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Abstract
We consider the fundamental question of understanding the relative power of two important
computational models: property testing and data streaming. We present a novel framework closely
linking these areas in the setting of general graphs in the context of constant-query complexity
testing and constant-space streaming. Our main result is a generic transformation of a one-sided
error property tester in the random-neighbor model with constant query complexity into a one-sided
error property tester in the streaming model with constant space complexity. Previously such a
generic transformation was only known for bounded-degree graphs.
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1 Introduction

We consider the fundamental question of understanding the relative power of two important
computational models: property testing and data streaming. We present a novel framework
closely linking these areas in the setting of general graphs in the context of constant-query
complexity testing and constant-space streaming. We first provide a new analysis of constant-
query property testers (in the random-neighbor model, see Definition 6) for general graphs
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16:2 Testable Properties in General Graphs and Random Order Streaming

and develop the framework of canonical testers for general graphs. Then, using the concept of
canonical testers, we provide a generic transformation of a one-sided error property tester in
the random-neighbor model with constant query complexity into a one-sided error property
tester in the streaming model with constant space complexity.

Property testing. A fundamental task in the study of big networks/graphs is to efficiently
analyze their structural properties. For example, we may want to know if a graph is
well-connected, has many natural clusters, has many copies (instances) of some specific
sub-structures, etc. Given that modern networks are large, often consisting of millions and
billions of nodes (web graph, social networks, etc.), the task of analyzing their structure has
become recently more and more challenging, and the running-time efficiency of this task
is becoming of critical importance. The framework of property testing has been developed
to address some of these challenges, aiming to trade the efficiency with the accuracy of the
output, with the goal of achieving very fast algorithms.

In (graph) property testing, one of the main challenges is to characterize properties that
are testable with a constant number of queries in various computational models. Typically, a
tester has query access to a graph (e.g., random vertices or neighbors of a vertex for graphs),
and its goal is to determine if the graph satisfies a certain property (e.g., is well-clusterable)
or is far from having such a property (e.g., is “far” from any graph being well-clusterable;
see, e.g., [18, 19, 20, 39]). To be precise, we define testers as follows. Given a property Π,
a tester for Π is a (possibly randomized) algorithm that is given a proximity parameter ε
and oracle access to the input graph G. If G satisfies property Π, then the algorithm must
accept with probability at least 2

3 . If G is ε-far from Π, then the algorithm must reject
with probability at least 2

3 . If the algorithm is allowed to make an error in both cases, we
say it is a two-sided error tester ; if, on the contrary, the algorithm always gives the correct
answer when G satisfies the property, we say it is a one-sided error tester. Further details of
the model depend on the data representation. In the main model considered in this paper,
property testing for general graphs, we will consider the random neighbor oracle access to the
input graph (cf. Definition 6), which allows to query a random neighbor of any given vertex1.
In our model, we will say that G is ε-far from a property Π if any graph that satisfies Π
differs from G on at least ε|E(G)| edges. To analyze the performance of a tester, we will
measure its quality in term of its query complexity, which is the number of oracle queries
it makes.

In the past, a large body of research has focused on the analysis of various graph properties
in different graph models, for example, leading to a precise characterization of all properties
that can be tested with constant query complexity [1, 3] in the so-called dense model (graphs
with Θ(n2) edges), and some partial results for bounded-degree graph models (see, e.g.,
[5, 13, 17, 18, 20, 21, 35]). However, our understanding of the model of general graphs, graphs
where each vertex can have arbitrary degree, is still rather limited. We have seen some major
advances in testing graph properties for general graphs, including the results of Parnas and

1 Our model is in contrast with the other two widely used property testing models for graphs with
arbitrarily large maximum degree: In the adjacency list model [36, 30], the algorithm can perform both
neighbor queries (i.e., for the i-th neighbor of any vertex v such that i ≤ deg(v)), and the degree queries
(i.e., for the degree deg(v) of any vertex v); In the general graph model, the algorithm is allowed to
perform vertex-pair queries (i.e., for the existence of an edge between any two vertex pair u, v), in
addition to neighbor and degree queries [28, 2, 18]. Still, we believe that the random neighbor oracle
model considered in this paper is the most natural model of computations in the property testing
framework in the context of very fast algorithms, especially those performing O(1) queries. We note
however, that our analysis can be generalized to other models of general graphs (cf. the full version).
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Ron [36], Kaufman et al. [28], Alon et al. [2], Czumaj et al. [11, 14] (see also the survey in
[18, Chapter 10]). The main challenge of the study in the model of general graphs is a lack
of good characterization of testable properties and of a good algorithmic toolbox for the
problems in this model. Still, the importance of the general graph model and lack of major
advances have been widely acknowledged in the property testing community. For example, it
is recognized that the general graph model is “most relevant to computer science applications”
and “designing testers in this model requires the development of algorithmic techniques that
may be applicable also in other areas of algorithmic research” (see [18, Chapter 10.5.3]).

Graph streaming algorithms. One important way of processing large graphs in modern
data analysis is to design graph streaming algorithms (see, e.g., [31, 34]). A graph streaming
algorithm obtains the input graph as a stream of edges in some order and its goal is to
process and analyze the input stream in order to compute some basic characteristics about
the input graph. For example, we want to know whether the graph is connected, or bipartite,
or to know its approximate maximum matching size. Following the mainstream research in
data streaming, we focus on algorithms that make only a single pass over the graph stream.
Since in the single pass model every edge is seen only once, the central complexity measure
of data streaming algorithms is the amount of space used to store information about the
graph, with the golden standard in streaming being sublinear space. Unfortunately, it is
known that for many natural graph problems sublinear space o(n) is not possible when the
edges are arriving in a single pass and in arbitrary order, where n is the number of vertices
of the input graph [23].

There have been several approaches to cope with this inherent limitation of the streaming
setting for graph problems. While some of the early works in graph streaming algorithms
approached this challenge by allowing more than one pass over the input, the single-pass model
is still considered to be the most interesting and the most natural scenario for streaming
algorithms. The Ω(n) space lower bound (e.g., for testing if the graph is connected or
estimating the size of transitive closure [23]) led to a significant number of papers designing
semi-streaming algorithms, which are algorithms using O(n polylog(n)) space, so only slightly
larger than linear in the number of vertices (see the survey [31]). This model leads to sublinear
algorithms for dense graphs, where m, the number of edges, is ω(n polylog(n)). For the
very natural setting of sparse graphs, semi-streaming algorithms are useless, since with
O(n polylog(n)) space one can store the entire input graph (all arriving edges). Therefore,
one can trivially solve any graph problem. Some works consider special classes of graphs.
For example, it is known how to approximate the matching size within a constant factor
in polylogarithmic space for planar graphs or graphs with bounded arboricity (see, e.g.,
[15, 10, 32, 6]).

