
Is It Possible to Improve Yao’s XOR Lemma
Using Reductions That Exploit the Efficiency of
Their Oracle?
Ronen Shaltiel
University of Haifa, Israel
https://cs.haifa.ac.il/~ronen/
ronen@cs.haifa.ac.il

Abstract
Yao’s XOR lemma states that for every function f : {0, 1}k → {0, 1}, if f has hardness 2/3 for
P/poly (meaning that for every circuit C in P/poly, Pr[C(X) = f(X)] ≤ 2/3 on a uniform input
X), then the task of computing f(X1)⊕ . . .⊕ f(Xt) for sufficiently large t has hardness 1

2 + ε for
P/poly.

Known proofs of this lemma cannot achieve ε = 1
kω(1) , and even for ε = 1

k
, we do not

know how to replace P/poly by AC0[parity] (the class of constant depth circuits with the gates
{and,or,not,parity} of unbounded fan-in).

Recently, Grinberg, Shaltiel and Viola (FOCS 2018) (building on a sequence of earlier works)
showed that these limitations cannot be circumvented by black-box reductions. Namely, by reductions
Red(·) that given oracle access to a function D that violates the conclusion of Yao’s XOR lemma,
implement a circuit that violates the assumption of Yao’s XOR lemma.

There are a few known reductions in the related literature on worst-case to average case
reductions that are non-black box. Specifically, the reductions of Gutfreund, Shaltiel and Ta Shma
(Computational Complexity 2007) and Hirahara (FOCS 2018)) are “class reductions” that are only
guaranteed to succeed when given oracle access to an oracle D from some efficient class of algorithms.
These works seem to circumvent some black-box impossibility results.

In this paper we extend the previous limitations of Grinberg, Shaltiel and Viola to class reductions,
giving evidence that class reductions cannot yield the desired improvements in Yao’s XOR lemma.
To the best of our knowledge, this is the first limitation on reductions for hardness amplification
that applies to class reductions.

Our technique imitates the previous lower bounds for black-box reductions, replacing the
inefficient oracle used in that proof, with an efficient one that is based on limited independence, and
developing tools to deal with the technical difficulties that arise following this replacement.
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1 Introduction

Yao’s XOR Lemma is a fundamental and celebrated result in complexity theory, that is
extensively studied (from various aspects) and has found many applications. See [9] for a
survey article.
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10:2 Is It Possible to Improve Yao’s XOR Lemma Using Class Reductions?

I Definition 1 (The XOR function). Given a f : {0, 1}k → {0, 1}, and a number t, we define
f⊕t : {0, 1}t·k → {0, 1}, as follows: Given y ∈ {0, 1}t·k, we view y as (y1, . . . , yt) ∈ ({0, 1}k)t,
and define:

f⊕t(y) = f(y1)⊕ . . .⊕ f(yt)

Let Uk denote the uniform distribution on k bit strings. Loosely speaking, Yao’s XOR
lemma says that if a function f is “mildly hard one average” on input X ← Uk, then as t
increases, computing f⊕t on input Y ← Utk, becomes “very hard on average”.

I Lemma 2 (Yao’s XOR lemma, for poly-size circuits). For every f : {0, 1}k → {0, 1}, and
t ≤ poly(k) such that t = ω(log k):
If, for every poly(k) size circuit C, PrX←Uk [C(X) = f(X)] < 2

3 ,
Then, for every constant c, and every poly(k) size circuit D, PrY←Utk [D(Y ) = f⊕t(Y )] <

1
2 + 1

kc .
1

One weakness of Yao’s XOR lemma, is that it cannot be used to conclude a statement in
which the “hardness on average” 1

2 + 1
kc is replaced by 1

2 + 1
kω(1) . This holds, even if the

number of repetitions t is increased from slightly larger than log k (as is the case in Lemma
2) to the maximal choice of t = poly(k). Specifically, the following question is wide open:

I Open problem 3 (Yao’s XOR lemma for subpolynomial error?). Is it true that for every
f : {0, 1}k → {0, 1}, taking t = ω(log k) (or even the maximal choice of t = poly(k)) it holds
that:
If, for every poly(k) size circuit C, PrX←Uk [C(X) = f(X)] < 2

3 ,
Then, for every poly(k) size circuit D, PrY←Utk [D(Y ) = f⊕t(Y )] < 1

2 + 1
kω(1) ,

Another weakness of Yao’s XOR Lemma is that known proofs fail to prove Yao’s XOR
lemma when replacing P/poly with many interesting constant depth circuit classes. An
especially frustrating case is the class AC0[parity] of poly-size constant depth circuits
over the gates {and,or,not,parity} of unbounded fan-in. There are known lower bounds
showing explicit functions that have hardness 2

3 for AC0[parity] (or even 1
2 − o(1) hardness

for circuits of depth d and size 2kΩ(1/d) [25, 28]) but lower bounds with hardness 1
2 −

1
k are

unknown. This is a twenty five year old barrier that prevents us from “using the hybrid
argument” when constructing pseudorandom generators for AC0[parity] (and related classes).
This barrier limits the best known pseudorandom generators for AC0[parity] (and related
classes) [6] to very poor seeds (See [6] for a discussion of this limitation). Specifically, the
following question is wide open:

I Open problem 4 (Yao’s XOR lemma for constant depth circuits?). Let G be the set of gates
{and,or,not,parity} of unbounded fan-in. Is it true that for every f : {0, 1}k → {0, 1},
taking t = ω(log k) (or even the maximal choice of t = poly(k)) it holds that:
If, for every poly(k) size, constant-depth circuit C with gates in G, PrX←Uk [C(X) =
f(X)] < 2

3 ,
Then, for every poly(k) size, constant-depth circuit D, with gates in G, PrY←Utk [D(Y ) =
f⊕t(Y )] < 1

2 + 1
k ,

1 Naturally, in order to make this asymptotic statement precise, one needs to consider an infinite sequence
of functions {fk} with growing input length (so that terms like “poly-size”, “ω(log k)”, and “constant”
are well defined). We allow ourselves to be imprecise, as a more general, and quantitatively precise
statement of Yao’s XOR lemma is given below in Lemma 5.
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1.1 Proofs of Yao’s Lemma as (nonuniform) black-box reductions
Before discussing the best known proofs of Yao’s XOR Lemma, let us state the lemma more
precisely, in a more general and quantitative form. The next formulation is achieved using
Impagliazzo’s proof of Yao’s XOR lemma [18, 9] together with the quantitative improvement
of Klivans and Servedio [21] of Impagliazzo’s hard-core lemma [18].

I Lemma 5 (Yao’s XOR lemma, General version). There exist a constant c, and a polynomial
p, such that for every f : {0, 1}k → {0, 1}, every ε, δ > 0, and every t ≥ c · log(1/ε)

δ , setting
q = c · log(1/δ)

ε2 , we have that:
If, for every circuit C of size s ≥ p(t, k, q), PrX←Uk [C(X) = f(X)] < 1− δ,
Then, for every circuit D of size s′ = s

q , PrY←Utk [D(Y ) = f⊕t(Y )] < 1
2 + ε.

The special case of Lemma 2 is obtained by taking s to be a polynomial in k, and δ = 1
3 .

