
Reaching a Consensus on Random Networks:
The Power of Few
Linh Tran
Department of Mathematics, Yale University, New Haven, CT, USA
https://math.yale.edu/people/linh-tran
l.tran@yale.edu

Van Vu
Department of Mathematics, Yale University, New Haven, CT, USA
https://math.yale.edu/people/van-vu
van.vu@yale.edu

Abstract
A community of n individuals splits into two camps, Red and Blue. The individuals are connected
by a social network, which influences their colors. Everyday, each person changes his/her color
according to the majority of his/her neighbors. Red (Blue) wins if everyone in the community
becomes Red (Blue) at some point.

We study this process when the underlying network is the random Erdos-Renyi graph G(n, p).
With a balanced initial state (n/2 persons in each camp), it is clear that each color wins with the
same probability.

Our study reveals that for any constants p and ε, there is a constant c such that if one camp has
n
2 + c individuals at the initial state, then it wins with probability at least 1− ε. The surprising
fact here is that c does not depend on n, the population of the community. When p = 1/2 and
ε = .1, one can set c = 6, meaning one camp has n

2 + 6 members initially. In other words, it takes
only 6 extra people to win an election with overwhelming odds. We also generalize the result to
p = pn = o(1) in a separate paper.
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1 Introduction

1.1 The opinion exchange dynamics
Building mathematical models to explain how collective opinions are formed is an important
and interesting task (see [12] for a survey on the topic, with examples from various fields,
economy, sociology, statistical physics, to mention a few).

Obviously, our opinions are influenced by people around us, and this motivates the study
of the following natural and simple model. A community of n individuals splits into two
camps, Red and Blue, representing two competing opinions, which can be on any topic such
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20:2 The Power of Few

as brand competition, politics, ethical issues, etc. The individuals are connected by a social
network, which influences their opinion on a daily basis (by some specific rule). We say that
Red (respectively Blue) wins if everyone in the community becomes Red (respectively Blue)
at some point.

We study this process when the underlying network is random. In this paper, we focus on
the Erdos-Renyi random graph G(n, p), which is the most popular model of random graphs
[4, 10]. We use the majority rule, which is a natural choice. When a new day comes, a vertex
scans its neighbors’ colors in the previous day and adopts the dominant one. If there is a tie,
it keeps its color.

I Definition 1. The random graph G(n, p) on n ∈ N vertices and density p ∈ (0, 1) is
obtained by putting an edge between any two vertices with probability p, independently.

1.2 Results
With a balanced initial state (n/2 persons in each camp), by symmetry, each color wins with
the same probability q < 1/2, regardless of p. (Notice that there are graphs, such as the
empty and complete graphs, on which no one wins.)

Our study reveals that for any given p and ε, there is a constant c such that if one camp
has n

2 + c individuals at the initial state, then it wins with probability at least 1− ε. The
surprising fact here is that c does not depend on n, the population of the community. When
p = 1/2 and ε = .1, one can set c as small as 6.

I Theorem 2 (The power of few). Consider the (majority) process on G(n, 1/2). Assume
that the Red camp has at least n

2 + 6 vertices at the initial state, where n ≥ 300. Then Red
wins after the fourth day with probability at least 90%.

This result can be stated without the Erd́’os-Renyi model; one can state an equivalent
theorem by choosing the network uniformly, from the set of all graphs on n vertices.

This result reveals an interesting phenomenon, which we call “the power of few”. The
collective outcome can be extremely sensitive, as a modification of the smallest scale in the
initial setting leads to the opposite outcome.

Our result applies in the following equivalent settings.
Model 1. We fix the two camps of size n/2 + 6 and n/2−6, respectively, and draw a random

graph on their union.
Models 2. Draw a random graph first, let Red be a random subset of n/2+6 vertices (chosen

uniformly from all subsets of that size), and Blue be the rest.
Model 3. Split the society into two camps of size n/2 each. Draw the random graph on

their union, then recolor 6 random selected Blue vertices to Red.
Model 4. Split the society into two camps (Red and Blue) of size n/2 − 6 each and a

“swinging” group (with no color yet) of 12 individuals. Draw the random graph on their
union. Now let the swinging group join the Red camp.

With Model 3, we can imagine a balanced election process at the beginning. Then 6
persons change camp. This tiny group already guarantees the final win with an overwhelming
odds. Similarly, Model 4 asserts that a swinging group of size 12 decides the outcome.

Our result can also be used to model the phenomenon that outcomes in seemingly identical
situations become opposite. Consider two communities, each has exactly n individuals, sharing
the same social network. In the first community, Red camp has size n/2 + c, and Blue camp
has n/2− c. In the second community, Blue camp has n/2 + c and Red camp has n/2− c. If
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n is large, there is no way to tell the difference between the two communities. Even if we
record everyone’s initial opinion, clerical errors will surely swallow the tiny difference of 2c.
However, at the end, the collective opinion will be opposite, with high probability.

Now we state the general result for arbitrary constant density p.

I Theorem 3 (Asymptotic bound). Let p be a constant in (0, 1) and cn be a positive integer
which may depend on n . Assume that Red has n/2 + cn individuals in day zero and
the random graph is G(n, p). Then Red wins after the fourth day with probability at least
1−K(p) max{n−1, c−2

n }, where K(p) depends only on p.

Both results follow from Theorem 6, which, in a slightly technical form, describes how
the process evolves day by day. Our results can be extended to cover the case when there
are more than 2 opinions; details will appear in a later paper [14].

1.3 Related results
Our problem is related to a well studied class of opinion exchange dynamics problems. In the
field of Computer Science, loosely-related processes are studied in population protocols [2, 1],
where individuals/agents/nodes choose their next state based on that of their neighbors. The
most separating difference is the network, as connections in these models often randomly
change with time, while our study concerns a fixed network (randomly generated before the
process begins).