Another, central approach to address the linear space lower bounds for graph streaming
problems that recently received increasing attention is the random-order streaming model,
where the edges arrive in random order, i.e., in the order of a uniformly random permutation
of the edges (see, e.g., [8, 26, 29, 31, 33, 37, 4, 27, 9, 16]). The assumption about uniformly
random or near-uniformly random ordering is very natural and can arise in many contexts.
One might also use the random-order streaming model to justify the success of some heuristics
in practice, even though there exists strong space lower bound for (the worst case of) the
problem. Furthermore, some recent advances have shown that some problems that are hard for
adversarial streams can be solved with small space in the random order model. For example,
Konrad et al. [29] gave single-pass semi-streaming algorithms for maximum matching for
bipartite and general graphs with approximation ratio strictly larger than 1

2 in the random
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order semi-streaming model. Kapralov et al. [26] gave a polylogarithmic approximation
algorithm in polylogarithmic space for estimating the size of maximum matching of an
unweighted graph in one pass over a random order stream. It is not known if such trade-offs
between approximation ratios and space complexity are possible in the adversarial order
model. Finally, [37] showed that in the random-order streaming model, even with constant
space, one can approximate the number of connected components of the input graph within
an additive error of εn, the size of a maximum independent set in planar graphs within a
multiplicative factor of 1 + ε, and the weight of a minimum spanning tree of a connected
input graph with small integer edge weights within a multiplicative factor of 1 + ε. However,
for the first and third problems in adversarial order streams, there exist n1−O(ε) space lower
bounds [24]. While these results demonstrate the strength of the random-order streaming
model, Chakrabarti et al. [8] proved that Ω(n) space is needed for any single pass algorithm
for graph connectivity in the random-order streaming model, almost matching the optimal
Ω(n logn) space lower bound in the adversarial order model [40]. This poses a central open
question in the area of graph streaming algorithms, of characterizing graph problems which
can be solved with small, sublinear space in the random-order streaming model.

The main goal of our paper in the context of streaming algorithms, is to address this
task and to enlarge the class of graph problems known to be solvable with small space in the
random order streaming model in a single pass. Our main focus is on the most challenging
scenario: of achieving constant space2.

1.1 Basic Definitions and Overview of Our Results
In this paper, we extend the approach recently introduced by Monemizadeh et al. [33] (see
also [37]) to demonstrate a close connection between streaming algorithms and property
testing in the most general setting of general graphs. Monemizadeh et al. [33] show that for
bounded-degree graphs, any graph property that is constant-query testable in the adjacency
list model can be tested with constant space in a single pass in random order streams.
In this paper, we show that similar results hold also for general graphs. To this end, we
design a novel framework of canonical testers for all constant-query testers for general graphs
and apply it to design a generic method of transforming any constant-query tester (with
one-sided error) for graph properties into a constant-space tester (with one-sided error) in
the random-order streaming model.

We consider the random neighbor query oracle model for general graphs, which allows
the algorithm to query a random neighbor of any specified vertex (cf. Definition 6).

I Definition 1 (Property testers in the random-neighbor model). Let Π = (Πn)n∈N be a graph
property, where Πn is a property of graph of n vertices. We say that Π is testable with query
complexity q, if for every ε and n, there exists an algorithm (called tester) that makes at
most q = q(n, ε) oracle queries, and with probability at least 2

3 , accepts any n-vertex graph
satisfying Π, and rejects any n-vertex graph that is ε-far from satisfying Π. If q = q(ε) is
a function independent of n, then we call Π constant-query testable. If the tester always
accepts graphs that satisfy Π, we say that it has one-sided error. Otherwise, we say the tester
has two-sided error.

2 Throughout the entire paper, we will count the size of the space in words (assuming that a single word
can store any single ID of a vertex or of an edge), i.e., space bounds have to be multiplied by O(log n)
to obtain the number of bits used. With this in mind, we use term constant space to denote space
required to store a constant number of words, or IDs, that is, O(log n) bits.
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We notice that the definition above is generic and can be applied to any of the query oracle
models (see e.g. [18]). However, since our main query oracle model is the random-neighbor
model, only for that model we will use the terminology from Definition 1 without a direct
reference to the query oracle model. We first present canonical testers in this model. In order
to do so, we introduce a process called q-random BFS (q-RBFS) starting with any specified
vertex v, i.e., a BFS of depth q that is restricted to visiting at most q random neighbors for
every vertex (see Definition 7). We call the subgraph obtained by a q-RBFS a q-bounded
disc. Our first result is informally stated as follows.

I Theorem 2 (informal; cf. Theorem 10). If a property Π = (Πn)n∈N is testable with q = q(ε)
queries in the random-neighbor model, then it can also be tested by a canonical tester that
1. samples q′ vertices;
2. performs q′-RBFS from each sampled vertex;
3. accepts if and only if the explored subgraph does not contain any (forbidden) graph F ∈ F ,
where q′ depends only on q, and F is a family of rooted graphs such that each graph F ∈ F
is the union of q′ many q′-bounded discs.

We remark that similar canonical testers have been given for dense graphs [22], bounded-
degree graphs and digraphs [21, 12]. Actually, our proof for the above theorem heavily builds
upon [21, 12], though our analysis requires some extensions to deal with general graphs (of
possibly unbounded degree). To formally state our result regarding testing graph properties
in streaming, we introduce the following definition.

I Definition 3 (Property testers in the streaming model). Let Π = (Πn)n∈N be a graph property,
where Πn is a property of graph of n vertices. We say that Π is testable with space complexity
q, if for every ε and n, there exists an algorithm that performs a single pass over an edge
stream of an n-vertex graph G, uses q = q(n, ε) words of space, and with probability at least 2

3 ,
accepts G satisfying Π, and rejects G that is ε-far from satisfying Π. If q = q(ε) is a function
independent of n, then we call Π constant-space testable. If the tester always accepts the
property, then we say that the property can be tested with one-sided error. Otherwise, we say
the tester has two-sided error.

Our main result and our main technical contribution is the transformation of a one-sided
error property tester in the random-neighbor model with constant query complexity into a
one-sided error property tester in the streaming model with constant space complexity.

I Theorem 4 (Main Theorem). Every graph property Π that is constant-query testable with
one-sided error in the random-neighbor model is also constant-space testable (space measured
in words) with one-sided error in the random order graph streams.

