y2)

or in Sage with the commands

A.<x1,x2,y1,y2> = AffineSpace(4, CC);
Ideal([x1*y1, x2*y1 + x1*y2]).dimension()

that dimV = 2.

Computational complexity

Koiran [24] studied the computational complexity of the problem of deciding whether the
dimension of an algebraic variety V ⊆ Cn is at least a given number. When V is given
by polynomial equations over the integers the problem is in PSPACE, and assuming the
Generalized Riemann Hypothesis the problem is in the Arthur–Merlin class AM. Thus the
same upper bounds apply to computing GR.

In the other direction, Koiran showed that computing dimension of algebraic varieties in
general is NP-hard. We know of no hardness results for computing GR.

Higher-order tensors

Our definition of geometric rank extends naturally from the set of 3-tensors Fn1×n2×n3 to
the set of k-tensors Fn1×···×nk for any k ≥ 2 by defining the geometric rank of any k-tensor
T ∈ Fn1×···×nk as

GR(T ) := codim{(x1, . . . , xk−1) ∈ Fn1×· · ·×Fnk−1 | ∀xk ∈ Fnk : T (x1, . . . , xk−1, xk) = 0}.

For k = 2 geometric rank coincides with matrix rank. Our results extend naturally to
k-tensors with this definition, but for clarity our exposition will be in terms of 3-tensors.

3 Alternative descriptions of geometric rank

We give two alternative descriptions of geometric rank that we will use later. The first descrip-
tion relates geometric rank to the matrix rank of the matrices T (x, ·, ·) = (T (x, ej , ek))j,k.
The second description shows that the geometric rank of T (x, y, z) is symmetric under
permuting the variables x, y and z. Both theorems rely on an understanding of the dimension
of fibers of a (nice) map.

I Theorem 3. For any tensor T ∈ Fn1×n2×n3 ,

dim{(x, y) | T (x, y, ·) = 0} = max
i

dim
{
x | dim{y | T (x, y, ·) = 0} = i

}
+ i

= max
i

dim
{
x | corank T (x, ·, ·) = i

}
+ i

and therefore

GR(T ) = codim{(x, y) | T (x, y, ·) = 0} = min
j

codim
{
x | rank T (x, ·, ·) = j

}
+ j.
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Proof. Let V = {(x, y) | T (x, y, ·) = 0}. Let W = Fn1 . Let π : V → W map (x, y) to x.
Define the sets Wi = {x | corank(T (x, ·, ·)) = i}. The rank-nullity theorem for matrices
gives for any fixed x that corank(T (x, ·, ·)) = dim{y | T (x, y, ·) = 0}. The sets Wi are
locally closed, that is, each Wi is the intersection of an open set and a closed set. Let
Vi = π−1(Wi). The set Vi is also locally closed. We have that W = ∪iWi and so V = ∪iVi.
Therefore, dimV = maxi dimVi. We claim that dimVi = dimWi+ i. From this claim follows
dimV = maxi dimWi + i, which finishes the proof.

We prove the claim that dimVi = dimWi + i. For every x ∈ Wi the fiber dimension
dim π−1(x) equals i. Write Vi as a union of irreducible components Vij . LetWij be the closure
of π(Vij). We now apply Theorem 5 (see the end of this section) with X = Vi and X0 = Vij .
For any p = (x, y) ∈ X0 we have that π−1(π(p)) = {(x, y′) | T (x, y′, ·) = 0}. The set {y′ |
T (x, y′, ·) = 0} is a linear subspace and thus irreducible. Therefore, π−1(π(p)) is irreducible.
Then Theorem 5 gives that dimVij = dimWij + i. We have that maxj dimWij = dimWi,
so taking the j maximising dimWij gives dimVi ≤ dimWi + i. Also maxj dimVij = dimVi,
so taking the j maximising dimVij gives dimVi ≥ dimWi + i. J

I Theorem 4. For any tensor T ,

GR(T ) = codim{(x, y) | T (x, y, ·) = 0} = codim{(x, z) | T (x, ·, z) = 0}
= codim{(y, z) | T (·, y, z) = 0}.

Proof. We apply Theorem 3 to T and to T after swapping y and z to get that the codi-
mensions of {(x, y) | T (x, y, ·) = 0} and {(x, z) | T (x, ·, z) = 0} are equal to minj codim{x |
rank T (x, ·, ·) = j} + j. This proves the first equality. The second equality is proven
similarly. J

I Theorem 5 ([21, special case of Theorem 11.12]). Let X ⊆ Fn1 × Fn2 be the affine cone
over a quasi-projective variety, that is,

X = {(x, y) ∈ Fn1 × Fn2 | f1(x, y) = 0, . . . , fk(x, y) = 0, g1(x, y) 6= 0, . . . , gm(x, y) 6= 0}

where the fi and gi are homogeneous polynomials. Let π : X → Fn1 map (x, y) to x.
Let X0 ⊆ X be an irreducible component. Suppose that the fiber π−1(π(p)) is irreducible for
every p ∈ X0. Then

dimX0 = dim π(X0) + min
p∈X0

dim π−1(π(p)).

4 Geometric rank is between subrank and slice rank

Recall that the subrank Q(T ) of T is the largest number s such that Is ≤ T and the slice
rank SR(T ) is the smallest number r such that T (x, y, z) can be written as a sum of r
trilinear maps of the form f(x)g(y, z) or f(y)g(x, z) or f(z)g(x, y).

I Theorem 6. For any tensor T ,

Q(T ) ≤ GR(T ) ≤ SR(T ).

Theorem 6 will follow from the following basic properties of GR. We will give a more direct
proof of the inequality GR(T ) ≤ SR(T ) in Section 7. Recall from the introduction that for any
two tensors S ∈ Fm1×m2×m3 and T ∈ Fn1×n2×n3 we write S ≤ T if there are matrices A,B,C
such that S = (A,B,C) · T where we define (A,B,C) · T := (

∑
a,b,cAiaBjbCkcTa,b,c)i,j,k.
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I Lemma 7. GR is ≤-monotone: if S ≤ T , then GR(S) ≤ GR(T ).

Proof. Let T ∈ Fn1×n2×n3 . We claim that GR((Id, Id, C) ·T ) ≤ GR(T ) for any C ∈ Fm3×n3 ,
where Id denotes an identity matrix of the appropriate size. From this claim and the symmetry
of GR (Theorem 4), follows the inequalities GR((A, Id, Id) ·T ) ≤ T and GR((Id, B, Id) ·T ) ≤
GR(T ) for any matrices A ∈ Fm1×n1 and B ∈ Fm2×n2 . Chaining these three inequalities
gives that for any two tensors S and T , if S ≤ T , then GR(S) ≤ GR(T ).

We prove the claim. Let S = (Id, Id, C) · T . Let Mk = (Ti,j,k)ij be the 3-slices of T and
let Nk = (Si,j,k)ij be the 3-slices of S. Since S = (Id, Id, C) · T , the matrices N1, . . . , Nm3

are in the linear span of the matrices M1, . . . ,Mn3 . Thus V = {(x, y) | xTM1y = · · · =
xTMn3y = 0} is a subset of W = {(x, y) | xTN1y = · · · = xTNm3y = 0}. Therefore,
dimV ≤ dimW and it follows that GR(S) = codimW ≤ codimV = GR(T ). J

Let T1 ∈ Fm1×m2×m3 and T2 ∈ Fn1×n2×n3 be tensors with 3-slices Ak and Bk respectively.
The direct sum T1 ⊕ T2 ∈ F(m1+n1)×(m2+n2)×(m3+n3) is defined as the tensor with 3-slices
Ak ⊕ 0n1×n2 for k = 1, . . . ,m3 and 0m1×m2 ⊕ Bk for k = m3 + 1, . . . ,m3 + n3 where 0a×b
denotes the zero matrix of size a× b. In other words, T1 ⊕ T2 is the block-diagonal tensor
with blocks T1 and T2.

I Lemma 8. GR is additive under direct sums: GR(T1 ⊕ T2) = GR(T1) + GR(T2).

Proof. Let Ak be the 3-slices of T1 and let Bk be the 3-slices of T2. Let T = T1 ⊕ T2 be the
direct sum with 3-slices Mk. Then

V = {(x, y) | T (x, y, ·) = 0} = {(x, y) | xTM1y = · · · = xTMm3+n3y = 0}

is the cartesian product of

V1 = {(x, y) | xTA1y = · · · = xTAm3y = 0}

and

V2 = {(x, y) | xTB1y = · · · = xTBn3y = 0}.

Thus dimV = dimV1 + dimV2 [21, page 138]. Therefore, GR(T ) = GR(T1) + GR(T2). J

I Lemma 9. GR is sub-additive under element-wise sums: GR(S + T ) ≤ GR(S) + GR(T ).

Proof. Note that S+T ≤ S⊕T . Thus, GR(S+T ) ≤ GR(S⊕T ) = GR(S) + GR(T ), where
the inequality uses Lemma 7, and the equality uses Lemma 8. J

I Lemma 10. If SR(T ) = 1, then GR(T ) = 1.

Proof. It is sufficient to consider a tensor T ∈ F1×n×n with one nonzero slice. Then we have
that T (0,Fn,Fn) = 0, and so GR(T ) = 1 + n− n = 1. J

I Lemma 11. For every r ∈ N we have GR(Ir) = r.

Proof. We have SR(I1) = 1 and so GR(I1) = 1 (Lemma 10). Since Ir is a direct sum of r
copies of I1 and geometric rank is additive under taking the direct sum ⊕ (Lemma 9), we
find that GR(Ir) = rGR(I1) = r. J
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Proof of Theorem 6. We prove that GR(T ) ≤ SR(T ). Let r = SR(T ). Then there are
tensors T1, . . . , Tr so that T =

∑r
i=1 Ti and SR(Ti) = 1. Then also GR(Ti) = 1 (Lemma 10).

Subadditivity of GR under element-wise sums (Lemma 9) gives

GR(T ) ≤
r∑
i=1

GR(Ti) = r = SR(T ).

We prove that Q(T ) ≤ GR(T ). Let s = Q(T ). Then Is ≤ T . We know GR(Is) = s

(Lemma 11). By the ≤-monotonicity of GR (Lemma 7), we have

Q(T ) = s = GR(Is) ≤ GR(T ). J

5 Geometric rank is at least border subrank

In this section we extend the inequality Q(T ) ≤ GR(T ) (Theorem 6) to the approximative
version of subrank, called border subrank. To define border subrank we first define degenera-
tion E, which is the approximative version of restriction ≤. We write S E T , and we say S is
a degeneration of T , if for some e ∈ N we have

S + εS1 + ε2S2 + · · ·+ εeSe = (A(ε), B(ε), C(ε)) · T

for some tensors Si over F and for some matrices A(ε), B(ε), C(ε) whose coefficients are
Laurent polynomials in the formal variable ε. Equivalently, S E T if and only if S is in the
orbit closure G · T where G denotes the group GLn1×GLn2×GLn3 , G ·T denotes the natural
group action that we also used in the definition of ≤, and the closure is taken in the Zariski
topology [11, Theorem 20.24]. (When F = C one may equivalently take the closure in the
Euclidean topology.) Recall that the subrank of T is defined as Q(T ) = max{n ∈ N | In ≤ T}.
The border subrank of T is defined as

Q(T ) = max{n ∈ N | In E T}.

Clearly, Q(T ) ≤ Q(T ).

I Theorem 12. For any tensor T ,

Q(T ) ≤ GR(T ).

To prove Theorem 12 we use the following theorem on upper-semicontinuity of fiber
dimension.

I Theorem 13 ([21, special case of Corollary 11.13]). Let X be the zero set of bi-homogeneous
polynomials, that is,

X = {(a, b) ∈ Fm1 × Fm2 | f1(a, b) = · · · = fk(a, b) = 0}

where the fi(a, b) are polynomials that are homogeneous in both a and b. Let π : X → Fm2

map (a, b) to b. Let Y = π(X) be its image. For any q ∈ Y , let λ(q) = dim(π−1(q)).
Then λ(q) is an upper-semicontinuous function of q, that is, the set {q ∈ Y | λ(q) ≥ m} is
Zariski closed in Y .

I Lemma 14. GR is lower-semicontinuous: for any ni,m ∈ N the set {T ∈ Fn1×n2×n3 |
GR(T ) ≤ m} is Zariski closed.
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Proof. We define the set

X = {(T, x, y) ∈ Fn1×n2×n3 × Fn1 × Fn2 | T (x, y,Fn3) = 0}.

Let π : X → Fn1×n2×n3 map (T, x, y) to T . Let Y = π(X) = Fn1×n2×n3 be the image of π.
For any T ∈ Y let λ(T ) := dim(π−1(T )). Then λ(T ) is an upper-semicontinuous function
of T in the Zariski topology on Y by Theorem 13. This means that the set {T ∈ Fn1×n2×n3 |
λ(T ) ≥ m} is closed for every m ∈ N. It follows that {T ∈ Fn1×n2×n3 | GR(T ) ≤ m} is
closed for every m ∈ N. J

I Remark 15. A well-known example of a lower-semicontinuous function is matrix rank.
Indeed, the set of matrices of rank at most m is the zero set of the determinants of all
(m + 1) × (m + 1) submatrices. For geometric rank we do not know an explicit set of
generators for the vanishing ideal of {T ∈ Fn1×n2×n3 | GR(T ) ≤ m}. For slice rank the set
{T ∈ Fn1×n2×n3 | SR(T ) ≤ m} is also known to be Zariski closed and explicit vanishing
polynomials for this variety were recently obtained by Bläser, Ikenmeyer, Lysikov, Pandey
and Schreyer [9].

I Lemma 16. GR is E-monotone: if S E T , then GR(S) ≤ GR(T )

Proof. For all g ∈ G we have GR(g · T ) = GR(T ) by Lemma 7. The set {T ′ | GR(T ′) ≤
GR(T )} is Zariski closed by Lemma 14. It contains the orbit G · T and hence also its Zariski
closure G · T , that is,

{T ′ | T ′ E T} = G · T ⊆ {T ′ | GR(T ′) ≤ GR(T )}.

Therefore, GR(S) ≤ GR(T ). J

Proof of Theorem 12. Let n = Q(T ). Then InET by the definition of Q, and so n ≤ GR(T )
by Lemma 16. This proves the claim. J

6 The border subrank of matrix multiplication

In the context of constructing fast matrix multiplication algorithms, Strassen [31, Theorem 6.6]
proved that for any positive integers e ≤ h ≤ ` the border subrank of the matrix multiplication
tensor 〈e, h, `〉 is lower bounded by

Q(〈e, h, `〉) ≥

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

(1)

Here 〈e, h, `〉 is the tensor that corresponds to taking the trace of the product of an e× h
matrix, an h× ` matrix and an `× e matrix. We prove using the geometric rank that this
lower bound is optimal.

I Theorem 17. For any positive integers e ≤ h ≤ `

Q(〈e, h, `〉) = GR(〈e, h, `〉) =

eh− b (e+h−`)2

4 c if e+ h ≥ `,
eh otherwise.

In particular, we have Q(〈m,m,m〉) = GR(〈m,m,m〉) = d 3
4m

2e for any m ∈ N.

CCC 2020



35:14 Geometric Rank of Tensors and Subrank of Matrix Multiplication

Proof. Since Q(〈e, h, `〉) ≤ GR(〈e, h, `〉) (Theorem 12) and since we have the lower bound in
(1), it suffices to show that GR(〈e, h, `〉) is at most eh− b(e+ h− `)2/4c if e+ h ≥ ` and at
most eh otherwise.

Let T = 〈e, h, `〉. Let V = {(x, y) ∈ Feh × Fh` | T (x, y, ·) = 0}. Then GR(T ) =
eh+ h`− dimV . From Theorem 3 it follows that

dimV = max
i

dim{x ∈ Feh | dim{y ∈ Fh` | T (x, y, ·) = 0} = i}+ i. (2)

We now think of Feh, Fh` and F`e as the matrix spaces Fe×h, Fh×` and F`×e. Then T

gives the trilinear map T : Fe×h × Fh×` × F`×e → F : (X,Y, Z) 7→ Tr(XY Z). Therefore,
T (X,Y, ·) = 0 if and only if XY = 0. If the rank of X as an e× h matrix equals r, then

dim{Y ∈ Fh×` | T (X,Y, ·) = 0} = (h− r)`,

since Y is any matrix with columns from ker(X). We have

dim{X ∈ Fe×h | rank(X) = r} = er + (h− r)r.

Thus the relevant values of i in (2) are of the form i = (h− r)` and we have that

dimV = max
r

dim{X ∈ Fe×h | rankX = r}+ (h− r)`

= max
r
er + (h− r)r + (h− r)`

= max
r
f(r) + h`

where f(r) = r(∆− r) with ∆ := e+ h− `. Thus,

GR(T ) = eh−max
r
f(r).

Over the integers, the function f attains its maximum at b∆
2 c (and at d∆

2 e), but this may
be outside the interval [0, e] that we want to maximise over (recall e ≤ h ≤ l). Observe
that if ∆ ≥ 0 then e ≥ ∆/2 ≥ 0, meaning that f does attain its global maximum in the
interval [0, e]. On the other hand, if ∆ ≤ 0 then r(∆− r) ≤ 0 = f(0) for every r ≥ 0, so the
maximum of f in the interval [0, e] is at the endpoint r = 0. Summarizing,

max
0≤r≤e

f(r) =

b∆2

4 c if ∆ ≥ 0,
0 otherwise.

(3)

This completes the proof. J

I Remark 18. Theorem 17 gives the upper bound Q(〈m,m,m〉) ≤ Q(〈m,m,m〉) = d 3
4m

2e
on the subrank of matrix multiplication Q(〈m,m,m〉). This improves the previously best
known upper bound Q(〈m,m,m〉) ≤ m2 −m+ 1 from [12, Equation 25].
I Remark 19. Geometric rank GR is not sub-multiplicative under the tensor Kronecker
product ⊗. We give an example. The matrix multiplication tensor 〈m,m,m〉 can be written as
the product 〈m,m,m〉 = 〈m, 1, 1〉⊗ 〈1,m, 1〉⊗ 〈1, 1,m〉 and GR(〈m, 1, 1〉) = GR(〈1,m, 1〉) =
GR(〈1, 1,m〉) = 1 whereas GR(〈m,m,m〉) = d 3

4m
2e by Theorem 17.

I Remark 20. Geometric rank GR is not the same as subrank Q or border subrank Q. For
example, for the trilinear map W (x1, x2, y1, y2, z1, z2) = x1y1z2 + x1y2z1 + x2y1z1 we find
GR(W ) = 2 (see the example in the introduction), whereas Q(W ) = Q(W ) = 1. The latter
follows from the fact that ˜Q(W ) = 1.81... [33], where ˜Q(T ) := limn→∞Q(T⊗n)1/n is the
asymptotic subrank of T , since Q(T ) ≤ ˜Q(T ) [31].
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I Remark 21. Geometric rank GR is not super-multiplicative under the tensor Kronecker
product ⊗. Here is an example. Let ˜SR(T ) := limn→∞ SR(T⊗n)1/n and let ˜GR(T ) :=
limn→∞GR(T⊗n)1/n, whenever these limits are defined. From the fact that Q(T ) ≤
GR(T ) ≤ SR(T ) and the fact that ˜Q(W ) = ˜SR(W ) = 1.81... [13] it follows that ˜GR(W ) =
1.81.., whereas GR(W ) = 2. We conclude that GR is not super-multiplicative. We have seen
already in Remark 19 that GR is not sub-multiplicative.
I Remark 22. Geometric rank GR is not the same as slice rank SR. For example, for the
matrix multiplication tensor 〈m,m,m〉 we find that GR(〈m,m,m〉) = d 3

4m
2e (Theorem 17),

whereas it was known that SR(〈m,m,m〉) = m2 [7, Remark 4.9].

7 Geometric rank versus slice rank

In Section 4 we proved, by chaining the basic properties of geometric rank, that geometric
rank is at most slice rank, that is, GR(T ) ≤ SR(T ). What is the largest gap between
GR(T ) and SR(T )? Motivated by this question, and motivated by the analogous question
for analytic rank instead of geometric rank that we discussed in the introduction we give a
direct proof of the inequality GR(T ) ≤ SR(T ).

In fact, we prove a chain of inequalities GR(T ) ≤ ZR(T ) ≤ SR(T ) where ZR(T ) is defined
as follows. We will use the following notation for a tensor T ∈ Fn1×n2×n3 ;

V(T ) = {(x, y) ∈ Fn1×n2 | ∀z ∈ Fn3 : T (x, y, z) = 0}. (4)

Moreover, we use the following standard notation for the variety cut out by polynomials
f1, . . . , fs;

V(f1, . . . , fs) = {x | f1(x) = · · · = fs(x) = 0}. (5)

Let F[x,y] = F[x1, . . . , xn1 , y1, . . . , yn2 ] and let

F[x,y, z] = F[x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 ].

Let F[x,y]{(0,1),(1,0),(1,1)} ⊆ F[x,y] be the subset of polynomials that are bi-homogeneous of
bi-degree (0, 1), (1, 0) or (1, 1). That is, the set F[x,y]{(0,1),(1,0),(1,1)} contains the polynomials
in F[x1, . . . , xn1 ] that are homogeneous of degree 1, and the polynomials in F[y1, . . . , yn2 ]
that are homogeneous of degree 1, and the polynomials in F[x,y] that are homogeneous of
degree 1 in x1, . . . , xn1 and homogeneous of degree 1 in y1, . . . , yn2 . For any tensor T we
define

ZR(T ) = min
{
s ∈ N | ∃f1, . . . , fs ∈ F[x,y]{(0,1),(1,0),(1,1)} : V(f1, . . . , fs) ⊆ V(T )

}
.

I Theorem 23. Let T be a tensor. Then GR(T ) ≤ ZR(T ) ≤ SR(T ).

Proof. We prove that ZR(T ) ≤ SR(T ). Let r = SR(T ). We view T as a polynomial
T ∈ F[x,y, z]. Write T =

∑r
i=1 Ti with SR(Ti) = 1 for every i. Then Ti = figi for

some fi ∈ F[x,y]{(0,1),(1,0),(1,1)} and gi ∈ F[x,y, z]. We claim that V(f1, . . . , fr) ⊆ V(T ).
Indeed, if (x, y) ∈ V(f1, . . . , fr), then Ti(x, y, z) = 0 for every i and every z, and therefore
T (x, y, z) = 0 for every z. We conclude that ZR(T ) ≤ r = SR(T ).

We prove that GR(T ) ≤ ZR(T ). Let s = ZR(T ). Then there are s polynomials
f1, . . . , fs ∈ F[x,y]{(0,1),(1,0),(1,1)} such that V(f1, . . . , fs) ⊆ V(T ). We have

GR(T ) = codim V(T ) ≤ codim V(f1, . . . , fs) ≤ s = ZR(T ),

where the first inequality follows from the containment V(f1, . . . , fs) ⊆ V(T ) which implies
that dim V(f1, . . . , fs) ≤ dim V(T ). J
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8 Geometric rank as liminf of analytic rank

For a tensor T over Z and a prime number p, we denote by Tp the 3-tensor over Fp obtained
by reducing all coefficients of T modulo p. In this section we prove the following tight
relationship between AR(Tp) and GR(T ).

I Theorem 24. For every tensor T over Z we have

lim inf
p→∞

AR(Tp) = GR(T ).

The starting point for the proof of Theorem 24 is the important observation that analytic
rank can be written in terms of the number of Fp-points of the algebraic variety V(Tp), that
is, for any tensor T ∈ Zn1×n2×n3 ,

AR(Tp) = n1 + n2 − logp |V(Tp)(Fp)| .

For the proof of Theorem 24 we will need to prove three auxiliary results: that the
Bertini–Noether Theorem can be extended to reducible varieties (Theorem 26 below), that
prime fields are rich enough infinitely often to contain any finite set of algebraic numbers
(Lemma 28 below), and that for any variety satisfying a mild assumption, its number of
rational points in a finite field is determined by its dimension (Lemma 31 below).

8.1 Bertini–Noether Theorem
In this subsection we extend the Bertini–Noether Theorem to reducible varieties. The
Bertini–Noether Theorem says that, roughly, if an variety is irreducible then applying a
homomorphism on the defining equations – for example the modulo-p homomorphism –
typically does not change its invariants (see Proposition 10.4.2 in [18]).

I Theorem 25 (Bertini–Noether Theorem [18]). Let f1, . . . , fm ∈ R[x], where R is an integral
domain, such that V = V(f1, . . . , fm) is (absolutely) irreducible. There exists a nonzero
c ∈ R such that for every homomorphism φ : R → K into a field K, if φ(c) 6= 0 then
V(φ(f1), . . . , φ(fm)) ⊆ K is (absolutely) irreducible of dimension dimV and degree deg V .2 3

The version of the Berini-Noether Theorem that we need is as follows. We observe that
any variety defined over a field F, where F is the field of fractions of an integral domain R,
can also be defined over R, by clearing denominators. For example, any variety defined over
the algebraic numbers Q can also be defined over the algebraic integers Z.

I Theorem 26 (Extended Bertini–Noether Theorem). Let f1, . . . , fm ∈ R[x], where R is an
integrally closed domain.4 There exists a nonzero C ∈ R such that for every homomorphism
ψ : R→ K into a field K, if ψ(C) 6= 0 then V ψ := V(ψ(f1), . . . , ψ(fm)) ⊆ K is of dimension
dimV and degree deg V . Moreover, if the irreducible components of V(f1, . . . , fm) are
V1, . . . , Vk, where I(Vi) = 〈fi,j〉j with fi,j ∈ R[x], then the irreducible components of V ψ are
V ψ1 , . . . , V

ψ
k , where V ψi = V(ψ(fi,j)j).

2 φ(fi) ∈ K[x] is obtained by applying φ on each of the coefficients of fi.
3 That deg V remains unchanged follows along similar lines to the proof for dimV (see Corollary 9.2.2

in [18]).
4 The field of fractions of the integral domain R is algebraically closed.
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For the proof of Theorem 26 we will need some notation and a standard auxiliary result,
as follows. Let R be a (commutative) ring. For a ideal I in R, the radical of I (in R) is the
ideal

√
I = {f ∈ R | ∃n ∈ N : fn ∈ I}. Moreover, for a ring homomorphism ψ : R → R′ we

denote ψ(I) = 〈ψ(f) | f ∈ I〉, which is an ideal in R′.

I Lemma 27. Let I be an ideal in a ring R, and let ψ : R→ R′ be a ring homomorphism.
Then

√
ψ(
√
I) =

√
ψ(I).

Proof. If p ∈
√
ψ(I) then there is an integer n such that pn ∈ ψ(I) ⊆ ψ(

√
I), hence

p ∈
√
ψ(
√
I).

Let p ∈
√
ψ(
√
I), meaning there is an integer n such that pn ∈ ψ(

√
I). Thus, we have

pn =
∑m
i=1 giψ(fi) for some m ∈ N, gi ∈ R′ and fi ∈

√
I. Note that for every i there is an

integer ki such that fki
i ∈ I. Let k = max1≤i≤m ki. Then

(pn)km =
∑

d1,...,dm

d1+···+dm=km

m∏
i=1

(giψ(fi))di .

Observe that every summand has a multiplicand (giψ(fi))di with di ≥ k ≥ ki, which lies
in ψ(I) since ψ(fi)di = ψ(fdi

i ) and fdi
i = fdi−ki

i fki
i ∈ I. We deduce that pnkm ∈ ψ(I), being

a sum of members of the ideal ψ(I). Hence p ∈
√
ψ(I), completing the proof. J

Proof of Theorem 26. We begin with some notation. Let F be the (algebraically closed)
field of fractions of R. For any ideal J in F[x] we denote by JR := J ∩R[x] the corresponding
ideal in R[x]. With a slight abuse of notation, we abbreviate ψ(J) := ψ(JR) (which is an
ideal in K[x]). Furthermore, we take

√
JR to mean the radical ideal of J in R[x]. Observe

that
√
JR = (

√
J)R; indeed, f ∈ (

√
J)R iff fn ∈ J and f ∈ R[x] iff f ∈

√
JR.

Let I = 〈f1, . . . , fm〉 and Ii = 〈fi,j〉j be ideals in F[x]. We will show that√
ψ(I) =

√∏
ψ(Ii) . (6)

We have V(I) =
⋃
i V(Ii) = V(

∏
i Ii). By Hilbert’s Nullstellensatz,

√
I =

√∏
i Ii. Next,

and for the rest of this paragraph, we switch from ideals in F[x] to ideals in R[x]. We have

√
IR = (

√
I)R =

(√∏
Ii

)R
=
√∏

IRi . (7)

We deduce (6) as follows;

√
ψ(I) =

√
ψ(IR) =

√
ψ(
√
IR) =

√
ψ
(√∏

IRi
)

=
√
ψ
(∏

IRi
)

=
√∏

ψ(IRi )

=
√∏

ψ(Ii) ,

where the second equality follows from Lemma 27, the third follows from (7), the fourth
again from Lemma 27, and the fifth using the fact that ψ is a homomorphism. It follows that

V ψ := V(ψ(I)) = V(
√
ψ(I)) = V

(√∏
ψ(Ii)

)
= V

(∏
ψ(Ii)

)
=
⋃

V(ψ(Ii)) =
⋃
V ψi ,

where (6) is used in the third equality.
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Recall that Vi is an irreducible variety defined over R. For each i, applying Theorem 25
on any generating set of I(Vi) in R[x] and on ψ implies that there is a nonzero ci ∈ R

such that if ψ(ci) 6= 0 then V ψi is irreducible, of dimension dim Vψ
i = dim Vi and degree

deg V ψi = deg Vi. Let C =
∏
i ci. Thus, if ψ(C) 6= 0 then ψ(ci) 6= 0 for all i, which implies

that V ψ =
⋃
i V

ψ
i is a union of irreducible varieties, and moreover,

dimV ψ = max
i

dimV ψi = max
i

dimVi = dimV and

deg V ψ =
∑
i

deg V ψi =
∑
i

deg Vi = deg V.

This completes the proof. J

8.2 Modular roots
In this subsection we prove that, intuitively, every finite set of algebraic integers is contained
in Fp, for infinitely many primes p. We say that there is a positive density of primes satisfying
a property P ⊆ P (here P is the set of prime numbers) if limn→∞ |P ∩ [n]|/|P∩[n]| > 0.

I Lemma 28. For every finite set of algebraic integers S there is a positive density of
primes p for which there is a homomorphism from Z[S] to Fp.

We will use (a special case of) the Primitive Element Theorem (see, e.g., Section 6.10
in [35]).

I Theorem 29 (Primitive Element Theorem in Characteristic 0 [35]). Let K be a finite extension
of a field F of characteristic 0. Then K = F(α) for some α ∈ K.

For example, Q(
√

2,
√

3) = Q(
√

2 +
√

3).
We will also rely on the following result (see Berend and Bilu [4], Theorem 2).

I Theorem 30 ([4]). For every polynomial P ∈ Z[x] there is a positive density of prime
numbers p such that P has a root modulo p.

Proof of Lemma 28. Consider Q(S), the field extension of the rationals Q obtained by
adjoining all the elements of S. By the Primitive Element Theorem (Theorem 29) there exists
α ∈ Q(S) such that Q(S) = Q(α) = Q[α]. Thus, for every αi ∈ S there is a (univariate)
polynomial fi ∈ Q[x] such that αi = fi(α). We denote by P be the minimal polynomial of α
over Q; by clearing denominators, we assume without loss of generality that P ∈ Z[x].

Let p be a prime number such that P has a root ap modulo p and, moreover, p is
larger than the absolute value of the coefficient denominators of every fi. By Theorem 30,
applied on P , there is a positive density of primes satisfying both conditions. Note that fi
(mod p) is a well-defined polynomial in Fp[x] by our second condition on p. Consider the
function φp that maps each αi = fi(α) ∈ S to fi(ap) (mod p). Since every member of Z[S]
is a multivariate polynomial in the variables αi with integer coefficients, we deduce from our
first condition on p that the function φp extends to a homomorphism φp : Z[S]→ Fp. This
completes the proof. J

8.3 Putting everything together
We will also need the following asymptotically-tight estimate on the number of rational
points in a finite field.
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I Lemma 31. For every variety V defined over a finite field F, if V has an irreducible
component of dimension dimV that is also defined over F then

|V (F)| = ΘdegV, n(|F|dimV ).

The proof of Lemma 31 will follow by combining the Lang-Weil Theorem [25] with a
Schwartz-Zippel-type upper bound (see Claim 7.2 in [15]).

I Theorem 32 (Lang–Weil Bound [25]). For every (absolutely) irreducible variety V defined
over a finite field F,

|V (F)| = |F|dimV (1 +OdegV, n(|F|−1/2)).

I Lemma 33 (Generalized Schwartz–Zippel lemma [15]). For every variety V defined over a
finite field F, |V (F)| ≤ deg(V ) · |F|dimV .

Proof of Lemma 31. For the upper bound, apply Lemma 33 on V . For the lower bound,
let U be an irreducible component of V of dimension dimV that is defined over F, as
guaranteed by the statement, and apply Theorem 32 on U to obtain |V (F)| ≥ |U(F)| =
ΩdegU, n(|F|dimU ) = ΩdegV, n(|F|dimV ). J

We are now ready to prove the main result of this section.

Proof of Theorem 24. Put d = dim V(T ) and r = deg V(T ). We will use the notation
in (4) and (5). We will show that V(T ) ⊆ QN and V(Tp) ⊆ Fp

N (here N = n1 + n2) are
related, for infinitely many prime numbers p, in the following sense;

|V(Tp)(Fp)| = Θr,N (pd). (8)

This would complete the proof since for any such prime p,

AR(Tp) = − logp
( |V(Tp)(Fp)|

|Fp|N
)

= N − logp |V(Tp)(Fp)| = GR(T )−Θr,N

( 1
log p

)
,

where the last inequality follows from (8) using the fact that N − d = codim V(T ) = GR(T ).
Thus, proving (8) would imply that lim infp→∞AR(Tp) = GR(T ), as needed.

Let U be an irreducible component of V(T ) of dimension d. Note that U is defined
over some finite extension Z[S] of the integers, where S is a finite set of algebraic integers.
Lemma 28, applied on S, implies that for a positive density of prime numbers p there
is a homomorphism φp : Z[S] → Fp. Thus, if I(U) = V(fj)j with fj ∈ Z[S][x] then
Uφp := V(φp(fj)j) is defined over Fp (rather than Fp). Let p be any such prime. Theorem 26,
applied on R = Z, K = Fp and on any extension ψp of φp to a homomorphism from Z to Fp,
implies that there is 0 6= C ∈ Z such that for any prime p with ψp(C) 6= 0, we have that
dim V(Tp) = d, deg V(Tp) = r, and that Uψp = Uφp is an irreducible component of V(Tp)
of dimension d = dim V(Tp). We claim that the condition ψp(C) 6= 0 is satisfied for all but
finitely many primes p; indeed, since ψp(C) is a root modulo p of the minimal polynomial
of C over Z, it holds that ψp(C) = 0 if and only if the constant term c of that polynomial
is 0 modulo p, which is never the case for p > |c| (as c 6= 0). Lemma 31 therefore implies,
together with all of the above, that for a positive density of primes p we have

|V(Tp)(Fp)| = Θdeg V(Tp), N (pdim V(Tp)) = Θr,N (pd).

This proves (8), and thus we are done. J
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Abstract
Bounded Distance Decoding BDDp,α is the problem of decoding a lattice when the target point
is promised to be within an α factor of the minimum distance of the lattice, in the `p norm. We
prove that BDDp,α is NP-hard under randomized reductions where α → 1/2 as p → ∞ (and for
α = 1/2 when p = ∞), thereby showing the hardness of decoding for distances approaching the
unique-decoding radius for large p. We also show fine-grained hardness for BDDp,α. For example,
we prove that for all p ∈ [1,∞)\ 2Z and constants C > 1, ε > 0, there is no 2(1−ε)n/C -time algorithm
for BDDp,α for some constant α (which approaches 1/2 as p → ∞), assuming the randomized
Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold
(under analogous non-uniform assumptions) for BDD with preprocessing, in which unbounded
precomputation can be applied to the lattice before the target is available.

Compared to prior work on the hardness of BDDp,α by Liu, Lyubashevsky, and Micciancio
(APPROX-RANDOM 2008), our results improve the values of α for which the problem is known to be
NP-hard for all p > p1 ≈ 4.2773, and give the very first fine-grained hardness for BDD (in any norm).
Our reductions rely on a special family of “locally dense” lattices in `p norms, which we construct by
modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC
2018).
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1 Introduction

Lattices in Rn are a rich source of computational problems with applications across computer
science, and especially in cryptography and cryptanalysis. (A lattice is a discrete additive
subgroup of Rn, or equivalently, the set of integer linear combinations of a set of linearly
independent vectors.) Many important lattice problems appear intractable, and there is a
wealth of research showing that central problems like the Shortest Vector Problem (SVP)
and Closest Vector Problem (CVP) are NP-hard, even to approximate to within various
factors and in various `p norms [31, 8, 7, 22, 23, 17, 16, 14, 25]. (For the sake of concision,
throughout this introduction the term “NP-hard” allows for randomized reductions, which
are needed in some important cases.)
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Bounded Distance Decoding

In recent years, the emergence of lattices as a powerful foundation for cryptography, including
for security against quantum attacks, has increased the importance of other lattice problems.
In particular, many modern lattice-based encryption schemes rely on some form of the
Bounded Distance Decoding (BDD) problem, which is like the Closest Vector Problem with a
promise. An instance of BDDα for relative distance α > 0 is a lattice L and a target point t
whose distance from the lattice is guaranteed to be within an α factor of the lattice’s minimum
distance λ1(L) = minv∈L\{0}‖v‖, and the goal is to find a lattice vector within that distance
of t; when distances are measured in the `p norm we denote the problem BDDp,α. Note that
when α < 1/2 there is a unique solution, but the problem is interesting and well-defined
for larger relative distances as well. We also consider preprocessing variants of CVP and
BDD (respectively denoted CVPP and BDDP), in which unbounded precomputation can be
applied to the lattice before the target is available. For example, this can model cryptographic
contexts where a fixed long-term lattice may be shared among many users.

The importance of BDD(P) to cryptography is especially highlighted by the Learning
With Errors (LWE) problem of Regev [27], which is an average-case form of BDD that has
been used (with inverse-polynomial α) in countless cryptosystems, including several that
share a lattice among many users (see, e.g., [13]). Moreover, Regev gave a worst-case to
average-case reduction from BDD to LWE, so the security of cryptosystems is intimately
related to the worst-case complexity of BDD.