The survey by Mossel and Tamuz [12] discussed severals models for these problems,
including the DeGroot model [6], where an individual’s next state is a weighted average of its
neighbors’ current states, the voter model [5], where individuals change states by emulating
a random neighbor each day. The majority dynamics model is in fact the same as ours,
and is also more popular than the other two, having been studied in [11, 8, 3]. The key
difference, as compared to our study, is in the set-ups. In these earlier papers, each individual
chooses his/her initial color uniformly at random. The central limit theorem thus guarantees
that with high probability, the initial difference between the two camps is of order Θ(

√
n).

Therefore, these papers did not touch upon the “power of few” phenomenon, which is our
key message. On the other hand, they considered sparse random graphs where the density
p = pn goes to zero as n→ +∞.

In [3], Benjamini, Chan, O’Donnell, Tamuz, and Tan considered random graphs with
p ≥ λn−1/2, where λ is a sufficiently large constant, and showed that the dominating color
wins with probability at least .4 [3, Theorem 1.2], while conjecturing that this probability in
fact tends to 1 as n→∞. This conjecture was proved by Fountoulakis, Kang, and Makai [8,
Theorem 1.1].

I Theorem 4. For any 0 < ε ≤ 1 there is λ = λ(ε) such that the following holds for
p ≥ λn−1/2. With probability at least 1− ε, over the choice of the random graph G(n, p) and
the choice of the initial state, the dominating color wins after four days.

For related results on random regular graphs, see [11, 12].

1.4 Extension for sparse random graphs
Note that the results presented in this paper only applies for a constant p, which, in the
context of G(n, p), produces dense graphs. For sparse graphs, i.e. when p = pn depends on
n and tends to 0 as n→ +∞, the main ideas in this paper can be used, but with slightly
different algebraic techniques, to obtain a similar result.

APPROX/RANDOM 2020



20:4 The Power of Few

I Theorem 5. For any 0 < ε ≤ 1 there is c = c(ε) such that the following holds for
p ≥ (2 + o(1))(logn)/n. Assume that Red camp has size at least n/2 + c/p initially, then it
wins with probability at least 1− ε.

The technical changes needed to prove this theorem require rewriting entire proofs with
new computations, so we leave the proof to our future paper [14]. Additional information
such as the length of the process and the explicit relation between the bound with p and c
will also be discussed there. Notice that when p is a constant, this result covers the “Power
of Few” phenomenon as a special case, albeit with c much larger than 6. Therefore, the
techniques and results in this paper still have merit since they achieve a specific, surprisingly
small constant. Theorem 5 no longer holds for p < (logn)/n as in this case there are, with
high probability, isolated vertices. Any of these vertices keeps it original color forever. In
this case, the number of Blue vertices converges with time, and we obtain a bound on the
limit in [14].

One can use Theorem 5 to derive a “delayed” version (in which Red may need more
than 4 days) of Theorem 4, by first proving that with high probability, one side gains an
advantage of size at least C

√
n after the first day, for some constant C. This “majority

side” then wins with high probability given p ≥ λn−1/2 (which satisfies the requirement
p ≥ (2 + o(1))(logn)/n) with λ sufficiently large so that λC = pC

√
n is large. The detailed

argument is in Appendix A.3.

1.5 Notation
Rt, Bt: Respectively the sets of Red and Blue vertices after day t. (At this point each
person has updated their color t times.)
It(u) def= 1{u∈Rt}: {0, 1}-indicator of the event that u is Red after day t.
Jt(u) def= 2It(u)− 1: {−1, 1}-indicator of the same event.
u ∼ v ≡ (u, v) ∈ E: Event that u and v are adjacent.
Γ(v) def= {u : u ∼ v}: The neighborhood of v.
Wuv

def= 1{u∼v} - Indicator of the adjacency between u and v.
N (µ, σ2): The Normal Distribution with mean µ and variance σ2.
Φ(a, b) def= (2π)−1/2 ∫ b

a
e−

x2
2 dx and Φ(a) def= Φ(−∞, a), Φ0(a) def= Φ(0, a).

1.6 Main Theorem
The main theorem concerns dense graphs, where p is at least a constant. When given
appropriate values for the parameters, it implies the “Power of Few” phenomenon in Theorem
2. Before stating the theorem, we define some expressions.

C0
def= 0.56, C1

def=
√

3 log 2, σ = σ(p) def=
√
p(1− p),

P1 = P1(n, p, c, ε2) def=
1/4 + 4C2

0
(
1− 2σ2)2 · n−1

n−2(√
n− 1Φ0

(
2pc+min{p,1−p}

σ
√
n−1

)
− C0

1−2σ2

σ − C1+ε2
2p − 1

2
√
n

)2 ,

P2 = P2(n, ε2, ε1) def= 1
n

exp (−n [(1− 2ε1)ε2 − ε1]) ,

P3 = P3(n, p, ε1) def= 1
n

exp
(
− 1

2p
3(2ε1n− 1)2 + 2n log 2

)
,

P4 = P4(n, p) def= n exp
(
− 2

9p
2(n− 1)

)
.
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I Theorem 6. Let p ∈ (0, 1), c ∈ N, n ∈ N, and ε1, ε2 > 0. Define C0, C1, σ, P1, P2, P3, P4
as above. Assume that

2
√
n− 1Φ0

(
2pc+ min{p, 1− p}

σ
√
n− 1

)
>
C1 + ε2

p
+ 1√

n
and 2ε1n > 1. (1)

With nR, nB being integers such that nR + nB = n and 1 ≤ nB ≤ n
2 − c, the election process

on G ∼ G(n, p) with |B0| = nB satisfies the following
1. With nB0 = n

2 − c, nB1 = n−1
2 −

(
C1+ε2

2p

)√
n, nB2 =

( 1
2 − ε1

)
n, nB3 = 1

3p(n − 1),
nB4 = 0, we have P

(∣∣Bt∣∣ ≤ nBt ∣∣ ∣∣Bt−1
∣∣ ≤ nBt−1

)
≥ 1− Pt for each t = 1, 2, 3, 4.

