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Abstract
A longstanding open question is whether there is an equivalence between the computational task of
determining the minimum size of any circuit computing a given function and the task of producing
a minimum-sized circuit for a given function. While it is widely conjectured that both tasks require
“perebor,” or brute-force search, researchers have not yet ruled out the possibility that the search
problem requires exponential time but the decision problem has a linear time algorithm.

In this paper, we make progress in connecting the search and decision complexity of minimizing
formulas. Let MFSP denote the problem that takes as input the truth table of a Boolean function
f and an integer size parameter s and decides whether there is a formula for f of size at most s.
Let Search-MFSP denote the corresponding search problem where one has to output some optimal
formula for computing f .

Our main result is that given an oracle to MFSP, one can solve Search-MFSP in time polynomial
in the length N of the truth table of f and the number t of “near-optimal” formulas for f , in
particular O(N6t2)-time. While the quantity t is not well understood, we use this result (and some
extensions) to prove that given an oracle to MFSP:

there is a deterministic 2O( N
log log N

)-time oracle algorithm for solving Search-MFSP on all but a
o(1)-fraction of instances, and
there is a randomized O(2.67N )-time oracle algorithm for solving Search-MFSP on all instances.

Intriguingly, the main idea behind our algorithms is in some sense a “reverse application” of the
gate elimination technique.
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1 Introduction

In his fascinating historical account, Trakhtenbrot [20] describes the early developments of
the Russian cybernetics program. Beginning in the 1950s, this program was largely driven by
a desire to understand the necessity of “perebor,” or brute-force, in solving various problems
related to complexity minimization. What Trakhtenbrot calls “Task 1” in [20] is an analogue1
of what is now commonly referred to as the Minimum Circuit Size Problem, MCSP. In his
article, Trakhtenbrot delineates two versions of “Task 1”: an “existential version,” where

1 We say analogue since Task 1 was defined in the slightly different model of switching circuits.
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given a Boolean function f one must compute the minimum number of gates needed in a
circuit computing f , corresponding to MCSP and a “constructive version,” where one must
produce such an optimal circuit for f , corresponding to Search-MCSP.

Both versions were conjectured to require “perebor,” or brute-force to solve. However,
while it is clear that if perebor is required for MCSP then perebor must also be required for
Search-MCSP, it is a longstanding open question (since at least 1999 [10]) to prove a reverse
implication: that is, to show that if Search-MCSP requires brute-force to solve, then MCSP
requires brute-force.

Indeed, this question is closely related to another major open question surrounding
MCSP: is MCSP NP-complete? Despite being an open problem since the discovery of NP-
completeness2 in the 1970s and numerous fascinating papers studying MCSP, we still know
little about the computational complexity of MCSP. The problem is known to lie in NP, but
even formal evidence supporting or opposing the NP-completeness of MCSP is lacking. This
is in contrast to other prominent problems that are believed to be intractable yet are not
known to be NP-complete (such as integer factorization or the discrete logarithm3).

However, a remarkable line of research demonstrates that a proof that MCSP is NP-
complete would have significant ramifications. For example, Murray and Williams [14] show
that it would imply the breakthrough complexity separation EXP 6= ZPP, and Hirahara [8]
shows that it implies a worst-case to average case reduction for NP (if the hardness holds for
an approximate version of MCSP).

An NP-completeness proof for MCSP would also resolve the “search versus decision”
question mentioned at the beginning of this paper. In particular, since SAT is known to
have a polynomial-time search to decision reduction, MCSP being NP-complete would imply
that MCSP would also have a polynomial-time search to decision reduction. Hence, the time
complexity of computing MCSP and Search-MCSP would be equivalent up to a polynomial.

Because of this, Kabanets and Cai observed that finding a search to decision reduction
for MCSP is, in fact, a necessary step to showing that MCSP is NP-complete, and left finding
such a reduction as an open question. Indeed, it is a bit unnerving (at least to the author)
that researchers have not yet ruled out the possibility that MCSP has a linear-time algorithm
but solving Search-MCSP requires exponential-time! The present work was born out of a
motivation to (at least partially) mediate this large gap.

Alas, while we fail to improve the status of this question for MCSP, we make consider-
able progress in connecting the search and decision complexity of the analogous Formula
Minimization Problem, MFSP.

1.1 Prior Work
In light of the numerous research papers studying MCSP and its variants, we do not attempt
to survey the full body of literature but rather concentrate on those works related to search
to decision reductions and MFSP. We point a reader interested in a more detailed overview
to Allender’s excellent new survey [1] and the references therein.

Search to decision reductions for MCSP. There are two main prior works for search to
decision reductions for MCSP-like problems. Both provide algorithms that find approximately
optimal circuits that are efficient as long as MCSP has efficient algorithms. Interestingly,

2 [4] cites a personal communication from Levin that he delayed publishing his initial NP-completeness
results in hopes of showing MCSP is NP-complete.

3 Intriguingly, it is known [18, 2] that both of these problems reduce to MCSP under randomized reductions!
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both algorithms require that MCSP actually has efficient algorithms and seemingly fail if they
are “only” provided oracle access to MCSP (the reason is that the approximately optimal
circuit that these algorithms output actually include a small MCSP circuit within them).

The first prior work is a celebrated paper by Carmosino, Impagliazzo, Kabanets, and
Kolokolova [6] that establishes connections between algorithms for MCSP-like problems and
PAC-learning of circuits. In their paper, they show the following theorem.

I Theorem 1 (Carmosino, Impagliazzo, Kabanets, and Kolokolova [6]). Suppose MCSP ∈ BPP.
Then there is a randomized polynomial-time algorithm that, given the truth table of a function
f with n-bit inputs, outputs a circuit C of size at most poly(s) such that C(x) = f(x) for all
but a 1

poly(n) fraction of inputs x, where s is the minimum size of any circuit computing f .

Building on [6], Hirahara [8] proved a breakthrough worst-case to average-case reduction
for an approximation version of MCSP. In said paper, Hirahara shows the following theorem.

I Theorem 2 (Hirahara [8]). Suppose for some ε > 0 that one can approximate MCSP to
within a factor of N1−ε in randomized polynomial-time (where N is the length of the truth
table). Then there is some ε′ > 0 such that, given a length-N truth table for computing f ,
one can, in randomized polynomial-time, output a circuit for computing f (exactly) whose
size is within a N1−ε′ factor of being optimal.

Using similar ideas, Santhanam [19] independently obtained a comparable search-to-
decision reduction (with somewhat better parameters than Theorem 2) for AveMCSP, a
natural variant of MCSP where one asks for the smallest circuit computing a function on a
0.9-fraction of the inputs.

We find it interesting that “approximate” search to decision reductions for MCSP have
been a building block in these celebrated results. It seems to suggest that further exploring
the interplay between the search and decision versions of MCSP could be a fruitful direction.

Hardness of MFSP. As with MCSP, we have good reason to believe that MFSP is intract-
able, since it is in some sense “hard” for cryptography computable in NC1.

I Theorem 3 (Razborov and Rudich [17], Kabanets and Cai [10]). If MFSP ∈ P, then there
are no pseudorandom function generators computable in NC1.

Allender, Koucký, Ronneburger, and Roy [4] build on this connection to show that MFSP is
hard to approximate if factoring Blum integers is intractable.

Despite the strength of this cryptographic hardness connection, we know very little about
the complexity of MFSP unconditionally. Indeed, part of the difficulty is that it seems
difficult to design reductions that make use of an MFSP (or MCSP) oracle, since we do not
understand the model of formulas (or circuits) very well. Until very recently [7], it was even
open whether MFSP was in AC0[2]!

One reason for focusing on MFSP is that one might expect it to be an easier problem to
analyze than MCSP since formulas are somewhat better understood than circuits. In support
of this intuition, we know that the formula minimization problem for DNFs and DNF ◦ XOR
formulas are NP-complete [13, 9] and that the natural Σ2 variant of MFSP is complete for
Σ2 [5].

However, counter to this intuition, there are some cases in which it has been more difficult
to prove hardness for MFSP than for MCSP. While it is known that MCSP is hard for SZK
under randomized reductions [3], it remains open to prove such a result for MFSP. We take
this as further evidence of the subtleties involved in designing reductions for MFSP.

CCC 2020
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1.2 Our Results
In contrast to prior results, we examine the case of having to exactly solve Search-MFSP,
that is, producing an exactly optimal (instead of approximately optimal) formula.

We define MFSP over the model of DeMorgan formulas (formulas with AND and OR
gates) where the size of a formula is the number of leaf nodes in its binary tree. Our main
results are robust to changes in the model however. In particular, unless otherwise stated,
all our results also extend to the case when gates are from the full binary basis B2 and to
the case when the notion of size is the number of wires or the number of gates.

Our main result is to show that one can efficiently find an optimal formula for a given
function f using an oracle to MFSP when f has a small number of “near-optimal formulas”
(we say what this means after our theorem statement).

I Theorem 4 (also Theorem 33). There is an algorithm solving Search-MFSP using an oracle
to MFSP that given a length-N truth table of a function f runs in time O(N6t2) where t is
the number of “near-optimal” formulas computing f .

Defining ”near-optimal” formulas. We now define what we mean by “near-optimal” for-
mulas. Let L(f) denote the minimum size of any formula computing f . We say a formula ϕ
is a near-optimal formula for f : {0, 1}n → {0, 1} if ϕ has size at most L(f) + n+ 1.

Furthermore, in counting the number of near-optimal formulas, we consider formulas that
are isomorphic as labelled binary trees to be the same formula. This avoids counting many
trivially equivalent formulas as distinct near-optimal formulas. See Section 2.2 for a precise
definition.

Bounding the number of near-optimal formulas. Unfortunately, we do not understand
the quantity t in Theorem 4 very well. However, using the nearly tight upper bounds by
Lozhkin [11] on the maximum formula size required to compute an n-input function, we get
that with high probability a random function on n-inputs has at most

2O( N
log log N )

many near-optimal formulas where N = 2n.
Thus, we have the following corollary.

I Corollary 5 (also Corollary 34). There is an algorithm A for solving Search-MFSP on all
but a o(1) fraction of instances that runs in time 2O( N

log log N ) using an oracle to MFSP.

Corollary 5 has a nice interpretation with respect to the perebor conjecture. The queries
algorithm A (run on a truth table input of length N) makes to its MFSP-oracle can be
answered using a deterministic brute-force algorithm in time 2(1+o(1))N . In particular, the
queries A makes are of length at most 2N and have complexity at most (1 + o(1)) N

log logN .
On the other hand, the naive brute-force algorithm for Search-MFSP on an input of length
N runs in time 2(1+o(1))N . Thus, we have the following further corollary.

I Corollary 6 (Informal). If the brute-force algorithm for Search-MFSP is essentially optimal
on average, then the brute-force algorithm for MFSP is essentially optimal in the worst-case
on a large subset of instances (in particular queries of length 2N with complexity at most
(1 + o(1)) N

log logN ).

It would be nice to improve the running-time of the algorithm in Corollary 5. The bound
that t ≤ 2O( N

log log N ) for a random function hardly seems tight. In fact, in the setting of
Kolmogorov complexity, one can prove that a random string of length N has only poly(N)
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many near-optimal descriptions with high probability (this is because the worst-case upper
bound for Kolmogorov complexity is much tighter than the one for formulas). If we could
prove an analogous result for formulas, then Corollary 5 would give a polynomial-time search
to decision reduction for a random function!

