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Abstract
In this paper, we give simple optimal lower bounds on the one-way two-party communication
complexity of approximate Maximum Matching and Minimum Vertex Cover with deletions. In our
model, Alice holds a set of edges and sends a single message to Bob. Bob holds a set of edge deletions,
which form a subset of Alice’s edges, and needs to report a large matching or a small vertex cover in
the graph spanned by the edges that are not deleted. Our results imply optimal space lower bounds
for insertion-deletion streaming algorithms for Maximum Matching and Minimum Vertex Cover.

Previously, Assadi et al. [SODA 2016] gave an optimal space lower bound for insertion-deletion
streaming algorithms for Maximum Matching via the simultaneous model of communication. Our
lower bound is simpler and stronger in several aspects: The lower bound of Assadi et al. only holds
for algorithms that (1) are able to process streams that contain a triple exponential number of
deletions in n, the number of vertices of the input graph; (2) are able to process multi-graphs; and
(3) never output edges that do not exist in the input graph when the randomized algorithm errs.
In contrast, our lower bound even holds for algorithms that (1) rely on short (O(n2)-length) input
streams; (2) are only able to process simple graphs; and (3) may output non-existing edges when
the algorithm errs.
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1 Introduction

Streaming algorithms for processing massive graphs have been studied for two decades [16].
In the most traditional setting, the insertion-only model, an algorithm receives a sequence of
the edges of the input graph in arbitrary order, and the objective is to solve a graph problem
using as little space as possible. The insertion-only model has received significant attention,
and many problems, such as matchings (e.g. [26, 13, 21, 27, 18, 24, 31, 12]), independent
sets (e.g. [15, 14, 9, 10]), and subgraph counting (e.g. [20, 11, 7]), have since been studied in
this model. See [29] for an excellent survey.
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In 2012, Ahn et al. [1] introduced the first techniques for addressing insertion-deletion
graph streams, where the input stream consists of a sequence of edge insertions and deletions.
They showed that many problems, such as Connectivity and Bipartiteness, can be solved using
the same amount of space as in insertion-only streams up to poly-logarithmic factors. Various
other works subsequently gave results of a similar flavor and presented insertion-deletion
streaming algorithms with similar space complexity as their insertion-only counterparts
for problems including Spectral Sparsification [22] and ∆ + 1-coloring [3]. Konrad [23] and
Assadi et al. [5] were the first to give a separation result between the insertion-only graph
stream model and the insertion-deletion graph stream model: While it is known that a
2-approximation to Maximum Matching can be computed using space O(n logn) in insertion-
only streams, Konrad showed that space Ω(n 3

2−4ε) is required for an nε-approximation in
insertion-deletion streams, and Assadi et al. gave a lower bound of n2−3ε−o(1) for such an
approximation. Assadi et al. also presented an Õ(n2−3ε) space algorithm that matches their
lower bound up to lower order terms, which establishes that their lower bound is optimal (a
different algorithm that matches this lower bound is given by Chitnis et al. [8]).

Both Konrad and Assadi et al. exploit an elegant connection between insertion-deletion
streaming algorithms and linear sketches. Ai et al. [2], building on the work of Yi et al.
[28], showed that insertion-deletion graph streaming algorithms can be characterized as
algorithms that essentially solely rely on the computation of linear sketches of the input
stream. A consequence of this result is that space lower bounds for insertion-deletion
streaming algorithms can also be proved in the simultaneous model of communication, since
linear sketches can be implemented in this model. This provides an alternative to the more
common approach of proving streaming lower bounds in the one-way model of communication.
In particular, the lower bounds by Konrad and Assadi et al. are proved in the simultaneous
model of communication.

From a technical perspective, this model has various attractive features, however, it comes
with a major disadvantage: The characterization of Ai et al. only holds for insertion-deletion
streaming algorithms that (1) are able to process “very long” input streams, i.e., input
streams of triple exponential length in n, the number of vertices of the input graph, and
(2) are able to process multi-graphs. In particular, this characterization does not hold for
insertion-deletion streaming algorithms that rely on the assumption that input streams are
short and the graph described by the input stream is always simple. Consequently, the lower
bounds of Konrad and Assadi et al. do not hold for such algorithms.