In order to reduce the number of live parameters, we recommend that the reader focuses
on these choices on a first reading. We point out that s′ (which is the size of D) is smaller
by a factor of q = Ω( 1

ε2 ), than s (which is the size of C). This implies that s′ ≤ O(ε2 · s),
implying that ε ≥ Ω( 1√

s
), and it is impossible to get ε < 1

s with current proofs. (This is a
more quantitative way to state the phenomenon in open problem 3).

All known proofs of Yao’s XOR lemma work by reduction. That is, the proof shows a
reduction that transforms a circuit D such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε, into
a circuit C such that PrX←Uk [C(X) = f(X)] ≥ 1 − δ. All known proofs are “nonuniform
black-box reductions”, meaning that they provide a reduction (namely an oracle circuit
Red(·)(x, α) where x is an input, and α is an “advice string”) and the circuit C is obtained
by C(x) = RedD(x, α) where α is an “nonuniform advice string” that may depend on f and
D.2 This is made precise in the next definition.

I Definition 6 (Nonuniform black-box reduction for Yao’s XOR lemma). Let ε, δ > 0, and let
k, t, a be integers. A ( 1

2 + ε)→ (1− δ) black-box reduction for Yao’s XOR lemma (with input
length k, t repetitions and advice length a) is an oracle circuit Red(·)(x, α), where x ∈ {0, 1}k
and α ∈ {0, 1}a, such that for every f : {0, 1}k → {0, 1}, the following holds:
For every function D : {0, 1}tk → {0, 1}, such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε,
there exists α ∈ {0, 1}a, such that PrX←Uk [RedD(X,α) = f(X)] ≥ 1− δ.

The version of Yao’s XOR lemma stated in Lemma 5, follows by showing the following
reduction:

I Lemma 7 (Known black-box reductions for Yao’s XOR lemma). There exist a constant c,
and a polynomial p, such that for every integer k, every ε, δ > 0 such that 1− δ > 1

2 + ε, and
every t ≥ c · log(1/ε)

δ , there is a ( 1
2 + ε)→ (1− δ) black-box reduction Red(·)(x, α) for Yao’s

XOR lemma with input length k, t repetitions, and advice length a such that:
R makes at most q = c · log(1/δ)

ε2 queries to its oracle.
R is an oracle circuit of size r = p(t, k, q), (and in particular, a ≤ r).
R is an oracle circuit of constant depth d over the gates {and,or,not} of unbounded
fan-in and also uses one majority gate with fan-in q.

2 There is a formal connection between “black box hardness amplification” and list-decodable error
correcting code [29], see for example the discussion in [27, 10]. Using this connection, it is known that
black-box reductions for Yao’s XOR lemma, must be nonuniform and use an advice string if 1−δ > 1

2 +ε
and ε < 1

4 .
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10:4 Is It Possible to Improve Yao’s XOR Lemma Using Class Reductions?

In order to understand the limitations that prevent known proofs from solving the
aforementioned open problems, it is instructive to see how Lemma 5 follows from Lemma 7.
Specifically, assume (for contradiction) that Lemma 5 does not hold and let D be a circuit of
size s′ that is violating the conclusion. By Lemma 7, there exists α ∈ {0, 1}a, such that the
circuit C(x) = RedD(x, α) computes f(X) with success 1− δ on X ← Uk. The size of C is
bounded by s = r + a+ q · s′ ≥ q · s′, and the obtained circuit C has depth at least d, and
needs to compute majority on q bits. Summing up:

The number of queries q made by the reduction is a lower bound on s
s′ , meaning that

s′ ≤ s
q and as the known reductions have q ≥ 1

ε2 we cannot expect ε < 1√
s
, and cannot

solve open problem 3.
The fact that the best known reductions requires a majority gate on q ≥ 1

ε inputs, means
that we need to assume hardness against a class that can perform this computation.
For ε = 1/k, Razborov’s lower bound [25] (see also [24]) shows that for every depth d′,
majority on k bits, cannot be computed by circuits of depth d′ and size 2kΩ(1/d′) over
the gates {and,or,not,parity}, explaining why current reductions cannot solve open
problem 4.

Limitations on black-box reductions

A sequence of works [32, 27, 12, 3, 2] culminating in [10], shows that known black-box
reductions for Yao’s XOR lemma must suffer from the limitations above: They require
q = Ω( log(1/δ)

ε2 ) queries, and require computing majority on input length Ω( 1
ε ).3

1.2 Class reductions
On a closer examination, black-box reductions seem to be an overkill for the task of proving
Yao’s XOR lemma. For proving Yao’s XOR lemma, we don’t need Red(·) to succeed given
oracle access to every function D such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε. It is sufficient
that Red succeeds only given oracle access to functions D that are efficiently computable and
belong to the class D of circuits with size s′ (if we’re in the setup of open problem 3) and
size s′ with constant depth (if we’re in the setup of open problem 4).

This motivates a notion of class reduction (suggested for example in [14]) in which
reductions are only required to succeed if given oracle access to a function D that belongs to
some class D of “efficient circuits”, and do not need to succeed when given oracle access to a
function D that does not belong to D. The definition of class D reduction below is identical
to definition 6 with the single exception (that is underlined for emphasis) being that we only
require the reduction to succeed when given oracle access to a function D from the class D.

I Definition 8 (Nonuniform class reduction for Yao’s XOR lemma). Let ε, δ > 0 and let k, t, a
be integers, and let D be some class of functions D : {0, 1}tk → {0, 1}. A ( 1

2 + ε)→ (1− δ)
class D reduction for Yao’s XOR lemma (with input length k, t repetitions and advice length
a) is an oracle circuit Red(·)(x, α), where x ∈ {0, 1}k and α ∈ {0, 1}a, such that for every
f : {0, 1}k → {0, 1}, the following holds:
For every function D : {0, 1}tk → {0, 1} in the class D, such that PrY←Utk [D(Y ) =
f⊕t(Y )] ≥ 1

2 + ε,
there exists α ∈ {0, 1}a, such that PrX←Uk [RedD(X,α) = f(X)] ≥ 1− δ.

3 More formally, saying that Red(·) “requires computing majority on input length Ω(1/ε)” means that
every such reduction Red(·) can be transformed into a circuit (with no oracle) of roughly the same size
and depth as Red(·) for computing the majority function on inputs of length Ω( 1

ε ).
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Note that a black-box reduction is a special case of a class reduction where D is the class
of all boolean functions on tk bits. This raises the following questions:
1. Are there reductions in the literature that are class reductions but not black-box reduc-

tions?
2. Can class reductions circumvent the limitations on black-box reductions and solve open

problem 3 or open problem 4?

The answer to the first question is affirmative in the sense that there are at least two
examples that we are aware of, where a worst-case to average case amplification is proven
by a reduction that is not black-box. Furthermore, in both cases, the reduction is a class
reduction, and there is strong evidence that it cannot be made black-box.

The first example is a worst-case hardness to average case hardness tradeoff for SAT
(with respect to a distribution sampled in quasipolynomial time) by Shaltiel, Gutfreund
and Ta-Shma [13] (see also a related work [4, 11, 14]). The correctness of the reduction
of [13] relies on the efficiency of the oracle and the term “class reduction” was suggested
by Gutfreund and Ta-Shma [14]. It was also argued in [14] that limitations on black-box
reductions proven by Bogdanov and Trevisan [5] can be extended to the scenario studied in
[13], and show that if the class reduction of [13] (which is non-adaptive) could be made also
black-box, then co-NP has nondeterministic circuits of quasipolynomial size.