Compared to problems like SVP and CVP, the BDD(P) problem has received much less
attention from a complexity-theoretic perspective. We are aware of essentially only one
work showing its NP-hardness: Liu, Lyubashevsky, and Micciancio [19] proved that BDDp,α

and even BDDPp,α are NP-hard for relative distances approaching min{1/
√

2, 1/ p
√

2}, which
is 1/

√
2 for p ≥ 2. A few other works relate BDD(P) to other lattice problems (in both

directions) in regimes where the problems are not believed to be NP-hard, e.g., [24, 11, 9].
(Dadush, Regev, and Stephens-Davidowitz [11] also gave a reduction that implies NP-hardness
of BDD2,α for any α > 1, which is larger than the relative distance of α = 1/

√
2 + ε achieved

by [19].)

Fine-grained hardness

An important aspect of hard lattice problems, especially for cryptography, is their quantitative
hardness. That is, we want not only that a problem cannot be solved in polynomial time,
but that it cannot be solved in, say, 2o(n) time or even 2n/C time for a certain constant C.
Statements of this kind can be proven under generic complexity assumptions like the
Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [15] or its variants like
Strong ETH (SETH), via fine-grained reductions that are particularly efficient in the relevant
parameters.

Recently, Bennett, Golovnev, and Stephens-Davidowitz [10] initiated a study of the
fine-grained hardness of lattice problems, focusing on CVP; follow-up work extended to
SVP and showed more for CVP(P) [5, 2]. The technical goal of these works is a reduction
having good rank efficiency, i.e., a reduction from k-SAT on n′ variables to a lattice problem
in rank n = (C + o(1))n′ for some constant C ≥ 1, which we call the reduction’s “rank
inefficiency.” (All of the lattice problems in question can be solved in 2n+o(n) time [3, 4, 6],
so C = 1 corresponds to optimal rank efficiency.) We mention that Regev’s BDD-to-LWE
reduction [27] has optimal rank efficiency, in that it reduces rank-n BDD to rank-n LWE.
However, to date there are no fine-grained NP-hardness results for BDD itself; the prior
NP-hardness proof for BDD [19] incurs a large polynomial blowup in rank.
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1.1 Our Results
We show improved NP-hardness, and entirely new fine-grained hardness, for Bounded Distance
Decoding (and BDD with preprocessing) in arbitrary `p norms. Our work improves upon the
known hardness of BDD in two respects: the relative distance α, and the rank inefficiency C
(i.e., fine-grainedness) of the reductions. As p grows, both quantities improve, simultaneously
approaching the unique-decoding threshold α = 1/2 and optimal rank efficiency of C = 1 as
p → ∞, and achieving those quantities for p = ∞. We emphasize that these are the first
fine-grained hardness results of any kind for BDD, for any `p norm.

Our main theorem summarizing the NP- and fine-grained hardness of BDD (with and
without preprocessing) appears below in Theorem 1. For p ∈ [1,∞) and C > 1, the quantities
α∗p and α∗p,C appearing in the theorem statement are certain positive real numbers that are
decreasing in p and C, and approaching 1/2 as p→∞ (for any C). See Figure 1 for a plot
of their behavior, Equations (3.4) and (3.5) for their formal definitions, and Lemma 27 for
quite tight closed-form upper bounds.

I Theorem 1. The following hold for BDDp,α and BDDPp,α in rank n:
1. For every p ∈ [1,∞) and constant α > α∗p (where α∗p ≤ 1

2 · 4.67231/p), and for (p, α) =
(∞, 1/2), there is no polynomial-time algorithm for BDDp,α (respectively, BDDPp,α)
unless NP ⊆ RP (resp., NP ⊆ P/Poly).

2. For every p ∈ [1,∞) and constant α > min{α∗p, α∗2}, and for (p, α) = (∞, 1/2), there is
no 2o(n)-time algorithm for BDDp,α unless randomized ETH fails.

3. For every p ∈ [1,∞) \ {2} and constant α > α∗p, and for (p, α) = (∞, 1/2), there is no
2o(n)-time algorithm for BDDPp,α unless non-uniform ETH fails.
Moreover, for every p ∈ [1,∞] and α > α∗2 there is no 2o(

√
n)-time algorithm for BDDPp,α

unless non-uniform ETH fails.
4. For every p ∈ [1,∞) \ 2Z and constants C > 1, α > α∗p,C , and ε > 0, and for (p, C, α) =

(∞, 1, 1/2), there is no 2n(1−ε)/C-time algorithm for BDDp,α (respectively, BDDPp,α)
unless randomized SETH (resp., non-uniform SETH) fails.
Although we do not have closed-form expressions for α∗p and α∗p,C , we do get quite tight

closed-form upper bounds (see Lemma 27). Moreover, it is easy to numerically compute close
approximations to them, and to the values of p at which they cross certain thresholds. For
example, α∗p < 1/

√
2 for all p > p1 ≈ 4.2773, so Item 1 of Theorem 1 improves on the prior

best relative distance of any α > 1/
√

2 for the NP-hardness of BDDp,α in such `p norms [19].
As a few other example values and their consequences under Theorem 1, we have

α∗2 ≈ 1.05006, α∗3,2 ≈ 1.1418, and α∗3,5 ≈ 0.917803. So by Item 2, BDD in the Euclidean
norm for any relative distance α > 1.05006 requires 2Ω(n) time assuming randomized ETH.
And by Item 4, for every ε > 0 there is no 2(1−ε)n/2-time algorithm for BDD3,1.1418, and no
2(1−ε)n/5-time algorithm for BDD3,0.917803, assuming randomized SETH.

1.2 Technical Overview
As in prior NP-hardness reductions for SVP and BDD (and fine-grained hardness proofs for
the former) [7, 22, 16, 19, 14, 25, 5], the central component of our reductions is a family of
rank-n lattices L ⊂ Rd and target points t ∈ Rd having a certain “local density” property in
a desired `p norm. Informally, this means that L has “large” minimum distance λ(p)

1 (L) :=
minv∈L\{0}‖v‖p, i.e., there are no “short” nonzero vectors, but has many vectors “close” to
the target t. More precisely, we want λ(p)

1 (L) ≥ r and Np(L, αr, t) = exp(nΩ(1)) for some
relative distance α, where

Np(L, s, t) := |{v ∈ L : ‖v − t‖p ≤ s}|

denotes the number of lattice points within distance s of t.

CCC 2020
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Figure 1 Top: bounds on the relative distances α = α(p) for which BDDα,p was proved to be
NP-hard in the `p norm, in this work and in [19]; the crossover point is p1 ≈ 4.2773. (The plots
include results obtained by norm embeddings [28], hence they are maximized at p = 2.) Bottom:
our bounds α∗p,C on the relative distances α > α∗p,C for which there is no 2(1−ε)n/C-time algorithm
for BDDp,α for any ε > 0, assuming randomized SETH.

Micciancio [22] constructed locally dense lattices with relative distance approaching
2−1/p in the `p norm (for every finite p ≥ 1), and used them to prove the NP-hardness
of γ-approximate SVP in `p for any γ < 21/p. Subsequently, Liu, Lyubashevsky, and
Micciancio [19] used these lattices to prove the NP-hardness of BDD in `p for any relative
distance α > 2−1/p. However, these works observed that the relative distance depends
on p in the opposite way from what one might expect: as p grows, so does α, hence the
associated NP-hard SVP approximation factors and BDD relative distances worsen. Yet
using norm embeddings, it can be shown that `2 is essentially the “easiest” `p norm for
lattice problems [28], so hardness in `2 implies hardness in `p (up to an arbitrarily small
loss in approximation factor). Therefore, the locally dense lattices from [22] do not seem to
provide any benefits for p > 2 over p = 2, where the relative distance approaches 1/

√
2. In

addition, the rank of these lattices is a large polynomial in the relevant parameter, so they
are not suitable for proving fine-grained hardness.1

1 We mention that Khot [16] gave a different construction of locally dense lattices with other useful
properties, but their relative distance is no smaller than that of Micciancio’s construction in any `p
norm, and their rank is also a large polynomial in the relevant parameter.
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Local density via sparsification

More recently, Aggarwal and Stephens-Davidowitz [5] (building on [10]) proved fine-grained
hardness for exact SVP in `p norms, via locally dense lattices obtained in a different way.
Because they target exact SVP, it suffices to have local density for relative distance α = 1,
but for fine-grained hardness they need Np(L, r, t) = 2Ω(n), preferably with a large hidden
constant (which determines the rank efficiency of the reduction). Following [21, 12], they
start with the integer lattice Zn and all- 1

2 s target vector t = 1
21 ∈ Rn. Clearly, there are 2n

lattice vectors all at distance r = 1
2n

1/p from t in the `p norm, but the minimum distance
of the lattice is only 1, so the relative distance of the “close” vectors is α = r, which is far
too large.

To improve the relative distance, they increase the minimum distance to at least r = 1
2n

1/p

using the elegant technique of random sparsification, which is implicit in [12] and was first
used for proving NP-hardness of approximate SVP in [17, 16]. The idea is to upper-bound
the number Np(Zn, r,0) of “short” lattice points of length at most r, by some Q. Then,
by taking a random sublattice L ⊂ Zn of determinant (index) slightly larger than Q, with
noticeable probability none of the “short” nonzero vectors will be included in L, whereas
roughly 2n/Q of the vectors “close” to t will be in L. So, as long as Q = 2(1−Ω(1))n, there
are sufficiently many lattice vectors at the desired relative distance from t.

Bounds for Np(Zn, r,0) were given by Mazo and Odlyzko [21], by a simple but pow-
erful technique using the theta function Θp(τ) :=

∑
z∈Z exp(−τ |z|p). They showed (see

Proposition 13) that

Np(Zn, r,0) ≤ min
τ>0

exp(τ · rp) ·Θp(τ)n =
(

min
τ>0

exp(τ/2p) ·Θp(τ)
)n

, (1.1)

where the equality is by r = 1
2n

1/p. So, Aggarwal and Stephens-Davidowitz need
minτ>0 exp(τ/2p) ·Θp(τ) < 2, and it turns out that this is the case for every p > p0 ≈ 2.1397.
(They also deal with smaller p by using a different target point t.)

This work: local density for small relative distance

For the NP- and fine-grained hardness of BDD we use the same basic approach as in [5], but
with the different goal of getting local density for as small of a relative distance α < 1 as we
can manage. That is, we still have 2n integral vectors all at distance r = 1

2n
1/p from the

target t = 1
21 ∈ Rn, but we want to “sparsify away” all the nonzero integral vectors of length

less than r/α. So, we want the right-hand side of the Mazo-Odlyzko bound (Equation (1.1))
to be at most 2(1−Ω(1))n for as large of a positive hidden constant as we can manage. More
specifically, for any p ≥ 1 and C > 1 (which ultimately corresponds to the reduction’s rank
inefficiency) we can obtain local density of at least 2n/C close vectors at any relative distance
greater than

α∗p,C := inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 21−1/C} .

The value of α∗p,C is strictly decreasing in both p and C, and for large C and p > p1 ≈ 4.2773
it drops below the relative distance of 1/

√
2 approached by the local-density construction

of [22] for `2 (and also `p by norm embeddings.) This is the source of our improved relative
distance for the NP-hardness of BDD in high `p norms.

We also show that obtaining local density by sparsifying the integer lattice happens to
yield a very simple reduction to BDD from the exact version of CVP, which is how we obtain
fine-grained hardness. Given a CVP instance consisting of a lattice and a target point, we
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essentially just take their direct sum with the integer lattice and the 1
21 target (respectively),

then sparsify. (See Lemma 21 and Theorem 19 for details.) Because this results in the
(sparsified) locally dense lattice having 2Ω(n) close vectors all exactly at the threshold of the
BDD promise, concatenating the CVP instance either keeps the target within the (slightly
weaker) BDD promise, or puts it just outside. This is in contrast to the prior reduction of [19],
where the close vectors in the locally dense lattices of [22] are at various distances from the
target, hence a reduction from approximate-CVP with a large constant factor is needed to
put the target outside the BDD promise. While approximating CVP to within any constant
factor is known to be NP-hard [8], no fine-grained hardness is known for approximate CVP,
except for factors just slightly larger than one [2].

1.3 Discussion and Future Work

Our work raises a number of interesting issues and directions for future research. First, it
highlights that there are now two incomparable approaches for obtaining local density in
the `p norm – Micciancio’s construction [22], and sparsifying the integer lattice [12, 5] – with
each delivering a better relative distance for certain ranges of p. For p ∈ [1, p1 ≈ 4.2773],
Micciancio’s construction (with norm embeddings from `2, where applicable) delivers the
better relative distance, which approaches min{1/ p

√
2, 1/
√

2}. Moreover, this is essentially
optimal in `2, where 1/

√
2 is unachievable due to the Rankin bound, which says that in Rn

we can have at most 2n subunit vectors with pairwise distances of
√

2 or more.
A first question, therefore, is whether relative distance less than 1/

√
2 can be obtained for

all p > 2. We conjecture that this is true, but can only manage to prove it via sparsification
for all p > p1 ≈ 4.2773. More generally, an important open problem is to give a unified
local-density construction that subsumes both of the above-mentioned approaches in terms
of relative distance, and ideally in rank efficiency as well. In the other direction, another
important goal is to give lower bounds on the relative distance in general `p norms. Apart
from the Rankin bound, the only bound we are aware of is the trivial one of α ≥ 1/2 implied
by the triangle inequality, which is essentially tight for `1 and tight for `∞ (as shown by [22]
and our work, respectively).

More broadly, for the BDD relative distance parameter α there are three regimes of
interest: the local-density regime, where we know how to prove NP-hardness; the unique-
decoding regime α < 1/2; and (at least in some `p norms, including `2) the intermediate
regime between them. It would be very interesting, and would seem to require new techniques,
to show NP-hardness outside the local-density regime. One potential route would be to
devise a gap amplification technique for BDD, analogous to how SVP has been proved to be
NP-hard to approximate to within any constant factor [16, 14, 25]. Gap amplification may
also be interesting in the absence of NP-hardness, e.g., for the inverse-polynomial relative
distances used in cryptography. Currently, the only efficient gap amplification we are aware
of is a modest one that decreases the relative distance by any (1− 1/n)O(1) factor [20].

A final interesting research direction is related to the unique Shortest Vector Problem
(uSVP), where the goal is to find a shortest nonzero vector v in a given lattice, under the
promise that it is unique (up to sign). More generally, approximate uSVP has the promise
that all lattice vectors not parallel to v are a certain factor γ as long. It is known that
exact uSVP is NP-hard in `2 [18], and by known reductions it is straightforward to show the
NP-hardness of 2-approximate uSVP in `∞. Can recent techniques help to prove NP-hardness
of γ-approximate uSVP, for some constant γ > 1, in `p for some finite p, or specifically for `2?
Do NP-hard approximation factors for uSVP grow smoothly with p?
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2 Preliminaries

For any positive integer q, we identify the quotient group Zq = Z/qZ with some set of
distinguished representatives, e.g., {0, 1, . . . , q − 1}. Let B+ := (BtB)−1Bt denote the
Moore-Penrose pseudoinverse of a real-valued matrix B with full column rank. Observe that
B+v is the unique coefficient vector c with respect to B of any v = Bc in the column span
of B.

2.1 Problems with Preprocessing

In addition to ordinary computational problems, we are also interested in (promise) problems
with preprocessing. In such a problem, an instance (xP , xQ) is comprised of a “preprocess-
ing” part xP and a “query” part xQ, and an algorithm is allowed to perform unbounded
computation on the preprocessing part before receiving the query part.

Formally, a preprocessing problem is a relation Π = {((xP , xQ), y)} of instance-solution
pairs, where Πinst := {(xP , xQ) : ∃ y s.t. ((xP , xQ), y) ∈ Π} is the set of problem instances,
and Π(xP ,xQ) := {y : ((xP , xQ), y) ∈ Π} is the set of solutions for any particular instance
(xP , xQ). If every instance (xP , xQ) ∈ Πinst has exactly one solution that is either YES or
NO, then Π is called a decision problem.

I Definition 2. A preprocessing algorithm is a pair (P,Q) where P is a (possibly randomized)
function representing potentially unbounded computation, and Q is an algorithm. The
execution of (P,Q) on an input (xP , xQ) proceeds in two phases:

first, in the preprocessing phase, P takes xP as input and produces some preprocessed
output σ;
then, in the query phase, Q takes both σ and xQ as input and produces some ultimate
output.

The running time T of the algorithm is defined to be the time used in the query phase alone,
and is considered as a function of the total input length |xP | + |xQ|. The length of the
preprocessed output is defined as A = |σ|, and is also considered as a function of the total
input length. Note that without loss of generality, A ≤ T .

If (P,Q) is deterministic, we say that it solves preprocessing problem Π if Q(P (xP ), xQ) ∈
Π(xP ,xQ) for all (xP , xQ) ∈ Πinst. If (P,Q) is potentially randomized, we say that it solves Π if

Pr[Q(P (xP ), xQ) ∈ Π(xP ,xQ)] ≥
2
3

for all (xP , xQ) ∈ Πinst, where the probability is taken over the random coins of both P

and Q.2

As shown below using a routine quantifier-swapping argument (as in Adleman’s Theo-
rem [1]), it turns out that for NP relations and decision problems, any randomized prepro-
cessing algorithm can be derandomized if the length of the query input xQ is polynomial
in the length of the preprocessing input xP . So for convenience, in this work we allow
for randomized algorithms, only switching to deterministic ones for our ultimate hardness
theorems.

2 Note that it could be the case that some preprocessed outputs fail to make the query algorithm output
a correct answer on some, or even all, query inputs.
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I Lemma 3. Let preprocessing problem Π be an NP relation or a decision problem for which
|xQ| = poly(|xP |) for all (xP , xQ) ∈ Πinst. If Π has a randomized T -time algorithm, then
it has a deterministic T · poly(|xP |+ |xQ|)-time algorithm with T · poly(|xP |+ |xQ|)-length
preprocessed output.

Proof. Let q(·) be a polynomial for which |xQ| ≤ q(|xP |) for all (xP , xQ) ∈ Πinst. Let (P,Q)
be a randomized T -time algorithm for Π, which by standard repetition techniques we can
assume has probability strictly less than exp(−q(|xP |)) of being incorrect on any (xP , xQ) ∈
Πinst, with only a poly(|xP |+ |xQ|)-factor overhead in the running time and preprocessed
output length. Fix some arbitrary xP . Then by the union bound over all (xP , xQ) ∈ Πinst
and the hypothesis, we have

Pr[∃ (xP , xQ) ∈ Πinst : Q(P (xP ), xQ) 6∈ Π(xP ,xQ)] < 1.

So, there exist coins for P and Q for which Q(P (xP ), xQ) ∈ Π(xP ,xQ) for all (xP , xQ) ∈ Πinst.
By fixing these coins we make P a deterministic function of xP , and we include the coins
for Q along with the preprocessed output P (xP ), thus making Q deterministic as well. The
resulting deterministic algorithm solves Π with the claimed resources, as needed. J

Reductions for preprocessing problems

We need the following notions of reductions for preprocessing problems. The following
generalizes Turing reductions and Cook reductions (i.e., polynomial-time Turing reductions).

I Definition 4. A Turing reduction from one preprocessing problem X to another one Y
is a pair of algorithms (RP , RQ) satisfying the following properties: RP is a (potentially
randomized) function with access to an oracle P , whose output length is polynomial in its
input length; RQ is an algorithm with access to an oracle Q; and if (P,Q) solves problem Y ,
then (RPP , R

Q
Q) solves problem X. Additionally, it is a Cook reduction if RQ runs in time

polynomial in the total input length of RP and RQ.

Similarly, the following generalizes mapping reductions and Karp reductions (i.e., polynomial-
time mapping reductions) for decision problems.

I Definition 5. A mapping reduction from one preprocessing decision problem X to another
one Y is a pair (RP , RQ) satisfying the following properties: RP is a deterministic function
whose output length is polynomial in its input length; RQ is a deterministic algorithm; and
for any YES (respectively, NO) instance (xP , xQ) of X, the output pair (yP , yQ) is a YES
(resp., NO) instance of Y , where (yP , yQ) are defined as follows:

first, RP takes xP as input and outputs some (σ′, yP ), where σ′ is some “internal”
preprocessed output;
then, RQ takes (σ′, xQ) as input and outputs some yQ.

Additionally, it is a Karp reduction if RQ runs in time polynomial in the total input length
of RP and RQ.

It is straightforward to see that if X mapping reduces to Y , and there is a deterministic
polynomial-time preprocessing algorithm (PY , QY ) that solves Y , then there is also one
(PX , QX) that solves X, which works as follows:
1. the preprocessing algorithm PX , given a preprocessing input xp, first computes (σ′, yP ) =

RP (xP ), then computes σY = PY (yP ) and outputs σX = (σ′, σY );
2. the query algorithm QX , given σX = (σ′, σY ) and a query input xQ, computes yQ =

RQ(σ′, xQ) and finally outputs QY (σY , yQ).
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2.2 Lattices
A lattice is the set of all integer linear combinations of some linearly independent vectors
b1, . . . , bn. It is convenient to arrange these vectors as the columns of a matrix. Accordingly,
we define a basis B = (b1, . . . , bn) ∈ Rd×n to be a matrix with linearly independent columns,
and the lattice generated by basis B as

L(B) :=
{ n∑
i=1

aibi : a1, . . . , an ∈ Z
}
.

Let Bdp denote the centered unit `p ball in d dimensions. Given a lattice L ⊂ Rd of rank
n, for 1 ≤ i ≤ n let

λ
(p)
i (L) := inf{r > 0 : dim(span(r · Bdp ∩ L)) ≥ i}

denote the ith successive minimum of L with respect to the `p norm.
We denote the `p distance of a vector t to a lattice L as

distp(t,L) := min
v∈L
‖v − t‖p .

2.3 Bounded Distance Decoding (with Preprocessing)
The primary computational problem that we study in this work is the Bounded Distance
Decoding Problem (BDD), which is a version of the Closest Vector Problem (CVP) in which
the target vector is promised to be relatively close to the lattice.

I Definition 6. For 1 ≤ p ≤ ∞ and α = α(n) > 0, the α-Bounded Distance Decoding
problem in the `p norm (BDDp,α) is the (search) promise problem defined as follows. The
input is (a basis of) a rank-n lattice L and a target vector t satisfying distp(t,L) ≤ α(n) ·
λ

(p)
1 (L). The goal is to output a lattice vector v ∈ L that satisfies ‖v − t‖p ≤ α(n) · λ(p)

1 (L).
The preprocessing (search) promise problem BDDPp,α is defined analogously, where the

preprocessing input is (a basis of) the lattice, and the query input is the target t.

We note that in some works, BDD is defined to have the goal of finding a v ∈ L such
that ‖v − t‖p = distp(t,L). This formulation is clearly no easier than the one defined above.
So, our hardness theorems, which are proved for the definition above, immediately apply to
the alternative formulation as well.

We also remark that for α < 1/2, the promise ensures that there is a unique vector v
satisfying ‖v − t‖p ≤ α · λ(p)

1 (L). However, BDD is still well defined for α ≥ 1/2, i.e., above
the unique-decoding radius. As in prior work, our hardness results for BDDp,α are limited
to this regime.

To the best of our knowledge, essentially the only previous study of the NP-hardness of
BDD is due to [19], which showed the following result.3

I Theorem 7 ([19, Corollaries 1 and 2]). For any p ∈ [1,∞) and α > 1/21/p, there is no
polynomial-time algorithm for BDDp,α (respectively, with preprocessing) unless NP ⊆ RP
(resp., unless NP ⊆ P/Poly).

3 Additionally, [11] gave a reduction from CVP to BDD2,α but only for some α > 1. Also, [26, 20] gave a
reduction from GapSVPγ to BDD, but only for large γ = γ(n) for which GapSVP is not known to be
NP-hard.
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Regev and Rosen [28] used norm embeddings to show that almost any lattice problem is
at least as hard in the `p norm, for any p ∈ [1,∞], as it is in the `2 norm, up to an arbitrarily
small constant-factor loss in the approximation factor. In other words, they essentially
showed that `2 is the “easiest” `p norm for lattice problems. (In addition, their reduction
preserves the rank of the lattice.) Based on this, [19] observed the following corollary, which
is an improvement on the factor α from Theorem 7 for all p > 2.

I Theorem 8 ([19, Corollary 3]). For any p ∈ [1,∞) and α > 1/
√

2, there is no polynomial-
time algorithm for BDDp,α (respectively, with preprocessing) unless NP ⊆ RP (resp., unless
NP ⊆ P/Poly).

Figure 1 shows the bounds from Theorems 7 and 8 together with the new bounds achieved
in this work as a function of p.

2.4 Sparsification
A powerful idea, first used in the context of hardness proofs for lattice problems in [17], is
that of random lattice sparsification. Given a lattice L with basis B, we can construct a
random sublattice L′ ⊆ L as

L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}

for uniformly random z ∈ Znq , where q is a suitably chosen prime.

I Lemma 9. Let q be a prime and let x1, . . . ,xN ∈ Znq \ {0} be arbitrary. Then

Pr
z←Zn

q

[∃ i ∈ [N ] such that 〈z,xi〉 = 0 (mod q)] ≤ N

q
.

Proof. We have Pr[〈z,xi〉 = 0] = 1/q for each xi, and the claim follows by the union
bound. J

The following corollary is immediate.

I Corollary 10. Let q be a prime and L be a lattice of rank n with basis B. Then for all
r > 0 and all p ∈ [1,∞],

Pr
z←Zn

q

[λ(p)
1 (L′) < r] ≤

No
p (L \ {0}, r,0)

q
,

where L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}.

I Theorem 11 ([29, Theorem 3.1]). For any lattice L of rank n with basis B, prime q, and
lattice vectors x,y1, . . . ,yN ∈ L such that B+x 6= B+yi (mod q) for all i ∈ [N ], we have

1
q
−N
q2 −

N

qn−1 ≤ Pr
z,c←Zn

q

[〈z, B+x+c〉 = 0 (mod q)∧〈z, B+yi+c〉 6= 0 (mod q) ∀ i ∈ [N ]] ≤ 1
q

+ 1
qn

.

We will use only the lower bound from Theorem 11, but we note that the upper bound is
relatively tight for q � N .

I Corollary 12. For any p ∈ [1,∞] and r ≥ 0, lattice L of rank n with basis B, vector t,
prime q, and lattice vectors v1, . . . ,vN ∈ L such that ‖vi − t‖p ≤ r for all i ∈ [N ] and such
that all the B+vi mod q are distinct, we have

Pr
z,c←Zn

q

[distp(t+Bc,L′) ≤ r] ≥ N

q
− N(N − 1)

q2 − N(N − 1)
qn−1 ,

where L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}.
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Proof. Observe that for each i ∈ [N ], the events

Ei := [〈z, B+vi〉 = 0 (mod q) and 〈z, B+vj〉 6= 0 (mod q) for all j 6= i]

are disjoint, and by invoking Theorem 11 with x = vi and the yj being the remaining vk for
k 6= i, we have

Pr
z,c

[Ei] ≥
1
q
− N − 1

q2 − N − 1
qn−1 .

Also observe that if Ei occurs, then vi + Bc ∈ L′ (also vj + Bc 6∈ L′ for all j 6= i, but we
will not need this). Therefore,

distp(t+Bc,L′) ≤ ‖t+Bc− (vi +Bc)‖ = ‖t− vi‖ ≤ r .

So, the probability in the left-hand side of the claim is at least

Pr
z,c

[ ⋃
i∈[N ]

Ei

]
=
∑
i∈[N ]

Pr
z,c

[Ei] ≥
N

q
− N(N − 1)

q2 − N(N − 1)
qn−1 . J

2.5 Counting Lattice Points in a Ball
Following [5], for any discrete set A of points (e.g., a lattice, or a subset thereof), we denote
the number of points in A contained in the closed and open (respectively) `p ball of radius r
centered at a point t as

Np(A, r, t) := |{y ∈ A : ‖y − t‖p ≤ r}| , (2.1)
No
p (A, r, t) := |{y ∈ A : ‖y − t‖p < r}| . (2.2)

Clearly, No
p (A, r, t) ≤ Np(A, r, t).

For 1 ≤ p <∞ and τ > 0 define

Θp(τ) :=
∑
z∈Z

exp(−τ |z|p) .

We use the following upper bound due to Mazo and Odlyzko [21] on the number of short
vectors in the integer lattice. We include its short proof for completeness.

I Proposition 13 ([21]). For any p ∈ [1,∞), r > 0, and n ∈ N,

Np(Zn, r,0) ≤ min
τ>0

exp(τrp) ·Θp(τ)n .

Proof. For τ > 0 we have

Θp(τ)n =
∑

z∈Zn

exp(−τ‖z‖pp) ≥
∑

z∈Zn∩rBn
p

exp(−τ‖z‖pp) ≥ exp(−τrp) ·Np(Zn, r,0) .

The result follows by rearranging and taking the minimum over all τ > 0. J

2.6 Hardness Assumptions
We recall the Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [15], and
several of its variants. These hypotheses make stronger assumptions about the complexity
of the k-SAT problem than the assumption P 6= NP, and serve as highly useful tools for
studying the fine-grained complexity of hard computational problems. Indeed, we will show
that strong fine-grained hardness for BDD follows from these hypotheses.
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I Definition 14. The (randomized) Exponential Time Hypothesis ((randomized) ETH)
asserts that there is no (randomized) 2o(n)-time algorithm for 3-SAT on n variables.

I Definition 15. The (randomized) Strong Exponential Time Hypothesis ((randomized)
SETH) asserts that for every ε > 0 there exists k ∈ Z+ such that there is no (randomized)
2(1−ε)n-time algorithm for k-SAT on n variables.

For proving hardness of lattice problem with preprocessing, we define (Max-)k-SAT with
preprocessing as follows. The preprocessing input is a size parameter n, encoded in unary.
The query input is a k-SAT formula φ with n variables and m (distinct) clauses, together
with a threshold W ∈ {0, . . .m} in the case of Max-k-SAT. For k-SAT, it is a YES instance
if φ is satisfiable, and is a NO instance otherwise. For Max-k-SAT, it is a YES instance if
there exists an assignment to the variables of φ that satisfies at least W of its clauses, and is
a NO instance otherwise.

Observe that because the preprocessing input is just n, a preprocessing algorithm for
(Max-)k-SAT with preprocessing is equivalent to a (non-uniform) family of circuits for the
problem without preprocessing. Also, for any fixed k, because there are only O(nk) possible
clauses on n variables, the length of the query input for (Max-)k-SAT instances having
preprocessing input n is poly(n), so we get the following corollary of Lemma 3.

I Corollary 16. If (Max-)k-SAT with preprocessing has a randomized T (n)-time algorithm,
then it has a deterministic T (n) · poly(n)-time algorithm using T (n) · poly(n)-length prepro-
cessed output.

Following, e.g., [30, 2], we also define non-uniform variants of ETH and SETH, which
deal with the complexity of k-SAT with preprocessing. More precisely, non-uniform ETH
asserts that no family of size-2o(n) circuits solves 3-SAT on n variables (equivalently, 3-SAT
with preprocessing does not have a 2o(n)-time algorithm), and non-uniform SETH asserts
that for every ε > 0 there exists k ∈ Z+ such that no family of circuits of size 2(1−ε)n

solves k-SAT on n variables (equivalently, k-SAT with preprocessing does not have a 2(1−ε)n-
time algorithm). These hypotheses are useful for analyzing the fine-grained complexity of
preprocessing problems.

One might additionally consider “randomized non-uniform” versions of (S)ETH. However,
Corollary 16 says that a randomized algorithm for (Max-)k-SAT with preprocessing can
be derandomized with only polynomial overhead, so randomized non-uniform (S)ETH is
equivalent to (deterministic) non-uniform (S)ETH, so we only consider the latter.

Finally, we remark that one can define weaker versions of randomized or non-uniform
(S)ETH with Max-3-SAT (respectively, Max-k-SAT) in place of 3-SAT (resp., k-SAT). Many
of our results hold even under these weaker hypotheses. In particular, the derandomization
result in Corollary 16 applies to both k-SAT and Max-k-SAT.

3 Hardness of BDDp,α

In this section, we present our main result by giving a reduction from a known-hard variant
GapCVP′p of the Closest Vector Problem (CVP) to BDD. We peform this reduction in two
main steps.
1. First, in Section 3.1 we define a variant of BDDp,α, which we call (S, T )-BDDp,α. Essen-

tially, an instance of this problem is a lattice that may have up to S “short” nonzero
vectors of `p norm bounded by some r, and a target vector that is “close” to – i.e.,
within distance αr of – at least T lattice vectors. (The presence of short vectors prevents
this from being a true BDDp,α instance.) We then give a reduction, for S � T , from
(S, T )-BDDp,α to BDDp,α itself, using sparsification.
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2. Then, in Section 3.2 we reduce from GapCVP′p to (S, T )-BDDp,α for suitable S � T

whenever α is sufficiently large as a function of p (and the desired rank efficiency), based
on analysis given in Section 3.3 and Lemma 27.

3.1 (S, T )-BDD to BDD
We start by defining a special decision variant of BDD. Essentially, the input is a lattice and a
target vector, and the problem is to distinguish between the case where there are few “short”
lattice vectors but many lattice vectors “close” to the target, and the case where the target
is not close to the lattice. There is a gap factor between the “close” and “short” distances,
and for technical reasons we count only those “close” vectors having binary coefficients with
respect to the given input basis.

I Definition 17. Let S = S(n), T = T (n) ≥ 0, p ∈ [1,∞], and α = α(n) > 0. An instance
of the decision promise problem (S, T )-BDDp,α is a lattice basis B ∈ Rd×n, a distance r > 0,
and a target t ∈ Rd.

It is a YES instance if No
p (L(B) \ {0}, r,0) ≤ S(n) and Np(B · {0, 1}n, αr, t) ≥ T (n).

It is a NO instance if distp(t,L(B)) > αr.
The search version is: given a YES instance (B, r, t), find a v ∈ L(B) such that ‖v−t‖p ≤ αr.

The preprocessing search and decision problems (S, T )-BDDPp,α are defined analogously,
where the preprocessing input is B and r, and the query input is t.

We stress that in the preprocessing problems BDDP, the distance r is part of the
preprocessing input; this makes the problem no harder than a variant where r is part of the
query input. So, our hardness results for the above definition immediately apply to that
variant as well. However, our reduction from (S, T )-BDDP (given in Lemma 18) critically
relies on the fact that r is part of the preprocessing input.

Clearly, there is a trivial reduction from the decision version of (S, T )-BDDp,α to its
search version (and similarly for the preprocessing problems): just call the oracle for the
search problem and test whether it returns a lattice vector within distance αr of the target.
So, to obtain more general results, our reductions involving (S, T )-BDD will be from the
search version, and to the decision version.

Reducing to BDD

We next observe that for S(n) = 0 and any T (n) > 0, there is almost a trivial reduction
from (S, T )-BDDp,α to ordinary BDDp,α, because YES instances of the former satisfy the
BDDp,α promise. (See below for the easy proof.) The only subtlety is that we want the
BDDp,α oracle to return a lattice vector that is within distance αr of the target; recall that
the definition of BDDp,α only guarantees distance α ·λ(p)

1 (L(B)). This issue is easily resolved
by modifying the lattice to upper bound its minimum distance by r, which increases the
lattice’s rank by one. (For the alternative definition of BDD described after Definition 6, the
trivial reduction works, and no increase in the rank is needed.)

I Lemma 18. For any T (n) > 0, p ∈ [1,∞], and α = α(n) > 0, there is a deterministic
Cook reduction from the search version of (0, T (n))-BDDp,α (resp., with preprocessing) in
rank n to BDDp,α (resp., with preprocessing) in rank n+ 1.
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Proof. The reduction works as follows. On input (B, r, t), call the BDDp,α oracle on

B′ :=
(
B 0
0 r

)
, t′ :=

(
t

0

)
,

and (without loss of generality) receive from the oracle a vector v′ = (v, zr) for some v ∈ L
and z ∈ Z. Output v.

We analyze the reduction. Let L = L(B) and L′ = L(B′). Because the input is a YES
instance, we have No

p (L \ {0}, r,0) = 0 and hence λ(p)
1 (L) ≥ r, so λ(p)

1 (L′) = r. Moreover,
Np(B ·{0, 1}n, αr, t) > 0 implies that distp(t′,L′) = dist(t,L) ≤ αr = α ·λ(p)

1 (L′). So, (B′, t′)
satisfies the BDDp,α promise, hence the oracle is obligated to return some v′ = (v, zr) ∈ L′

where v ∈ L and αr = αλ
(p)
1 (L′) ≥ ‖v′ − t′‖p ≥ ‖v − t‖p. Therefore, the output v of the

reduction is a valid solution.
Finally, observe that all of the above also constitutes a valid reduction for the preprocessing

problems, because B′ depends only on the preprocessing part B, r of the input. J

We now present a more general randomized reduction from (S, T )-BDDp,α to BDDp,α,
which works whenever T (n) ≥ 10S(n). The essential idea is to sparsify the input lattice, so
that with some noticeable probability no short vectors remain, but at least one vector close
to the target does remain. In this case, the result will be an instance of (0, 1)-BDDp,α, which
reduces to BDDp,α as shown above.

We note that the triangle inequality precludes the existence of (S, T )-BDDp,α instances
with T > S + 1 and α ≤ 1/2, so with this approach we can only hope to show hardness of
BDDp,α for α > 1/2, i.e., the unique-decoding regime remains out of reach.

I Theorem 19. For any S = S(n) ≥ 1 and T = T (n) ≥ 10S that is efficiently computable
(for unary n), p ∈ [1,∞], and α = α(n) > 0, there is a randomized Cook reduction with no
false positives from the search version of (S, T )-BDDp,α (resp., with preprocessing) in rank n
to BDDp,α (resp., with preprocessing) in rank n+ 1.

Proof. By Lemma 18, it suffices to give such a reduction to (0, 1)-BDDp,α in rank n, which
works as follows. On input (B, r, t), let L = L(B). First, randomly choose a prime q where
10T ≤ q ≤ 20T . Then sample z, c ∈ Znq independently and uniformly at random, and define

L′ := {v ∈ L : 〈z, B+v〉 = 0 (mod q)} and t′ := t+Bc .

Let B′ be a basis of L′. (Such a basis is efficiently computable from B, z, and q. See, e.g., [29,
Claim 2.15].) Invoke the (0, 1)-BDDp,α oracle on (B′, r, t′), and output whatever the oracle
outputs.

