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Abstract
A hitting set is a “one-sided” variant of a pseudorandom generator (PRG), naturally suited to
derandomizing algorithms that have one-sided error. We study the problem of using a given hitting
set to derandomize algorithms that have two-sided error, focusing on space-bounded algorithms.
For our first result, we show that if there is a log-space hitting set for polynomial-width read-once
branching programs (ROBPs), then not only does L = RL, but L = BPL as well. This answers a
question raised by Hoza and Zuckerman [16].

Next, we consider constant-width ROBPs. We show that if there are log-space hitting sets for
constant-width ROBPs, then given black-box access to a constant-width ROBP f , it is possible
to deterministically estimate E[f ] to within ±ε in space O(log(n/ε)). Unconditionally, we give
a deterministic algorithm for this problem with space complexity O(log2 n + log(1/ε)), slightly
improving over previous work.

Finally, we investigate the limits of this line of work. Perhaps the strongest reduction along
these lines one could hope for would say that for every explicit hitting set, there is an explicit
PRG with similar parameters. In the setting of constant-width ROBPs over a large alphabet, we
prove that establishing such a strong reduction is at least as difficult as constructing a good PRG
outright. Quantitatively, we prove that if the strong reduction holds, then for every constant α > 0,
there is an explicit PRG for constant-width ROBPs with seed length O(log1+α n). Along the way,
unconditionally, we construct an improved hitting set for ROBPs over a large alphabet.
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1 Introduction

Suppose some decision problem can be solved by an efficient randomized algorithm. That’s
good, but an efficient deterministic algorithm would be even better. We would therefore
like to deterministically analyze the acceptance probability of the randomized algorithm
on a given input. An ambitious approach to derandomization is to try to design a suitable
pseudorandom generator (PRG).
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10:2 Hitting Sets Give Two-Sided Derandomization of Small Space

I Definition 1.1. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,

∣∣E[f ]− EX∈{0,1}s [f(G(X))]
∣∣ ≤ ε.

Let n be the number of random bits used by the randomized algorithm, and ensure that
F can compute the action of the randomized algorithm on its random bits. By iterating
over all “seeds” x ∈ {0, 1}s and plugging G(x) into the randomized algorithm, we can get an
estimate of its acceptance probability with additive error ε.

Unfortunately, designing efficient PRGs has proved to be extremely difficult. Constructing
a hitting set is sometimes less difficult.

I Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-hitting set for F
is a set H ⊆ {0, 1}n such that for every f ∈ F with E[f ] ≥ ε, there is some x ∈ H such that
f(x) = 1.

The image of any PRG is clearly a hitting set. By iterating over all strings in a hitting set,
we can at least distinguish acceptance probability 0 from acceptance probability ≥ ε. This is
already sufficient for derandomizing some algorithms (namely, those with “one-sided error”).
In this paper, we investigate the possibility of using a hitting set in a nontrivial way to obtain
an estimate of the acceptance probability with a small additive error, just like what a PRG
would have provided.

This possibility was previously studied in the context of derandomizing time-bounded
algorithms. Several proofs have been discovered showing that if there is a polynomial-time
hitting set for size-n circuits, then P = BPP [3, 9, 4, 11]. In Appendix A we provide yet
another proof of this theorem; our short proof is arguably simpler than all previous proofs.
However, the focus of our paper is derandomizing space-bounded algorithms.

1.1 Derandomizing Log-Space Algorithms

The behavior of a small-space algorithm as a function of its random bits can be modeled
by a read-once1 branching program (ROBP). A width-w length-n ROBP is a directed graph
consisting of n+ 1 layers with w vertices per layer. There is a designated “start vertex” vstart
in the first layer. Every vertex not in the last layer has two outgoing edges labeled 0 and
1 leading to the next layer. An n-bit input string naturally identifies a path through the
graph by reading from left to right. The program accepts or rejects this string depending on
whether the path ends at the designated “accept vertex” vacc in the last layer.

Recall that BPL and RL are the classes of languages that can be decided by randomized
log-space algorithms that always halt with two-sided and one-sided error respectively. A
log-space hitting set2 for polynomial-width ROBPs would immediately imply L = RL. For
our first result, we show that such a hitting set would also imply L = BPL.

I Theorem 1.3. Assume that for every n ∈ N, there is a 1
2 -hitting set for width-n, length-n

ROBPs that can be computed in space O(logn). Then L = BPL.

1 Because space-bounded algorithms only have read-once access to their random bits, it does not seem
possible to adapt the existing derandomizations of BPP using a hitting set to the BPL case.

2 When we say “a log-space hitting set,” we mean a family of hitting sets Hn ⊆ {0, 1}n such that given
input n ∈ N, the set Hn can be enumerated in space O(logn). For such a family, |Hn| ≤ poly(n).
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1.2 Motivation: Recent Work on Hitting Sets
Theorem 1.3 is especially interesting in light of recent constructions of improved hitting sets
for ROBPs [8, 16, 10]. The best known PRG for polynomial-width ROBPs is still Nisan’s
PRG [22], which has seed length

O(log2 n+ logn log(1/ε)).

Until recently, Nisan’s PRG also provided the best hitting set for polynomial-width ROBPs.
Using sophisticated and novel techniques, Braverman, Cohen, and Garg obtained a hitting
set with space complexity

Õ(log2 n+ log(1/ε)),

which is an improvement when ε is very small [8].
Actually, Braverman, Cohen, and Garg constructed something better than a hitting set,

called a pseudorandom pseudodistribution (PRPD).

I Definition 1.4 ([8]). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRPD for
F is a function D : {0, 1}n → R such that for every f ∈ F ,∣∣∣∣∣∣

∑
x∈{0,1}n

f(x)D(x)− E[f ]

∣∣∣∣∣∣ ≤ ε.
A PRPD can be used to estimate E[f ] to within ±ε, provided there is an efficient algorithm
that enumerates all x ∈ supp(D) and computes D(x). The concept of a PRPD generalizes
the concept of a PRG, because given a PRG G with seed length s, one can set D(x) =
|G−1(x)| · 2−s. In turn, if D is a PRPD, then supp(D) is a hitting set. So a PRPD
is intermediate between a hitting set and a genuine PRG. (Independently of our work,
Chattopadhyay and Liao recently gave an improved PRPD construction with space complexity
Õ(log2 n) +O(log(1/ε)) [10].)

After Braverman, Cohen, and Garg’s work [8], Hoza and Zuckerman gave a simpler
construction of an ε-hitting set for polynomial-width ROBPs, with the slightly improved
space complexity O(log2 n+ log(1/ε)) [16]. Their construction is weaker in that it does not
provide a PRPD. Theorem 1.3 bridges the gap between the two concepts somewhat: by
Theorem 1.3, any generic hitting set can be used for two-sided derandomization, which was
the main strength of a PRPD over a hitting set in the first place.

1.3 The Constant-Width Setting
However, there is a weakness of Theorem 1.3. A PRG or a PRPD would provide a black-box
derandomization, whereas the algorithm of Theorem 1.3 is not black-box. This weakness
is especially acute when we consider the constant-width case. Given a constant-width
ROBP f directly as input, it is trivial to compute E[f ] with high accuracy, so the algorithm
of Theorem 1.3 is meaningless. Nevertheless, constant-width ROBPs can compute many
interesting functions, and it is a major open challenge to design improved PRGs, PRPDs,
or hitting sets for constant-width ROBPs. (For width 2, optimal PRGs are known [7]. For
width 3, the current best PRG has seed length Õ(logn log(1/ε)) [21]. The best hitting sets
for width 3 are superior, with space complexity Õ(log(n/ε)) for small ε [14] or O(logn) for
ε ≈ 1 [25]. For width 4, the state of the art is simply the best results for polynomial-width
ROBPs.)

CCC 2020
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PRG

PRPD

Deterministic
sampler

Hitting
set

Estimating
E[f ] ± ε

Theorem 1.3

Theorem 1.7
(const. width)

Distinguishing
E[f ] = 0 vs. E[f ] ≥ ε

Figure 1 The relationships between different derandomization goals. The solid arrows are
implications that are immediate from the definitions and hold for essentially any class F (possibly
with some loss in ε). The dashed arrows are theorems in this paper, holding for ROBPs specifically.

To address this weakness of Theorem 1.3, we abstract the “black-box” feature of PRGs
and PRPDs in the following definition.