Another example is Hirahara’s recent worst-case to average case reductions for variants
of MCSP and MINKT [17]. These reductions are non-black-box, in the sense that their
correctness relies on the efficiency of their oracle. The aforementioned work of Bogdanov and
Trevisan [5] shows that if these reductions can be made black-box, then these problems are
in co-NP/poly, which is not known, and is false, if these problems are NP-complete. See [17]
for an elaborate discussion of consequences of the existence of such black-box reductions.

1.3 Our results: limitations on class reductions for Yao’s XOR lemma
In this paper we give evidence that the answer to the second question above is negative.
We extend the aforementioned limitations of [10] on black-box reductions for Yao’s XOR
lemma to class reductions for any D of that contains circuits that have polynomial size and
constant depth over the gates {and,or,not,parity} with unbounded fan-in. To the best
of our knowledge, this is the first example of proving limitations on class reductions in this
setup. Our results are stated formally in the next theorem.4

I Theorem 9 (Limitations on class reductions for Yao’s XOR lemma). There exist constants
δ0 > 0, ν > 0, d0 > 1 and a polynomial p such that: Let Red(·)(x, α) be a ( 1

2 + ε)→ (1− δ)
class D reduction for Yao’s XOR lemma, with input length k, t repetitions and advice length
a. Assume that:

Red(·) is a size r oracle circuit, that makes at most q queries.
The class D contains circuits of size p(r) and depth d0 over the gates {and,or,not,parity}
of unbounded fan-in.
t, a, 1

ε ,
1
δ ≤ r ≤ 2ν·k and δ ≤ δ0.

Then the following holds:

4 We remark that any circuit of size r over the gates {and,or,not,parity} with unbounded fan-in,
cannot use fan-in larger than r, and therefore can be simulated by a circuit of size O(r2) over the
standard gates {and,or,not} with bounded fan-in. This allows us to state our results in a way that
captures both circuits of small depth (using gates with unbounded fan-in) and circuits that use the
standard gates with bounded fan-in.

APPROX/RANDOM 2020



10:6 Is It Possible to Improve Yao’s XOR Lemma Using Class Reductions?

Red(·) requires many queries, specifically: q = Ω( log(1/δ)
ε2 ).

Red(·) requires majority, specifically: if in addition to the size restriction on Red, we also
have that Red(·) is an oracle circuit of depth d over a set of gates G that contains the
gates {and,or,not,parity} of unbounded fan-in, then the majority function over Ω( 1

ε )
bits can be computed by a circuit of size poly(r) and depth O(d) over the set of gates G.

What kind of reductions are ruled out by this result?

Theorem 9 achieves exactly the same limitations on class reductions for Yao’s XOR lemma as
the limitations of [10] for black-box reductions. This is achieved for any class D that contains
small circuits with constant depth over the gates {and,or,not,parity} of unbounded fan-in,
which is exactly the classes that come up if one wants to use class reductions to solve open
problems 3 and 4. This shows that a class reduction cannot circumvent the known limitations
on black-box reductions, and additional ideas are needed for solving open problems 3 and 4.

More specifically, for the purpose of solving open problem 3 one wants a ( 1
2 + 1

kω(1) )→ 2
3

class D reduction Red(·) for Yao’s XOR lemma, of size poly(k), for the class D of all circuits
of size poly(k). This is ruled out by our lower bound on the number of queries. For the
purpose of solving open problem 4 one wants a ( 1

2 + 1
k )→ 2

3 class D reduction for Yao’s XOR
lemma, of size poly(k) and constant depth over the gates G = {and,or,not,parity}, for
the class D of all circuits of size poly(k) and constant depth over the gates G. This is ruled
out by our results that Red(·) requires majority on inputs of length Ω(k), and Razborov’s
lower bound [25] showing that this cannot be done by circuits of depth d′ and size 2kΩ(1/d) .

A potential weakness of our impossibility results, is that they require that the class D has
circuits of size larger than the reduction (although it is allowed that D contains only circuits
of smaller depth than the reduction). This allows a scenario in which for every polynomial p1,
there exists a larger polynomial p2 such that there is a ( 1

2 + 1
kω(1) )→ 2

3 class Dp1 reduction
Redp1 of size p2(k) for the class Dp1 of circuits of size p1(k) (but not for the class of circuits
of size p(p2(k)) where p is the polynomial in Theorem 9). This is sufficient for solving open
problem 3 and is not ruled out by our impossibility results.

An optimistic view is that this may point us to the kind of reductions we need to
design, in order to solve the aforementioned open problems. We remark however that the
aforementioned reduction by Hirahara [17] does not need to assume that the oracle is weaker
than the reduction. (The reduction of [13] involves a more complicated scenario where there
is also a third entity which is the samplable distribution, and so, it is arguable whether the
reduction is more powerful than the oracle).

Theorem 9 is weaker than the results of [10] in the sense that the limitations of [10] apply
not only to Yao’s XOR lemma, but to any hardness amplification technique. More precisely,
in the results of [10] one can replace f⊕t by any other function f ′ over n = 2o(k) bits, with
the same limitations. Our approach cannot give such a general result, but can be extended
as follows:

Extension to any efficient hardness amplification construction

Our results immediately extend to any function f ′ over n = 2o(k) bits such that f ′ can
be efficiently computed given access to f . More precisely, in Theorem 9 one can replace
occurrences of the parameter t by n, and the theorem extends to any function f ′ such
that there exists an oracle circuit Con(·) of size poly(r), and constant depth over the gates
{and,or,not,parity} of unbounded fan-in, such that f ′ = Conf . Moreover, if we omit the
restriction that Con(·) has constant depth, then the theorem holds with respect to any class
D that contains circuits of size p(r).
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Extension to hardness amplification based on sufficiently explicit linear codes

Using ideas from [32], our results also extend to the case of δ = 2−2k (which captures
worst-case to average case hardness amplification) for functions f ′ over n = 2o(k) bits, such
that:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k × {0, 1}n → {0, 1} can be computed
by circuits of size poly(r) and depth d over the set G of gates.

This definition of f ′ corresponds to “hardness amplification by a linear map”. More
specifically, we can view g as a matrix A of order 2k× 2n over F2 by Ax,y = g(x, y), and view
the truth tables of the functions f, f ′ as vectors over F2 of dimension 2k, 2n, respectively. In
this interpretation, the definition of f ′ above, says that f ′ = f ·A, for a matrix A in which
the entry Ax,y can be efficiently computed given x, y.

Many worst-case to average-case hardness amplification results in the literature choose f ′
so that the truth table f ′ is obtained by applying an error correcting code on the truth table
of f . (It was observed in [29] that there is a formal connection between black-box reductions
for hardness amplification, and list-decodable error correcting codes, see for example [10] for
a discussion). Typical choices of this error correcting code are linear codes (most commonly
Reed-Muller concatenated with Hadamard) and our results apply to this scenario, with the
weaker conclusion that q = Ω( log r

ε2 ), and the same conclusion for the case of majority.

Perspective

Limitations for black-box reductions are extensively studied in various settings in complexity
theory and cryptography. In order to prove impossibility results on black-box reduction, it is
sufficient to show the existence of an oracle D (that does not need to be efficient) on which
the reduction cannot succeed.

Many impossibility results and limitations in the literature strongly utilize the ability to
choose an oracle D that is not efficient. One notable example is the aforementioned results
of Bogdanov and Trevisan [5] (that build on earlier work of Feigenbaum and Fortnow [7]).
Indeed, this is why these limitations do not apply to class reductions like the aforementioned
results [13, 17].