We now analyze the reduction. We are promised that (B, r, t) is a YES instance of
(S, T )-BDDp,α, and it suffices to show that (B′, r, t′) is a YES instance of (0, 1)-BDDp,α, i.e.,
λ

(p)
1 (L′) ≥ r and distp(t′,L′) ≤ αr, with some positive constant probability. By Corollary 10

we have

Pr[λ(p)
1 (L′) < r] ≤

No
p (L \ {0}, r,0)

q
≤ S

q
≤ 1

100 .

Furthermore, because there are T vectors vi ∈ L for which ‖vi − t‖p ≤ αr, and their
coefficient vectors B+vi ∈ {0, 1}n are distinct (as integer vectors, and hence also modulo q),
by Corollary 12 we have

Pr[distp(t′,L′) ≤ αr] ≥
T

q
− T 2

q2 −
T 2

qn−1 ≥
1
20 −

1
400 −

1
400qn−3 .
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Therefore, by the union bound we have

Pr[λ(p)
1 (L′) ≥ r and distp(t′,L′) ≤ αr] ≥

1
20 −

1
400 −

1
400qn−3 −

1
100 ≥

1
40

for all n ≥ 3, as desired.
Finally, the above also constitutes a valid reduction for the preprocessing problems (in

the sense of Definition 4), because B′ depends only on B from the preprocessing part of the
input and the reduction’s own random choices (and r remains unchanged). J

3.2 GapCVP’ to (S, T )-BDD
Here we show that a known-hard variant of the (exact) Closest Vector Problem reduces to
(S, T )-BDD (in its decision version).

I Definition 20. For p ∈ [1,∞], the (decision) promise problem GapCVP′p is defined as
follows: an instance consists of a basis B ∈ Rd×n and a target vector t ∈ Rd.

It is a YES instance if there exists x ∈ {0, 1}n such that ‖Bx− t‖p ≤ 1.
It is a NO instance if distp(t,L(B)) > 1.

The preprocessing (decision) promise problem GapCVPP′p is defined analogously, where the
preprocessing input is B and the query input is t.

Observe that for GapCVP′p the distance threshold is 1 (and not some instance-dependent
value) without loss of generality, because we can scale the lattice and target vector. The same
goes for GapCVPP′p, with the caveat that any instance-dependent distance threshold would
need to be included in the preprocessing part of the input, not the query part. (See Remark 26
below for why this is essentially without loss of generality, under a mild assumption on the
GapCVPP′p instances.) We remark that some works define these problems with a stronger
requirement that in the NO case, distp(zt,L(B)) > r for all z ∈ Z \ {0}. We will not need
this stronger requirement, and some of the hardness results for GapCVP′ that we rely on
are not known to hold with it, so we use the weaker requirement.

We next describe a simple transformation on lattices and target vectors: we essentially
take a direct sum of the input lattice with the integer lattice of any desired dimension n and
append an all- 1

2 s vector to the target vector.

I Lemma 21. For any n′ ≤ n, define the following transformations that map a basis B′
of a rank-n′ lattice L′ to a basis B of a rank-n lattice L, and a target vector t′ to a target
vector t:

B :=

 1
2B
′ 0

In′ 0
0 In−n′

 , t := 1
2

 t′

1n′

1n−n′

 , (3.1)

and define

sp = sp(n) := 1
2 (n+ 1)1/p for p ∈ [1,∞), and s∞ := 1/2. (3.2)

Then:
1. No

p (L, r,0) ≤ No
p (Zn, r,0) for all r ≥ 0;

2. if there exists an x ∈ {0, 1}n′ such that ‖B′x−t′‖p ≤ 1, then Np(B ·{0, 1}n, sp, t) ≥ 2n−n′ ;
3. if distp(t′,L′) > 1 then distp(t,L) > sp.
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Proof. Item 1 follows immediately by construction of B, because vectors v′ = ( 1
2B
′x,x,y) ∈

L for x,y ∈ Zn correspond bijectively to vectors v = (x,y) ∈ Zn, and ‖v‖p ≤ ‖v′‖p.
For Item 2, for every y ∈ {0, 1}n−n′ , the vector v := ( 1

2B
′x,x,y) ∈ L satisfies

‖v − t‖pp =
‖B′x− t′‖pp

2p + n

2p ≤ s
p
p

for finite p, and ‖v − t‖∞ = max( 1
2‖B

′x− t′‖∞, 1
2 ) = 1

2 = s∞. The claim follows.
For Item 3, for finite p we have

distp(t,L)p ≥ distp(t′,L′)p

2p + n

2p >
n+ 1

2p = spp ,

and for p =∞ we immediately have dist∞(t,L) ≥ 1
2 dist∞(t′,L′) > 1

2 = s∞, as needed. J

I Corollary 22. For any p ∈ [1,∞], α > 0, and poly(n′)-bounded n ≥ n′, there is a
deterministic Karp reduction from GapCVP′p (resp., with preprocessing) in rank n′ to the
decision version of (S, T )-BDDp,α (resp., with preprocessing) in rank n, where S(n) =
No
p (Zn \ {0}, sp/α,0) for sp as defined in Equation (3.2), and T (n) = 2n−n′ .

Proof. Given an input GapCVP′p instance (B′, t′), the reduction simply outputs (B, r =
sp/α, t), where B, t are as in Equation (3.1). Observe that this is also valid for the prepro-
cessing problems because B and r depend only on B′. Correctness follows immediately by
Lemma 21. J

3.3 Setting Parameters
We now investigate the relationship among the choice of `p norm (for finite p), the BDD
relative distance α, and the rank ratio C := n/n′, subject to the constraint

No
p (Zn, sp/α,0) ≤ 2n−n

′
/10 = T (n)/10 , (3.3)

so that the reductions in Corollary 22 and Theorem 19 can be composed. For p ∈ [1,∞) and
C > 1, define

α∗p,C := inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 21−1/C} , (3.4)

α∗p := lim
C→∞

α∗p,C = inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 2} . (3.5)

These quantities are well defined because for any C > 1 we have 21−1/C > 1, so the inequality
in Equation (3.4) is satisfied for sufficiently large τ and α∗. Moreover, it is straightforward
to verify that α∗p,C is strictly decreasing in both p and C, and α∗p is strictly decreasing
in p. Although it is not clear how to solve for these quantities in closed form, it is possible
to approximate them numerically to good accuracy (see Figure 1), and to get quite tight
closed-form upper bounds (see Lemma 27). We now show that to satisfy Equation (3.3) it
suffices to take any constant α > α∗p,C .

I Corollary 23. For any p ∈ [1,∞), C ≥ 1, and constant α > α∗p,C (Equation (3.4)), there
is a deterministic Karp reduction from GapCVP′p (resp., with preprocessing) in rank n′ to
the decision version of (S, T )-BDDp,α (resp., with preprocessing) in rank n = Cn′, where
S(n) = T (n)/10 and T (n) = 2(1−1/C)n.
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Proof. Recalling that sp = 1
2 (n+ 1)1/p, by Proposition 13, No

p (Zn, sp/α,0) is at most

Np(Zn, sp/α,0) ≤ min
τ>0

exp(τ · (sp/α)p) ·Θp(τ)n

= min
τ>0

exp(τ · (n+ 1)/(2α)p) ·Θp(τ)n

=
(

min
τ>0

exp(τ/(n(2α)p)) · exp(τ/(2α)p) ·Θp(τ)
)n

.

Because α > α∗p,C , we have that minτ>0 exp(τ/(2α)p) ·Θp(τ) is a constant strictly less than
21−1/C . So, No

p (Zn, sp/α,0) ≤ 2(1−1/C)n/10 = T (n)/10 for all large enough n. The claim
follows from Corollary 22. J

I Theorem 24. For any p ∈ [1,∞), C ≥ 1, and constant α > α∗p,C , there is a randomized
Cook reduction with no false positives from GapCVP′p (resp., with preprocessing) in rank n′
to BDDp,α (resp., with preprocessing) in rank n = Cn′ + 1. Furthermore, the same holds for
p =∞, C = 1, α = 1/2, and the reduction is deterministic.

Proof. For finite p, we simply compose the reductions from Corollary 23 and Theorem 19,
with the trivial decision-to-search reduction for (S, T )-BDDp,α in between.

For p =∞, we first invoke the deterministic reduction from Corollary 22, from GapCVP′∞
in rank n′ to (S, T )-BDD∞,1/2 in rank Cn′ = n′, where S = No

∞(Zn \ {0}, 1,0) = 0 and
T = 20 > 0. By Lemma 18, the latter problem reduces deterministically to BDD∞,1/2 in
rank n′ + 1.

Lastly, all of these reductions work for the preprocessing problems as well, because their
component reductions do. J

3.4 Putting it all Together
We now combine our reductions from GapCVP′ to BDD with prior hardness results for
GapCVP′ (stated below in Theorem 25) to obtain our ultimate hardness theorems for BDD.
We first recall relevant known hardness results for GapCVP′p and GapCVPP′p.

I Theorem 25 ([23, 10, 2]). The following hold for GapCVP′p and GapCVPP′p in rank n:
1. For every p ∈ [1,∞], GapCVP′p is NP-hard, and GapCVPP′p has no polynomial-time

(preprocessing) algorithm unless NP ⊆ P/Poly.
2. For every p ∈ [1,∞], there is no 2o(n)-time randomized algorithm for GapCVP′p unless

randomized ETH fails.
3. For every p ∈ [1,∞] \ {2}, there is no 2o(n)-time algorithm for GapCVPP′p, and there is

no 2o(
√
n)-time algorithm for GapCVPP′2, unless non-uniform ETH fails.

4. For every p ∈ [1,∞] \ 2Z and every ε > 0, there is no 2(1−ε)n-time randomized algorithm
for GapCVP′p (respectively, GapCVPP′p) unless randomized SETH (resp., non-uniform
SETH) fails.

I Remark 26. Several of the above results are stated slightly differently from what appears
in [23, 10, 2]. First, all of the above results for GapCVP′p (respectively, GapCVPP′p) are
instead stated for GapCVPp (resp., GapCVPPp). However, inspection shows that the
reductions are indeed to GapCVP′p or GapCVPP′p, so this difference is immaterial.

Second, the above statements ruling out randomized algorithms for GapCVP′p assuming
randomized (S)ETH are instead phrased in [10, 2] as ruling out deterministic algorithms
for GapCVP′p assuming deterministic (S)ETH. However, because these results are proved
via deterministic reductions, randomized algorithms for GapCVP′p have the consequences
claimed above.
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Third, the above results for GapCVPP′p follow from the reductions given in (the proofs of)
[23], [2, Theorem 4.3], [10, Theorem 1.4 and Lemma 6.1], and [2, Theorem 4.6]. However, those
reductions all prove hardness for the variant of GapCVPP′p where the distance threshold r is
part of the query input, rather than the preprocessing input. Inspection of [2, Theorem 4.6]
shows that r is fixed in the output instance, so this difference is immaterial in that case. We
next describe how to handle this difference for the remaining cases. Below we give, for any
p ∈ [1,∞), a straightforward rank-preserving mapping reduction (in the sense of Definition 5)
from the variant of GapCVPP′p where the distance threshold r is part of the query input
to the variant where it is part of the preprocessing input, assuming that r is always at
most some r∗ that depends only on B, and whose length log r∗ is polynomial in the length
of B. Inspection shows that such an r∗ does indeed exist for the reductions given in [23], [2,
Theorem 4.3], and [10, Lemma 6.1], which handles the second difference for those cases.

The mapping reduction (RP , RQ) in question maps (B, (t, r)) 7→ ((B′, r∗), t′) as follows.
First, RP takes B as input, and sets B′ :=

(
B
0t

)
; it also outputs σ′ = r∗ as side information

for RQ. Then, RQ takes (t, r) and r∗ as input, and outputs t′ := (t, ((r∗)p − rp)1/p). Using
the guarantee that r∗ ≥ r, it is straightforward to check that the output instance ((B′, r∗), t′)
is a YES instance (respectively, NO instance) if the input instance (B, (t, r)) is a YES
instance resp., NO instance, as required.

Finally, we again remark that several of the hardness results in Theorem 25 in fact hold
under weaker versions of randomized or non-uniform (S)ETH that relate to Max-3-SAT
(respectively, Max-k-SAT), instead of 3-SAT (resp. k-SAT). Therefore, it is straightforward
to obtain corresponding hardness results for BDD(P) under these weaker assumptions as well.

We can now prove our main theorem, restated from the introduction:

I Theorem 1. The following hold for BDDp,α and BDDPp,α in rank n:
1. For every p ∈ [1,∞) and constant α > α∗p (where α∗p ≤ 1

2 · 4.67231/p), and for (p, α) =
(∞, 1/2), there is no polynomial-time algorithm for BDDp,α (respectively, BDDPp,α)
unless NP ⊆ RP (resp., NP ⊆ P/Poly).

2. For every p ∈ [1,∞) and constant α > min{α∗p, α∗2}, and for (p, α) = (∞, 1/2), there is
no 2o(n)-time algorithm for BDDp,α unless randomized ETH fails.

3. For every p ∈ [1,∞) \ {2} and constant α > α∗p, and for (p, α) = (∞, 1/2), there is no
2o(n)-time algorithm for BDDPp,α unless non-uniform ETH fails.
Moreover, for every p ∈ [1,∞] and α > α∗2 there is no 2o(

√
n)-time algorithm for BDDPp,α

unless non-uniform ETH fails.
4. For every p ∈ [1,∞) \ 2Z and constants C > 1, α > α∗p,C , and ε > 0, and for (p, C, α) =

(∞, 1, 1/2), there is no 2n(1−ε)/C-time algorithm for BDDp,α (respectively, BDDPp,α)
unless randomized SETH (resp., non-uniform SETH) fails.

Proof. For BDD, each item of the theorem follows from the corresponding item of Theo-
rem 25, followed by Theorem 24 and then (where needed) rank-preserving norm embeddings
from `2 to `p [28]. (Also, Lemma 27 below provides the upper bound on α∗p.) The claims
for BDDP follow similarly, combined with the well-known fact that P/Poly = BPP/Poly
and Corollary 16.4 J

4 In fact, P/Poly = BPP/Poly also follows as a corollary of the more general derandomization result
in Lemma 3.
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3.5 An Upper Bound on α∗
p,C and α∗

p

We conclude with closed-form upper bounds on α∗p,C and α∗p. The main idea is to replace
Θp(τ) with an upper bound of Θ1(τ) (which has a closed-form expression) in Equations (3.4)
and (3.5), then directly analyze the value of τ > 0 that minimizes the resulting expressions.
This leads to quite tight bounds (and also yields tighter bounds than the techniques used in
the proof of [5, Claim 4.4], which bounds a related quantity). For example, α∗2 ≈ 1.05006,
and the upper bound in Lemma 27 gives α∗2 ≤ 1.08078; similarly, α∗5 ≈ 0.672558 and the
upper bound in Lemma 27 gives α∗5 ≤ 0.680575.

I Lemma 27. Define

g(σ, τ) := exp(τ/σ) ·
(

2
1− exp(−τ) − 1

)
and τ∗(σ) := arcsinh(σ) = ln(σ +

√
1 + σ2). Let σ∗ and σ∗C for C > 1 be the (unique)

constants for which g(σ∗, τ∗(σ∗)) = 2 and g(σ∗C , τ∗(σ∗C)) = 21−1/C . Then for any p ∈ [1,∞),
we have

α∗p,C ≤
1
2 · (σ

∗
C)1/p and α∗p ≤

1
2 · (σ

∗)1/p ≤ 1
2 · 4.67231/p .

In particular, α∗p,C → 1/2 as p→∞ for any fixed C > 1, and therefore α∗p → 1/2 as p→∞.

Proof. For any τ > 0, by the definition of Θp(τ) and the formula for summing geometric
series we have

Θp(τ) ≤ Θ1(τ) = 1 + 2
∞∑
i=1

exp(−τ)i = 2
1− exp(−τ) − 1 . (3.6)

Define the objective function

f(p, α) := min
τ>0

exp(τ/(2α)p) ·Θp(τ)

to be the expression that is upper-bounded in Equations (3.4) and (3.5). For any fixed α > 0,
set σ := (2α)p. Applying Equation (3.6), it follows that f(p, α) ≤ g(σ, τ) for any τ > 0. This
implies that if there exists some τ > 0 satisfying g(σ, τ) ≤ 2 then α∗p ≤ 1

2σ
1/p, and similarly,

if g(σ, τ) ≤ 21−1/C then α∗p,C ≤ 1
2σ

1/p.
By standard calculus,

∂g

∂τ
= eτ/σ

1− e−τ ·
(

(1 + e−τ )/σ − 2e−τ/(1− e−τ )
)
.

Setting the right-hand side of the above expression equal to 0 and solving for τ yields the
single real solution

τ = τ∗(σ) = arcsinh(σ) = ln(σ +
√

1 + σ2) ,

which is a local minimum, and therefore a global minimum of g(σ, τ) for any fixed σ > 0.
Define the univariate function g∗(σ) := g(σ, τ∗(σ)). The fact that σ∗ and σ∗C exist and

are unique follows by noting that limσ→0+ g∗(σ) = ∞, that limσ→∞ g∗(σ) = 1, and that
g∗(σ) is strictly decreasing in σ > 0. By definition of σ∗ (respectively, σ∗C), it follows that
g∗(σ∗) = 2 for α = 1

2 (σ∗)1/p, and g∗(σ∗C) = 21−1/C for α = 1
2 (σ∗C)1/p, as desired. Moreover,

one can check numerically that σ∗ ≤ 4.6723. J
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Abstract
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic
p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p. In
this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires
either the characteristic to be sufficiently large or the notion of hardness to be stronger than the
standard syntactic notion of hardness used in algebraic complexity. Our results make no restriction
on the characteristic of the field and use standard notions of hardness.

We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to
take pth roots of circuits computing a pth power over fields of characteristic p. When the number
of variables appearing in the circuit is bounded by some constant, this procedure turns out to be
efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p.

We also combine the Kabanets-Impagliazzo generator with recent “bootstrapping” results in
polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate
polynomials yields a near-complete derandomization of polynomial identity testing. This result holds
over fields of both zero and positive characteristic and complements a recent work of Guo, Kumar,
Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of characteristic
zero.
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1 Introduction

The interaction between computational hardness and pseudorandomness is a central theme of
computational complexity. The goal of this vein of work is to show that a class C of problems
that are solvable by randomized algorithms can in fact be solved by deterministic algorithms
which are not much slower than the known randomized algorithm, assuming lower bounds
for a related class D. When trying to derandomize BPP, the class of problems solvable in
polynomial time by a randomized Turing machine with failure probability at most 1/3, we
understand this problem quite well. A series of works culminated in that of Impagliazzo and
Wigderson [20], which showed that BPP = P if there are problems in E which require boolean
circuits of exponential size. Subsequent work by Shaltiel and Umans [36] and Umans [40]
further tightened the quantitative tradeoffs obtainable for derandomizing BPP.

In this work, we focus on the question of hardness versus randomness in the more restricted
computational model of algebraic circuits, which naturally compute multivariate polynomials
over a specified base field F. Here, the algorithmic problem of interest is polynomial identity
testing (PIT), which is the problem of determining if a given algebraic circuit computes the
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identically zero polynomial. We typically consider identity testing of circuits whose size and
degree are bounded by a polynomial function in the number of variables. This low-degree
regime captures polynomials of interest to computer scientists, such as the determinant and
permanent, and corresponds to typical algorithmic applications of PIT. In this regime, the
problem of PIT is easily solved with randomness by evaluating the circuit at a randomly
chosen point of a large enough grid. The correctness of this algorithm follows from the
Schwartz-Zippel lemma, which roughly says that a low-degree multivariate polynomial cannot
vanish at many points of a sufficiently large grid. To date, no deterministic algorithm for PIT
is known that substantially improves on the naïve derandomization of the Schwartz-Zippel
lemma.

Polynomial identity testing has widespread applications in theoretical computer science
and has led to randomized algorithms for perfect matching [29, 23, 30], primality testing
[1, 3], and equivalence testing of read-once branching programs [6], among other problems.
In light of the utility of PIT as an algorithmic primitive, it is worth understanding to what
extent PIT can be derandomized. There is a large body of work concerned with unconditional
derandomization of PIT for various sub-classes of algebraic circuits. For more on this, we refer
the reader to the surveys of Shpilka and Yehudayoff [38] and Saxena [34, 35]. In this work,
we will focus on conditional derandomization of PIT under suitable hardness assumptions.

1.1 Prior Work
The first instantiation of the hardness-randomness paradigm for polynomial identity testing
was given by Kabanets and Impagliazzo [21]. Their work implemented the design-based
approach of Nisan and Wigderson [31] in the algebraic setting, showing that lower bounds
for an explicit family of multivariate polynomials can be used to derandomize PIT.

Subsequent work by Dvir, Shpilka, and Yehudayoff [13] and Chou, Kumar, and Solomon
[12] extended this to the setting of bounded-depth circuits, roughly showing that lower bounds
against depth-(∆ +O(1)) circuits suffice to derandomize identity testing of depth-∆ circuits,
for any constant ∆. The result of Dvir, Shpilka, and Yehudayoff [13] works with any hard
polynomial, but scales poorly with the individual degree of the circuit being tested. Chou,
Kumar, and Solomon [12] refined the approach of Dvir, Shpilka, and Yehudayoff [13] and
showed that if the family of hard polynomials has sufficiently low degree, then this dependence
on the individual degree of the circuit being tested can be avoided. Implementing the hardness-
randomness paradigm in low-depth is motivated in part by a host of depth-reduction results
in algebraic complexity [4, 24, 39, 18] which show that polynomials computable by small
circuits can be computed by non-trivially small low-depth circuits.

Returning to the setting of unrestricted circuits, recent work of Guo, Kumar, Saptharishi,
and Solomon [17] uses a stronger hardness assumption than that of Kabanets and Impagliazzo
[21] and obtains a stronger derandomization of PIT. Specifically, Guo, Kumar, Saptharishi,
and Solomon [17] obtain a polynomial-time derandomization of PIT using lower bounds
against an explicit family of constant-variate polynomials. For comparison, Kabanets and
Impagliazzo [21] only obtain quasipolynomial-time algorithms for PIT under multivariate
hardness assumptions. In Section 6 of this work, we further discuss the relationship between
these hardness assumptions and provide evidence for the strength of constant-variate hardness
compared to multivariate hardness.

A separate line of work by Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,
and Tengse [27] shows that PIT exhibits a “bootstrapping” phenomenon. That is, if one
can obtain a barely non-trivial derandomization of PIT for circuits of size and degree which
are unbounded in the number of variables, then it follows that there is a near-complete
derandomization of PIT for circuits of polynomial size and degree.
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From these works, we have a relatively good understanding of what derandomization of
PIT is possible under hardness assumptions. However, excluding the bootstrapping results
of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi, and Tengse [27], all previous
work on hardness-randomness tradeoffs for PIT requires the underlying field to be of zero or
large characteristic (for the definition of the characteristic of a field, see Section 2). That is,
we can derandomize PIT under hardness assumptions over the complex numbers C or the
finite field of pm elements Fpm when p is sufficiently large, but we do not know how to do
the same over a field of low characteristic like F2m .

A partial exception to this deficiency is the work of Kabanets and Impagliazzo [21]. Their
results yield derandomization of PIT over a finite field Fpm assuming an explicit polynomial
which is hard to compute as a function over Fpm . Over infinite fields, two polynomials are
equal if and only if they compute the same function. However, this no longer holds over
finite fields. For example, over F2, the polynomial x2 − x computes the zero function but is
decidedly not the zero polynomial. It is more common in the study of algebraic circuits to
prove lower bounds on the task of computing a polynomial as a syntactic object, not as a
function. Functional lower bounds imply syntactic lower bounds, but the reverse direction
does not hold, which makes proving functional lower bounds a harder task.

If one inspects the proof of Kabanets and Impagliazzo [21], the functional hardness
assumption can be replaced with a slightly weaker, albeit non-standard, syntactic hardness
assumption. Namely, it suffices to assume the existence of an explicit family of n-variate
polynomials {fn : n ∈ N} such that fpkn is hard in the syntactic sense for 1 6 pk 6 2O(n).
Over characteristic zero fields, the factoring algorithm of Kaltofen [22] implies that if f is
hard to compute, then fd is comparably hard to compute as long as d is not too large. Over
fields of characteristic p, it is not clear if hardness of fp is implied by hardness of f . For
example, it is consistent with our current state of knowledge that the n × n permanent
permn(x) is 2Ω(n)-hard over F3, but that permn(x)3 is computable by circuits of size O(n2)
over F3. Understanding the relationship between the complexity of f and fp over fields of
characteristic p > 0 in general remains a challenging open problem.

For further exposition on hardness-randomness tradeoffs for PIT, see the recent survey of
Kumar and Saptharishi [26].

1.2 Identity Testing in Low Characteristic
Before describing our contributions, we take a detour to look more closely at the question of
derandomizing PIT over fields of low characteristic. Known techniques for derandomizing
PIT over fields of small characteristic under hardness assumptions fail due to the fact that
over a field of positive characteristic, the derivative of a non-constant polynomial may be
zero. For example, over F2, we have ∂

∂x (x2) = 2x = 0, since 2 = 0 in F2. Thus, techniques
which are in some sense “analytic” break in low characteristic. Given that the problem
of polynomial identity testing is entirely algebraic, it would be nice to find an “algebraic”
approach that does not succumb to this flaw. Indeed, derandomizing PIT in low characteristic
fields under hardness assumptions is listed as an open problem in the recent survey of Kumar
and Saptharishi [26] on algebraic derandomization.

The problem of derandomizing PIT in low characteristic fields also has interesting
algorithmic applications. Consider, for example, the randomized algorithm of Lovász [29] to
detect whether a bipartite graph has a perfect matching. Let G = (V1 t V2, E) be a balanced
bipartite graph on 2n vertices with partite sets V1 and V2. We form the n × n symbolic
matrix A given by

Ai,j =
{
xi,j {i, j} ∈ E
0 otherwise.
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It is not hard to see that det(A) 6= 0 if and only if G has a perfect matching. We can then
check if G has a perfect matching by evaluating A at a random point chosen from a suitably
large grid of integers.

In evaluating det(A), we may encounter large numbers of size Ω(n!). Arithmetic on such
numbers is expensive, requiring at least Ω(n logn) time. We could instead implement this
algorithm over a finite field of size poly(n). As the determinant is a polynomial of degree n,
the Schwartz-Zippel lemma guarantees that this modification yields an algorithm with low
error probability. What we have gained is the fact that elements of such a finite field can be
represented in O(logn) bits, so our arithmetic becomes more efficient. In principle, one could
choose the field so that the characteristic is large enough for the the hardness-randomness
paradigm to apply, but there may be other considerations which motivate picking, say,
an extension field of F2. Derandomizing such an algorithm (under hardness assumptions)
requires extending the hardness-randomness paradigm to fields of low characteristic.

Alternatively, one can reduce the bit complexity by using a derandomized polynomial
identity testing algorithm over the rational numbers, but with the arithmetic performed
modulo a small prime number. This approach also achieves logarithmic bit complexity.
However, we are now in the position of having to derandomize the selection of the prime
number. It is not obvious how to do this much faster than brute force, so the benefits of
reducing the bit complexity are negated by the need to try many different primes.

While the previous example may seem somewhat artificial, we remark that there are
instances of algorithms which explicitly rely on polynomial identity testing over fields of low
characteristic. For example, the randomized algorithm of Williams [41] for the k-path problem
makes use of polynomial identity testing over fields of characteristic 2. If one wanted to
derandomize this algorithm under a hardness assumption, prior work on hardness-randomness
tradeoffs for PIT would not suffice.

1.3 Our Results
In this work, we instantiate the hardness-randomness paradigm for PIT over fields of
low characteristic under standard syntactic hardness assumptions. That is, we obtain
derandomization of PIT from the existence of an explicit family of hard polynomials {fn :
n ∈ N} without assuming hardness of pth powers of fn. At the heart of our results is a new
technique for computing the map fp 7→ f over F[x] when the polynomial fp is given by an
algebraic circuit. When f depends on a small number of variables, the circuit computing f
is not too much larger than the circuit which computes fp.

I Lemma 1.1 (informal version of Corollary 3.6). Suppose f(x)p is a polynomial on O(1)
variables and can be computed by a circuit of size s over a field of characteristic p > 0. Then
f(x) can be computed by a circuit of size O(s).

Using this, we are able to extend the techniques of Kabanets and Impagliazzo [21] to
fields of low characteristic. To do so, we need stronger hardness assumptions than those
made by Kabanets and Impagliazzo [21] for the case of zero characteristic fields. In algebraic
complexity, lower bounds are typically proved for families of polynomials parameterized by
the number of variables, as this captures the regime of interest for algorithmic applications.
To prove our results, we assume lower bounds against a family of constant-variate polynomials
which are parameterized by degree.

For the sake of exposition, we focus on the case of lower bounds for univariate polynomials.
A univariate polynomial of degree d can easily be computed by circuits of size O(d) using
Horner’s rule. It is not hard to show that every such polynomial also requires size Ω(log d)
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to compute. However, improving on this Ω(log d) lower bound for an explicit family of
polynomials is a long-standing open problem. Standard dimension arguments show that
most univariate polynomials of degree d require circuits of size dΩ(1) to compute.

When comparing statements regarding degree d univariates and degree nO(1) multivariate
polynomials on n variables, it is instructive to think of n and log d as comparable. In this
sense, our results achieve the same hardness-randomness tradeoffs as those of Kabanets
and Impagliazzo [21], but require translating their hardness assumptions to the comparable
statement for univariate polynomials.

Using Lemma 1.1, we can extend the analysis of Kabanets and Impagliazzo to work over
fields of low characteristic. We now give two concrete examples of the derandomization we
can obtain using this extension.

I Theorem 1.2 (informal version of Theorem 4.3 and Corollary 4.5). Let F be a field of
characteristic p > 0. Let {fd(x) : d ∈ N} be an explicit family of univariate polynomials
which cannot be computed by circuits of size less than s(d) over F.
1. If s(d) = logω(1) d, then there is a deterministic algorithm for identity testing of polynomial-

size, polynomial-degree circuits over F in n variables which runs in time 2no(1) .
2. If s(d) = 2logΩ(1) d, then there is a deterministic algorithm for identity testing of polynomial-

size, polynomial-degree circuits over F in n variables which runs in time 2logO(1) n.

For comparison, from an nω(1) lower bound against a family of explicit multilinear
polynomials, Kabanets and Impagliazzo [21] give a deterministic algorithm for PIT over fields
of characteristic zero which runs in time 2no(1) . If instead one has a 2nΩ(1) lower bound, then
their techniques yield a deterministic algorithm which runs in time 2logO(1) n. Viewing log d
and n as (roughly) equivalent, we see that our derandomization obtains the same tradeoff
between hardness and pseudorandomness as Kabanets and Impagliazzo [21], modulo the
difference between univariate and multivariate lower bounds.

It is not hard to show that lower bounds in the constant-variate regime imply comparable
lower bounds in the multivariate regime (see Lemma 2.6), but the reverse implication is
not known. In Section 6, we investigate the possibility of using known techniques to prove
univariate lower bounds from multivariate lower bounds.

As the assumption of a hard univariate family seems strong, it raises the question of
whether or not one can obtain a stronger derandomization of PIT over fields of positive
characteristic under a univariate hardness assumption. There is evidence this can be done, as
Guo, Kumar, Saptharishi, and Solomon [17] use univariate lower bounds to obtain a complete
derandomization of PIT over fields of characteristic zero. With a more careful instantiation
of the Kabanets-Impagliazzo result, we are able to derandomize PIT in a way that suffices
for the bootstrapping results of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,
and Tengse [27] to take effect. This allows us to prove nearly-optimal hardness-randomness
tradeoffs for PIT over fields of positive characteristic, which comes close to matching the
characteristic zero result of Guo, Kumar, Saptharishi, and Solomon [17]. More concretely,
we prove the following.

I Theorem 1.3 (informal version of Theorem 5.3). Let F be a field of characteristic p > 0. Let
{fd(x) : d ∈ N} be an explicit family of univariate polynomials which cannot be computed by
circuits of size less than dδ for some constant δ > 0. Then there is a deterministic algorithm
for identity testing of polynomial-size, polynomial-degree algebraic circuits in n variables over
F which runs in time nexp ◦ exp(O(log? n)).

The rest of this work is organized as follows. In Section 2, we establish notation, definitions,
and relevant background necessary to state and prove our results. In Section 3, we prove our
main technical lemma on computing pth roots of algebraic circuits over fields of characteristic
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p > 0. We then use this in Section 4 to extend the work of Kabanets and Impagliazzo to
the low characteristic setting. We combine our techniques with the bootstrapping results
to obtain near-complete derandomization of PIT over fields of positive characteristic in
Section 5. Section 6 investigates the relationship between univariate and multivariate circuit
lower bounds. We conclude in Section 7 with a collection of problems left open by this work.

2 Preliminaries

For n ∈ N, we write [n] := {1, . . . , n} and JnK := {0, . . . , n − 1}. If A is an n ×m matrix,
we write Ai,• and A•,j for the ith row and jth column of A, respectively. We abbreviate a
vector of variables (x1, . . . , xn), numbers (a1, . . . , an), or field elements (α1, . . . , αn) by x,
a, and α, respectively, where the length is usually clear from context. We also abbreviate
the product

∏n
i=1 x

ai
i =: xa. Given a polynomial f(x) =

∑
a αax

a, we write deg(f) and
ideg(f) for the total degree and individual degree of f , respectively. The total degree of
f is given by deg(f) := max{‖a‖1 : αa 6= 0}, while the individual degree of f is given by
ideg(f) := max{‖a‖∞ : αa 6= 0}.

For a field F, the characteristic of F, denoted charF, is the smallest positive integer p
such that p · 1 = 0 in F. In the case that there is no such p, we say that F has characteristic
zero. Alternatively, charF is the number p such that the ring homomorphism Z→ F induced
by 1 7→ 1 has kernel pZ. The set CF(s, n, d) ⊆ F[x] denotes the set of all n-variate degree d
polynomials which can be computed by an algebraic circuit of size at most s over F.

2.1 Algebraic Computation and Polynomial Identity Testing
We assume familiarity with the models of algebraic circuits, formulae, and branching programs.
When we refer to the size of a circuit, formula, or branching program, we mean the number
of nodes in the computational device. An introduction to this area can be found in the survey
of Shpilka and Yehudayoff [38]. Throughout this work, we analyze our algorithms under the
assumption that arithmetic over the base field F can be performed in constant time.

We now collect basic definitions and results needed for the study of deterministic black-box
algorithms for polynomial identity testing. More in-depth exposition is available in the recent
survey of Kumar and Saptharishi [26].

We start with the notion of a hitting set, the basic object used to construct deterministic
black-box algorithms for polynomial identity testing.

I Definition 2.1. Let C ⊆ F[x] be a set of n-variate polynomials. We say that a set H ⊆ Fn
is a hitting set for C if for every non-zero f(x) ∈ C, there is a point α ∈ H such that f(α) 6= 0.
If H can be computed in t(n) time, then we say that H is t(n)-explicit.

We now introduce hitting set generators, the analogue of pseudorandom generators in
the context of algebraic derandomization.

I Definition 2.2. Let C ⊆ F[x] be a set of n-variate polynomials. Let G : Fm → Fn be a
mapping given by

G(y) = (G1(y), . . . ,Gn(y)),

where Gi ∈ F[y]. We say that G is a hitting set generator for C if for every non-zero f(x) ∈ C,
we have f(G(y)) 6= 0. The seed length of G is m. The degree of G is maxi∈[n] deg(Gi). We
say G is t(n)-explicit if, given α ∈ Fm, we can compute G(α) in t(n) time.
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It is a well-known result that an explicit, low-degree hitting set generator for C with small
seed length yields an explicit hitting set for C of small size. The hitting set is constructed
by evaluating the generator on a grid of large enough size. Correctness follows from the
Schwartz-Zippel lemma.

I Lemma 2.3. Let C be a set of n-variate degree d polynomials. Let G : Fm → Fn be a
t(n)-explicit hitting set generator for C of degree D. Then there is a (dD + 1)mt(n)-explicit
hitting set H for C of size (dD + 1)m.

We also need a notion of explicitness for a family of polynomials. In previous works
on hardness-randomness tradeoffs for polynomial identity testing, a family of n-variate
polynomials {fn ∈ F[x] : n ∈ N} is considered explicit if fn is computable in exp(O(n)) time.
However, we will need a slightly different notion of explicitness. Instead of an exponential-
time algorithm to compute fn, we require an exponential-time algorithm to compute the
coefficient of a given monomial in fn. This different notion of explicitness will be used to
transition between the constant-variate and multivariate regimes later on in Section 4 and
Section 5.

IDefinition 2.4. Let {fn,d(x) ∈ F[x] : n, d ∈ N} be a family of n-variate degree d polynomials.
We say that this family is strongly t(n, d)-explicit if there is an algorithm which on input
(n, d, a) outputs the coefficient of xa in fn,d(x) in t(n, d) time.

I Remark 2.5. The preceding definition is reminiscent of Valiant’s criterion for membership in
VNP. Briefly, Valiant’s criterion says that if the coefficient of xa can be computed in #P/poly,
then the polynomial f(x) is in VNP, an algebraic analogue of NP. We refer the reader to
Bürgisser [8, Chapters 1 and 2] for further exposition on VNP and Valiant’s criterion.

We will repeatedly build explicit families of hard multivariate polynomials out of explicit
families of hard constant-variate polynomials. By “a family of hard multivariate polynomials,”
we mean a family of polynomials {fn(x) ∈ F[x] : n ∈ N}, where fn is an n-variate polynomial
of degree nO(1). When we say “a family of hard constant-variate polynomials,” we mean a
family {fd(x) ∈ F[x] : d ∈ N}, where fd is a degree d polynomial on k = O(1) variables. That
is, when we consider multivariate polynomials, we parameterize the family by the number of
variables and primarily consider families of small degree; when we look at constant-variate
polynomials, we fix the number of variables in all polynomials and parameterize the family
by the degree of the polynomial.