I Definition 1.5. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-
sampler for F is a deterministic oracle algorithm A that outputs a real number such that for
every f ∈ F ,

|Af − E[f ]| ≤ ε.

The concept of a deterministic sampler generalizes that of a PRPD, because given a
PRPD D, one can set Af =

∑
x f(x)D(x). In the other direction, deterministic samplers

imply hitting sets.

I Proposition 1.6. Identify 0 with the constant 0 function on {0, 1}n, and assume 0 ∈ F .
Let A be a deterministic ε-sampler for F , and let H ⊆ {0, 1}n be the set of points where A0

queries its oracle. Then for every ε′ > 2ε, H is an ε′-hitting set for F .

Proof. Let f ∈ F satisfy E[f ] > 2ε. Since |A0 − 0| ≤ ε and |Af − E[f ]| ≤ ε, A0 6= Af .
Therefore, Af must query f at some point x ∈ f−1(1). The first such query must be at a
point x ∈ H. J

All known derandomizations of BPP using a hitting set [3, 9, 4, 11], including our new
derandomization in Appendix A, are black-box. That is, one can generically “upgrade” a
polynomial-time hitting set for size-n circuits into a polynomial-time deterministic sampler
for size-n circuits. For our second result, we prove the analogous reduction for constant-width
ROBPs. (See Figure 1.)
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I Theorem 1.7. Assume that for every constant w, for all n ∈ N, there is a 1
2 -hitting set for

width-w length-n ROBPs that can be computed in space O(logn). Then for every constant w,
for all n ∈ N and all ε > 0, there is a deterministic ε-sampler for width-w length-n ROBPs
that runs in space O(log(n/ε)).

The proof of Theorem 1.7 uses different techniques than that of Theorem 1.3. The
space complexity of our deterministic sampler is proportional to the width parameter w (see
Theorem 3.1), so the sampler becomes meaningless when w is large. Thus, Theorems 1.3
and 1.7 are incomparable.

We also obtain a new unconditional deterministic sampler. When ε is moderate, the best
deterministic sampler for constant-width ROBPs is simply from Nisan’s PRG [22], which
gives a sampler with space complexity O(log2 n + logn log(1/ε)). When ε is small, using
prior work, the best deterministic sampler for constant-width ROBPs was from Braverman,
Cohen, and Garg’s PRPD [8] (space complexity Õ(log2 n+ log(1/ε))). The concurrent work
by Chattopadhyay and Liao [10] gives a slightly better PRPD, and hence a slightly better
deterministic sampler (space complexity Õ(log2 n) +O(log(1/ε))). By applying the reduction
underlying Theorem 1.7 to the hitting set of Hoza and Zuckerman [16], we achieve a slightly
better bound.

I Theorem 1.8 (Unconditional sampler). For every constant w, for all n ∈ N and all
ε > 0, there is a deterministic ε-sampler for width-w length-n ROBPs running in space
O(log2 n+ log(1/ε)).

In light of Theorem 1.8, when it comes to deterministic samplers, there is now a slight
gap between the state of the art for polynomial-width ROBPs vs. the state of the art for
width-w ROBPs with w a large constant. In other words, Theorem 1.8 is a case where we
can take advantage of narrowness. There is no such gap when it comes to PRGs, PRPDs, or
hitting sets.

1.4 Negative Result
Theorem 1.7 raises the question of whether we can go even further and upgrade any hitting
set into a genuine PRG. In the time-bounded setting, this is indeed possible via the “hardness
vs. randomness” paradigm. (If for every n there is a hitting set for size-n circuits computable
in poly(n) time, then there is a language in E that requires circuits of size 2Ω(n). A major
achievement in complexity theory was to show that assuming such a language exists, for
every n, there is a polynomial-time logarithmic-seed PRG for size-n circuits [18].) Also, in
the context of low-degree polynomials, Bogdanov showed how to convert any hitting set with
a certain density property into a PRG [6]. Can a similar reduction be proven for small-space
models?

We focus on the setting of constant-width ROBPs over a large alphabet. (An ROBP over
the alphabet Σ computes a function f : Σn → {0, 1}; each vertex not in the last layer has |Σ|
outgoing edges labeled with the symbols in Σ.) We prove that if for every explicit hitting
set in this setting, there is an explicit PRG with similar parameters, then there is in fact an
explicit PRG for constant-width binary ROBPs with seed length O(log1+α n), where α > 0
is an arbitrarily small constant. See Theorem 4.3 for the precise statement.

Our result is similar to a theorem by Hoza and Umans [15]. Like us, Hoza and Umans
showed that if PRGs are equivalent to a seemingly weaker notion, then the equivalence itself
can be used to construct a good PRG. Hoza and Umans focused on the distinction between
PRGs and non-black-box derandomization, whereas we focus on the distinction between
PRGs and hitting sets.

CCC 2020
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Interpretation

Like any conditional theorem, Theorem 4.3 has both a positive and a negative interpretation.3
According to the negative interpretation, Theorem 4.3 shows that it would be difficult to
establish a general reduction from PRGs to hitting sets. After all, it’s as difficult as
constructing a good PRG for constant-width ROBPs, which is a challenge that researchers
have been struggling with for decades. In this sense, Theorem 4.3 provides an “excuse” for
the fact that Theorems 1.3 and 1.7 do not provide genuine PRGs.

We feel that the negative interpretation is more realistic, but there is also a sensible
positive interpretation. According to the positive interpretation, our work provides a new
approach to constructing improved PRGs or hitting sets for constant-width ROBPs. One
“merely” needs to bridge the gap between deterministic samplers and PRGs. This could
be done in one of two ways. One could improve Theorem 1.7 so that it concludes with a
PRG instead of a deterministic sampler. Alternatively, one could improve the construction
of Theorem 4.3 so that rather than relying on the equivalence of hitting sets and PRGs, it
merely relies on the equivalence of hitting sets and deterministic samplers. (In exchange,
presumably the conclusion would merely be a deterministic sampler rather than a true PRG,
but that would still be a breakthrough.)

1.5 Overview of Techniques
Let us first fix some notation. Let Un denote the uniform distribution over {0, 1}n. For two
strings x, y, let x ◦ y denote the concatenation of x with y. Suppose an ROBP f is clear from
context. If u and v are vertices, let pu→v be the probability that a random walk starting at
u reaches v. We use the shorthand p→v = pvstart→v and pu→ = pu→vacc . We use Vi to denote
the set of vertices in the i-th layer of the ROBP, where i ∈ {0, 1, . . . , n}.

1.5.1 Techniques for Theorem 1.3
We begin by outlining the proof of Theorem 1.3 (on derandomizing BPL). To derandomize
BPL, it suffices to show that given a width-n length-n ROBP f , one can estimate E[f ] to
within a small additive error in log space. We do this using a hitting set H for width-(nc)
length-(nc) ROBPs, where c is a large enough constant.

Each x ∈ H is a string of length nc. We think of it as a list of many shorter strings.
Specifically, for every vertex v in f , the string x provides poly(n) “sample inputs” associated
with v. We compute the fraction p̂→v of those sample inputs that lead to v. The hope is
that

∀v, p̂→v ≈ p→v. (1)

Of course we cannot directly verify Equation (1), since we do not know the values p→v.
Instead, our algorithm looks for an x ∈ H such that the estimates p̂→v are locally consistent,
i.e., for every i ∈ [n] and every v ∈ Vi,

p̂→v ≈
∑

u∈Vi−1

p̂→u · pu→v.

Having found such an x ∈ H, we output the corresponding value p̂→vacc .

3 Throughout this discussion, we will ignore the issue of alphabet size, to simplify matters. The proof of
Theorem 1.7 does generalize well to the large-alphabet case.
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To establish the correctness of our algorithm, we must show two assertions. First, if the
estimates p̂→v pass the local consistency test, then E[f ] ≈ p̂→vacc . Second, there is always a
string x ∈ H that passes the local consistency test.

To show the first assertion, we bound
∑
v∈Vi |p̂→v − p→v| by induction on i. Because of

the structure of the ROBP, the error accumulates mildly, only blowing up by a factor that is
approximately the size of f .

For the second assertion, we use the hitting property of H. At first glance, it might seem
that the assertion is immediate. After all, a random x certainly passes the local consistency
test with high probability, and the local consistency test can be computed in small space.
Unfortunately, however, that computation involves reading the bits of x multiple times,
whereas H is merely guaranteed to hit read-once branching programs.

