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Abstract
Sign-rank and discrepancy are two central notions in communication complexity. The seminal work
of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the
gap between these two notions. In this article, we establish the strongest possible separation by
constructing a boolean matrix whose sign-rank is only 3, and yet its discrepancy is 2−Ω(n). We note
that every matrix of sign-rank 2 has discrepancy n−O(1).

Our result in particular implies that there are boolean functions with O(1) unbounded error
randomized communication complexity while having Ω(n) weakly unbounded error randomized
communication complexity.
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1 Introduction

Sign-rank and discrepancy are arguably the most important analytic notions in the area
of communication complexity. Let A be a matrix with {−1, 1} entries (we refer to these
matrices as boolean matrices in this paper). The discrepancy of A is the minimum over all
input distribution of the maximum correlation that A has with a rectangle (for a formal
definition see Section 2). It was introduced by Chor and Goldreich [8], and has become one
of the most commonly used measures in communication complexity to prove lower bounds
for randomized protocols. The sign-rank of A is the minimal rank of a real matrix whose
entries have the same sign pattern as A. This natural and fundamental notion was first
introduced by Paturi and Simon [16] in the context of the unbounded error communication
complexity. Since then, its applications have extended beyond communication complexity to
areas such as circuit complexity [17, 6], learning theory [12, 13, 10], and even connections to
algebraic geometry [23].

Boolean matrices in communication complexity correspond to boolean functions: give
an n-bits two player function f : {0, 1}n × {0, 1}n → {−1, 1}, it corresponds to the 2n × 2n
matrix Ax,y = f(x, y). The notions of discrepancy and sign-rank for f correspond to its
respective matrix. The main informal question motivating this work is:

I Problem 1. Does every function of low sign-rank have an efficient randomized protocol?
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18:2 Sign Rank vs Discrepancy

If the answer is negative, then the next question is, does it at least have large discrepancy
(small discrepancy is one technique to prove randomized communication complexity lower
bounds, but there are functions showing separations between the two measures, for example
set-disjointness [7]).

I Problem 2. Does every function of low sign-rank have large discrepancy?

In order to build some intuition towards more quantitative questions, lets consider some
well-known examples:

Greater-than: we interpret x, y as integers in {1, . . . , 2n} and define f(x, y) = 1 if x ≤ y
and f(x, y) = −1 otherwise. This function has sign-rank 2 and requires Θ(logn) bits of
randomized communication [15]. Moreover, its discrepancy is n−Θ(1), which proves the
communication lower bound.
Set-disjointness: we interpret x, y as subsets of [n], and define f(x, y) = 1 if x, y are
disjoint and f(x, y) = −1 otherwise. This function has sign-rank O(n) and requires
communication complexity of Θ(n) bits. However, this cannot be shown using discrepancy,
as the discrepancy of set-disjointness is n−O(1) [7].
Sherstov [21] constructed a function with sign-rank O(n) and discrepancy 2−Ω(n).

Thus, it seems that functions with logarithmic sign-rank can already be very complicated,
both in terms of their randomized communication complexity and also in terms of their
discrepancy. However, the situation is less clear for functions of constant sign-rank.

I Problem 3. Does every function of constant sign-rank have an efficient randomized
protocol? in particular, does it have large discrepancy?

Our main result is a sounding no, already for sign-rank 3.

I Theorem 4 (Main Theorem; informal version). There exists a function f : {0, 1}n×{0, 1}n →
{−1, 1} of sign-rank 3 and discrepancy 2−Ω(n). In particular, f has Ω(n) randomized
communication complexity.

The sign-rank 3 in Theorem 4 is tight. We show in Section 3 that functions of sign-rank 1 or
2 are very simple combinatorially, and in particular have discrepancy n−O(1) and randomized
communication complexity O(logn).

The function f in Theorem 4 is simple to define: the sign on an inner product in
dimension 3. Concretely, let M ≈ 2n/3. Alice gets a vector a ∈ [−M,M ]3 and Bob gets a
vector b ∈ [−M,M ]3. Define

f(a,b) = sign〈a,b〉,

where sign : R → {−1, 1} is the sign function, mapping positive inputs to 1 and zero or
negative inputs to −1; and 〈·, ·〉 is inner product over the integers. It is obvious from the
definition that f has sign-rank 3. We prove that its discrepancy is exponentially small. The
actual function we study is a mild restriction of this function, convenient for the proof. See
Theorem 7 for details.