Our Results. In this work, we prove an optimal space lower bound for Maximum Matching
in insertion-deletion streams via the one-way two-party model of communication. Our lower
bound construction yields insertion-deletion streams of length O(n2) and does not involve
multi-edges. Our lower bound therefore also holds for streaming algorithms that are designed
for short input streams and simple graphs for which the characterization by Ai et al. does
not hold. Furthermore, the optimal lower bound by Assadi et al. [5] only holds for streaming
algorithms that never output non-existing edges when the (randomized) algorithms fail. We
do not require this restriction.

Our lower bound method is simple and more widely applicable. Using the same method,
we also give an optimal lower bound for Minimum Vertex Cover, showing that computing
a nε-approximation requires Ω(n2−2ε) space. Assadi and Khanna mention in [4] that the
n2−3ε−o(1) space lower bound for Maximum Matching given in [5] also applies to Minimum
Vertex Cover. Our lower bound therefore improves on this result by a factor of nε+o(1).
Furthermore, we show that our lower bound is optimal up to a factor of logn: We give a
very simple deterministic insertion-deletion streaming algorithm for Minimum Vertex Cover
that uses space O(n2−2ε logn).
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While the main application of our lower bounds in the one-way two-party communication
model are lower bounds for insertion-deletion graph streaming algorithms, we believe that
our lower bounds are of independent interest. Indeed, the one-way two-party communication
complexity of Maximum Matching without deletions has been addressed in [13], and our result
can therefore also be understood as a generalization of their model to incorporate deletions.

The Simultaneous Model of Communication. The lower bounds by Konrad [23] and
Assadi et al. [5] are proved in the simultaneous model of communication. In this model, a
typically large number of parties k hold not necessarily disjoint subsets of the edges of the
input graph. Each party Pi sends a message Mi to a referee, who then outputs the result
of the protocol. The connection between insertion-deletion streaming algorithms and linear
sketches by Ai et al. [2] then implies that a lower bound on the size of any message Mi yields
a lower bound on the space requirements of any insertion-deletion streaming algorithm.

In the lower bound of Assadi et al. [5] for Maximum Matching, each party Pi holds
the edges Ei of a dense subgraph, which itself constitutes a Ruzsa-Szemerédi graph, i.e., a
graph whose edge set can be partitioned into large disjoint induced matchings. All previous
streaming lower bounds for approximate Maximum Matching rely on realizations of Ruzsa-
Szemerédi graphs [13, 23, 5]. Their construction is so that only a single induced matching of
every party Pi is useful for the construction of a global large matching. Due to symmetry
of the construction, the parties are unable to identify the important induced matching and
therefore need to send large messages that contain information about most of the induced
matchings to the referee for them to be able to compute a large global matching. Interestingly,
none of the parties hold edge deletions in their construction.

The One-way Model of Communication. In this paper, we give a lower bound in the
one-way two-party model of communication. In this model, Alice holds a set of edges E of
the input graph and sends a message M to Bob. Bob holds a set of edge deletions D ⊆ E and
outputs a large matching in the graph spanned by the edges E \D. A standard reduction
shows that a lower bound on the size of message M also constitutes a lower bound on
the space requirements of an insertion-deletion streaming algorithm. The two models are
illustrated in Figure 1.

Referee result

P1 P2 . . . Pk

E1 ⊆ E E2 ⊆ E Ek ⊆ E

M1 M2 Mk
Alice Bob result

M

E D ⊆ E

Figure 1 The simultaneous (left) and the one-way two-party (right) models of communication.

Our Techniques. To prove our lower bound, we identify that an insertion-deletion streaming
algorithm for Maximum Matching or Minimum Vertex Cover can be used to obtain a one-way
two-party communication protocol for a two-dimensional variant of the well-known Augmented
Index problem that we denote by Augmented Bi-Index, or BInd in short. In an instance of BInd,
Alice holds an n-by-n binary matrix A ∈ {0, 1}n×n. Bob is given a position (x, y) ∈ [n− k]2
and needs to output the bit Ax,y. Besides (x, y), he also knows the k-by-k submatrix of A
with upper left corner at position (x, y), however with the bit at position (x, y) missing – we
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will denote this k-by-k submatrix with (x, y) missing by AS(x,y). We show that this problem
has a one-way communication complexity of Ω((n − k)2) by giving a reduction from the
Augmented Index problem.