Solving Search-MFSP in the worst-case. We also give a reduction that shows that even in
the worst-case, one can get exponential savings over the brute-force algorithm for Search-MFSP
by using a MFSP-oracle. In light of Theorem 4, a natural approach is split into two cases:

If there are a lot of near-optimal formulas for f , then just guess random formulas and see
if they compute f .
If there are not a lot of near-optimal formulas for f , then run the algorithm in Theorem 4.

However, this approach will only be able to output a near-optimal formula for computing
f , and we desire to solve Search-MFSP exactly.

We manage to overcome this issue and prove the following theorem.

I Theorem 7 (also Theorem 41). There is a randomized algorithm for solving Search-MFSP
using an oracle to MFSP that runs in O(2.67N ) time on instances of length N .

By examining the queries that this algorithm makes to MFSP, we get the following
consequence regarding the perebor conjecture.

I Corollary 8 (Informal). If brute-force is essentially optimal for solving Search-MFSP, then
any algorithm solving MFSP can give at most an ε power speed up over the brute-force
algorithm where ε = 1

7 .

A bottom-up approach for DeMorgan formulas. All of the results mentioned so far are
proved by building an optimal formula for a function in a “top-down” way (i.e. starting from
the output gate and working its way down to the tree leafs). It is natural to wonder if a
“bottom-up” approach could also work.4

Indeed, we give such a bottom-up reduction for solving Search-MFSP using an oracle to
MFSP that is efficient on average. Unfortunately, the guarantees we prove on the running
time on this bottom-up algorithm are weaker than the guarantees provided in Theorem 4.
Moreover, the proof of correctness for the algorithm requires our formulas to be DeMorgan
formulas and not, say, B2 formulas. Still, we include this result because we think the algorithm
is interesting and because it makes use of the following lemma (which is the part where
DeMorgan formulas are crucial) that may be of independent interest. Roughly speaking, the
lemma shows that optimal DeMorgan formulas must not have too large depth.

I Lemma 9 (also Lemma 53). Suppose ϕ is an optimal DeMorgan formula for a function on
n-inputs. Then the depth of ϕ is at most O( 2n

n logn ).

1.3 Techniques and Proof Overviews
The top-down approach. As mentioned earlier, our reduction works in a top-down manner.
We formalize this as follows. For any Boolean function f on n-inputs, we define the set
OptSubcomps(f) to consist of elements of the form {g,O, h} – where g, h : {0, 1}n → {0, 1}
and O ∈ {∧,∨} – satisfying the property that there exists an optimal formula ϕ for computing
f such that ϕ = ϕgOϕh where ϕg and ϕh are subformulas computing g and h respectively.

4 The idea that a bottom-up approach could also be an efficient way to solve Search-MFSP was given to
me by Ryan Williams.

CCC 2020
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We can naturally define the Decomposition Problem, denoted DecompProblem as follows:
Given: a non-trivial5 function f ,
Output: some element of OptSubcomps(f).

Our two main reductions work by solving the DecompProblem. It is easy to show that one
can solve Search-MFSP efficiently by recursively calling an DecompProblem oracle to build
an optimal formula gate-by-gate from top to bottom. (See Theorem 20 for details.)

Thus, we now focus on trying to solve DecompProblem.

A high level approach to solving DecompProblem. Our two top-down reductions will use
a similar approach to solving DecompProblem. (Actually, our worst-case reduction will use
three different approaches, but this will be one of them.)
1. Find an efficient “test” that functions in6 an optimal subcomputation of f pass, but not

too many other functions pass.
2. Efficiently build the (not too long) list Candidates of functions that pass the “test.”
3. Iterate through all pairs of functions in Candidates and each possible gate, and check if

this constitutes an element of OptSubcomps(f).

We first describe how we do Item 3 since it is simpler and then describe our “test” for
Item 1. Our method for Item 2 will be different in both reductions.

Item 3: checking membership in OptSubcomps(f). Given access to a MFSP oracle it is
actually very easy to check whether some {g,O, h} is an element of OptSubcomps(f) or not.
In Lemma 21 we observe that {g,O, h} ∈ OptSubcomps(f) if and only if f(x) = g(x)Oh(x)
for all x and L(f) = L(g) + L(h).

Item 1: the Select[f, g] test. The idea for our “test” is based on the gate elimination
technique and the implications gate elimination has on the Select[·, ·] function defined as
follows. Given functions f, g : {0, 1}n → {0, 1}, we define Select[f, g] : {0, 1}n×{0, 1} → {0, 1}
by

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1.

Our test for whether g might be part of an optimal subcomputation for f will be whether
the quantity

L(Select[f, g])− L(f)

is small – in particular, no more than a parameter C. The exact value of C will depend on
the reduction (we use this test in all three of our reductions with a different value for C), but
to give a reader some idea, C will be an element of {1, n+ 2, 10 · 2n

n } where n is the number
of input bits f takes.

5 here by non-trivial we mean a function that cannot be computed by a formula of size one
6 In case it is not clear, we say a function g is in an optimal subcomputation for f if there exists a gate O
and function h such that {g,O, h} is an element of OptSubcomps(f).
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Now, we needed our test to have two properties:
Property 1: any function that is in an optimal subcomputation for f must pass this test,
and
Property 2: this test does not accept too many other functions.

With regards to Property 1, we show in Lemma 23 that if {g,O, h} ∈ OptSubcomps(f),
then L(Select[f, g]) ≤ L(f) + 1 and L(Select[f, h]) ≤ L(f) + 1.

We can give the relatively straightforward proof that L(Select[f, g]) ≤ L(f) + 1 here.
Suppose that {g,O, h} ∈ OptSubcomps(f). To avoid some case analysis, assume that O = ∧.
Then there exists an optimal formula ϕ = ϕg ∧ϕh such that ϕg computes g and ϕh computes
h. Then the formula ϕg(x) ∧ (ϕh(x) ∨ z) computes Select[f, g](x, z) and has size L(f) + 1.

For Property 2, our test must be such that the set of all functions q satisfying

L(Select[f, q])− L(f) ≤ C

is not too large. In Lemma 24, we show that the number of such q is bounded by

O(t · 2C−1N logN)

where N is the length the truth table of f and t is the number of distinct formulas (modulo
an isomorphism between formulas defined in Section 2.2) computing f of size L(f) + C − 1 .
(In the case that C = n+ 2, t is the number of “near-optimal” formulas discussed earlier in
Section 1.2.)

The intuition behind this proof is to use gate elimination. In more detail, if ϕ is a formula
of size L(f) + C computing Select[f, g], then we can set z = 0 in ϕ and eliminate between
one and C gates from ϕ to obtain a new formula ϕ′ of size at most L(f) + C − 1 computing
f . Hence, we can describe ϕ (and hence g) by first describing ϕ′ (a small-ish formula for f)
and the gates that need to be added back to ϕ′ in order to obtain ϕ.

While this intuition is relatively straightforward, the proof itself is surprisingly tedious.
In particular, the intuition, as stated, only gives a bound with a NC factor dependence on
C. To achieve the stated bound with a 2C factor dependence on C requires some details.
Moreover, this dependence on C is important since a NC dependence would make Theorem 4
have a quasipolynomial dependence on t instead of a polynomial dependence.

Our top-down deterministic reduction. We now outline how the deterministic algorithm
in Theorem 4 works to solve DecompProblem on an input f .

We have already introduced the some of the ideas for the algorithm in Theorem 4. In detail,
let BestFunctions be the set of functions that are in an optimal subcomputation of f . Let
GoodFunctions denote the set of functions g that pass the test L(Select[f, g])− L(f) ≤ n+ 2
(for this algorithm we set C = n+2). From our previous discussions, we know that the size of
GoodFunctions can be bounded by a quantity related to the number of near-optimal formulas
for f , and we know that GoodFunctions contains all the functions in BestFunctions.

Later we explain how to construct the list GoodFunctions. Note though that once
the list GoodFunctions is constructed, we can then iterate through all pairs of functions
in GoodFunctions and efficiently check if they yield an optimal subcomputation, as we
discussed previously.

Hence, the missing piece is to efficiently enumerate the elements of GoodFunctions. In
fact, we do not quite need to enumerate all the elements of GoodFunctions. It suffices
to enumerate a subset, that we call Candidates, of GoodFunctions that contains all the
elements of BestFunctions. Informally, one can think of the Candidates subset as a set of
“good enough functions.”

CCC 2020
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The key observation is as follows. If q is a function on n-inputs and one defines the truth
table Tq,i of length 2n that is equal to q on its first i bits and equals one on the remaining
bits, then

L(Tq,i) ≤ L(q) + n+ 1

since one can compute Tq,i by computing q, computing whether the input is greater than i,
and ORing these two values. The Select[·, ·] function actually respects this observation in
a nice way. In particular, since functions g in BestFunctions satisfy the stronger property
that L(Select[f, g])− L(f) ≤ 1, one can show that if g ∈ BestFunctions, then

L(Select[f, Tg,i]) ≤ L(f) + n+ 2

for all i. In other words, if g ∈ BestFunctions, then Tg,i is in GoodFunctions for all i.
Using this fact, we can construct a subset Candidates of GoodFunctions that contains all

the elements of BestFunctions by bit-by-bit extending a set of prefixes PartialCandidates
that pass our test (and prefixes of functions in BestFunctions do pass our test) until these
prefixes become full functions.

In more detail, we start with a set PartialCandidates that initially only contains the
empty prefix. While PartialCandidates is non-empty, we remove a prefix γ from it and
try to extend it by one bit. That is, for each bit b ∈ {0, 1}, we consider γb obtained by
appending b to γ. We then see if the prefix γb “passes our test” by seeing if the truth table
Tγb

, obtained by padding γb with ones until it has length 2n, has the property

L(Select[f, Tγb
]) ≤ L(f) + n+ 2.

If so, we either add γb to Candidates or back to PartialCandidates depending on whether
the string γb is of length 2n or not. We continue until PartialCandidates is empty. The full
details can be found in Algorithm 2.

Our top-down randomized worst-case reduction. The algorithm in Theorem 7 uses three
different strategies for finding an optimal subcomputation in the worst-case using an oracle
to MFSP. We give a a rough overview of each of these three parts.

Suppose the input to the algorithm is a function f on n-inputs. First, the algorithm picks
22N/3 random formulas of size L(f) and checks if any of these formulas compute f . If so,
we are done. Otherwise, we know that the number of optimal formulas for f cannot be too
large (in particular, is upper bounded by roughly 2N/3 with high probability).

In the second part, we construct a set of candidate functions that pass a test. The
guarantee on the number of optimal formulas from the previous step ensures that the size of
the set

{g : L(Select[f, g]) ≤ L(f) + 1}

is bounded by O(2N/3), and we know that all functions that are in an optimal subcomputation
for f are in this set. Hence, what we would like to do is enumerate the functions in this set,
however, the author does not know how to do this efficiently. Instead, we examine the subset
of functions in this set that have not too large complexity. That is, we iterate through all
functions with complexity at most 2

3 ·
2n

logn and build

Candidates = {g : L(Select[f, g])− L(f) ≤ 1 and L(g) ≤ 2
3 ·

2n

logn}.