1.1 Connections to communication complexity
Theorem 4 is motivated by its applications in communication complexity. Consider a
communication problem f : {0, 1}n × {0, 1}n → {−1, 1} in Yao’s two party model. Given an
error parameter ε ∈ [0, 1/2], let Rε(f) be the smallest communication cost of a private-coin
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randomized communication protocol that on every input produces the correct answer with
probability at least 1− ε. Here private-coin refers to the assumption that players each have
their own unlimited private source of randomness. Three natural complexity measures arise
from Rε(f).

1. The quantity R1/3(f) is called the bounded-error randomized communication complexity
of f . The particular choice of 1/3 is not important as long as one is concerned with
an error that is bounded away from both 0 and 1/2 since in this case the error can be
reduced by running the protocol constantly many times and outputting the majority
answer.

2. The weakly unbounded error randomized communication complexity of f is defined as

PP(f) = inf
0≤ε≤1/2

{
Rε(f) + log 1

1− 2ε

}
,

that includes an additional penalty term, which increases as ε approaches 1
2 . The purpose

of this error term is to capture the range where ε is “moderately” bounded away from 1
2 .

3. Finally the unbounded error communication complexity of f is defined as the smallest
communication cost of a private-coin randomized communication protocol that computes
every entry of f with an error probability that is strictly smaller than 1

2 . In other
words, the protocol only needs to outdo a random guess, which is always correct with
probability 1

2 . We have

UPP(f) = lim
ε↗ 1

2

Rε(f).

In their seminal paper, Babai, Frankl and Simon [2] associated a complexity class to
each measure of communication complexity. While in the theory of Turing machines, a
complexity that is polynomial in the size of input bits is considered efficient, in the realm of
communication complexity, poly-logarithmic complexity plays this role, and communication
complexity classes are defined accordingly. Here, the communication complexity classes
BPPcc, PPcc, and UPPcc correspond to the class of communication problems {fn}∞n=0 with
polylogarithmic R1/3(fn), PP(fn), and UPP(fn), respectively.

Note that while BPPcc requires a strong bound on the error probability, and UPPcc only
requires an error that beats the random guess, PPcc corresponds to the natural requirement
that the protocol beats the 1

2 bound by a margin that is quasi-polynomially large. That is,
PPcc is the class of communication problems fn that satisfy R 1

2−2− logc(n)(fn) ≤ logc(n) for
some positive constant c. We have the containment BPPcc ⊆ PPcc ⊆ UPPcc.

It turns out that both UPP(f) and PP(f) have elegant algebraic formulations. Paturi
and Simon [16] proved that UPP essentially coincides with the sign-rank of f :

log rk±(f) ≤ UPP(f) ≤ log rk±(f) + 2.

Similar to the way that sign-rank captures the complexity measure UPP(f), discrepancy
captures PP(f). The classical result relating randomized communication complexity and
discrepancy, due to Chor and Goldreich [8], is the inequality

Rε(f) ≥ log 1− 2ε
Disc(f) .

This in particular implies PP(f) ≥ − log Disc(f). Klauck [9] showed that the opposite is
also true; more precisely, that

PP(f) = O (− log Disc(f) + log(n)) .

Thus, a direct corollary of Theorem 4 is the following separation between unbounded error
and weakly bounded error communication complexity.
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18:4 Sign Rank vs Discrepancy

I Corollary 5. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with UPP(f) = O(1)
and PP(f) = Ω(n).

Another closely related notion to sign-rank is approximate rank. Given α > 1, the
α-approximate rank of a boolean matrix A is the minimal rank of a real matrix B, of the
same dimensions as A, that satisfies 1 ≤ Ai,jBi,j ≤ α for all i, j. The α-approximate rank
of a boolean function f : {0, 1}n × {0, 1}n → {−1, 1} is the α-approximate rank of the
associated 2n × 2n boolean matrix. Observe that

rk±(f) = lim
α→∞

rkα(f).

Given this, a natural question is whether sign-rank can be separated from α-approximate
rank. This is also a consequence of Theorem 4(in fact to be precise, this is rather a corollary
of Theorem 7 which is the formal version of Theorem 4).

I Corollary 6. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} with rk±(f) = 3 and
rkα(f) = Ω(2n/4/(αn)2) for any α > 1.