Applications. We believe that the main contribution of our paper is the general transfor-
mation presented in Theorem 4. However, we admit that the number of properties testable
with one-sided error with a constant number of queries in the random-neighbor model is
rather limited. Still, we can apply our transformation to, for example, the property of being
(s, t)-disconnected (i.e., there is no path between s and t), see, e.g., [41]3. Furthermore, our

3 The constant-query tester from [41] performs degree queries and neighbor queries, but it is straightforward
to simulate it in the random-neighbor model. Indeed, the algorithm in [41] only needs to repeatedly
perform a constant-length random walks from s and reject if only if one path from s to t is found. Such
an algorithm can be trivially simulated in the random-neighbor model, as each step of a random walk
just needs to query one random neighbor of the current vertex.
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16:6 Testable Properties in General Graphs and Random Order Streaming

transformation actually holds when the input graph is restricted to come from a certain
class of graphs such as planar graphs, minor-free graphs, or bounded-degree graphs. Since
bipartiteness in planar graphs (or minor-free graphs) is testable in the random-neighbor
model [11], it is also one-sided error testable in random order streams in constant space;
notice that this result stands in contrast to the n1−O(ε) space lower bound for adversarial
order streams for (property) testing bipartiteness in planar graphs [24]. Further, recent
constant-query complexity testing of H-freeness in planar or minor-free graphs [14] shows
that also testing H-freeness is one-sided error testable in random order streams in constant
space.

Furthermore, our techniques can also be used to transform any constant-query tester (with
one-sided error) in the random neighbor/edge model (cf. the full version) to the random-order
streaming model, where the random neighbor/edge model allows to sample an edge uniformly
at random. Therefore, for example, since the property of being Pk-free (there is no path
of length k) is constant-query testable in the random neighbor/edge model with one-sided
error [25], Pk-freeness is also constant-space testable with one-sided error in the random
order graph streams. Similarly, it is not hard to see that the property of being d-bounded
(the maximum degree is at most d) is constant-query testable in the random neighbor/edge
model4, and therefore this property too is constant-space testable with one-sided error in the
random order graph streams.

The contribution of our paper goes beyond just establishing a connection between property
testing and streaming. While the concept of canonical testers has been used in graph property
testing before (cf. [22, 21, 12]), our study and characterization of canonical testers for general
graphs (Theorem 2 and Theorem 10) is new. We believe that this study will shed light on
our understanding of constant-query testable graph properties and will lead to new results
for property testing in general graphs. For example, Czumaj and Sohler [14] recently used
our canonical testers as a tool in their proof of a complete characterization of constant-query
testable properties in general planar graphs [14] after a preliminary version of this work
appeared.

1.2 Challenges and Techniques

The result about constant-space streaming algorithms for bounded-degree graphs by Monem-
izadeh et al. [33] is obtained by noting that any constant-query complexity tester basically
estimates the distribution of local neighborhoods of the vertices (see, e.g., [12, 18, 21]) and
emulating any such algorithm on a random order graph stream using constant space. Unfortu-
nately, this approach inherently relies on the assumption that the input graph is of bounded
degree. This limitation comes from two ends: on one hand, there has not been known any
versatile description of testers for constant-query testable graph properties of general graphs,
and on the other hand, the streaming approach from [33] relies on a breadth-first-search-like
graph exploration that is possible (with constant space) only when the input graph has no
high-degree vertices. A follow-up paper [37] made the first attempt to address the challenge
of dealing with general degrees, and considered some problems in which one can ignore high
degree vertices (e.g., for approximating the number of connected components or the size of a
maximum independent set in planar graphs).

4 If G is ε-far from the property, then at least Ω(ε|E|) edges are incident to a node with degree at least
d + 1. Thus, we can simply sample a constant number of edges and check if either of its endpoints has
degree at least d + 1.
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One important reason why the earlier approaches have been failing for the model of general
graphs, without bounded-degree assumption, was our lack of understanding of constant-
query complexity testers in general graphs and the lack of techniques to appropriately
emulate off-line algorithms allowing many high-degree vertices. In this paper, we advance
our understanding on both of these challenges.

A general and simple canonical tester. To derive a canonical tester for constant-query
testable properties in the random-neighbor model, we introduce the process q-random BFS
(q-RBFS): it starts from any specified vertex v, and then performs a BFS-like exploration of
depth q that is restricted to visiting at most q random neighbors at each step (see Definition 7
for the formal definition). We call the subgraph obtained by a q-RBFS a q-bounded disc. With
the notion of q-RBFS and q-bounded discs, we are able to transform every constant-query
tester for properties of general graphs into a canonical tester that works as follows: it samples
q random vertices, performs a q-RBFS from each sampled vertex, and rejects if and only if
the (non-induced) subgraph it has seen (which is a union of q-bounded discs) is isomorphic to
some member of a family F of forbidden subgraphs (see Theorems 2 and 10). Furthermore,
such a canonical tester preserves one-sided error, while the query complexity blows up
exponentially. We believe that the exponential blow-up is necessary, even for bounded-degree
graphs, as adaptivity is essential for property testing in sparse graphs [38, 7]. This is in
contrast to the dense graph model for property testing, in which a quadratic blow-up of the
query complexity of canonical testers was known [22].

Canonical testers provide us a systematic view of the behavior of constant-query testers
in the random-neighbor model. They further tell us that in order to test a constant-query
testable property Π, it suffices to estimate the probability that some forbidden subgraph in
F is found by a q-RBFS starting from a randomly sampled vertex. Slightly more formally,
we define the reach probability of a subgraph F ∈ F to be the probability that a q-RBFS
starting from a uniformly chosen vertex v sees a graph that is isomorphic to F . In particular,
if we can estimate these reach probabilities in random order streams, then we can also test
Π accordingly.

The problem with this approach is that it is hard to estimate the reach probabilities
of subgraphs in F . The main challenge here is that a forbidden subgraph F ∈ Fn may be
the union of more than two or more subgraphs obtained from different q-RBFS that may
intersect with each other.

A refined canonical tester. To cope with the challenge mentioned above of estimating the
reach probabilities of subgraphs in F , we decompose each forbidden subgraph F ∈ Fn into
all possible sets of intersecting q-bounded discs whose union is F and then try to recover F
from these sets. In order to recover F from such a decomposition, we have to identify and
monitor vertices that are contained in more than one q-bounded disc of F .

We refine the analysis of the canonical tester and separate the q-bounded discs explored
by each q-RBFS and keep track of their intersections (cf. Theorem 17). We first observe
that for every input graph G and every ε, there exists a small fixed set Vα ⊆ V of all vertices
whose probability to be visited by a random q-RBFS from a random vertex exceeds some
small threshold α (depending on q and ε, but independent of n). In other words, with
constant probability, the subgraphs explored by multiple q-RBFS in the canonical tester will
only overlap on vertices from Vα. Furthermore, we prove that the degree of all vertices in
Vα is at least linear (in n), and with constant probability, two random q-RBFS subgraphs
will not share any edge. Since Vα has constant size, each q-bounded disc can be viewed as a
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16:8 Testable Properties in General Graphs and Random Order Streaming

colored q-bounded disc type such that each vertex in Vα is assigned a unique color from a
constant-size palette. This way, it is possible to reversibly decompose each F ∈ Fn into a
multiset of colored q-bounded disc types (actually, there may be many such multisets for
each F ): since the q-bounded discs that are explored by different q-RBFS intersect only
at vertices in Vα, F is obtained by identifying vertices of the same color. See Figure 1 in
Appendix A for an example.