2. P
(
R4 = V (G)

∣∣ |B0| = nB
)
≥ 1− (P1 + P2 + P3 + P4).

Intuitively, Pi is a upper bound on the probability of some abnormal event happening on
Day i. If none of these “catastrophes” occur, the whole population becomes Red after Day
Four. Note that if one let n→ +∞ while fixing all other parameters, P2, P3 and P4 all tend
to 0, leaving P1 as the main asymptotic component of the probability bound.

The proof for this theorem has two main parts corresponding to the next two sections.
In Section 2, we apply a concentration bound to the number of Red vertices after Day 1 to
show that with probability at least 1− P1, this number is at least n− nB1 . In Section 3, we
show that with high probability, this Ω(n1/2) advantage leads Red to win, using a shrinking
argument that bypasses the dependency of the coloring on the current day.

From Theorem 6, one can deduce Theorems 2 and 3 in a few steps. Detailed proofs
appear in Appendix A.1.

1.7 Open questions
Let ρ(k, n) be the probability that Red win if its camp has size n/2 + k in the beginning,
when p = .5. Theorem 2 shows that ρ(6, n) ≥ .9 (given that n is sufficiently large). In other
words, six defectors guarantee Red’s victory with an overwhelming odd. In fact, we have
ρ(4, n) ≥ .7 by plugging in the same values for ε1 and ε2 with c = 4 in Theorem 2’s proof.
We conjecture that one defector already brings a non-trivial advantage.

I Conjecture 7 (The power of one). There is a constant δ > 0 such that ρ(1, n) ≥ 1/2 + δ

for all sufficiently large n.

In the following numerical experiment, we run T = 10000 independent trials. In each
trial, we fix a set of N = 10000 nodes with 5001 Red and 4999 Blue (meaning c = 1),
generate a graph from G(N, 1/2), and simulate the process on the resulting graph. We
record the number of wins and the number of days to achieve the win in percentage in Table
1. Among others, we see that Red wins within 3 days with frequency more than .9. The
source code for the simulation along with execution instructions can be found online at
https://github.com/thbl2012/majority-dynamics-simulation.

Imagine that people defect from Blue camp to Red camp one by one. The value of the
ith defector is defined as v(i, n) = ρ(i, n)− ρ(i− 1, n) (where we take ρ(n, 0) = 1/2). It is
intuitive to think that the values of the defectors decrease. (Clearly defector number n/2
adds no value.)

I Conjecture 8 (Values of defectors). For any fixed i and sufficiently large n, we have
v(i, n) ≥ v(i+ 1, n).

It is clear that the Conjecture 8 implies Conjecture 7, with δ = .4
5 = .08, although the

simulation results above suggests that δ can be at least .43.

APPROX/RANDOM 2020
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20:6 The Power of Few

Table 1 Winners and winning days with their frequencies.

T p Red Blue Winner Last day Count Frequency
104 1/2 5001 4999 Blue 3 496 4.96 %
104 1/2 5001 4999 Blue 4 77 0.77 %
104 1/2 5001 4999 Blue 5 3 0.03 %
104 1/2 5001 4999 Blue 7 1 0.01 %
104 1/2 5001 4999 Red 2 25 0.25 %
104 1/2 5001 4999 Red 3 9313 93.13 %
104 1/2 5001 4999 Red 4 85 0.85 %

2 Day One

At day one, the number of Red and Blue neighbors of each node v are both binomial random
variables, with means roughly n/2 + c and n/2− c respectively. The central limit theorem
then implies that most of their masses are concentrated within an interval of length Θ(

√
n)

around their respective expectations. A subinterval of constant length in this interval will
have Θ(n−1/2) mass. Therefore, one expects that the probability that the number of Red
exceeds the number of Blues (in that particular neighborhood) is 1/2 + Ω(n−1/2). Thus, the
expectation of Red nodes after the first day is n/2 + Ω(n1/2). We consolidate this intuition
in the main result of this section, Theorem 9.

Firstly, let us recall a few terms defined in Section 1.6.

σ
def=
√
p(1− p), and P1

def=
1
4 + 4C2

0
(
1− 2σ2)2 · n−1

n−2(√
n− 1Φ0

(
2pc+min{p,1−p}

σ
√
n−1

)
− C0(1−2σ2)

σ − C1+ε2
2p − 1

2
√
n

)2 .

Define a new term Q by

Q = Q(n, p, c, d) def=
1
4 + 4C2

0
(
1− 2σ2)2 · n−1

n−2(√
n− 1Φ0

(
2pc+min{p,1−p}

σ
√
n−1

)
− C0(1−2σ2)

σ − d− 1
2
√
n

)2 .

Observe that Q
(
n, p, c, C1+ε2

2p

)
= P1(n, p, c, ε2). The following result thus covers the first

day in Theorem 6 by just plugging in d = (C1 + ε2)/(2p).

I Theorem 9. Let p ∈ (0, 1) and c be constants and σ and Q be defined above. Then if
n, nR, nB ∈ N such that nR + nB = n, 1 ≤ nB ≤ n

2 − c. Then for all d ∈ R>0 and n ∈ N
such that

√
n− 1Φ0

(
2pc+ min{p, 1− p}

σ
√
n− 1

)
− C0(1− 2σ2)

σ
> d+ 1

2
√
n
, (2)

we have

P
(∣∣B1

∣∣ > n− 1
2 − d

√
n

∣∣∣∣ |B0| = nB
)
≤ Q (n, p, c, d) .

The crux of the proof relies on some preliminary results regarding the difference of two
binomial random variables, which we discuss next.
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2.1 Background on difference of Binomial Random Variables
The difference of two binomial random variables with the same probability p be written as a
sum of independent random variables, each of which is either a Bin(1, p) variable or minus of
one. A natural way to bound this sum is done via a Berry-Esseen normal approximation.