To obtain a lower bound for Maximum Matching, we show that Alice and Bob can construct
a protocol for BInd given an insertion-deletion streaming algorithm for Maximum Matching.
In our reduction, we will consider instances with k = n−Θ(n1−ε), for some ε > 0. Consider
the following attempt: Suppose that the input matrix A is a uniform random binary matrix
and that Ax,y = 1 (we will get rid of these assumptions later). Alice and Bob interpret the
matrix A as the incidence matrix of a bipartite graph G. Bob interprets the “1” entries
in the submatrix AS(x,y) outside the diagonal, i.e., all “1” entries except those in positions
{(x+j, y+j) : 0 ≤ j < k}, as edge deletions F . The graph G−F has a large matching: Since
the diagonal of AS(x,y) is not deleted, and each entry in the diagonal is 1 with probability
1/2, we expect that half of all potential edges in the diagonal of S(x, y) are contained in
G−F and thus form a matching of size Θ(k) = Θ(n−n1−ε). An nε-approximation algorithm
for Maximum Matching would therefore report Ω(n1−ε) of these edges. Suppose that the
algorithm reported Ω(n1−ε) uniform random edges from the diagonal in AS(x,y) (we will also
get rid of this assumption). Then, by repeating this scheme Θ(nε) times in parallel, with
large constant probability the edge corresponding to Ax,y is reported at least once, which
allows us to solve BInd. This reduction yields an optimal Ω(n2−3ε) space lower bound for
insertion-deletion streaming algorithm for Maximum Matching, since Θ(nε) parallel executions
are used to solve a problem that has a lower bound of Ω((n− k)2) = Ω(n2−2ε).

In the description above, we assumed that (1) A is a uniform random binary matrix;
(2) Ax,y = 1; and (3) the algorithm outputs uniform random positions from the diagonal of
AS(x,y). To eliminate (1) and (2), Alice and Bob first sample a uniform random binary matrix
X ∈ {0, 1}n×n from public randomness and consider the matrix obtained by computing the
entry-wise XOR between A and X, i.e., matrix A ⊕ X, instead. Observe that A ⊕ X is
a uniform random binary matrix (independently of A), and with probability 1

2 , property
(2), i.e., (A ⊕ X)x,y = 1, holds. Regarding assumption (3), besides computing the XOR
A⊕X, Alice and Bob also sample two random permutations σ1, σ2 : [n]→ [n] from public
randomness. Alice and Bob permute the rows and columns of A ⊕ X using σ1 and σ2,
respectively. Then, no matter which elements from the permuted relevant diagonal of A⊕X
are reported by the algorithm, due to the random permutations, these elements could have
originated from any other position in this diagonal. This in turn makes every element along
the diagonal equally likely to be reported, including the position (x, y) (in the unpermuted)
matrix that we are interested in.

Our reduction for Minimum Vertex Cover is similar but simpler. We show that only a
constant number of parallel executions of an insertion-deletion streaming are required.

Further Related Work. Hosseini et al. [17] were able to improve on the “triple exponential
length” requirement of the input streams for a characterization of insertion-deletion streaming
algorithms in terms of linear sketches by Li et al. [28] and Ai et al. [2]. They showed that
in the case of XOR-streams and 0/1-output functions, input streams of length O(n2) are
enough.

Very recently, Kallaugher and Price [19] showed that if either the stream length or
the maximum value of the stream (e.g. the maximum multiplicity of an edge in a graph
stream) are substantially restricted, then the characterization of turnstile streams as linear
sketches cannot hold. For these situations they discuss problems where linear sketching is
exponentially harder than turnstile streaming.
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Besides the Maximum Matching problem, the only other separation result between the
insertion-only and the insertion-deletion graph stream models that we are aware of is a recent
result by Konrad [25], who showed that approximating large stars is significantly harder in
insertion-deletion streams.
Outline. We give a lower bound on the communication complexity of Augmented Bi-Index
in Section 2. Then, in Section 3, we show that a one-way two-party communication protocol
for Maximum Matching can be used to solve Augmented Bi-Index, which yield an optimal
space lower bound for Maximum Matching in insertion-deletion streams. We conclude with a
similar reduction for Minimum Vertex Cover in Section 4, which also implies an optimal space
lower bound for Minimum Vertex Cover in insertion-deletion streams.

2 Augmented Bi-Index

In this section, we define the one-way two-party communication problem Augmented Bi-Index
and prove a lower bound on its communication complexity.

I Problem 1 (Augmented Bi-Index). In an instance of Augmented Bi-Index BIndn,kδ we have
two players denoted Alice and Bob. Alice holds a binary matrix A ∈ {0, 1}n×n. Bob holds
indices x, y ∈ [n− k] and the incomplete1 binary matrix AS(x,y) where

S(x, y) = {(i, j) ∈ [n]2 | (x ≤ i < x+ k) and (y ≤ j < y + k)} \ {(x, y)} .