This takes time O(22N/3). We then try to find a pair of functions in Candidates that form
an optimal subcomputation.
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If we succeed, we are done. Otherwise, we know that there exists an optimal subcompu-
tation {g,O, h} of f where h has complexity greater than 2

3 ·
2n

logn . This also implies that g
has complexity at most (1 + o(1)) 2n

3 logn since L(f) = L(g) + L(h) and L(f) ≤ (1 + o(1)) 2n

logn .
In the third part, we look for such an “unbalanced” subcomputation as follows. We

iterate through each g in Candidates with complexity at most (1 + o(1)) 2n

3 logn and each
O ∈ {∧,∨} and try to find a matching h by considering each h satisfying f = gOh. We argue
that this is efficient because the the set of h satisfying the constraint that f = gOh is not
too large (in particular, of size at most 2N/3). The reason for why this set must be small is
that the constraint that f = gOh actually forces many of the values of h to a fixed zero/one
value. Indeed, we argue that a large number of values must be “forced,” since if only a small
number of values of h were “forced,” then a theorem of Pippenger [16] ensures that there
would be a function h of too small complexity (smaller than 2

3 ·
2n

logn ) that satisfied f = gOh,
which would contradict that fact that the second part of the algorithm failed.

A bottom-up approach. Our final algorithm takes a different approach than our previous
reductions, working bottom-up instead of top-down. The basic idea of the bottom-up
approach is as follows. Begin with the set Candidates of all functions computed by formulas
of size one. For each pair of functions g, h in Candidates and each O ∈ {∧,∨}, compute the
function q = gOh. Next, see if gOh is an optimal formula for q using the MFSP oracle. If
so, use some one-sided heuristic (that never gives an incorrect NO answer) to test if q is
computed by some gate in an optimal formula for f , and add q to Candidates if it passes
this heuristic. Repeat this process until f is added to Candidates, in which case one can
construct an optimal formula for f by tracing back through the functions that led to it.

The difficulty in this approach is in finding an appropriate heuristic that significantly
prunes the search space of possible candidates. A natural contender for such a heuristic, in
light of our previous algorithms, is testing if L(Select[f, q])− L(f) is small. However, if our
only guarantee is that q is computed by some gate in some optimal formula ϕ for f , the
best upper bound we manage to prove for the quantity L(Select[f, q])− L(f) is linear in the
depth of ϕ.

Luckily, Lemma 53 shows that the depth of ϕ cannot be too large. In particular, if ϕ
is an optimal DeMorgan formula, then the depth of ϕ is bounded by O( 2n

n ) where n is the
number of inputs f takes. At a high-level, the proof of this lemma works by saying that if a
formula has very large depth, then there are many small subformulas that lie along a path in
the binary tree of ϕ. Because there are so many of these small subformulas, there must be
a pair that compute the same function, and this can be used to produce a slightly smaller
formula.

Using this lemma, we show that the above bottom-up approach runs in time quadratic in
the number of formulas for computing f that are within O( 2n

n ) of being optimal, additively.

1.4 Open Questions
There are several intriguing questions raised by this work. Looking at our main theorem,
the most obvious question is whether one can improve the bound we give on the number of
near-optimal formulas for a random function. Our bound hardly seems correct, although its
hard to imagine how one could do better with current techniques.

Perhaps an indirect approach could work. Is there any operation one can apply to a
function in order to reduce the number of optimal formulas it has? It seems plausible
that multiple applications of the Select[·, ·] function might cut down the number of optimal
formulas.

CCC 2020
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Another idea would be to try to modify the heuristic “tests” in our reduction. At their
heart, all our “tests” are powered by the gate elimination technique. It seems reasonable
that more powerful lower bound techniques (which we indeed do have for formulas) might
lead to better heuristics and thus more efficient search-to-decision reductions.

There is also the question this paper began with: can one prove a non-trivial exact search
to decision reduction for MCSP? The difficulty in adopting our approach to MCSP is that
there are just too many ways to add a single gate to a circuit, which ruins the bounds we get
on the number of functions passing our Select[f, g] test. Is there any way to get around this?

Taking a step back, one can also ask what role relativization plays in the search versus
decision question. Can one show that there is an oracle relative to which MCSP or MFSP can
be solved in linear time, but the corresponding search problem requires exponential time?

Finally, can one extend Lemma 9 to the case of formulas over B2 or even just prove a
better bound for DeMorgan formulas?

1.5 Organization
In Section 2, we fix our notation and definitions, including our notion of formula isomorphism.
In Section 3, we introduce the top-down approach and outline our basic strategy for solving
Search-MFSP. Section 4 introduces the Select[·, ·] function and proves bounds on number of
functions that pass “tests” related to the Select[·, ·] function. Section 5 gives a deterministic
search to decision reduction for MFSP and shows it is efficient on average. Section 6 then
gives a reduction that works in the worst case. Finally, Section 7 demonstrates a bottom-up
approach for trying to solve Search-MFSP.

2 Preliminaries

For a positive integer n, we let [n] denote the subset of integers {1, . . . , n}.

2.1 DeMorgan Formulas and Formula Size
Our notion of formulas will be DeMorgan formulas. A DeMorgan formula ϕ on n-inputs of
size s is given by:

a directed rooted binary tree on the vertex set [2s − 1], specified by a subset Eϕ ⊆
[2s− 1]× [2s− 1] of edges, and
a gate labeling function τϕ : [2s− 1]→ {∧,∨} ∪ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}

where τ takes values in {∧,∨} on the internal nodes in ϕ and τ takes values in

{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}

on the leaf nodes in ϕ. The edges in Eϕ point from inputs towards outputs. We note that
our definition implicitly uses the fact that a binary tree with s leaf nodes has s− 1 internal
nodes. We also note that in our definition we do not need to specify the “left” and “right”
child of an internal node since our gate set {∧,∨} is made up of symmetric functions. We
will define a notion of formula isomorphism in Section 2.2.

We will use the notation |ϕ| to denote the size of a formula ϕ (i.e. the number of leaves in
the binary tree underlying ϕ). Given a Boolean function f , we denote the minimum formula
size of f by

L(f) = min{|ϕ| : ϕ is a formula computing f}.

We say a formula ϕ is an optimal formula for a Boolean function f , if ϕ computes f and
|ϕ| = L(f).
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We note, however, that all of our results except the ones presented in Section 7 apply
equally well to formulas with arbitrary fan-in-two gates (i.e. the formulas over the B2 basis).
Moreover, all our results are hold for other size notions such as gates and wires.

2.2 Optimal Formulas and Formula Isomorphism
Since our results will depend on the number of formulas satisfying certain properties, we will
be clear about when exactly we are saying formulas are distinct in our count.

In particular, as we have defined formulas, one can obtain many optimal formulas from a
single optimal formula by relabeling the nodes in underlying binary tree.

Thus, it will be useful to define an isomorphism on formulas and only count formulas
modulo this isomorphism. In particular, we will define two formulas to be isomorphic if they
are isomorphic as labelled binary trees.

In order to properly define this, we introduce some notation. If ϕ is a formula of size s
with an underlying edge set Eϕ and a labelling function τϕ and σ : [2s− 1]→ [2s− 1] is a
permutation, then we let ψ = σ(ϕ) be the formula of size s whose edge set Eψ is given by

Eψ = {(σ(i), σ(j)) : (i, j) ∈ Eϕ}

and whose labelling function τψ is given by

τψ(σ(i)) = τϕ(i).

We say two formulas ϕ and ϕ′ are isomorphic if |ϕ| = |ϕ′| and there is a permutation σ
such that ϕ′ = σ(ϕ).

From each equivalence class of isomorphic formulas, we pick a single representative that
we call the canonical formula for that equivalence class. Note that for our purposes we do
not need that this canonical formula to be computable, as we will just be using them in our
analysis. Then we define CanonOptkFormulas(f) to be the set of canonical formulas that are
optimal for computing f up to an additive k-term. In other words

CanonOptkFormulas(f) = {ϕ : ϕ is a canonical formula and |ϕ| ≤ L(f) + k}.

2.3 MFSP, Search-MFSP and Conventions on n and N

We now define the Minimum Formula Size Problem denoted MFSP.

I Definition 10 (MFSP). We define the problem MFSP as follows
Given: a truth table of a Boolean function f and an integer size parameter s ≥ 1
Determine: if L(f) ≤ s.

We define the search version of MFSP analogously.

I Definition 11 (Search-MFSP). Search-MFSP is the problem defined as follows:
Given: a truth table of a Boolean function f
Output: a formula ϕ of size L(f) computing f .

We note that MFSP ∈ NP since given a minimum-sized formula as a witness, one can
check that this indeed computes f efficiently since the truth table of f is provided and every
function has a formula of size at most the length of its truth table (see Theorem 13).

When describing a function f that is an input to MFSP, one naturally wants to denote
by n two different quantities: the number of variable inputs to a function f and the length of
the truth table of f (which is the true input length for MFSP). We maintain the convention
throughout this paper that n denotes the input arity of f and N = 2n denotes the length of
the truth table of f .
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2.4 Useful Facts About Formulas
We will make use of some basic facts about formulas in our work. First, one can easily bound
the number of formulas of size at most s.

I Proposition 12. The number of formulas on n-inputs of size at most s is at most
2s logn(1+o(1))

We also know tight upper bounds on the maximum formula complexity of a n-input
function.

I Theorem 13 (Lozhkin [11] improving on Lupanov [12]). Let f : {0, 1}n → {0, 1}. Then

L(f) ≤ 2n

logn (1 +O( 1
logn ))

Combining the size upper bound in Theorem 13 with the bound on the number of formulas
of size s, we get the following proposition.

I Proposition 14 (Random functions have not too many near optimal formulas). Let n and
k be positive integers. Let N = 2n. Assume k = O( 2n

log2 n
). Then all but a o(1)-fraction of

n-input Boolean functions f satisfy

|CanonOptkFormulas(f)| = 2O( N
log log N ).

Proof. Theorem 13 say that every n-input function has a formula of size at most

2n

logn (1 +O( 1
logn )).

Thus, any formula for computing n-input function that is within an additive k of being
optimal has size at most s where

s ≤ k + 2n

logn (1 +O( 1
logn )) = 2n

logn (1 +O( 1
logn )).

Proposition 12 implies that the number of formulas of size at most s is upper bounded by

2s logn(1+o(1)) = 2N(1+O( 1
log log N )).

Hence, since there are 2N Boolean functions on n-inputs, it follows that in expectation a
random function has at most

2O( N
log log N )

formulas within k of being optimal. The desired claim then follows by an application of
Markov’s inequality. J

We note that the bound given by Proposition 14 is actually counting formulas that are
isomorphic to each other as distinct. Unfortunately removing this redundancy does not
improve on the bound in Proposition 14. However, the fact that our results rely on the
number of distinct formulas up to isomorphism means that there is no obvious obstruction
to better bounds being proved and hence to our algorithms being more efficient.