Corollary 6 follows from Theorem 4 and the fact that

rkα(f) ≥ Ω
(
α−2Disc(f)−2) ,

which is a combination of the results of Linial and Shraibman [14, Theorem 18] and Lee and
Shraibman [11, Theorem 1].

1.2 Related works
The question of separating sign-rank from discrepancy (or equivalently, separating unbounded
from weakly unbounded communication complexity) has been studied in a number of papers.

When Babai et al. [2] introduced the complexity classes BPPcc ⊆ PPcc ⊆ UPPcc, they
noticed that the set-disjointness problem separates BPPcc from PPcc, but they left open the
question of separating UPPcc from PPcc, or equivalently sign-rank from discrepancy. This
question remained unanswered for more than two decades until finally Buhrman et al. [5]
and independently Sherstov [18] showed that there are n-bit boolean function f such that
UPP(f) = O(logn) but PP(f) = Ω(n1/3) and PP(f) = Ω(

√
n), respectively. The bounds on

PP(f) were strengthened in subsequent works [19, 20, 22, 21] with the final recent separation
from [21] giving a function f with UPP(f) = O(logn) and maximal possible PP(f) = Ω(n).
Despite this line of work, no improvement was made on the O(log(n)) bound on UPP(f). In
fact, to the best of our knowledge, prior to this work, it was not even known whether there
are functions with UPP(f) = O(1) and R1/3(f) = ω(log(n)). To recall, Corollary 5 gives a
function f with UPP(f) = O(1) and PP(f) = Ω(n).

A different aspect is the study of sign-rank of matrices. Matrices of sign-rank 1 and 2
are simple combinatorially, while matrices with sign-rank 3 seem to be much more complex.
First, it turns out that deciding whether a matrix has sign-rank 3 is NP-hard, a result that
was shown by Basri et al. [3] and independently by Bhangale and Kopparty [4]. In fact,
deciding if a matrix has sign-rank 3 is ∃R-complete, where ∃R is the existential first-order
theory of the reals, a complexity class lying between NP and PSPACE. This ∃R-completeness
result is implicit in both [3] and [4], as observed by [1].

1.3 Proof overview
We give a proof overview of Theorem 4. Let us first slightly modify f in a way that will
convenient for the proof.



H. Hatami, K. Hosseini, and S. Lovett 18:5

Let N ≈ 2n/4. Alice gets three integers x1, x2, z and Bob gets two integers y1, y2, where
x1, x2, y1, y2 ∈ [N ] and z ∈ [−3N2, 3N2]. We shorthand x = [x1, x2] and y = [y1, y2], so that
Alice’s input is [x, z] and Bob’s input is y. Note that x, y ∈ [N ]2. Define

f([x, z], y) = sign(z − 〈x, y〉) = sign(z − x1y1 − x2y2).

The following is our main technical result.

I Theorem 7 (Main result; formal version). Let f be as above. Then Disc(f) = O(n · 2−n/8).

We remark that the function f here is a restriction of the function f described before
Theorem 4, and therefore, Theorem 7 implies Theorem 4.

To prove Theorem 7, it is useful to think about our discrepancy bound in the language of
communication complexity. We prove Theorem 7 in two steps. Below we denote random
variables with bold letters.

Step 1: constructing a hard distribution

First, we define a hard distribution ν. Alice and Bob receive uniformly random integers
x,y ∈ [N ]2 respectively where N ≈ 2n/4. The inner product 〈x,y〉 is a random variable over
[2N2]. Alice also receives another random variable z over [−3N2, 3N2], whose distribution
we will explain shortly. The players want to decide whether 〈x,y〉 ≥ z. We define z in such
a way that
〈x,y〉 − z ∈ [−2N, 2N),
〈x,y〉 ≥ z happens with probability 1

2 ,
〈x,y〉− z is extremely close in total variation distance to 〈x,y〉− z− 2N (which is always
negative), even when restricted to arbitrary large combinatorial rectangles.

To construct z, we first define another independent random variable k and then let z =
〈x,y〉+ k, or z = 〈x,y〉+ k− 2N , with equal probabilities. We choose k = k1 + k2 for k1,k2
independent uniform elements from [N ] so that k is smooth enough for the analysis to go
through. Note that the range of z is really just [−2N, 2N2 + 2N ], and we picked the range
of z in the definition of f as z ∈ [−3N2, 3N2] for its simpler shape.