To deal with this issue, we notice that if x were chosen at random, then with high
probability, it would satisfy Equation (1). Furthermore, there exists a width-(nc) length-(nc)
ROBP f ′ that determines whether its input x satisfies Equation (1). The values p→v are all
hard-coded into f ′. There is no need to algorithmically construct f ′; the mere fact that it
exists implies the existence of an x ∈ H that satisfies Equation (1). Satisfying Equation (1)
readily implies that x also passes the local consistency test, completing the proof of the
second assertion.

1.5.2 Techniques for Theorem 1.7

The proof of Theorem 1.7 (on deterministic samplers) uses different techniques. Let f be a
constant-width ROBP. To estimate E[f ], we attempt to work our way backward through
the branching program, computing the acceptance probability pv→ from each vertex v. This
plan is complicated by the fact that we only have black-box access to f . At a high level, for
each layer, we use the assumed hitting set H to approximately compute the transitions at
that layer, which allows us to continue computing the values pv→.

In more detail, the hitting set assists us in two different ways. First, we identify each
prefix of a string in H with the vertex that is reached when f reads the prefix. In this way
we are able to “find” all the vertices of f – or at least, all non-negligible vertices.

However, we are now effectively dealing with a width-|H| branching program, because
we have a copy of v for each string in H that leads to v. This interferes with our plan,
because |H| = poly(n) and hence we cannot afford to store the acceptance probabilities of all
vertices in a single layer. The second way we use H is to determine which of these vertices
are redundant. If there is some string in H that leads to accept from one vertex and reject
from another, then the two vertices are not equivalent. Otherwise, the two vertices can be
safely merged, because they must be two copies of the same vertex in f – or at least, they
must correspond to two very similar vertices in f . The merging condition can be checked by
making queries to f . By merging vertices, we effectively bring the width back down to a
constant. (This merging operation is similar to a randomized learning algorithm by Gopalan,
Klivans, and Meka [13]. Note that their algorithm is not space-efficient.)

Unfortunately, the fact that two vertices are equivalent does not imply that their out-
neighbors are equivalent, so it is not immediately clear how to “merge” the outgoing edges.
We show that it suffices to retain the outgoing edges from whichever vertex has the higher
acceptance probability.

CCC 2020



10:8 Hitting Sets Give Two-Sided Derandomization of Small Space

1.5.3 Techniques for Theorem 4.3
Recall that to prove Theorem 4.3, we must (conditionally) construct a PRG with seed length
O(log1+α n), where α > 0 is an arbitrarily small constant. For simplicity, in this overview,
we will focus on the case α = 1/2, i.e., seed length O(log3/2 n). Recall also that we are
focusing on the constant-width case.

The starting point of the construction is the INW PRG, which ε-fools constant-width
ROBPs over the alphabet {0, 1}t with seed length O(t+log(n/ε) logn) [17]. (Nisan’s PRG [22]
does not achieve the same optimal dependence on t.) Next, we present a reduction, showing
how to convert a PRG with moderate error into a hitting set with very small threshold
(Theorem 4.4). Hoza and Zuckerman gave a similar reduction [16], but their reduction only
applies to binary ROBPs (the case t = 1). Our reduction is based on a more sophisticated
variant of a key lemma in Hoza and Zuckerman’s work [16].

Applying our new reduction to the INW generator, we unconditionally obtain an improved
hitting set. The best previous hitting sets had space complexity O(t+ log2 n+ log(1/ε) logn)
[17] or O(t logn+ log2 n+ log(1/ε)) [16]. Our new hitting set (Corollary 4.8) achieves the
“best of both worlds,” with space complexity O(t+ log2 n+ log(1/ε)).

The next step in the proof of Theorem 4.3 is to apply the assumption of Theorem 4.3,
converting our hitting set into a PRG. The final step is to use traditional “seed recycling”
techniques to trade the excellent dependence on ε for an improved dependence on n. Briefly,
starting with a length-n ROBP over the alphabet {0, 1}t, we first use a randomized sam-
pler [12] to reduce the alphabet size to poly(n). Then we divide our length-n ROBP of
interest into blocks of length m = 2

√
logn. We can fool each chunk to within error 1/poly(n)

using a seed of length O(log2m+ logn) = O(logn). Using the randomized sampler again,
this allows us to effectively pay O(logn) truly random bits and reduce the length of the
branching program by a factor of m. After repeating this process

√
logn times, the length is

reduced to a constant, and we have paid a total of O(log3/2 n) truly random bits.
(To achieve seed length O(log1+α n), we start the whole process over again and iterate

roughly 1/α times. This iterative strategy is similar to the work of Hoza and Umans [15],
but the specific reductions are different.)

1.6 Related Work
We have already referenced most of the work related to this paper, such as work on deran-
domizing BPP using a hitting set [3, 9, 4, 11]. However, a couple additional papers deserve
mention.

1.6.1 BPL ⊆ ZP∗L

Our derandomization of BPL given a hitting set is similar to Nisan’s unconditional proof that
BPL ⊆ ZP∗L [23]. To estimate the acceptance probability of a width-n length-n ROBP f ,
Nisan, like us, interprets a string x ∈ {0, 1}poly(n) as a list of sample inputs, which he uses to
compute estimates of p→v for each vertex v. Nisan’s algorithm picks x at random, and then in
a similar fashion as our algorithm, performs certain “local tests” at each vertex to verify that
the sample inputs are trustworthy. Nisan’s local tests can be computed in small space given
two-way access to x, and passing the local tests implies that the estimates are close to the
corresponding true probabilities. Our local consistency test also satisfies these properties, and
indeed, one can obtain an alternative proof that BPL ⊆ ZP∗L from our analysis. However,
a technical point is that we use fresh samples for each vertex, whereas Nisan uses one set of
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n-bit sample inputs for all the vertices. This crucial distinction is how we are able to ensure
the existence of a polynomial-width ROBP that verifies Equation (1). Unfortunately, using
fresh samples breaks Nisan’s local tests, hence our new local consistency test.

1.6.2 Deterministically Simulating BPL with Very Low Error
The current best hitting sets for polynomial-width ROBPs [8, 16, 10] are superior to the
best known PRGs [22] when ε is very small. One might hope that by plugging in the recent
hitting sets, our reductions could provide a new unconditional deterministic algorithm for
estimating the acceptance probability of a BPL algorithm to within ±ε, with an improved
space complexity when ε is very small. Unfortunately, this idea doesn’t get off the ground,
because to estimate the acceptance probability to within ±ε, we rely on a 1

2 -hitting set for
ROBPs of length poly(n/ε) rather than an ε-hitting set for ROBPs of length n. The good
news is that Ahmadinejad et al. recently tackled this same problem with different techniques.
They designed an algorithm that runs in space O(log3/2 n+ logn log log(1/ε)) [1].

1.7 Outline of This Paper
In Section 2, we present our derandomization of BPL given a hitting set for polynomial-width
ROBPs. In Section 3, we present our deterministic sampler for constant-width ROBPs given
a hitting set. Finally, in Section 4, we present our theorem on the limitations of this line
of work.

2 Derandomizing BPL Given a Hitting Set

In this section, we show that the acceptance probability of an arbitrary polynomial width
ROBP can be approximated within a small bias in small space, given a certain hitting set.
Theorem 1.3 will follow from this.

I Theorem 2.1. Assume there is a 1
2 -hitting set H for width-w′ length-n′ ROBPs that can

be computed in space s. Then the acceptance probability of a given width-w length-n ROBP
f can be approximated within a bias ±ε, in space O(s+ log wn

ε ).
Here w′ =

⌈
9w

3n2 log(wn)
ε2

⌉
, n′ =

⌈
5w

3n4 log(wn)
ε2

⌉
.

Strictly speaking, Theorem 2.1 ought to be phrased in terms of families of ROBPs, to
make the space bounds meaningful. That is, we assume there is an algorithm that constructs
a 1

2 -hitting set for width-w length-n ROBPs, given w and n as inputs, running in space
s(w, n). Then given inputs f, ε, Theorem 2.1 should be understood to say that we can
estimate E[f ] to within ±ε in space O(s(w′, n′) + log(wn/ε)).

We are most interested in the case that ε is a small constant, but we remark that when
ε is very small, the parameters of Theorem 2.1 could be improved by applying the recent
amplification technique by Ahmadinejad et al. [1].

We first give the derandomization and then give the analysis.