We will also make use of the fact that integer comparison can be implemented by
linear-sized formulas.
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I Proposition 15 (Small formulas for integer comparison). Let y ∈ {0, 1}n. Let GrtrThany :
{0, 1}n → {0, 1} be the function given by GrtrThany(x) = 1 if and only if x > y in the usual
lexicographic order on {0, 1}n. Then L(GrtrThany(x)) ≤ n.

Proof. We work by induction on n. If n = 1, then clearly L(GrtrThany) = 1 (either it is 0
if y = 1 or it equals x if y = 0).

Now suppose n > 1. Let x1, . . . , xn and y1, . . . , yn denote the bits of x and y respectively
where x1 and y1 denotes the highest order bit. Let x′, y′ ∈ {0, 1}n−1 be given by x′ = x2 . . . xn
and y′ = y2 . . . yn respectively.

Now, x > y if and only if one of the following two statements is true:
x1 > y1, or
x1 = y1 and x′ > y′.

Since x1, y1 ∈ {0, 1}, this is equivalent to

x > y ⇐⇒ (x1 > y1) ∨ (x′ > y′).

By induction this means L(GrtrThany) ≤ 1 + n− 1 = n. J

2.5 Partial Functions and their Formula Size
Partial functions will be a crucial building block in our reductions. A partial Boolean function
is a function γ : {0, 1}n → {0, 1, ?} for some integer n ≥ 1. We denote partial functions using
Greek letters such as γ and µ, although sometimes we resort to the Roman alphabet with a
? subscript such as h?.

In contrast, we say a Boolean function f : {0, 1} → {0, 1} is total Boolean function
(though we allow for a partial Boolean function to indeed be total).

We say a total Boolean function g agrees with a partial Boolean function γ if

γ(x) ∈ {0, 1} =⇒ γ(x) = g(x).

One can naturally define the minimum formula size of a partial Boolean function γ as
follows

L(γ) = min{L(g) : g is a total function that agrees with γ}.

The following theorem regarding the formula complexity of partial functions will be useful
in our randomized worst-case reduction.

I Theorem 16 (Pippenger [16]). Let γ : {0, 1}n → {0, 1, ?} be a partial function. Let
p? = |γ−1(?)|

2n . Then,

L(γ) ≤ (1 + o(1)) · (1− p?) 2n

logn.

3 The Top-Down Approach

Our two main reductions both take a “top-down” approach to finding an optimal formula.
That is, given a function f , they try to find functions g and h such that g and h are the two
functions fed into the final output gate in an optimal formula for f and then recursing.

This is formalized as follows.
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I Definition 17 (Optimal Subcomputations Set). Let f : {0, 1}n → {0, 1}. We define the set
of optimal subcomputations for f , denoted OptSubcomps(f), as follows.

Let g, h : {0, 1}n → {0, 1} be Boolean functions of the same arity as f and O ∈ {∧,∨}.
Then {g,O, h} ∈ OptSubcomps(f) if and only if there exists an optimal formula ϕ = ϕgOϕh
for computing f such that ϕg computes g and ϕh computes h.

We note that in this definition we are implicitly using that the gate set {∧,∨} is symmetric
with respect to its inputs.

We say a function g is in an optimal subcomputation for f if g is contained in some
element of OptSubcomps(f). In other words, g is in an optimal subcomputation for f if there
exists an h and O such that {g,O, h} ∈ OptSubcomps(f).

It is easy to see that OptSubcomps(f) is almost always non-empty.

I Proposition 18. Let f : {0, 1}n → {0, 1} such that L(f) ≥ 2. Then OptSubcomps(f) is
non-empty.

Next, we can define the problem of finding an optimal subcomputation.

I Definition 19 (Decomposition Problem). The Decomposition Problem, DecompProblem is
as follows:

Given: the truth table of a Boolean function f satisfying L(f) ≥ 2
Output: some element of OptSubcomps(f).

It is easy to see that DecompProblem is equivalent to Search-MFSP. DecompProblem can
be easily solved with an oracle to Search-MFSP. The following recursive procedure shows
the reverse direction.

I Theorem 20 (Search-MFSP reduces to DecompProblem). There is a deterministic O(N2)-
time algorithm for solving Search-MFSP on inputs of length N given access to an oracle that
solve DecompProblem on instances of length N .

Proof. The pseudocode for this reduction is written in Algorithm 1.

Algorithm 1 Reduction from Search-MFSP to DecompProblem.

procedure FindOptFormula(f)
. Given the length-N truth table of a function f that takes n-inputs and oracle access to
DecompProblem return an optimal formula for f .

if there exists a size one formula ϕ computing f then
return ϕ.

end if
Let {g,O, h} be the output returned by the oracle DecompProblem(f).
Recursively compute the formula ϕg ← FindOptFormula(g).
Recursively compute the formula ϕh ← FindOptFormula(h).
return the formula given by ϕgOϕh.

end procedure

The correctness of this algorithm is easy to see as long as one is able to bound the number
of recursive calls the algorithm makes. To see that the number of recursive calls is bounded
by O(N), notice that each iteration of the algorithm reveals one more gate in the optimal
formula for f . Thus, since L(f) = O(N), we have that there are at most O(N) recursive
calls. J
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Our goal is now to try to solve DecompProblem (i.e. find an element of OptSubcomps(f))
given an oracle to MFSP. Recall from the introduction that our high-level approach is as
follows
1. Find an efficient “test” that functions that in an optimal subcomputation of f pass but

not too many other functions pass.
2. Efficiently build the (not too long) list Candidates of things that pass the test.
3. Iterate through all pairs of elements in Candidates and all possible gates, and efficiently

check if this yields an element of OptSubcomps(f).

Item 1 will be the subject of Section 4, Item 2 will be different in our two main reductions,
and Item 3 is provided by the next lemma.

I Lemma 21 (Test membership in OptSubcomps(f) efficiently with MFSP). Let f, g, h :
{0, 1}n → {0, 1}. Then

{g,O, h} ∈ OptSubcomps(f) ⇐⇒ f = gOh and L(f) = L(g) + L(h).

Proof. We prove the forward direction first. Suppose that {g,O, h} ∈ OptSubcomps(f).
Then there exists an optimal formula ϕ = ϕgOϕh for computing f such that ϕg computes g
and ϕh computes h. Clearly this implies that f = gOh.

Moreover, |ϕ| = |ϕg| + |ϕh|. On the other hand, since ϕ is optimal, we have that
|ϕ| = L(f), |ϕg| = L(g), and |ϕh| = L(h). (Otherwise, one could build a smaller formula
for f by replacing ϕg or ϕh with a smaller formula computing the same function.) Hence
L(f) = L(g) + L(h).

For the reverse direction, suppose that L(f) = L(g) + L(h) and f = gOh. Let ϕg and ϕh
be optimal formulas for g and h. Then ϕ = ϕgOϕh clearly computes f and has size L(f).
Hence {g,O, h} ∈ OptSubcomps(f). J

4 Using gate elimination to find functions in an optimal
subcomputation

Our approach to solving DecompProblem involves finding a “test” that functions in an optimal
subcomputation pass but not too many other functions pass. The test will be based off the
following function.

I Definition 22 (Select[·, ·]). Let f, g : {0, 1}n → {0, 1}. We define the function Select[f, g] :
{0, 1}n × {0, 1} → {0, 1} by

Select[f, g](x, z) =
{
f(x) , if z = 0
g(x) , if z = 1

We emphasize that Select[f, g] function is only defined when f and g have the same arity.
Now, our “test” will be to see if the quantity

L(Select[f, g])− L(f)

is small (how small will depend on our reduction).
Indeed, for functions in an optimal subcomputation, this quantity is exactly one!7

7 We will only prove that it is as most one, but the reader can check that if g 6= f that a gate elimination
argument actually implies equality.
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I Lemma 23. Suppose g is in an optimal subcomputation for f . Then

L(Select[f, g]) ≤ L(f) + 1.

Proof. Since g is in an optimal subcomputation for f , there exists an optimal formula
ϕ = ϕg Oϕh such that ϕg computes g. If O = ∧, then

ϕg ∧ (ϕh ∨ z)

is a formula for Select[f, g] of size L(f) + 1. Otherwise O = ∨. Then

ϕg ∨ (ϕh ∧ ¬z)

is a formula for Select[f, g] of size L(f) + 1. J

On the other hand, the number of functions that “pass this test” can be upper bounded
in terms of |CanonOptkFormulas(f)|.

I Lemma 24. Let k be a positive integer. Let f : {0, 1}n → {0, 1}. Assume L(f) ≥ 2. Let
TestPassers = {g : L(Select[f, g])− L(f) ≤ k + 1}. Then

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN)

where N = 2n.

Proof. At a high-level the idea is that, given a formula ϕ of size L(f) + k + 1 for computing
Select[f, g], one can replace the z-leaves in ϕ with 0-leaves to obtain a formula ϕ′ of size
L(f) + k+ 1 for computing f with at least one constant leaf. One can then use a careful gate
elimination argument to remove precisely one constant leaf from ϕ′ to obtain a formula ϕ′′
that still computes f but has size L(f) + k. On the other hand, one can reverse this process
by adding some constant leaf and gate to ϕ′′ and then replacing some subset of the constant
leaves by z-leaves.

This gives us a way to describe any g that passes the test, and thus allows us to bound
the number of such g. In our bound, the O(|CanonOptkFormulas(f)|) factor corresponds to
the choices for ϕ′′, the O(N logN) corresponds to the number of ways to add a new constant
leaf and gate to ϕ′′ in order to obtain ϕ′, and the O(2k) factor comes from the number of
ways to chose a subset of the (at most k) 0-leaves in ϕ′ into z-leaves.

In detail, we prove this statement by giving a series of injections. At a high-level First,
let P denote the set of canonical formulas computing f with size exactly L(f) + k + 1 and
with at least one constant-labelled leaf node in the formula.

We will give an injection from TestPassers to P × [2k+1]. Before defining our injection,
we will need the following claims and definitions.

B Claim 25. Suppose ϕ computes Select[f, g] and f 6= g, then ϕ has at least one leaf node
labelled by z or ¬z.

Proof. If ϕ does not have any {z,¬z} labelled leaves, then the output of ϕ does not depend
on z. But this contradicts that ϕ computes Select[f, g] since Select[f, g] does depend on the
z input because f 6= g. C

B Claim 26. Suppose ϕ ∈ P . Then ϕ has at most (k + 1)-many leaf nodes labelled by
constants {0, 1}.
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Proof. Since ϕ ∈ P , we know that |ϕ| = L(f) + k + 1 and ϕ computes f . Since L(f) ≥ 2, we
know that |ϕ| ≥ k + 3.

If ϕ had more than (k + 1)-many constant labelled leaves, it follows by a standard gate
elimination argument (note here it is important that |ϕ| ≥ k + 3) that there is a ϕ′ that
computes the same function as ϕ such that

|ϕ′| < |ϕ| − (k + 1) < L(f).

But then ϕ would be a formula of size less than L(f) computing f which is a contradiction.
C

We will also need the following definitions. Given a formula ϕ that can take z-variables
as input, we define Substitutez=0(ϕ) to be the formula ϕ′ given by replacing the z-labeled
leaves in ϕ with 0-labels and replacing the (¬z)-labeled leaves in ϕ with 1-labels.

We note that the Substitutez=0 operation in some sense respects formula isomorphisms.