To illustrate how we can obtain hard multivariate polynomials from hard constant-variate
polynomials, suppose gd(x) =

∑d
i=0 αix

i is a hard degree d univariate polynomial. We will
define a new polynomial fn(y) on n := blog dc + 1 variables, where the monomials of fn
correspond to writing each term of gd “in base 2.” More precisely, for each e ∈ {0, 1}n, let
j(e) be the number whose representation in binary corresponds to e. We assign the coefficient
αj(e) to the monomial ye in fn. To show that fn is hard, we show the contrapositive: a small
circuit for fn implies a small circuit for gd, which contradicts the hardness of gd. The proof
of this is relatively straightforward, as we simply find a way to substitute powers of x for
each yi so that the monomial ye is mapped to xj(e).

In the case where gd is a polynomial in multiple variables, we simultaneously write each
variable appearing in gd “in base 2.” We remark that there is nothing a priori special about
our use of base 2. However, doing so yields polynomials which are multilinear, a fact which
will be useful later on.

We now make the preceding sketch precise, showing that lower bounds in the constant-
variate regime imply comparable lower bounds in the multivariate regime.
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I Lemma 2.6. Let gm,d(x) =
∑
a αax

a be a strongly t(m, d)-explicit m-variate degree d
polynomial which requires circuits of size s to compute. Let j : {0, 1}blog dc+1 → J2blog dc+1K
be given by j(e) =

∑blog dc+1
i=1 ei2i−1, that is, j(e) is the number whose binary representation

corresponds to e. Let y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1) and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Then fm,d is a strongly t(m, d)-explicit multilinear polynomial on m(blog dc+ 1) variables
which requires circuits of size s−Θ(m log d) to compute.

Proof. The fact that fm,d is multilinear is clear from the definition.
To see that fm,d is hard to compute, suppose Φ is a circuit of size t which computes

fm,d. By applying the Kronecker substitution yi,j 7→ x2j
i , we can recover a circuit which

computes gm,d(x). This mapping can be computed in size Θ(m log d) by repeated squaring,
so we obtain a circuit for gm,d of size t+ Θ(m log d). By assumption, t+ Θ(m log d) > s, so
t > s−Θ(m log d), which proves the lower bound on the circuit complexity of fm,d.

Finally, remark that the binary description of a monomial in fm,d is exactly the same
as the binary description of a monomial in gm,d. This implies we can use the t(m, d)-time
algorithm to compute the coefficients of fm,d, so fm,d inherits the explicitness of gm,d. J

Whether lower bounds in the multivariate regime imply lower bounds in the constant-
variate regime is an open question. In Section 6, we give complexity-theoretic evidence
that suggests the technique used to prove the preceding lemma does not suffice to prove
constant-variate lower bounds from multivariate lower bounds.

In Section 5, we will run into some technical issues concerning circuits which are defined
over a low-degree extension of the base field F. The next lemma says that whenever a circuit
Φ is defined over an extension K ⊇ F of low degree, such a circuit can in fact be defined over
F without increasing its size too much. A related result was proved in Bürgisser, Clausen,
and Shokrollahi [10, §4.3], where the authors considered extensions K ⊇ F such that circuits
defined over K have no computational advantage compared to circuits defined over F when
computing a polynomial in F[x].

I Lemma 2.7 ([8, Proposition 4.1(iii)], [19], see also [10, §4.3]). Let F be a field and let K ⊇ F
be an extension of degree k. Suppose f(x) can be computed by a circuit of size s over K.
Then there is a circuit of size O(k3s) which computes f over F.

We conclude our preliminaries on algebraic complexity by quoting a celebrated result of
Kaltofen which shows that algebraic circuits may be factored without a large increase in size.

I Theorem 2.8 ([22]). Let f(x) ∈ F[x] be a polynomial of degree d computable by an algebraic
circuit of size s. Let g(x) ∈ F[x] be a factor of f(x). Then there is an algebraic circuit of
size s′ 6 O((snd)4) which computes
1. g(x), in the case that charF = 0, and
2. g(x)pk where k > 0 is the largest integer such that g(x)pk divides f(x), in the case that

charF = p > 0.

2.2 Combinatorial Designs
We will make use of the designs of Nisan and Wigderson [31], specifically as they are used
by Kabanets and Impagliazzo [21] to prove hardness-randomness tradeoffs for polynomial
identity testing. Nisan and Wigderson [31] gave two constructions of designs: one via
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Reed-Solomon codes, and one via a greedy algorithm. We first quote their construction using
Reed-Solomon codes, which was also recently described in work by Kumar, Saptharishi, and
Tengse [27].

I Lemma 2.9 ([31], see also [27]). Let c > 2 be a positive integer, and let n,m, `, r ∈ N be
such that (i) ` = mc, (ii) r 6 m, (iii) m is a prime power, and (iv) n 6 m(c−1)r. Then there
is a collection of sets S1, . . . , Sn ⊆ [`] such that

for each i ∈ [n], we have |Si| = m; and
for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 r.

Additionally, such a family can be deterministically constructed in poly(n) time.

We now cite the designs obtained by Nisan and Wigderson [31] via a greedy algorithm.
In the regime where m = O(logn), this improves on the previous construction by taking the
size ` of the ground set to be O(logn) as opposed to O(log2 n).

I Lemma 2.10 ([31]). Let n and m be integers such that n < 2m. There exists a family of
sets S1, . . . , Sn ⊆ [`] such that
1. ` = O(m2/ log(n)),
2. for each i ∈ [n], we have |Si| = m; and
3. for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 log(n).
Such a family of sets can be deterministically constructed in time poly(n, 2`).

In extending the analysis of the Kabanets-Impagliazzo generator to low characteristic
fields, we will make use of Lemma 2.10. Our use of Lemma 2.9 will arise when we combine
the hardness versus randomness paradigm with the bootstrapping phenomenon. In that
setting, we will apply Lemma 2.9 with c = O(1) and r = O(1). Compared to Lemma 2.10,
this yields sets with much smaller intersection size, though the number of sets is only mO(1)

as opposed to 2m.

2.3 Field Theory
To cleanly state some of our results, we need the notion of a perfect field. Namely, given
a circuit Φ which computes f(x)p ∈ F[x], we will construct in Section 3 a circuit Ψ which
computes f(x). This construction takes pth roots of field elements α ∈ F, which are not
always guaranteed to exist in F. To ensure Ψ is defined over the base field F, we require that
F is closed under taking pth roots, which is equivalent to requiring that F is perfect.

I Definition 2.11. A field F is called perfect if either F has characteristic 0 or F has
characteristic p > 0 and the map α 7→ αp is an automorphism of F. If F has characteristic
p > 0, then the perfect closure of F, denoted Fp−∞ , is the smallest field containing F which
is closed under taking pth roots.

It is a basic fact that perfect closures exist.

I Fact 2.12. Every field F of characteristic p > 0 has a perfect closure Fp−∞ .

Informally, one can prove this by adjoining “enough” pth roots to the field F. That is, for
each α ∈ F, we introduce a countable collection of new field elements denoted by (α, n) for
n ∈ N, where the element (α, n) is meant to represent αp−n . We then take a quotient by a
suitable equivalence relation; for example, if αp = β, then we regard (α, n) and (β, n+ 1) as
equivalent for all n ∈ N. One must then verify that the resulting object is in fact a field and
is (up to isomorphism) the perfect closure of F. More formally, the perfect closure can be
constructed as the direct limit of a particular direct system of fields. We refer the reader to
Bourbaki [7, Chapter 5, §1] for the details of this construction.
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Examples of perfect fields of positive characteristic include all finite fields and all alge-
braically closed fields of positive characteristic. A non-example is given by Fpm(x), the field
of rational functions in n variables with coefficients in Fpm , where Fpm is the finite field of
size pm. The field Fpm(x) fails to be perfect due to the fact that x1/p

1 /∈ Fpm(x), so x1 is not
in the image of the map α 7→ αp.

For more details on perfect fields, we refer the reader to any text on field theory, e.g.,
Roman [33, Chapter 3].

3 pth Roots of Algebraic Computation

Suppose F is a field of characteristic p > 0 and Φ is a circuit which computes f(x)p for a
polynomial f(x). If we want to obtain a circuit which computes f(x), then Theorem 2.8
does not suffice. In this section, we will describe a simple transformation of Φ which yields
a circuit computing f(x). This is the main technical step that will allow us to obtain
hardness-randomness tradeoffs over fields of low characteristic.

In general, this transformation will incur an exponential blow-up in the size of Φ. If the
original circuit computes a polynomial on n variables, then the new circuit we build will be
larger in size by a factor of about p2n. In particular, if our input is a circuit on a constant
number of variables, then we only increase the size of the circuit by a constant factor. The
fact that this transformation is efficient in the constant-variate regime is exactly the reason
we need to use hardness of constant-variate families of polynomials as opposed to a family of
hard multilinear polynomials.

Before describing the construction for circuits on an arbitrary number of variables, we
first examine the case of univariate polynomials. Let F be a field of characteristic p > 0 and
let f(x) ∈ F[x] be a univariate polynomial. We start by grouping the monomials of f by
their degree modulo p, which allows us to write

f(x) =
p−1∑
i=0

f̃i(x)xi,

where each f̃i(x) is a univariate polynomial in x which is only supported on pth powers of x.
That is, the term f̃i(x)xi corresponds exactly to the monomials in f(x) whose degree in x is
congruent to i modulo p. Recall that over a field of characteristic p > 0, we have the identity
(a+ b)p = ap + bp. Since f̃i(x) is a sum of pth powers of x, we can write

f̃i(x) =
di∑
j=0

αi,jx
jp =

 di∑
j=0

α
1/p
i,j x

j

p

.

This expresses f̃i(x) as a pth power of the polynomial fi(x) :=
∑di
j=0 α

1/p
i,j x

j . In general,
fi may not be well-defined over F, as the coefficients α1/p

i,j may not exist in F. However,
α

1/p
i,j ∈ Fp−∞ , the perfect closure of F, so fi is well-defined over Fp−∞ .
With this, we can write

f(x) =
p−1∑
i=0

fi(x)pxi.

We refer to such an expression as the mod-p decomposition of f . This motivates the following
definition, which generalizes this decomposition to the case of multivariate polynomials.
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I Definition 3.1. Let f(x) ∈ F[x]. The mod-p decomposition of f(x) is the collection of
polynomials {fa(x) : a ∈ JpKn} such that

f(x) =
∑

a∈JpKn
fa(x)pxa.

Over a perfect field F of characteristic p > 0, the existence of the mod-p decomposition
follows from the fact that any polynomial of the form

∑
a αax

p·a has a pth root, given by∑
a α

1/p
a xa. Here, we use the fact that F is perfect to guarantee the constants α1/p

a exist in
F. Uniqueness of the decomposition follows from the fact that the monomials {xa : a ∈ Nn}
form a basis for F[x]. We record this observation as a lemma.

I Lemma 3.2. Let F be a field of characteristic p > 0 and let f, g ∈ F[x]. Let {fa : a ∈ JpKn}
and {ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Then f = g if and
only if fa = ga for all a ∈ JpKn.

The utility of the mod-p decomposition becomes apparent when f(x) is itself a pth power.
In this case, f itself is a sum of pth powers of monomials in the variables x1, . . . , xn, so we
have f(x) = f0(x)p. Given a circuit Φ which computes f , suppose we could transform Φ into
a new circuit Ψ which computes the mod-p decomposition of f . Then to compute f(x)1/p,
we simply construct the circuit Ψ and set f0(x) = f(x)1/p to be the output.

Before continuing on, we record a straightforward lemma about how the mod-p decompo-
sition behaves with respect to addition and multiplication.

I Lemma 3.3. Let F be a perfect field of characteristic p > 0. Let f, g ∈ F[x], and let
{fa : a ∈ JpKn} and {ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Let
h = αf + βg and q = γfg for α, β, γ ∈ F. Let {ha : a ∈ JpKn} and {qa : a ∈ JpKn} be the
mod-p decompositions of h and q. Then for all a ∈ JpKn, we have

ha = α1/pfa + β1/pga

and

qa = γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a
p ,

where the sum and congruence b+ c ≡ a mod p are performed component-wise.

Proof. By expanding the equality h = αf + βg in the mod-p decomposition and using the
fact that (a+ b)p = ap + bp, we obtain∑

a∈JpKn
ha(x)pxa = α

∑
a∈JpKn

fa(x)pxa + β
∑

a∈JpKn
ga(x)pxa

=
∑

a∈JpKn
(α1/pfa(x) + β1/pga(x))pxa.

Lemma 3.2 implies that ha = α1/pfa + β1/pga as claimed.

CCC 2020



37:12 Algebraic Hardness Versus Randomness in Low Characteristic

For q(x), we again expand the equality q = γfg in the mod-p decomposition to obtain

∑
a∈JpKn

qa(x)pxa = γ

 ∑
a∈JpKn

fa(x)pxa
 ∑

a∈JpKn
ga(x)pxa


= γ

∑
b,c∈JpKn

fb(x)pgc(x)pxb+c

=
∑

a∈JpKn

γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fb(x)gc(x)x
b+c−a
p


p

xa.

Once more, Lemma 3.2 implies that

qa = γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a
p

as claimed. J

3.1 Circuits

We start by implementing the strategy outlined above in the case of algebraic circuits.
Throughout this and subsequent sections, Φ and Ψ will denote algebraic circuits, formulae, or
branching programs, and v, u, and w will denote gates in these circuits. We will frequently
refer to the polynomial computed at a gate v, which we denote by v̂. For a ∈ JpKn, we write
v̂a for the part of the mod-p decomposition of v̂ indexed by a.

I Lemma 3.4. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit
of size s which computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p
decomposition of f . Then there is a circuit Ψ of size 3sp2n + 2n which simultaneously
computes {fa : a ∈ JpKn} over Fp−∞ , the perfect closure of F.

Proof. To construct the desired circuit Ψ, we will split each gate v of Φ into pieces {(v, a) :
a ∈ JpKn} and wire Ψ so that (v, a) computes v̂a. As Φ computes f(x), this implies that
Ψ will contain gates computing fa(x) for all a ∈ JpKn. To wire each gate (v, a) in Ψ, we
consider the type of the gate v in Φ.

First, suppose v is an input gate in Φ labeled by a constant α ∈ F. In this case, we set
(v, 0) = α1/p and (v, a) = 0 for a 6= 0. By definition, Fp−∞ contains α1/p, so this is valid
over Fp−∞ .
It follows from the definition of v̂a that (v, a) correctly computes v̂a.
If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the
ith slot and zero elsewhere. We set (v, ei) = 1 and (v, a) = 0 for a 6= ei.
Again, it follows immediately from the definition of v̂a that (v, a) correctly computes v̂a.
Suppose now that v is an addition gate in Φ with children u and w with incoming edges
labeled αu and αw. For each a ∈ JpKp, we set (v, a) = α

1/p
u · (u, a) + α

1/p
w · (w, a).

By induction, (u, a) and (w, a) correctly compute ûa and ŵa, respectively. Lemma 3.3
then implies that (v, a) correctly computes v̂a.
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Finally, we consider the case where v is a multiplication gate in Φ with children u and w
with incoming edges labeled αu and αw. For a ∈ JpKn, we set

(v, a) = α1/p
u α1/p

w

∑
b,c∈JpKn

b+c≡a (mod p)

(u, b) · (w, c) · x
b+c−a
p ,

where vector addition and congruence of vectors is performed coordinate-wise. Note that
since b+ c ≡ a mod p, the vector 1

p (b+ c− a) is in fact an integer vector. Moreover, since
b+ c ∈ {0, . . . , 2(p− 1)}n, it follows that b+ c− a ∈ {0, p}n, so 1

p (b+ c− a) ∈ {0, 1}n is
a zero-one vector.
Via induction, (u, b) and (w, c) correctly compute ûb and ŵc, respectively. From this and
Lemma 3.3, it follows that (v, a) correctly computes v̂a.

As previously remarked, since Φ computes f(x), for every a ∈ JpKn there is a gate in Ψ
which computes fa(x), so Ψ correctly computes all components of the mod-p decomposition
of f . It remains to bound the size of Ψ.

For every gate in Φ, we construct pn gates of the form (v, a) in Ψ. In the case that v
is a multiplication gate, we need extra intermediate hardware to compute the summation
(v, a) =

∑
b+c≡a (mod p)(u, b) · (w, c) · x

b+c−a
p . This can be done with pn summation gates and

2pn multiplication gates. We also need 2n gates to compute the products xe for e ∈ {0, 1}n.
Since Ψ is a circuit, we only need to pay for these gates once, as we can reuse them for all
the multiplication computations. In total, each multiplication gate incurs an extra cost of
3pn gates.

This implies each gate in Φ gives rise to at most 3p2n gates in Ψ. As there are s gates in
Φ, there are at most 3sp2n + 2n gates in Ψ. J

I Remark 3.5. In the above construction, rather than using the perfect closure, the resulting
circuit can be defined over an extension K ⊇ F of finite degree. This can be done by adjoining
to F all pth roots of constants which appear in Φ. The degree of this extension may be
exponential in s in the worst case.

We can now use the construction of Lemma 3.4 to take pth roots of circuits which compute
a pth power over a field of characteristic p.

I Corollary 3.6. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit of size
s which computes a polynomial f(x)p ∈ F[x]. Then there is a circuit Ψ of size 3sp2n + 2n
which computes f(x) over Fp−∞ , the perfect closure of F.

Proof. By Lemma 3.4, there is a circuit Ψ of the claimed size which computes (f(x)p)0. It
follows from the definition of the mod-p decomposition that f(x) = (f(x)p)0, so Ψ computes
f(x) as desired. J

I Remark 3.7. If n = O(logp s), then Corollary 3.6 shows that if fp is computable in size s,
then f is computable in size sO(1). While the log-variate regime may appear as a somewhat
artificial intermediary between the constant-variate and full multivariate regimes, it is a
meaningful setting to study due to various corollaries of the bootstrapping results. For
example, Forbes, Ghosh, and Saxena [14] recently studied the problem of designing explicit
hitting sets for log-variate depth-three diagonal circuits.
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3.2 Formulae
It is natural to ask if the mod-p decomposition allows us to efficiently take pth roots in other
models of algebraic computation. We address this question first in the case of algebraic
formulae, and subsequently for algebraic branching programs. For the reader who is solely
interested in the application of the mod-p decomposition and Corollary 3.6 to hardness-
randomness tradeoffs, it is safe to skip ahead to Section 4. Before continuing on, we make an
important remark regarding formulae and branching programs for univariate polynomials.
I Remark 3.8. In the univariate regime, our results (as stated) for formulae and branching
programs are not as meaningful as the result for circuits. A formula or ABP of size s can
only compute a polynomial of degree d 6 s, so any formula or ABP computing a degree d
univariate polynomial must have size at least d. For univariate polynomials, Horner’s rule
supplies a matching O(d) upper bound. Thus, the pth root of a univariate polynomial which
has complexity s can be computed by a device of size s/p, which is much stronger than what
we will obtain in Corollary 3.10 and Corollary 3.12.

However, if one modifies the model of formulae (or branching programs) to allow leaves
(or edges) labeled by a power of a variable xji , then the trivial Ω(d) lower bound no longer
holds. Our techniques can be adapted to this stronger model with little modification, where
the upper bounds we obtain are less trivial.

We now show how one can compute the mod-p decomposition of an algebraic formula.
We essentially do this by applying the transformation of Lemma 3.4 and arguing that we can
convert the resulting circuit into a formula without increasing its size too much. To do this,
we need some additional bookkeeping to ensure that the underlying graph of the resulting
computation is a tree. We borrow this style of bookkeeping from Raz [32], who used it for
improved homogenization and multilinearization of formulae. Alternatively, one can use the
fact that formulae of size s can be rebalanced to have depth O(log s) and then analyze the
increase in depth incurred in the proof of Lemma 3.4.

I Lemma 3.9. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula of size
s and product depth d which computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the
mod-p decomposition of f . Then there is a formula Ψ of size 3snpn(d+3) and product depth
d + dlogne which simultaneously computes {fa : a ∈ JpKn} over Fp−∞ , the perfect closure
of F.

Proof. As in Lemma 3.4, we will split each gate v of Φ into pieces which compute components
of the mod-p decomposition of v̂. However, we will need a much larger number of copies of v
to ensure that the resulting circuit Ψ is in fact a formula.

We first set up some notation, borrowing heavily from Raz [32]. For a gate v in Φ, let
path(v) denote the set of all vertices on the path from v to the root of Φ, including v itself.
Let Nv denote the set of all functions T : path(v) → JpKn such that for all u,w ∈ path(v)
where u is a sum gate with child w, we have T (u) = T (w). Informally, the map T encodes
the progression of types in the mod-p decomposition seen as the computation progresses
through the formula.

For each gate v in Φ, we create a collection of gates {(v, a, T ) : a ∈ JpKn, T ∈ Nv, T (v) = a}.
We will wire the gates of Ψ so that (v, a, T ) computes v̂a. As before, to wire the gates of Ψ
correctly, we consider what type of gate v is in Φ. The construction only differs meaningfully
from that of Lemma 3.4 in the case of multiplication gates.

If v is an input gate in Φ labeled by α ∈ F, then we set (v, 0, T ) = α1/p and (v, a, T ) = 0
for a 6= 0. As α1/p ∈ Fp−∞ , this produces a valid circuit over Fp−∞ .
It is immediate from the definition that (v, a, T ) correctly computes v̂a.
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If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the
ith slot and zero elsewhere. We set (v, ei, T ) = 1 and (v, a, T ) = 0 for a 6= ei.
Once more, it is an immediate consequence of the definition that (v, a, T ) correctly
computes v̂a.
Suppose now that v is an addition gate with children u and w with incoming edges
labeled αu and αw. For each a ∈ {0, . . . , p − 1}n and T ∈ Nv, we set (v, a, T ) =
α

1/p
u · (u, a, Tu) + α

1/p
w · (w, a, Tw), where Tu ∈ Nu and Tw ∈ Nw extend T and satisfy

T (v) = Tu(u) = Tw(w).
By induction, (u, a, Tu) and (w, a, Tw) correctly compute ûa and ŵa, respectively. By
Lemma 3.3, it follows that (v, a, T ) correctly computes v̂a.
Finally, consider the case when v is a multiplication gate with children u and w with
incoming edges labeled αu and αw. We set

(v, a, T ) = α1/p
u α1/p

w

∑
b+c≡a (mod p)

(u, b, Tu,b) · (w, c, Tw,c) · x
b+c−a
p ,

where Tu,b (respectively Tw,c) extends T and satisfies Tu,b(u)=b (respectively Tw,c(w)=c).
By induction, (u, b, Tu,b) and (w, c, Tw,c) compute ûb and ŵc, respectively. Lemma 3.3
implies that (v, a, T ) correctly computes v̂a.

By construction, Ψ correctly computes {fa : a ∈ JpKn}. It remains to bound the size and
product depth of Ψ and show that Ψ is indeed a formula.

Each gate v in Φ yields pn|Nv| gates of the form (v, a, T ) in Ψ. If v is a multiplication
gate with children u and w, we need to implement the sum over the children (u, b, Tu) and
(w, c, Tw). For a given e ∈ {0, 1}n, we can compute xe using a subformula of size at most n.
To compute (v, a, T ), we need pn summation gates and 2pn multiplication gates in addition
to the gates computing (u, b, Tu), (w, c, Tw), and xe. This implies that we can compute
(v, a, T ) using at most 3npn extra gates. Thus, for every gate v in Φ, we create at most
3np2n|Nv| gates in Ψ.

To bound the size of Nv, note that a function T ∈ Nv can only change values along
path(v) at multiplication gates. Since there are at most d multiplication gates along path(v),
we can specify T by a (d+ 1)-tuple of elements of JpKn, corresponding to the values taken by
T between successive multiplication gates. This implies |Nv| 6 pn(d+1). Thus Ψ contains at
most 3snpn(d+3) gates.

It follows from the definition of Ψ that the product depth of Ψ is d + dlogne, as the
number of product gates on any path from a leaf to the root increases by at most an additive
dlogne. This arises from the need to implement a product of the form xe at gates of Ψ which
correspond to multiplication gates in Φ. As we need to compute a product of this form at
most once along every path from the root to a leaf, we only incur an additive dlogne increase
in product depth as opposed to a multiplicative increase.

To see that Ψ is a formula, consider the edges leaving the gate (u, a, T ). Let v denote the
parent of u in Ψ. If v is an addition gate, then only (v, a, Tv) receives an edge from (u, a, T )
where Tv ∈ Nv agrees with T on path(v). If v is a multiplication gate, then only (v, T (v), Tv)
receives an edge from (u, a, T ) where Tv ∈ Nv agrees with T on path(v). In both cases, the
fan-out of the gate u is 1, so Ψ is in fact a formula. J

As with circuits, we can use Lemma 3.9 to compute pth roots of formulae which compute
a pth power over a field of characteristic p > 0.
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I Corollary 3.10. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula
of size s and product depth d which computes a polynomial f(x)p ∈ F[x]. Then there is a
formula Ψ of size 3snpn(d+3) and product depth d+ dlogne which computes f(x) over Fp−∞ ,
the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. J

3.3 Algebraic Branching Programs
We now consider the task of taking pth roots of algebraic branching programs. We consider
the model of branching programs where edges may only be labeled by a constant α ∈ F
or a multiple of a variable αxi. Some authors allow the edges of a branching program to
be labeled by an affine form `(x) = α0 +

∑n
i=1 αixi. Such a branching program can be

converted to one whose edges are labeled by field constants or multiples of a variable. This
transformation increases the number of vertices by a factor of O(n), which is small compared
to the increase in size we will incur by taking a pth root. We begin by computing the mod-p
decomposition of an algebraic branching program.

I Lemma 3.11. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching
program on s vertices with edges labeled by variables or field constants which computes a
polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p decomposition of f . Then
there is an algebraic branching program Ψ on spn vertices which simultaneously computes
{fa : a ∈ JpKn} over Fp−∞ , the perfect closure of F.

Proof. For each node v in Φ, we create a collection of nodes {(v, a) : a ∈ JpKn} in Ψ. We
will wire the nodes of Ψ so that (v, a) computes v̂a.

For a pair of vertices u and v, let `(u, v) denote the label of the edge between u and v.
Let N in(v) denote the set of vertices w such that the edge (w, v) is present in Φ.

Let u and v be two nodes in Φ and suppose there is an edge from u to v in Φ. We consider
two cases, depending on whether this edge is labeled by a constant α ∈ F or a multiple of a
variable αxi.

Suppose the edge from u to v is labeled by α ∈ F. For all a ∈ JpKn, we add an edge
between (u, a) and (v, a) labeled by α1/p. Since α1/p ∈ Fp−∞ , this construction is valid
over the perfect closure Fp−∞ of F.
Suppose the edge from u to v is labeled by αxi, where α ∈ F. Denote by ei the vector
which has a 1 in the ith slot and zeroes elsewhere. For all a ∈ JpKn, we add an edge
between (u, a) and (v, a + ei), where the addition a + ei is performed modulo p. If
ai < p − 1, we label this edge with α1/p. If ai = p − 1, we label this edge with α1/pxi.
Again, α1/p ∈ Fp−∞ by definition, so this construction is valid.

To see that this construction is correct, let v be a node in Φ. By the definition of an
algebraic branching program, we have

v̂ =
∑

u∈N in(v)

`(u, v) · û.

Repeatedly applying the addition case of Lemma 3.3 yields, for each a ∈ JpKn,

v̂a =
∑

u∈N in(v)

(`(u, v) · û)a.
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If `(u, v) = α ∈ F, then we have (`(u, v) · û)a = α1/pûa. If `(u, v) = αxi, then if ai > 0, we
have (`(u, v) · û)a = α1/pûa−ei . Otherwise, ai = 0, so (`(u, v) · û)a = α1/pûa−eixi, where the
subtraction a− ei is done modulo p.

By induction, (u, a) correctly computes ûa. From our construction of Ψ, if (u, v) is an
edge in Φ, then (v, a) has an incoming edge which computes (`(u, v) · û)a. This implies that
(v, a) computes the polynomial

∑
u∈N in(v)(`(u, v) · û)a = v̂a, which is what we want.

Thus, Ψ simultaneously computes {fa : a ∈ JpKn}. Every node in Φ corresponds to pn
nodes in Ψ. Unlike the cases of circuits and formulae, we do not need extra hardware to
implement intermediate calculations, so Ψ consists of spn nodes as claimed. J

Again, as in the case of circuits and formulae, this immediately yields a way to compute pth
roots of algebraic branching programs which compute a pth power over a field of characteristic
p > 0.

I Corollary 3.12. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching
program on s vertices with edges labeled by variables or field constants which computes a
polynomial f(x)p ∈ F[x]. Then there is an algebraic branching program Ψ on spn vertices
which computes f(x) over Fp−∞ , the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. J

4 Extending the Kabanets-Impagliazzo Generator

With our main technical tool in hand, we move on to our first application. The hitting set
generator of Kabanets and Impagliazzo [21] was the first to provide hardness-randomness
tradeoffs for polynomial identity testing over fields of characteristic zero. Over fields of
characteristic p > 0, Kabanets and Impagliazzo obtain hardness-randomness tradeoffs under
non-standard hardness assumptions. Namely, they require an explicit family of polynomials
{fn : n ∈ N} such that fpkn is hard to compute for 1 6 pk 6 2O(n), though they do not state
their results in this way. Rather, they use the assumption of a family of polynomials which
are hard to compute as functions, which implies hardness of pth powers over finite fields.

It is more common in algebraic complexity to prove lower bounds on the task of computing
polynomials as syntactic objects. Over infinite fields, this is equivalent to computing a
polynomial as a function. However, the two notions differ over finite fields. For example,
the polynomial x2 − x is non-zero as a polynomial over F2, but computes the zero function
over F2. It is interesting to note that examples of functional lower bounds over finite fields
are known. The works of Grigoriev and Karpinski [15], Grigoriev and Razborov [16], and
Kumar and Saptharishi [25] prove lower bounds against constant-depth circuits over finite
fields which functionally compute an explicit polynomial.

In this section, we will extend the Kabanets-Impagliazzo generator to all perfect fields of
characteristic p > 0 under syntactic hardness assumptions for a single family of polynomials.
The perfect fields of characteristic p include all finite fields and all algebraically closed fields
of positive characteristic. To do this, we need a stronger (but still syntactic) hardness
assumption. In their work, Kabanets and Impagliazzo use the existence of an explicit family
of hard multilinear polynomials to derandomize polynomial identity testing. Here, we need
lower bounds against an explicit family of constant-variate polynomials of arbitrarily high
degree. Such an assumption appears to be stronger than the assumption of a hard family
of multilinear polynomials. We discuss the relationship between these hypotheses in more
detail in Section 6.
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4.1 The Kabanets-Impagliazzo Generator

We first describe the construction of the Kabanets-Impagliazzo generator.

I Construction 4.1 ([21]). Let n and m be integers satisfying n < 2m. Let g ∈ F[x]
be a polynomial on m variables. Let S1, . . . , Sn ⊆ [`] be a Nisan-Wigderson design as in
Lemma 2.10. The Kabanets-Impagliazzo generator GKI,g(z) : F` → Fn is the polynomial map
given by

GKI,g(z) := (g(z|S1), . . . , g(z|Sn)),

where z|Si denotes the restriction of z to the variables with indices in Si.

We now quote the main lemma used by Kabanets and Impagliazzo in the analysis of their
generator.

I Lemma 4.2 ([21]). Let F be any field and n,m ∈ N such that n < 2m. Let f ∈ F[y1, . . . , yn]
and g ∈ F[x1, . . . , xm] be non-zero polynomials of degree df and dg, respectively. Let f(y) be
computable by an algebraic circuit of size s. Let S ⊆ F be any set of size at least dfdg + 1
and let ` = O(m2/ logn) be as in Lemma 2.10. Let GKI,g be as in Construction 4.1.

Suppose that f(GKI,g(α)) = 0 for all α ∈ S`. Then there is an algebraic circuit Φ of size
s′ 6 poly(n,m, df , dg, s, (1+ideg g)logn) which computes the following. If F has characteristic
zero, then Φ computes g(x). If F has characteristic p > 0, then Φ computes g(x)pk for some
k ∈ N such that pk 6 df .

If f(GKI,g(z)) = 0, then using Lemma 4.2, we can reconstruct a circuit for g using the
circuit for f . By taking g from a family of hard polynomials, we obtain a contradiction if
there is a small circuit which computes f . This proves that GKI,g is a hitting set generator for
the class of small circuits. The explicitness of GKI,g follows from the explicitness of the family
from which g is taken. The hardness-randomness tradeoffs of Kabanets and Impagliazzo [21]
then follow by setting parameters according to the hardness of g.

Over a field of characteristic p > 0, Lemma 4.2 provides a circuit computing g(x)pk .
Suppose we are working over Fq, the finite field of q = pa elements. By taking pth powers
of g(x)pk if necessary, we can obtain a circuit which computes g(x)par = g(x)qr for some
r ∈ N. The map α 7→ αq is the identity over Fq, so the circuit which computes g(x)qr in
fact computes the same function as g(x). This is why, without further work, we need a
polynomial which is hard to compute as a function to obtain hardness-randomness tradeoffs
over finite fields.

If we could factor the circuit for g(x)pk to obtain a not-too-much-larger circuit for g(x),
then we could derive hardness-randomness tradeoffs from the assumption of an explicit
family of multilinear polynomials which are hard to compute. It remains an open problem
to show that if g(x)p has a small circuit, then g(x) has a small circuit. However, in the
constant-variate regime, Corollary 3.6 resolves this problem in the affirmative. This is the
main fact which drives our extension of the Kabanets-Impagliazzo generator.

4.2 Extension to Fields of Low Characteristic

We now show how to use the Kabanets-Impagliazzo generator to obtain hardness-randomness
tradeoffs over all perfect fields of characteristic p > 0. Recall that CF(s, n, d) denotes the set
of n-variate degree d polynomials computable by circuits of size at most s.
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I Theorem 4.3. Let F be a field of characteristic p > 0 and let c, k ∈ N be positive constants.
Let {gd(x) : d ∈ N} be a strongly t(k, d)-explicit family of k-variate degree d polynomials. Let
s : N→ N be a function such that gd cannot be computed by algebraic circuits of size smaller
than s(d) over Fp−∞ . Then there is a hitting set generator G : F` → Fn for CF(nc, n, nc)
which
1. is

(
poly(n, 2`) + t(k, n3ck+Ω(c)) · s−1(n3ck+Ω(c))O(k))-explicit,

2. has seed length ` = O
(
k2 log2(s−1(n3ck+O(c)))

logn

)
, and

3. has degree O(k log(s−1(n3ck+O(c)))).

Proof. We will obtain our generator by using {gd : d ∈ N} to construct a family of hard
multilinear polynomials. We then set parameters and instantiate the Kabanets-Impagliazzo
generator with this hard multilinear family.

By Lemma 2.6, there is a strongly t(k, d)-explicit family of multilinear polynomials hd(y)
on m := k(blog dc+ 1) variables such that any circuit which computes hd must be of size
s(d)−O(k log d). The construction of hd also yields the identity

gd(x) = hd(x20

1 , x
21

1 , . . . , x
2blog dc

1 , . . . , x20

k , x
21

k , . . . , x
2blog dc

k ),

which allows us to obtain a circuit for gd from a circuit for hd. As hd is multilinear, we have
deg(hd) 6 m and ideg(hd) = 1.

Set d = s−1(ne) for a large enough constant e > 1 to be specified later. Since gd is a
k-variate degree d polynomial, we trivially have s(d) 6 dO(k), so s−1(d) > dΩ(1/k). This gives
us

2m > dk = s−1(ne)k > (nΩ(e/k))k = nΩ(e).

Taking e to be large enough guarantees 2m > n. Let S1, . . . , Sn ⊆ [`] be the Nisan-Wigderson
design guaranteed by Lemma 2.10. Our generator G : F` → Fn is given by instantiating the
Kabanets-Impagliazzo generator with hd. That is,

G(z) := GKI,hd(z) = (hd(z|S1), . . . , hd(z|Sn)).

We now verify the claimed properties of G.
Correctness. To see that G is indeed a hitting set generator for CF(nc, n, nc), suppose there

is some non-zero f ∈ CF(nc, n, nc) such that f(G(z)) = 0. Then by Lemma 4.2, there is a
circuit of size

s′ 6 poly(n,m, nc, 2logn) 6 nO(c)

which computes hd(y)pa for pa 6 deg(f) 6 nc. Via the Kronecker substitution yi,j 7→ x2j
i ,

we obtain a circuit of size s′ +O(k log d) 6 nO(c) which computes gd(x)pa . We now apply
Corollary 3.6 a total of a times to obtain a circuit which computes gd(x) and has size
s′′ 6 (3 · 2k · p2k)anO(c). Since pa 6 nc and 2 6 p, we obtain s′′ 6 n3kc+O(c). By setting
e = 3ck + Θ(c) where the hidden constant on the Θ(c) term is large enough, we obtain
a contradiction as follows. By assumption, any circuit which computes gd must be of
size at least s(d) = ne. However, we have a circuit of size n3ck+O(c) � ne = s(d) which
computes gd, a contradiction. Thus, it must be the case that f(G(z)) 6= 0. Hence G is a
hitting set generator for CF(nc, n, nc).

Explicitness. Given a point α ∈ F`, we can evaluate G as follows. First, we construct
the Nisan-Wigderson design S1, . . . , Sn ⊆ [`] in time poly(n, 2`). We then compute all
dO(k) coefficients of hd, each in t(k, d) time. Finally, for each i ∈ [`], we evaluate hd
on α|Si in time dO(k). Using the fact that d = s−1(n3ck+O(c)), we can evaluate G in
poly(n, 2`) + t(k, n3ck+O(c)) · s−1(n3ck+O(c))O(k) time as claimed.
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Seed length. It follows from Lemma 2.10 that G has seed length ` = O(m2/ logn) =
O
(
k2 log2 d

logn

)
. By our choice of d = s−1(n3ck+O(c)), we obtain the claimed seed length of

O
(
k2 log2(s−1(n3ck+O(c)))

logn

)
.

Degree. By construction, G is a map of degree deg(hd) 6 m = k(blog dc+ 1). Once more,
plugging in our choice of d yields the claimed bound of O(k log(s−1(n3ck+O(c)))). J

By applying Lemma 2.3, we obtain the following construction of explicit hitting sets for
CF(nc, n, nc).

I Corollary 4.4. Assume the setup of Theorem 4.3. Let T , `, and ∆ be the explicitness, seed
length, and degree of the generator of Theorem 4.3, respectively. Then there is a hitting set
H for CF(nc, n, nc) which
1. has size |H| = (nc∆ + 1)`, and
2. has explicitness |H| · T = (nc∆ + 1)` · T .