Alice sends a single message M to Bob who must output Ax,y with probability at least 1− δ.

Our lower bound proof consists of a reduction from the well-known Augmented Index
problem, which is known to have large communication complexity.

I Problem 2 (Augmented Index). In an instance of Augmented Index Indnδ we have two
players denoted Alice and Bob. Alice holds a binary vector V ∈ {0, 1}n. Bob holds an index
` ∈ [n] and the vector suffix V>` = (V`+1, V`+2, · · · , Vn). Alice sends a single message M to
Bob who must output V` with probability at least 1− δ.

As a consequence of Lemma 13 in [30], we can see that this problem has linear commu-
nication complexity (see also Lemma 2 in [6] for a more direct proof technique).

I Theorem 3 (e.g. [30]). For δ < 1/3, any randomised one-way communication protocol
which solves Indnδ must communicate Ω(n) bits.

We are now ready to prove our lower bound for Augmented Bi-Index.

I Theorem 4. For δ < 1/3, any randomised one-way communication protocol which solves
BIndn,kδ must communicate Ω((n− k)2) bits.

Proof. Let P be a communication protocol for BIndn,kδ that uses messages of length at most
S(n, k) bits. We will show how P can be used to solve Ind(n−k)2

δ with the same message size.
Let V, ` be any instance of Ind(n−k)2

δ . Alice builds the matrix A ∈ {0, 1}n×n by placing
the bits of V in lexicographical order in the top-left (n− k)-by-(n− k) region:

Ai,j =
{
Vj+(n−k)(i−1) for i, j ∈ [n− k]
0 otherwise

.

This packing is illustrated in Figure 2(a).

1 We use AS to refer to the collection of entries indexed by the set S, so AS = (Ai,j)(i,j)∈S .
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V1 V2 V3 V4 V5 0 0 0 0
V6 V7 V8 V9 V10 0 0 0 0
V11 V12 V13 V14 V15 0 0 0 0
V16 V17 V18 V19 V20 0 0 0 0
V21 V22 V23 V24 V25 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(a) Example packing of the bits of V into
matrix A with n = 9 and k = 4.

V`

AS(x,y)

(b) Bob can construct the area AS(x,y)
given V>`, which is part of his input.

Figure 2 The construction of A and AS(x,y) in Theorem 4.

Alice runs protocol P on A and sends the resulting message M to Bob. Now, Bob has
the message M , the index ` ∈ [(n− k)2] and the suffix V>`. Let x, y ∈ [n− k] be the unique
pair of integers such that ` = y + (n− k)(x− 1). Observe that Ax,y = V`.

For Bob to be able to complete protocol P he needs to provide AS(x,y). Because of the
way we packed the entries of V onto A, the overlap between V and AS(x,y) is a subset of the
entries of V>` (see Figure 2(b) for an illustration). Therefore Bob can complete the protocol
and determine Ax,y = V` with probability at least 1 − δ. By Theorem 3, it must be that
S(n, k) = Ω((n− k)2). J

3 Maximum Matching

Let A be a C-approximation insertion-deletion streaming algorithm for Maximum Matching
that errs with probability at most 1/10. We will now show that A can be used to solve
BIndn,kδ .

3.1 Reduction

Let A ∈ {0, 1}n×n, x ∈ [n − k] and y ∈ [n − k] be an instance of BIndn,kδ . Alice and Bob
first sample a uniform random binary matrix X ∈ {0, 1}n×n and random permutations
σ1, σ2 : [n]→ [n] from public randomness. Alice then computes matrix A′ which is obtained
by first computing the entry-wise XOR of A and X, denoted by A ⊕ X, and then by
permuting the rows and columns of the resulting matrix by σ1 and σ2, respectively. Next,
Alice interprets A′ as the incidence matrix of a bipartite graph G(A′). Alice runs algorithm
A on a random ordering of the edges of G(A′) and sends the resulting memory state to Bob.