I Theorem 10 (Berry-Esseen). Let n be any positive integer. If X1, X2, X3, . . . , Xn are
random variables with zero means, variances σ2

1 , σ
2
2 , · · · , σ2

n > 0, and absolute third moments
E
[
|Xi|3

]
= ρi <∞, we have:

sup
x∈R

∣∣∣∣∣P
(

n∑
i=1

Xi ≤ x

)
− Φ

(
x

σX

)∣∣∣∣∣ ≤ C0 ·
∑n
i=1 ρi
σ3
X

,

where σX =
(∑n

i=1 σ
2
i

)1/2 and C0 = .56 is a constant.

The original proof by Esseen [7] yielded C0 = 7.59, and this constant has been improved a
number of times. The latest work by Shevtsova [13] achieved C0 = .56, which will be used
for the rest of the paper. A direct application of this theorem gives the following lemma.

I Lemma 11. For p ∈ (0, 1), σ =
√
p(1− p) and n1, n2 ∈ N such that n1 > n2. let

Y1 ∼ Bin(n1, p), Y2 ∼ Bin(n2, p) be independent random variables. Then for any d ∈ R,

P (Y1 > Y2 + d) ≥ 1
2 + Φ0

(
p(n1 − n2)− d
σ
√
n1 + n2

)
−
C0
(
1− 2σ2)

σ
√
n1 + n2

.

Proof. By definition, the difference Y = Y1 − Y2 can be expressed as

X = X1 +X2 +X3 + · · ·+Xn1+n2 ,

where all Xi’s are independent and either Xi ∼ Bin(1, p) or −Xi ∼ Bin(1, p). Then
E [X] =

∑
i E [Xi] = p(n1 − n2). For all i, Var [Xi] = σ2 and E

[
|Xi −E [Xi] |3

]
= p(1 −

p)3 + (1− p)p3 = σ2(1− 2σ2) Applying Theorem 10, we have

P (Y1 ≤ Y2 + d) = P (X −E [X] ≤ d− p(n1 − n2))

≤ Φ
(
d− p(n1 − n2)

σX

)
+ C0

∑
i E
[
|Xi −E [Xi] |3

]
σ3
X

= Φ
(
d− p(n1 − n2)
σ
√
n1 + n2

)
+ C0

σ2(1− 2σ2)(n1 + n2)
σ3(n1 + n2)3/2

= 1
2 − Φ0

(
p(n1 − n2)− d
σ
√
n1 + n2

)
+ C0(1− 2σ2)

σ
√
n1 + n2

,

and the claim follows by taking the complement event. J

I Lemma 12. Let p ∈ (0, 1) be a constant and σ =
√
p(1− p), X1 ∼ Bin(n1, p) and

X2 ∼ Bin(n2, p) be independent r.v.s. Then for any integer d,

P (X1 = X2 + d) ≤
2C0

(
1− 2σ2)

σ
√
n1 + n2

.

Proof. Let n = n1 + n2 and µ = E [X1]−E [X2] = p(n1 − n2). Fix ε ∈ (0, 1), by the same
computations in Lemma 11, we have

P (X1 −X2 ≤ d− ε) ≥ Φ
(
d− µ− ε
σ
√
n

)
−
C0
(
1− 2σ2)
σ
√
n

,

P (X1 −X2 < d+ ε) ≤ Φ
(
d− µ+ ε

σ
√
n

)
+
C0
(
1− 2σ2)
σ
√
n

.

APPROX/RANDOM 2020



20:8 The Power of Few

It follows that

P(X1 = X2 + d) ≤ P(d− ε < X1 −X2 < d+ ε)

≤ Φ
(
d− µ+ ε

σ
√
n

)
− Φ

(
d− µ− ε
σ
√
n

)
+

2C0
(
1− 2σ2)
σ
√
n

.

Letting ε→ 0, we obtain the desired claim. J

Proof of Theorem 9
Recall that

∣∣R1
∣∣ = n−

∣∣B1
∣∣. Our goal is to lower-bound the probability that

∣∣R1
∣∣ < n+1

2 +d
√
n

for any given constant d. Recall the indicator I1(v) which is 1 if v is Red after Day One and
0 otherwise. We have:∣∣R1

∣∣ =
∑
v∈V

I1(v).

Since the indicators are not independent, a natural choice for bounding their sum is to use
Chebysev’s inequality. We proceed in two steps:
1. Lower-bound E

[∣∣R1
∣∣] by lower-bounding each term E [I1(v)].

2. Upper-bound Var
[∣∣R1

∣∣] by upper-bounding each Var [I1(v)] and Cov [I1(v), I1(v′)].

B Claim 13. E
[∣∣R1

∣∣] ≥ n+ 1
2 + (T (n, p, c, d) + d)

√
n,

where T (n, p, c) def=
√
n− 1Φ0

(
2pc+ min {p, 1− p}

σ
√
n− 1

)
−
C0
(
1− 2σ2)
σ

.

Proof. For each vertex v, let dR0 (v) and dB0 (v) respectively be the numbers of its Red and Blue
neighbors before the first day. By our rule, the event {v ∈ R1} is equivalent to dR0 (v) > dB0 (v)
if v ∈ B0, i.e. I0(v) = 0, and to dR0 (v) ≥ dB0 (v) if v ∈ R0, i.e. I0(v) = 1. This implies

∀v ∈ V.
[
v ∈ R1 ⇔ dR0 (v) + I0(v) > dB0 (v)

]
. (3)

Note that dR0 (v) ∼ Bin
(
nR − I0(v), p

)
and dB0 (v) ∼ Bin

(
nB + I0(v)− 1, p

)
. By Lemma 11,

we have:

E [I1(v)] = P (v ∈ R1) = P
(
dR0 (vi) + I0(v1) > dB0 (vi)

)
≥ 1

2 + Φ0

(
p
(
nR − nB + 1− 2I0(v)

)
+ I0(v)

σ
√
nR + nB − 1

)
−

C0
(
1− 2σ2)