Proof. This is Lemma 2.3 applied to Theorem 4.3. J

We conclude this section with some concrete hardness-randomness tradeoffs obtainable
via Theorem 4.3 and Corollary 4.4. Recall that for constant k, a k-variate polynomial of
degree d consists of at most

(
k+d
k

)
6 dO(k) monomials. In this regime, a polynomial which is

strongly dO(k)-explicit is “exponential time explicit,” as the description of a single monomial
consists of O(k log d) bits.

I Corollary 4.5. Let F be a field of characteristic p > 0. Let c, k ∈ N be fixed constants. Let
{gd(x) : d ∈ N} be a strongly dO(k)-explicit family of k-variate degree d polynomials which
cannot be computed by circuits of size smaller than s(d) over Fp−∞ . Then the following
results hold regarding hitting sets for CF(nc, n, nc).
1. If s(d) = logω(1) d, then there is a 2no(1)-explicit hitting set for CF(nc, n, nc) of size 2no(1) .
2. If s(d) = 2logΩ(1) d, then there is a 2logO(1) n-explicit hitting set for CF(nc, n, nc) of size

2logO(1) n.
3. If s(d) = dΩ(1), then there is a nO(logn)-explicit hitting set for CF(nc, n, nc) of size

nO(logn).

Proof. Each statement follows by setting parameters in Theorem 4.3 and Corollary 4.4
and using the fact that c and k are fixed constants independent of n and d. We omit the
straightforward calculations. J

5 Bootstrapping from Constant-Variate Hardness

Given that we use the seemingly stronger assumption of constant-variate hardness in our
extension of the Kabanets-Impagliazzo generator, one may wonder if we can push the
hardness-randomness connection further and obtain a better derandomization of identity
testing for CF(nc, n, nc). Perhaps surprisingly, this is possible by going through the recent
development of “bootstrapping” for hitting sets.

5.1 A Non-Trivial Hitting Set from Constant-Variate Hardness
Let n be a constant and let s be arbitrarily large. Suppose we have an explicit, slightly
non-trivial hitting set for CF(s, n, s). Then we can “bootstrap” the advantage this hitting
set has over the trivial one in order to obtain an explicit hitting set of very small size for
CF(s, s, s). That is, in order to almost completely derandomize polynomial identity testing
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for the class of polynomials of polynomial degree computed by polynomial-size circuits, it
suffices to find a non-trivial derandomization of polynomial identity testing for circuits on a
constant number of variables but of arbitrary size and degree.

We remark that, throughout this section, one should read CF(s, s, s) as a stand-in for
CF(nc, n, nc), where c is a fixed constant. This follows by taking s = nc and noting that
CF(nc, n, nc) ⊆ CF(nc, nc, nc) = CF(s, s, s). While the following results are stated for CF(s, s, s),
changing s by at most a polynomial factor will not qualitatively affect the results we obtain.

We now formally state the bootstrapping result. Let log? s denote the iterated logarithm
of s. That is,

log? s :=
{

1 + log?(log s) s > 1
0 s 6 1.

This version of the bootstrapping theorem is due to Kumar, Saptharishi, and Tengse [27] and
improves upon the initial work of Agrawal, Ghosh, and Saxena [2]. Note that this theorem
holds over all fields, including those of positive characteristic.

I Theorem 5.1 ([27]). Let F be any field and let ε > 0 and n > 2 be constants. Suppose that
for all sufficiently large s, there is an sO(n)-explicit hitting set of size sn−ε for CF(s, n, s).
Then there is an sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s)) for CF(s, s, s).

In this section, we will use Theorem 5.1 to obtain a stronger derandomization of polynomial
identity testing over fields of characteristic p > 0 under appropriate hardness assumptions.
Suppose {gd(x) : d ∈ N} is a family of strongly dO(k)-explicit k-variate degree d polynomials
which require algebraic circuits of size dΩ(k). Using Corollary 4.5, we can obtain a sO(log s)-
explicit hitting set for CF(s, s, s) of size sO(log s). By a more careful instantiation of the
Kabanets-Impagliazzo generator, we can use the hardness assumption on gd to design an
explicit hitting set which satisfies the hypotheses of Theorem 5.1. This yields an explicit
hitting set for CF(s, s, s) of size sexp ◦ exp(O(log? s)), which greatly improves upon the size
sO(log s) hitting set of Corollary 4.5.

Our argument also works for fields of characteristic zero, giving us a general theorem
which converts near-optimal constant-variate hardness into near-optimal derandomization of
polynomial identity testing for CF(s, s, s).

First, we need a technical lemma regarding lower bounds against constant-variate poly-
nomials. Roughly, we will show that dδ lower bounds against degree d constant-variate
polynomials can be magnified to dc lower bounds against constant-variate polynomials for
arbitrary δ, c > 0.

I Lemma 5.2. Let F be any field. Let k ∈ N and c, δ > 0 be fixed constants. Let {gd(x) : d ∈
N} be a strongly dO(k)-explicit family of k-variate polynomials of degree d. Suppose that for
d sufficiently large, gd cannot be computed by algebraic circuits of size smaller than dδ over
F. Then there is a constant m ∈ N and a family {h∆(y) : ∆ ∈ N} of strongly ∆O(m)-explicit
m-variate degree ∆ polynomials such that for ∆ sufficiently large, h∆ cannot be computed by
algebraic circuits of size smaller than ∆c over F.

Proof. We follow the approach of Lemma 2.6, but in base dδ/2c + 1 as opposed to base 2.
Without loss of generality, assume that δ 6 1 6 c. Let m := 2ck

δ and let y =
(y1,1, . . . , yk,2c/δ). Let σ(yi,j) = x

(dδ/2c+1)j
i . We will take h∆(y) to be the polynomial

of individual degree dδ/2c which satisfies the equation h(σ(y)) = gd(x). More explicitly, let
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gd(x) =
∑
a∈Nk αax

a be the expression of gd as a sum of monomials. Let ϕ : Jdδ/2c+1K2c/δ →
Jd+ 1K be the map which takes the base-(dδ/2c + 1) expansion of a number t ∈ Jd+ 1K and
returns t. Then we define h∆(y) as

h∆(y) =
∑

A∈Jdδ/2c+1Kk×2c/δ

αϕ(A1,•),...,ϕ(Ak,•)
∏

i,j∈Jdδ/2c+1K

y
Ai,j
i,j .

It is clear from the construction of h∆ that h∆(σ(y)) = gd(x). The polynomial h∆ is of
individual degree at most dδ/2c, so ∆ := deg(h∆) can be bounded as

∆ 6 mdδ/2c = 2ckdδ/2c

δ
.

Since k and δ are fixed constants, for d large enough, we obtain ∆ 6 d2δ/3c.
To show that h∆ has the claimed hardness, suppose we are given a circuit of size s which

computes h∆. By repeated squaring, we may compute the map σ(y) using a circuit of size
O(k log d) = O(m log ∆) = O(log ∆). This yields a circuit of size s′ 6 s + O(log ∆) which
computes gd. By the assumed hardness of gd, we have s′ > dδ. Putting things together
gives us

s > dδ −O(log ∆).

Since ∆ 6 d2δ/3c for d large enough, we obtain

s > ∆3c/2 −O(log ∆).

For ∆ (and hence d) large enough, we have s > ∆c, which yields the desired lower bound
on h∆.

It remains to verify the explicitness of h∆. We can compute a coefficient of h∆ by
computing the corresponding coefficient of gd, so h∆ inherits the strong dO(k)-explicitness
of gd. We need to show that dO(k) 6 ∆O(m) in order to conclude that h∆ is strongly
∆O(m)-explicit. By writing h∆ as a sum of monomials, there is a circuit of size ∆O(m)

which computes h∆. Combined with the argument above, this yields a circuit of size
∆O(m) +O(log ∆) = ∆O(m) which computes gd. Since any circuit which computes gd must
have size dδ, we obtain ∆O(m) > dδ. As c, k, δ, and m are all fixed constants, this yields
dO(k) 6 ∆O(m) as desired. J

Now we are ready to state and prove our hardness-randomness tradeoff.

I Theorem 5.3. Let F be any field and let k ∈ N and δ > 0 be fixed constants. Let K = Fp−∞

if charF = p > 0 and K = F otherwise. Let {gd(x) ∈ F[x] : d ∈ N} be a family of strongly
dO(k)-explicit k-variate degree d polynomials. Suppose that for all d sufficiently large, gd
cannot be computed by algebraic circuits of size smaller than dδ over K. Then for all
sufficiently large s, there is an sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s))

for CF(s, s, s).

Proof. Using Lemma 5.2, we may assume without loss of generality that δ > 30.
By Theorem 5.1, it suffices to provide an explicit hitting set of size sn−ε for CF(s, n, s)

for constants ε, n and all s sufficiently large. We will instantiate the Kabanets-Impagliazzo
generator with gd as the hard polynomial, using the finer-grained designs of Lemma 2.9.

Let s be given. By adding auxiliary variables if necessary, we may assume that k is a
prime power. Note there is always a power of 2 between k and 2k, so this at most doubles
the number of variables in gd. We set parameters as follows:
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c := 3,
n := 2kc+1 = 2k4,
r := 2, and
d := sk.

By Lemma 2.9, we can construct in poly(n) time a collection of sets S1, . . . , Sn ⊆ [kc] such
that |Si| = k and |Si ∩ Sj | 6 r.

Consider the generator G : Fkc → Fn given by

G(z) = (gd(z|S1), . . . , gd(z|Sn)).

By construction, G has seed length kc and degree d = sk. Since gd is strongly dO(k)-explicit,
we can evaluate G by constructing the design S1, . . . , Sn, computing the coefficients of gd,
and evaluating each of the n copies of gd. Constructing the design takes nO(1) time and
computing the coefficients of gd takes dO(k) time. To evaluate gd, we use the expression of
gd as a sum of monomials, which requires dO(k) time for each of the n evaluations. In total,
we can evaluate G in time

nO(1) · dO(k) = nO(1) · sO(k2) = nO(1) · sO(
√
n),

so G is sO(
√
n)-explicit for s sufficiently large.

If G is in fact a hitting set generator for CF(s, n, s), then using Lemma 2.3, we obtain a
hitting set H for CF(s, n, s) of size

(s · d)k
c

= (sk+1)k
3

= sk
4+k3

6 s2k4−ε = sn−ε

for some ε > 0 when s is large enough. Moreover, H is sO(
√
n) · |H| 6 sO(n)-explicit. We now

apply Theorem 5.1 to obtain the claimed sexp ◦ exp(O(log? s))-explicit hitting set for CF(s, s, s)
of size sexp ◦ exp(O(log? s)). It remains to show that G is indeed a hitting set generator for
CF(s, n, s).

To show this, suppose for the sake of contradiction that G is not a hitting set generator
for CF(s, n, s). Then there is some f(y) ∈ CF(s, n, s) such that f(y) 6= 0 and f(G(z)) = 0. We
define the hybrid polynomials f0, . . . , fn by

f0(y, z) = f(y1, . . . , yn)
f1(y, z) = f(gd(z|S1), y2, . . . , yn)

...

fn−1(y, z) = f(gd(z|S1), . . . , gd(z|Sn−1), yn)
fn(y, z) = f(gd(z|S1), . . . , gd(z|Sn)) = f(G(z)).

Since f0 6= 0 and fn = 0, there is some i ∈ [n] such that fi−1 6= 0 and fi = 0. Assuming
|F| > sd > deg(fi), we can find an assignment to the variables {yj : j 6= i} and {zj : j /∈ Si}
such that fi remains non-zero under this partial evaluation. If F is too small, we may find
such an assignment using values from some finite extension F′ ⊇ F of size at least sd + 1
(and hence degree O(log(sd))). After renaming variables, denote this non-zero restriction of
fi by f(z1, . . . , zk, y).

We can compute f by composing the circuit for f with at most n− 1 copies of the partial
evaluation of gd(z|Sj ) for j < i. By assumption, we can compute f with a circuit of size
s. Since |Sj ∩ Si| 6 2 for j 6= i, at most 2 variables in z|Sj are unset. This implies each
restriction of gd(z|Sj ) is a polynomial of degree d on 2 variables and thus can be computed
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by a depth-two circuit of size at most d · (d+ 1)2. This yields a circuit for f of size at most
s+ nd · (d+ 1)2. Note that the degree of f is bounded by sd, since f is the composition of
two polynomials of degrees at most s and d.

By assumption, we have that f(z1, . . . , zk, y) 6= 0 and f(z1, . . . , zk, gd(z)) = 0. This
implies that y − gd(z) is a factor of f . We now apply Theorem 2.8 to factor the circuit for f .

If charF = p > 0, we obtain a circuit for (y − gd(z))p
t = yp

t − gd(z)p
t for some t ∈ N.

Since ypt − gd(z)p
t is a factor of f(z1, . . . , zk, y), we must have

dpt = deg(yp
t

− gd(z)p
t

) 6 deg(f) 6 sd.

This implies pt 6 s. Since f has degree sd and is computable in size s+O(nd3), the circuit
computing ypt − gd(z)pt has size at most O((nsd)12). By setting y = 0 and negating the
output of the circuit, we obtain a circuit for gd(z)p

t of size O((nsd)12).
We now apply Corollary 3.6 a total of t times. This produces a circuit which computes
gd(z) and has size O((nsd)12p2kt2kt3t) = O((nsd)12s3k+2). Here we use the fact that
p > 2, so 2kt 6 pkt 6 sk and 3t 6 4t 6 p2t 6 s2.
In the case where |F| > sd, the circuit for f was defined over F, so the circuit for gd is
defined over K = Fp−∞ . If instead |F| 6 sd, the circuit for f was defined over a finite
extension F′ ⊇ F of degree O(log(sd)). As F′ is a finite field, F′ is perfect, so the circuit
obtained from Corollary 3.6 is defined over F′. We apply Lemma 2.7 to simulate this
circuit over F, incurring an extra O(log3(sd)) factor in the circuit size.
In total, we now have a circuit which computes gd over K = Fp−∞ and has size bounded
by O((nsd)12s3k+2 log3(sd)).
If charF = 0, the previous case applies, but without the need to take a pth root or
simulate a field extension. This yields a circuit which computes gd(z) over K = F and
has size O((nsd)12).

In both cases, we obtain a circuit which computes gd(z) over K and has size at most
O((nsd)12s3k+2 log3(sd)). Restating in terms of k and d, we have a circuit for gd of size

O((nsd)12s3k+2 log3(sd)) = O(k48s14+3kd12 log3(d)) = O(k48d15+14/k log3(d)).

Since k > 1 and k is a constant, we can bound the size of the circuit computing gd by
O(d29 log3(d)). This contradicts the fact that gd requires circuits over K of size dδ > d30 for
sufficiently large d. Hence G is in fact a hitting set generator for CF(s, n, s). J

5.2 Comparison to Characteristic Zero
Over fields of characteristic zero, the recent work of Guo, Kumar, Saptharishi and Solomon
[17] obtained what is currently the best-known derandomization of polynomial identity testing
for CF(s, s, s) under a hardness assumption. From an explicit family of k-variate degree d
polynomials of hardness dΩ(1), they obtain an explicit hitting set for CF(s, s, s) of size sO(1).
Specifically, they prove the following theorem.

I Theorem 5.4 ([17]). Let F be a field of characteristic zero. Let k ∈ N be large enough
and let δ > 0 be a fixed constant. Suppose {Pk,d ∈ F[x] : d ∈ N} is a family of dO(k)-explicit
k-variate polynomials of degree d such that Pk,d cannot be computed by algebraic circuits
of size smaller than dδ. Then there is an s(k/δ)O(1)-explicit hitting set for CF(s, s, s) of size
sO(k2/δ2).

We remark that Guo, Kumar, Saptharishi, and Solomon [17] do not define the notion of
explicitness they use in their result, but it is enough for Pk,d to be computable by a uniform
algorithm which runs in time dO(k). This is slightly different from our notion of strong
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explicitness, where we require the coefficients of Pk,d to be computable in dO(k) time. It is
clear that one can pass from strong explicitness to the standard notion of explicitness by
computing a polynomial as a sum of monomials. Via polynomial interpolation, one can show
that polynomials which are “evaluation-explicit” are strongly explicit. In both cases, the
explicitness parameter may degrade considerably, as the number of terms in a polynomial
may be exponentially larger than the amount of time required to compute the polynomial or
one of its coefficients. In general, one cannot hope to do better than this: in one direction, the
coefficients of the permanent are easy to compute, but the permanent is widely conjectured
to be hard to compute; in the other direction, there are examples of polynomials which
are easy to compute but which have the permanent of a large matrix embedded in their
coefficients (see, for example, Bürgisser [8, §2.3]).

In the context of Theorem 5.3 and Theorem 5.4, however, the two notions of explicitness
coincide. When working with k-variate polynomials of degree d, we incur an overhead of
dO(k) in passing between the two notions of explicitness. As the hypotheses of these theorems
are already in the regime of (strong) dO(k)-explicitness, the explicitness parameter changes
by a polynomial factor, which is small enough to not affect the asymptotics of the results
obtained.

The fact that the underlying field has characteristic zero is used in a key part of the proof
of Theorem 5.4, and it is not clear how to adapt the proof to fields of positive characteristic.
The generator used to design the hitting set in the conclusion of Theorem 5.4 is notably
not a variation on the Kabanets-Impagliazzo generator, but instead a new generator whose
construction is more algebraic than combinatorial in flavor.

Note that Theorem 5.3 and Theorem 5.4 require the same hardness assumption. This gives
a second proof of derandomization of polynomial identity testing from an explicit family of
hard constant-variate polynomials, although the derandomization we obtain is slightly weaker
compared to Theorem 5.4. However, our construction does not require the characteristic
of the underlying field to be zero. It is tempting to conjecture that one can recover the
conclusion of Theorem 5.4 in positive characteristic by improving the bootstrapping process
used to prove Theorem 5.1. It is unclear whether such a result is possible.

6 Relating Constant-Variate and Multivariate Lower Bounds

This work and the work of Guo, Kumar, Saptharishi, and Solomon [17] have shown that
lower bounds against (strongly) explicit constant-variate polynomials yield very strong
derandomizations of polynomial identity testing. We are able to give an explicit hitting set of
size sexp ◦ exp(O(log? s)) for CF(s, s, s) for any field F (this is Theorem 5.3), while Guo, Kumar,
Saptharishi, and Solomon [17] obtain explicit hitting sets of size sO(1) for the same class
when charF = 0. However, if one instead assumes the existence of a (strongly) explicit family
of maximally-hard multivariate polynomials of low degree (specifically, degree nO(1) where n
is the number of variables), it is not clear how to obtain similar derandomization results.
The best-known derandomization from multivariate lower bounds is that of Kabanets and
Impagliazzo [21], who gave an explicit hitting set of size sO(log s) for CF(s, s, s).

The fact that we can obtain strong derandomizations of polynomial identity testing from
constant-variate hardness raises the question of whether or not such derandomization is
possible under multivariate hardness assumptions. A natural first approach to this would be
to show that lower bounds for a (strongly) explicit family of multivariate polynomials imply
comparable lower bounds against a (strongly) explicit family of constant-variate polynomials.
Such an implication is known in the setting of non-commutative circuits and is due to
Carmosino, Impagliazzo, Lovett, and Mihajlin [11].
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It is not hard to show a connection in the other direction; that is, lower bounds against
strongly explicit families of constant-variate polynomials can be translated into comparable
lower bounds against strongly explicit families of multivariate polynomials. An easy way to
do this is via the approach of Lemma 2.6.

In this section, we investigate to what extent a converse to Lemma 2.6 may hold.
Unconditionally refuting the converse of Lemma 2.6 requires proving circuit lower bounds
that seem far out of reach, so we have little hope to fully resolve this question. However,
we can give some complexity-theoretic evidence which shows a converse to Lemma 2.6 is
unlikely to hold. To do this, we take a detour into the arithmetic complexity of integers.

6.1 Complexity of Computing Integers
We start by defining the model we use to compute sequences of integers.

I Definition 6.1. For a natural number n ∈ N, let τ(n) denote the size of the smallest
circuit which computes n using the constant 1 and the operations of addition, subtraction,
and multiplication. Let (an)n∈N be a sequence of natural numbers. If τ(an) 6 logO(1) n, then
we say (an)n∈N is easy to compute. Otherwise, we say (an)n∈N is hard to compute.

As an example, the sequence (2n)n∈N is easy to compute, as we can compute 2n in
O(logn) arithmetic steps by repeated squaring. A major open problem in this area is to
understand τ(n!), the complexity of the sequence of factorials. The following conjecture
regarding τ(n!) appears to be folklore.

I Conjecture 6.2. The sequence of factorials (n!)n∈N is hard to compute.

Prior work has established relationships between Conjecture 6.2 and other prominent
conjectures in computational complexity. Blum, Cucker, Shub, and Smale [5, page 126] gave
an argument that shows if τ(n!) 6 logO(1) n, then there are circuits of logO(1) n size to factor
n. A related work by Shamir [37] reduces factorization to computing factorials, albeit in a
slightly different model. Bürgisser [9] showed that Conjecture 6.2 implies that the n × n
permanent cannot be computed by constant-free division-free algebraic circuits of size nO(1).
Work by Lipton [28] shows that average-case hardness of factoring implies a slightly weaker
form of Conjecture 6.2; namely, that the polynomial

∏n
i=1(x − i) is hard to compute by

constant-free algebraic circuits.
Before moving on to address the question of a converse to Lemma 2.6, we present a

reduction due to Shamir [37] which reduces the task of computing n! to the task of computing(2n
n

)
.

I Lemma 6.3 ([37]). If (
(2n
n

)
)n∈N is easy to compute, then (n!)n∈N is easy to compute.

Proof. Suppose τ
((2n

n

))
6 O(logc n). Recall the identity

n! =
{

((n/2)!)2 ·
(
n
n/2
)

n is even
n · ((n−1

2 )!)2 ·
(

n−1
(n−1)/2

)
n is odd.

This implies

τ(n!) 6 τ(n) + τ((bn/2c!)2) + τ

((
2 · bn/2c
bn/2c

))
.

Expanding out the recurrence and using the fact that τ((bn/2c!)2) 6 τ(bn/2c!) + 1, we get
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τ(n!) 6
logn∑
i=1

[
τ(bn/2ic) + τ

((
2 · bn/2i+1c
bn/2i+1c

))
+ 1
]

6 logn · (O(logn) +O(logc n) + 1)
6 O(logc+1 n).

Hence (n!)n∈N is easy to compute. J

6.2 The Inverse Kronecker Map and Constant-Free Circuits

Here, we show that two forms of a converse to Lemma 2.6 refute Conjecture 6.2 to varying
degrees. Our first argument shows that a straightforward converse of Lemma 2.6 implies that
Conjecture 6.2 fails infinitely often. That is, suppose g(x) is a univariate degree d polynomial
and f(y) is a multilinear polynomial which simplifies to g(x) under the mapping yi 7→ x2i .
Lemma 2.6 says that hardness of g(x) implies hardness of f(y). The following conjecture,
which we wish to conditionally refute, says that hardness of f(y) implies hardness of g(x).

I Conjecture 6.4. Let gm,d(x) =
∑
a αax

a be an m-variate degree d polynomial. Let
j : {0, 1}blog dc+1 → J2blog dc+1K be given by j(e) =

∑blog dc+1
i=1 ei2i−1. That is, j(e) is the

number whose binary representation corresponds to e. Let

y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1)

and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires
constant-free circuits of size sΩ(1) −Θ(m log d) to compute.

We now show that Conjecture 6.4 implies the factorials are easy to compute infinitely
often.

I Theorem 6.5. Suppose Conjecture 6.4 holds over Q. Then the sequence of factorials
(n!)n∈N is easy to compute infinitely often.

Proof. It is easy to see that
∑2n
i=0
(2n
i

)
xi = (x + 1)2n is computable by a constant-free

algebraic circuit of size O(n) via repeated squaring. Let

fn(y) =
∑

e∈{0,1}n+1

(
2n

j(e)

)
ye.

The contrapositive of Conjecture 6.4 yields a constant-free circuit of size O(nc) which
computes fn for some absolute constant c. Let an−1 = 1 and a0 = · · · = an−2 = an = 0.
Then fn(a) =

( 2n
2n−1

)
+ 1. By evaluating the circuit for fn at a and subtracting 1, we obtain

a circuit of size O(nc) which computes
( 2n

2n−1

)
.
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We now follow the argument of Lemma 6.3 to construct circuits of size O(nc+1) to
compute (2n!)n∈N. By definition, we have

2n! =
(

2n

2n−1

)
(2n−1!)2

=
(

2n

2n−1

)(
2n−1

2n−2

)2

(2n−2!)4

...

=
n−1∏
i=0

(
2n−i

2n−i−1

)2i

.

Using the fact that we fact that we can compute
( 2n

2n−1

)
by a circuit of size O(nc), we obtain

τ(2n!) 6
n−1∑
i=0

τ

((
2n−i

2n−i−1

)2i)
6
n−1∑
i=0

O(nc+1) 6 O(nc+2).

Hence the factorials are easy to compute infinitely often. J

It is unclear whether there is meaningful evidence to suggest that the factorials are not
easy to compute at numbers of the form 2n. Because of this, Theorem 6.5 may be best
viewed as evidence that if Conjecture 6.4 is true, the proof will not be straightforward.

Conjecture 6.4 can be seen as a base-two converse to Lemma 2.6. Instead, we might
consider the following strengthening of Conjecture 6.4 to all number bases.

I Conjecture 6.6. Let gm,d(x) =
∑
a αax

a be an m-variate degree d polynomial. Let
k ∈ N and let j : JkKblogk dc+1 → Jkblogk dc+1K be given by j(e) =

∑blogk dc+1
i=1 eik

i−1,
that is, j(e) is the number whose base-k representation corresponds to e. Let y =
(y1,1, . . . , y1,blogk dc+1, . . . , ym,1, . . . , ym,blogk dc+1) and define

fm,d(y) =
∑

e∈JkKm×blogk dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires
constant-free circuits of size sΩ(1) −Θ(m log d) to compute.

We can show that this stronger conjecture is less likely to hold than Conjecture 6.4.

I Theorem 6.7. Suppose Conjecture 6.6 holds over Q. Then (n!)n∈N is easy to compute.

Proof. By Lemma 6.3, it suffices to show that the central binomial coefficients
(2n
n

)
n∈N are

easy to compute. Let n ∈ N be given. There is constant-free circuit of size O(logn) which
computes g(x) = (x+ 1)2n. Consider the polynomial

f(y1, yn) =
n−1∑
i=0

n−1∑
j=0

(
2n

i+ jn

)
yi1y

j
n,

where by convention
(
n
k

)
= 0 when n < k. Note that

f(x, xn) =
n−1∑
i=0

n−1∑
j=0

(
2n

i+ jn

)
xi+jn =

n2−1∑
k=0

(
2n
k

)
xk =

2n∑
k=0

(
2n
k

)
xk = (x+ 1)2n.
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The contrapositive of Conjecture 6.6 implies that f is computable by a constant-free circuit
of size O(logc n) for some absolute constant c. We now evaluate f(0, 1) to obtain

f(0, 1) =
n−1∑
j=0

(
2n
jn

)
=
(

2n
0

)
+
(

2n
n

)
+
(

2n
2n

)
=
(

2n
n

)
+ 2.

By computing f(0, 1)− 2, we obtain a constant-free circuit of size O(logc n) which computes(2n
n

)
. Hence the central binomial coefficients are easy to compute. J

Note that the results of this section only give evidence that Conjecture 6.4 and Conjec-
ture 6.6 do not hold over fields of characteristic zero. Over fields of positive characteristic, it is
unclear whether these conjectures are likely to be true or false. This is somewhat interesting,
as if Conjecture 6.4 holds over fields of positive characteristic, then we can replace constant-
variate hardness with multivariate hardness in our extension of the Kabanets-Impagliazzo
generator to fields of small characteristic.

7 Conclusion and Open Problems

In this work, we gave the first instantiation of the algebraic hardness-randomness paradigm
over fields of small characteristic. Our main tool was the mod-p decomposition, which
we used to efficiently compute pth roots of circuits which depend on a small number of
variables. This allowed us to extend known hardness-randomness tradeoffs due to Kabanets
and Impagliazzo [21] to fields of small characteristic under seemingly stronger hardness
assumptions. We also constructed a hitting set generator which, under suitable hardness
assumptions, provides a near-complete derandomization of polynomial identity testing. As
our hardness assumptions are somewhat atypical, we compared them to more standard
hardness assumptions and gave a conditional result which says that our hardness assumptions
are not implied by standard ones.

A number of problems in low-characteristic derandomization remain open, some of which
we have pointed out earlier in this work. Here, we mention some challenges which our
techniques are not able to resolve.
1. Is it possible to obtain hardness-randomness tradeoffs over fields of small characteristic

using a strongly explicit family of hard multilinear polynomials as opposed to constant-
variate polynomials?

2. Let F be a field of characteristic p > 0, where p is some fixed constant. Suppose
f(x)p ∈ F[x] is an n-variate polynomial which can be computed by a circuit of size s over
F. Is there a circuit of size sO(1) which computes f(x) in the case that n = ω(log s)?

3. In the conclusion of Theorem 5.1, is it possible to obtain a hitting set of size sO(1)? If
so, this would give a construction of a hitting set generator over low characteristic fields
which qualitatively matches the parameters of the generator of Guo, Kumar, Saptharishi,
and Solomon [17].

4. Is it possible to lift lower bounds from the multivariate regime to the constant-variate
regime? It seems like the answer may be “no,” but our evidence thus far only applies to
constant-free circuits over fields of characteristic zero. What can we say if we remove the
constant-free restriction? What about fields of positive characteristic?
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Abstract
In this paper, we analyze the sum of squares hierarchy (SOS) on the ordering principle on n elements
(which has N = Θ(n2) variables). We prove that degree O(

√
nlog(n)) SOS can prove the ordering

principle. We then show that this upper bound is essentially tight by proving that for any ε > 0,
SOS requires degree Ω(n 1

2−ε) to prove the ordering principle.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases sum of squares hierarchy, proof complexity, ordering principle

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.38

Funding This work was supported by the Knut and Alice Wallenberg Foundation, the European
Research Council, and the Swedish Research Council.

Acknowledgements The author would like to thank Marc Vinyals for proposing this problem. The
author would also like to thank Prahladh Harsha, Toniann Pitassi, and anonymous reviewers for
helpful comments on this paper.

1 Introduction

In proof complexity, we study how easy or difficult it is to prove or refute various statements.
Proof complexity is an extremely rich field, so we will not attempt to give an overview of
proof complexity here (for a recent survey of proof complexity, see [15]). Instead, we will
only describe the particular proof system and the particular statement we are considering,
namely the sum of squares hierarchy (SOS), and the ordering principle.

SOS can be described in terms of sum of squares/Positivstellensatz proofs (which we
write as SOS proofs for brevity). SOS proofs have the following nice properties:
1. SOS proofs are broadly applicable as they are complete for systems of polynomial equations

over R. In other words, for any system of polynomial equations over R which is infeasible,
there is an SOS proof that it is infeasible [16].

2. SOS proofs are surprisingly powerful. In particular, SOS captures both spectral methods
and powerful inequalities such as Cauchy-Schwarz and variants of hypercontractivity [2],
which means that much of our mathematical reasoning can be captured by SOS proofs.

3. In some sense, SOS proofs are simple. In particular, SOS proofs only use polynomial
equalities and the fact that squares are non-negative over R.

SOS has been extensively studied, so we will not give an overview of what is known about
SOS here. To learn more about SOS, see the following survey on SOS [3] and the following
recent seminars/courses on SOS [4, 9, 11, 12].

The ordering principle (which has N = Θ(n2) variables) states that if we have elements
a1, . . . , an which have an ordering and no two elements are equal then some element ai
must be minimal. The ordering principle is a very interesting example in proof complexity
because for several proof systems, it has a small size proof but any proof must have high
width/degree.

The ordering principle was first considered by Krishnamurthy [10] who conjectured that it
was hard for the resolution proof system. This conjecture was refuted by Stalmark [17], who
showed that the ordering principle has a polynomial size resolution proof based on induction.
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However, any resolution proof of the ordering principle must have width Ω(n) = Ω(
√
N).

While this is a trivial statement because it takes width n to even describe the ordering
principle, Bonet and Galesi [6] showed that the ordering principle can be modified to give a
statement which can be described with constant width but resolution still requires width
Ω(n) = Ω(

√
N) to prove it. This showed that the width/size tradeoff of Ben-Sasson and

Wigderson [5] (which was based on the degree/size tradeoff shown for polynomial calculus by
Impagliazzo, Pudlák, and Sgall [8]) is essentially tight.

Later, Ω(n) degree lower bounds for the ordering principle were also shown for polynomial
calculus [7] and for the Sherali-Adams hierarchy. However, non-trivial SOS degree bounds for
the ordering principle were previously unknown. Thus, a natural question is, does SOS also
require degree Ω(n) to prove the ordering principle or is there an SOS proof of the ordering
principle which has smaller degree?

1.1 Our Results
In this paper, we show almost tight upper and lower SOS degree bounds for the ordering
principle. In particular, we show the following theorems:

I Theorem 1. Degree O(
√
nlog(n)) SOS can prove the ordering principle on n elements.

I Theorem 2. For any constant ε > 0 there is a constant Cε > 0 such that for all n ∈ N,
degree Cεn

1
2−ε SOS cannot prove the ordering principle on n elements.

Theorem 1 shows that looking at degree, SOS is more powerful than resolution, polynomial
calculus, and the Sherali-Adams hierarchy for proving the ordering principle. This also
implies that the ordering principle is not a tight example for the size/degree trade-off for
SOS which was recently shown by Atserias and Hakoniemi [1]. In particular, Atserias and
Hakoniemi show [1] that if the variables are Boolean and there is an SOS proof of size S
then there must be an SOS proof of degree O(

√
Nlog(S) + k) where N is the number of

variables and k is the maximum degree of an axiom (which is usually constant). According
to this bound, a statement such as the ordering principle which has a polynomial size proof
could still require degree Ω̃(

√
N) to prove. However, Theorem 1 shows that the ordering

principle has an SOS proof of degree Õ( 4
√
N), so there is a considerable gap. On the other

hand, Theorem 2 shows that Theorem 1 is essentially tight and thus the ordering principle
does still give an example where there is a small SOS proof yet any SOS proof must have
high degree.
I Remark 3. We should note that our encoding of the ordering principle is tailored to
SOS and differs from previous encodings of the ordering principle. In particular, we use
non-Boolean auxiliary variables, so the size/degree trade-off for SOS doesn’t actually apply to
our encoding. That said, our upper bound also applies to previous encodings of the ordering
principle (for which the size/degree trade-off for SOS does apply) and with additional work,
we can also prove a slightly worse SOS lower bound for an encoding of the ordering principle
with only Boolean variables (for technical reasons which are likely an artefact of the proof,
the number of variables is increased to N = O(n 5

2 ) so the final lower bound is Ω(N 1
5−ε)).

This is discussed in Section 2.2.1 and Appendix A.

1.2 Outline
The remainder of the paper is organized as follows. In Section 2 we give some prelimiaries. In
Section 3, we give natural pseudo-expectation values for the ordering principle. In Section 4,
we prove our SOS upper bound. In Sections 5–9, we describe how to prove our SOS lower
bound.
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2 Preliminaries

In this section, we recall the definitions of SOS proofs and pseudo-expectation values and
describe the encoding of the ordering principle which we will analyze.

2.1 Sum of Squares/Positivstellensatz Proofs and Pseudo-expectation
Values

I Definition 4. Given a system of polynomial equations {si = 0} over R, a degree d SOS
proof of infeasibility is an equality of the form

−1 =
∑
i

fisi +
∑
j

g2
j

where
1. ∀i, deg(fi) + deg(si) ≤ d
2. ∀j, deg(gj) ≤ d

2 .

I Remark 5. This is a proof of infeasibility because if the equations {si = 0} were satisfied
we would have that ∀i, fisi = 0 and for all ∀j, g2

j ≥ 0, so we cannot possibly have that∑
i fisi +

∑
j g

2
j < 0.

In order to prove that there is no degree d SOS proof of infeasibility for a system of polynomial
equations over R, we use degree d pseudo-expectation values, which are defined as follows.

I Definition 6. Given a system of polynomial equations {si = 0} over R, degree d pseudo
expectation values are a linear map Ẽ from polynomials of degree at most d to R such that
1. Ẽ[1] = 1
2. ∀f, i, Ẽ[fsi] = 0 whenever deg(f) + deg(si) ≤ d
3. ∀g, Ẽ[g2] ≥ 0 whenever deg(g) ≤ d

2 .
As shown by the following proposition, these conditions are a weakening of the constraint
that we have expected values over an actual distribution of solutions. Thus, intuitively,
pseudo-expectations look like they are the expected values (up to degree d) over a distribution
of solutions, but they may not actually correspond to a distribution of solutions.

I Proposition 7. If Ω is an actual distribution of solutions to the equations {si = 0} over R
then
1. EΩ[1] = 1
2. ∀f, i, EΩ[fsi] = 0
3. ∀g,EΩ[g2] ≥ 0.

I Proposition 8. For a given system of polynomial equations {si = 0} over R, there cannot
be both degree d pseudo-expectation values and a degree d SOS proof of infeasibility.

Proof. Assume we have both degree d pseudo-epxectation values and a degree d SOS proof
of infeasibility. Applying the pseudo-expectation values to the SOS proof gives the following
contradiction:

−1 = Ẽ[−1] =
∑
i

Ẽ[fisi] +
∑
j

Ẽ[g2
j ] ≥ 0. J

CCC 2020
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2.2 Equations for the ordering principle
For our SOS bounds, we analyze the following system of infeasible equations which corresponds
to the negation of the ordering principle.

I Definition 9 (Ordering principle equations). The negation of the ordering principle says that
it is possible to have distinct ordered elements {a1, . . . , an} such that no aj is the minimum
element. We encode this with the folloing equations:
1. We have variables xij where we want that xij = 1 if ai < aj and xij = 0 if ai > aj. We

also have auxiliary variables {zj : j ∈ [n]}.
2. ∀i 6= j, x2

ij = xij and xij = 1− xji (ordering)
3. For all distinct i, j, k, xijxjk(1− xik) = 0 (transitivity)
4. ∀j,

∑
i 6=j xij = 1 + z2

j (for all j ∈ [n], aj is not the minimum element of {a1, . . . , an})
We call this system of equations the ordering principle equations.