Next, Bob also computes the entry-wise XOR between the part of the matrix A that he
knows about, AS(x,y), and X, followed by applying the permutations σ1 and σ2. In doing so,
Bob knows the matrix entries of A′ at positions (σ1(i), σ2(j)) for every (i, j) ∈ S(x, y). He
can therefore compute the subset ES of the edges of G(A′) with

ES = {(σ1(i), σ2(j)) ∈ [n]2 | (i, j) ∈ S(x, y) and A′(σ1(i), σ2(j)) = 1} .
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Furthermore, let Ediag ⊆ ES be the set of edges (σ1(i), σ2(j)) so that (i, j) lies on the
same diagonal in A as (x, y), or, in other words, there exists an integer 1 ≤ q ≤ k − 1 such
that (x + q, y + q) = (i, j). Then, let Edel = ES \ Ediag. Bob continues the execution of
algorithm A, as follows: for every edge e ∈ Edel, Bob introduces an edge deletion of e, in
random order.

Let M ′ be the matching returned by A. From M ′ Bob computes the matching M as
follows: If |M ′ ≤ 0.99 k

2C | then Bob sets M = ∅. Otherwise, Bob sets M to be a uniform
random subset of M ′ of size exactly 0.99 k

2C .

Parallel Executions. Alice and Bob execute the previous process ` = 100·C times in parallel.
Let M i, Xi, σi1 and σi2 be M , X, σ1 and σ2 that are used in run i, respectively. Let Qi be
the indicator random variable that is 1 iffM i contains the edge (σi1(x), σi2(y)). We also define
p =

∑
iQi to be the total number of times the edges (σi1(x), σi2(y)) are reported. Whenever

the edge (σi1(x), σi2(y)) is reported, we interpret this to be a claim that Ax,y = ¬Xi
x,y. So

depending on the value of Xi
x,y, this acts as a claim that Ax,y = 0 or Ax,y = 1. We define

p0 =
∑
i:Qi=1 X

i
x,y (which counts how often Ax,y = 0 was claimed) and let p1 = p− p0 (the

number of times Ax,y = 1 was claimed). Bob outputs 1 as his estimator for Ax,y if p1 ≥ p0
and 0 otherwise.

3.2 Analysis
Let G be the bipartite graph with incidence matrix A⊕X, and let

F = {(i, j) ∈ S(x, y) | (A⊕X)i,j = 1 and @ q s.t. (i, j) = (x+ q, y + q)} .

Then the graph G− F is isomorphic to the graph G(A′)− Edel. In particular, G(A′)− Edel
is obtained from G − F by relabeling the vertex sets of the two bipartitions using the
permutations σ1 and σ2.

We will first bound the maximum matching size in G(A′)− Edel. To this end, we will
bound the maximum matching size in G− F , which is easier to do:

I Lemma 5. With probability 1− 1
k10 , the graph G(A′)− Edel is such that:

0.99k2 ≤ µ(G(A′)− Edel) ≤ 1.01k2 + 2(n− k) ,

where µ(G) denotes the matching number of G, i.e., the size of a maximum matching.

Proof. We will consider the graph G− F instead, since it is isomorphic to G(A′)−Edel and
has the same maximum matching size.

First, observe that G is a random bipartite graph where every edge is included with
probability 1

2 . Let U and V denote the bipartitions in G, and consider the subsets U ′ =
[x, x + k) and V ′ = [y, y + k). Observe that in the vertex induced subgraph G[U ′ ∪ V ′]
all edges are deleted in F except those that connect the vertices x+ i and y + i, for every
0 ≤ i ≤ k − 1. By a Chernoff bound, the number of edges and thus the maximum matching
size in G[U ′ ∪ V ′] is bounded by:

0.99 · k2 ≤ µ(G[U ′ ∪ V ′]) ≤ 1.01 · k2 ,

with probability 1− 1
k10 .

CCC 2020
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Observe that, with probability 1− 1
k10 , the neighborhood Γ(U ′) is such that

0.99 · k2 ≤ |Γ(U ′)| ≤ 1.01 · k2 + (n− k) .

The set U ′ can therefore be matched to at most 1.01 · k2 + (n− k) vertices in V . We thus
obtain

µ(G− F ) ≤ 1.01 · k2 + 2(n− k) ,

since we may also be able to match all n− k vertices of U \ U ′. J

I Lemma 6. Suppose that Mi 6= ∅. Then:
0.99
2C −

2(n− k)
k

≤ P [Qi = 1] ≤ 0.99
2C .

Proof. First, by construction of our reduction, since Mi 6= ∅ we have |Mi| = 0.99 k
2C . Let

U ′i = σi1([x, x+ k)) and V ′i = σi2([y, y + k)) .