This work puts an emphasis on whether or not the oracle D that one designs when showing
a black-box impossibility result, can be made efficient, and demonstrates that achieving this,
has the additional benefit of also ruling out class reductions.

1.4 Some more related work
It is beyond the scope of this paper to survey the vast literature on Yao’s XOR lemma and
hardness amplification. The reader is referred to [9] for a survey on Yao’s XOR lemma, and
to [32, 27, 10] for detailed discussions on the more general problem hardness amplification.

A significant advantage of Yao’s XOR lemma (over some other suggested methods of
hardness amplification) is that the “construction” f ′ = f⊕t can be computed very efficiently,
when given oracle access to f . A line of work (that is orthogonal to studying the complexity of
reductions for hardness amplification) is interested in the complexity of constructions yielding
hardness amplification. This line of work is mostly interested in starting from worst-case
hard functions (which correspond to δ < 2−k) and aims to design (or prove impossibility
results for) efficient constructions Con(·) for which one can prove that if f has hardness 1− δ,
then f ′ = Conf has hardness 1

2 + ε. (See e.g., [30, 31, 23, 15] for further discussion).

APPROX/RANDOM 2020



10:8 Is It Possible to Improve Yao’s XOR Lemma Using Class Reductions?

In this orthogonal line of work, there are examples of constructions which are non-black-
box, and utilize specific properties of the function f (for example that f ∈ NP or that f is a
low degree polynomial). This is a different form of “non-black-box” than the one studied in
this paper, and it is interesting to combine the two orthogonal directions.

There is a large body of work on proving black-box impossibility results in cryptography.
This study was initiated by Impagliazzo and Rufich [19] and is concerned both with issues
that are related to black-box constructions and to black-box reductions. See for example the
discussion in Reingold, Trevisan and Vadhan [26] for a taxonomy of various notions.

2 Technique and a road map for proof

Our results are obtained by carefully examining the argument of the black-box impossibility
result of [10], replacing the inefficient oracle with an efficient one, and handling the technical
difficulties arising from this modification.

In this section we survey our technique, and give a roadmap of the proof of Theorem 9.
We assume the setup of Theorem 9. Specifically, let Red(·)(x, α) be a ( 1

2 + ε)→ (1− δ) class
D reduction for Yao’s XOR lemma, with input length k, t repetitions and advice length a,
which satisfies the requirements of the theorem. Let r be the size of Red and let d (which is
not necessarily a constant) be the depth of Red. Our goal is to show that Red(·) requires
many queries, and that Red(·) requires majority.

Let f : {0, 1}k → {0, 1} be some function that we choose later, and let n = tk be the
input length of f⊕t. We start by surveying the approach of of the previous papers (which
only handle black-box reductions rather than class reductions).

2.1 The approach of [32, 27]
We first introduce the following notation.

I Definition 10 (Random sequences/functions). For a number 0 ≤ p ≤ 1, and an in-
teger q, we define a distribution Noiseqp over {0, 1}q which consists of q i.i.d. bit variables
Noiseqp(1), . . . ,Noisepq(q) where each of them has probability p to be one. This notation also
allows us to view Noiseqp as a distribution over functions from [q] to {0, 1}.

Following [32, 27] (and as done in later works [12, 10]) our plan is to show that a
( 1

2 + ε) → (1 − δ) reduction Red(·)(x, α) that makes q queries, can be transformed into a
(distribution) over circuits T : {0, 1}q → {0, 1} with no oracle (that have roughly the same
size and depth as Red) that distinguishes Noiseq1/2−2ε from Noiseq1/2. We will prove the
following lemma (which we call the “zoom lemma”).

I Lemma 11 (Zoom lemma). Under the assumption of Theorem 9, for every x ∈ {0, 1}k,
there exists a circuit Tx over q bits, with size poly(r) and depth O(d) over the set of gates G,
such that:

PrX←Uk [TX(Noiseq1/2−2ε) = 1] ≥ 1− 2δ.
PrX←Uk [TX(Noiseq1/2) = 1] ≤ 1

2 + 1
200 .

Shaltiel and Viola [27] (see also [22]) showed that Theorem 9 follows from Lemma 11.
This is formally stated and explained in Section A.5

5 On an intuitive level, the connection between the consequence of the zoom lemma and the consequence
of Theorem 9 is that the “best way” to distinguish Noiseq1/2−2ε from Noiseq1/2 is to check whether the
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In the remainder of this section, we prove Lemma 11 modulo some other lemmas and
claims, that are stated in this section, and proven in later sections of the paper.

2.2 The oracle used for black-box reductions
Lemmas that are similar to the zoom lemma are at the heart of earlier results [27, 12, 10]
on black-box reductions, and we would like to imitate the argument working with class
reductions. Let us start by explaining the oracle used in previous works.

Specifically, let us set N = 2n and identify the set [N ] with the set {0, 1}n (so that we
can think of NoiseNp as a function NoiseNp : {0, 1}n → {0, 1}). We consider the following two
(distributions over) oracles D : {0, 1}n → {0, 1}.

D1/2−2ε(y) = f⊕t(y)⊕ NoiseN1/2−2ε(y)
D1/2(y) = f⊕t(y)⊕ NoiseN1/2(y).

I Definition 12. We say that a function D : {0, 1}n → {0, 1} is useful, if there exists an
α ∈ {0, 1}a such that PrX←Uk [RedD(X,α) = f⊕t(X)] ≥ 1− δ.

In the oracle D1/2, the noise NoiseN1/2(y) is uniform and completely masks out the
information in f⊕t(y). Intuitively, this means that the oracle D1/2 isn’t useful for the
reduction. On the other hand, a Chernoff bound shows that w.h.p. over choosing h ←
NoiseN1/2−2ε, we have that | {y ∈ {0, 1}n : h(y) = 1} | ≤ ( 1

2 − ε) · N . This gives that w.h.p.
over choosing D ← D1/2−2ε, we have that PrY←Un [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε.
If Red is a ( 1

2 + ε) → (1 − δ) black-box reduction, then by definition, this implies that
every such good D is useful. The proof of [32, 27] then proceeds to transform a black-box
reduction Red into the circuits Tx required from Lemma 11. We will elaborate on this
argument shortly.

Our plan is to imitate this argument when Red is not necessarily a black-box reduction,
and is only guaranteed to be a class reduction. Using this weaker assumption, we are not
guaranteed that w.h.p. D ← D1/2−2ε is useful. This is because we are not guaranteed that
w.h.p. D ← D1/2−2ε belongs to the class D, and the reduction does not need to succeed if
D 6∈ D.

2.3 Using limited independence to obtain efficient oracles
We would like to make the oracle D1/2−2ε efficiently computable by small circuits, so that it
belongs to D. This presents two difficulties:
1. f⊕t is harder to compute than f (and f is assumed to be hard).
2. NoiseN1/2−2ε is a random function, and w.h.p. requires circuits of exponential size.
In order to circumvent the first problem we use an idea from [32] and will choose the function
f : {0, 1}k → {0, 1} in the following way:

I Lemma 13. There exist constants c1 such that for every constant c2, there exists a function
f : {0, 1}k → {0, 1} such that:

For every circuit B : {0, 1}k → {0, 1} of size rc2 , PrX←Uk [B(X) = f(X)] ≤ 1
2 + 1

200 .
f can be computed by a DNF of size rc1·c2 .

fraction of ones is below or above 1
2 − ε. This is similar in spirit to majority over inputs of length Ω(1/ε),

and it can be shown that majority on length Ω(1/ε) can be reduced to this task. A Chernoff bound
shows that q = O( log(1/δ)

ε2 ) is sufficient to distinguish between the two distributions with confidence
1− δ, and it can be shown that such a confidence requires q = Ω( log(1/δ)

ε2 ).