σ
√
nR + nB − 1

= 1
2 + Φ0

(
2pc+ pv

σ
√
n− 1

)
−
C0
(
1− 2σ2)

σ
√
n− 1

,

where pv
def= p (1− I0(v)) + (1− p)I0(v) ≥ min{p, 1− p}. Now

E
[∣∣R1

∣∣] =
∑
v∈V

E [I1(v)] ≥
∑
v∈V

Φ0

(
2pc+ min{p, 1− p}

σ
√
n− 1

)
+ n

(
1
2 −

C0
(
1− 2σ2)

σ
√
n− 1

)

≥ n

2 +
[
√
n− 1Φ0

(
2pc+ min {p, 1− p}

σ
√
n− 1

)
−
C0
(
1− 2σ2)
σ

]
√
n

= n

2 +
(
T (n, p, c, d) + d+ 1

2
√
n

)√
n = n+ 1

2 + (T (n, p, c, d) + d)
√
n,

The proof is complete. C
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B Claim 14. Var
[∣∣R1

∣∣] ≤ n

4 + 4C2
0
(
1− 2σ2)2 · n(n− 1)

n− 2 .

Proof. We first have: Var
[∣∣R1

∣∣] =
k∑
i=1

Var [I1(v1)] + 2
∑
v1 6=v2

Cov [I1(v1), I1(v2)].

The variances Var [I1(v)] are easy due to I1(v) being a Bernoulli r.v.:

Var [I1(v)] = E [I1(v)] (1−E [I1(v)]) = 1
4 −

(
E [I1(v)]− 1

2

)2
≤ 1

4 . (4)

Bounding the covariance Cov [I1(v1), I1(v2)] for two distinct vertices v1, v2 requires a bit
more care, as the indicators are not independent. By definition

Cov [I1(v1), I1(v2)] = P (v1, v2 ∈ R1)−P (v1 ∈ R1) P (v2 ∈ R1) .

Consider the event {v1, v2 ∈ R1}; P (v1, v2 ∈ R1) can be written as

P (v1, v2 ∈ R1|v1 ∼ v2) P(v1 ∼ v2) + P (v1, v2 ∈ R1|v1 6∼ v2) P(v1 6∼ v2).

Notice that after we specify the adjacency between v1 and v2, the remaining vertices in
the neighborhoods of v1 and v2 are independent. Letting ai = P(vi ∈ R1 | v1 ∼ v2),
bi = P(vi ∈ R1 | v1 6∼ v2) and using shorthand q def= 1− p, we have

P (v1, v2 ∈ R1) = pa1a2 + (1− p)b1b2.

Now consider P (v1 ∈ R1) P (v2 ∈ R1). Splitting up the two events by {v1 ∼ v2} gives
P (v1 ∈ R1) = pa1 + qb1 and P (v2 ∈ R1) = pa2 + qb2. Putting everything together, we have

Cov [I1(v1), I1(v2)] = pa1a2 + qb2b2 − (pa1 + qb1) (pa2 + qb2)
= pq(a1 − b1)(a2 − b2) = σ2(a1 − b1)(a2 − b2).

(5)

We next analyze the relationship between a1 and b1. (The analysis for a2 and b2 is similar).
Define

mR def=
∣∣R0 \ {v1, v2}

∣∣ = nR − (I0(v1) + I0(v2)) ,
mB def=

∣∣B0 \ {v1, v2}
∣∣ = nB + (I0(v1) + I0(v2))− 2,

dR
def=
∣∣ (Γ(v1) ∩R0) \ {v2}

∣∣ = dR0 (v1)− I0(v2)Wv1v2

dB
def=
∣∣ (Γ(v1) ∩B0) \ {v2}

∣∣ = dB0 (v1) + (I0(v2)− 1)Wv1v2

We have mR +mB = n− 2, dR ∼ Bin(mR, p), dB ∼ Bin(mB , p) and dR0 (v1)− dB0 (v1) =
dR − dB + J0(v2)Wv1v2 . Now we can rewrite a1 and b1 using (3) in terms of the above:

a1 = P
(
dR0 (v1) + I0(v1) > dB0 (v1)

∣∣ v1 ∼ v2
)

= P
(
dR − dB > −J0(v2)− I0(v1)

)
,

b1 = P
(
dR0 (v1) + I0(v1) > dB0 (v1)

∣∣ v1 6∼ v2
)

= P
(
dR − dB > −I0(v1)

)
.

Case analysis on J0(v2):
{
J0(v2) = −1 =⇒ a1 − b1 = P

(
dR − dB = −I0(v1)

)
J0(v2) = 1 =⇒ b1 − a1 = P

(
dR − dB = −1− I0(v1)

)
.

In any case, by Lemma 12 we have
∣∣a1 − b1

∣∣ ≤ 2C0
(
1− 2σ2)

σ
√
mR +mB

=
2C0

(
1− 2σ2)

σ
√
n− 2

.

The same analysis for a2 and b2, and Equation (5) then imply

Cov [I1(v1), I1(v2)] ≤ σ2 ·
2C0

(
1− 2σ2)

σ
√
n− 2

·
2C0

(
1− 2σ2)

σ
√
n− 2

=
4C2

0
(
1− 2σ2)2

n− 2 . (6)
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Equations (4) and (6) together yield

Var
[∣∣R1

∣∣] ≤ 1
4 · n+ 2 ·

4C2
0
(
1− 2σ2)2

n− 2 ·
(
n

2

)
= n

4 + 4C2
0
(
1− 2σ2)2 · n(n− 1)

n− 2 . (7)

The proof is complete. C

From Claims 13 and 14, a standard Chebyshev’s inequality gives

P
(∣∣B1

∣∣ > n−1
2 − d

√
n
)

= P
(∣∣R1

∣∣ < n+1
2 + d

√
n
)
≤

Var
[∣∣R1

∣∣](
E
[∣∣R1

∣∣]− n+1
2 − d

√
n
)2

≤
n
4 + 4C2

0
(
1− 2σ2)2 · n(n−1)

n−2
T (n, p, c, d)2n

= Q(n, p, c, d).