Step 2: translation invariance of k

We bound the discrepancy Discν(f) as follows. Fix a combinatorial rectangle A × B ⊂
([N ]2 × [−3N2, 3N2])× [N ]2. We want to bound the correlation of f with 1A1B under the
distribution ν. This boils down to showing that after conditioning on the input being in
A×B, the distribution (〈x,y〉− z)|A,B has small total variation distance with its translation
by 2N . We prove a stronger statement, and show that in fact this is true even if we fix x = x

to a typical x (and therefore choosing A ⊂ {x} × [−3N2, 3N2]), namely, after conditioning
x = x, and y ∈ B, the distribution of (〈x,y〉 − z)|y∈B has small total variation distance with
its translation by 2N . To prove the claim we appeal to Fourier analysis and estimate the
Fourier coefficients of the random variable, and verify that the only potentially large Fourier
coefficients correspond to Fourier characters that are almost invariant under translations by
2N . Computing these Fourier coefficients involves computing some partial exponential sums
whose details may be seen in Lemma 10 and Lemma 11. At a high level, these boils down
to showing that if x,y ∈ Z2

p are two random independent variables, uniform over large sets,
then their inner product 〈x,y〉 has well-behaved spectral properties.

CCC 2020
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Paper organization

We give preliminary definitions need for the proof in Section 2. We discuss the structure of
matrices of sign-rank 1 and 2 in Section 3. We prove or main result, Theorem 7, in Section 4.

2 Preliminaries

Notations

To simplify the presentation, we often use . or ≈ instead of the big-O notation. That
is, x . y means x = O(y), and x ≈ y means x = Θ(y). For integers N ≤ M we denote
[N,M ] = {N, . . . ,M}, and we shorthand [N ] = [1, N ].

Discrepancy

Let X ,Y be finite sets, and ν be a probability distribution on X × Y. The discrepancy of a
function f : X ×Y → {−1, 1} with respect to ν and a combinatorial rectangle A×B ⊆ X ×Y
is defined as

DiscA×Bν (f) = E(x,y)∼ν [f(x,y)1A(x)1B(y)] .

The discrepancy of f with respect to ν is defined as

Discν(f) = max
A,B

DiscA×Bν (f),

and finally the discrepancy of f is defined as

Disc(f) = min
ν

Discν(f).

Probability

We denote random variables with bold letters. Given a random variable r, let µ = µr denote
its distribution. The conditional distribution of r, conditioned on r ∈ S for some set S, is
denoted by µ|S . Given a finite set S, we denote the uniform measure on S by µS . If r is
uniformly sampled from S, we denote it by r ∼ S.

Fourier analysis

The proof of Theorem 7 is based on Fourier analysis over cyclic groups. We introduce the
relevant notation in the following. Let p be a prime. For f, g : Zp → C define

〈f, g〉 = 1
p

∑
x∈Zp

f(x)g(x),

and

f ∗ g(z) = 1
p

∑
x∈Zp

f(x)g(z − x).

Let ep : Zp → C denote the function ep : x 7→ e2πix/p. For a ∈ Zp define the character
χa : x 7→ ep(−ax). The Fourier expansion of f : Zp → C is the sum

f(x) =
∑
x∈Zp

f̂(a)χa(x),



H. Hatami, K. Hosseini, and S. Lovett 18:7

where f̂(a) = 〈f, χa〉. Note that by definition,

f̂(a) = 1
p

∑
x∈Zp

f(x)ep(ax).

It follows from the properties of the characters that

f ∗ g(z) =
∑
a∈Zp

f̂(a)ĝ(a)χa(z),

showing that f̂ ∗ g(a) = f̂(a)ĝ(a). In particular, if x1, . . . ,xk are independent random
variables taking values in Zp, and if x = x1 + . . .+ xk, then

µ̂x(a) = pk−1
k∏
i=1

µ̂xi
(a).

Number theory estimates

Fix a prime p. Given an integer x, we denote the distance of x to the closest multiple of p
(and abusing standard notation) by

‖x‖p = min{|x− zp| : z ∈ Z}.

We will often use the estimate

|ep(x)− 1| ≈
‖x‖p
p

,

which follows from the easy estimate that 4|y| ≤ |e2πiy − 1| ≤ 8|y| for y ∈ [−1/2, 1/2], and
taking y = sign(x)‖x‖p

p .