APPROX/RANDOM 2020
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Proof. By a standard counting argument, there exists a constant c1 such that for every
constant c2, setting m = c1 · c2 · log r, there exists a function g : {0, 1}m → {0, 1} such that
for every circuit B of size 2m/c1 = rc2 , PrX←Um [B(X) = g(X)] ≤ 1

2 + 1
200 . By choosing

ν > 0 to be sufficiently small as a function of c2, we can get that m ≤ k. The function
f : {0, 1}k → {0, 1} is the function that given x ∈ {0, 1}k applies g on the first m bits
of x. J

We choose f by the lemma, where c2 is a constant that we choose later. With this choice we
have that:

I Corollary 14. The function f⊕t can be computed by circuits of size poly(r) and constant
depth over the gates {and,or,not,parity} of unbounded fan-in.

I Remark 15 (Replacing f⊕t by a different target function f ′). Corollary 14 is the only place
in the proof where we use specific properties of f⊕t. The corollary holds for every function
f ′ : {0, 1}n → {0, 1} for which there exists an oracle circuit Con(·) of size poly(r) and constant
depth over the gates {and,or,not,parity} of unbounded fan-in, such that f ′ = Conf . This
means that our results hold for every such function f ′. Furthermore, if Con does not have
constant depth, then Corollary 14 gives a size bound on f ′, and this is sufficient to show the
lower bound on number of queries with respect to the class D of circuits of size p(r).

Corollary 14 takes care of the first difficulty above. It says that f⊕t can be computed by
circuits in the class D. We would like to replace NoiseN1/2−2ε by a (distribution) over efficient
circuits in D. Our approach is to replace NoiseN1/2−2ε (which consists of N independent bits)
by a distribution which is `-wise independent, for ` = poly(r).

I Definition 16 (`-wise independence with bias p). A sequence R1, . . . , RN of bit random
variables is `-wise independent with bias p, if R1, . . . , RN are `-wise independent, and for
every i ∈ [N ], Pr[Ri = 1] = p.

We will rely on the following theorem by Gutfreund and Viola [16] (which is usually stated
for p = 1

2 but immediately extends to every rational p = a
b as stated below:)

I Theorem 17 ([16]). Let N = 2n. For every integers ` ≤ N and a ≤ b, setting p = a
b ,

there exists a distribution H`
p over circuits h : {0, 1}n → {0, 1} of size poly(n, `, b) and depth

O(1) (over the gates {and,or,not,parity} of unbounded fan-in) such that the distribution
obtained by choosing h← H`

p and considering (h(1), . . . , h(N)), is `-wise independent with
bias p.6

We will assume w.l.o.g. that 1
ε is an integer, and set ` = p0(r) for a polynomial p0 that we

will specify later. We define the following two (distributions over) oracles D : {0, 1}n → {0, 1},
in which we replace the independent bits of NoiseN by `-wise independent bits:7

6 We remark that the result of Gutfreund and Viola [16] is significantly stronger. More specifically, for our
purposes it suffices that there is a family H of `-wise independent hash functions h : {0, 1}n → {0, 1}b,
such that every h can be computed by the type of circuits claimed above. The result of Gutfreund and
Viola gives a stronger bound on the size of H, and also shows that there is a uniform circuit that given
the “index of h” and an input x, computes h(x).

7 Replacing fully independent oracles by limited independence oracles, and arguing that black-box
procedures with few queries cannot tell the difference, is a common approach in proving black-box
impossibility results, originating from the work of Goldreich and Krawczyk [8]. It should be noted
that even when ignoring the issue of class reductions, and focusing on black-box reductions, we are
considering reductions which are nonuniform. Nonuniform reductions get an advice string α that
depends on the choice of the oracle. Loosely speaking, this may give them information about the “seed”
used to generate the limited independence oracle. This creates technical difficulties that do not occur
when reductions are uniform.
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D`
1/2−2ε(y) = f⊕t(y)⊕H`

1/2−2ε(y)
D`

1/2(y) = f⊕t(y)⊕H`
1/2(y).

We now have that every D in the support of D`
1/2−2ε has size rc1·c2 +poly(n, `, 1/ε) which

can be bounded by p(r) for some polynomial p. Furthermore, each such D has constant depth
over the set of gates {and,or,not,parity}. This gives that every such D is sufficiently
efficient, and belongs to the class D.

This will allow us to imitate the argument for black box reductions. Specifically, by
Chebyshev’s inequality, with probability at least 1− 1

ε22n ≥
1
2 over choosing h← H`

1/2−2ε, we
have that | {y ∈ {0, 1}n : h(y) = 1} | ≤ ( 1

2 − ε) ·N . This means that with probability at least
half over choosing D ← D`

1/2−2ε, we have that PrY←Un [D(Y ) = f⊕t(Y )] ≥ 1
2 + ε. As Red is

a ( 1
2 + ε)→ (1− δ) class D reduction, and every such good D belongs to D, we get that:

B Claim 18. Prh←H`1/2−2ε
[(f⊕t ⊕ h) is useful] ≥ 1

2 .

2.4 A more general fixed set lemma
We will now proceed in a similar manner to [27, 10]. Specifically, let Advice be a function that
given a useful D, produces an advice string α such that PrX←Uk [RedD(x, α) = f⊕t(y)] ≥ 1−δ
(such an α exists by definition). For every α ∈ {0, 1}a, let Aα be the event

Aα = {h : {0, 1}n → {0, 1} : (f⊕t ⊕ h) is useful, and Advice(f⊕t ⊕ h) = α} .

By averaging over the 2a advice strings we obtain that:

B Claim 19. There exists α′ ∈ {0, 1}a s.t. Prh←H`1/2−2ε
[h ∈ Aα′ ] ≥ 1

2 · 2
−a = 2−(a+1).

Let R = H`
1/2−2ε and Z = (R|R ∈ Aα′), following [27, 10] we would like to argue that (in

some sense to be explained below) for every x ∈ {0, 1}k, Red(·)(x, α′) does not distinguish
between the oracle f⊕t ⊕ Z (in which bits can be correlated in complicated ways) and the
oracle f⊕t ⊕R (in which bits are `-wise independent). Note that for every x ∈ {0, 1}k, and
h : {0, 1}n → {0, 1}, we can think of Redf

⊕t⊕h(x, α′) as a decision tree (that depends on x)
that makes q queries to (the truth table of) h.

With this intuition in mind, we will prove the following lemma (which generalizes a “fixed
set lemma” proven in [10] for the special case where the random variables R1, . . . , RN are
independent).