The proof of Theorem 9 is complete. This theorem forms the first part of Theorem 6, which
shrinks the Blue camp from size n

2 − c to
n
2 − Ω(

√
n). We state explicitly the relevant result

to wrap up this section.

I Corollary 15. For any p ∈ (0, 1), c > 0, ε2 > 0 and n ∈ N, if the Blue side starts with
at most n

2 − c = nB0 members, it shrinks to size at most n−1
2 −

(
C1+ε2

2p

)√
n = nB1 with

probability at least 1− P1(n, p, c, ε2).

3 Day Two and after

Next, we analyze the situation after the first day. Clearly, if one fixes the coloring after Day
1 and examine the graph, its distribution is no longer G(n, p). Therefore, we cannot apply
the same method in proving Theorem 9 for later days. Instead, we use “shrinking arguments”
to argue that it is likely for the Blue camp to monotonously shrink to empty, regardless of
the choice of its members, due to G’s structure.

The core of our shrinking argument is Hoeffding’s inequality, a classical result that gives
exponentially small probability tails for sums of independent random variables.

I Theorem 16 (Hoeffding’s inequality). Let {Xi}ni=1 be independent random variables and
{ai}ni=1, {bi}ni=1, such that for all i = 1, 2, · · · , n, ai ≤ Xi ≤ bi almost surely. Then for
X = X1 +X2 + · · ·+Xn, we have

max
{

P (X −E [X] ≥ t) , P (X −E [X] ≤ −t)
}
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

The proof of Hoeffding’s inequality is available in most graduate level probability textbooks,
e.g. [15]. The original proof given by Hoeffding appeared in [9].

A simple yet useful shrinking argument is that, in the G(n, p) model, it is with high
probability that all vertices in G have many neighbors, so a small enough Blue camp will not
be able to influence anyone by a majority, thus inevitably vanishes the next day.

I Lemma 17. For p ∈ (0, 1) and n ∈ N>1, with probability at least

1− n exp
(
− 2

9p
2(n− 1)

)
= 1− P4(n, p),

G is such that all vertices have more than 2
3p(n− 1) neighbors, thus any choice of the Blue

camp of at most 1
3p(n− 1) = nB3 members shrinks to 0 = nB4 the next day.

The proof is standard using the Hoeffding bound, so we refer to Appendix A.2 for details.
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This simple lemma forms the first block of our shrinking argument. The overall aim is to
argue that with high probability, G is such that a Blue camp of size n

2 −O(
√
n) in Day 1

will inevitably be reduced to size O(n) in Day 2, and then to size less than 1
2p(n− 1) in Day

3, then vanishes in the fourth day by Lemma 17. The remaining blocks, which correspond to
days before the fourth, will require a more complicated argument.

I Lemma 18. Let p ∈ (0, 1), n, n0 ∈ N, n0 <
n
2 . Then for all m ∈ N,m ≤ n, with probability

at least

1− 4n

n
exp

(
−2p2(n− 2n0 − 1)2m

n+m− 2

)
,

G is such that any choice of the Blue camp of at most n0 members shrinks to below m in the
next day.

Proof. Consider a subset S of V with m elements. We will first bound the probability that S
entirely turn Blue the next day. Let (R,B) be the initial coloring with

∣∣B∣∣ = n0 < n− n0 =∣∣R∣∣. For each v ∈ V , let dif(v) def=
∣∣Γ(v) ∩ R

∣∣ − ∣∣Γ(v) ∩ B
∣∣, and let dif(S) def=

∑
v∈S dif(v).

We break down each dif(v) and dif(S) as follows:

dif(v) =
∑

u∈R∩S
Wvu +

∑
u∈R\S

Wvu −
∑

u∈B∩S
Wvu −

∑
u∈B\S

Wvu

dif(S) =
∑
v∈S

∑
u∈R∩S

Wvu +
∑
v∈S

∑
u∈R\S

Wvu −
∑
v∈S

∑
u∈B∩S

Wvu −
∑
v∈S

∑
u∈B\S

Wvu.
(8)

We have∑
v∈S

∑
u∈R∩S

Wvu =
∑

v∈R∩S

∑
u∈R∩S

Wvu+
∑

v∈B∩S

∑
u∈R∩S

Wvu =
∑

{u,v}⊂S∩R

2Wuv+
∑

v∈B∩S

∑
u∈R∩S

Wvu.

Similarly,
∑
v∈S

∑
u∈B∩S

Wvu =
∑

{u,v}⊂S∩B

2Wuv +
∑

v∈B∩S

∑
u∈R∩S

Wvu.

Substituting back into Equation 8, we get

dif(S) =
∑

{u,v}⊂S∩R

(2Wuv)−
∑

{u,v}⊂S∩B

(2Wuv) +
∑
u∈S

∑
v∈R\S

Wuv −
∑
u∈S

∑
v∈R\B

Wuv.

This is now a sum of independent variables, so we can apply Theorem 16. Firstly,

E [dif(S)] = p
∣∣S∣∣(∣∣R∣∣− ∣∣B∣∣)− p(|S ∩R| − |S ∩B|) ≥ pm(n− 2n0 − 1). (9)

Moreover, each Wuv takes values in [0, 1] (a range of length 1) and 2Wuv takes values in
[0, 2] (a range of length 2), so the sum of squares of these lengths are

F = 4
(∣∣S ∩R∣∣

2

)
+ 4
(∣∣S ∩B∣∣

2

)
+
∣∣S∣∣∣∣R \ S∣∣+

∣∣S∣∣∣∣B \ S∣∣
=
∣∣S∣∣(n− 2 +

∣∣S∣∣)− 4 |S ∩R| |S ∩B| ≤ m(n− 2 +m).