2.1 Derandomization Based on a Local Consistency Test
For x ∈ {0, 1}n′ , we interpret it as a concatenation of wn segments. For each i ∈ [n] and
each v ∈ Vi, there is a segment corresponding to v consisting of a concatenation of t sample
strings of length i, where t is a power of two satisfying t ≥ 4(wnε )2 log(wn). Let p̂→v(x) be

CCC 2020
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the fraction of strings that lead to v from the start vertex, among these t sample strings for
v. When x is clear, we simply denote it as p̂→v. Also, for v ∈ V0, we let p̂→v = 1 if v = vstart
and p̂→v = 0 otherwise.

The derandomization conducts a local consistency test Test : {0, 1}n′ → {0, 1} for every
x ∈ H as follows. For all i ∈ [n], for all v ∈ Vi, check if∣∣∣∣∣∣p̂→v −

 ∑
u∈Vi−1

p̂→u · pu→v

∣∣∣∣∣∣ ≤
1 +

∑
u∈Vi−1

pu→v

 ε′, (2)

where ε′ = ε
2wn . If x passes the checks for all v, then Test(x) = 1, otherwise it is 0.

Finally we find an x ∈ H that passes Test, and output p̂→vacc(x) as the approximation of
E[f ].

2.2 Analysis
We now define the “sample verification” function f ′ of f . For each x ∈ {0, 1}n′ , we set
f ′(x) = 1 if and only if for every vertex v in f ,

|p̂→v − p→v| ≤ ε′. (3)

We stress that our derandomization algorithm does not require computing f ′; we define f ′
only for the sake of analysis.

I Lemma 2.2. f ′ can be computed by a width-w′ length-n′ ROBP.

Proof. For each vertex v of f , we construct an ROBP f ′v which simulates f on each sample
string and counts how many lead to v. It stores a state of f and a counter value, for a total
width of w · (t+ 1) and a total length i · t. f ′v accepts if and only if the counter value is in
[p→vt− ε

2wn t, p→vt+ ε
2wn t].

To construct f ′, we take the conjunction of f ′v, over all v in f . Note that this is
a conjunction of ROBPs over disjoint variables. So we can easily see that f ′ can be
computed by an ROBP with width at most w(t+ 1) + 1 ≤

⌈
9w

3n2 log(wn)
ε2

⌉
, length at most

tw
∑n
i=1 i ≤

⌈
5w

3n4 log(wn)
ε2

⌉
. J

I Lemma 2.3. The acceptance probability of f ′ is at least 1
2 .

Proof. By the construction of f ′, for each v of f , there are t uniform random samples. For
each sample string, the probability that it leads to v from vstart in f is p→v. Hence the
expected number of samples leading to v from vstart is p→vt. So by Hoeffding’s inequality,
Pr[|p̂→vt − p→vt| ≥ ε

2wn t] ≤ 2 · 2−2 log(wn) ≤ 2
(wn)2 . There are wn vertices that need to be

tested in f . (For v ∈ V0, the estimate p̂→v is always exactly correct.) Thus by a union
bound,

Pr
[
∀v, |p̂→v − p→v| ≤

ε

2wn

]
≥ 1− 2

wn
.

This is at least 1
2 when considering n to be at least some large enough constant. So by the

definition of f ′, its acceptance probability is at least 1
2 . J

I Lemma 2.4. For every x ∈ {0, 1}n′ , if f ′(x) = 1 then Test(x) = 1.
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Proof. For every i ∈ [n], every v ∈ Vi,

p→v =
∑

u∈Vi−1

p→upu→v, (4)

by the structure of ROBP. So∣∣∣∣∣∣p̂→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣
=

∣∣∣∣∣∣p̂→v − p→v + p→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣
=

∣∣∣∣∣∣p̂→v − p→v +
∑

u∈Vi−1

p→upu→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣ (Equation (4))

≤ |p̂→v − p→v|+
∑

u∈Vi−1

|p→u − p̂→u| pu→v (Triangle Inequality)

≤

1 +
∑

u∈Vi−1

pu→v

 ε′. (Equation (3)) J

I Lemma 2.5. For every x ∈ {0, 1}n′ , if Test(x) = 1 then |p̂→vacc − p→vacc | ≤ ε.

Proof. We use induction to show that for the i-th layer of f ,∑
v∈Vi

|p̂→v − p→v| ≤ 2wiε′.

For the base case, when i = 0, it’s trivially true since we set p̂→v = p→v for each v ∈ V0.
For the induction case, assume the hypothesis is true for layer i. Consider layer i+ 1.∑

v∈Vi+1

|p̂→v − p→v|

=
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p→upu→v

∣∣∣∣∣ (Equation (4))

=
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v +
∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣
≤

∑
v∈Vi+1

(∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v

∣∣∣∣∣+

∣∣∣∣∣∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣
)

≤
∑

v∈Vi+1

∣∣∣∣∣p̂→v −∑
u∈Vi

p̂→upu→v

∣∣∣∣∣+
∑

v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u|

≤
∑

v∈Vi+1

(
1 +

∑
u∈Vi

pu→v

)
ε′ +

∑
v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u| (Test(x) = 1)

= 2wε′ +
∑
u∈Vi

|p̂→u − p→u| (5)

≤ 2wε′ + 2wiε′ (Induction)
= 2w · (i+ 1) · ε′.
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Here Equation (5) is due to structures of ROBPs. Note that∑
v∈Vi+1

∑
u∈Vi

pu→v =
∑
u∈Vi

∑
v∈Vi+1

pu→v = w,

since for every pair (u, v), pu→v appears and only appears once in the summation. Also due
to the same reasoning,∑

v∈Vi+1

∑
u∈Vi

pu→v|p̂→u − p→u| =
∑
u∈Vi

∑
v∈Vi+1

pu→v|p̂→u − p→u| =
∑
u∈Vi

|p̂→u − p→u|.

As a result, for the last layer,

|p̂→vacc − p→vacc | ≤
∑
v∈Vn

|p̂→v − p→v| ≤ 2wnε′ = ε. J

I Lemma 2.6. The derandomization is in space O(s+ log wn
ε ).

Proof. Since H is computable in space s, for every x ∈ H we can output any specified bit of
it in space O(s+ logn′). So when considering the space for computing Test(x) and p̂→v(x),
we can just regard x as an input string and only consider working space.

Given vertex v in f , we first consider the space for computing p̂→v. By the definition of
p̂→v, we can locate the starting position of the t samples for v, taking space O(log wn

ε ). From
there, we read the t samples one by one. For each sample, we run f from vstart to the layer
of v to test if the sample leads to v. We use a counter c to record the number of samples
leading to v. Then compute p̂→v as c/t. Since t is a power of two, we can store this number
exactly, with no rounding errors. So this step takes space O(log(wn)) +O(log t) = O(log wn

ε ).
Thus the whole computation is in space O(log wn

ε ).
Next we consider Test. By the definition of Test, for every i ∈ [n], for each vertex v ∈ Vi,

we only need to compute p̂→v,
∑
u∈Vi−1

p̂→u · pu→v and then test the inequality (2). This
again takes space O(log wn

ε ). Note that computing Test(x) requires two-way access to x.
So the overall space of the derandomization is O(s+ log wn

ε ). J

Proof of Theorem 2.1. Given a width-w length-n ROBP f , by Lemma 2.2, the function f ′
can be computed by a width-w′ length-n′ ROBP. By Lemma 2.3, the acceptance probability
of f ′ is at least 1/2. Since H is a 1

2 -hitting set for width-w′ length-n′ ROBPs, there exists
x ∈ H s.t. f ′(x) = 1. So by Lemma 2.4, there is an x ∈ H s.t. Test(x) = 1. Hence we can
exhaustively search though H to find an x which passes Test. Further, by Lemma 2.5, for this
x, | p̂→vacc − p→vacc | ≤ ε. This shows the derandomization outputs the desired approximation
for p→vacc .

By Lemma 2.6, the derandomization can be done in space O(s+ log wn
ε ). J

Theorem 1.3 is directly implied from Theorem 2.1. The proof is straightforward by
applying the well known transformation between logspace computations and ROBPs.

3 Deterministic Samplers for Constant-Width ROBPs

In this section, we will show how to use hitting sets to construct deterministic samplers
for constant-width ROBPs, thereby proving Theorem 1.7. Most of the work will go toward
establishing the following reduction, which is meaningful even for slightly super-constant
width.
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I Theorem 3.1. Let w, n ∈ N and let ε > 0. Assume there is an ( ε
2n )-hitting set H for width-

(
(
w
2
)

+ 1) length-n ROBPs computable in space s. Then there is a deterministic ε-sampler
for width-w length-n ROBPs that runs in space O(s+ w log(n/ε)).

