
Computing Bi-Lipschitz Outlier Embeddings into
the Line
Karine Chubarian
Department of Mathematics, Statistics and Computer Science,
University of Illinois at Chicago, IL, USA
kchuba2@uic.edu

Anastasios Sidiropoulos
Department of Computer Science, University of Illinois at Chicago, IL, USA
sidiropo@uic.edu

Abstract
The problem of computing a bi-Lipschitz embedding of a graphical metric into the line with minimum
distortion has received a lot of attention. The best-known approximation algorithm computes an
embedding with distortion O(c2), where c denotes the optimal distortion [Bădoiu et al. 2005]. We
present a bi-criteria approximation algorithm that extends the above results to the setting of outliers.

Specifically, we say that a metric space (X, ρ) admits a (k, c)-embedding if there exists K ⊂ X,
with |K| = k, such that (X \K, ρ) admits an embedding into the line with distortion at most c.
Given k ≥ 0, and a metric space that admits a (k, c)-embedding, for some c ≥ 1, our algorithm
computes a (poly(k, c, logn), poly(c))-embedding in polynomial time. This is the first algorithmic
result for outlier bi-Lipschitz embeddings. Prior to our work, comparable outlier embeddings where
known only for the case of additive distortion.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases metric embeddings, outliers, distortion, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.36

Category APPROX

Funding Anastasios Sidiropoulos: Supported by NSF grants CCF-1815145, CCF-1934915, and by
NSF CAREER award 1453472.

1 Introduction

The theory of metric embeddings provides an extensive toolbox that has found applications
in several geometric data-analytic tasks. At the high level, an embedding of a metric space
M = (X, ρ) into some metric spaceM′ = (X ′, ρ) is a mapping f : X → X ′ that preserves
certain interesting geometric properties of M. In most cases, it is desirable to obtain
embeddings that minimize some notion of distortion.

Despite the success of metric embeddings methods in several application domains, one
significant limitation of most existing methods is that they are not robust to noise in the
form of outlier points in the input. This setting is of particular interest in the case where
the data does not perfectly fit the underlying geometric model, or when some points are
corrupted due to measurement errors. The outlier model also has connections to the setting
of adversarial machine learning [13]. More specifically, in the setting of poisoning attacks,
it is often assumed that a small subset of the training data set is corrupted adversarially.
For example, in a classification application, some of the training samples can be modified
arbitrarily. Therefore, it is important to design data-analytic primitives that are robust
against this type of adversarial input perturbation.

Our aim is to bypass the limitations of current metric embedding methods by designing
approximation algorithms that given some input spaceM, they compute a small subset of
points to delete, and an embedding of the residual space into some desired host space.

© Karine Chubarian and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 36; pp. 36:1–36:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kchuba2@uic.edu
mailto:sidiropo@uic.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.36
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 Computing Bi-Lipschitz Outlier Embeddings into the Line

1.1 Our contribution
We now formally define outlier embeddings and state our main result. Let M = (X, ρ),
M′ = (X ′, ρ′) be metric spaces. An injection f : X → X ′ is called an embedding. Given an
embedding f , its distortion is defined as

distortion(f) = sup
x 6=y∈X

ρ′ (f(x), f(y))
ρ(x, y) · sup

x′ 6=y′∈X

ρ(x′, y′)
ρ′ (f(x′), f(y′)) .

We also refer to this notion of distortion as multiplicative distortion. An embedding is
bi-Lipschitz if its distortion is bounded. WhenM′ = (R, `2) then we say thatM admits an
embedding into the line. If distortion(f) ≤ c, then we say that f is a c-embedding. We use
the following definition for outlier embeddings (see also [19]).

A metric spaceM = (X, ρ) admits a (k, c)-embedding into another metric spaceM′ =
(X ′, ρ′) for some c ≥ 1, k ≥ 0 if there exists K ⊆ X, with |K| ≤ k, and f : X \K → X ′,
with distortion(f) ≤ c. We say that such K ⊆ X is an outlier set (w.r.t. f).

In the present work, we focus on the case where the input metric space is the shortest-
path metric of an unweighted graph, and the host space is the real line. This setting, but
without outliers, has been studied extensively in the literature (see Section 1.2 for a more
detailed discussion). The shortest-path metrics of unweighted graphs arise naturally in
applications, for example, when considering the k-NN graph of a point set; that is, by taking
the set of vertices to be a set of samples from some unknown manifold, and the edge set
to be all pairs {u, v}, where u is one of the k nearest neighbors of v. Moreover, the case
of embedding into the real line is a prototypical mathematical model for the problem of
discovering 1-dimensional structure in a metrical data set.

The following summarizes the main result of this paper.

I Theorem 1. Let G be a graph, k ≥ 0, c ≥ 1. There exists a polynomial-time algorithm
which given G, k, and c, terminates with exactly one of the following outcomes:
(1) Correctly decides that G does not admit a (k, c)-embedding into the line.
(2) Computes a (O(c6k log5/2 n), O(c13))-embedding of G into the line.