Let M̃i be the set of edges of Mi connecting vertices in U ′i to V ′i . Observe that there are
2(n− k) vertices in the graph outside the set U ′i ∪ V ′i . We thus have

|Mi| − 2(n− k) ≤ |M̃i| ≤ |Mi| .

Next, since the permutations σi1, σi2 are chosen uniformly at random, any edge of M̃i may
have originated from any of the diagonal entries in AS(x,y). Hence, M̃i claims the bits of at
least |Mi| − 2(n− k) and at most |Mi| uniform random positions in the diagonal of AS(x,y).
Every entry in the diagonal of AS(x,y) is thus claimed with the same probability. Since the
diagonal of AS(x,y) is of length k, this probability is at least

|Mi| − 2(n− k)
k

=
0.99 k

2C − 2(n− k)
k

= 0.99
2C −

2(n− k)
k

,

and at most

|Mi|
k

=
0.99 k

2C
k

= 0.99
2C . J

I Theorem 7. Let A be a nε-approximation insertion-deletion streaming algorithm for
Maximum Matching that errs with probability at most 1/10 and uses space s. Then there
exists a communication protocol for BIndn,n−

1
40n

1−ε

0.05 that communication O(nε · s) bits.

Proof. Let C = nε and let k = n − 1
40n

1−ε. First, by Lemma 5, with probability 1 − 1
k10 ,

the graph G(A′)− Edel contains a matching of size at least 0.99k/2. By a union bound, the
probability that this graph is of at least this size in each of the ` iterations is at least 1− `

k10 .
Suppose from now on that this event happens.

Let `1 be the number of times the algorithm A succeeds, and let `0 be the number of
times A errs. Then, ` = `0 + `1. Whenever A succeeds, since A is a C-approximation
algorithm, the matching M ′i is of size 0.99 k

2C , which further implies that Mi is of size exactly
0.99 k

2C . Since the algorithm must return a correct matching, every time we have a claim (i.e.
Qi = 1), the claimed bit value must be correct. Thus, by Lemma 6, we get a correct claim
on Ax,y with probability at least

0.99
2C −

2(n− k)
k

= 0.99
2nε −

2( 1
40n

1−ε)
n− 1

40n
1−ε ≥

0.99
2nε −

1
40n

1−ε

n
= 0.99

2nε −
1

40nε ≥
2

5nε ,
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where we used the inequality 2x
y−x ≥

x
y , which holds for every y > x. We thus expect to see

the correct bit claimed at least `1 · 2
5nε times in total. On the other hand, incorrect claims of

the bit value can only occur when the algorithm errs. In the worst case, A will make as many
false claims as possible - so we assume the algorithm never results in Mi = ∅ when it errs.
Lemma 6 also allows us to bound the probability of an incorrect claim for this bad algorithm
by 0.99

2nε . We thus expect to see the wrong bit value claimed at most `0 · 0.99
2C ≤

`0
2nε times.

Recall that ` = 100nε. Then, by standard concentration bounds, the probability that
`0 ≥ 2 · `10 is at most 1

100 (recall that the error probability of A is at most 1
10 ). Suppose now

that `0 ≤ 1
5` holds, which also implies that `1 ≥ 4

5`. We thus expect to learn the correct bit
at least

4
5100nε · 2

5nε = 32

times, and using a Chernoff bound, it can be seen that the probability that we learn the
correct bit less than 21 times is at most 0.02. Similarly, we expect to learn the incorrect bit
at most

1
5100nε · 1

2nε = 10

times, and by a Chernoff bound, it can be seen that the probability that we learn the incorrect
bit at least 20 times is at most 0.01. Our algorithm therefore succeeds if all these events
happen. Taking a union bound over all failure probabilities that occurred in this proof, we
see that our algorithm succeeds with probability

1− 100nε

k10 − 0.01− 0.02− 0.01 ≥ 0.95 . J

Since by Theorem 4, BIndn,n−
1

40n
1−ε

0.05 has randomized one-way communication complexity
Ω(n2−2ε), by Theorem 7 we obtain our main result of this section:

I Corollary 8. Every insertion-deletion nε-approximation streaming algorithm for Maximum
Matching that errs with probability at most 1

10 requires space Ω(n2−3ε).

4 Minimum Vertex Cover

Let B be a C-approximation insertion-deletion streaming algorithm for Minimum Vertex
Cover that succeeds with probability 1− 1/400. Similar to the previous section, we will now
show how B can be used to solve BIndn,kδ .