By Hoeffding’s inequality:

P (S ⊆ B1 | R0, B0) ≤ P (dif(S) ≤ 0) = P (dif(S)−E [dif(S)] ≤ −E [dif(S)])

≤ exp
(
−E [dif(S)]2

F

)
≤ exp

(
−2p2(n− 2n0 − 1)2m

n− 2 +m

)
.
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Applying a double union bound over choices of S and (R,B), noting that there are
(
n
n0

)(
n
m

)
≤

4n/n choices, we have

P
(
∃(R,B).∃S.

∣∣B∣∣ = n0,
∣∣S∣∣ = m,S ⊂ B1

)
≤ 4n

n
exp

(
−2p2(n− 2n0 − 1)2m

n+m− 2

)
.

Taking the complement event, we get the desired result. J

Lemma 18 turns out to be sufficient for the remaining blocks of our shrinking argument.
The following lemmas are direct corollaries of Lemma 18.

I Lemma 19. For p ∈ (0, 1), ε1 ∈
(
0, 1

2
)
and n ∈ N>1, with probability at least

1− 1
n

exp
(
− 1

2p
3(2ε1n− 1)2 + 2n log 2

)
= 1− P3(n, p, ε1),

G is such that any choice of the Blue camp of at most
( 1

2 − ε1
)
n = nB2 members shrinks to

size at most 1
3p(n− 1) = nB3 the next day.

I Lemma 20. With C1 = (3 log 2)1/2 defined in Section 1.6, let p ∈ (0, 1), n ∈ N and
ε1, ε2 > 0, then with probability at least

1− exp (−n [(1− 2ε1)ε2 − ε1]− logn) = 1− P2(n, ε2, ε1), (10)

G is such that any choice of the Blue camp of at most n−1
2 −

(
C1+ε2

2p

)√
n = nB1 members

shrinks to size at most
( 1

2 − ε1
)
n = nB2 the next day.

A routine calculation shows that for appropriate choices of values for ε1 and ε2 such that
ε1 < ε2/(1 + 2ε2), the bound in Equation (10) tends to 1 as n → +∞. Detailed proofs
of Lemmas 19 and 20 are in Appendix A.2. These lemmas and Lemma 17, together with
Corollary 15 form the complete “chain of shrinking” for the number of Blue vertices to reach
0 in four days, hence wrapping up the proof of Theorem 6.

4 Conclusion

The majority dynamics scheme on a network of n individuals is a process where each person
is assigned an initial color, which changes daily to match the majority among their neighbors.
The main results in this paper reveal a surprising facts. When the underlying network is a
random G(n, p) graph, for any given constants p and ε, there is a constant c = c(p, ε) such
that if one color has n

2 + c members in the initial state, then with probability at least 1− ε,
it covers the whole network in just four days, regardless of n.

Our main result, Theorem 6, yields an explicit lower-bound based on n, p and c for the
probability that the side with the initial majority wins. It has two important implications.
The first is the Power of Few phenomenon (Theorem 2), which shows that when p = 1/2 and
ε = .1, c can be set to just 6, meaning six extra people is all it takes to win a large election
with overwhelming odds. The second is an asymptotic dependency between the ε, n and c
(Theorem 3), which shows that for any fixed p, there is a constant K(p) such that choosing
n and c both large enough so that K(p) max{n−1, c−2} < ε will ensure that the winning
probability is at least 1− ε.

The main idea behind Theorem 6 involves shrinking the set of Blue, the side with the
initial minority, from (n/2 − c) to 0 members in the course of four days. This chain of
shrinking goes from (n/2− c) through (n/2− Ω(

√
n)), (1/2− Ω(1))n and (1/2− Ω(1))pn,

eventually reaching 0 after Day 4. There is a small probability that the shrinking fails to
occur on each day, and their sum is the bound we obtained in the theorem’s statement.
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Although the results in this paper only applies for dense G(n, p) graphs, we do cover sparse
graphs in a separate in-progress paper [14], where we obtain the Power of Few phenomenon
for p = Ω((logn)/n), and discuss the end result (other than a win) for lower values of p. We
nevertheless included one of the main proven results of the upcoming paper (Theorem 5),
and used it to prove the main theorem in the paper [8] by Fountoulakis, Kang and Makai in
Appendix A.3.
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A Appendix

In this appendix we provided detailed proofs for claims and lemmas not proven in the main
text. We begin with some useful general probabilistic lemmas that are used throughout these
proofs.

A.1 Proofs of Theorems 2 and 3
Proof of Theorem 2. Assume Theorem 6. Observe that if the conditions in (1) hold for
some value of n, then they hold for all larger values of n. Let n = 300, ε1 = .15 and ε2 = .3
(along with p = 1/2 and c = 6), we have the condition in Equation (1) satisfied. Furthermore,
a routine calculation shows that

P1 ≤ .08454, P2 < .00001, P3 < .00001, P4 ≤ .00001,

which implies that P (B4 6= ∅) < 0.1 or equivalently that Red wins in the fourth day with
probability at least .9 (conditioned on the event

∣∣B0
∣∣ = nB ≤ n

2 − c). J

Proof of Theorem 3. In this proof, only n and c = cn can vary. We can assume, without
loss of generality, that cn ≤ n/2. Assuming Theorem 6, we choose (constants) ε1, ε2 such
that ε2(1 − 2ε1) − ε1 > 0, then a routine calculation shows that P2, P3, P4 = o(n−2) and
P1 = Ω(n−1), so P1 + P2 + P3 + P4 = P1 + o(1). We have, for sufficiently large cn and
sufficiently large n,
√
n− 1 Φ0

(
2pcn+min{p,1−p}

σ
√
n−1

)
− C0(1−2σ2)

σ − C1+ε2
2p − 1

2
√
n
≥
√
n

2 Φ0

(
2cn
√
p√

n

)
= T (n)

2 ,

1/4 + 4C2
0 (1− 2σ2)2 n−1

n−2 ≤ 1/4 + 4 · 0.62 · 1.5 < 3.