I Lemma 20 (A more general fixed set lemma). Let N, a and q be integers, and let R =
(R1, . . . , RN ) be some distribution, let A ⊆ {0, 1}N be an event such that Pr[R ∈ A] ≥ 2−a,
and let Z = (R|R ∈ A). For every η > 0, there exists a set B ⊆ [N ] of size b ≤ O(a · q/η),
and v ∈ {0, 1}B in the support of ZB, such that for R′ = (R|RB = v) and Z ′ = (Z|ZB =
v) = (R|RB = v,R ∈ A), and every q-query decision tree P , P (R′) and P (Z ′) are η-close.8

Loosely speaking, the proof works by showing that if there exists a q-query decision tree
that distinguishes R from Z, then by fixing the variables on some path of that tree, one
obtains a distribution R′ such that Pr[R′ ∈ A] ≥ Pr[R ∈ A] · (1 + η). We apply this argument
iteratively (using R′ as R) until there does not exist a q query decision tree that distinguishes

8 Two distributions X,Y over the same domain S are η-close if for every A ⊂ S, |Pr[X ∈ A]− Pr[Y ∈
A]| ≤ η.

APPROX/RANDOM 2020
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R from Z. In each iteration, Pr[R ∈ A] increases by a factor of 1 + η, and as this probability
cannot be larger than one, this process has to stop after O(a/η) steps. By then, we have fixed
no more than O(qa/η) of the variables. The full proof of Lemma 20 appears in Section 4.9

We now continue with the proof of Lemma 11. We apply Lemma 20 on R = H`
1/2−2ε

and the event A′α, using η = δ, and let Z,R′, Z ′, B, v and b be as in the lemma. It follows
that for every x ∈ {0, 1}k, the random variables Redf

⊕t⊕R′(x, α′) and Redf
⊕t⊕Z′(x, α′) are

δ-close. As this holds for every fixed x ∈ {0, 1}k, this also holds for an independently chosen
X ← Uk, and we obtain that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ.

The support of Z ′ is contained in Aα′ , and so, for every h in the support of Z ′, (f⊕t ⊕ h) is
useful (with the advice string α′) and we get that:

Pr
X←Uk

[Redf
⊕t⊕Z′(X,α′) = f(X)] ≥ 1− δ. (1)

Combining this with the previous inequality, gives that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ 1− 2δ. (2)

The advantage of (2) over (1) is that we have replaced Z ′ (in which the bits of Z ′([N ] \B)
can be correlated in complicated ways) with R′, where R′([N ]\B) is (`−b)-wise independent.
This will allow us to relate this oracle to Noiseq1/2−2ε and prove the zoom lemma.

2.5 Constructing the circuits for the zoom lemma
In order to construct the circuits required for the zoom lemma, we define the following oracle
circuit.

I Definition 21. We define an oracle circuit E(·)(x) as follows: On input x and oracle
h, Eh(x) simulates Red(·)(x, α′). Whenever Red makes a query y to its oracle, R acts as
follows: if y 6∈ B, then R makes the query y to h, and returns f⊕t(y) ⊕ h(y) to Red. If
y ∈ B, then R returns f⊕t(y)⊕ v(y) to Red. The output of R is the output of Red at the
end of this simulation.

With this definition, it is possible to show that:

I Lemma 22. By choosing the constant c2 and the polynomial p0 to be sufficiently large, we
get that:

Pr[EH
q

1/2−2ε(X) = f(X)] ≥ 1− 2δ.
Pr[EH

q

1/2(X) = f(X)] ≤ 1
2 + 1

200 .
For every x ∈ {0, 1}k, there exists a circuit Tx : {0, 1}q → {0, 1} of size poly(r) and depth
O(d) over the gates G, such that for every 0 ≤ p ≤ 1, Tx(Noiseqp) = EH

q
p (x).

We note that this lemma immediately implies Lemma 11. The proof of Lemma 22 appears in
Section 3, and is similar in spirit to earlier work [27, 12, 10]. It is in fact significantly simpler,
as in this paper, we have the additional advantage that f⊕t has circuits of size poly(r) and
constant depth.

9 The proof of the fixed set lemma given in [10] also uses an iterative argument: It shows that the existence
of a q-query decision tree gives rise to a new distribution Z where the entropy of Z is increased. It is
then argued that the iterative process has to stop before (as the entropy of Z is upper bounded by N).
This limits the earlier proofs to distributions R where Z = (R|R ∈ A) has very high entropy, which
isn’t the case for our choice of oracle.
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Organization of the paper

We prove Lemma 22 in Section 3. In Section 4 we prove the more general fixed set lemma
(that is Lemma 20). In Appendix A we state and survey the results of [27] showing that
the zoom lemma implies the main theorem. In Appendix B we explain how to extend the
argument to sufficiently explicit linear codes.

3 Proof of Lemma 22

In this section we prove Lemma 22. We start by proving the first item. Note that b = O(qa/δ)
is bounded by some polynomial in r. We are allowed to choose the polynomial p0 to be
sufficiently large so that ` = p0(r) satisfies (`− b) ≥ q. This gives that the N − b coordinates
of R′([N ] \ B) are (` − b)-wise independent (because R′ was obtained by fixing b indices
of R which is `-wise independent). The fact that R′([N ] \B) are q-wise independent, and
that E answers queries in B using v, gives that for every x ∈ {0, 1}k, the q queries made by
E
Hq1/2−2ε(x) are distributed exactly like the queries of Redf

⊕t⊕R′(x, α′), meaning that:

Pr[EH
q

1/2−2ε(x) = f(x)] = Pr[Redf
⊕t⊕R′(x, α′) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[EH
q

1/2−2ε(X) = f(X)] = Pr[Redf
⊕t⊕R′(X,α′) = f(X)].

We have already seen in (2) that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ 1− 2δ,

and this gives the first item.
For the second item, we note that if EH

q

1/2 makes a query y 6∈ B, then it obtains a
uniform coin, and the coins obtained on different queries are independent. Recall that on
queries y ∈ B, E answers the queries without consulting the oracle. This means that we
can simulate EH

q

1/2(x) by a randomized circuit C̄ that on input x, simulates E and answers
queries y 6∈ B by random coins. It follows that for every x ∈ {0, 1}k:

Pr[EH
q

1/2(x) = f(x)] = Pr[C̄(x) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[EH
q

1/2(X) = f(X)] = Pr[C̄(X) = f(X)].

There exists some fixing for the random coins of C̄ such that the obtained (deterministic)
circuit C satisfies Pr[C(X) = f(X)] ≥ Pr[C̄(X) = f(X)]. The circuit C is hardwired with
this choice of random coins, and with α′, B, v, and f⊕t(B). (A crucial observations is that
C does not need to compute f⊕t for y 6∈ B). Overall, this is a circuit of size rc for some
constant c, and by choosing the constant c2 from to be a larger constant, and using Lemma
13, we have that:

Pr[EH
q

1/2(X) = f(X)] ≤ Pr[C(X) = f(X)] ≤ 1
2 + 1

200 .

This proves the second item.
For the third item, we note (once again) that for every p, and for every x ∈ {0, 1}k, the

distribution of the q answers that EH
q
p obtains from its oracle is distributed like Noiseqp. This

means that for every x, we can construct a circuit Tx that on input Noiseqp simulates EH
q
p (x),
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using its i’th input to answer the i’th query of E. The circuit Tx is hardwired with α′, B
and v. Unlike the circuit C from the second item, Tx needs to compute f⊕t on each of the q
queries. This can be done using Corollary 14. Overall, Tx is a circuit of size poly(r) (this
time the polynomial is larger than rc2) and depth O(d) (because on every oracle call of Red,
Tx may have to compute f⊕t (which takes constant depth according to Corollary 14).10

4 The fixed set lemma for `-wise independence

In this section we prove Lemma 20. The proof will iteratively applying the following lemma.