These properties are crucial to describe the forbidden subgraphs in terms of the graphs
seen by the q many q-RBFS that the canonical tester performs and a constant-size description
of their interaction, i.e., how they overlap.

Simulation in the streaming. In the streaming, in order to simulate q-RBFS, it is natural
to consider the following procedure called StreamCollect (q-SC, see Algorithm 2 in
Appendix B) to explore the subgraph surrounding any specified vertex. That is, it maintains
a connected component C that initially contains only the start vertex. Whenever it reads an
edge that connects to the current C and the augmented component may be observed by a
run of q-RBFS, it adds the edge to C.

Note that one important feature of random order streams is that we would see the right
exploration (as in the query model) with constant probability, while it is challenging to verify
if the subgraph we collected from the stream is indeed the right exploration (cf. [33, 37] for a
more detailed discussion). In our setting, as we mentioned, another technical difficulty is to
analyze whether subgraphs found by running the stream procedure multiple times intersect
in exactly the same way as the q-bounded discs that are found by q-RBFS.

With the refined canonical tester, which specifies how different q-RBFS procedures
intersect, we are able to simulate one-sided error constant-query testers in the random-
neighbor model for general graphs in the random-order streaming model. Since the considered
property Π is one-sided error testable in the random-neighbor model, it suffices to detect a
forbidden subgraph F in the family F corresponding to Π with constant probability. That is,
it suffices to show that if the graph is far from having the property, then for any forbidden
subgraph H that can be reached by the canonical tester with probability p, it can also be
detected by multiple StreamCollect subroutines with probability at least cp for some
suitable constant c.5

In order to do so, we first decompose the forbidden subgraphs that characterize the
property into colored subgraphs, where each subgraph corresponds to a run of q-RBFS and
vertices in Vα are colored with a unique color. Then, we prove that for a sufficiently large
sample of vertices, the q-SC subroutines starting from these sampled vertices will collect, for
each colored subgraph H, at least as many instances of H as the canonical property tester
sees. Suppose that the input graph is far from the property. Since the subgraphs observed
by the canonical tester intersect only at vertices in Vα, i.e., colored vertices, with constant
probability, it is possible to stitch a forbidden subgraph by identifying vertices of the same
color in the analysis.

5 Note that this is not sufficient for simulating two-sided error testers. Let us take the property connectivity
(which is 2-sided error testable in random-neighbor model) for example. If the input graph is a path
on n vertices, then a q-RBFS will detect a forbidden subgraph (i.e., a path of constant length that is
not connected to the rest) corresponding to connectivity with small constant probability, while a q-SC
might see a forbidden subgraph with high constant probability. That is, in order to test connectivity,
we need to be able to approximate the frequencies of the forbidden subgraphs, for which our current
techniques fail.
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The analysis of this procedure is two-fold. First, we show that if a single run of q-RBFS
from v sees a certain colored q-bounded disc type with probability p (where the colored
vertices are Vα), then a single run of q-SC from v sees this disc type with probability cp for
some suitable constant c (see Corollary 20).

The second step (which is the main technical part) is to show that if the probability
that a q-RBFS from a random vertex sees a colored q-bounded disc type ∆ is p, then with
constant probability, for a sufficiently large sample set S, the calls to q-SC from vertices in
S will also see a q-bounded disc type ∆, even though there are intersections from different
q-SCs (see Lemma 21). Then we can show that if the input graph is far from the property,
with constant probability, we can stitch the colored q-bounded discs to obtain a forbidden
subgraph F ∈ F (see Theorem 4).

Finally, we remark that colors are only used in the analysis as the streaming algorithm
can identify intersections of multiple q-SC by the vertex labels. However, the colors are
crucial to the analysis: without colors, we cannot guarantee that the q-bounded disc types
found by multiple q-SCs can be stitched in the same way as the q-bounded disc types found
by q-RBFS. Here is an example: Consider some constant-query testable property Π such that
the set of forbidden subgraphs F contains a graph F that is not a subgraph of any single
q-bounded disc type (i.e, it is the union of at least two intersecting q-bounded disc types).
For the sake of illustration, a concrete example is provided in Figure 2 in Appendix A. In
order to reject, the canonical property tester needs to find at least two intersecting q-bounded
discs such that their union contains F as a subgraph. However, even if we bound, for each
uncolored q-bounded disc type ∆, the probability that q-SC finds ∆ by some constant fraction
of the probability that q-RBFS finds ∆, this is not sufficient to conclude that the probability
that multiple q-SCs find a copy of F is bounded by a constant fraction of the probability
that multiple q-RBFS find a copy of F . The reason is that q-SC might only find copies of ∆
that are not intersecting, while q-RBFS might tend to find copies of ∆ that intersect. Again,
see Figure 2 for an example. Therefore, we need to preserve, for each q-bounded disc type
∆, the information which of the corresponding vertices in the input graph are likely to be
contained in more than one q-RBFS for the analysis.

2 Preliminaries

Let G = (V,E) be an undirected graph. We will assume that the vertex set V of G is
[n] = {1, . . . , n}, and we let deg(v) denote the degree of v ∈ V . Sometimes, we use V (G) to
denote the vertex set V of G and E(G) to denote the edge set E of G. We let S(G) denote
the input stream of edges that defines G. In this paper, we consider streaming algorithms
for random order streams, i.e., the input stream S(G) to our algorithm is drawn uniformly
from the set of all permutations of E. We are interested in streaming algorithms that have
constant space complexity in the size of the graph, where we count the size of the space in
words, i.e., space bounds have to be multiplied by O(logn) to obtain the number of bits
used, see also Footnote 2.

A graph G is called a rooted graph if at least one vertex in G is marked as root. Let us
define the notion of a root-preserving isomorphism.

I Definition 5. Given two rooted graphs H1 and H2, a root-preserving isomorphism from
H1 to H2 is a bijection f : V (H1)→ V (H2) such that 1) if u is the root of V (H1) then f(u)
is the root of V (H2), and 2) that (u, v) ∈ E(H1) if and only if (f(u), f(v)) ∈ E(H2). If
there is a root-preserving isomorphism from H1 to H2 then we say that H1 is root-preserving
isomorphic to H2 and denote it by H1 ' H2.
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3 Canonical Constant-Query Testers in General Graphs

In this section, we present our main result on the canonical testers for constant-query testable
properties in general graphs. After starting with some basic definitions, we will present
two canonical testers for constant-query testable properties in general graphs. Our first
canonical tester is of a general form (see Section 3.2) and our second tester (see Theorem 17
in Section 3.3) is slightly more refined, allowing for a more natural use later in the setting of
streaming algorithms in Section 5.