1.2 Related work
Low-distortion metric embeddings have been studied extensively within mathematics and
computer science. We refer the reader to [14] for a detailed exposition of the work that is of
main interest for computer science. Here, we discuss some results relevant to our work.

Approximation algorithms. The problem of computing an embedding of some input metric
spaceM into some host spaceM′ with approximately minimum distortion has received a lot
of attention. Most positive results are concerned with the case whereM′ is the line, or, more
generally, some 1-dimensional space. Specifically, Bădoiu et al. [6] obtained an algorithm
which given an unweighted graph that admits a c-embedding into the line, computes a
O(c3)-embedding into the line. Approximation algorithms have also been obtained by Bădoiu
et al. [5] for the case where the input is a weighted tree, and by Nayyeri and Raichel [17] for
the case where the input is a general metric space.

Approximation algorithms for embedding into more general 1-dimensional spaces have
also been considered. Bădoiu et al. [3] consider the case where the host space is a tree, Chepoi
et al. [8] consider the case where the host space is an outerplanar graph, and Nayyeri and
Raichel [18] generalize this to the case where the host space is a graph of bounded treewidth.
Carpenter et al. [7] obtain an approximation algorithm for embedding unweighted graphs
into subdivisions of any fixed “pattern” graph H (embedding into the line corresponds to H
being a single edge, while embedding into a cycle is the case where H is a triangle).



K. Chubarian and A. Sidiropoulos 36:3

The case of higher-dimensional host spaces appears to be significantly more challenging.
The only positive results are an approximation algorithm for embedding finite subsets of
the 2-sphere into R2 [6], and approximation algorithms for embedding ultrametrics into Rd
[4, 10]. On the negative side, it is shown that for any d ≥ 1, the problem of embedding into
d-dimensional Euclidean space with minimum distortion is hard to approximate within a
factor of nα/d, for some constant α > 0 (the case d = 1 is due to [5] and d ≥ 2 is due to [16]).

FPT algorithms. The problem of computing an embedding into the line parameterized by
the optimal distortion has also been considered. Fellows et al. [12] gave an FPT algorithm for
embedding unweighted graphs into the line. A nearly-matching lower bound on the running
time (assuming ETH) was obtained by Lokshtanov et al. [15]. FTP algorithms for embedding
unweighted graphs into subdivisions of an arbitrary fixed pattern graph H have also been
obtained by Carpenter et al. [7].

Outlier embeddings. The problem of computing outlier embeddings was introduced by
Sidiropoulos et al. [19]. They considered the case of embedding into d-dimensional Euclidean
space, and into trees. The main difference with our work is that [19] deals with the case of
additive distortion, while we are concerned with multiplicative distortion. As a result, the
results in [19] are incomparable to ours. We remark, however, that the case of mutliplicative
distortion is known to be significantly more challenging. To the best of our knowledge, our
result is the first non-trivial upper bound for computing outlier embeddings minimizing the
multiplicative distortion.

1.3 High-level overview of the algorithm
We now give an informal description of our algorithm, highlighting the main technical
challenges. The input consists of an undirected graph G and some k ≥ 0, c ≥ 1. The
algorithm either correctly decides that there exists no (k, c)-embedding of G into the line, or
outputs a (k′, c′)-embedding of G into the line, for some k′ = poly(k, c, logn), c′ = poly(c).

The crux of the algorithm is to identify and remove three “obsrtuctions” for low-distortion
embeddability into the line. These three obstructions are regions of high density, large
metrical cycles and large metrical tripods. We next discuss the steps used to handle each one
of these obstructions, and describe how all the steps are combined in the final algorithm.

Obstruction 1: Reducing the density. The density of a graph is defined to be

∆(G) = max
v∈V (G),R∈N

|BallG(v,R)| − 1
2R .

It is known that the density of any graph that admits a c-embedding into the line is O(c) [6].
Therefore, if G admits a (k, c)-embedding, then there must exist some set of at most k
vertices, whose deletion leaves a graph with density O(c). We observe that the density of a
graph is a hereditary property, meaning that for any H ⊆ G, we have ∆(H) ≤ ∆(G). This
leads to a following recursive procedure: if the density is higher than O(c), we compute a
balanced vertex separator X ⊆ V (G), and recurse on G \X. We set

Kdensity :=
⋃

all separators X
X.

Let us also denote G \Kdensity as G′. It is immediate that ∆(G′) = O(c), and we show that
|Kdensity| = poly(k, c, logn).

APPROX/RANDOM 2020



36:4 Computing Bi-Lipschitz Outlier Embeddings into the Line

Obstruction 2: Eliminating large metrical cycles. It is known that any embedding of the
n-cycle into the line must incur distortion Ω(n) [6]. More generally, it is possible to define an
obstruction, which we refer to as a metrical cycle, and which contains cycles as a special case,
but allows for more general shortest-path distances (see Figure 1). We show how to delete
a small number of vertices so that the resulting graph does not contain any large metrical
cycles, and then we find a low-distortion embedding into some forest.