I Lemma 23. Let R = (R1, . . . , RN ) be a distribution, let A ⊆ {0, 1}N be an event, and let
Z = (R|R ∈ A). If there exists a q-query decision tree P such that |Pr[P (R) = 1]−Pr[P (Z) =
1]| > η then there exists Q ⊂ [N ] of size q and v ∈ {0, 1}Q in the support of ZQ, such that

Pr[R ∈ A|R(Q) = v] > (1 + η) · Pr[R ∈ A].

Proof. Let P be a q-query decision tree, and assume w.l.o.g. (by complementing P if
necessary) that Pr[P (Z) = 1]− Pr[P (R) = 1] > η. A path in the decision tree corresponds
to a subset Q ⊂ [N ] of the q variables queried on the path, and a string v ∈ {0, 1}q of the
answers. For every such path, let pathQ,v : {0, 1}N → {0, 1} be the function that evaluates
to 1 on input r = (r1, . . . , rN ) if r(Q) = v (meaning that the tree P takes the path (Q, v) on
input r). Let S be the set of all pairs (Q, v) corresponding to paths of P that answer 1. The
path taken by a decision tree is unique, and therefore, for any distribution R on {0, 1}N , we
have that:

Pr[P (R) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1].

B Claim 24. There exists a path (Q, v) ∈ S such that:

Pr[pathQ,v(Z) = 1] > (1 + η) · Pr[pathQ,v(R) = 1].

Proof of claim. This is because otherwise:

Pr[P (Z) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(Z) = 1]

≤ (1 + η) ·
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1]

= (1 + η) · Pr[P (R) = 1]
≤ Pr[P (R) = 1] + η. C

10Our proof of Lemma 22 relies on the fact that f⊕t has small constant depth circuits. This allows us to
simplify the argument used by some of the previous work [27, 12, 10] which wasn’t allowed to assume
that the target function f ′ = f⊕t can be computed by a small constant depth circuit. The proofs in
[27, 12, 10] need to resort to different arguments (and this creates additional difficulties if Red makes
adaptive calls to its oracle, meaning that the queries that Red(·)(x, α′) makes are not a function of x
and α′, and may also depend on previous answers). However, using a clever hybrid argument of [12]
and additional ideas explained in [10], it is possible to conclude that Tx has depth O(d) without relying
on the fact that f ′ is computable by constant depth circuits. This argument allows choosing f ′ where
f ′ = Conf for an oracle circuit Con that has size poly(r), but does not necessarily has constant depth,
and this gives the aforementioned extension of Theorem 9 to this setup, which now holds for every class
D that contains circuits of size poly(r).
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In particular, the event {R(Q) = v} occurs with positive probability, and it follows that:

Pr[R ∈ A|R(Q) = v] = Pr[R ∈ A ∩R(Q) = v]
Pr[R(Q) = v]

= Pr[R ∈ A] · Pr[R(Q) = v|R ∈ A]
Pr[pathQ,v(R) = 1]

= Pr[R ∈ A] · Pr[Z(Q) = v]
Pr[pathQ,v(R) = 1]

=
Pr[R ∈ A] · Pr[pathQ,v(Z) = 1]

Pr[pathQ,v(R) = 1]
> (1 + η) · Pr[R ∈ A]. J

We are now ready to prove Lemma 20.

Proof of Lemma 20. We consider the following iterative process: At step i, we have:
A distribution R(i) over {0, 1}N .
A set B(i) ⊆ [N ].
v(i) ∈ {0, 1}B(i) .

We will assume that the following invariant is satisfied:
B(i) is of size i · q.
Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.
R(i)(B(i)) = v(i) (with probability one).

Note that the assumption in the lemma fulfills this invariant for i = 0 with R(0) = R. and
B(0) = ∅.

At step i, we define R̄ = R(i)([N ] \ B(i)). As R(i) is fixed on B(i), we can think of A
as an event that only observes the indices in [N ] \ B(i). More formally, there is an event
Ā ⊆ {0, 1}[N ]\B(i) such that R(i) ∈ A iff R̄ ∈ Ā, and

Pr[R̄ ∈ Ā] = Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.

Let Z̄ = (R̄|R̄ ∈ Ā). If the conclusion of Lemma 20 does not hold with respect to B(i), v(i),
then there exists a q-query decision tree P that distinguishes R(i) from (R(i)|R(i) ∈ A), with
advantage η, and as the two distributions agree on the queries in B(i), we conclude that P
distinguishes R̄ from Z̄ with the same advanatge. We apply Lemma 23 on R̄ and Ā, and
conclude that there exists Q ⊆ [N ] \B(i) and v ∈ {0, 1}Q such that

Pr[R̄ ∈ Ā|R̄(Q) = v] > (1 + η) · Pr[R̄ ∈ Ā] ≥ 2−a · (1 + η)i+1.

We set:
B(i+1) = B(i) ∪Q.
v(i+1) to be the “concatenation of v(i) and v”. More precisely, for y ∈ B(i), v(i+1)

y = v
(i)
y

and for y ∈ Q, v(i+1)
y = vy.

R(i+1) = (R(i)|R(i)(Q) = v). (Note that by definition B(i) ∩Q = ∅).
We now observe that the invariant is maintained in step i+ 1. Specifically:
|B(i+1)| = |B(i)|+ q = i · q + q = (i+ 1) · q.
Pr[R(i+1) ∈ A] = Pr[R(i) ∈ A|R(i)(Q) = v] = Pr[R̄ ∈ Ā|R̄(Q) = v] ≥ 2−a · (1 + η)i+1.
By definition, R(i+1)(B(i+1)) = v(i+1) with probability one.

Therefore, if this process fails to deliver the lemma after i steps, then the invariant is
maintained at the end of step i, and in particular, Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i. However,
this is impossible for i > a

log(1+η) = Θ(a/η), and so, this process has to deliver the lemma
within this number of steps. We obtain that the lemma follows with b = |B| ≤ O( qaη ). J
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5 Conclusion and open problems

Class reductions are known to bypass some limitations on black-box reductions (as explained
in Section 1.2). This work demonstrates that it is sometimes possible to extend limitations
on black-box reductions to class reductions. Studying the power of class reductions may
promote our understanding of how to bypass limitations on black-box reductions. We now
mention some more specific open problems:

Unlike the results of [10], our results do not hold for any construction of target functions
f ′ from f . Is it possible to extend our results to this general setting?
In Theorem 9, the class D contains circuits that are polynomially larger than the size of
the the reduction. Is it possible to extend our limitations on class reductions with respect
to a classes D of circuits smaller than the circuit size of the reduction?
Yao’s XOR lemma states that for every function f , if f is somewhat hard, then f⊕t is
very hard. It makes sense to focus on some specific choice for a somewhat hard function
f and prove and improved result for this specific function. If we prove such an assertion
by reduction, we can allow the reduction to be tailored to the specific function f , and do
no need to require that the reduction performs on any function f , but only on the chosen
one. This type of reductions was termed “function specific” by Artemenko and Shaltiel
[3], who proved limitations on nonuniform black-box functions specific reductions. It is
interesting to understand whether function specific class reductions can circumvent the
limitations proven in this paper. We remark that our proof technique indeed relies on
the fact that the reduction is not function specific, and must work for any function f .
This allows us to choose f with specific properties that are useful for our argument.
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A Showing that the main theorem follows from the zoom lemma

In this section we show that Theorem 9 follows from Lemma 11. This follows by the earlier
work of Shaltiel and Viola [27] which we now explain.