4.1 Reduction
Let A ∈ {0, 1}n×n, x ∈ [n− k] and y ∈ [n− k] be an instance of BIndn,kδ . The reduction for
Minimum Vertex Cover is very similar to the reduction for Maximum Matching presented in
the previous section. Alice’s behaviour is in fact identical:

First, Alice and Bob sample a uniform random binary matrix X ∈ {0, 1}n×n and random
permutations σ1, σ2 : [n] → [n] from public randomness. Alice then computes matrix A′
which is obtained by first computing A ⊕ X and then permuting the rows and then the
columns of the resulting matrix by σ1 and σ2, respectively. Alice interprets A′ as the incidence
matrix of a bipartite graph G(A′). Alice then runs algorithm B on a random ordering of the
edges of G(A′) and sends the resulting memory state to Bob.

CCC 2020



30:10 Optimal Lower Bounds for Matching and Vertex Cover in Dynamic Graph Streams

Next, Bob also computes the entry-wise XOR between the part of the matrix A that he
knows about and X, followed by applying the permutations σ1 and σ2. In doing so, Bob
knows the matrix entries of A′ at positions (σ1(i), σ2(j)) for every (i, j) ∈ S(x, y). He can
therefore compute the subset ES of the edges of G(A′) with

ES = {(σ1(i), σ2(j)) ∈ [n]2 | (i, j) ∈ S(x, y) and A′(σ1(i), σ2(j)) = 1} .

Next, Bob continues the execution of B and introduces deletions for all edges in ES in
random order. Observe that this step is different to the reduction for Maximum Matching.
Let I be the vertex cover produced by B.

Parallel Executions. Alice and Bob run the procedure above 40 times in parallel. Denote
by Ii, Xi, EiS , A′i, σi1, and σi2 the variables I,X,ES , A′, σ1 and σ2 used in iteration i.
Furthermore, let Qi be the indicator variable that is 1 iff {σi1(x), σi2(y)} ∩ Ii 6= ∅, i.e., the
potential edge (σi1(x), σi2(y)) is covered by the vertex cover.

If there exists a run j with Qj = 0, then Bob predicts Ax,y = Xx,y (if there are multiple
such runs then Bob breaks ties arbitrarily). Otherwise, Bob returns fail and the algorithm
errs.

4.2 Analysis
The first lemma applies to every parallel run j. For simplicity of notation, we will omit the
superscripts that indicate the parallel run in our random variables.

We first show an upper bound on the size of a minimum vertex cover in G(A′)− ES .

I Lemma 9. The size of a minimum vertex cover in G(A′)− ES is at most 2(n− k) + 1.

Proof. Let U, V be the bipartitions of the graph G(A′)−ES , let U ′ = {σ1(a) : a ∈ [x, x+k)}
and let V ′ = {σ2(b) : b ∈ [y, y + k)}. Observe that (G(A′)− ES)[U ′ ∪ V ′] contains at most
one edge: The potential edge between σ1(x) and σ2(y). A valid vertex cover of G(A′)− ES
is therefore (U \ U ′) ∪ (V \ V ′) + σ1(x), which is of size 2(n− k) + 1. J

Next, we prove the key property of our reduction: We show that if A′σ1(x),σ2(y) = 0 (or
equivalently, Ax,y ⊕Xx,y = 0) then neither σ1(x) nor σ2(y) is in the output vertex cover
with large probability.

I Lemma 10. Assume that algorithm B does not err in run j. Suppose that A′j
σj1(x),σj2(y)

= 0.
Then the probability that Qj = 1 is at most

3C · (2(n− k) + 1)
k

.

Proof. Consider the set D = {(σj1(x+ i), σj2(y+ i)) | 0 ≤ i ≤ k− 1}, i.e., the positions of the
diagonal of S(x, y) ∪ {x, y} permuted by σj1 and σj2. Then, since A′j is a uniform random
matrix, with probability at least 1 − 1

k10 , the “permuted diagonal” A′jD contains at least
0.99k/2 entries with value 0, or, in other words, graph G(A′j)−EjS contains at least 0.99k/2
non-edges in the positions of the permuted diagonal D. By Lemma 9, the size of a minimum
vertex cover in G(A′j)−EjS is at most 2(n− k) + 1, and since B has an approximation factor
of C, the vertex cover Ij is of size at most C · (2(n−k) + 1). Hence, at most C · (2(n−k) + 1)
non-edges in D can be covered in Ij . However, since the permutations are random, the
probability that the non-edge (σj1(x), σj2(y)) is covered, which is identical to the event Qj = 1,
is therefore at most

C · (2(n− k) + 1)
0.99k/2 ≤ 3C · (2(n− k) + 1)

k
. J
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I Theorem 11. Let B be a nε-approximation insertion-deletion streaming algorithm for
Minimum Vertex Cover that uses space s and errs with probability at most 1/400. Then, there
exists a communication protocol for BIndn,n−

1
20n

1−ε

1
3

that communicates O(s) bits.