Like Theorem 2.1, Theorem 3.1 technically ought to be phrased in terms of families of
ROBPs. We should also clarify the model of space-bounded oracle algorithm. We assume
that the sampler has write-only access to a “query tape” where it can write down an n-bit
query string (the query string does not count against the sampler’s space complexity). The
sampler can then enter a special “query” state, which returns the result of the query into the
algorithm’s state and clears the query tape. This simple model was perhaps first studied by
Ladner and Lynch [19].

3.1 Setting Up the Reduction
Toward proving Theorem 3.1, we begin by setting up some notation. For any ROBP f and a
string x ∈ {0, 1}≤n, let vf (x) be the vertex reached when f reads x. Furthermore, define

pf (x) = E[f(x ◦ Un−|x|)],

i.e., pf (x) = pvf (x)→.
Now, let H ⊆ {0, 1}n be an εH -hitting set for width-(

(
w
2
)

+ 1) ROBPs. For i ≤ n, let Hi

be the set of i-bit prefixes of strings in H, i.e., Hi = {x1x2 . . . xi : x ∈ H}. One can verify
that Hi is an εH -hitting set for width-(

(
w
2
)

+ 1) length-i ROBPs.
Let f be the width-w ROBP to which we have oracle access. Let λ denote the empty

string. Our goal is to estimate pf (λ). For each i ≤ n, define an equivalence relation ∼ on
{0, 1}i by the rule

x ∼ y ⇐⇒ ∀z ∈ Hn−i, f(x ◦ z) = f(y ◦ z).

I Lemma 3.2. If x ∼ y, then |pf (x)− pf (y)| < εH .

Proof. Let i = |x| = |y|. Define g : {0, 1}n−i → {0, 1} by

g(z) = f(x ◦ z)⊕ f(y ◦ z).

The function g(z) can be computed by an ROBP of width
(
w
2
)

+ 1: we have one state in g
for each unordered pair of states in f to run the computations f(x ◦ z), f(y ◦ z) in parallel,
along with one additional ⊥ state in g to indicate that the two computations converged to
the same state. If |pf (x)− pf (y)| ≥ εH , then Hn−i hits g, hence x 6∼ y. J

Let [x] denote the equivalence class of x, so [x] ⊆ {0, 1}|x|. Our deterministic sampler
will be based on numbers p̃f ([x]) ∈ [0, 1] for each equivalence class [x]. The definition of
p̃f will ensure that p̃f ([x]) ≈ pf (x) for typical values of x, although there might be some
anomalous values of x where p̃f ([x]) 6≈ pf (x).

The definition of p̃f ([x]) is inductive. For the base case, when x ∈ {0, 1}n, define
p̃f ([x]) = f(x). This is well-defined, because x ∼ y =⇒ f(x) = f(y). For the inductive step,
suppose x ∈ {0, 1}i with i < n. Define

p̃f ([x]) = max
x′∈Hi∩[x]

(
1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1])
)
, (6)

with the convention that p̃f ([x]) = 0 if Hi ∩ [x] = ∅. Our sampler will output4 p̃f ([λ]). (In
Section 3.3, we will explain in more detail how to efficiently compute p̃f ([λ]).)

4 Actually the sampler’s output differs slightly from p̃f ([λ]) due to rounding errors.
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3.2 Correctness
The upper bound on p̃f ([x]) is straightforward:

B Claim 3.3. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≤ pf (x) + iεH .

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) = pf (x). For
the inductive step i > 0, we consider two cases. If Hi ∩ [x] = ∅, then p̃f ([x]) = 0 and the
claim is trivial. Otherwise, there is some x′ ∈ Hi ∩ [x] such that

p̃f ([x]) = 1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1]) (Equation (6))

≤ 1
2pf (x′ ◦ 0) + 1

2pf (x′ ◦ 1) + (i− 1)εH (Induction)

= pf (x′) + (i− 1)εH
< pf (x) + iεH (Lemma 3.2.) C

The lower bound is a little more subtle. If u is a vertex in layer i of f , we say that u is H-
reachable if there is some x ∈ Hi with vf (x) = u. Otherwise, we say that u is H-unreachable.
Let f̃ be a width-(w + 1) ROBP obtained from f by replacing all H-unreachable nodes with
reject nodes.5

B Claim 3.4. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≥ p
f̃
(x).

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) ≥ f̃(x) = p
f̃
(x).

For the inductive step i > 0, we consider two cases. If f visits some H-unreachable node
when it reads x, then p

f̃
(x) = 0 and the claim is trivial. Therefore, assume that when f reads

x, every node visited is H-reachable. Then there is some x′ ∈ Hn−i such that vf (x) = vf (x′).
Of course when f reads x′, every node visited is H-reachable, so

v
f̃
(x′) = vf (x′) = vf (x) = v

f̃
(x).

Therefore,

p
f̃
(x) = p

f̃
(x′)

= 1
2pf̃ (x′ ◦ 0) + 1

2pf̃ (x′ ◦ 1)

≤ 1
2 p̃f ([x′ ◦ 0]) + 1

2 p̃f ([x′ ◦ 1]) (Induction)

≤ p̃f (x) (Equation (6)).

(The last inequality uses the fact that vf (x) = vf (x′) and hence x ∼ x′.) C

5 More precisely, add an extra node to each layer labeled ⊥. In layers prior to the final layer, both
outgoing edges from ⊥ lead to ⊥, and both outgoing edges from H-unreachable nodes lead to ⊥. In the
final layer, H-unreachable nodes and ⊥ are reject nodes.
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I Corollary 3.5. |p̃f ([λ])− E[f ]| ≤ n · εH .

Proof. By Claim 3.3,

p̃f ([λ]) ≤ pf (λ) + n · εH = E[f ] + n · εH .

In the other direction, by Claim 3.4,

p̃f ([λ]) ≥ p
f̃
(λ) = E

[
f̃
]
.

Define g : {0, 1}n → {0, 1} by

g(x) = 1 ⇐⇒ when f reads x, an H-unreachable node is visited.

Then g can be computed by a width-(w + 1) ROBP by a construction very similar to that
of f̃ . By construction, g rejects every string in H. Therefore, E[g] < εH . Furthermore,
g(x) = 0 =⇒ f(x) = f̃(x). Therefore,

∣∣∣E [f̃]− E[f ]
∣∣∣ < εH , so p̃f ([λ]) > E[f ]− εH . J

3.3 Efficiently Computing p̃f([λ])
To complete the proof of Theorem 3.1, we just need to show how to efficiently compute
p̃f ([λ]). This is fairly straightforward from the definitions; the details follow.

Proof of Theorem 3.1. Say a string x ∈ Hi is a representative if it is the lexicographically
first element of [x] ∩Hi. Let x(i,1), x(i,2), . . . be an enumeration of the representatives in
Hi in lexicographic order. Given i, j, and oracle access to f , one can compute x(i,j) in
space O(s).

Our sampler works its way backward through the branching program, starting at layer n
and ending with layer 0. The sampler stores data about layer i and uses it when processing
layer i − 1. Specifically, the data stored regarding layer i consists of a list of numbers
pi,1, pi,2, . . . , with the interpretation pi,j = p̃f ([x(i,j)]), or rather pi,j ≈ p̃f ([x(i,j)]) due to
rounding error.

For layer n, we can compute this value exactly by setting pi,j = f(x(i,j)). Given these
values for layer i+ 1, we compute pi,j by the rule

pi,j := max
x′∈Hi∩[x(i,j)]
x(i+1,j0)∼x′◦0
x(i+1,j1)∼x′◦1

(
1
2pi+1,j0 + 1

2pi+1,j1

)
, (7)

with the convention pi,j = 0 if there is no suitable triple (x′, j0, j1).
The sampler performs the arithmetic in Equation (7) to within dlog(2n/ε)e bits of precision.