B Claim 27. Let ϕ be a formula of size s that takes a z-variable as input. Let σ : [2s− 1]→
[2s− 1] be a permutation. Then

σ ◦ Substitutez=0(ϕ) = Substitutez=0 ◦ σ(ϕ)

Proof. The proof is essentially just applying the definition to both sides and seeing that the
resulting edge sets and labelling functions are equal. C

We can also define a reverse operation to Substitutez=0 as follows. Given a formula ϕ and a
subset S of leaf nodes in ϕ that are labelled by constants {0, 1}, define Unsubstitutez=0(ϕ′, S)
to be the formula ϕ given by replacing 0-labeled leaves in S with z-labels leaves and by
replacing 1-labeled leaves in S with (¬z)-labels.

Indeed, the following claim whose proof we omit is easy to see.

B Claim 28. For all formulas ϕ there exists a set S such that

ϕ = Unsubstitutez=0(Substitutez=0(ϕ), S).

Being more precise, S is a subset of the leaf nodes in Substitutez=0(ϕ) that are labelled by
constants.

Now we are ready to describe our injection from TestPassers→ P × [2k+1] on an input
g ∈ TestPassers. Since g ∈ TestPassers, there is a ϕ of size L(f) + k + 1 computing
Select[f, g]. Let ϕ′ = Substitutez=0(ϕ). Clearly ϕ′ computes f since ϕ computes Select[f, g].
Let ϕ′ denote the canonical formula isomorphic to ϕ′. Then there exists a permutation σ
such that

ϕ′ = σ(ϕ′)
= σ ◦ Substitutez=0(ϕ)
= Substitutez=0 ◦ σ(ϕ)

where the last equality comes from Claim 27. Thus, using Claim 28, we know that there
exists a subset S of the leaf nodes of ϕ′ labelled by constants such that

Unsubstitutez=0(ϕ′, S) = σ(ϕ).
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Moreover, the set S can be viewed as an element of [2k+1] because ϕ′ has at most k + 1
leaf nodes labelled by constants. In particular, by construction, we have that

|ϕ′| = |ϕ|′ = |ϕ| = L(f) + k + 1,

and that ϕ′ computes f , so Claim 26 ensures that ϕ′ has at most k + 1 many leaf nodes
labelled by constants.

Hence, we define the output of our injection from TestPassers to P × [2k+1] on input
g ∈ TestPassers to be (ϕ′, S).

We must prove that this is indeed an injection. Towards this end, we claim that
Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g]. From this claim it is easy to see
that this must be an injection.

B Claim 29. Unsubstitutez=0(ϕ′, S) is a formula computing Select[f, g].

Proof. S was chosen so that

Unsubstitutez=0(ϕ′, S) = σ(ϕ).

Thus, Unsubstitutez=0(ϕ′, S) computes the same function as σ(ϕ) which in turn computes
the same function as ϕ, which computes Select[f, g] as desired. C

From this injection, we get that

|TestPassers| ≤ 2k+1 · |P |.

Next, we give an injection from P to the set

CanonOptkFormulas(f)× [2L(f)]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.

To do this we will define an operation DropLeaf(ϕ, i) that takes as input a formula ϕ of
size s ≥ 2 and a leaf node i ∈ [2s− 1] from ϕ and outputs the formula ϕ′ given as follows.
We will first describe ϕ′ informally and then give the formal description. ϕ′ is obtained by
deleting the leaf node i and making the output of the node ip that i fed into simply the other
node that was being fed into ip.

Now, we formally describe ϕ′. Let ip ∈ [2s− 1] be the internal node that i has an edge to
in ϕ (we know this exists because |ϕ| ≥ 2). If needed, apply a permutation to ϕ so i = 2s− 1
and ip = 2s− 2. Let u ∈ [2s− 3] be the other node in ϕ that feeds into vp. Let ϕ′ be the
formula given by the edge set

E′ = (E ∩ ([2s− 3]× [2s− 3])) ∪ { (u, vpp) : vp feeds into vpp in ϕ}

and the labelling function

τ ′ = τ |[2s−3].

For example if ϕ = (x1∨x2)∧x3 and 1 was then index of the x1 leaf, then DropLeaf(ϕ, 1) =
x2 ∧ x3.

We show this operation in some sense commutes with formula isomorphisms.

B Claim 30. Let ϕ be formula of size s. Let i be the index a leaf node in ϕ, and let
σ : [2s− 3]→ [2s− 3] be a permutation. Then there exists an integer i′ and a permutation
σ′ : [2s− 1]→ [2s− 1] such that

DropLeaf(σ′(ϕ), i′) = σ ◦ DropLeaf(ϕ, i)
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Proof. From our definition of DropLeaf(·, ·), we can assume without loss of generality that
i = 2s− 1 and that the internal node that i feeds into in ϕ is ip = 2s− 2.

Then the claim follows from letting σ be equal to σ′ on [2s − 3] and letting σ be the
identity on {2s− 2, 2s− 1} and applying the various definitions. C

We can also define a kind of inverse operation AddLeaf function that takes the following
four inputs

a formula ϕ′ on n-inputs of size s,
a node i in the tree given by ϕ′,
a gate O ∈ {∧,∨}, and
a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn},

and outputs the formula ϕ of size s+1 given as follows. First, we give an informal description
and then given a formal definition.

Intuitively, AddLeaf is adding a new O-gate into ϕ′ between the i-node and wherever i
was being output to (if i has an output), whose other input is a new `-labeled leaf.

We define ϕ formally as follows. We will use 2s + 1 to add in our new leaf and 2s to
add in our new gate. The edge set Eϕ of ϕ is given by taking Eϕ′ and adding in the edges
(2s + 1, 2s) and (i, 2s) and then, if there is a node ip that i feeds into in ϕ′, adding in an
edge (2s, ip) and removing the (i, ip) edge. The node labelling τϕ of ϕ is given by

τϕ(i) =


τϕ′ , if i ∈ [2s− 1]
O , if i = 2s
` , if i = 2s+ 1

It is easy to see that AddLeaf can reverse a DropLeaf(·, ·) operation.

B Claim 31. Let ϕ be a formula of size at least two. Let i be the index of a leaf
node in ϕ. Then there exists an integer j, a gate O ∈ {∧,∨}, and a leaf label ` ∈
{0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that

AddLeaf( DropLeaf(ϕ, i), j,O, `) = ϕ

One of the main steps in our injection will be provided by the following claim.

B Claim 32. Let ϕ ∈ P . Then there is an i such that ϕ′ = DropLeaf(ϕ, i) is a size (L(f) + k)
formula for computing f .

Proof. Let ϕ ∈ P . Then there is some internal node j in ϕ that takes as input a leaf node
indexed by i satisfying τϕ(i) = b ∈ {0, 1}. We will assume b = 0 (the proof in the b = 1 case
is similar).

Let ϕj be the the subformula computed at node j, and let Oj = τϕ(j) ∈ {∧,∨} be the
gate label of j. We already know that the ith leaf node feeds into ϕj . Let k be the other
node feeding into j, and let ϕk be the subformula computed at node k. We split into cases
depending on whether Oj is an ∧-gate or a ∨-gate.

First, let us suppose Oj is a ∨-gate. Then the formula ϕj as a function is equivalent
to the formula 0 ∨ ϕk which is equivalent as a function to ϕk. Hence it follows that
ϕ′ = DropLeaf(ϕ, i) is an (L(f) + k)-size formula (since we removed the ith leaf) computing
f (since ϕj and ϕk compute the same function).

Now, suppose that it is a ∧-gate. Then the output of ϕj is always zero. Since |ϕj | ≥ 2,
there exists some subformula ϕ2 of ϕj of size 2 (i.e. there is some node in ϕv that has two
leaves as children and ϕ2 is the subformula computed at that node). Since ϕ2 has two leaves,
there exists one leaf index i′ such that i′ 6= i (i.e. this leaf node is not the ith leaf node we
were considering before).
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Then we claim that ϕ′ = DropLeaf(ϕ, i′) is an (L(f) + k)-size formula computing f . It
is easy to see that |ϕ′| is an (L(f) + k)-size formula since we removed the i′th leaf node.
To see that ϕ′ still computes f , note that the 0-labeled ith leaf node in ϕ still exists in
ϕ′. If the gate node j was removed by the DropLeaf(·, ·) operation, then the output wire
of ϕj that computed the 0 function in ϕ has been replaced by the 0-leaf i in ϕ′ which still
computes the 0 function, so ϕ′ must still compute f . If the gate node v was not removed by
the DropLeaf(·, ·) operation, then the output corresponding gate to v in ϕ′ is still computing
0 (since it is an ∧-gate with a 0 input), so ϕ′ still computes f . C

Now we can finally describe the injection from P to the set

CanonOptkFormulas(f)× [2L(f) + 2k − 1]× {∧,∨} × {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.

Given an input ϕ in P , we have by Claim 32 that there exists a least i-value such that
ϕ′ = DropLeaf(ϕ, i) is a formula computing f of size L(f) + k. Let ϕ′ be the canonical
formula isomorphic to ϕ′. Then we have that ϕ′ ∈ CanonOptkFormulas(f) and we have that
there are permutations σ and σ′ and an integer i′ such that

ϕ′ = σ(ϕ′)
= σ ◦ DropLeaf(ϕ , i)
= DropLeaf(σ′(ϕ), i′)

where the last equality comes from Claim 30.
Hence, by Claim 31, we have that there exists a gate index j ∈ [2L(f) + 2k − 1], a gate

O ∈ {∧,∨}, and a leaf label ` ∈ {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn} such that

AddLeaf(ϕ′, j,O, `,D) = σ′(ϕ).

In other words, AddLeaf(ϕ′, j,O, `,D) outputs a formula isomorphic to ϕ.
Thus, we set the output of the injection on input ϕ to be (ϕ′, j,O, `,D). The fact that

this is an injection from P is ensured by the fact that AddLeaf(ϕ′, j,O, `,D) is isomorphic to
ϕ and the fact that P contains only canonical formulas.

Hence, we get that

|P | ≤ |CanonOptkFormulas(f)| · 2(L(f) + k) · 2 · (2n+ 1)
≤ O(|CanonOptkFormulas(f)|(N + k) logN).

Combining this with upper bound on TestPassers in terms of P , we get that

|TestPassers| ≤ O(|CanonOptkFormulas(f)| · 2kN logN) J

5 A deterministic reduction that works on average

We will now use the tools developed in Section 3 and Section 4 to give a search to decision
reduction that is efficient on functions with few near-optimal formulas.

I Theorem 33. There is a deterministic algorithm solving Search-MFSP on inputs of length
N given access to an oracle that solves MFSP on instances of length 2N that runs in time
O(|CanonOptn+1Formulas(f)|2 ·N6 log2 N) where n = logN .

Before we prove Theorem 33, we state a corollary that follows from the bound on the
size of CanonOptkFormulas(f) for a random function given in Proposition 14.
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I Corollary 34. There is a deterministic algorithm solving Search-MFSP on inputs of length
N given access to an oracle that solves MFSP on instances of length 2N that runs in time
2O( N

log log N ) on all but a o(1)-fraction of instances.