I Remark 10. In this encoding of the negation of the ordering principle, we use the auxiliary
variables {zj : j ∈ [n]} so that we can express the statement that ∀j,∃i 6= j : xij = 1 as
polynomial equalities of low degree.

2.2.1 Relationship to other encodings of the negation of the ordering
principle

The equations in Definition 9 are tailored for SOS, so they are not the same as the encodings
of the negation of ordering principle which were studied in prior works [6, 7]. We now discuss
this difference and how it affects our results.

For resolution, the following axioms encode the negation of the ordering principle:
1. We have variables xij where we want that xij is true if ai < aj and xij is false if ai > aj .
2. ∀i 6= j, xij ∨ xji and ¬xij ∨ ¬xji (ordering)
3. For all distinct i, j, k, ¬xij ∨ ¬xjk ∨ xik = 0 (transitivity)
4. ∀j,

∨
i 6=j xij (for all j ∈ [n], aj is not the minimum element of {a1, . . . , an})

Translating this into polynomial equations, this gives us the following equations for polynomial
calculus:
1. We have variables xij where we want that xij = 1 if ai < aj and xij = 0 if ai > aj .
2. ∀i 6= j, x2

ij = xij and xij = 1− xji (ordering)
3. For all distinct i, j, k, xijxjk(1− xik) = 0 (transitivity)
4. ∀j,

∏
i 6=j (1− xij) = 0 (for all j ∈ [n], aj is not the minimum element of {a1, . . . , an})

However, as noted in the introduction, a width/degree lower bound of Ω(n) is trivial for these
encodings as the axioms already have width/degree n. To handle this, Bonet and Galesi [6]
used auxiliary variables to break up the axioms into constant width axioms. Galesi and
Lauria [7] instead considered the following ordering principle on graphs.

I Definition 11 (Ordering principle on graphs). Given a graph G with V (G) = [n], the
ordering principle on G says that if each vertex i ∈ [n] has a value ai and all of the values
are distinct then there must be some vertex whose value is less than its neighbors’ values.

When we take the negation of the ordering principle on a graph G, this changes our
axioms/equations as follows:
1. For resolution, instead of the axioms ∀j,

∨
i 6=j xij we have the axioms ∀j,

∨
i:(i,j)∈E(G) xij .

2. For polynomial calculus, instead of the equations ∀j,
∏
i 6=j (1− xij) = 0 we have the

equations ∀j,
∏
i:(i,j)∈E(G) (1− xij) = 0.
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I Remark 12. If G = Kn then the ordering principle on G is just the ordering principle
Galesi and Lauria [7] showed that if G is an expander then polynomial calculus requires
degree Ω(n) to refute these equations.

The ordering principle on graphs is a weaker statement than the ordering principle, so we
would expect that its negation would be easier to refute. This is indeed the case. As shown
by the following lemma, we can recover the equation

∑
i 6=j xij = 1 + z2

j from the equation∏
i:(i,j)∈E(G) (1− xij) = 0, except that z2

j is replaced by a sum of squares.

I Lemma 13. Given Boolean variables {xi : i ∈ [k]} (i.e. ∀i ∈ [k], x2
i = xi) and the equation∏k

i=1 (1− xi) = 0, we can deduce that
(∑k

i=1 xi

)
− 1 is a sum of squares.

Proof. Observe that modulo the axioms x2
i = xi,

k∑
i=1

xi − 1 = −
(

k∏
i=1

(1− xi)
)

+
∑

J⊆[k]:J 6=∅

(|J | − 1)
(∏
i∈J

xi

) ∏
i∈[k]\J

(1− xi)


= −

(
k∏
i=1

(1− xi)
)

+
∑

J⊆[k]:J 6=∅

(|J | − 1)
(∏
i∈J

x2
i

) ∏
i∈[k]\J

(1− xi)2

 .

To see this, observe that for any non-empty J ⊆ [k], if xi = 1 for all i ∈ J and xi = 0 for all
i /∈ J then the left and right sides are both |J | − 1. Similarly, if all of the xi are 0 then the
left and right sides are both −1. J

This implies that our SOS upper bound holds for the graph ordering principle as well as the
ordering principle. However, our SOS lower bound does not apply to the ordering principle on
expander graphs. Part of the reason is that our SOS lower bound relies heavily on symmetry
under permutations of [n].

There is one way in which the ordering principle equations are unsatisfactory for our
purposes. We want to show that the size/degree tradeoffs for SOS [1] cannot be improved
too much further. However, the auxiliary variables in the ordering principle equations are
not Boolean and this tradeoff only applies when all of the variables are Boolean. To fix this,
we show that we can modify the ordering principle equations so that we only have Boolean
variables but our SOS upper and lower bounds still hold. For details, see Appendix A.

3 Pseudo-expectation values for the ordering principle

In this section, we give natural candidate pseudo-expectation values Ẽn for the ordering
principle equations. In fact, Ẽn is essentially the only possible symmetric pseudo-expectation
values. In particular, in section 4 we will show that if Ẽn fails at degree d then there is an
SOS proof of degree at most 2d+ 2 that these equations are infeasible.

3.1 The candidate pseudo-expectation values Ẽn
As noted in Section 2, intuitively, pseudo-expectation values should look like the expected
values over a distribution of solutions. Also, as shown by the following lemma, since the
problem is symmetric under permutations of [n], we can take Ẽ to be symmetric as well.

I Lemma 14. If {si = 0} is a system of polynomial equations which is symmetric under
permutations of [n] then if there are degree d pseudo-expectation values Ẽ then there are
degree d pseudo-expectation values Ẽ′ which are symmetric under permutations of [n].

CCC 2020
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Proof. Given degree d pseudo-expectation values Ẽ, take Ẽ′ to be the linear map from
polynomials of degree at most d to R such that for all monomials p, Ẽ′[p] = Eπ∈Sn [Ẽ[π(p)]].
Now observe that
1. Ẽ′[1] = Eπ∈Sn [Ẽ[1]] = 1
2. ∀f, i : deg(f) + deg(si) ≤ d, Ẽ′[fsi] = Eπ∈Sn [Ẽ[π(f)π(si)]] = 0 because the system of

equations {si = 0} is symmetric under permutations of [n].
3. ∀g : deg(g) ≤ d

2 , Ẽ
′[g2] = Eπ∈Sn [Ẽ[π(g)2]] ≥ 0. J

Guided by this, we take the expected values over the uniform distribution over orderings of
x1, . . . , xn. These orderings are not solutions to the equations because each ordering causes
one equation

∑
i 6=j xij = 1 + z2

j to fail. However, a random ordering makes each individual
equation

∑
i 6=j xij = 1 + z2

j true with high probability, so the intuition is that low degree
SOS will not be able to detect that there is always one equation which fails.

I Definition 15. We define Un to be the uniform distribution over orderings of x1, . . . , xn, i.e.
for each permutation π : [n]→ [n] we have that with probability 1

n! , xπ(1) < xπ(2) < . . . < xπ(n)
and thus for all i < j, xπ(i)π(j) = 1 and xπ(j)π(i) = 0.

I Definition 16. Given a polynomial f({xij : i 6= j}), we define

Ẽn[f({xij : i 6= j})] = EUn [f ].

I Example 17. ∀i 6= j, Ẽn[xij ] = 1
2 because there is a 1

2 chance that i comes before j in a
random ordering.

I Example 18. For all distinct i, j, k, Ẽn[xijxjk] = 1
6 because there is a 1

6 chance that
i < j < k in a random ordering.

However, in order to fully define Ẽn we have to define Ẽn[p] for monomials p involving the z
variables. We can do this as follows.

I Definition 19 (Candidate pseudo-expectation values).
1. For all monomials p({xij : i, j ∈ [n], i 6= j}), we take Ẽn[p] = EUn [p].
2. For all monomials p({xij : i, j ∈ [n], i 6= j}), we take Ẽn

[(∏
j∈A zj

)
p
]

= 0 whenever
A ⊆ [n] is non-empty because each zj could be positive or negative.

3. For all monomials p({xij : i, j ∈ [n], i 6= j}, {zj : j ∈ [n]}) and all j ∈ [n], we take
Ẽn[z2

j p] = Ẽn

[(∑
i 6=j xij − 1

)
p
]
because we have that for all j, z2

j =
∑
i 6=j xij − 1.

3.2 Checking if Ẽn are pseudo-expectation values
We now discuss what needs to be checked in order to determine whether our candidate
pseudo-expectation values Ẽn are actually degree d pseudo-expectation values. To analyze
Ẽn, it is convenient to create a new variable wj which is equal to z2

j .

I Definition 20. Define wj =
∑
i 6=j xij − 1.

Observe that viewing everything in terms of the variables {xij} and {wj}, Ẽn is the expected
values over a distribution of solutions. This implies that the polynomial equalities obtained
by multiplying one of the ordering principle equations in Definition 9 by a monomial will
be satisfied at all degrees, not just up to degree d. However, each wj is supposed to be a
square but this is not actually the case for this distribution, so Ẽn may fail to give valid
pseudo-expectation values. In fact, this is the only way in which Ẽn can fail to give valid
pseudo-expectation values. We make this observation precise with the following lemma:
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I Lemma 21. If Ẽn
[(∏

j∈A wj

)
gA(({xij : i, j ∈ [n], i 6= j})2

]
≥ 0 whenever A ⊆ [n] and

|A|+ deg(gA) ≤ d
2 then Ẽn gives degree d pseudo-expectation values.

Proof. We first check that Ẽn[g2] ≥ 0 whenever deg(g) ≤ d
2 as this is the more interesting

part. Given a polynomial g of degree at most d
2 , decompose g as

g =
∑
A⊆[n]

∏
j∈A

zj

 gA(x1, . . . , xn)

where for all A ⊆ [n], |A|+ deg(gA) ≤ d
2 . Now observe that

Ẽn[g2] = Ẽn

 ∑
A,A′⊆[n]

∏
j∈A

zj
∏
j∈A′

zj

 gA(x1, . . . , xn)gA′(x1, . . . , xn)


=
∑
A⊆[n]

Ẽn

∏
j∈A

wj

 g2
A(x1, . . . , xn)

 ≥ 0.

We now check that the polynomial equalities obtained by multiplying one of the ordering
principle equations in Definition 9 by a monomial are satisfied. By the definition of Ẽn, we
have that for all monomials p and all j ∈ [n],

Ẽn[(
∑
i6=j

xij − 1− z2
j )p] = Ẽn[(

∑
i 6=j

xij − 1)p]− Ẽn[(
∑
i 6=j

xij − 1)p] = 0

To prove the other polynomial equalities, we use induction on the total degree of the {zj}
variables. For the base case, observe that
1. Ẽn[1] = EUn [1] = 1
2. For all monomials p({xij : i, j ∈ [n], i 6= j}) and for all ordering or transitivity constraints

si = 0, Ẽn[psi] = EUn [psi] = 0.
For the inductive step, if p is a monomial which is divisible by z2

j for some j then write
p = z2

j p
′. By the inductive hypothesis, for all ordering or transitivity constraints si = 0,

Ẽn[psi] = Ẽn[z2
j p
′si] = Ẽn[(

∑
i 6=j

xij − 1)p′si] = 0.

Finally, if p is a monomial of the form p =
(∏

j∈A zj

)
p′({xij : i, j ∈ [n], i 6= j}) where A 6= ∅

then for all ordering or transitivity constraints si = 0,

Ẽn[psi] = Ẽn

∏
j∈A

zj

 p′si

 = 0. J

4 O(
√
n log(n)) Degree SOS Upper Bound

In this section, we prove theorem 1 by constructing a degree O(
√
nlog(n)) proof of the ordering

principle. To construct this proof, we first find a polynomial g of degree O(
√
nlog(n)) such

that Ẽn[g2] < 0. We then show that there is an SOS proof (which in fact uses only polynomial
equalities) that Eπ∈Sn [π(g)2] = Ẽn[g2] < 0.
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4.1 Failure of Ẽn
We now show that Ẽn fails to give valid pseudo-expectation values at degree O(

√
nlog(n)).

I Theorem 22. For all n ≥ 4 there exists a polynomial g(w1) of degree d 1
2
√
n(log2(n) + 1)e

such that Ẽ[(z1g(w1))2] = EUn [w1g
2(w1)] < 0.

Proof. Observe that over the uniform distribution of orderings, w1 is equally likely to be
any integer in [−1, n − 2]. To make EUn [w1g

2(w1)] negative, we want g(w1) to have high
magnitude at w1 = −1 and small magnitude on [1, n− 2]. For this, we can use Chebyshev
polynomials. From Wikipedia [18],

I Definition 23. The mth Chebyshev polynomial can be expressed as
1. Tm(x) = cos(mcos−1(x)) if |x| ≤ 1
2. Tm(x) = 1

2

((
x+
√
x2 − 1

)m +
(
x−
√
x2 − 1

)m) if |x| ≥ 1.

I Theorem 24. For all integers m ≥ 0 and all x ∈ [−1, 1], |Tm(x)| ≤ 1.
We now take g(w1) = Tm(−1 + 2w1

n ) where m = d 1
2
√
n(log2(n) + 1)e and analyze g.

I Lemma 25. Taking g(w1) = Tm(−1 + 2w1
n ) where m = d 1

2
√
n(log2(n) + 1)e,

1. |g(−1)| ≥ n
2. For all w1 ∈ [0, n− 2], |g(w1)| ≤ 1.

Proof. The second statement follows immediately from Theorem 24 as when w1 ∈ [0, n− 2],
−1 + 2w1

n ∈ [−1, 1] so |g(w1)| = |Tm(−1 + 2w1
n )| ≤ 1. For the first statement, let ∆ = 2

n and
observe that when x = −1−∆,
1.
√
x2 − 1 =

√
(1 + ∆)2 − 1 ≥

√
2∆. Thus, |x−

√
x2 − 1| ≥ 1 +

√
2∆.

2. x+
√
x2 − 1 < 0 and x−

√
x2 − 1 < 0 so

|Tm(x)| = 1
2

(∣∣∣x+
√
x2 − 1

∣∣∣m +
∣∣∣x−√x2 − 1

∣∣∣m) ≥ (1 +
√

2∆)m

2 .

We now use the following proposition.

I Proposition 26. For all y ∈ [0, 1] and all m ≥ 0, (1 + y)m ≥ 2ym.

Proof. Observe that (1 + y)m =
(

(1 + y)
1
y

)ym
and if y ≤ 1 then (1 + y)

1
y ≥ 2. J

Since n ≥ 4, ∆ = 2
n ≤

1
2 and

√
2∆ ≤ 1. Applying Proposition 26 with y =

√
2∆ and recalling

that m = d 1
2
√
n(log2(n) + 1)e,

|g(−1)| = |Tm(−1−∆)| ≥ (1 +
√

2∆)m

2 ≥ 2
√

2∆m

2 = 2
2m√
n

2 ≥ 2log2(n)+12 = n. J

We can now complete the proof of Theorem 22. By Lemma 25,

EUn [w1g
′2(w1)] ≤ 1

n− 1(−n2 +
n−2∑
j=0

j) < 0. J
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4.2 Constructing an SOS proof of infeasibility
We now show that from the failure of Ẽn, we can construct an SOS proof that the ordering
principle equations are infeasible.

I Theorem 27. If there exists a polynomial g of degree at most d
2 such that Ẽn[g2] < 0 then

there exists an SOS proof of degree at most 2d+ 2 that the ordering principle equations are
infeasible.

Proof. To prove this theorem, we will show that for any monomial p({xi,j : i, j ∈ [n], i 6= j})
of degree at most d, there is a proof of degree at most 2d+ 2 that 1

n!
∑
π∈Sn π(p) = Ẽn[p]

which uses only polynomial equalities. To prove this, we observe that given arbitrary indices
i1, . . . , ik, we can split things into cases based on the order of ai1 , . . . , aik .

I Lemma 28. Given the ordering and transitivity axioms, for all r ∈ N, tuples of distinct
indices (i1, . . . , ir+1), and permutations π ∈ Sr,

r−1∏
j=1

xiπ(j)iπ(j+1) = xir+1iπ(1)

r−1∏
j=1

xiπ(j)iπ(j+1)

+
r−1∑
k=1

k−1∏
j=1

xiπ(j)iπ(j+1)

xiπ(k)irxiriπ(k+1)

 r−1∏
j=k+1

xiπ(j)iπ(j+1)


+
r−1∏
j=1

xiπ(j)iπ(j+1)xiπ(r)ir+1

and there is a degree r + 1 proof of this fact which uses only polynomial equalities.

I Remark 29. The idea behind this lemma is that we have found the correct ordering for
i1, . . . , ir and we are inserting ir+1 into the correct place.

Proof. Using the ordering and transitivity axioms,
1.
∏r−1
j=1 xiπ(j)iπ(j+1) = xir+1iπ(1)

(∏r−1
j=1 xiπ(j)iπ(j+1)

)
+ xiπ(1)ir+1

(∏r−1
j=1 xiπ(j)iπ(j+1)

)
2. For all k ∈ [r − 1],

xiπ(k)ir+1

r−1∏
j=1

xiπ(j)iπ(j+1)

= (xiπ(k)ir+1xir+1iπ(k+1) + xiπ(k)ir+1xiπ(k+1)ir+1)

r−1∏
j=1

xiπ(j)iπ(j+1)


= (xiπ(k)ir+1xir+1iπ(k+1) + xiπ(k+1)ir+1)

r−1∏
j=1

xiπ(j)iπ(j+1)


where the second equality follows because of the transitivity axiom

xiπ(k)iπ(k+1)xiπ(k+1)ir+1(1− xiπ(k)ir+1) = 0

which implies that xiπ(k)iπ(k+1)xiπ(k+1)ir+1xiπ(k)ir+1 = xiπ(k)iπ(k+1)xiπ(k+1)ir+1 .
3. For all k ∈ [r − 1], we have the transitivity axiom

xiπ(k)ir+1xir+1iπ(k+1)(1− xiπ(k)iπ(k+1)) = 0
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which implies that xiπ(k)ir+1xir+1iπ(k+1)xiπ(k)iπ(k+1) = xiπ(k)ir+1xir+1iπ(k+1) . Thus,

xiπ(k)ir+1xir+1iπ(k+1)

r−1∏
j=1

xiπ(j)iπ(j+1)

=

k−1∏
j=1

xiπ(j)iπ(j+1)

xiπ(k)irxiriπ(k+1)

 r−1∏
j=k+1

xiπ(j)iπ(j+1)

 .

The result follows by combining all of these equalities. J

I Corollary 30. Given the ordering and transitivity axioms, for all k and all sets of k distinct
indices {i1, . . . , ik},

1 =
∑
π∈Sk

k−1∏
j=1

xiπ(j)iπ(j+1)

and there is a degree k + 1 proof of this fact which uses only polynomial equalities.

I Corollary 31. For any monomial p({xi,j : i, j ∈ [n], i 6= j}) of degree d whose variables
contain a total of k indices i1, . . . , ik, there is a proof of degree at most d + k + 1 that
1
n!
∑
π∈Sn π(p) = Ẽn[p] which uses only polynomial equalities.

Proof sketch. By Corollary 30,

p =
∑
π∈Sk

k−1∏
j=1

xiπ(j)iπ(j+1)p

and there is a proof of this fact of degree at most d + k + 1 which uses only polynomial
equalities. Using the transitivity axioms, we can prove that

∑
π∈Sk

k−1∏
j=1

xiπ(j)iπ(j+1)p =
∑

π∈Sk:p=1 when xiπ(1)<...<xiπ(k)

k−1∏
j=1

xiπ(j)iπ(j+1) .

Using Corollary 30 again, this implies that there is a proof of degree at most d+ k+ 1 which
uses only polynomial equations that

1
n!
∑
π∈Sn

π(p) = Prπ∈Sn [p = 1 when xπ(1) < . . . < xπ(n)] = EUn [p] = Ẽn[p]. J

Now note that given a polynomial g of degree at most d
2 such that Ẽn[g2] < 0, g2 is a

polynomial of degree at most d in the variables {xij : i, j ∈ [n], i 6= j} and the variables of
every monomial of g2 contain a total of at most d indices. Thus, there is a proof of degree at
most 2d+ 2 that 1

n!
∑
π∈Sn π(g2) = Ẽn[g2] < 0 which uses only polynomial equalities and

this immediately gives us an SOS proof of degree at most 2d+ 2 that the ordering principle
equations are infeasible. J

Combining Theorem 22 and Theorem 27, we obtain an SOS proof of degree O(
√
nlog(n))

that the equations corresponding to the negation of the ordering principle are infeasible,
which proves Theorem 1.
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5 Lower Bound Overview

Proving the lower bound is surprisingly subtle. We proceed as follows.

IDefinition 32. We define Ωn,d to be the distribution on a variable u with support [0, n−d]∩Z
and the following probabilities:

Pr[u = k] =
(
n−k−1
d−1

)(
n
d

) .

1. In Section 6, we show that to prove our sum of squares lower bound, it is sufficient to show
that for all polynomials g∗ of degree at most d, for some d2 ≥ 2d, EΩn,d2

[(u−1)g∗(u)2] ≥ 0.
Equivalently,

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) ≥ g2

∗(0).

This reduces the problem to analyzing a distribution on one variable. For the precise
statement of this result, see Theorem 33.

2. In Section 7, we observe that an approximation to the above statement is the statement
that for some small ∆ > 0 (we will take ∆ = 2d2

n ), taking g2(x) = g∗
(
x
∆ + 1

)
,∫ ∞

x=0
g2

2(x)xe−xdx ≥ ∆2g2
2(−∆).

We then prove this approximate statement. For the precise statement of this result, see
Theorem 50.

3. In Section 8, we analyze the difference between ∆
∑∞
k=0 (k∆)e−k∆g2

2(k∆) and∫∞
x=0 g

2
2(x)xe−xdx and show that it is small. For the precise statement of this result, see

Theorem 67.
4. In Section 9, we analyze the difference between ∆

∑n−d2−1
k=0

(n−k−2
d2−1 )

( n−1
d2−1)

(k∆)g2
2(k∆) and

∆
∑∞
k=0 (k∆)e−k∆g2

2(k∆). For the precise statement of this result, see Theorem 70.
In Section 10, we put all of these pieces together to prove our SOS lower bound.

6 Reducing Checking Ẽ to Analyzing a Single-Variable Distribution

Recall that Ωn,d is the distribution on a variable u with support [0, n − d] ∩ Z and the
following probabilities:

Pr[u = k] =
(
n−k−1
d−1

)(
n
d

) .

In this section, we show that to check that our candidate pseudo-expectation values Ẽ2n are
valid, it is sufficient to analyze the distribution Ωn,d. In particular, we prove the following
theorem:

I Theorem 33. For all d, d2, n ∈ N such that 2d ≤ d2 ≤ n, if there is a polynomial g of
degree at most d

2 such that Ẽ2n[g2] < 0 then there is a polynomial g∗ : R→ R of degree at
most d such that EΩn,d2

[(u− 1)g∗(u)2] < 0. Equivalently,

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) < g2

∗(0).
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To see why this statement is equivalent, observe that

EΩn,d2
[(u− 1)g∗(u)2] =

n−d2∑
k=0

(
n−k−1
d2−1

)(
n
d2

) (k − 1)g2
∗(k)

=
(
n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n
d2

) kg2
∗(k + 1)

)
−
(
n−1
d2−1

)(
n
d2

) g2
∗(0).

Thus, EΩn,d2
[(u− 1)g∗(u)2] < 0 if and only if

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n
d2

) kg2
∗(k + 1) <

(
n−1
d2−1

)(
n
d2

) g2
∗(0).

Multiplying both sides of this inequality by ( nd2)
( n−1
d2−1)

, this is equivalent to

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) < g2

∗(0).

In the remainder of this section, we prove this theorem by starting with the polynomial g
and constructing the polynomial g∗.

6.1 Distinguished Indices of g
We first use symmetry to argue that we can take g to be symmetric under permutations of
all but d distinguished indices. For this, we use Theorem 4.1 in [13], which is essentially
implied by Corollary 2.6 of [14].

I Definition 34. The index degree of a polynomial g is the maximum number of indices
mentioned in any monomial of g.

I Example 35. g = x12x13 + x4
45 has index degree 3 and degree 4.

I Theorem 36. If Ẽ is a linear map from polynomials to R which is symmetric with respect
to permutations of [1, n] then for any polynomial g, we can write

Ẽ[g2] =
∑

I⊆[1,n],j:|I|≤indexdeg(g)

Ẽ[g2
Ij ]

where for all I, j,
1. gIj is symmetric with respect to permutations of [1, n] \ I
2. indexdeg(gIj) ≤ indexdeg(g) and deg(gIj) ≤ deg(g)
3. ∀i ∈ I,

∑
π∈S[1,n]\(I\{i})

π(gIj) = 0.

I Remark 37. The statement that deg(gIj) ≤ deg(g) is not in Theorem 4.1 as stated in [13]
but it follows from the proof.
By Theorem 36, if there is a polynomial g0 of degree at most d

2 such that Ẽ2n[g2
0 ] < 0 then

there is a polynomial g of degree at most d
2 such that

1. Ẽ2n[g2] < 0
2. g is symmetric under permutations of [2n] \ I for some I ⊆ [2n] such that |I| ≤

indexdeg(g0) ≤ 2deg(g0) ≤ d,
where indexdeg(g0) ≤ 2deg(g0) because all of our variables mention at most two indices.
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6.2 Decomposing g Based on zj Variables

We now show that we can choose g to be a polynomial of the form g =
(∏

j∈A zj

)
gA where

A ⊆ [n] and gA is a polynomial in the xij variables. To do this, just as in Section 3.2, we
decompose g as g =

∑
A⊆[n]:|A|≤ d2

(∏
j∈A zj

)
gA where each gA is a polynomial in the xij

variables and observe that

Ẽ2n[g2] = Ẽ2n

 ∑
A,A′⊆[n]

∏
j∈A

zj
∏
j∈A′

zj

 gAgA′


=

∑
A⊆[2n]

Ẽ2n

∏
j∈A

z2
j

 g2
A

.
If Ẽ2n[g2] < 0 then there must be an A ⊆ [2n] such that Ẽ2n[

(∏
j∈A z

2
j

)
g2
A] < 0. Thus, we

can take g =
(∏

j∈A zj

)
gA. Note that g =

(∏
j∈A zj

)
gA is symmetric under permutations

of [2n] \ I ′ where I ′ = I ∪A and thus |I ′| ≤ 2d.

6.3 Choosing an Ordering on the Distinguished Indices and Changing
Variables

We now further decompose Ẽ2n[g2] by observing that for any set of indices I ′′ = {i1, . . . , im},

Ẽ2n[g2] = Ẽ2n

 ∑
π∈Sm

m−1∏
j=1

xiπ(j)iπ(j+1)

 g2

 .
Since Ẽ2n[g2] < 0, there must be a π ∈ Sm such that Ẽ2n

[(∑
π∈Sm

∏m−1
j=1 xiπ(j)iπ(j+1)

)
g2
]
<

0. Thus, we can restrict our attention to Ẽ2n

[(∑
π∈Sm

∏m−1
j=1 xiπ(j)iπ(j+1)

)
g2
]
which effect-

ively imposes the ordering xiπ(1) < . . . < xiπ(m) .
For technical reasons, we take I ′′ to be I ′ = I ∪A plus some additional indices so that

|I ′′| = d2. Without loss of generality, we can assume that I ′′ = [d2] and π is the identity,
giving the ordering x1 < x2 < . . . < xd2 .

We now observe that under this ordering, for all j ∈ [d2],

z2
j = (j − 2) +

∑
i∈[2n]\[d2]

x2
ij .

Thus, for all j ∈ [2, d2], z2
j is a sum of squares so

(∏
j∈A\{1} z

2
j

)
g2
A is a sum of squares. This

implies that 1 ∈ A as otherwise Ẽ2n[g2] ≥ 0. Following similar logic as before, there is a
polynomial g{1} in the xij variables of degree at most d

2 − 1 such that

Ẽ2n

[(
d2−1∏
i=1

xi(i+1)

)
z2

1g
2
{1}

]
< 0.

Now observe that by symmetry, under the ordering x1 < x2 < . . . < xd2 , we can express g{1}
in terms of the following new variables:
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I Definition 38. For i ∈ [d2] ∪ {0}, we define the variable ui so that
1. u0 =

∑
j∈[n]\[d2] xj1 is the number of elements before a1.

2. For i ∈ [d2 − 1], ui =
∑
j∈[n]\[d2] xijxj(i+1) is the number of elements between ai and

ai+1.
3. ud2 =

∑
j∈[n]\[d2] xd2j is the number of elements after ad2 .

With these new variables,

Ẽ2n

[(
d2−1∏
i=1

xi(i+1)

)
z2

1g
2
{1}

]
= 1
d2!Eu0,...,ud2∈N∪{0}:

∑d2
j=0

uj=2n−d2
[(u0−1)g2

{1}(u0, . . . , ud2 )] < 0

where the 1
d2! term appears because the probability of having the ordering x1 < x2 < . . . < xd2

is 1
d2! .

6.4 Reducing to a Single Variable
We now complete the proof of Theorem 33 by constructing g∗(u0) and proving that it has
the needed properties. To construct g∗, we take

g∗(u0) = E
u1,...,ud2∈N∪{0}:

∑d2
j=1

uj=2n−d2−u0
[g{1}(u0, . . . , ud2)2].

We first need to check that g∗(u0) is indeed a polynomial of degree at most d in u0. This
follows from the following lemma:

I Lemma 39. For all d2 ∈ N and any polynomial p(u1, . . . , ud2) of degree at most d,

E
u1,...,ud2∈N∪{0}:

∑d2
j=1

uj=n′
p(u1, . . . , ud2)

is a polynomial of degree at most d in n′ (for n′ ∈ N ∪ {0}).

Proof sketch. We illustrate why this lemma is true by computing these expected values for
a few monomials in the variables {u1, . . . , ud2}. The ideas used in these computations can
be generalized to any monomial. The idea is to consider placing d2 − 1 dividing lines among
n′ labeled balls in a random order.

I Example 40. With 2 balls and 2 bins, the possibilities are as follows:
1. 12|: Balls 1 and 2 are in the first bin in the order 1, 2.
2. 21|: Balls 1 and 2 are in the first bin in the order 2, 1.
3. 1|2: Ball 1 is in the first bin and ball 2 is in the second bin.
4. 2|1: Ball 2 is in the first bin and ball 1 is in the second bin.
5. |12: Balls 1 and 2 are in the second bin in the order 1, 2.
6. |21: Balls 1 and 2 are in the second bin in the order 2, 1.
To analyze monomials in the variables {u1, . . . , ud2}, we write uj =

∑n′

i=1 tij where tij = 1 if
ball i is in bin j and tij = 0 otherwise.
1. By symmetry, the probability that a given ball is put into the first bin is 1

d2
. Thus,

E[u1] = n′E[ti1] = n′

d2
.

2. If we consider balls i and j where i 6= j, the probability that ball i is put into the first bin
is 1

d2
. If ball i is placed into the first bin, this effectively splits the first bin into two bins,

the part before ball i and the part after ball i. For ball j, the probability that it is put
into one of these parts is 2

d2+1 and the probability that it is put into the second bin is
1

d2+1 . Thus, E[ti1tj1] = 2
d2(d2+1) and E[ti1tj2] = 1

d2(d2+1) . This implies that E[u1u2] =
n′(n′ − 1)E[ti1tj2] = n′(n′−1)

d2(d2+1) and E[u2
1] = n′E[ti1] + n′(n′ − 1)E[ti1tj1] = n′

d2
+ 2n′(n′−1)

d2(d2+1) .
Following similar ideas, we can analyze any monomial of degree at most d and show that its
expected value is a polynomial in n′ of degree at most d. J



A. Potechin 38:15

To complete the proof of Theorem 33, we need one more technical lemma.

I Lemma 41. For all n, k, d2 ∈ N such that k ≤ n− d2,(
n−k−1
d2−1

)(
n−1
d2−1

) ≤ ((2n−k−1
d2−1

)(2n−1
d2−1

) )2

.

Proof. Observe that for all k′, n′ such that 0 < k′ ≤ n′,
(

2n′−k′
2n′

)2
= 1− k′

n′ + k′2

4n2 > 1− k′

n′ .
Now observe that((2n−k−1

d2−1
)(2n−1

d2−1
) )2

=
d2−1∏
j=1

(
2n− k − j

2n− j

)2
≥
d2−1∏
j=1

(
2n− k − 2j

2n− 2j

)2

≥
d2−1∏
j=1

n− k − j
n− j

=
(
n−k−1
d2−1

)(
n−1
d2−1

) . J

We now complete the proof of Theorem 33. Recall that Ωn,d2 is the distribution on a variable
u with support [0, n− d2] ∩ Z and the following probabilities

Pr[u = k] =
(
n−k−1
d2−1

)(
n
d2

) .

We have the following facts:
1. EΩ2n,d2

[(u− 1)g∗(u)] = E
u0,...,ud2∈N∪{0}:

∑d2
j=0

uj=2n−d2
[(u0 − 1)g2

{1}(u0, . . . , gd2)] < 0

2. For all u0 ∈ [0, 2n− d2] ∩ Z, g∗(u) ≥ 0
I Remark 42. Intuitively, g∗ should already be a sum of squares. However, we are not sure
how to prove this, so we instead show that g2

∗ is sufficient for our purposes.
Since EΩ2n,d2

[(u− 1)g∗(u)] < 0,

2n−d2∑
k=1

(2n−k−1
d2−1

)(2n
d2

) (k − 1)g∗(k) <
(2n−1
d2−1

)(2n
d2

) g∗(0)

which implies that
2n−d2∑
k=1

(2n−k−1
d2−1

)(2n−1
d2−1

) (k − 1)g∗(k)
g∗(0) < 1.

In turn, this implies that
2n−d2∑
k=1

((2n−k−1
d2−1

)(2n−1
d2−1

) )2

(k − 1)g
2
∗(k)
g2
∗(0) ≤

2n−d2∑
k=1

((2n−k−1
d2−1

)(2n−1
d2−1

) )2

(k − 1)2 g
2
∗(k)
g2
∗(0) < 1.

Using Lemma 41,
n−d2∑
k=1

(
n−k−1
d2−1

)(
n−1
d2−1

) (k − 1)g
2
∗(k)
g2
∗(0) ≤

2n−d2∑
k=1

((2n−k−1
d2−1

)(2n−1
d2−1

) )2

(k − 1)g
2
∗(k)
g2
∗(0) < 1.

Multiplying both sides by g2
∗(0),

n−d2∑
k=1

(
n−k−1
d2−1

)(
n−1
d2−1

) (k − 1)g2
∗(k) =

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) < g2

∗(0).

This implies that EΩn,d2
[(u− 1)g2

∗(u)] < 0, as needed.
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7 Approximate Analysis for Ωn,d2

To prove our SOS lower bound, we need to show that for any polynomial g∗ of degree at
most d, EΩn,d2

[(u− 1)g2
∗(u)] ≥ 0. Equivalently, we need to show that for any polynomial g∗

of degree at most d,

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) ≥ g2

∗(0).

7.1 Approximation by an Integral

The expression
∑n−d2−1
k=0

(n−k−2
d2−1 )

( n−1
d2−1)

kg2
∗(k + 1) is hard to analyze, so we approximate it by an

integral. Observe that as long as k << n, kd2
2 << n2 and k2d2 << n,(

n−k−2
d2−1

)(
n−1
d2−1

) =
d2−1∏
j=1

(
1− k

n

) n−j−k−1
n−j

1− k
n

≈
(

1− k

n

)d2−1
≈ e−

d2k
n

as

1−
n−j−k−1
n−j

1− k
n

= (n− k)(n− j)− n(n− j − k − 1)
(n− k)(n− j) = jk + n

(n− k)(n− j)

which is small. Taking ∆ = d2
n and g2(x) = g∗

(
x
∆ + 1

)
, approximately what we need to show

is that for all polynomials g2 of degree at most d,

1
∆

∞∑
j=0

(j∆)e−j∆g2
2(j∆) ≥ g2

2(−∆).

In turn, this statement is approximately the same as the statement that for all polynomials
g2 of degree at most d2,∫ ∞

x=0
g2

2(x)xe−xdx ≥ ∆2g2
2(−∆).

In the remainder of this section, we prove this statement when dd2 << n by analyzing the
distribution µ(x) = xe−x. In Sections 8 and 9, we will then analyze how to bound the
difference between this statement and the statement which we actually need to prove.

I Remark 43. For technical reasons, we will actually take ∆ = 2d2
n rather than ∆ = d2

n . For
details, see Section 9.

I Remark 44. We might think that the probability that x is much more than log(n) is
very small and can be ignored. If so, than using Chebyshev polynomials would cause this
statement to fail at degree Õ

(√
n
d

)
which is much less than

√
n. However, this is not correct.

Intuitively, since we are considering polynomials of degree up to d, we should consider the
point where xde−x becomes negligible, which is when x is a sufficiently large constant times
dlog(d).

Based on this, we can only ignore u0 which are a sufficiently large constant times dlog(d) nd2
.

Roughly speaking, we will want to ignore all u0 >
n
4 , so we want d2 to be at least Cdlog(d)

for some sufficiently large constant C. For details, see Section 9.
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7.2 Orthonormal Basis for µ(x) = xe−x

In order to analyze
∫∞
x=0 g

2(x)xe−xdx, it is very useful to find the unique orthonormal basis
{hk : k ∈ N ∪ {0}} for the distribution µ(x) = xe−x such that hk has degree k and the
leading coefficient of hk is positive. In this subsection, we find this orthonormal basis.

I Definition 45. Given two polynomials f and g, we define f · g =
∫∞
x=0 f(x)g(x)xe−xdx.

I Definition 46. We define hk to be the degree k polynomial such that the leading coefficient
of hk is positive, hk · hk = 1, and for all j < k, hj · hk = 0.

I Lemma 47.

hk(x) = 1√
k!(k + 1)!

k∑
j=0

(−1)k−j
(
k

j

)
(k + 1)!
(j + 1)!x

j

Proof.

I Proposition 48. xp · xq = (p+ q + 1)!
Computing directly using Gram-Schmidt, the first few polynomials in the orthonormal

basis are
1. h0 = 1
2. h1 = 1√

2 (x− 2)
3. h2 = 1√

12 (x2 − 6x+ 6)
4. h3 = 1√

144 (x3 − 12x2 + 36x− 24)
5. h4 = 1√

2880 (x4 − 20x3 + 120x2 − 240x+ 120).