This ensures that the rounding error is not too large in each step; by induction, |pi,j −
p̃f ([x(i,j)])| ≤ ε(n−i)

2n . The sampler outputs p0,1, which is within ε of E[f ] by Corollary 3.5,
since εH = ε

2n .
The number of vertices in each layer of f is at most w, so the number of equivalence classes

in {0, 1}i is also at most w. Therefore, there are at most w representatives in Hi, and hence
there are only w numbers pi,j being stored for each layer. Storing those numbers for the layer
currently being processed and the layer most recently processed takes O(w log(n/ε)) bits of
space, so overall, the space complexity of the sampler is O(s+ w log(n/ε)) as claimed. J

Interestingly, the sampler of Theorem 3.1 can be implemented to be non-adaptive, because
it only queries f at strings of the form x ◦ y or x ◦ b ◦ z, where x ∈ Hi, y ∈ Hn−i, b ∈ {0, 1},
and z ∈ Hn−i−1.
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3.4 Applying the Reduction
Proof of Theorem 1.8. Hoza and Zuckerman constructed an

(
ε

2n
)
-hitting set H even for

polynomial-width ROBPs that can be computed in space O(log2 n+log(1/ε)) [16]. Combining
this result with Theorem 3.1 immediately proves Theorem 1.8. J

To prove Theorem 1.7, we must first amplify the assumed 1
2 -hitting set to get an

(
ε

2n
)
-

hitting set. This is straightforward, although we must pay a small penalty in terms of width,
length, and cardinality.

I Lemma 3.6. Suppose H is a 1
2 -hitting set for width-(w + 1) length-(nm) ROBPs. Divide

each string x ∈ H into blocks of length n, x = x(1) ◦ x(2) ◦ · · · ◦ x(m). Let H ′ = {x(i) : x ∈
H, i ∈ [m]}. Then H ′ is a ( 1

m )-hitting set for width-w length-n ROBPs.

Proof. Let f be a width-w length-n ROBP with E[f ] ≥ 1/m. Define g : ({0, 1}n)m → {0, 1}
by

g(x(1) ◦ · · · ◦ x(m)) =
∨
i∈[m]

f(x(i)).

Then g can be computed by a width-(w + 1) ROBP. Furthermore,

E[g] = 1− (1− E[f ])m ≥ 1−
(

1− 1
m

)m
>

1
2 .

Therefore, H hits g, hence H ′ hits f . J

Proof of Theorem 1.7. Combine Lemma 3.6 with Theorem 3.1. J

4 Negative Result: A Barrier for Upgrading Hitting Sets to PRGs

To directly compare hitting sets and PRGs, it is convenient to address the strings in the
hitting set using a hitting set generator (HSG).

I Definition 4.1. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that G({0, 1}s)
is an ε-hitting set for F .

In our theorem statements so far, we have been somewhat informal with the distinction
between an individual generator vs. a family of generators. Since our negative result is more
“meta” than our other results, we will make a precise definition for clarity’s sake.

I Definition 4.2. Let s(n, t, ε) be a space-constructible6 function. An explicit PRG (HSG)
family for width-w large-alphabet ROBPs with seed length s is a uniform algorithm G that
takes as input the parameters n, t, ε and a string y ∈ {0, 1}s(n,t,ε) and outputs a string
Gn,t,ε(y) ∈ {0, 1}tn. The algorithm runs in space O(s(n, t, ε)), and for each fixed n, t, ε, we
require that Gn,t,ε is an ε-PRG (ε-HSG) for width-w length-n ROBPs over the alphabet
{0, 1}t.

The assumption of Theorem 4.3 says that hitting sets can be upgraded into PRGs with
essentially no loss: the width parameter remains the same, and the seed length only increases
by a constant factor, for any arbitrary setting of n, t, ε. This is only for simplicity’s sake.
The proof would still go through even if the parameters deteriorated a little when moving
from hitting sets to PRGs.

6 I.e., given n, t, ε, the value s(n, t, ε) can be computed in space O(s(n, t, ε)).
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I Theorem 4.3. Let w be a constant. Assume that for every s(n, t, ε), if there exists an
explicit HSG family for width-w large-alphabet ROBPs with seed length s, then there exists an
explicit PRG family for width-w large-alphabet ROBPs with seed length O(s). Then for every
constant α > 0, there exists an explicit PRG family for width-w ROBPs with seed length

O(t+ log(n/ε) logα n).

4.1 From PRGs with Moderate Error to HSGs with Tiny Threshold
As outlined in Section 1.5.3, the proof of Theorem 4.3 is based on two reductions. For
the first reduction, we show how to convert any PRG with inverse polynomial error into
an ε-HSG for any ε. In the regime n ≥ w, our reduction is a generalization of Hoza and
Zuckerman’s reduction [16] to the large-alphabet case t� 1.

I Theorem 4.4. Let w, n, t ∈ N and let ε > 0. Assume there is a ( 1
2w3n2 )-PRG G for

width-w length-n ROBPs over the alphabet {0, 1}t, with seed length and space complexity
bounded by s. Then there is an ε-hitting set H for width-w length-n ROBPs over the alphabet
{0, 1}t, computable in space O(s+ t+ log(wn/ε)).

(Just like Theorems 2.1 and 3.1, Theorem 4.4 technically ought to be phrased in terms of
families of ROBPs.)

4.1.1 Construction of the Hitting Set H
Our hitting set H relies on a hitting set Hrect for combinatorial rectangles [20]. Recall that a
combinatorial rectangle over alphabet Γ of dimension r is a function g : Γr → {0, 1} of the
form g(x1, . . . , xr) = g1(x1) ∧ · · · ∧ gr(xr). Without loss of generality, assume ε < 1

w2n2 and
s ≥ t. The algorithm to enumerate H is as follows.
1. For all r ∈

{
1, 2, . . . ,

⌊
log(1/ε)
log(wn)

⌋}
:

a. Let Hrect ⊆ ({0, 1}s)2r−1 be an ε4-hitting set for combinatorial rectangles over alphabet
{0, 1}s of dimension 2r − 1.

b. For all sequences (x1, y1, x2, y2, . . . , xr−1, yr−1, xr) ∈ Hrect and for all sequences of
nonnegative integers (n1, . . . , nr) satisfying n1 + n2 + · · · + nr = n − r, output the
(nt)-bit string

(G(x1)|n1t) ◦ (y1|t) ◦ (G(x2)|n2t) ◦ (y2|t) ◦ · · · ◦ (yr−1|t) ◦ (G(xr)|nrt). (8)

In Equation (8), the notation y|t denotes the t-bit prefix of the bitstring y. The key difference
between our construction and Hoza and Zuckerman’s original hitting set construction [16] is
the presence of the strings yi, which do not pass through the PRG G.

4.1.2 Proof of Correctness
Hoza and Zuckerman’s reduction was based on a simple structural lemma for ROBPs [16,
Lemma 1]. Toward proving the correctness of H, we will now prove a new variant of that
lemma, applicable to ROBPs over a large alphabet. For two vertices u, v in an ROBP f ,
write u v if there is an edge from u to v. Let  ∗ be the reflexive transitive closure of  ,
i.e., u ∗ v if u = v or there is a path from u to v.

The way to think about Lemma 4.5 is to suppose that one is choosing a route from u

to vacc. Lemma 4.5 suggests two vertices v  u′ that one could visit on the way. Item 2
says that it is not difficult to find v. Item 3 says that if one can make it to u′, it will be
quite a bit easier to find vacc from there. Item 4 says that overall, visiting v and u′ is only a
mild detour.
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In general, in any ROBP over the alphabet Σ, if v  u′, then pv→u′ ≥ 1/|Σ|. In Hoza
and Zuckerman’s lemma [16, Lemma 1], they assume Σ = {0, 1}, and they use the fact that
therefore pv→u′ ≥ Ω(1). At a high level, the reason we need a new structural lemma is that
if Σ is large, pv→u′ might be small. Indeed, observe that Lemma 4.5 does not guarantee any
lower bound on pv→u′ .

I Lemma 4.5. Let f be a width-w, length-n ROBP over any alphabet. Let u be a vertex in
f , and assume 0 < pu→ ≤ 1

wn . Then there is a pair of vertices (v, u′) in f such that:
1. u ∗ v  u′.
2. pu→v ≥ 1

w3n2 .
3. pu′→ ≥ wn · pu→.
4. pu→v · pv→u′ · pu′→ ≥ pu→

w2n .

Proof. Suppose some pair (v, u′) satisfies Item 1, but it violates Item 4. For such a pair,
if we take a random walk from u, the probability that we visit v, u′, and vacc is less than
pu→
w2n . The number of such pairs is at most w2n, so by the union bound, when we start at u
and read random bits, the probability that we visit any such pair and vacc is less than pu→.
Therefore, there is some path from u to vacc that never visits such a pair.