We note that in this paper we focus on one specific model of access to the input graph,
the random-neighbor model. It is possible to extend some of our analysis (of canonical testers)
to some other graph access models, though (cf. the full version).

3.1 Random BFS and Bounded Discs
Property testing in query oracle model. Since we consider general graphs, without any
bounds for vertex degrees, we have to carefully define the access provided to the input graph
in the property testing framework. The access to the input graph is given by queries to an
oracle representing the graph. There have been several oracles considered in the literature for
general graphs, but our main focus is on the random-neighbor model, which we consider to
be natural for graphs with unbounded degree, especially in the context of properties testable
with a constant number of queries.

I Definition 6 (Random-neighbor model). In the random-neighbor model, an algorithm is
given n ∈ N and access to an input graph G = (V,E) by a query oracle, where V = [n]. The
algorithm may ask queries based on the entire knowledge it has gained by the answers to
previous queries. The random neighbor query specifies a vertex v ∈ V and the oracle returns
a vertex that is chosen i.u.r. (independently and uniformly at random) from the set of all
neighbors of v.

Notice that in the random-neighbor model, since V = [n], the algorithm can also trivially
select a vertex from V i.u.r. We believe that the random-neighbor model is the most
natural model of computations in the property testing framework in the context of very fast
algorithms (especially those of constant query complexity), and therefore our main focus
is on that model. However, we want to point out that some of our results are sufficiently
general to apply to a larger variety of the query oracle models, though we will not elaborate
about it here (cf. the full version).

We describe the first canonical testers of all constant-query testers (in the random-
neighbor model) for general graphs, both, for one-sided and two-sided errors. With this
canonization, we can model all graph properties testable with a constant number of queries
using canonical testers; see Theorems 10 and 17 for formal statements.

To formalize our canonical testers for all constant-query testers in the random-neighbor
model, we will use the following two definitions of constrained random BFS-like graph
exploration and of bounded discs.

We begin with the definition of a q-RBFS process, which starts at some vertex and
explores its neighborhood in a BFS-like fashion, conditioned on a bound of the depth and
the breadth of the exploration (see Definition 7 for formal definition and Algorithm 1 in
Appendix B for the detailed implementation).

I Definition 7 (q-random BFS). Let q > 0 be an integer and G be a simple graph. For any
vertex v ∈ V (G), the q-random BFS (abbreviated as q-RBFS) explores a random subset of
the q-neighborhood of v in G iteratively as follows. First, it initializes a queue Q = {v}
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and a graph H = ({v}, ∅). Then, in every iteration, it pops a vertex u from Q and samples
q random neighbors su,1, . . . , su,q of u. For every edge e = {u, su,i}, it adds su,i and the
directed edge (u, su,i) to H. Furthermore, if su,i has distance less than q from v in H and
su,i has not been added to Q before, su,i is appended to Q. When Q is empty, all edges in H
are made undirected (without creating parallel edges) and H is returned.

Any output of q-RBFS algorithms can be described in a static form using the concept of
bounded discs.
I Definition 8 (q-bounded disc). For a given q ∈ N, graph G = (V,E), and vertex v ∈ V , a
q-bounded disc of v in G is any subgraph H of G that is rooted at v and can be returned by
RandomBFS(G, v, q). In this case, vertex v is called a root of the q-bounded disc H and
the maximum distance from v to any other vertex in H is called the radius of H.

All q-bounded discs that are root-preserving isomorphic form an equivalence class.
I Definition 9 (q-bounded disc type). Let H be a q-bounded disc. The equivalence class of
H with respect to ', i. e., the existence of a root-preserving isomorphism (see Definition 5),
is called the q-bounded disc type of H.

3.2 Canonical Testers: A General Version
Now we present the proof of our first main result. We show that any tester with query
complexity q = q(ε, n) in the random-neighbor model can be simulated by a canonical tester
that samples q′ = O(q) vertices and rejects if and only if the union of the subgraphs induced
by the q′-RBFS from the sampled vertices belongs to some family of forbidden graphs.
I Theorem 10 (Canonical tester). Let Π = (Πn)n∈N be a graph property that can be tested in
the random-neighbor model with query complexity q = q(ε, n) and error probability at most 1

3 .
Then for every ε, there exists an infinite sequence F = (Fn)n∈N such that for every n ∈ N,
Fn is a set of rooted graphs such that each graph F ∈ Fn is the union of q′ many
q′-bounded discs;
the property Πn on n-vertex graphs can be tested with error probability at most 1

3 by the
following canonical tester:
1. sample q′ vertices i.u.r. and mark them roots;
2. for each sampled vertex v, perform a q′-RBFS starting at v;
3. reject if and only if the explored subgraph is root-preserving isomorphic to some F ∈ Fn,

where q′ = cq for some constant c > 1. The query complexity of the canonical tester is qO(q).
Furthermore, if Π = (Πn)n∈N can be tested in the random-neighbor model with one-sided
error, then the resulting canonical tester for Π has one-sided error too, i.e., the tester always
accepts graphs satisfying Π.

3.3 Canonical Testers Revisited: Identifying Vertices in the
Intersecting Discs

Theorem 10 provides us a canonical way of testing constant-query testable properties (in
the random-neighbor model) by relating the tester to a set of forbidden subgraphs Fn for
every n ∈ N. However, as we mentioned in Section 1, it is hard to directly use Theorem 10
to design and analyze our streaming testers due to the intersections of q-RBFS. In order
to tackle this difficulty, we decompose each forbidden subgraph F ∈ Fn into all possible
sets of intersecting q-bounded discs whose union is F . In order to recover F from such a
decomposition, we have to identify and monitor vertices that are contained in more than one
q-bounded disc of F .
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16:12 Testable Properties in General Graphs and Random Order Streaming

Identifying vertices with large reach probability. Now we prove that with constant proba-
bility the q-bounded discs found by q-RBFS will only intersect on a small set of vertices Vα
and the discs will not intersect on any edge.

We begin with a useful definition on the probability of reaching a vertex from a q-RBFS.

I Definition 11. For each vertex v, the reach probability r(v) := rq(v) of v is the probability
that a q-RBFS starting at a uniformly randomly chosen vertex reaches v.