Thus, P1 ≤ 12T (n)−2. It then suffices to show T (n) ≥ H(p) min{c−2
n , n−1} for some term

H(p) depending solely on p. Consider 2 cases:

If cn ≥
√
n, then: T (n) ≥

√
n · Φ0(2√p) ≥

√
n · 2√p · Φ0(2)

2 = √
p Φ0(2)

√
n.

If cn <
√
n, then: T (n) ≥

√
n ·

2cn
√
p

√
n
· Φ0(2)

2 = √
p Φ0(2) cn.

In any case, T (n) ≥ H(p) min{c−2
n , n−1}, for H(p) = Φ0(2)√p, as desired. J

A.2 Proofs for lemmas in Day Two
We provide proofs for Lemmas 19 and 20 in Section 3.

Proof. In a G(n, p) graph, d(v) is a sum of (n− 1) Bin(1, p) random variables, so Theorem
16 implies that for any u ∈ V ,

P
(
d(u) ≤ 2

3p(n− 1)
)
≤ P

(
d(u)−E [d(u)] ≤ − 1

3p(n− 1)
)
≤ exp

(
− 2

9p
2(n− 1)

)
.

By a union bound, the probability that all vertices have more than 2
3p(n− 1) neighbors is

at least 1− n exp
(
− 2

9p
2(n− 1)

)
= 1− P4(n, p). Given this, a Blue camp of size 1

3p(n− 1)
surely vanishes the next day since it cannot form a majority in any vertex’s neighborhood.
The result then follows. J

Proof of Lemma 19. Let n2
def=
⌊( 1

2 − ε1
)
n
⌋
and m def= d 1

3p(n− 1)e. Lemma 18 implies that
the G satisfies that every Blue set of at most n2 vertices shrinks to size m−1 with probability
at least

1− 4n

n
exp

(
−2p2(n− 2n2 − 1)2m

n+m− 2

)
= 1− 1

n
exp

(
−2p2(n− 2n2 − 1)2m

n+m− 2 + 2n log 2
)
.
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Since n2 ≤
( 1

2 − ε1
)
n, (n − 2n2 − 1)2 ≥ (2ε1n − 1)2. Furthermore, m ≥ 1

3p(n − 1) so
m

n+m−2 ≥
p(n−1)/3

n+p(n−1)/3−1 = p
3+p ≥

p
4 . Therefore

1
n

exp
(
−2p2(n− 2n2 − 1)2m

n+m− 2 + 2n log 2
)
≤ 1
n

exp
(
−1

2p
3(2ε1n− 1)2 + 2n log 2

)
.

The result then follows. J

Proof of Lemma 20. Let n2
def=
⌊
n−1

2 −
(
C1+ε2

2p

)√
n
⌋
and m

def=
⌈( 1

2 − ε1
)
n
⌉
. Lemma 18

implies that the G satisfies that every Blue set of at most n2 vertices shrinks to size m− 1
with probability at least

1− 4n

n
exp

(
−2p2(n− 2n2 − 1)2m

n+m− 2

)
= 1− 1

n
exp

[
−
(

2p2(n− 2n2 − 1)2m

n+m− 2 − 2n log 2
)]

.

Since m
n+m−2 ≥

m
n+m ≥

1−2ε1
3−2ε1

and n− 2n2 − 1 ≥
(
C1+ε2
p

)√
n, we can bound the exponent

of the RHS of the above as follows

2p2(n− 2n2 − 1)2m

n+m− 2 − 2n log 2 ≥ 2p2
(
C1 + ε2

p

)2 1− 2ε1

3− 2ε1
n− 2C2

1
3 n

= 2n
3− 2ε1

[
(C1 + ε2)2 (1− 2ε1)− C2

1
3 (3− 2ε1)

]
≥ 2n

3

[
ε2(ε2 + 2C1)(1− 2ε1)− 4

3ε1C
2
1

]
≥ 2n

3 [2.8ε2(1− 2ε1)− 2.8ε1] = 5.6n
3 [ε2(1− 2ε1)− ε1] ≥ n [ε2(1− 2ε1)− ε1] .

Note that we have used the facts that C1 > 1.4 and log2 < .7. The proof is complete. J

A.3 Proof of Fountoulakis et al’s Theorem from Theorem 5
We provide the proof of the main theorem in [8] (Theorem 4) with our Theorem 5.

Proof. Assume Theorem 5. Let R0 and B0 respectively be the initial Red and Blue camps.
Fix a constant 0 < c′ ≤ ε/6.

∣∣R0
∣∣ ∼ Bin(n, 1/2) since it is a sum of Bin(1, 1/2) variables. An

application of the Berry-Esseen theorem (Theorem 10; with C0 = .56) implies that

P
(∣∣R0

∣∣− n

2 ≤ c
′√n

)
≤ Φ(2c′) + C0√

n
and P

(∣∣R0
∣∣− n

2 ≤ −c
′√n

)
≥ Φ(−2c′)− C0√

n
,

Thus

P
(∣∣∣∣∣R0

∣∣− n

2

∣∣∣ ≤ c′√n) ≤ (
Φ(2c′) + C0√

n

)
−
(

Φ(−2c′)− C0√
n

)
≤ Φ(−2c′, 2c′) + 2C0√

n
≤ 4c′√

2π
+ 2C0√

n
≤ ε

3 + 2C0√
n
≤ ε/2,

for sufficiently large n.
On the other hand, if

∣∣∣∣R0
∣∣− n/2∣∣ > c′

√
n, then one of the sides has more than n/2+c′

√
n

initial members, which we call the majority side. Now we apply Theorem 5 with ε replaced
by ε/2. Notice that in the setting of Theorem 4 if we have p = λn−1/2 for λ sufficiently
large, then c′

√
n ≥ c/p, where c is the constant in Theorem 5. Thus, by this theorem, the

probability for the majority side to win is at least 1− ε/2, and we are done by the union
bound. J
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