Let u′ be the first vertex along that path that satisfies Item 3. (Such a u′ exists, because
if nothing else we can let u′ = vacc.) Let v be the vertex immediately preceding u′ in the
path. (This makes sense, because pu→ < wn · pu→, so u′ 6= u.) This pair clearly satisfies
Items 1, 3 and 4; all that remains is to verify Item 2. Indeed,

pu→
pu→v

≤ w2n · pv→u′ · pu′→ (Item 4)

≤ w2n · pv→
< w2n · wn · pu→,

where the last inequality holds because u′ is the first vertex in the path satisfying Item 3,
and v precedes u′, so v must not satisfy Item 3. Rearranging completes the proof. J

I Corollary 4.6. Let 0 < ε ≤ 1
wn . Let f be a width-w, length-n ROBP over any alphabet

with E[f ] ≥ ε. Then there is a sequence of vertices

vstart = u1  
∗ v1  u2  

∗ v2  · · · ur  
∗ vr = vacc

such that:
1. For every i, pui→vi ≥ 1

w3n2 .
2. r ≤ log(1/ε)

log(wn) .
3. pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥ ε3.

Proof. We define the sequence inductively, starting with u1 = vstart. Assume we’ve defined
u1, v1, u2, v2, . . . , ui. If pui→ ≥ 1

w3n2 , then set r = i, set vi = vacc, and terminate the sequence.
Otherwise, let (vi, ui+1) be the vertices provided by plugging u = ui into Lemma 4.5.

Item 1 of Lemma 4.5 implies that ui  ∗ vi and vi  ui+1. Item 1 is guaranteed by Item 2
of Lemma 4.5 and the termination condition. By Item 3 of Lemma 4.5, pui+1→ ≥ wn · pui→,
which implies Item 2. Finally, iteratively applying Item 4 of Lemma 4.5 shows that

pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥
pu1→

(w2n)r ≥ ε
3,

i.e., Item 3 holds. J
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We are now ready to complete the proof of correctness of our hitting set H.

B Claim 4.7. If f is a width-w length-n ROBP over the alphabet {0, 1}t with E[f ] ≥ ε, then
f−1(1) ∩H 6= ∅.

Proof. Let u1  ∗ v1  · · ·  ur  ∗ vr be the sequence of vertices guaranteed by Corol-
lary 4.6. Let ni be the distance from ui to vi. Let g : ({0, 1}s)2r−1 → {0, 1} be the following
combinatorial rectangle:

g(x1, y1, x2, y2, . . . , xr−1, yr−1, xr) = 1 ⇐⇒
∀i ∈ [r], G(xi)|nit leads from ui to vi and ∀i ∈ [r − 1], yi|t leads from vi to ui+1.

By Item 1 of Corollary 4.6, pui→vi ≥ 1
w3n2 . Since G has error 1

2w3n2 ,

Pr[G(U) leads from ui to vi] ≥
1
2pui→vi .

Therefore, by Item 3 of Corollary 4.6, E[g] ≥ ε3 · 2−r ≥ ε4. Therefore, there is some sequence
(x1, y1, . . . , yr−1, xr) ∈ Hrect that hits g. By construction, the corresponding element of H is
accepted by f . C

4.1.3 Efficiency
Proof of Theorem 4.4. To complete the proof of Theorem 4.4, let us analyze the space
complexity of H. The number r can be stored using O(log log(1/ε)) bits of space. Using
a construction by Linial, Luby, Saks, and Zuckerman [20], because of our chosen value
of r, we can enumerate Hrect in space O(s + log(1/ε)). The integers n1, . . . , nr can be
straightforwardly stored using O(r logn) = O(log(1/ε)) bits of space. Thus, overall, the
space complexity is O(s+ log(1/ε)). (Recall that we assumed without loss of generality that
ε < 1

w2n2 and s ≥ t.) J

4.2 Application: Unconditional Improved Hitting Sets for
Large-Alphabet ROBPs

As outlined in Section 1.5.3, plugging the class INW generator [17] into the reduction of
Theorem 4.4 already gives something interesting: an improved hitting set for large-alphabet
ROBPs, even of polynomial width.

I Corollary 4.8. Let w, n, t ∈ N and let ε > 0. There is an ε-hitting set H for width-w
length-n ROBPs over the alphabet {0, 1}t, computable in space O(t+log(wn) logn+log(1/ε)).

4.3 Trading a Good Dependence on ε for a Good Dependence on n
Recall that to prove Theorem 4.3, we must (conditionally) construct a PRG with a good
dependence on n. So far, unconditionally, Theorem 4.4 has provided us with an HSG with
a good dependence on ε. The assumption of Theorem 4.3 allows us to convert that HSG
into a PRG with the same seed length, O(t+ log2 n+ log(1/ε)) (for width w, a constant).
In this section, we show how to convert that PRG into another PRG with seed length
O(t+ log3/2 n+ log(1/ε)

√
logn), i.e., we improve the dependence on n at the expense of a

worse dependence on ε. That follows from setting α = 1/2 in the following more general
reduction.
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I Lemma 4.9. Let α ∈ (0, 1) be a constant. Let w, n, t ∈ N and ε > 0. Define m =⌈
2(logn)1−α

⌉
and d = dC log(n/ε)e, where C is an appropriate constant. Assume there is an

( ε
4n )-PRG G for width-w length-m ROBPs over the alphabet {0, 1}d with seed length and
space complexity bounded by s. Then there is an ε-PRG G′ for width-w length-n ROBPs
over the alphabet {0, 1}t with seed length and space complexity O(t+ s · logα n+ log(wn/ε)).

As usual, Lemma 4.9 should technically be phrased in terms of families of ROBPs.
As suggested in Section 1.5.3, the proof of Lemma 4.9 is not particularly novel. It is an
application of traditional seed-recycling techniques, similar to classic constructions of PRGs
for space-bounded computation [22, 17, 24]. Our construction and analysis are especially
similar to Armoni’s work [5].

One difference is that we use randomized samplers rather than extractors for convenience;
in this respect, our construction is similar to a variant of the INW generator [17] described
by Braverman, Cohen, and Garg [8] as a warm-up to their main construction. In particular,
we rely on the following randomized sampler by Goldreich and Wigderson [12].

I Theorem 4.10 ([12, Lemma 6.6]). For all t ∈ N, δ > 0, there exists a function
Samp : {0, 1}t × {0, 1}O(log(1/δ)) → {0, 1}t such that for any7 function f : {0, 1}t → [0, 1],

Pr
x

[∣∣∣∣Ey [f(Samp(x, y))]− E[f ]
∣∣∣∣ ≤ δ] ≥ 1− δ.

Furthermore, given t, δ, x, y as inputs, Samp(x, y) can be computed in space O(t).

We will recursively use the following basic PRG, which stretches t+ dn bits to tn bits. It
might be helpful to think of the case t = 100d.

I Lemma 4.11. Let t, δ be arbitrary, and let Samp : {0, 1}t × {0, 1}d → {0, 1}t be the
randomized sampler of Theorem 4.10. Define G0 : {0, 1}t × ({0, 1}d)n → ({0, 1}t)n by

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

Then G0 fools width-w length-n ROBPs over the alphabet {0, 1}t with error δw2n.

The proof of Lemma 4.11 is straightforward, and we omit it. When reading the proof of
Lemma 4.9, it might be helpful to keep in mind that all “x” variables are strings of length t,
all “y” variables are strings of length s, and all “z” variables are strings of length d.

Proof of Lemma 4.9. Define ni = n/mi. For simplicity, we ignore rounding issues, i.e.,
we assume that ni is an integer and that m = 2(logn)1−α exactly. Let δ = ε

4w2n , and let
d = O(log(wn/ε)) be the length of the second input to the function Samp of Theorem 4.10.
We will recursively define a sequence of PRGs

Gi : {0, 1}t × ({0, 1}s)i × ({0, 1}d)ni → ({0, 1}t)n.

The base case i = 0 is the basic PRG of Lemma 4.11:

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

7 Goldreich and Wigderson analyze the case that f is {0, 1}-valued, but the [0, 1]-valued case automatically
follows with only a quadratic loss in δ.
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For the inductive step i > 0, we define8

Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni)
= Gi−1(x, y1 ◦ · · · ◦ yi−1, G(Samp(yi, z1)) ◦ · · · ◦G(Samp(yi, zni))),

where G is the given PRG. To analyze these generators, let f be a width-w length-n ROBP
over the alphabet {0, 1}t. For each i and each fixing of x, y1, . . . , yi, define

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))

h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1
) = f(Gi(x, y1 ◦ · · · ◦ yi, G(y′1) ◦ · · · ◦G(y′ni+1

)).