Proof of Corollary 34. This corollary follows by combining the algorithm in Theorem 33
with the recursive algorithm for Search-MFSP given in Theorem 20 and using Proposition 14
to bound |CanonOptn+1Formulas(f)| by 2O( N

log log N ) for a random function.
There is actually a subtlety in appealing to Theorem 20 in that the running time of the

algorithm in Theorem 33 has a dependence on the number near-optimal formulas of its input.
Hence, we need to argue that when the algorithm in Theorem 20 makes recursive calls to
the algorithm in Theorem 20 on functions g other than the original input f that g also has
few near-optimal formulas. However, this is not a problem since it is easy to see that if a
function g is computed by some gate in an optimal formula for f (as it must be if a recursive
call is made to g), then the number of near-optimal formulas for g is at most the number of
near-optimal formulas for f (since one can create a near optimal formula for f by taking the
optimal formula for f that computes g at some gate and replacing the subformula at that
gate with a near-optimal formula for g). J

Proof of Theorem 33. We provide the pseudocode of our DecompProblem algorithm in
Algorithm 2, which we recommend the reader look at before proceeding.

5.1 Correctness of Algorithm 2
In this subsection we show that Algorithm 2 has the desired input/output behavior.

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n.

Part 1: building Candidates. First, we will prove some loop invariants that will help us
show that Candidates and PartialCandidates(i) contain those functions we are interested
in and do not contain many more things.

The following claim shows that the x? described on Line 10 always exists and that
the ?-values of partial functions in PartialCandidates(i) always have an easily computable
structure.

B Claim 35. Before and after each iteration of the while loop, it is true that if γ ∈
PartialCandidates(i), then

γ(x) =? ⇐⇒ x ≥ i (interpreting i as a binary string in {0, 1}n in the natural way),
and consequently |γ−1({0, 1})| = i.

Proof. Clearly the claim is satisfied before the first iteration of the while loop when i = 0
and PartialCandidates(i) = {AllUnknown}.

Now, we must argue inductively. Suppose 1 ≤ i ≤ N and γ′ ∈ PartialCandidates(i).
Then, it follows that there is some γ ∈ PartialCandidates(i−1) and some b ∈ {0, 1} such
that γ′ = γb where γb is as defined in the pseudocode. That is, γb is equal to γ except that
the first ?-value (which occurs at x?old = i− 1 by the inductive hypothesis) is replaced by a b.
Thus, we have

γ′(x) =? ⇐⇒ γ(x) =? ∧ (x 6= x?old) ⇐⇒ x > x?old ⇐⇒ x ≥ i

where the first equivalence comes from the definition of γb = γ′ and the second equivalence
comes from the fact that x?old = i− 1. C
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Algorithm 2 A deterministic search to decision reduction for MFSP whose run time depends on
the number of “near-optimal formulas”.

1: procedure OptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2:
3: Part 1: Building a Candidates list
4: Let allUnknown : {0, 1}n → {0, 1, ?} be given by allUnknown(x) =? for all x.
5: Set PartialCandidates(0) = {allUnknown}.
6: Set i = 0.
7: while i < N do
8: Set PartialCandidates(i+1) = ∅.
9: for all γ ∈ PartialCandidates(i) and for all b ∈ {0, 1} do
10: Let x? be the lexicographically first input satisfying γ(x?) =?.

11: Let γb : {0, 1}n → {0, 1, ?} be given by γb(x) =
{
b , if x = x?

γ(x) , otherwise.

12: Let gγb
be the (total) function given by gγb

(x) =
{

1 , if γb(x) =?
γb(x) , otherwise.

13: if L(Select[f, gγb
]) ≤ L(f) + n+ 2 then

14: Add γb to PartialCandidates(i+1).
15: end if
16: end for
17: Set i = i+ 1.
18: end while
19: Set Candidates = PartialCandidates(N).
20:
21: Part 2: Finding an optimal pair within Candidates
22: for all pairs g, h ∈ Candidates and for all gates O ∈ {∧,∨} do
23: if L(g) + L(h) = L(f) and f = gOh then
24: return {g,O, h} .
25: end if
26: end for
27: end procedure

Next, we show that the PartialCandidates(i) never contains “redundant” partial functions.

B Claim 36. Before and after each iteration of the while loop, it is true that if γ′ and γ′′
are distinct elements of PartialCandidates(i), then no total function agrees with both γ′
and γ′′.

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) only
contains the single partial function AllUnknown, so the claim clearly holds.

Now we must show that the claim holds inductively. Assume 1 ≤ i ≤ N . For contradiction,
suppose there was some total function q that agrees with distinct elements µ and µ′ from
PartialCandidates(i). It follows that there exists some b, b′ ∈ {0, 1} and some (possibly not
distinct) γ, γ′ ∈ PartialCandidates(i−1) such that µ = γb and µ′ = γ′b′ (using the notation
from the pseudocode where these functions γb and γ′b′ are given by replacing the output of
the first ?-valued input in γ or γ′ respectively with a b-value or b′-value respectively). It
follows that q must also agree with γ and γ′.
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Either γ 6= γ′ or not. If γ 6= γ′, then q agrees with two distinct elements from
PartialCandidates(i−1) which contradicts the inductive hypothesis.

Now suppose that γ = γ′. Then it must be that b 6= b′ (otherwise, µ = µ′ and we assumed
they are distinct). But then, we have then γ and γ′ have the same first ?-valued input x?, so

b = µ(x?) = q(x?) = µ′(x?) = b′

which contradicts that b 6= b′. C

Moreover, PartialCandidates(i) only contains partial functions that can be completed
to total functions that pass a certain test.

B Claim 37. Before and after each iteration of the while loop, it is true that if γ ∈
PartialCandidates(i) then there exists a function g on n-inputs that agrees with γ such that

L(Select[f, g]) ≤ L(f) + n+ 2.

Proof. Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0)
only contains one partial function (AllUnknown). The function f clearly agrees with
AllUnknown, and it is easy to see that L(Select[f, f ]) = L(f) ≤ L(f) + n + 1, as desired.
Thus, the claim holds before the first iteration of the while loop.

Moreover, the claim clearly continues holding inductively because before any γb is added
to PartialCandidates(i), we check to see if the function gγb

satisfies

L(Select[f, gγb
]) ≤ L(f) + n+ 2

and gγb
agrees with γb by construction. C

Finally, we show that PartialCandidates(i) always contains the partial functions we
want.

B Claim 38. Suppose some function q is in an optimal subcomputation for f . Then before
and after each iteration of the while loop there is a γ ∈ PartialCandidates(i) such that q
agrees with γ. Moreover, once part 1 is finished, q ∈ Candidates

Proof. Fix some q as in the statement of the claim.
Before the first iteration of the while loop runs, i = 0 and PartialCandidates(0) contains

the all-? partial function AllUnknown, so q agrees with AllUnknown and the claim holds.
Now, we must show the claim holds inductively. Assume 1 ≤ i ≤ N . Then by induction

there exists a γ ∈ PartialCandidates(i−1) such that q agrees with γ. Let b = q(i− 1). Then
q agrees with γb as defined in the pseudocode (replacing the first ?-value in γ with a b-value)
since Claim 35 implies that

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.

Thus, if we could show γb ∈ PartialCandidates(i), we would be done with showing the first
part of the claim. From the pseudocode, it is clear γb ∈ PartialCandidates(i) if

L(Select[f, gγb
]) ≤ L(f) + n+ 2,

where gγb
is as defined in the code (the function given by replacing the ?-values in γb with

ones) which we now prove.
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We already noted that

γb(x) =
{
b , if x = i− 1
γ(x) , otherwise.

.

Thus, appealing to Claim 35, we know that γb(x) =? ⇐⇒ x > x? where x? ∈ {0, 1}n is the
binary string equivalent to i−1 (note that 0 ≤ i−1 ≤ N−1 so this makes sense). Hence, since
q agrees with γb, we have that gγb

(x) = q(x) ∨GrtrThanx?(x) where GrtrThanx?(x) = 1 if
and only if x > x?.

Thus, we have that

Select[f, gγb
](x, z) =

{
f(x) , if z = 0
gγb

(x) , if z = 1

= Select[f, q](x, z) ∨ (z ∧GrtrThanx?(x))

Since {g,O, h} ∈ OptSubcomps(f), we know that L(Select[f, q]) = L(f) + 1 by Lemma 23,
and Proposition 15 implies that L(GrtrThanx?) ≤ n. Hence, we have that

L(Select[f, gγb
]) ≤ L(f) + n+ 2.

Finally, we show that q ∈ Candidates after part 1 finishes. Clearly, it suffices to show
that q ∈ PartialCandidates(N) after part 1 finishes. We have already shown that there is a
γ ∈ PartialCandidates(N) such that γ agrees with q. However, Claim 35 implies that γ is a
total function and hence it equals q, so q ∈ PartialCandidates(N). C

Part 2: Finding a g, h pair within Candidates. First, we note that any output by
Algorithm 2 must be correct.

B Claim 39. Any value Algorithm 2 outputs must be an element of OptSubcomps(f).

Proof. Any output {g,O, h} of Algorithm 2 must satisfy f = gOh and L(f) = L(g) + L(h)
which implies {g,O, h} ∈ OptSubcomps(f) by Lemma 21. C

Finally, we show that Algorithm 2 must output a value.

B Claim 40. Algorithm 2 must output a value (on input f).

Proof. Since L(f) ≥ 2, we have that OptSubcomps(f) is non-empty. Let {g,O, h} ∈
OptSubcomps(f).

Claim 38 implies that {g, h} ⊆ Candidates. On the other hand, Lemma 21 implies that
L(f) = L(g) + L(h) and f = gOh. Thus, it is clear that part 2 will either output {g,O, h} or
output a value before that. C

5.2 Running Time of Algorithm 2

Fix some function f with n-inputs satisfying L(f) ≥ 2. Let N = 2n. We break the running
time analysis into the two pieces of the algorithm.
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Part 1. It is easy to see that the run time of part 1 can be bounded by

O(N +
∑
i∈[N ]

N · |PartialCandidates(i)|)

where |PartialCandidates(i)| indicates the size of PartialCandidates(i) after Algorithm 2
is finished adding elements to it.

Moreover, we can bound the quantity |PartialCandidates(i)| as follows. Claim 37 implies
that every partial function in PartialCandidates(i) must be consistent with some total
function g on n-inputs satisfying

L(Select[f, g]) ≤ L(f) + n+ 2.

On the other hand, Claim 36 implies that any single (total) function can agree with at most
partial function in PartialCandidates(i). Hence, we have that

|PartialCandidates(i)| ≤ |{g : L(Select[f, g]) ≤ L(f) + n+ 2}|

and Lemma 24 implies that

|{g : L(Select[f, g]) ≤ L(f) + n+ 2}| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).

Thus, we have that part 1 runs in time at most O(|CanonOptn+1Formulas(f)| ·N4 logN).
Moreover, part 1 only makes oracle calls of length at most 2N (to calculate L(Select[f, gγb

])).

Part 2. It is easy to see that this part runs in time O(N · |Candidates|2). Hence, since
Candidates = PartialCandidates(N), the analysis in part 1 above implies that

|Candidates| ≤ O(|CanonOptn+1Formulas(f)| ·N2 logN).

Thus, part 2 runs in time at most

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N).

Moreover, part 2 only makes oracle calls of length N .