In the following lemma, we give an upper bound on the size of the set of vertices with
constant reach probability, which also implies that with constant probability, the number of
vertices visited by at least two q-RBFS that the canonical tester performs is small. For any
α, 0 ≤ α ≤ 1, we let Vα := {v ∈ V : r(v) ≥ α}. For a fixed q, let cj :=

∑j
i=0 q

i = qj+1−1
q−1 .

I Lemma 12. For any 0 < α < 1, it holds that |Vα| ≤ cq

α .

We further show that with high probability, two q-RBFS starting from vertices chosen
i.u.r. will not share an edge (i.e., will not visit the same edge).

I Lemma 13. Let 0 < α ≤ 1. Let n ≥ qcq

α2 . Let u, v be two randomly chosen vertices. Let
Hu and Hv denote the subgraphs visited by two q-RBFS starting at u and v, respectively.
Then with probability at least 1− qcq · 2α, no edge will be contained in both Hu and Hv.

Colored q-bounded disc types. To identify vertices in Vα, we assign them unique colors
for the analysis. We call a disc r-colored if in addition to uncolored vertices in the disc, some
vertices in the disc may be colored with at most r colors, each color being used at most once.
Two colored q-bounded disc types ∆1 and ∆2 (cf. Definition 9) are called to be isomorphic
to each other, denoted by ∆1 ' ∆2, if there is a root-preserving isomorphism f from ∆1 to
∆2 that also preserves the colors, i.e., if and only if u ∈ V (∆1) is colored with color c, then
f(u) ∈ ∆2 is colored with color c.

I Definition 14. Let q > 0 be an integer. We let Hq := {∆1, · · · ,∆N} denote the set of all
possible r-colored q-bounded disc types, where N is the total number of such types.

For any given colored q-bounded disc type, we have the following definition on the
probability of seeing such a disc type from a q-RBFS.

I Definition 15 (Reach probability of colored q-bounded disc types). Let G = (V,E) be a
graph with n vertices such that each vertex in Vα is assigned to a unique color. Let ∆ ∈ Hq
be a colored q-bounded disc type. The reach probability of ∆ in G is the probability that
a q-RBFS from a random vertex in G reveals a graph that is (root- and color-preserving)
isomorphic to ∆, that is ReachG(∆) := Prv∼V,BFS [RandomBFS(G, v, q) ' ∆] .

For a given vertex v, the reach probability of ∆ from v in G is the probability that a
q-RBFS from v in G induces a graph that is (root- and color-preserving) isomorphic to ∆,
that is ReachG(v,∆) := PrBFS [RandomBFS(G, v, q) ' ∆] .

Recall from Definition 8 that a q-bounded disc of v in G is any subgraph H of G that is
rooted at v and can be returned by RandomBFS(G, v, q). In order to estimate the reach
probability of a colored q-bounded disc type, we consider for each starting vertex v, the set
of all possible colored q-bounded discs, denoted Cv, that one can see from a q-RBFS from v.

I Definition 16 (Reach probability of a colored q-bounded disc). Let G = (V,E) be a graph
in which all vertices in Vα are uniquely colored. Let v be a vertex in G. A colored q-bounded
disc of v is a q-bounded disc of v in G in which all vertices in Vα colored. We let Cv denote



A. Czumaj, H. Fichtenberger, P. Peng, and C. Sohler 16:13

the set of all possible colored q-bounded discs of v.6 For any fixed colored q-bounded disc
C ∈ Cv of v, the reach probability of C from v is the probability that a q-RBFS from v sees
exactly C, that is, ReachG(v, C) := PrBFS [RandomBFS(G, v, q) = C] .

By our definition, the q-RBFS from a vertex v in the colored graph G (with vertices
in Vα colored) will return exactly one colored q-bounded disc of v. For each colored q-
bounded disc type ∆, we let Cv(∆) denote the subset of Cv which contains all colored
q-bounded discs of v that are isomorphic to ∆. Therefore, we have the following observation:
ReachG(v,∆) =

∑
D∈Cv(∆) ReachG(v,D) .

Canonical testers with distinguished vertices in the intersecting discs. Now, we give a
refined characterization of the family of forbidden subgraphs corresponding to any constant-
query testable property in general graphs, which establishes the basis of our framework
for transforming the canonical constant-query testers in the random-neighbor model to the
random-order streaming model.

In our next theorem, we will consider partially vertex-colored graphs and q-bounded
discs: we color each vertex in Vα with a unique color from a palette of size |Vα|. Recall from
Lemma 12 that |Vα| ≤ cq

α . We obtain canonical testers of constant-query testable properties
by forbidden colored q-bounded discs instead of forbidden subgraphs (that can be composed
of more than a single q-bounded disc). See Figure 1 in Appendix A for an example.

I Theorem 17. Let Π = (Πn)n∈N be a graph property that is testable with query complexity
q = q(ε). Let α ≤ 1

24q′cq′
, where q′ is the number from Theorem 10 for a canonical tester

with error probability 1/6. There is an infinite sequence F ′ = (F ′n)n∈N such that for any
ε > 0, n ≥ q′cq′

α2 , the following properties hold:
F ′n is a set of graphs, and for each graph F ∈ F ′n, there exists at least one multiset S of
q′ many cq′/α-colored and rooted q′-bounded disc types such that 1) the disc types are
pairwise edge-disjoint, and 2) the graph obtained by identifying all vertices of the same
color in the bounded discs of S is isomorphic to F .
For any n-vertex graph G = (V,E) such that each vertex in Vα is colored uniquely, let
Sq′ denote the set of q′ subgraphs obtained by performing q′-RBFS starting at q′ vertices
sampled i.u.r. Then,

if G ∈ Πn, with probability at least 2
3 , there is no F ∈ F ′n such that F is isomorphic to

a graph from Sq′ ,
if G is ε-far from Πn, with probability at least 2

3 , there exists F ∈ F ′n such that F is
isomorphic to a graph from ' Sq′ ,

where the probability is taken over the randomness of Sq′ .

Furthermore, if Π can be tested with one-sided error, then for G ∈ Πn, with probability 1,
there is no F ∈ F ′n such that F ' Sq′ .

4 Estimating the Reach Probabilities in Random Order Streams

Given a canonical tester T for a property Π that is constant-query testable in the random-
neighbor model, we transform it into a random-order streaming algorithm as follows. Recall
from Theorem 10 that T explores the input graph by sampling vertices uniformly at random
and running q-RBFS for each of these vertices. Only if the resulting subgraph contains an

6 Note that the number |Cv| of colored q-bounded discs of v can be a polynomial of n.
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instance of a forbidden subgraph from a family F , it rejects. It seems natural to define a proce-
dure like q-RBFS for random order streams, namely a procedure StreamCollect(S(G), v, q)
(q-SC ), and let the streaming algorithm reject only if the union of all q-SC contains an
instance of a graph from F . However, this raises a couple of issues.