3 Sign-rank 1 and 2

In this section we demonstrate that boolean matrices with sign-rank 1 or 2 are very simple
combinatorially. Let A be an N × N boolean matrix for N = 2n. If A has sign-rank 1,
then there exist nonzero numbers a1, . . . , aN , b1, . . . , bN ∈ R such that Ai,j = sign(aibj). In
particular, if we partition the ai and the bj to the positive and negative numbers, we see that
A can be partitioned into 4 monochromatic sub-matrices. This implies that Disc(A) = Ω(1).

Assume next that A has sign-rank 2. Then there exist vectors u1, . . . , uN , v1, . . . , vN ∈ R2

such that Ai,j = sign(〈ui, vj〉). By applying a rotation to the vectors, we may assume
that their coordinates are all nonzero. Next, by scaling the vectors, we may assume that
ui = (±1, ai) and vj = (bj ,±1) for all i, j. Next, partition the ai and the bj to the positive and
negative numbers. Consider without loss of generality the sub-matrix in which ui = (1, ai)
and vj = (bj ,−1) for all i, j (the other three cases are equivalent). In this sub-matrix,
Ai,j = sign(ai − bj). By removing repeated rows and columns, we get that the sub-matrix
is an upper triangular matrix, with 1 on or above the diagonal and −1 below the diagonal.
That is, the sub-matrix is equivalent to the matrix corresponding to the Greater-Than
boolean function on at most n bits. Nisan [15] showed that the bounded-error communication
complexity of this matrix is O(logn), which in particular implies that the discrepancy is at
least n−O(1). This implies that also Disc(A) ≥ n−O(1).

CCC 2020
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4 Sign-rank 3 vs. discrepancy

We now turn to prove Theorem 7. To recall, Alice’s input is the pair [x, z] with x ∈ [N ]2, z ∈
[−3N2, 3N2], and Bob’s input is y ∈ [N ]2. The hard distribution ν is defined as follows. First,
sample x,y uniformly and independently from [N ]2. Next, sample k1,k2 ∈ [N ] uniformly
and independently, and let k = k1 + k2. Define z as follows: choose z = 〈x,y〉 + k or
z = 〈x,y〉+ k− 2N , each with probability 1/2. Observe that in the former case 〈x,y〉 < z
and hence f([x, z],y) = 1; and in the latter case 〈x,y〉 ≥ z and hence f([x, z],y) = −1.
Thus f is balanced:

Pr[f([x, z],y) = 1] = Pr[f([x, z],y) = −1] = 1/2.

In order to prove the theorem, we bound the correlation of f with a rectangle A × B,
where A ⊆ [N ]2 × [−3N2, 3N2] and B ⊆ [N ]2. For x ∈ [N ]2, let

Ax = {z : [x, z] ∈ A}.

We have

DiscA×Bν (f) = E([x,z],y)∼ν [f([x, z],y)1A(x, z)1B(y)]
= Ex,y∼[N ]21B(y)Ez|x,y [f([x, z],y)1Ax(z)] .

Recall the definition of f and that z = 〈x,y〉 + k or z = 〈x,y〉 + k − 2N with equal
probabilities. In the former case f evaluates to 1, and it the latter case it evaluates to −1.
We thus have

DiscA×Bν (f) = 1
2Ex,y,k [f([x, 〈x,y〉+ k],y)1B(y)1Ax(〈x,y〉+ k)]

+1
2Ex,y,k [f([x, 〈x,y〉+ k− 2N ],y))1B(y)1Ax(〈x,y〉+ k− 2N)]

= 1
2Ex,y,k [1B(y)1Ax(〈x,y〉+ k)− 1B(y)1Ax(〈x,y〉+ k− 2N)]

= |B|
2N2ExEy∼BEk [1Ax(〈x,y〉+ k)− 1Ax(〈x,y〉+ k− 2N)] .

For x ∈ [N ]2 let νBx denote the distribution of 〈x,y〉+ k conditioned on x = x,y ∈ B. With
this notation,

DiscA×Bν (f) = |B|
2N2ExEw∼νB

x
[1Ax(w)− 1Ax(w− 2N)]

= |B|
2N2Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w − 2N)νBx (w)

= |B|
2N2Ex

∑
w∈Z

1Ax(w)νBx (w)− 1Ax(w)νBx (w + 2N)

≤ |B|
2N2Ex

∑
w∈Z

∣∣νBx (w)− νBx (w + 2N)
∣∣ ,

which no longer depends on A. The random variable 〈x,y〉+ k is in the range [−3N2, 3N2]
so we embed [−3N2, 3N2] into Zp for some prime p ∈ [6N2 + 1, 12N2]. We consider νBx as a
distribution over Zp, and thus we can rewrite

DiscA×Bν (f) ≤ p|B|
2N2ExEw∼Zp

|νBx (w)− νBx (w + 2N)|

. |B| · ExEw∼Zp
|νBx (w)− νBx (w + 2N)|.