Proof. Let k = n − 1
40n

1−ε and let C = nε. Consider the reduction given in the previous
subsection. First, observe that since B errs with probability at most 1/400, by the union
bound the probability that B errs at least once in the 40 parallel executions of our reduction
is at most 1

10 . We assume from now on that the algorithm never errs.
Observe that the matrices A′j are random matrices. Hence, the probability that there

exists at least one run i with A′i
σi1(x),σi2(y) = 0 is at least 1− ( 1

2 )40. Suppose that this event
happens. Let run i be so that A′i

σi1(x),σi2(y) = 0. Then, by Lemma 10, the probability that the
non-edge (σi1(x), σi2(y)) is covered by Ii, or in other words, the probability that Qi = 1, is at
most

3C · (2(n− k) + 1)
k

=
3nε · ( 1

20n
1−ε + 1)

n− 1
40n

1−ε =
3

20n+ 3nε

n− 1
40n

1−ε = 3
20 + o(1) .

Observe that whenever Qi = 0, the algorithm outputs Xi
x,y as a predictor for Ax,y. Since

the algorithm B does not err, we have Ax,y ⊕ Xi
x,y = 0. This implies that Ax,y = Xi

x,y,
which establishes correctness.

Last, we need to bound the error probability of our algorithm. First, the probability that
at least one of the 40 runs fails is at most 1

10 . Next, the probability that none of the runs are
such that A′j

σj1(x),σj2(y)
= 0 is at most ( 1

2 )40. Furthermore, the probability that Qi = 1 when
A′i
σi1(x),σi2(y) = 0 is at most 3

20 + o(1). Applying the union bound, we see that the overall
error probability of our algorithm is at most

1
10 + (1

2)40 + 3
20 + o(1) ≤ 1

3 ,

for large enough n. J

Since by Theorem 4, BIndn,n−
1

40n
1−ε

1
3

has a communication complexity of Ω(n2−2ε), we obtain
the following result:

I Corollary 12. Every insertion-deletion nε-approximation streaming algorithm for Minimum
Vertex Cover with error probability at most 1

400 requires space Ω(n2−2ε).

4.3 Insertion-deletion Streaming Algorithm for Minimum Vertex Cover
We now sketch a simple deterministic nε-approximation insertion-deletion streaming algorithm
for Minimum Vertex Cover on general graphs that uses space O(n2−2ε logn). Let G = (V,E)
be the graph described by the input stream. The algorithm proceeds as follows:

Algorithm 1 A simple deterministic nε-approximation insertion-deletion streaming algorithm for
Minimum Vertex Cover.

1. Arbitrarily partition V into subsets V1, V2, . . . , Vn1−ε , each of size nε.
2. Consider the multi-graph G′ obtained from G by contracting the sets Vi into vertices.
3. While processing the stream: For each pair of vertices Vi, Vj in G′ deterministically

maintain the number of edges connecting Vi to Vj .
4. Post-processing: Compute a minimum vertex cover I ′ in the multi-graph G′.
5. Return I = ∪Vj∈I′Vj as the vertex cover in G.
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Analysis: Regarding space, the dominating space requirement is the maintenance of the
number of edges between every pair Vi, Vj . Since there are n2−2ε such pairs, this requires
space O(n2−2ε · logn).

Concerning the approximation factor, let I∗ be a minimum vertex cover in G. Recall that
I ′ is an optimal cover in G′ and hence |I ′| ≤ |I∗| (edge contractions cannot increase the size
of a minimum vertex cover). Since every set Vj is of size nε, the computed vertex cover I is
of size at most |I ′| · nε ≤ |I∗|nε, which proves the approximation factor. By construction of
the algorithm, every edge is covered.

I Theorem 13. There is a deterministic nε-approximation insertion-deletion streaming
algorithm for Minimum Vertex Cover that uses space O(n2−2ε logn).
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