It seems hard to analyze the union of the subgraphs obtained by q-SC and relate it to
the union of subgraphs observed by q-RBFS because the interference between two q-SC is
quite different from the interference of two q-RBFS. Therefore, we use Theorem 17, which
roughly says that we can decompose each forbidden subgraph into colored q-bounded disc
types. This leads to the following idea: First, we prove that for any colored q-bounded
disc type ∆, if q-RBFS finds an instance of ∆ in the input graph with probability p (where
colors correspond to intersections of multiple RBFS), then q-SC finds an instance of ∆ with
probability cp for some suitable constant c. Then, we prove that if S is a sufficiently large
set of vertices sampled uniformly at random, for each colored q-bounded disc type ∆, the
fraction of q-bounded discs found by q-SCs started from S that are isomorphic to ∆ is
bounded from below by the probability that a q-RBFS from a random vertex sees a colored
q-bounded disc that is isomorphic to ∆. Finally, in the next section, we conclude that if
q-RBFS finds a forbidden subgraph F ∈ F with probability p, then the fraction of q-SC also
finds this subgraph with probability cp (for some suitable constant c) because it will find the
corresponding colored q-bounded discs that assemble F .

Collecting a q-Bounded Disc in a Stream. In our streaming algorithm, we need to collect
a q-bounded disc from a vertex v. We do this in a natural and greedy way: We start with a
graph H = (U,F ) with U = {v} and F = ∅. Then whenever we see an edge (u,w) from the
stream that is connected to our current graph H and adding (u,w) to H does not violate
the q-bounded radius of H, and the degree of u or the degree of w in H is still less than q2q,
we add it to F (and possibly add one of its endpoints to U); otherwise, we simply ignore
the edge. Note that the algorithm does not assign colors to the subgraphs it explores. The
procedure StreamCollect is formally defined in Algorithm 2 in Appendix B.

Relation of One q-SC and One q-RBFS. In the following, we show that for any vertex v,
and any colored q-bounded disc C of v, the probability of collecting C from v by running
StreamCollect on a random order edge stream is at least a constant factor of the
probability of reaching C from v by running a q-RBFS on G. The statements in this
subsection hold for a single run of q-SC.

We emphasize that the coloring does not need to be explicitly given. It is sufficient if it
can be applied when random access to the graph is given. In particular, we may assign each
vertex in Vα a unique color. This enables us to identify the vertices where multiple q-RBFS
may intersect, which is crucial to apply Theorem 17 later.

I Lemma 18. Let G be a vertex-colored graph. There exists a constant c∗(q) depending on
q, such that for any colored q-bounded disc C of G, it holds that the probability (over S(G))
that StreamCollect(S(G), v, q) contains C is at least c∗(q) · ReachG(v, C).

The following lemma performs the step from q-bounded discs to q-bounded disc types.

I Lemma 19. Let ∆ be a fixed colored q-bounded disc type. Let Xv,∆ denote the indicator
variable that StreamCollect from v collects a subgraph that contains a colored q-bounded
disc of v that is isomorphic to ∆. Let Yv denote the indicator variable that RandomBFS
from v sees a colored q-bounded disc of v that is isomorphic to ∆. Then it holds that
ES(G)[Xv,∆] ≥ c∗(q) · ERBFS [Yv] , where c∗(q) is the constant from Lemma 18.

Now we consider the probability of seeing a colored q-disc type ∆. Note that ES(G)[Xv,∆] =
PrS(G)[StreamCollect(S(G), v, q) contains a subgraph F with F ' ∆]. Furthermore, it
holds that ERBFS [Yv] = ReachG(v,∆). Thus, we have the following lemma.
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I Corollary 20. For any colored q-bounded disc type ∆, the probability (over S(G)) that
StreamCollect(S(G),v,q) contains a subgraph F with F ' ∆ is at least
c∗(q) · ReachG(v,∆) .

Relation of Multiple q-SCs and q-RBFS. In the above, we related a single run of q-RBFS
and a single run of q-SC. In particular, Corollary 20 states that if a q-RBFS starting from v

finds some colored q-bounded disc type ∆ with probability p, q-SC finds the same type ∆
with probability Ω(p). However, the forbidden subgraphs that the property tester aims to
find may be composed of more than one q-bounded disc. Therefore, we need to prove that
if multiple runs of q-RBFS find q-bounded disc types ∆1, . . . ,∆k whose union contains an
instance of a forbidden subgraph F ∈ F ′n, then multiple runs of q-SC will find ∆1, . . . ,∆k

with probability Ω(p).
We now show our main technical lemma on estimating the reach probability of q-bounded

disc types in random order streams. Again, the coloring of vertices in G is implicit and only
used for the analysis.

I Lemma 21. Let G = (V,E) be a graph defined by a random order stream and let all vertices
in Vα be colored. Let q > 0 be an integer and let c′q :=

∑q+1
i=0 q

2qi. Let δ > 0, and let S denote

a set of vertices that are chosen uniformly, where s := |S| ≥ max
{

1
20
√
αq2q·c′q

,
5000|Hq|
c∗(q)δ3

}
, α :=

c∗(q)4δ8

109|Hq|2q2qc′q
. Let J := {Hv : Hv = StreamCollect(S(G), v, q), v ∈ S} denote the set of

colored q-bounded discs collected by StreamCollect from vertices in S. For each type
∆ ∈ Hq, let X∆ denote the number of graphs H in J such that H contains a subgraph F
with F ' ∆.

Then it holds that with probability at least 1− 1
100 , for each type ∆ ∈ Hq, q∆ := 1

c∗(q) ·
X∆
s ≥

ReachG(∆)− δ , where c∗(q) is a constant from Corollary 20.

5 Testing Graph Properties in Random Order Streams

Now we transform constant-query property testers (with one-sided error) into constant-space
streaming property testers, and prove Theorem 4. The main idea is to explore the streamed
graph by StreamCollect and look for the forbidden subgraphs in Fn that characterize Π
(see Theorem 10). However, in the underlying analysis, we use the (reversible) decomposition
of the forbidden subgraphs in Fn into F ′n (see Theorem 17) to prove the following: if T finds
the colored q-bounded discs ∆1, . . . ,∆k that compose a forbidden subgraph F ∈ F ′n with
probability p, then the streaming tester will find at least as many copies of ∆1, . . . ,∆k as
T (see Lemma 21) and can stitch F from these copies. With these tools at hand, we can
incorporate our analysis from previous sections to complete the proof of Theorem 4 (see
Appendix C).