The following lemma, whose proof is deferred to the next section, completes the proof.
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I Lemma 8. Let Ñ ≈ N . Then ExEw∼Zp
|νBx (w)− νBx (w + Ñ)| . logN√

|B|N3
.

By invoking Lemma 8 for Ñ = 2N we obtain

Disc(f) ≤ DiscA×Bν (f) . |B| logN√
|B|N3

≤
√
|B|
N3 logN ≤ N− 1

2 logN . n2−n/8.

4.1 Invariance of νBx under translation
The goal of this section is to prove Lemma 8. We will prove that for a typical x, the measure
νBx is almost invariant under the translations by Ñ ≈ N . First we compute the Fourier
expansion of this measure.

I Lemma 9. For all x ∈ [N ]2 and a ∈ Zp, we have

ν̂Bx (a) = 1
p

ep(2a)
(

1
N

ep(Na)− 1
ep(a)− 1

)2
Ey∼B [ep(a〈x,y〉)] .

Proof. Recall that νBx is the distribution of 〈x,y〉+ k1 + k2 where y ∼ B and k1,k2 ∼ [N ].
Therefore for all a ∈ Zp,

ν̂Bx (a) = p2µ̂〈x,y〉(a)µ̂k1(a)µ̂k2(a) = p2µ̂〈x,y〉(a)µ̂[N ](a)2,

where to recall µ[N ] is the uniform distribution on [N ]. First, we compute the Fourier
coefficients of µ〈x,y〉:

µ̂〈x,y〉(a) = 1
p

∑
t∈Zp

µ〈x,y〉(t)ep(at) = 1
p
Ey∼B [ep(a〈x, y〉)] .

Next, we compute the Fourier coefficients of µ[N ]:

µ̂[N ](a) = 1
p

N∑
t=1

1
N

ep(at) = ep(a)
pN

· ep(Na)− 1
ep(a)− 1 ,

where we have computed the partial sum of the geometric series {ep(at)}t=1,...,N . The lemma
follows. J

With the Fourier coefficients ν̂Bx (a) computed in Lemma 9, we can analyze the distance
of νBx from its translation by Ñ ≈ N .

Proof of Lemma 8. Let w ∼ Zp. Recall that x ∼ [N ]2 and that Ñ ≈ N . Using the Fourier
expansion of νBx we can write

s := Ex,w|νBx (w)− νBx (w + Ñ)| = Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ν̂Bx (a)
(
χa(w)− χa(w + Ñ)

)∣∣∣∣∣∣ .
We may now use Lemma 9 and substitute the Fourier coefficient ν̂Bx (a),

s = 1
p
Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)
(

1
N

ep(Na)− 1
ep(a)− 1

)2
Ey∼B [ep(a〈x,y〉)] (1− ep(−Ña))χa(w)

∣∣∣∣∣∣ .

CCC 2020



18:10 Sign Rank vs Discrepancy

Squaring both sides, and applying Cauchy-Schwarz and then Parseval’s identity, we get

s2p2 ≤ Ex,w

∣∣∣∣∣∣
∑
a∈Zp

ep(2a)Ey∼B [ep(a〈x,y〉)]
(

1
N

ep(Na)− 1
ep(a)− 1

)2
(1− ep(−Ña))χa(w)

∣∣∣∣∣∣
2

= Ex
∑
a∈Zp

|Ey∼B [ep(a〈x,y〉)]|2
∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4 |1− ep(−Ña)|2

=
∑
a∈Zp

(
Ex |Ey∼B [ep(a〈x,y〉)]|2

) ∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4 |1− ep(Ña)|2.