These functions are related to one another by the rules

h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1
) = g(x,y1,...,yi)(G(y′1) ◦ · · · ◦G(y′ni+1

)) (9)

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = hx,y1,...,yi−1(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni)). (10)

This shows by induction on i that each g function can be computed by a width-w ROBP
over the alphabet {0, 1}d and each h function can be computed by a width-w ROBP over
the alphabet {0, 1}s.

Let us now show by induction on i that Gi fools f with error (δw2 + εG) ·
∑i
j=0 nj , where

εG is the error of G. The base case i = 0 is already established by Lemma 4.11. For the
inductive step, we have

E
x

y1,...,yi
z1,...,zni

[f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))]

= E
x

y1,...,yi
z1,...,zni

[g(x,y1,...,yi)(z1 ◦ · · · ◦ zni)]

= E
x

y1,...,yi
z1,...,zni

[h(x,y1,...,yi−1)(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni))] (Equation (10))

≤ E
x

y1,...,yi−1
y′1,...,y

′
ni

[h(x,y1,...,yi−1)(y′1 ◦ · · · ◦ y′ni)] + δw2ni (Lemma 4.11)

= E
x

y1,...,yi−1
y′1,...,y

′
ni

[g(x,y1,...,yi−1)(G(y′1) ◦ · · · ◦G(y′ni))] + δw2ni (Equation (9))

≤ E
x

y1,...,yi−1
z1,...,zni−1

[g(x,y1,...,yi−1)(z1 ◦ · · · ◦ zni−1)] + (δw2 + εG) · ni

= E
x

y1,...,yi−1
z1,...,zni−1

[f(Gi−1(x, y1 ◦ · · · ◦ yi−1, z1 ◦ · · · ◦ zni−1))] + (δw2 + εG) · ni.

The lower bound follows the same argument. Let r = logα n and G′ = Gr. Then G′ fools f
with error

(δw2 + εG) ·
r∑
i=0

ni ≤ (δw2 + εG) · n ·
∞∑
i=0

m−i ≤ 2n · (δw2 + εG) ≤ ε.

Furthermore, the seed length of G′ is t+ rs+ d as claimed, and the space complexity of G′
is clearly also O(t+ rs+ d). J

8 Note that strictly speaking, we are using two instantiations of Samp. In the base case, Samp has output
length t, whereas in the inductive step, Samp has output length s. Hopefully, using the same name
Samp for both samplers will not cause confusion.
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4.4 Putting Things Together to Prove Theorem 4.3
Proof of Theorem 4.3. We will show by induction on a that for each constant a ∈ N, there
is an explicit PRG family for width-w ROBPs with seed length O(t + log(n/ε) log1/a n).
The base case a = 1 holds unconditionally – this is the seed length of the classic INW
generator [17].

For the inductive step, suppose a > 1. Let t, n, ε be arbitrary; we will construct an ε-PRG
for width-w length-n ROBPs over the alphabet {0, 1}t. Define α = 1/a. Let m = 2(logn)1−α

and d = C log(n/ε), as in Lemma 4.9.
By induction, there is a ( 1

2w3m2 )-PRG G for width-w length-m ROBPs over the alphabet
{0, 1}d, with seed length and space complexity bounded by O(d+ log1+ 1

a−1 m). Now,

log1+ 1
a−1 m = (logn)(1− 1

a )·(1+ 1
a−1 ) = logn,

so G has seed length and space complexity bounded by O(log(n/ε)). Plugging G into
Theorem 4.4, we get an ( ε

4n )-hitting set H for width-w length-m ROBPs over the alphabet
{0, 1}d, computable in space O(log(n/ε)). Now we use our assumption to convert H into a
PRG G′ with exactly the same parameters. Finally, plugging G′ into Lemma 4.9 gives the
desired PRG. J

5 Directions for Further Research

In this paper, we have shown that hitting sets for RL would derandomize BPL. Constructing
a hitting set is the most natural way to prove L = RL, but there are also other approaches. In
general, does L = RL imply L = BPL? In the polynomial-time setting, the “promise” variant
of this question has been answered in the affirmative, i.e., prP = prRP =⇒ P = BPP [9].
Does prL = prRL imply L = BPL? Or relaxing the challenge even further, does L = NL
imply L = BPL?

We gave two different algorithms for estimating the expectation of an ROBP given
a hitting set, one suited for w = poly(n) (Theorem 2.1) and one suited for w = O(1)
(Theorem 3.1). What about the case n = polylogw? Unconditionally, there are optimal
hitting sets known in this regime [2, 16]. Given such an ROBP f as input, is it possible
to compute E[f ] ± 1

w in space O(logw)? (The Nisan-Zuckerman PRG [24] achieves seed
length O(logw) in this regime, but only for moderate error ε� 1

w .) An affirmative answer
would imply that any space-s decision algorithm that uses n random bits could be simulated
by another space-O(s) algorithm using only O(n/sc) random bits, where c is an arbitrarily
large constant.

Recently, Meka, Reingold, and Tal constructed a PRG for width-3 ROBPs with seed
length Õ(logn log(1/ε)) [21]. This is near-optimal when ε is not too small, but for ε = 1/n
it is worse than Nisan’s PRG [22]. On the other hand, there is an explicit hitting set for
width-3 ROBPs with near-optimal seed length Õ(log(n/ε)) [14]. Can one construct an explicit
deterministic sampler for width-3 ROBPs with near-optimal seed length? Unfortunately, to
produce a deterministic sampler for width-3 ROBPs, Theorem 3.1 would require a hitting
set for width-4 ROBPs.

Assuming the existence of a log-space hitting set for polynomial-width ROBPs, is it
possible to construct a log-space deterministic sampler for polynomial-width ROBPs?

Recall that PRPDs are superior to deterministic samplers (see Figure 1). Is it possible to
improve Theorem 1.7 so that it concludes with a PRPD rather than a mere deterministic
sampler?
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A Derandomizing BPP Given a Hitting Set

I Theorem A.1 ([3]). Assume that for every s, n ∈ N, there is a 1
2 -hitting set Hs,n for size-s

circuits on n input bits that can be computed in time poly(s, n). Then P = BPP.

Proof. By naïve amplification, we may assume that the randomized algorithm has failure
probability 2−N , where N is the input length. Let C be a size-n circuit on n input bits
describing the action of this algorithm on its random bits, so n = poly(N) and we are trying
to distinguish the cases E[C] ≤ 2−N vs. E[C] ≥ 1− 2−N . Our algorithm accepts if and only
if there exists x ∈ Hnc,n such that for all y ∈ H3n,n, C(x ⊕ y) = 1. Here, c is a suitable
constant that will become clear later. The runtime is clearly poly(N).

For the correctness proof, first suppose E[C] ≤ 2−N . For any fixed x, the function
y 7→ ¬C(x⊕ y) has expectation at least 1− 2−N and can be computed by a circuit of size
3n. Therefore, there is some y ∈ H3n,n such that C(x ⊕ y) = 0, and hence our algorithm
rejects. Conversely, suppose E[C] ≥ 1− 2−N . Consider sampling x ∈ {0, 1}n and y ∈ H3n,n
uniformly at random. Since x is uniform, Ex,y[¬C(x⊕ y)] ≤ 2−N . By Markov’s inequality,

Pr
x∈{0,1}n

[
E

y∈H3n,n
[¬C(x⊕ y)] < 2 · 2−N

]
> 1/2.

Since H3n,n can be computed in polynomial time, |H3n,n| ≤ poly(N). Therefore, when N is
sufficiently large,

E
y∈H3n,n

[¬C(x⊕ y)] < 2 · 2−N =⇒ E
y∈H3n,n

[¬C(x⊕ y)] = 0.

https://doi.org/10.1007/BF01683260
https://doi.org/10.1007/BF01200907
https://doi.org/10.1007/BF01305237
https://doi.org/10.1016/0304-3975(93)90258-U
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1007/978-3-642-20712-9_10
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Therefore,

Pr
x∈{0,1}n

[∀y ∈ H3n,n, C(x⊕ y) = 1] > 1/2.

Given input x, the predicate ∀y ∈ H3n,n, C(x⊕ y) = 1 can be computed by a circuit of size
nc for some suitable constant c. Therefore, there is some x ∈ Hnc,n that hits that circuit. J
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