6 Conclusions

We gave the first canonical testers for all constant-query testers in the random-neighbor
model for general graphs and show that one can emulate any constant-query tester with
one-sided error in this query model in the random-order streaming model with constant space.
Our transformation between constant-query testers and streaming algorithms with constant
space provides a strong and formal evidence that property testing and streaming algorithms
are very closely related. Our results also work for any restricted class of general graphs and
other query models, e.g., random neighbor/edge model. It follows that many properties
are constant-space testable (with one-sided error) in random order streams, including (s, t)-
disconnectivity, being d-bounded degree, k-path-freeness of general graphs and bipartiteness
and H-freeness of planar (or minor-free) graphs.
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A Missing Illustrations from Section 1

u
v

Figure 1 Consider the graph on the left, which can be decomposed into colored 3-bounded disc
types (which are rooted at u and v in this example) in more than one way. However, it is always
possible to recover the original graph by identifying vertices of the same color. Furthermore, every
mapping is bijective because every color is assigned at most once per disc. If the colored vertices
correspond to the vertices in Vα, every forbidden graph F ∈ Fn from Theorem 10 corresponds to a
decomposition into edge-disjoint colored q-bounded discs F ′ ∈ F ′

n in Theorem 17, which intersect
only at colored vertices.

u v
x

y

z

x

y

z

Figure 2 The above graph, which is composed of 3-stars and a ω(1)-star with root z and which
should be thought of as a subgraph of some larger graph, illustrates the need for colors in our
analysis of the streaming property tester. Although the 2-bounded discs of u, v x and y are all
3-stars (with constant probability over the randomness of the neighbor queries), exploring u and v

by q-RBFS does not result in finding a 6-star, while it is likely to find a 6-star by exploring x and y.
Even if we prove that the probability that a q-SC finds uncolored 3-stars is lower bounded by some
constant fraction of the probability that q-RBFS finds uncolored 3-stars, we still cannot rule out
that q-SC might tend to find leaves of the small stars (like u and v) while q-RBFS tends to find
leaves of the big star (like x and y). Observe that here, z is the only vertex that is likely contained
in two different q-RBFS due to its high degree.
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B Missing Pseudocodes from Section 3 and 4

The pseudocodes for the q-random BFS and for collecting a q-bounded disc from a vertex in
stream are given below.

Algorithm 1 q-random BFS.

function RandomBFS(G, v, q)
Q← empty queue; enqueue(Q, v)
∀w ∈ V : `[w]←∞
`[v]← 0
H ← ({v}, ∅) with v as root
while Q not empty do

u← pop element from Q

for 1 ≤ i ≤ q do
su,i ← query oracle for random neighbor of u
add vertex su,i and edge (u, su,i) to H
if (`[u] < q − 1) ∧ (`[su,i] =∞) then

`[su,i]← `[u] + 1
enqueue(Q, su,i)

return undirected H without parallel edges
end function

Algorithm 2 Collecting a q-bounded disc from a vertex in stream.

function StreamCollect(S(G), v, q)
U ← {v}
∀u ∈ V : du ← 0, `u ←∞
`v ← 0;F ← ∅
H = (U,F ) with v marked as root
for (u,w)← next edge in the stream do

if ({u,w} ∩ U 6= ∅) then
if (u ∈ U ⇒ (`u < q ∧ du < q2q) ∨ (w ∈ U ⇒ (`w < q ∧ dw < q2q)) then

U ← U ∪ {u,w}
F ← F ∪ (u,w)
du ← du + 1; dw ← dw + 1
`u ← min(`u, `w + 1); `w ← min(`w, `u + 1)

return H

end function

C Missing Proofs from Section 5

Proof of Theorem 4. We let q0 = q0(ε) denote the query complexity of Π. Let n = |V |.
We present our testing algorithm. Let q = c · q0 for some constant c from Theorem 10.
Let α = c∗(q)4δ8

109|Hq|2q2qc′q
, where c′q =

∑q+1
i=0 q

2qi, and δ = 1
200|Hq| . If n ≤ n0 := qcq

α2 , then
we simply store the whole graph. If n > n0, we proceed as follows. Let Fn be the
set of forbidden subgraphs that characterize Π as stated in Theorem 10. We sample
s ≥ max{ 1

20
√
αq2q·c′q

,
5000|Hq|
c∗(q)δ3 } vertices S ⊆ V and run StreamCollect(S(G), v, q) for

each v ∈ S to obtain a subgraph Hv = (Vv, Ev) of G. If H = ∪v∈SHv contains a forbidden
subgraph F ∈ Fn, the tester rejects, otherwise it accepts. See Algorithm 3 for details.
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Algorithm 3 Testing graph property Π in random order stream.

function StreamTest(S(G), n, ε,Fn)
S ← sample s vertices u.a.r. from V

for all v ∈ S do
Hv ← (Vv, Ev) = StreamCollect(S(G), v, q)

H ← (∪vVv,∪vEv)
if there exists F ∈ Fn such that H contains a subgraph F then

Output Reject
else

Output Accept
end function

The space complexity of the algorithm is s · qO(q0)
0 = Oq0(1) words. For the correctness of

the algorithm, we note that for any property Π that is constant-query testable with one-sided
error, then with probability 1, we will not see any F ∈ F ′n if the graph G satisfies Π.

On the other hand, if G is ε-far from satisfying Π, then by Theorem 17, with probability
at least 2

3 , the subgraph Sq spanned by the union of q-bounded discs rooted at q uniformly
sampled vertices from G will span a subgraph that is isomorphic to some F ∈ F ′n. Note
that, in contrast to the algorithm above, the analysis uses the decomposition of forbidden
subgraphs in Fn into colored q-discs given by Theorem 17. The key idea is to use the q-
bounded discs that StreamCollect collects and the implicit colors (which are not observed
by StreamCollect, but can be used in the analysis to identify vertices in Vα) to stitch
forbidden subgraphs from F ′n that are discovered by RandomBFS. We prove that with
sufficient probability, for each colored q-bounded disc ∆, StreamCollect finds at least
as many copies of ∆ as RandomBFS, and therefore, it can reproduce the same types of
forbidden subgraphs from F ′n.

By Markov’s inequality and the union bound, the probability that at least one q-RBFS
in the canonical tester for Π will return a colored q-bounded disc that is isomorphic to a
disc ∆′ such that ReachG(∆′) < 2δ = 1

100|Hq| is at most 1
100 . Let D be the set of all colored

q-bounded discs ∆ such that ReachG(∆) ≥ 2δ.
By Lemma 21, with probability at least 1 − 1

100 , for every ∆ ∈ D, the number of
graphs Hv obtained by StreamCollect that contain a subgraph isomorphic to ∆ is at least
100|Hq|·ReachG(∆) ≥ 1. By (implicitly) coloring all vertices in Vα, it follows from Theorem 17
that H contains a forbidden subgraph from F ′n with probability 1− 1

100 −
1

100 >
2
3 . J
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