A.1 Consequences distinguishing noise 1
2 from (1

2 − 2ε)
The next lemma shows that distinguishing between Noiseq1/2−2ε and Noiseq1/2 requires many
queries.

I Lemma 25 ([32, 27]). For every ε, δ > 0, such that δ < 0.4, if T : {0, 1}q → {0, 1} satisfies:
Pr[T (Noiseq1/2−2ε) = 1] ≥ 1− δ.
Pr[T (Noiseq1/2) = 1] ≤ 0.51.

Then, q = Ω( log 1
δ

ε ).

The next lemma essentilly shows that distinguishing between Noiseq1/2−2ε and Noiseq1/2
requires majority on Ω(1/ε) bits. A technicality is that for this conclusion it is not sufficient
to distinguish Noiseq1/2−2ε from Noiseq1/2, and one needs circuits that distinguish Noiseq1/2− 2

j

from Noiseq1/2 for every integer j between 1 and log(1/ε). This complication is in some sense
necessary (see discussion in [27]).

I Lemma 26 ([32, 27]). For every ε, δ > 0, such that δ < 0.4, and 1
ε is an integer. If

T1, . . . , T 1
ε
are circuits over q bits, with size s ≥ q and depth d (over some set of gates G

that includes the standard set {And,Or,Not} with unbounded fan-in) and for every j ∈ [ 1
ε ],

we have that:
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Pr[Tj(Noiseq1/2− 2
j

) = 1] ≥ 1− δ.
Pr[Tj(Noiseq1/2) = 1] ≤ 0.51.

Then, there exists a circuit A that computes the majority function over Ω( 1
ε ) bits, and A has

size s · poly( 1
ε ) and depth d+O(1) over the same set of gates G.

A.2 Finishing up
We now have have all the tools to prove that Theorem 9 follows from Lemma 11. We will
assume w.l.o.g. that 1

ε is an integer. We first observe that a ( 1
2 + ε) → (1 − δ) class D

reduction for Yao’s XOR lemma, is in particular a ( 1
2 + 1

j )→ (1− δ) class D reduction for
Yao’s XOR lemma, for every j ∈ [ 1

ε ].
This means that for every j ∈ [ 1

ε ], we can apply Lemma 11 choosing the parameter ε to
be ε = 1

j , and for each such j and x ∈ {0, 1}k we obtain a circuit T jx over q bits with size
poly(r) and depth O(d) over the set of gates G such that:

PrX←Uk [T jX(Noiseq1/2− 2
j

) = 1] ≥ 1− 2δ.

PrX←Uk [T jX(Noiseq1/2) = 1] ≤ 1
2 + 1

200 .

Applying Markov’s inequality to the second item of the lemma, we obtain that there
exists a constant β > 0 such that for every j, for a β fraction of x ∈ {0, 1}k,

Pr[T jx(Noiseq1/2) = 1] ≤ 0.51.

Applying Markov’s inequality to the first item of the lemma, we obtain that for every j,
for a 1− β/2 fraction of x ∈ {0, 1}k,

Pr[T jx(Noiseq1/2− 2
j

) = 1] ≤ 1− 4 · δ
β
≤ 1− 4 · δ0

β
.

Together, this gives that for every j, there exists x ∈ {0, 1}k that satisfies both inequalities.
Theorem 9 now follows directly from Lemma 25 and Lemma 26, by choosing the constant
δ0 > 0 to be sufficiently small.11

B Extending the argument to sufficiently explicit linear codes

We now prove the extension of our results to sufficiently explicit linear codes which is stated
in Section 1.3. More specifically, we will prove a version of Theorem 9 that assumes that
δ = 2−2k and replace replace f⊕t by a function f ′ : {0, 1}n → {0, 1} defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k × {0, 1}n → {0, 1} can be computed
by circuits of size poly(r) and depth d over the set G of gates.

This argument is based on a trick by Viola [32] that we can incorporate into our framework.
We will modify the proof of Lemma 11 so that it holds in this setting, the modified version
of Theorem 9 will follow from Lemma 11 just as before.

We start by replacing the function f of Lemma 13 with a sightly different function:

11The argument above is wasteful, and leads to a rather small constant δ0 > 0. We remark that with a
more careful argument, we could have chosen δ0 to be any constant smaller than 1

2 , and even allow it to
approach 1

2 . More specifically, a more careful analysis can allow δ0 = 1
2 −O(log(1/ε)).
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I Lemma 27. There exist constants c1 such that for every constant c2, there exists a function
f : {0, 1}k → {0, 1} such that there exists m ≤ c1 · c2 · log r such that:

For every circuit B : {0, 1}k → {0, 1} of size rc2 , PrX←Um [B(X◦0k−m) = f(X◦0k−m)] ≤
1
2 + 1

200 .
f can be computed by a DNF of size rc1·c2 .

Proof. We repeat the proof of Lemma 13, but this time we take f(x) to be the following
function: Let x′ denote the first m bits of x and x′′ denote the remaining k −m bits. We
define f(x) to be g(x′) if x′′ = 0k−m and zero otherwise. J

On a random X ← Uk, Pr[f(X) = 0] ≥ 1 − 2k−m = 1 − 2−Ω(k). Therefore, it is very
easy to compute f with success probability 1− 2−Ω(k) by simply answering zero. However,
by Lemma 27 it is hard for circuits of size rc2 to compute f with success probability 1, or
equivalently success probability 1 − δ for δ = 2−2k. This is why this approach can only
succeed for very small δ.

With this choice, we can get a corollary that is analogous to Corollary 14.

I Corollary 28. The function f ′ can be computed by circuits of size poly(r) and constant
depth over the gates {and,or,not,parity} of unbounded fan-in.

Proof. The function f ′ is defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y).

The sum ranges over 2k choices of x. However, for our function f , except for poly(r) of these
x (the ones for which the second part of x is k −m zeros) all the remaining x have f(x) = 0.
This, together with the requirement on g, gives the required result. J

The proof proceeds as in Section 2, with the following modifications:
For δ = 2−2k < 2−k, Red is a ( 1

2 + ε) → 1 reduction. This means in particular that
if D is useful, then there exists α ∈ {0, 1}a such that PrX←Um [RedD(X ◦ 0k−m, α) =
f(X ◦ 0k−m)] = 1.
We set δ′ = 1

r and will replace some occurrences of δ in the earlier argument by δ′. This
is done because the choice of δ = 2−2k does not satisfy the requirement that 1

δ ≤ r made
in Theorem 9. Specifically, the requirement that 1

δ ≤ r was used to argue that when
we apply Lemma 20 with η = δ, the size of the set B (which is polynomial in 1

η ) is
polynomial in r. In order to obtain a set B of size poly(r) we will now choose η = δ′.
In Section 2.4 we argued that for an independent X ← Uk:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ.

With our modifications we get that for an independent X ← Um:

Pr[Redf
′⊕R′(X ◦ 0k−m, α′) = f(X ◦ 0k−m)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ′.

This allows us to continue the argument, replacing occurrences of X ← Uk by X ◦ 0k−m
for X ← Um, and occurrences of δ by δ′.
When we finish the proof and obtain a lower bound of q = Ω( log(1/δ′)

ε2 ) = Ω( log r
ε2 ) as

required. The result on majority is not affected by replacing δ by δ′.