Recalling that p ≈ N2, note that for a 6= 0 it holds that∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣ ≈ ‖Na‖pN ‖a‖p
. min

(
1, N

‖a‖p

)

and

|ep(Ña)− 1| ≈

∥∥Ña∥∥
p

p
. min

(
1,
‖a‖p
N

)
,

both of which follow from trivial upper bounds ‖Na‖p ≤ N ‖a‖p and ‖x‖p ≤ p ≈ N
1
2 . Let

us denote Ea(B) := Ex |Ey∼B [ep(a〈x,y〉)]|2. We break the sum into two parts and for each
part use a different estimate for Ea(B) using Lemma 10 below.

s2 .
1
p2

∑
‖a‖p<N

Ea(B)|ep(Ña)− 1|2 + 1
p2

∑
‖a‖p≥N

Ea(B)
∣∣∣∣ 1
N

ep(Na)− 1
ep(a)− 1

∣∣∣∣4

.
1
p2

∑
‖a‖p<N

Ea(B)
(‖a‖p

N

)2

+ 1
p2

∑
‖a‖p≥N

Ea(B)
(

N

‖a‖p

)4

.
1
p2

∑
‖a‖p<N

N2

‖a‖2p
· log2N

|B|

(‖a‖p
N

)2

+ 1
p2

∑
‖a‖p≥N

‖a‖2p
N2 ·

log2N

|B|

(
N

‖a‖p

)4

.
log2N

N2|B|

 ∑
‖a‖p<N

1
N2 +

∑
‖a‖p≥N

1
‖a‖2p


.

log2N

N2|B|

N · 1
N2 +

∑
t≥N

1
t2


.

log2N

N2|B|
1
N

= log2N

|B|N3 . J

4.2 Uniformity of product sets over Zp
Recall that Ea(B) := Ex∼[N ]2 |Ey∼B [χa(〈x,y〉)]|2. The following lemma provides estimates
for it.

I Lemma 10. Ea(B) . max
(‖a‖2

p

N2 ,
N2

‖a‖2
p

)
· log2 N
|B| .
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Proof. We have

Ea(B) = 1
|B|2

Ex∼[N ]2

∣∣∣∣∣∣
∑
y∈B

χa(〈x, y〉)

∣∣∣∣∣∣
2

= 1
|B|2

∑
y′,y′′∈B

Ex∼[N ]2χa(〈x, y′ − y′′〉)

≤ 1
|B|2

∑
y′,y′′∈B

∣∣Ex∼[N ]2χa(〈x, y′ − y′′〉)
∣∣ .

Let B − B = {y′ − y′′ : y′, y′′ ∈ B} ⊂ Z2
p. Any element y ∈ B − B can be expressed as

y = y′ − y′′ for y′, y′′ ∈ B in at most |B| ways. Thus we can bound

Ea(B) ≤ 1
|B|

∑
y∈B−B

∣∣Ex∼[N ]2χa(〈x, y〉)
∣∣ .

Since B −B ⊆ [N ]2 − [N ]2 ⊆ [−N,N ]2, we can simplify the above to

Ea(B) ≤ 1
N2|B|

∑
y∈[−N,N ]2

∣∣∣∣∣∣
∑

x∈[N ]2
χa(〈x, y〉)

∣∣∣∣∣∣
= 1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1,x2∈[N ]

χa(x1y1) · χa(x2y2)

∣∣∣∣∣∣
= 1

N2|B|
∑

y1,y2∈[−N,N ]

∣∣∣∣∣∣
∑

x1∈[N ]

χa(x1y1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

x2∈[N ]

χa(x2y2)

∣∣∣∣∣∣
= 1

N2|B|

 ∑
y∈[−N,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.
1

N2|B|

 ∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣
2

.

Note that for a fixed y 6= 0,
∑
x∈[N ] χa(xy) is a sum of a geometric series which satisfies∣∣∣∑x∈[N ] χa(xy)

∣∣∣ =
∣∣∣ ep(Nay)−1

ep(ay)−1

∣∣∣, and hence

∑
y∈[0,N ]

∣∣∣∣∣∣
∑
x∈[N ]

χa(xy)

∣∣∣∣∣∣ ≤ N +
∑
y∈[N ]

∣∣∣∣ep(Nay)− 1
ep(ay)− 1

∣∣∣∣ . N +
∑
y∈[N ]

‖Nay‖p
‖ay‖p

.

Invoking Lemma 11 below finishes the proof. J

I Lemma 11. Let p ≥ N2 be prime and let a ∈ Zp \ {0}. Then

∑
y∈[N ]

‖Nay‖p
‖ay‖p

. max
(
‖a‖p + p

N
,

p

‖a‖p

)
· log p.