To check the general pattern, we need to check that for all i ∈ [0, k − 1], hk · xi = 0 and
hk · hk = 1. To see this, observe that for all i ≥ 0,

hk · xi = 1√
k!(k + 1)!

k∑
j=0

(−1)k−j
(
k

j

)
(k + 1)!
(j + 1)! (i+ j + 1)!

= 1√
k!(k + 1)!

k∑
j=0

(−1)k−j
(
k

j

)(
i+ j + 1
j + 1

)
(k + 1)!i!.

Now observe that for all k and all functions f(j),

k∑
j=0

(−1)k−j
(
k

j

)
f(j) = (∆kf)(0)

where (∆f)(x) = f(x+ 1)− f(x).

I Proposition 49. If f = xi then ∆kf = 0 if i < k and ∆kf = k! if i = k.

Viewing
(
i+j+1
j+1

)
as a polynomial in j,(

i+ j + 1
j + 1

)
= (i+ j + 1)!

i!(j + 1)!
ji

i! + lower order terms

Putting everything together,
1. hk · xi = 0 whenever i ≤ k.
2. hk · hk = 1√

k!(k+1)!
(hk · xk) = k!(k+1)!

k!(k+1)! (∆
k
(
k+j+1
j+1

)
(0)) = 1. J
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7.3 Proof of the Approximate Statement
Now that we have the orthonormal basis for µ(x) = xe−x, we prove the approximate statement
we need.

I Theorem 50. For all d ∈ N and all ∆ > 0 such that 10(d + 1)2∆2e2d∆ ≤ 1, for any
polynomial g2 of degree at most d,∫ ∞

x=0
g2

2(x)xe−xdx ≥ 10∆2g2
2(−∆).

Proof. Given a polynomial g2 of degree at most d, write g2 =
∑d
k=0 akhk. Since {hk} is an

orthonormal basis for µ(x) = xe−x,∫ ∞
x=0

g2
2(x)xe−xdx =

d∑
k=0

a2
k.

Using Cauchy Schwarz, we have that

d∑
k=0
|ak| ≤

√√√√( d∑
k=0

a2
k

)(
d∑
k=0

1
)

=
√

(d+ 1)

√√√√ d∑
k=0

a2
k

which implies that
∑d
k=0 a

2
k ≥

(∑d

k=0
|ak|
)2

d+1 .
In order to upper bound |g2(−∆)|, we need to bound hk(x) near x = 0. For this, we use

the following lemma:

I Lemma 51. For all k ∈ N and all x ∈ R,

|hk(x)| ≤
√
k + 1ek|x|.

Proof. Observe that

hk(x) ≤ 1√
k!(k + 1)!

k∑
j=0

(
k

j

)
(k + 1)!
(j + 1)! |x|

j

≤
√
k + 1

k∑
j=0

(k|x|)j

j!(j + 1)! ≤
√
k + 1ek|x|. J

By Lemma 51,

|g2(−∆)| ≤
d∑
k=0
|ak|
√
k + 1ek∆ ≤

√
d+ 1ed∆

d∑
k=0
|ak|.

Thus, g2
2(−∆) ≤ (d+ 1)e2d∆

(∑d
k=0 |ak|

)2
.

Putting everything together, as long as 10(d + 1)2∆2e2d∆ ≤ 1,
∫∞
x=0 g

2(x)xe−xdx ≥
10∆2g2(−∆), as needed. J

8 Handling Numerical Integration Error

In this section, we show how to bound the difference between ∆
∑∞
j=0 (j∆)e−j∆g2

2(j∆) and∫∞
x=0 g

2
2(x)xe−xdx.
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8.1 Bounding Numerical Integration Error via Higher Derivatives
In this subsection, we describe how the numerical integration error can be bounded using
higher derivatives.

I Lemma 52. For any ∆ > 0 and any differentiable function f : [0,∞)→ R,∣∣∣∣∣∣
∫ ∞
x=0

f(x)dx−∆
∞∑
j=0

f(j∆)

∣∣∣∣∣∣ ≤ ∆
∫ ∞
x=0
|f ′(x)|dx.

Proof. This result follows by summing the following proposition over all j ∈ N ∪ {0} and
using the fact that |a+ b| ≤ |a|+ |b|.

I Proposition 53. For all j ∈ N ∪ {0},∣∣∣∣∣
∫ (j+1)∆

x=j∆
(f(x)− f(j∆))dx

∣∣∣∣∣ ≤ ∆
∫ (j+1)∆

x=j∆
|f ′(x)|dx.

Proof. Observe that for all j ∈ N ∪ {0}, for all x ∈ [j∆, (j + 1)∆],

|f(x)− f(j∆)| ≤
∫ (j+1)∆

x=j∆
|f ′(x)|dx.

Thus,∣∣∣∣∣
∫ (j+1)∆

x=j∆
(f(x)− f(j∆))dx

∣∣∣∣∣ ≤ ∆
∫ (j+1)∆

x=j∆
|f ′(x)|dx. J

J

Using higher derivatives, we can get better bounds on the error.

I Lemma 54. For any ∆ > 0 and any twice differentiable function f : [0,∞)→ R,∣∣∣∣∣∣
∫ ∞
x=0

f(x)dx−∆
∞∑
j=0

f(j∆) + ∆
2 f(0)

∣∣∣∣∣∣ ≤ ∆2
∫ ∞
x=0
|f ′′(x)|dx.

Proof. This result follows from summing the following lemma over all j ∈ N ∪{0} and using
the fact that |a+ b| ≤ |a|+ |b|.

I Lemma 55. For all j ∈ N ∪ {0},∣∣∣∣∣
∫ (j+1)∆

x=j∆
f(x)dx− ∆

2 (f(j∆) + f((j + 1)∆))

∣∣∣∣∣ ≤ ∆2
∫ (j+1)∆

x=j∆
|f ′′(x)|dx.

Proof. We prove this lemma using the following estimate of f(x) for x ∈ [j∆, (j + 1)∆]

I Proposition 56. For all x ∈ [j∆, (j + 1)∆],

|f(x)− f(j∆)− (x− j∆)f ′(j∆)| ≤ (x− j∆)
∫ (j+1)∆

x=j∆
|f ′′(x)|dx.
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Proof. Observe that for all j ∈ N ∪ {0}, for all x ∈ [j∆, (j + 1)∆],

|f ′(x)− f ′(j∆)| ≤
∫ (j+1)∆

x=j∆
|f ′′(x)|.

Taking the integral of this equation from j∆ to x and using the fact that |a+ b| ≤ |a|+ |b|,

|f(x)− f(j∆)− (x− j∆)f ′(j∆)| ≤ (x− j∆)
∫ (j+1)∆

x=j∆
|f ′′(x)|. J

We now make the following observations:
1. By Proposition 56,

|f(j∆)+∆f ′(j∆)−f((j+1)∆)| = |f((j+1)∆)−f(j∆)−∆f ′(j∆)| ≤ ∆
∫ (j+1)∆

x=j∆
|f ′′(x)|dx.

2. Taking the integral of Proposition 56 from j∆ to (j + 1)∆ and using the fact that
|a+ b| ≤ |a|+ |b|,∣∣∣∣∣

∫ (j+1)∆

x=j∆
f(x)dx−∆f(j∆)− ∆2

2 f ′(j∆)

∣∣∣∣∣ ≤ ∆2

2

∫ (j+1)∆

x=j∆
|f ′′(x)|

Adding ∆
2 times the first equation to the second equation, we have that∣∣∣∣∣

∫ (j+1)∆

x=j∆
f(x)dx− ∆

2 (f(j∆) + f((j + 1)∆))

∣∣∣∣∣ ≤ ∆2
∫ (j+1)∆

x=j∆
|f ′′(x)|dx

as needed. J

J

We now generalize this argument to (t+1)th derivatives.

I Definition 57. For all t ∈ N, we define Mt to be the (t+ 1)× (t+ 1) matrix with entries
(Mt)ab = (b− 1)(a−1) where (Mt)11 = 1. Note that Mt is a Vandermonde matrix and is thus
invertible.

I Definition 58. For all t ∈ N, we define vt to be the vector of length t + 1 with entries
(vt)a = ta−1

a and we define ct = M−1
t vt.

I Lemma 59. For all t ∈ N, for any ∆ > 0 and any function f : [0,∞)→ R which can be
differentiated t+ 1 times,∣∣∣∣∣∣1t

(
t−1∑
b=0

∫ ∞
x=b∆

f(x)dx
)
−∆

∞∑
j=0

f(j∆) + ∆
t−1∑
j=0

 t∑
b=j+1

(ct)b+1

 f(j∆)

∣∣∣∣∣∣
≤ (t∆)t+1

(
t

(t+ 1)! +
∑t
b=1 |(ct)b+1|

t!

)∫ ∞
x=0
|f (t+1)(x)|dx.

Proof. This result follows from summing the following lemma over all j ∈ N ∪ {0}:
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I Lemma 60. For all j ∈ N ∪ {0},∣∣∣∣∣1t
∫ (j+t)∆

x=j∆
f(x)dx−∆

t∑
b=0

(ct)b+1f((j + b)∆)

∣∣∣∣∣
≤ (t∆)t+1

(
1

(t+ 1)! +
∑t
b=1 |(ct)b+1|
t(t!)

)∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx.

Proof. We prove this lemma using the following estimate of f(x) for x ∈ [j∆, (j + t)∆].

I Proposition 61. For all x ∈ [j∆, (j + t)∆],∣∣∣∣∣f(x)−
t∑

a=0

(x− j∆)a

a! f (a)(j∆)

∣∣∣∣∣ ≤ (x− j∆)t

t!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx.

Proof. Observe that for all j ∈ N ∪ {0}, for all x ∈ [j∆, (j + t)∆],

|f (t)(x)− f (t)(j∆)| ≤
∫ (j+t)∆

x=j∆
|f (t+1)(x)|.

Taking the integral of this equation from j∆ to x t times and using the fact that |a+ b| ≤
|a|+ |b|,∣∣∣∣∣f(x)−

t∑
a=0

(x− j∆)a

a! f (a)(j∆)

∣∣∣∣∣ ≤ (x− j∆)t

t!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx. J

We now make the following observations:
1. By Proposition 61, for all b ∈ [t],∣∣∣∣∣

t∑
a=0

(b∆)a

a! f (a)(j∆)− f(j∆ + b)

∣∣∣∣∣ ≤ (b∆)t

t!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|.

2. Taking the integral of Proposition 61 from j∆ to (j + t)∆ and using the fact that
|a+ b| ≤ |a|+ |b|,∣∣∣∣∣

∫ (j+t)∆

x=j∆
f(x)dx−

t∑
a=0

(t∆)a+1

(a+ 1)! f
(a)(j∆)

∣∣∣∣∣ ≤ (t∆)t+1

(t+ 1)!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx.

Adding (ct)b+1 times the first equation for each b ∈ [t] to 1
t times the second equation, we

have that

1
t

∫ (j+t)∆

x=j∆
f(x)dx−

t∑
a=0

∆a+1

(
ta

(a+ 1)! −
t∑
b=1

ba(ct)b+1

a!

)
f (a)(j∆)−

t∑
b=1

∆(ct)b+1f(j∆ + b)

≤ (t∆)t+1

(t+ 1)!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx+

t∑
b=1

∆|(ct)b+1|(b∆)t

t!

∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx

≤ (t∆)t+1
(

1
(t+ 1)! +

∑t

b=1 |(ct)b+1|
t(t!)

)∫ (j+t)∆

x=j∆
|f (t+1)(x)|dx.

Thus, it is sufficient to show the following:
1. If a = 0 then ta

(a+1)! −
∑t
b=1

ba(ct)b+1
a! = (ct)1.

2. If a ∈ [t] then ta

(a+1)! −
∑t
b=1

ba(ct)b+1
a! = 0.
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To see these statements, observe that

t∑
b=0

ba(ct)b+1 =
t+1∑
b=1

(Mt)(a+1),b(ct)b = (vt)a+1 = ta

a+ 1 .

Thus, for all a ∈ [t] ∪ {0}

ta

(a+ 1)! −
t∑

b=0

ba(ct)b+1

a! = 0.

When a = 0,
∑t
b=1

ba(ct)b+1
a! =

∑t
b=0

ba(ct)b+1
a! − (ct)1 so ta

(a+1)! −
∑t
b=1

ba(ct)b+1
a! = (ct)1.

When a > 0,
∑t
b=1

ba(ct)b+1
a! =

∑t
b=0

ba(ct)b+1
a! so ta

(a+1)! −
∑t
b=1

ba(ct)b+1
a! = 0. J

J

8.2 Bounds on hk
In order to use our tools, we need bounds on the integrals of the functions hk.

I Lemma 62. For all j, j′ ∈ N ∪ {0},
∫∞
x=0 |hj(x)hj′(x)|xe−xdx ≤ 1.

Proof. Observe that∫ ∞
x=0
|hj(x)hj′(x)|xe−xdx ≤

∫ ∞
x=0

h2
j (x) + h2

j′(x)
2 xe−xdx = 1. J

I Lemma 63. For all j ∈ N ∪ {0},
∫∞
x=0 h

2
j (x)e−xdx ≤ j + 8.

Proof. The cases where j = 0 and j = 1 can be computed directly. For j > 1, observe that
by Lemma 51,∫ ∞

x=0
h2
j (x)e−xdx =

∫ 1
j

x=0
h2
j (x)e−xdx+

∫ ∞
x= 1

j

h2
j (x)e−xdx

≤
∫ 1

j

x=0
(j + 1)e2jxe−xdx+ j

∫ ∞
x= 1

j

h2
j (x)xe−xdx

≤ (j + 1)
2j − 1 (e2 − 1) + j ≤ j + 8. J

I Corollary 64. For all j, j′ ∈ N ∪ {0},
∫∞
x=0 |hj(x)hj′(x)|e−xdx ≤

√
(j + 8)(j′ + 8).

Proof. Observe that by Lemma 63,

∫ ∞
x=0
|hj(x)hj′(x)|e−xdx ≤

∫ ∞
x=0

√
j′+8
j+8 h

2
j (x) +

√
j+8
j′+8h

2
j′(x)

2 e−xdx ≤
√

(j + 8)(j′ + 8).J

8.3 Derivative of hk
We also need to analyze what happens when we take the derivative of hk. Calculating directly,
the first few derivatives are:
1. d(1)

dx = 0
2. d(x−2)

dx = 1
3. d(x2−6x+6)

dx = 2x− 6 = 2(x− 2)− 2
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4. d(x3−12x2+36x−24)
dx = 3x2 − 24x+ 36 = 3(x2 − 6x+ 6)− 6(x− 2) + 6

5.

d(x4 − 20x3 + 120x2 − 240x+ 120)
dx

= 4x3 − 60x2 + 240x− 240

= 4(x3 − 12x2 + 36x− 24)− 12(x2 − 6x+ 6) + 24(x− 2)− 24.

The general pattern is as follows:

I Lemma 65. h′k(x) =
∑k−1
k′=0 (−1)k−1−k′ k!

k′!

√
k′!(k′+1)!√
k!(k+1)!

hj(x)

Proof. To prove this lemma, we need to show that the derivative of

√
k!(k + 1)!hk =

k∑
j=0

(−1)k−j
(
k

j

)
(k + 1)!
(j + 1)!x

j

is

k−1∑
k′=0

(−1)k−1−k′ k!
k′!

(
k′∑
j=0

(−1)k
′−j
(
k′

j

)
(k′ + 1)!
(j + 1)! x

j

)
=

k−1∑
k′=0

(−1)k−1−k′ k!
k′!

(√
k′!(k′ + 1)!hk′

)
.

To prove this, we use the following proposition.

I Proposition 66. For all n and all j,

n−1∑
k=j

(
k

j

)
=
(

n

j + 1

)
.

Proof. Observe that choosing j + 1 objects out of n objects is equivalent to choosing the
position k + 1 of the last object and then choosing the remaining j objects from the first k
objects. J

With this proposition in hand, we observe that

k−1∑
k′=0

(−1)k−1−k′ k!
k′!

 k′∑
j=0

(−1)k
′−j
(
k′

j

)
(k′ + 1)!
(j + 1)! x

j


=
k−1∑
j=0

(−1)k−1−j k!
(j + 1)!

k−1∑
k′=j

(k′ + 1)
(
k′

j

)xj

=
k−1∑
j=0

(−1)k−1−j k!
j!

k−1∑
k′=j

(
k′ + 1
j + 1

)xj

=
k−1∑
j=0

(−1)k−1−j k!
j!

(
k + 1
j + 2

)
xj

=
k∑
j=1

(−1)k−j k!
j!

(
k + 1
j + 1

)
(jxj−1) =

k∑
j=1

(−1)k−j
(
k

j

)
(k + 1)!
(j + 1)! (jxj−1)

=
d
(∑k

j=0 (−1)k−j
(
k
j

) (k+1)!
(j+1)!x

j
)

dx
. J
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8.4 Bounding the Numerical Integration Error
In this subsection, we use our tools to bound the numerical integration error

∆
∞∑
j=0

(j∆)e−j∆g2
2(j∆)−

∫ ∞
x=0

g2
2(x)xe−xdx.

I Theorem 67. For all t ∈ N, there exist constants Ct1, Ct2 > 0 such that for all ∆ > 0,
d ∈ N, and polynomials g2 of degree at most d,∣∣∣∣∣∣∆

∞∑
j=0

(j∆)e−j∆g2
2(j∆)−

∫ ∞
x=0

g2
2(x)xe−xdx

∣∣∣∣∣∣
≤
(
Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1) ∫ ∞

x=0
g2

2(x)xe−xdx.

Proof. To prove this, we bound
∫∞
x=0

∣∣∣∣dt+1(g2
2(x)xe−x)
dxt+1

∣∣∣∣dx.
I Lemma 68. For all t, d ∈ N If g2 =

∑d
i=0 aihi is a polynomial of degree at most d then

∫ ∞
x=0

∣∣∣∣∣dt+1 (g2(x)2xe−x
)

dxt+1

∣∣∣∣∣dx ≤ (t+ 4)(d+ 8)(d+ 1)(3d)t
(

d∑
i=0

a2
i

)
.

Proof. Observe that

dt+1 (g2(x)2xe−x
)

dxt+1 =
t+1∑
j1=0

t+1−j1∑
j2=0

(t+ 1)!(−1)t+1−j1−j2

j1!j2!(t+ 1− j1 − j2)!
dj1g2(x)
dxj1

dj2g2(x)
dxj2

xe−x

+
t∑

j1=0

t−j1∑
j2=0

(t+ 1)!(−1)t−j1−j2

j1!j2!(t− j1 − j2)!
dj1g2(x)
dxj1

dj2g2(x)
dxj2

e−x.

By Lemma 65, if f =
∑d
i=0 bihi is a polynomial of degree at most d then writing df

dx =∑d−1
i=0 b

′
ihi,

∑d−1
i=0 |b′i| ≤ d

∑d
i=0 |bi|. By Lemma 62 and Corollary 64, we have that for all

j, j′ ∈ [0, d]:
1. For all j, j′ ∈ N ∪ {0},

∫∞
x=0 |hj(x)hj′(x)|xe−xdx ≤ 1.

2. For all j, j′ ∈ N ∪ {0},
∫∞
x=0 |hj(x)hj′(x)|e−xdx ≤

√
(j + 8)(j′ + 8).

Putting these facts together, if g2 =
∑d
i=0 aihi then

∫ ∞
x=0

∣∣∣∣∣dt+1 (g2
2(x)xe−x

)
dxt+1

∣∣∣∣∣dx ≤ (3t+1dt+1 + (t+ 1)3tdt(d+ 8)
)( d∑

i=0
|ai|

)2

≤ (t+ 4)(d+ 8)(d+ 1)(3d)t
(

d∑
i=0

a2
i

)
. J

With this bound in hand, we now apply Lemma 59 with f(x) = g2
2(x)xe−x. For convenience,

we recall the statement of Lemma 59 here:
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For all t ∈ N, for any ∆ > 0 and any function f : [0,∞) → R which can be differentiated
t+ 1 times,∣∣∣∣∣∣1t

(
t−1∑
b=0

∫ ∞
x=b∆

f(x)dx
)
−∆

∞∑
j=0

f(j∆) + ∆
t−1∑
j=0

 t∑
b=j+1

(ct)b+1

 f(j∆)

∣∣∣∣∣∣
≤ (t∆)t+1

(
t

(t+ 1)! +
∑t
b=1 |(ct)b+1|

t!

)∫ ∞
x=0
|f (t+1)(x)|dx.

To use this bound, we need to bound f(x) = g2
2(x)xe−x when x ∈ [0, t∆].

I Lemma 69. If g2 =
∑d
i=0 aihi then for all x ∈ [0, t∆],

f(x) = g2(x)2xe−x ≤ t∆(d+ 1)2e2dt∆

(
d∑
i=0

a2
i

)
.

Proof. By Lemma 51, for all x ∈ R and all j ∈ N, |hj(x)| ≤
√
j + 1ej|x|. Thus, for all

x ∈ [0, t∆],

|g2(x)| =

∣∣∣∣∣
d∑
i=0

aihi(x)

∣∣∣∣∣ ≤ √d+ 1edt∆
(

d∑
i=0
|ai|

)

which implies that for all x ∈ [0, t∆]

g2(x)2xe−x ≤ t∆(d+ 1)e2dt∆

(
d∑
i=0
|ai|

)2

≤ t∆(d+ 1)2e2dt∆

(
d∑
i=0

a2
i

)
. J

Using Lemma 69, we make the following observations:
1.
∣∣∣∫∞0 f(x)dx− 1

t

(∑t−1
b=0
∫∞
x=b∆ f(x)dx

)∣∣∣ ≤ (t∆)2(d+ 1)2e2dt∆
(∑d

i=0 a
2
i

)
2.
∣∣∣∆∑t−1

j=0

(∑t
b=j+1 (ct)b+1

)
f(j∆)

∣∣∣ ≤ (t∆)2(d+ 1)2e2dt∆
(∑t

b=1 |(ct)b+1|
)(∑d

i=0 a
2
i

)
.

Putting everything together, there exist constants Ct1 and Ct2 such that∣∣∣∣∣∣∆
∞∑
j=0

(j∆)e−j∆g2
2(j∆)−

∫ ∞
x=0

g2
2(x)xe−xdx

∣∣∣∣∣∣ ≤ (Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1)( d∑
i=0

a2
i

)
.

Since
∫∞
x=0 g

2
2(x)xe−xdx =

∑d
i=0 a

2
i , the result follows. J

9 Handling the Difference Between Distributions

In this section, we prove the following theorem:

I Theorem 70. For all d, d2, n ∈ N such that (4d+ 2)ln(d2) + 2ln(20) ≤ d2 ≤
√
n

4 , for all
polynomials g2 of degree at most d, taking ∆ = 2d2

n ,

∆
n−d2−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆) ≥ ∆

2

∞∑
k=0

(k∆)e−k∆g2
2(k∆)− 1

10

∫ ∞
x=0

g2
2(x)xe−xdx.
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Proof. To prove this theorem, we prove the following two statements:
1. ∆

∑dn4 e−1
k=0

(
k∆
2
) (n−k−2

d2−1 )
( n−1
d2−1)

g2
2(k∆) ≥ ∆

4
∑dn4 e−1
k=0 (k∆)e−k∆g2

2(k∆)

2. ∆
∑∞
k=dn4 e

(k∆)e−k∆g2
2(k∆) ≤ 1

5
∫∞
x=0 g

2
2(x)xe−xdx.

Assuming these two statements, we have that

∆
n−d2−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆) ≥ ∆

dn4 e−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆)

≥ ∆
2

dn4 e−1∑
k=0

(k∆)e−k∆g2
2(k∆)

= ∆
2

 ∞∑
k=0

(k∆)e−k∆g2
2(k∆)−

∞∑
k=dn4 e

(k∆)e−k∆g2
2(k∆)


≥ ∆

2

∞∑
k=0

(k∆)e−k∆g2
2(k∆)− 1

10

∫ ∞
x=0

g2
2(x)xe−xdx.

We now prove these two statements. The first statement follows immediately from the
following lemma:

I Lemma 71. For all k, d2, n ∈ N such that d2 ≤
√
n

4 and k ≤ n
4 , taking ∆ = 2d2

n ,(
n−k−2
d2−1

)(
n−1
d2−1

) ≥ 1
2e
−k∆.

Proof. Observe that(
n−k−2
d2−1

)(
n−1
d2−1

) =
d2−1∏
j=1

n− j − k − 1
n− j

=
d2−1∏
j=1

(
e−

2k
n ·

1− k
n

e−
2k
n

·
n−j−k−1
n−j

1− k
n

)

≥ e−k∆

(
1− k

n

e−
2k
n

)d2−1
d2−1∏

j=1

n−j−k−1
n−j

1− k
n

 .

Thus, to prove this result, it is sufficient to lower bound
(

1− kn
e−

2k
n

)d2−1
and

∏d2−1
j=1

n−j−k−1
n−j
1− kn

.

I Proposition 72. For all k ∈ N such that k ≤ n
4 ,

1− kn
e−

2k
n
≥ 1.

Proof. Observe that for all x ≥ 0, e−x ≤ 1− x+ x2

2 . Taking x = 2k
n , if k ≤ n

4 then

e−
2k
n ≤ 1− 2k

n
+ 2k2

n2 ≤ 1− 2k
n

+ k

2n ≤ 1− k

n

and thus 1− kn
e−

2k
n
≥ 1. J

To bound
∏d2−1
j=1

n−j−k
n−j

1− k−1
n

, we prove the following lemma.
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I Lemma 73. For all j, k, n ∈ N such that j ≤ n
8 and k ≤ n

4 ,

n−j−k−1
n−j

1− k
n

≥
(

1− 2
n

)(
1− 2jk

n2

)
.

Proof. Observe that

1−
n−j−k−1
n−j

1− k
n

= (n− k)(n− j)− n(n− j − k − 1)
(n− k)(n− j) = jk + n

(n− k)(n− j)

≤
2jk + 32n

21
n2 = 2jk

n2 + 2
n
− 11

21n ≤
2jk
n2 + 2

n
− 4jk

n3 .

Rearranging this, we have that

n−j−k−1
n−j

1− k
n

≥ 1− 2jk
n2 −

2
n

+ 4jk
n3

as needed. J

Combining this lemma with the following proposition, we have the following corollary.

I Proposition 74. For all x ∈ [0, 1] and all k ∈ N, (1− x)k ≥ 1− kx.

I Corollary 75. For all d2, k, n ∈ N such that d2 ≤ n
8 and k ≤ n

4 ,

d2−1∏
j=1

n−j−k−1
n−j

1− k
n

≥
(

1− 2d2

n

)(
1− 2d2

2k

n2

)
.

Since d2 ≤
√
n

4 ≤ n
8 and k ≤ n

4 , combining Proposition 72 and Corollary 75 with the
inequality(

n−k−2
d2−1

)(
n−1
d2−1

) ≥ e−k∆

(
1− k

n

e−
2k
n

)d2−1
d2−1∏

j=1

n−j−k−1
n−j

1− k
n


we have that(

n−k−2
d2−1

)(
n−1
d2−1

) ≥ e−k∆
(

1− 2d2

n

)(
1− 2d2

2k

n2

)
≥ 1

2e
−k∆

which completes the proof of Lemma 71. J

We now prove the second statement needed to prove Theorem 70.

I Lemma 76. For all d, d2, n ∈ N such that d2 ≥ 4dln(d2) + 2ln(10n), for any polynomial
g2 of degree at most d, taking ∆ = 2d2

n

∆
∞∑

k=dn4 e

(k∆)e−k∆g2
2(k∆) ≤ 2n2

(
3
4

)d2−1(4n
d2

)d ∫ ∞
x=0

g2
2(x)xe−xdx.

Proof. To prove this, we upper bound |hk(x)| for large x.

I Lemma 77. For all k ∈ N and all x ≥ 1, |hk(x)| ≤ (2x)k.
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Proof. Recall that

hk(x) = 1√
k!(k + 1)!

k∑
j=0

(−1)k−j
(
k

j

)
(k + 1)!
(j + 1)!x

j .

Now observe that

k∑
j=0

(
k

j

)
1

(j + 1)! ≤
k∑
j=0

kj

j!2j = e
k
2 .

Thus, for all k ∈ N and all x ≥ 1, |hk(x)| ≤
√
k + 1e k2 xk.

If k ≥ 5 then
√
k + 1e k2 ≤ 2k and we are done. For k ∈ [1, 4] we check the polynomials

directly.

1. |h1(x)| =
∣∣∣ 1√

2 (x− 2)
∣∣∣ ≤ max { x√

2 ,
1√
2} < 2x

2. |h2(x)| =
∣∣∣ 1√

12 (x2 − 6x+ 6)
∣∣∣ ≤ max { x2

√
12 ,

5x√
12} < 4x2

3. |h3(x)| =
∣∣∣ 1√

144 (x3 − 12x2 + 36x− 24)
∣∣∣ ≤ max { 25x3

√
144 ,

12x2
√

144} < 8x3

4. |h4(x)| =
∣∣∣ 1√

2880 (x4 − 20x3 + 120x2 − 240x+ 120)
∣∣∣ ≤ max { 101x4

√
2880 ,

139x3
√

2880} < 16x4. J

I Corollary 78. For all d ∈ N, if g2 is a polynomial of degree at most d then for all y ≥ 1,

g2
2(y) ≤ 2(2y)2d

∫ ∞
x=0

g2
2(x)xe−xdx.

Proof. Writing g2 =
∑d
i=0 aihi, we have that

∫∞
x=0 g

2
2(x)2xe−xdx =

∑d
i=0 a

2
i and

g2
2(y) ≤

d∑
i=0

d∑
i′=0

aiai′(2y)i+i
′

≤
d∑
i=0

d∑
i′=0

(
1

2d−i′+1 a
2
i + 1

2d−i+1 a
2
i′

)
(2y)2d

≤

(
d∑
i=0

a2
i +

d∑
i′=0

a2
i′

)
(2y)2d = 2(2y)2d

d∑
i=0

a2
i . J

With this bound, we can now prove Lemma 76. By Corollary 78,

g2
2(y) ≤ 2(2y)2d

∫ ∞
x=0

g2
2(x)xe−xdx
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Applying this with y = k∆, since d2 ≥ (4d+ 2)ln(d2) + 2ln(20),

∆
∞∑

k=dn4 e

(k∆)e−k∆g2
2(k∆) ≤ ∆

∞∑
k=dn4 e

(2k∆)e−k∆(2k∆)2d
∫ ∞
x=0

g2
2(x)xe−xdx

≤

(∫ ∞
x=(dn4 e−1)∆

(2x)2d+1e−xdx

)∫ ∞
x=0

g2
2(x)xe−xdx

≤ 22d+1
2d+1∑
j=0

(2d+ 1)!
(2d+ 1− j)!

((⌈n
4

⌉
− 1
)

∆
)2d+1−j

e−(dn4 e−1)∆
(∫ ∞

x=0
g2

2(x)xe−xdx
)

≤ 22d+2
((⌈n

4

⌉
− 1
)

∆
)2d+1

e−(dn4 e−1)∆
(∫ ∞

x=0
g2

2(x)xe−xdx
)

≤ 2e∆d2
2d+1e−

d2
2

(∫ ∞
x=0

g2
2(x)xe−xdx

)
≤ 4e(2d+1)ln(d2)− d2

2

(∫ ∞
x=0

g2
2(x)xe−xdx

)
≤ 1

5

∫ ∞
x=0

g2
2(x)xe−xdx.

where the second inequality holds because (2x)2d+1e−x is a decreasing function whenever
x ≥ 2d+ 1. J

J

10 Putting Everything Together

In this section, we put everything together to prove our SOS lower bound.

10.1 Lower bounding our sum with an integral

We first combine Theorems 67 and 70 to lower bound our sum with an integral.

I Theorem 79. For all d, d2, t, n ∈ N, taking ∆ = 2d2
n , if the following conditions hold:

1. (4d+ 2)ln(d2) + 2ln(20) ≤ d2 ≤
√
n

4 .
2. Letting Ct1 and Ct2 be the constants given by Theorem 67,

Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1 ≤ 1
2

then for any polynomial g2 of degree at most d,

∆
n−d2−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆) ≥ 3

20

∫ ∞
x=0

g2
2(x)xe−xdx.

Proof. By Theorem 70, for all d, d2, n ∈ N such that 4dln(d2) + 2ln(10n) ≤ d2 ≤
√
n

4 , for all
polynomials g2 of degree at most d, taking ∆ = 2d2

n ,

∆
n−d2−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆) ≥ ∆

2

∞∑
k=0

(k∆)e−k∆g2
2(k∆)− 1

10

∫ ∞
x=0

g2
2(x)xe−xdx.
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By Theorem 67, for all ∆ > 0, d ∈ N, and polynomials g2 of degree at most d,∣∣∣∣∣∆
∞∑
k=0

(k∆)e−k∆g2
2(j∆)−

∫ ∞
x=0

g2
2(x)xe−xdx

∣∣∣∣∣
≤
(
Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1) ∫ ∞

x=0
g2

2(x)xe−xdx

≤ 1
2

∫ ∞
x=0

g2
2(x)xe−xdx.

Thus,

∆
∞∑
k=0

(k∆)e−k∆g2
2(j∆) ≥ 1

2

∫ ∞
x=0

g2
2(x)xe−xdx.

Combining these statements, ∆
∑n−d2−1
k=0 (k∆)(n−k−2

d2−1 )
( n−1
d2−1)

g2
2(k∆) ≥ 3

20
∫∞
x=0 g

2
2(x)xe−xdx, as

needed. J

10.2 Proof of the SOS lower bound
We now prove our SOS lower bound.

I Theorem 80. For all d, d2, t, n ∈ N, taking ∆ = 2d2
n , if the following conditions hold:

1. (4d+ 2)ln(d2) + 2ln(20) ≤ d2 ≤
√
n

4 .
2. 10(d+ 1)2∆2e2d∆ ≤ 1.
3. Letting Ct1 and Ct2 be the constants given by Theorem 67,

Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1 ≤ 1
2

then there is no polynomial g of degree at most d
2 such that Ẽ2n[g2] < 0.

Proof. We recall the following results.
1. By Theorem 33, since 2d ≤ d2 ≤ n, if there is a polynomial g of degree at most d

2 such
that Ẽ2n[g2] < 0 then there is a polynomial g∗ : R → R of degree at most d such that
EΩn,d2

[(u− 1)g∗(u)2] < 0. Equivalently,

n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) kg2
∗(k + 1) < g2

∗(0)

Taking g2(x) = g∗
(
x
∆ + 1

)
,

∆
n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) (k∆)g2
2(k∆) < ∆2g2

2(−∆).

2. By Theorem 79, under the given conditions,

∆
n−d2−1∑
k=0

(k∆)
(
n−k−2
d2−1

)(
n−1
d2−1

) g2
2(k∆) ≥ 3

20

∫ ∞
x=0

g2
2(x)xe−xdx.

3. By Theorem 50, since 10(d+ 1)2∆2e2d∆ ≤ 1, for any polynomial g2 of degree at most d,∫ ∞
x=0

g2
2(x)xe−xdx ≥ 10∆2g2

2(−∆).
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Putting everything together, if there is a polynomial g of degree at most d
2 such that

Ẽ2n[g2] < 0 then there is a polynomial g2 : R→ R of degree at most d such that

3
2∆2g2

2(−∆) ≤ ∆
n−d2−1∑
k=0

(
n−k−2
d2−1

)(
n−1
d2−1

) (k∆)g2
2(k∆) ≤ 3

20

∫ ∞
x=0

g2
2(x)xe−xdx < ∆2g2

2(−∆)

which is impossible. Thus, there is no polynomial g of degree at most d
2 such that Ẽ2n[g2] <

0. J

I Corollary 81. For all ε > 0, there exists a constant Cε such that for all n ∈ N, degree
Cεn

1
2−ε sum of squares cannot prove the ordering principle on n elements.

11 Conclusion

In this paper, we analyzed the performance of SOS for proving the ordering principle, showing
that SOS requires degree roughly

√
n to prove the ordering principle on n elements. This

shows that in terms of degree, SOS is more powerful than resolution, polynomial caluclus,
and the Sherali-Adams hierarchy, but SOS still requires high degree to prove the ordering
principle. While this mostly resolves the question of how powerful SOS is for proving the
ordering principle, there are several open questions remaining including the following:
1. Can we find a tight example for the size/degree trade-off for SOS which was recently

shown by Atserias and Hakoniemi [1]?
2. Can we prove SOS lower bounds for the graph ordering principle on expanders?
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A Analyzing the Ordering Principle with Boolean Variables

In this appendix, we describe how to modify the ordering principle equations so that they
only have Boolean variables. We then describe how to modify the pseudo-expectation values
and the SOS lower bound proof for these equations.

A.1 Equations for the ordering principle with Boolean auxiliary
variables

To encode the negation of the ordering principle using only Boolean variables, we simply
replace each z2

j with a sum of squares of Boolean auxiliary variables. This gives us the
following equations for the negation of the ordering principle:
1. We have variables xij where we want that xij = 1 if ai < aj and xij = 0 if ai > aj . We

also have auxiliary variables {zjk : j ∈ [n], k ∈ [m]} where m ≥ n− 2.
2. ∀i 6= j, x2

ij = xij and ∀j ∈ [n],∀k ∈ [m], z2
jk = zjk (variables are Boolean)

3. ∀i 6= j, xij = 1− xji (ordering)
4. For all distinct i, j, k, xijxjk(1− xik) = 0 (transitivity)
5. ∀j,

∑
i 6=j xij = 1+

∑m
k=1 z

2
jk (for all j ∈ [n], aj is not the minimum element of {a1, . . . , an})

A.2 Pseudo-expectation values with Boolean auxiliary variables
In order to give pseudo-expectation values for these equations, we need to give pseudo-
expectation values for polynomials involving the auxiliary variables. The idea for this
is as follows. Letting wj =

(∑
i 6=j xij

)
− 1, we want that wj of the auxiliary variables

{zjk : k ∈ [m]} are 1. If wj ∈ [0,m] ∩ Z, if we choose which of these auxiliary variables are 1
at random,
1. Pr(zj1 = 1) = wj

m ,
2. Pr(zj1 = 1, zj2 = 1) = wj(wj−1)

m(m−1)

3. More generally, for all K ⊆ [m], Pr(∀k ∈ K, zjk = 1) =
∏|K|−1

a=0
(wj−a)∏|K|−1

a=0
(m−a)

.