In total. Putting it all together, we have that Algorithm 2 runs in time at most

O(|CanonOptn+1Formulas(f)|2 ·N5 log2 N)

and only makes oracle queries of length 2N . J

6 A worst-case randomized reduction

We now present a worst-case search to decision reduction for MFSP.

I Theorem 41. There is a randomized algorithm solving Search-MFSP on inputs of length
N in time O(2.67N ) given access to an oracle that solves MFSP on instances of length 2N .

Proof. We prove this theorem by giving an oracle algorithm solving DecompProblem and
appealing to Theorem 20. We provide the pseudocode of our algorithm in Algorithm 3, which
we recommend the reader look at before proceeding.
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Algorithm 3 A randomized worst-case search to decision reduction for MFSP.

1: procedure WorstCaseOptimalSubcomputation(f)
. Given the length-N truth table of a function f that takes n-inputs with L(f) ≥ 2, this
procedure returns an element {g,O, h} of OptSubcomps(f).

2: Set s = 2
3 ·

2n

logn
3: Set t = 22N/3

4:
5: Part 1: Try random formulas
6: for i = 1, . . . , t do
7: Let Gi be a uniformly random binary tree with L(f)-leaves. (Section 6.2 discusses

how to sample Gi.)
8: Turn Gi into a uniformly random formula ϕi by picking uniformly random gates

from {∧,∨} and uniformly random input leaves from {0, 1, x1, . . . , xn,¬x1, . . . ,¬xn}.
9: if ϕi computes f then
10: Write ϕi = ϕi,1Oϕi,2.
11: Let g and h be the function computed by ϕi,1 and ϕi,2 respectively.
12: if L(f) = L(g) + L(h) then
13: return {g,O, h}.
14: end if
15: end if
16: end for
17:
18: Part 2: Generate a small list of candidates for g
19: Set SmallFuncs = {g : g is a Boolean function with n-inputs and L(g) ≤ s}.
20: Set Candidates = {g ∈ SmallFuncs : L(Select[f, g]) ≤ L(f) + 1}.
21:
22: Part 3: Try to find a g, h pair within Candidates
23: for each pair of functions (g, h) ∈ Candidates and for each gate O ∈ {∧,∨} do
24: if f = gOh and L(f) = L(g) + L(h) then
25: return {g,O, h}.
26: end if
27: end for
28:
29: Part 4: Try to find a g, h pair by looking at functions h satisfying f = gOh
30: Set SmallCandidates = {g ∈ Candidates : L(g) ≤ L(f)− s}.
31: for each function g ∈ SmallCandidates and for each O ∈ {∧,∨} do
32: if ∀x ∈ {0, 1}n ∃b ∈ {0, 1} such that g(x)Ob = f(x) then
33: Let h?,g : {0, 1}n → {0, 1, ?} be the unique partial function on n-inputs such

that ∀ h, f = gOh ⇐⇒ h agrees with h?,g.
34: for each total function h that agrees with h?,g do
35: if f = gOh and L(f) = L(g) + L(h) then
36: return {g,O, h}.
37: end if
38: end for
39: end if
40: end for
41: end procedure
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6.1 Correctness of Algorithm 3
In this section, we prove that Algorithm 3 has the desired input/output behavior. In our
analysis, we will use s and t as parameters which we will set to the optimal values (which
are written in the pseudocode) in Section 6.2 where we do the running time analysis for
Algorithm 3.

Fix some function f on n-inputs with L(f) ≥ 2. We analyze the algorithm in parts.

Part 1. Since ϕi is chosen to have L(f) leaves and the algorithm in part 1 checks if ϕi
computes f before returning any value, the following claim is clear.

B Claim 42. Any output by Algorithm 3 returned in part 1 must be an element of
OptSubcomps(f).

Moreover, we can lower bound the probability that Algorithm 3 returns a value in part 1
as follows. Recall that CanonOpt0Formulas(f) is the set of optimal canonical formulas for f .
We will show that part 1 succeeds if this set is large.

B Claim 43. If t ≥ 5 · 2N(1+o(1))

|CanonOpt0Formulas(f)| , then part 1 of Algorithm 3 will return a value at
least 99% of time.

Proof. Since we are picking each s-leaf formula ϕi uniformly at random, the probability that
any fixed formula computes f is at least

|CanonOpt0Formulas(f)|
the total number of formulas with L(f) leaves

Combining Theorem 13 with Proposition 12 upper bounds the denominator by 2N(1+o(1)), so

Pr[ϕi computes f ] ≥ |CanonOpt0Formulas(f)|
2N(1+o(1)) .

Since each of these ϕi are chosen independently, we have that

Pr[∃i ∈ [t] such that ϕi computes f ] ≥ 1− (1− |CanonOpt0Formulas(f)|
2N(1+o(1)) )t

≥ 1− e−t·
|CanonOpt0Formulas(f)|

2N(1+o(1))

≥ 1− e−5

≥ .99

Hence, with probability at least 99%, part 1 will find a ϕi computing f at which point it
will clearly return a value. C

Part 2. In part 2, Algorithm 3 constructs the Candidates set. We prove two claims about
this set. First, that it contains the functions we care about, and second that its size can be
bounded using the size of the CanonOpt0Formulas(f) set.

B Claim 44. Suppose g is in an optimal subcomputation for f . Then L(g) ≤ s =⇒ g ∈
Candidates.

Proof. Since L(g) ≤ s, we know that g ∈ SmallFuncs. Next, since g is in an optimal
subcomputation for f , we have by Lemma 23 that

L(Select[f, g]) ≤ L(f) + 1,

so g is an element of Candidates. C
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B Claim 45.

|Candidates| = O(|CanonOpt0Formulas(f)| ·N logN)

Proof. By construction, we have that

Candidates ⊆ {g : L(Select[f, g]) = L(f) + 1}.

On the other hand, Lemma 24, we have that

|{g : L(Select[f, g]) = L(f) + 1}| ≤ O(|CanonOpt0Formulas(f)| ·N logN) C

Part 3. In Part 3, Algorithm 3 tries to find a g, h pair by looking within the Candidates
set. We show this works as long as there is a {g,O, h} ∈ OptSubcomps(f) where L(g) and
L(h) are small.

First, we note that part 3 can only return correct answers.

B Claim 46. Any output returned by Algorithm 3 in part 3 will be an element of
OptSubcomps(f).

Proof. In order for a {g,O, h} value to be returned in part 3 it must satisfy f = gOh and
L(f) = L(g) + L(h). Thus, by Lemma 21, we know {g,O, h} ∈ OptSubcomps(f). C

Next, we give sufficient conditions on which part 3 will return an answer.

B Claim 47. If there exists an element {g′,O, h′} of OptSubcomps(f) such that

max{L(g′), L(h′)} ≤ s,

then Algorithm 3 will return a value in part 3 or before.

Proof. Suppose there exists an element {g′,O, h′} of OptSubcomps(f) such that

max{L(g′), L(h′)} ≤ s,

and assume that this procedure has not returned a value before it reaches part 3. Then
by Claim 44, we have that both g′ and h′ are in Candidates. Moreover, since {g′,O, h′} ∈
OptSubcomps(f), we know that f = g′O′h′ and L(f) = L(g) + L(h) by Lemma 21. Hence it
is clear there are value the for loop will return an output if it reaches g = g′, h = h′, and
O = O′ (although it could return a value before that). C

Part 4. In the final part of Algorithm 3, we look for matching h functions for g candidates
with small complexity.

First, we note that any output returned by part 4 must be correct by essentially the same
proof as Claim 46 in part 3.

B Claim 48. Any output returned by Algorithm 3 in part 4 will be an element of
OptSubcomps(f).

Next, we show sufficient conditions for part 4 returning an answer.

B Claim 49. If s ≥ L(f)/2 and there exists a {g′,O, h′} ∈ OptSubcomps(f) such that
L(h′) ≥ s, then Algorithm 3 will return a value in part 4 or earlier.
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Proof. Using Lemma 21, we have L(f) = L(g′) + L(h′). Thus, since s ≥ L(f)/2 and L(h′) ≥ s,
we have that

L(g′) = L(f)− L(h′) ≤ L(f)− s ≤ 2s− s = s.

Hence, by Claim 44, we have that g′ ∈ Candidates. Moreover, since L(g′) ≤ L(f) − s, it
follows that g′ ∈ SmallCandidates. Thus, it is clear that part 4 will return a value if its for
loop ever reaches g = g′,O = O′, and h = h′ (though it could return a value before that).

C

In total. Finally, we can prove the correctness of the input/output behavior of Algorithm 3.

B Claim 50. If s ≥ L(f)/2, then Algorithm 3 (run on input f) returns an element of
OptSubcomps(f).

Proof. Put together, Claim 42, Claim 46, and Claim 48 ensures that any output returned by
Algorithm 3 must be an element of OptSubcomps(f).

Hence, it suffices to show that Algorithm 3 will always output a value. We divide
into two cases. Either there exists an element {g′,O, h′} ∈ OptSubcomps(f) such that
max{L(g′), L(h′)} ≤ s or not.

If there exists such an element, then Claim 47 ensures that Algorithm 3 will output a
value.

Now suppose that for all {g′,O, h′} ∈ OptSubcomps(f) we have max{L(g′), L(h′)} ≥ s.
Since L(f) ≥ 2, we know OptSubcomps(f) is non-empty by Proposition 18. Hence we can
fix some {g′,O, h′} ∈ OptSubcomps(f) satisfying max{L(g′), L(h′)} ≥ s. Without loss of
generality we can assume that L(g′) ≤ L(h′). Thus, we have that L(h′) ≥ s, and by hypothesis
s ≥ L(f)/2, so Claim 49 ensures Algorithm 3 outputs a value. C

Thus Algorithm 3 is correct as long as s ≥ L(f)/2. Indeed, in the next section we will set
s so that s ≥ max{L(f)/2 : f takes n-inputs}.

6.2 Runtime of Algorithm 3
In this subsection, we bound the runtime of Algorithm 3 and set s and t to the optimal
values. We analyze Algorithm 3 in its parts.

Part 1. The for loop in part 1 clearly runs t times, so we just need to bound the running
time of each iteration. Generating a uniformly random binary with L(f)-leaves can be done in
linear time (see [15] for a survey of various approaches). The other operations in the for loop
can clearly be done in time O(N + L(f)). Hence, all of part 1 runs in time O(t · (N + L(f))
which is O(t ·N) using the worst-case formula upper bound from Theorem 13.

Moreover, part 1 only makes oracle calls of length N (to calculate L(f)).

Part 2. Building the SmallFuncs set requires iterating through all formulas of size s
(which is bounded by 2(1+o(1))·s logn using Proposition 12) and then computing the truth
table of each of these size s formulas (which can be done in time O(Ns)). Hence, computing
SmallFuncs can be done in O(N · 2(1+o(1))·s logn) time. Moreover, |SmallFuncs| is clearly
upper bounded by the upper bound on the number of formulas of size s: 2(1+o(1))·s logn.

Next, building the Candidates set can be done in time O(|SmallFuncs|+N) = O(N ·
2(1+o(1))·s logn), and we use oracle calls of length 2N in this step (for Select[f, g]).
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Hence, part 2 runs in time O(N · 2(1+o(1))·s logn).
We will make use of the following claim later, which bounds the size of the Candidates

set if part 1 did not return a value.