We need the following simple claim in the proof of Lemma 11.

B Claim 12. Let r be a random variable which takes values in [K]. Let g : [K]→ R. Then

Erg(r) = g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i].
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Proof.

Erg(r) =
K∑
i=1

g(i)Pr[r = i]

=
K∑
i=1

g(i) (Pr[r ≤ i]− Pr[r ≤ i− 1])

= g(K) +
K−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]. C

Proof of Lemma 11. We separate the proof to two cases of ‖a‖p < N and ‖a‖p ≥ N .
Consider an integer k with ‖a‖p ≤ k ≤ p. We start by estimating the size of the set

Sk = {y ∈ [N ] : ‖ya‖p ≤ k}.

Note that if y ∈ Sk, then ya ∈ ph+ [−k, k] for some integer h ≥ 0. Since y ∈ [N ], we have
h ≤ N‖a‖p+k

p , and hence there are at most N‖a‖p

p + 1 such values of h. Fixing h, we have
y ∈ ph

‖a‖p
+ [−k/ ‖a‖p , k/ ‖a‖p], and there are at most 2k

‖a‖p
+ 1 ≤ 3k

‖a‖p
such values of y. We

conclude that

|Sk| ≤
(
N ‖a‖p
p

+ 1
)
× 3k
‖a‖p

≤ 3Nk
p

+ 3k
‖a‖p

.
k

N
+ k

‖a‖p
.

Note that this bound obviously holds also for k ≥ p.
Now to compute

∑
y∈[N ]

‖Nay‖p

‖ay‖p
we separate to two cases depending on whether ‖a‖p ≥ N

or not, and then use Claim 12.

The case ‖a‖p ≥ N . First, note that in this case we can bound |Sk| . k
N . Also to

bound ‖Nay‖p

‖ay‖p
, for y ∈ S‖a‖p

, we use the bound ‖Nay‖p

‖ay‖p
≤ N , otherwise we use the bound

‖Nay‖p ≤ p. We get

∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑

y∈S‖a‖p

N + p
∑
y∈[N ]

1
‖ay‖p

.

To compute
∑
y∈[N ]

1
‖ay‖p

we use Claim 12. Let u ∼ [N ] be uniformly chosen, and set the
random variable r to be r = ‖au‖p. Set g(x) = 1

x . Then we have

1
N

∑
y∈[N ]

1
‖ay‖p

= Erg(r)

= g(p) +
p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

= 1
p

+
p−1∑
i=1

(
1
i
− 1
i+ 1

)
|Si|
N

.
1
p

+
p−1∑
i=1

1
i2
· i

N2

.
log p
N2 .
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Overall we get∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑

y∈S‖a‖p

N + p
∑
y∈[N ]

1
‖ay‖p

. ‖a‖p + p log p
N

.

The case ‖a‖p < N . Here we use the estimate |Sk| . k
‖a‖p

. Also similar to the previous

case, for y ∈ SN we use the bound ‖Nay‖p

‖ay‖p
≤ N , otherwise we use the bound ‖Nay‖p

‖ay‖p
≤ p
‖ay‖p

.
Similar to the previous case, we have

1
N

∑
y∈[N ]

1
‖ay‖p

= g(p) +
p−1∑
i=1

(g(i)− g(i+ 1)) Pr[r ≤ i]

= 1
p

+
p−1∑
i=1

(
1
i
− 1
i+ 1

)
|Si|
N

.
1
p

+
p−1∑
i=1

1
i2
· i

‖a‖pN

.
log p
‖a‖pN

.

So we have∑
y∈[N ]

‖Nay‖p
‖ay‖p

≤
∑
y∈SN

N + p
∑
y∈[N ]

1
‖ay‖p

.
N2

‖a‖p
+ p log p
‖a‖p

.
p log p
‖a‖p

.

The lemma follows. J

We remark that the following more general statement regarding uniformity of product
sets follows by a similar proof to Lemma 10 which we record here as it may be of independent
interest.

I Lemma 13. Let p ≥ N2 be prime, and let B ⊆ [N ]d for some positive integer d. Then

Ex∼[N ]d |Ey∼Bχa(〈x,y〉)|2 . max
(
‖a‖dp ,

pd

‖a‖dp

)
· logd p
|B|Nd

.
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