Note that these expressions are still defined for other wj including wj = −1 (though in this
case they aren’t actual probabilities over a distribution of solutions). Based on this, we have
the following candidate pseudo-expectation values:
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I Definition 82 (Candidate pseudo-expectation values with Boolean auxiliary varialbes).
1. For all polynomials p({xij : i, j ∈ [n], i 6= j}), we take Ẽn[p] = EUn [p].
2. For all j ∈ [n], for all K ⊆ [m] and all polynomials p which do not contain any of the

auxiliary variables {zjk : k ∈ [m]}, we take

Ẽ

[(∏
k∈K

zjk

)
p

]
=
Ẽ
[(∏|K|−1

a=0 (wj − a)
)
p
]

∏|K|−1
a=0 (m− a)

.

A.3 Reducing to one variable with Boolean auxiliary variables
Unfortunately, our lower bound for the ordering principle equations in Definition 9 does not
directly imply a lower bound for the ordering principle equations with Boolean auxiliary
variables. That said, we can still reduce the problem to one variable by using the same
techniques we used to prove Theorem 33. The resulting theorem is similar but not quite the
same as Theorem 33.

I Theorem 83. For all d, d2, n,m ∈ N such that 2d ≤ d2 ≤ n and m ≥ 15nd, if there is a
polynomial g of degree at most d2 such that Ẽ2n[g2] < 0 then there is a polynomial g∗ : R→ R
of degree at most d and a j ∈ [d] such that

n−d2∑
u=1

(
n−u−1
d2−1

)(2n−1
d2−1

) (∏j
a=1 (u− a)

j!

)
g2
∗(u) < 1.2g2

∗(0).

Proof sketch. Having Boolean auxiliary variables affects each part of the proof of Theorem 33
as follows:
1. Since the equations and pseudo-expectation values are still symmetric under permutations

of [2n], the argument in Section 6.1 that we can reduce to the case when g is symmetric
under permutations of [2n] \ I for some subset I ⊆ [2n] where |I| ≤ d still applies.

2. In Section 6.2, we decomposed Ẽ2n[g2] as

Ẽ2n[g2] =
∑

A⊆[2n]

Ẽ2n

∏
j∈A

z2
j

 g2
A

.
Here we can do a similar decomposition but it is somewhat more complicated.
I Definition 84. Given a j ∈ [n] and a nonempty K ⊆ [m], define

yjK =
∏
k∈K

zjk −
∏|K|−1
a=0 (wj − a)∏|K|−1
a=0 (m− a)

.

I Proposition 85. For any j ∈ [2n], any nonempty K ⊆ [m], and any polynomial p
which does not depend on the auxiliary variables {zjk : k ∈ [m]}, Ẽ2n[yjKp] = 0
With this proposition in mind, we decompose g as g =

∑
A⊆[2n] gA where

gA =
∑

{Kj :j∈A}

∏
j∈A

yjKj

 p{Kj :j∈A}(where each Kj is a nonempty subset of [m])

where each Kj is a nonempty subset of [m]. With this decomposition, we have that

Ẽ2n[g2] =
∑

A⊆[2n]

Ẽ2n[g2
A].
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Note that unlike before, here we have the auxiliary variables be part of gA. That said,
this allows us to assume that there are no auxiliary variables zjk where j /∈ A and that
everything is symmetric under permutations of [2n] \ I ′ where |I ′| ≤ 2d.

3. In Section 6.3, we restricted ourselves to a single ordering for the distinguished indices
and expressed everything in terms of the new variables u0, . . . , ud2 . We can still do this
with Boolean auxiliary variables, but this no longer removes all of the auxiliary variables.
What we get is a polynomial g{1}(u0, . . . , ud2 , {zj′k : j′ ∈ [d2]}) of degree at most d

2 such
that

Ẽ2n

[(
d2−1∏
i=1

xi(i+1)

)
g2
{1}

]
= 1
d2!Eu0,...,ud2∈N∪{0}:

∑d2
j=0

uj=2n−d2

[
Ẽ′u0,...,ud2

[g2
{1}(u0, . . . , ud2 , {zj′k : j′ ∈ [d2]})]

]
< 0

where Ẽ′u0,...,ud2
gives the pseudo-expectation values of the auxiliary variables for given

values of u0, . . . , ud2 .
4. In Section 6.4, we took

g∗(u0) = E
u1,...,ud2∈N∪{0}:

∑d2
j=1

uj=2n−d2−u0
[g{1}(u0, . . . , ud2)2].

Before we can do this here, we need to remove the auxiliary variables {z1k : k ∈ [m]}. We
can do this as follows:
a. Observe that looking at the auxiliary variables {z1k : k ∈ [m]}, Ẽ′u0,...,ud2

(and thus
Ẽ2n) is symmetric under permutations of [m]. Using Theorem 36, we can assume
that g{1} is symmetric (as far as the auxiliary variables {z1k : k ∈ [m]} are concerned)
under permutations of [m] \K for some K ⊆ [m] where |K| ≤ d.

b. Breaking things into cases based on the values of the auxiliary variables {z1k : k ∈ K},
we can assume that

g{1}(u0, . . . , ud2 , {zj′k : j′ ∈ [d2]}) =( ∏
k∈K1

z1k

)( ∏
k∈K2

(1− z1k)
)
p{1}(u0, . . . , ud2 , {zj′k : j′ ∈ [2, d2]})

for some K1,K2 ⊆ [m] such that K1 ∩K2 = ∅ and |K1 ∪K2| ≤ d.
We now take

g∗ = E
u1,...,ud2∈N∪{0}:

∑d2
j=1

uj=2n−d2−u0

[
Ẽ′u0,...,ud2

[p2
{1}(u0, . . . , ud2 , {zj′k : j′ ∈ [2, d2]})]

]
and we have that
a. g∗(u0) is a polynomial of degree at most d in u0.
b. For all u0 ∈ [0, 2n− d2] ∩ Z, g∗(u0) ≥ 0.
c. EΩ2n,d2

[(∏|K1|
a=1 (u− a)

)(∏|K2|
a=1 (m+ 2− u− a)

)
g∗(u)

]
< 0.

Equivalently, taking j = |K1| and j2 = |K2|,

2n−d2∑
u=0

(2n−u−1
d2−1

)(2n
d2

) (
j∏

a=1
(u− a)

)(
j2∏
a=1

(m+ 2− u− a)
)
g∗(u) < 0.

Manipulating this gives
2n−d2∑
u=1

(2n−u−1
d2−1

)(2n−1
d2−1

) (∏j
a=1 (u− a)

j!

)(
j2∏
a=1

m+ 2− u− a
m+ 2− a

)(
g∗(u)
g∗(0)

)
< 1,
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which implies that

2n−d2∑
u=1

((2n−u−1
d2−1

)(2n−1
d2−1

) )2(∏j
a=1 (u− a)

j!

)2( j2∏
a=1

m+ 2− u− a
m+ 2− a

)2(
g∗(u)
g∗(0)

)2
< 1.

We now make the following observations:

a. By Lemma 41, for all u ∈ N such that u ≤ n− d2,
(

(2n−u−1
d2−1 )

(2n−1
d2−1)

)2
≥ (n−u−1

d2−1 )
( n−1
d2−1)

.

b. For all u ∈ N,
(∏j

a=1
(u−a)
j!

)2
≥
∏j

a=1
(u−a)
j! .

c. Since m ≥ 15nd, for all u ∈ N such that u ≤ n− d2,(
j2∏
a=1

m+ 2− u− a
m+ 2− a

)2

≥
(

14nd− n
14nd

)2d
≥ 12

14 .

Putting everything together,

n−d2∑
u=1

(
n−u−1
d2−1

)(2n−1
d2−1

) (∏j
a=1 (u− a)

j!

)
g2
∗(u) < 1.2g2

∗(0)

as needed. J

A.4 SOS lower bound with Boolean auxiliary variables
When we have Boolean auxiliary variables, our SOS lower bound is modified as follows:

I Theorem 86. For all d, d2, t, n,m ∈ N such that m ≥ 15nd, if the following conditions
hold for all j ∈ [d]:
1. (4d+ 2)ln(d2) + 2ln(20) ≤ d2 ≤

√
n′

4
2. (n−1)!(n′−d2)!

(n′−1)!(n−d2)!(2j−1
j )∆2(d+ 1)2e2d(2j−1)∆ ≤ 1

10

3. Letting Ct1 and Ct2 be the constants given by Theorem 67,

Ct1(d∆)2e2td∆ + Ct2d(d∆)t+1 ≤ 1
2

where n′ = n− 2d+ 2 and ∆ = 2d2
n′ then there is no polynomial g of degree at most d

2 such
that Ẽ2n[g2] < 0.

I Remark 87. We believe the condition on m is an artefact of the proof and that we should
have essentially the same lower bound as long as m ≥ n − 2, though proving this would
require modifying the analysis further.

Proof. Assume there is a polynomial g of degree at most d
2 such that Ẽ2n[g2] < 0. By

Theorem 83, since 2d ≤ d2 ≤ n, there is a polynomial g∗ : R→ R of degree at most d and a
j ∈ [d] such that

n−d2∑
u=1

(
n−u−1
d2−1

)(2n−1
d2−1

) (∏j
a=1 (u− a)

j!

)
g2
∗(u) < 1.2g2

∗(0).

We transform this left side of this equation into the same form as the left hand side of
Theorem 79 using the following lemma.
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I Lemma 88. For all j, u ∈ N, 1
j!

(∏j
a=1 (u− a)

)
≥
(2j−1

j

)
(u− 2j + 1).

Proof. We prove this lemma by induction. When u ≤ 2j − 1, the result is trivial. When
u = 2j,

1
j!

(
j∏

a=1
(u− a)

)
=
(

2j − 1
j

)
=
(

2j − 1
j

)
(u− 2j + 1).

Now assume the result is true for u = k where k ≥ 2j and consider the case when u = k + 1.
By the inductive hypothesis,

1
j!

(
j∏

a=1
((k + 1)− a)

)
= k

k − j

(
1
j!

j∏
a=1

(k − a)
)
≥ k

k − j

((
2j − 1
j − 1

)
(k − 2j + 1)

)
≥ k − 2j + 2
k − 2j + 1

((
2j − 1
j − 1

)
(k − 2j + 1)

)
=
(

2j − 1
j

)
(k − 2j + 2).J

Applying Lemma 88, we have that

1.2g2
∗(0) >

n−d2∑
u=1

(
n−u−1
d2−1

)(
n−1
d2−1

) (∏j

a=1 (u− a)
j!

)
g2
∗(u) ≥

n−d2∑
u=2j−1

(
n−u−1
d2−1

)(
n−1
d2−1

) (∏j

a=1 (u− a)
j!

)
g2
∗(u)

≥
n−d2∑
u=2j−1

(
n−u−1
d2−1

)(
n−1
d2−1

) (2j − 1
j

)
(u− 2j + 1)g2

∗(u).

Taking k = u− 2j + 1, n′ = n− 2j + 2, ∆ = 2d2
n′ , and g2(x) = g∗

(
x
∆ + 2j − 1

)
,

1.2(n− 1)!(n′ − d2)!
(n′ − 1)!(n− d2)!

(2j−1
j

)∆2g2
2(−(2j − 1)∆) > ∆

n′−d2−1∑
k=0

(
n′−k−2
d2−1

)(
n′−1
d2−1

) (k∆)g2
2(k∆)

By Theorem 79, under the given conditions,

∆
n′−d2−1∑
k=0

(
n′−k−2
d2−1

)(
n′−1
d2−1

) (k∆)g2
2(k∆) ≥ 3

20

∫ ∞
x=0

g2
2(x)xe−xdx.

Thus,

3
20

∫ ∞
x=0

g2
2(x)xe−xdx < 1.2(n− 1)!(n′ − d2)!

(n′ − 1)!(n− d2)!
(2j−1

j

)∆2g2
2(−(2j − 1)∆).

Decomposing g2 as g2 =
∑d
i=0 cihi, observe that

1. 3
20
∫∞
x=0 g

2
2(x)xe−xdx = 3

20

(∑d
i=0 c

2
i

)
.

2. By Cauchy-Schwarz,

g2
2(−(2j − 1)∆) =

(
d∑
i=0

cihi(−(2j − 1)∆)
)2

≤

(
d∑
i=0

c2i

)(
d∑
i=0

hi(−(2j − 1)∆)2

)
.

By Lemma 51, for all i ∈ N and all x ∈ R, |hi(x)| ≤
√
i+ 1ei|x|. Thus,

g2
2(−(2j − 1)∆) ≤ (d+ 1)2e2d(2j−1)∆.
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Putting these pieces together,

3
20 <

1.2(n− 1)!(n′ − d2)!
(n′ − 1)!(n− d2)!

(2j−1
j

)∆2(d+ 1)2e2d(2j−1)∆.

However, (n−1)!(n′−d2)!
(n′−1)!(n−d2)!(2j−1

j )∆2(d+ 1)2e2d(2j−1)∆ ≤ 1
10 so this gives 3

20 = .15 < .12, which is
a contradiction. J

CCC 2020




	p000-Frontmatter
	Preface
	Awards
	Conference Organization
	External Reviewers

	p001-Ben-Aroya
	Introduction
	Erasure List-Decodable Codes
	Two-Source Extractors
	The Two-Source Extractor Construction
	Non-Strong Dispersers
	Organization

	Preliminaries
	Random Variables and Min-Entropy
	Condensers
	Two-Source Extractors
	Mergers
	Correlation Breakers with Advice
	Limited Independence and Non-Oblivious Bit-Fixing Sources

	Constant Degree Condensers
	The Unbalanced Two-Source Extractor Construction
	The Construction
	Two Subtleties
	The Analysis

	Strong Seeded Dispersers and Friends
	Strong Seeded Dispersers
	Non-strong dispersers
	Erasure List-Decodable Codes
	Ramsey Graphs

	Concluding Remarks and Open Problems

	p002-Chatterjee
	Introduction
	Algebraic Branching Programs
	Lower Bounds for Algebraic Branching Programs
	Previous Work
	Proof Overview

	Notations and Preliminaries
	A Decomposition Lemma
	Variety and its Dimension

	A Lower Bound for Algebraic Branching Programs
	A Robust Lower Bound for ABPs of Formal Degree at most n
	A lower bound for the general case

	Unlayered Algebraic Branching Programs
	Open problems

	p003-Scheder
	Introduction
	Previous Results: Hard Instances

	Our Results
	Notation
	The Formula

	All You Need to Know About PPSZ: Proof of Theorem 6
	Proof of Theorem 8
	Conclusion
	Existence of Common Lift

	p004-Cai
	Introduction
	Closure Properties
	FPRAS
	Hardness

	p005-Kumar
	Introduction
	Linear circuits and matrix factorization
	Matrix rigidity
	Data structure lower bounds
	Machine learning
	Previous work
	Our results
	Proof Overview

	Lower bounds for constant depth linear circuits
	Notation
	Shoup-Smolensky Dimension
	Upper bounding the Shoup-Smolensky dimension for Sparse Products
	Sidon sets and hard univariate matrices
	Hard matrices over finite fields
	Hard matrices over the Complex Numbers
	Lower bounds for depth-2 linear circuits

	Lower bounds via Hitting Sets
	Matrices with no sparse vectors in their kernel
	Construction over the Reals
	Construction over finite fields

	Lower bounds for symmetric circuits
	Lower bounds for invertible circuits

	Open Problems

	p006-Doron
	Introduction
	The ``Seed Recycling'' Approach
	The ``Iterated Restrictions'' Approach
	Log-Seed PRGs and Our Main Result
	Read-Once Depth-2 AC^0[oplus] Formulas
	Overview of Our Approach
	One Restriction
	Iterating the Restriction to Get a Full PRG


	Subset-Wise Symmetric Polynomials
	Gopalan and Yehudayoff's Bounds for Symmetric Polynomials
	Our Tail Bounds for Subset-Wise Symmetric Polynomials
	Non-probabilistic Tail Bound
	Probabilistic Tail Bound: Proof of Lemma 3

	Pseudorandomness Preliminaries
	Probability Basics
	Small Bias
	Limited Independence
	PARITY o AND Formulas
	Restrictions
	Pseudorandom Restrictions

	Applying a Single Restriction
	Restriction Construction
	Buckets
	Case I – There Exists a Heavy Bucket
	Case II – There Are No Heavy Buckets
	Handling Sparse Buckets
	Handling Well-Behaved Buckets
	Putting It Together
	I_{g} Almost Always Happens


	Full PRG via Iterated Restrictions
	Restrictions for Proper Formulas
	Full PRGs for Long Proper Formulas Meka et al., 2019
	Full PRGs for Width-O(log n) Formulas
	Arbitrary-Error PRGs for Width-O(log(n/epsilon)) Formulas
	PRGs for Any Width
	Proof of Theorem 1

	Directions for Further Work

	p007-Aaronson
	Introduction
	First result: QMA complexity of approximate counting
	Second result: Approximate counting with quantum samples

	Preliminaries
	Approximation theory
	Symmetric polynomials
	Complexity classes

	QMA complexity of approximate counting
	Lower bound for SBQP algorithms
	Lower bound for QMA

	Approximate counting with quantum samples and reflections
	The Laurent polynomial method
	Upper bounds
	Lower bound using the explosion argument
	Lower bound using dual polynomials
	Constructing the dual solution
	Intuition: ``gluing together'' two simpler dual solutions
	Intuition via complementary slackness
	Analysis of the dual solution Phi

	Approximate counting with classical samples
	Extending the lower bound to QSampling unitarily

	Discussion and open problems
	Approximate counting with QSamples and queries only
	Approximate counting to multiplicative factor 1+eps
	Other questions

	Followup work
	Establishing Equation 68
	A clean calculation establishing a loose version of equation 68
	The tight bound


	p008-Peleg
	Introduction
	Our Result
	Proof Idea
	On the relation to the proof of [Shpilka, 2019]

	Preliminaries
	Sylvester-Gallai Theorem and some of its Variants
	Resultant
	Rank of Quadratic Polynomials
	Projection Mappings

	Sylvester-Gallai theorem for quadratic polynomials
	The case {Q}={P}_1 cup{P}_3
	The case {Q}!={P}_1 cup{P}_3

	Proof of Theorem 44
	Q_o is of high rank
	The case m_2=0
	The case m_2!= 0

	Q_o is of Low Rank
	The case m_2=0
	The case m_2!= 0


	Conclusions and future research

	p009-Bhangale
	Introduction
	Organisation

	Preliminaries
	Analysis of Boolean functions
	Invariance Principle
	Unique Games

	Dictatorship Tests
	Dictatorship Test for Max-Cut
	Dictatorship Test for simultaneous Max-Cut
	Completeness
	Soundness


	Actual Reduction

	p010-Cheng
	Introduction
	Derandomizing Log-Space Algorithms
	Motivation: Recent Work on Hitting Sets
	The Constant-Width Setting
	Negative Result
	Interpretation

	Overview of Techniques
	Techniques for Theorem 1.3
	Techniques for Theorem 1.7
	Techniques for Theorem 4.3

	Related Work
	BPLsubseteq ZP*L
	Deterministically Simulating BPL with Very Low Error

	Outline of This Paper

	Derandomizing BPL Given a Hitting Set
	Derandomization Based on a Local Consistency Test
	Analysis

	Deterministic Samplers for Constant-Width ROBPs
	Setting Up the Reduction
	Correctness
	Efficiently Computing p~_f([lambda])
	Applying the Reduction

	Negative Result: A Barrier for Upgrading Hitting Sets to PRGs
	From PRGs with Moderate Error to HSGs with Tiny Threshold
	Construction of the Hitting Set H
	Proof of Correctness
	Efficiency

	Application: Unconditional Improved Hitting Sets for Large-Alphabet ROBPs
	Trading a Good Dependence on epsilon for a Good Dependence on n
	Putting Things Together to Prove Theorem 4.3

	Directions for Further Research
	Derandomizing BPP Given a Hitting Set

	p011-Cohen
	Introduction
	Tree codes: 4 colors suffice and are necessary
	Palette-alternating tree codes
	Palette-alternating tree codes: further discussion and generalization

	Interactive coding schemes
	Capacity approaching coding schemes via palette-alternating tree codes
	Proof idea

	Organization

	Preliminaries
	Coding for interactive communication
	Communication protocols
	The pointer jumping game
	 Resilient protocols and interactive coding schemes


	Binary Tree Codes: Four Colors Suffice
	Improving the distance

	Palette-Alternating Tree Codes
	The Interactive Coding Scheme
	Setting up the framework
	The coding scheme
	Part 1 of the coding scheme
	Part 2 of the coding scheme

	A simpler analysis with sub-optimal rate
	Optimal analysis


	p012-Garg
	Introduction
	Geometric Complexity Theory
	Invariant Theory
	Computational invariant theory, Mulmuley's problems and conjectures
	Our results
	Conclusion, open problems and future directions

	Preliminaries
	Basic facts from algebraic complexity

	Hardness of Generators for torus actions
	Invariant Theory for SL_n(C) and Mulmuley's conjecture
	Invariant Rings and Symmetric Tensors
	Hyperpfaffians


	p013-Coulson
	Introduction
	Paper organization
	Related work

	Solving a Unique Games problem with a partition function
	Polynomial interpolation
	Cluster expansion
	The random cluster model
	The cluster expansion

	Conclusions
	Phase transitions
	Potential barriers to improving Theorem 3
	Potential barriers to improving Theorem 4

	Details for the proof of Theorem 8
	Details for the proof of Theorem 10
	Preliminaries
	Proof of Lemma 22
	Maximization problems
	Improvements for small k

	Details for the proof of Theorem 9

	p014-Chaugule
	Introduction
	Notations and Preliminaries
	Models of computation
	Interpolation and Division elimination
	Algebraic independence and the Jacobian
	Taylor's expansion
	Two useful lemmas

	Symmetric polynomials
	Schur polynomials

	Proofs of main results
	Proof of Lemma 4
	Formula complexity of Schur polynomials
	Generalization to Skew Schur Polynomials

	Extensions of the results of Bläser and Jindal [Bläser and Jindal, 2018]
	Partial derivatives of a product of algebraically independent polynomials

	Open problems

	p015-Kabanets
	Introduction
	Results
	Lower bounds
	Pseudorandom generators
	Satisfiability algorithms
	Learning algorithms

	Techniques
	Concluding remarks
	Organization

	Preliminaries
	Notation
	De Morgan formulas and extensions
	Approximating polynomials
	Communication complexity
	Pseudorandomness
	Learning

	Lower bounds
	Pseudorandom generators
	The general framework
	Formulas of low-communication functions in the number-in-hand setting
	Applications: Fooling formulas of SYMs, LTFs, XORs, and ACAC0
	FORMULA-SYM and FORMULA-LTF
	FORMULA-XOR
	FORMULA-AC0

	Formulas of low number-on-forehead communication leaf gates
	Hardness based PRGs
	MKtP lower bounds


	Satisfiability algorithms
	Computational efficient communication protocols
	Explicit approximating polynomials for formulas
	The #SAT algorithm

	Learning algorithms
	Agnostically learning parities and boosting
	PAC-learning small formulas of parities

	Proofs of useful lemmas
	Useful lemmas for formulas
	PRG for low-communication functions in the number-in-hand setting


	p016-Aaronson
	Introduction
	Proof overview

	Preliminaries
	Quantum query model
	Quantum subroutine for unstructured searching and minimum finding
	Problem definitions
	Fine-grained complexity
	The framework for quantum walk search

	Quantum fine-grained complexity
	Quantum fine-grained reduction and QSETH
	Lower bounds for {CP}, {OV}, and {BCP} in higher dimensions under QSETH
	Quantum lower bound for {BCP} in nearly-constant dimensions under QSETH

	Closest pair in constant dimension
	Radix tree for at most one solution
	Single-shot quantum walk with complicated data structure
	Multiple-trial quantum walks with simple data structure
	Quantum lower bound for CP in constant dimensions

	Bichromatic closest pair in constant dimensions
	Quantum algorithm for (1+xi)-BCP
	Quantum algorithm for solving {BCP} exactly
	Quantum lower bound for {BCP} in constant dimensions

	Orthogonal vectors in constant dimensions

	p017-Filmus
	Introduction
	Related Work
	Overview of techniques

	Preliminaries
	Definitions and notation
	Known facts

	Main results
	Conditional Limits of Preprocessing and Learning Bounded-Depth Circuits
	The conjectures
	The connections

	Proof of Main Theorem
	Encoded-input pseudorandom functions
	Rounded inner product

	p018-Hatami
	Introduction
	Connections to communication complexity
	Related works
	Proof overview

	Preliminaries
	 Sign-rank 1 and 2
	Sign-rank 3 vs. discrepancy
	Invariance of nu^B_x under translation
	Uniformity of product sets over Z_p


	p019-Goos
	Introduction
	Characterization via Prime Modulus
	A Natural Complete Problem via Chevalley-Warning Theorem
	Max-Degree Monic Monomials and Proof of Chevalley-Warning Theorem
	Proofs of Cancellation
	Computational Problems Based on Chevalley-Warning Theorem

	Complete Problems via Small Depth Arithmetic Formulas
	Applications of Chevalley-Warning
	Structural properties
	Open questions

	The class {PPA}_q
	Characterization via Primes
	Coprime case
	Prime power case

	A Natural Complete Problem
	The Chevalley-Warning Theorem
	The Chevalley-Warning Theorem with Symmetry
	Computational Problems Related to Chevalley-Warning Theorem
	ChevalleyWithSymmetry_{p} is {PPA}_{{p}}–complete
	ChevalleyWithSymmetry_{p} is in {PPA}_p
	ChevalleyWithSymmetry_{p} is {PPA}_p–hard


	Complete Problems via Small Depth Arithmetic Circuits
	Applications of Chevalley-Warning
	Structural Properties of {PPA}_q
	{PPAD}subseteq {PPA}_q
	Oracle separations
	Closure under Turing reductions

	Appendix: Reductions Between Complete Problems
	Completeness of Succinct Bipartite
	Equivalence with {PMOD}_p

	Appendix: Proof of Theorem 36

	p020-Hirahara
	Introduction
	Meta-Computational View of PRG Constructions
	Worst-Case versus Average-Case Complexity of PH
	Gap(K(A) vs K)
	Non-NP-Hardness Results Do Not Apply
	Gap(F vs F(-1)): Meta-Computational View of HILL's PRG

	Meta-computational Circuit Lower-bound Problems; MCLPs
	Meta-Computational View of the Hardness vs Randomness Framework
	Non-trivial Derandomization and Lower Bounds for MKtP
	Related Work: Minimum Circuit Size Problem
	Related Work: Hardness Magnification

	Proof Techniques: Meta-Computational View of PRG Constructions
	Perspective: Meta-Computational View of Complexity Theory

	Preliminaries
	Notation
	Pseudorandomness
	Circuits
	Time-Bounded Kolmogorov Complexity

	Meta-Computational View of Cryptographic PRG Constructions
	Gap(K(SAT) vs K)
	Gap(F vs F(-1)): PRG Construction from One-Way Functions

	Meta-Computational View of Complexity-Theoretic PRG Constructions
	Universal Hitting Set Generators and Kolmogorov Complexity
	Advice and Resource-Bounded Kolmogorov Complexity
	Meta-computational Circuit Lower-bound Problems (MCLPs)
	MCLPs from HSG Constructions
	The Nisan–Wigderson Generator
	Meta-Computational View of the Nisan–Wigderson Generator
	Hardness Amplification and MCLPs
	KS Complexity and Read-Once Branching Program

	Non-trivial Derandomization and MKtP
	Derandomized Hardness Amplification Theorem
	AC0 Lower Bounds for MKtP

	p021-Blaser
	Introduction and Results
	Related work
	Preliminaries
	Monotone commutative single-(source,sink) ABPs are closed
	Explicit construction of f_0 with higher complexity than border complexity
	Conciseness
	Orbit dimension, tangent spaces, and flows
	Flows on ABPs
	VQP versus VNPbar
	VQP not in VNPbar
	A criterion for non-membership in criterion


	p022-Ilango
	Introduction
	Results
	NP-hardness of circuit minimization
	NP-hardness of communication minimization

	Techniques
	Circuit complexity
	Communication complexity

	Further related work

	Preliminaries
	Warm-up: NP-hardness for arbitrary generators and partial functions
	Notation
	A reduction from r-Bounded Set Cover to MDCP
	A reduction from MDCP to SMCSP
	Search-to-decision reduction for SMCSP

	Main result: NP-hardness of circuit minimization for multi-output functions
	Definitions
	Multi-output Functions, Concatenations, and Truth Tables
	The Evaluation Function and Multi-output Computation
	Windows of Truth Tables
	Canonical DNF Circuits
	Lifting Sets

	A reduction from r-Bounded Set Cover to Multi-MCSP
	Search-to-decision reduction for Multi-MCSP

	On the NP-hardness of communication minimization problems
	Background
	A reduction from Graph Coloring to Partial-MCCP
	Consequences of the reduction

	The connection between average-case Partial-MCSP and learning

	p023-Gupta
	Introduction
	Our Result
	Proof Idea

	Preliminaries
	The complexity measure
	Some numerical estimates

	Upper bounding the measure for a depth four circuit
	Upper bound on the measure of a pruned depth four circuit
	Pruning a depth four circuit
	Step 1 - Restricting the bottom support of C
	Step 2 - Pruning the heavy gates from C _1


	An explicit polynomial family with high measure
	Proof of Theorem 1
	Conclusion
	Known lower bounds
	Missing proofs from Section 3
	Proofs from Section 3.1
	Proof from Section 3.2.1
	Proof from Section 3.2.2

	Missing proofs from Section 5
	A brief review of the lower bounds from [Shoup and Smolensky, 1991] and [Raz, 2010]

	p024-Kozachinskiy
	Introduction
	Applications to circuits
	Applications to Multiparty Secure Computations
	Multiparty Karchmer – Wigderson games
	Connection to threshold gates and the main result
	Our techniques: Q_k(R_k)-hypotheses games
	Organization of the paper

	Preliminaries
	Dags and dag-like communication protocols

	Formal treatment of Q_k(R_k)-hypotheses games
	Results for Majority
	Proof of the main theorem
	From circuits to protocols
	From protocols to circuits

	Effective version
	Derivation of Theorems 1 and 3
	Open problems

	p025-Chattopadhyay
	Introduction
	Pseudorandom pseudodistribution 
	Main result

	ROBPs and Matrices
	Proof Overview
	The sampler argument
	Our construction

	Preliminaries
	Averaging samplers
	Matrix norms

	Approximate Matrix Multiplication via Samplers
	Main Construction
	Discussion and Open Questions
	Using PRPDs in the Saks-Zhou Scheme
	Saks and Zhou's Scheme
	Armoni's Trick
	Saks-Zhou-Armoni Scheme with PRPDs

	Proof of Lemma 18

	p026-Saks
	Introduction
	Our Results
	Main Ideas
	Related Work

	Preliminaries
	Basic Notions
	Resource-Bounded Kolmogorov Complexity
	Reductions

	Parametric Honest Reductions
	Natural Reductions
	Open Problems

	p027-Kunnemann
	Introduction
	Our Results
	Technical Overview
	Related work
	Open Problems

	Preliminaries
	Hardness Assumptions

	Algorithm for Implications
	Algorithms for NAND_2-avoiding F: Reduction to Implications
	Algorithms for NAND-representing F: Reduction to Clique
	Hardness Results
	Hardness for Implications
	Hardness for SAT(F)
	Proof of Lemma 6.5: 0-invalid case
	Proof of Lemma 6.5: 0-valid case


	p028-DeRezende
	Introduction
	Previous Work
	Our Results
	Techniques
	Outline of This Paper

	Preliminaries
	Two Key Technical Tools
	Pigeon Filtering
	Graph Closure

	Lower Bounds for Weak Graph FPHP Formulas 
	Formal Statements of Graph FPHP Formula Lower Bounds
	A Pseudo-Width Upper Bound for Graph FPHP Formulas with Extra Axioms
	A Pseudo-Width Lower Bound for Graph FPHP Formulas with Extra Axioms

	Lower Bounds for Perfect Matching Principle Formulas
	Formal Statements of Perfect Matching Formula Lower Bounds

	Concluding Remarks

	p029-Bartholdi
	Introduction
	Background from group theory
	Complexity theory
	Efficiently non-solvable groups and ALOGTIME
	Circuit value problems for wreath products
	PSPACE-complete circuit value problems
	Conclusion and open problems
	Leaf languages
	Compressed words and the circuit value problem
	Additional details for Section 5
	Subsetsum problems
	From Boolean circuits to super-decreasing subsetsum
	From super-decreasing subsetsum to straight-line programs
	Proof of Theorem 6


	p030-Dark
	Introduction
	Augmented Bi-Index
	Maximum Matching
	Reduction
	Analysis

	Minimum Vertex Cover
	Reduction
	Analysis
	Insertion-deletion Streaming Algorithm for Minimum Vertex Cover


	p031-Ilango
	Introduction
	Prior Work
	Our Results
	Techniques and Proof Overviews
	Open Questions
	Organization

	Preliminaries
	DeMorgan Formulas and Formula Size
	Optimal Formulas and Formula Isomorphism
	MFSP, Search-MFSP and Conventions on n and N
	Useful Facts About Formulas
	Partial Functions and their Formula Size

	The Top-Down Approach
	Using gate elimination to find functions in an optimal subcomputation
	A deterministic reduction that works on average
	Correctness of Algorithm
	Running Time of Algorithm

	A worst-case randomized reduction
	Correctness of Algorithm
	Runtime of Algorithm

	A ``bottom-up'' reduction for DeMorgan Formulas

	p032-Chakraborty
	Introduction
	Overview of our approach and techniques
	Intuition behind the function construction
	Other implications of our result

	Preliminaries
	Addressing functions
	Polynomial approximation
	Communication complexity

	Proof of Theorem 3
	Definition of the function
	Upper bound
	Lower bound

	Conclusions
	Upper bound on the approximate spectral norm of symmetric functions

	p033-Sinhababu
	Introduction
	Preliminaries
	Pre-processing Steps and Algebraic Tool Kit
	Computing homogeneous components and coefficients of a polynomial
	Computing q from p=q^e
	Reducing the multiplicity of a factor
	Transforming to a monic polynomial
	Handling the starting point of Hensel lifting
	Reducing multivariate factoring to the bivariate case
	Solving a linear system with polynomials as matrix entries

	Factors of Arithmetic Branching Programs
	Hensel lifting
	Iterating Hensel lifting
	Factor reconstruction for ABP
	Size Analysis

	Applications
	Root Finding
	Hardness vs. Randomness

	Conclusion and Open Problems

	p034-Dadush
	Introduction
	Branching Proofs
	Cutting Planes
	Complexity of Branching Proofs
	Our Contributions
	Conclusions
	Organization

	Preliminaries
	Bit-Sizes
	Branching Proofs
	Simultaneous Diophantine Approximation
	Farkas Certificates for General Convex Sets
	Chvátal-Gomory Cuts

	Bounding the coefficients of Branching Proofs
	Step 1: Replacing Large Coefficient Branches by Small Coefficient Approximations
	Step 2: Adding Chvátal-Gomory (CG) Cuts to Trim the Leaves
	Proof of Theorem 1
	Proof of Corollary 2

	Simulating Enumerative Branching Proofs by Cutting Planes
	Upper Bounds for Tseitin Formulas


	p035-Kopparty
	Introduction
	Geometric rank
	Overview: notions of tensor rank
	Connections of subrank to complexity theory and combinatorics
	Our results

	Geometric rank
	Alternative descriptions of geometric rank
	Geometric rank is between subrank and slice rank
	Geometric rank is at least border subrank
	The border subrank of matrix multiplication
	Geometric rank versus slice rank
	Geometric rank as liminf of analytic rank
	Bertini–Noether Theorem
	Modular roots
	Putting everything together


	p036-Bennett
	Introduction
	Our Results
	Technical Overview
	Discussion and Future Work

	Preliminaries
	Problems with Preprocessing
	Lattices
	Bounded Distance Decoding (with Preprocessing)
	Sparsification
	Counting Lattice Points in a Ball
	Hardness Assumptions

	Hardness of BDD_p,alpha
	(S, T)-BDD to BDD
	GapCVP' to (S, T)-BDD
	Setting Parameters
	Putting it all Together
	An Upper Bound on alpha_(p,C)^* and alpha_p^*


	p037-Andrews
	Introduction
	Prior Work
	Identity Testing in Low Characteristic
	Our Results

	Preliminaries
	Algebraic Computation and Polynomial Identity Testing
	Combinatorial Designs
	Field Theory

	p^{th} Roots of Algebraic Computation
	Circuits
	Formulae
	Algebraic Branching Programs

	Extending the Kabanets-Impagliazzo Generator
	The Kabanets-Impagliazzo Generator
	Extension to Fields of Low Characteristic

	Bootstrapping from Constant-Variate Hardness
	A Non-Trivial Hitting Set from Constant-Variate Hardness
	Comparison to Characteristic Zero

	Relating Constant-Variate and Multivariate Lower Bounds
	Complexity of Computing Integers
	The Inverse Kronecker Map and Constant-Free Circuits

	Conclusion and Open Problems

	p038-Potechin
	Introduction
	Our Results
	Outline

	Preliminaries
	Sum of Squares/Positivstellensatz Proofs and Pseudo-expectation Values
	Equations for the ordering principle
	Relationship to other encodings of the negation of the ordering principle


	Pseudo-expectation values for the ordering principle
	The candidate pseudo-expectation values E~_n
	Checking if E~_{n} are pseudo-expectation values

	O(sqrt{n}log(n)) Degree SOS Upper Bound
	Failure of E~_{n}
	Constructing an SOS proof of infeasibility

	Lower Bound Overview
	Reducing Checking E~ to Analyzing a Single-Variable Distribution
	Distinguished Indices of g
	Decomposing g Based on z_{j} Variables
	Choosing an Ordering on the Distinguished Indices and Changing Variables
	Reducing to a Single Variable

	Approximate Analysis for Omega_{n,d_2}
	Approximation by an Integral
	Orthonormal Basis for mu(x) = xe^{-x}
	Proof of the Approximate Statement

	Handling Numerical Integration Error
	Bounding Numerical Integration Error via Higher Derivatives
	Bounds on h_k
	Derivative of h_k
	Bounding the Numerical Integration Error

	Handling the Difference Between Distributions
	Putting Everything Together
	Lower bounding our sum with an integral
	Proof of the SOS lower bound

	Conclusion
	Analyzing the Ordering Principle with Boolean Variables
	Equations for the ordering principle with Boolean auxiliary variables
	Pseudo-expectation values with Boolean auxiliary variables
	Reducing to one variable with Boolean auxiliary variables
	SOS lower bound with Boolean auxiliary variables