B Claim 51. Fix some function f . Then with 99% probability (over the algorithm’s choice
of random formulas) either Algorithm 3 on input f returns before reaching part two or

|Candidates| ≤ 2N(1+o(1))

t
.

Proof. Suppose that Algorithm 3 reaches part two on input f and

|Candidates| > 2N(1+o(1))

t
.

Then Claim 45 implies that

2N(1+o(1))

t
= O(|CanonOpt0Formulas(f)|N logn)

which implies that

|CanonOpt0Formulas(f)| ≥ 2N(1+o(1))

t
.

Hence, Claim 43 implies that Algorithm 3 will return in part 1 with 99% probability. C

Part 3. It is easy to see that part 3 runs in time O(|Candidates|2 +N) and makes oracle
calls of length N .

Thus, using Claim 51, we have that with 99% probability part 3 runs in time 22N(1+o(1))

t2 .

Part 4. Computing SmallCandidates can be done in O(|Candidates|+N) time, and the
outer for loop runs at most O(|Candidates|) many times.

It remains to bound the running time of each iteration of the outer for loop. The if
condition can be checked in O(N) time. Constructing h?,g also takes O(N) time (similar to
the if condition, just iterate through each input x ∈ {0, 1}n and see which values of b ∈ {0, 1}
satisfy f(x) = g(x)Ob). Each iteration of the inner for loop takes O(N) time. Finally, the
inner for loop runs 2|h

−1
?,g

(?)| many times.
Thus, the total running time for part 4 is

O(|Candidates| · (N +N · 2maxg{|h−1
?,g

(?)|}))

time.
Moreover, we can bound the quantity maxg{|h−1

?,g(?)|} as follows.

B Claim 52. maxg{|h−1
?,g(?)|} ≤ (1 + o(1))(N − s logn).

Proof. Since any function h that agrees with h?,g satisfies gOh = f and, we have that

L(f) ≤ L(g) + L(h?,g).

Since L(g) ≤ L(f)− s (since g ∈ SmallCandidates), we have that

L(h?,g) ≥ s.
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On the other hand, the upper bound on the formula complexity of partial functions from
Theorem 16 implies that

L(h?,g) ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn.

Hence

s ≤ (1 + o(1))(1−
|h−1

?,g(?)|
N

) N

logn

so

|h−1
?,g(?)| ≤ N − s logn

(1 + o(1)) ≤ (1 + o(1))(N − s logn). C

Thus, using Claim 51, we have that with 99% probability part 4 runs in 22N(1+o(1))

t2 .

O(2N(1+o(1))

t
·N · 2(1+o(1))(N−s logn)) = 2(1+o(1))(2N−s logn)

t

time.

In total. Thus, we get that with 99% probability Algorithm 3 runs in time

O(t ·N) +O(N · 2(1+o(1))·s logn) + 22N(1+o(1))

t2
+ 2(1+o(1))(2N−s logn)

t
.

Letting s = 2
3

2n

logn and t = 2 2
3N , we get that the running time is bounded by

2(1+o(1)) 2
3N .

Moreover, s will satisfy s ≥ L(f)/2 (as required for the correctness of the algorithm) for
all f with n-inputs when n is sufficiently large by Theorem 13. J

7 A “bottom-up” reduction for DeMorgan Formulas

In this section, we provide another algorithm for solving Search-MFSP that is also efficient
on average, though with worse guarantees than the one given by Theorem 33. Despite its
worse guarantees, we present the algorithm because it uses a different “bottom-up” approach
that we think is interesting.

We begin by proving a lemma that bounds the depth of optimal DeMorgan formulas.

I Lemma 53 (Large optimal DeMorgan formulas have not too large depth). Let f : {0, 1}n →
{0, 1}. Let ϕ be an optimal DeMorgan formula for computing f . Then the depth of f is at
most 10

n · 2
n for sufficiently large n.

Proof. Let d be a parameter we set later. For contradiction, suppose that ϕ is an optimal
formula for computing f with depth greater than d. Clearly then L(f) > d as well. For ϕ
to have depth greater than d, there must be gates O1, . . . ,Od−1 ∈ {∧,∨} and subformulas
ϕ1, . . . , ϕd such that

ϕ = ϕ1 O1 ϕ2 O2 . . . Od−1 ϕd
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where we evaluate gates from left to right, so this formula with parentheses would be

(. . . ((ϕ1 O1 ϕ2) O2 ϕ3) . . . ) Od−1 ϕd,

and |ϕi| ≥ 1 for all i ∈ [d]. In other words, consider a d-length path from some subformula
ϕ1 to the output gate gd−1 in the formula and let ϕ2, . . . , ϕd be all the subformulas in ϕ
from bottom to top (viewing the output gate as the top) intersecting this path. Similarly, let
O1, . . . ,Od−1 be the gates in order from bottom to top along this path.

Then, we have that

L(f) = |ϕ| ≥
∑
i∈[d]

|ϕi|.

Thus, we have that

Ei∈[d]\{1}[|ϕi|] ≤
L(f)− 1
d− 1 .

Hence by Markov’s inequality, we have that there exists a subset S ⊆ [d] \ {1} of size at
least d−1

2 such that for all i ∈ S we have |ϕi| ≤ 2 · L(f)−1
d−1 .

On the other hand the number of distinct formulas on n-inputs with size at most 2 · L(f)−1
d−1

is bounded by

22· L(f)−1
d−1 logn(1+o(1))

according to Proposition 12. Assume that we have chosen d so that

|S| ≥ d− 1
2 > 2

L(f)−1
d−1 logn(1+o(1)).

Then, by the pigeonhole principle, there exists i ≤ j ∈ S such that ϕi and ϕj compute the
same function. We can use this to get a contradiction to optimality as follows. Assume that
Oi−1 = Oj−1 = ∧ (the other cases are similar). Then, substituting in Oi−1 = Oj−1 = ∧ we
would have that the subformula of ϕ computed at Oi−1, that is

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj−1 ϕj Oj . . . Oi−1 ϕi,

equals the function computed by

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ ϕj Oj . . . ∧ ϕi

However if ϕi(x) = 0, then intuitively this formula outputs 0 no matter what happens on
the to the “left” of ϕi in the formula. Thus, we might as well assume on the “left” that
ϕi(x) = ϕj(x) = 1. Thus we get that the function computed at gate Oi−1 is also computed
by the following simplified formula:

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 ∧ 1 Oj . . . ∧ ϕi.

which equals

ϕ1 O1 ϕ2 O2 . . . Oj−2 ϕj−1 Oj . . . ∧ ϕi.

Thus, while the original subformula of ϕ computed at gate Oi−1 given by

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj−1 ϕj . . . Oi−1 ϕi
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had size
∑
k∈[i] |ϕk|, the new equivalent formula given by

ϕ1 O1 ϕ2 O2 . . . ϕj−1 Oj ϕj+1 . . . ∧ ϕi

has the smaller size
∑
k∈[i] |ϕk| − |ϕj | <

∑
k∈[i] |ϕk| which contradicts the optimality of ϕ

for f .
It remains to chose a value for d. We need to satisfy that

d− 1
2 > 22· L(f)−1

d−1 logn(1+o(1)).

By Theorem 13, we have that L(f) ≤ (1 + o(1)) 2n

logn . So setting d = 10
n · 2

n, we get that

22· L(f)−1
d−1 logn(1+o(1)) ≤ 22n(1/10+o(1)) ≤ d = 10

n
· 2n J

Using this lemma, we prove a “bottom-up” search to decision reduction for Search-MFSP.

I Theorem 54. There is a deterministic “bottom-up” algorithm solving Search-MFSP on
inputs of length N given access to an oracle that solves MFSP on instances of length 2N
that runs in time O(N3 · |CanonOpt( 10

n ·2n)Formulas(f)|2) where f is the input truth table of
length N .

Algorithm 4 A bottom up search to decision reduction.

1: procedure OptimalFormula(f)
. Given the length-N truth table of a function f that takes n-inputs, this procedure
finds an optimal formula computing f

2: Set Candidates(1) = ∅.
3: Let OptForm be a empty lookup table.
4: for each size one formula ϕ on n-inputs do
5: Let q be the function computed by ϕ.
6: Add q to Candidates(1).
7: Let OptForm(q) = ϕ.
8: end for
9: Set s = 1.
10: while s < L(f) do
11: Set Candidates(s+1) ← ∅.
12: for every pair g, h in Candidates and every gate O ∈ {∧,∨} do
13: Let q be the function computed by gOh.
14: if L(q) = L(g) + L(h) and L(Select[f, q]) ≤ L(f) + 10

n · 2
n then

15: Add q to Candidates(s+1).
16: Set OptForm(q) to the formula given by OptForm(g)OOptForm(h).
17: end if
18: end for
19: Set s = s+ 1.
20: end while
21: return OptForm(f).
22: end procedure
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Proof. The pseudocode for our reduction is presented in Algorithm 4.
Since this algorithm is weaker than the one presented in Theorem 33, we only sketch the

main observation needed to see that the “test” implicit in Algorithm 4 that

L(Select[f, q])− L(f) ≤ d ≤ 10
n
· 2n

is passed by any function q that is computed by some gate in an optimal formula. The bound
on the total number of functions that pass this test is given by Lemma 24.

Fix a function f on n-inputs and set N = 2n. The correctness of this algorithm follows
from showing that if ϕ is an optimal formula for f and q is an n-input function computed by
the ith gate node in ϕ, then

L(Select[f, q])− L(f) ≤ d

where d is the depth of ϕ. If there were the case, then

L(Select[f, q])− L(f) ≤ 10
n
· 2n

using the depth bound on optimal DeMorgan formulas from Lemma 53.
We now show that

L(Select[f, q])− L(f) ≤ d

by producing a formula ϕ′ for L(Select[f, q]) of size at most L(f) + d.
Before, we give our formula construction of ϕ′, we give an example of what our construction

does that will hopefully be enough to convince the reader. To give an example,if ϕ =
x1 ∨ x2 ∧ x3 and x1 computes q, then ϕ′ = x1 ∨ (x2 ∧ ¬z) ∧ (x3 ∨ z).

We formally construct ϕ′ as follows. Recall we assumed that ϕ has depth d that q is the
function computed by the ith gate in ϕ. Then, we can write

ϕ = ϕiOi+1ϕi+1Oi+2 . . .Okϕk

(associating from left to right) where k ≤ d and ϕi, . . . , ϕk+1 are subformulas of ϕ and
Oi, . . . ,Ok are the gates connecting those subformulas in ϕ and ϕi computes q.

We can then construct ϕ′ by replacing each ϕj in ϕ for i+ 1 ≤ j ≤ k with a new formula
ϕ′j given by

ϕ′j =
{
ϕj ∧ ¬z, if Oj = ∨
ϕj ∨ z, if Oj = ∧

.

Then

ϕ′ = ϕiOi+1ϕ
′
i+1Oi+2 . . .Okϕ

′
k

computes Select[f, q] because these ϕ′j are chosen so that Oj will always just output its other
input when z = 1.

Hence,

L(Select[f, q])− L(f) ≤ d J
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