Figure 1 Example of a large metrical cycle.

We now briefly describe the procedure for eliminating large metrical cycles. We start by
computing a poly(c)-net N in G′. We then find a Voronoi partition P centered at N : for any
vertex v ∈ G′, we assign v to a cluster centered at its nearest neighbour y ∈ N (we break ties
to ensure connectivity). Let H be the minor of G obtained by contracting each cluster to its
center y ∈ N . We compute an approximate minimum feedback vertex set Y in H. We set

Kforest :=
⋃
x∈Y
P(x),

and G′′ = G′ \ Kforest. Note that the low density of G′ ensures that |Kforest| is small.
Furthermore, we show that G′′ admits a low-distortion embedding into a forest.

Figure 2 Elimination of large metrical cycles. From left to right: the graph G′, the minor H, the
forest H \ Y , and the graph G′′.

Obstruction 3: Eliminating large metrical tripods. A tripod is a tree consisting of the
union of three paths with a common endpoint; we say that a tripod is R-large if the length
of each of the three paths is at least R. Any embedding of a R-large tripod into the line
must incur distortion Ω(R). We show how to delete a small number of vertices so that the
resulting graph does not have any subgraphs with a shortest-path metric that resembles that
of a Ω(poly(c))-large tripod. More specifically, via a reduction to the Minimum Set Cover
problem, we compute some Z ⊆ V (H \ Y ), so that the forest H \ (Y ∪ Z) does not contain
any Ω(poly(c))-large tripods (see Figure 3). We set

Ktripod :=
⋃

w∈(H\Y )\Z

P(w).



K. Chubarian and A. Sidiropoulos 36:5

and G′′ = G′ \Ktripod. Since the forest H \ (Y ∪ Z) does not contain any large tripods, we
can show that it admits a low-distortion embedding into the line. Furthermore, we can use
this embedding to also embed G′′ into the line.

Figure 3 Elimination of a large tripod. A yellow vertex removes the red tripod and the yellow
dotted tripod simultaneously.

Putting everything together. The final algorithm combines the above procedures for
eliminating the three obstructions that we have identified. At each obstruction elimination
step, we remove a small set of vertices. One additional complication is that, because c-
embeddability into the line is not a hereditary property, this can produce a graph that does
not admit a low-distortion embedding into the line. We show that this issue can be avoided
by deleting a slightly larger superset of vertices, which eliminates the obstruction at hand,
while maintaining the existence of a low-distortion embedding.

1.4 Organization
The rest of the paper is organized as follows. We introduce necessary notation and definitions
in Section 2. In Section 3, we present our main algorithm and we state the main technical
results needed. In Section 3.2 we prove a technical lemma which will be applied throughout
the paper. Sections A, B, C, D elaborate on the subroutines executed by the main algorithm.

2 Preliminaries

2.1 Graphs
Given a graph G, we refer to its vertex set as V (G) and to its edge set as E(G). For
any C ⊆ V (G), we denote by G[C] the subgraph of G induced on C. Let dG denote the
shortest-path distance of G; unless otherwise noted, we assume that all edges in G are
undirected and have unit length.

I Definition 2 (Local density). For any v ∈ V (G) and R ∈ N, we define

∆G(v,R) = |BallG(v,R)| − 1
2R

The local density of the graph G is defined to be

∆(G) = max
v∈V (G),R∈N

∆G(v,R).

I Definition 3 (Tripod). Let G be a graph, R ≥ 1, v, v1, v2, v3 ∈ V (G), and let P1, P2, P3 be
paths in G, where for all i ∈ [3], Pi is a path with endpoints v and vi. Suppose that for all
i 6= j ∈ [3], and for all u ∈ Pj, we have dG(vi, u) ≥ R. In other words, each endpoint vi is
at distance at least R from every vertex in the other two paths. Then we say that the tree
P1 ∪ P2 ∪ P3 is a R-tripod with root v (in G).

APPROX/RANDOM 2020



36:6 Computing Bi-Lipschitz Outlier Embeddings into the Line

vv1

v2

v3

Figure 4 A tripod rooted at v with leaves v1, v2, v3.

2.2 Some useful approximation results
For a graph G, a feedback vertex set is some X ⊆ V (G), such that G \ X is acyclic. In
the Minimum Feedback Vertex Set problem we are given a graph G and the goal is to
find a feedback vertex set in G of minimum cardinality. We recall the following result on
approximating the Minimum Feedback Vertex Set problem.

I Theorem 4 (Bafna et al. [1]). There exists a polynomial-time 2-approximation algorithm
for the Minimum Feedback Vertex Set problem.

Given a graph G and some α ∈ [0, 1), we say that some X ⊆ V (G) is a α-balanced vertex
separator (of G) if every connected component of G \X has at most α · |V (G)| vertices. We
recall the following algorithmic result on computing balanced vertex separators.

I Theorem 5 (Feige et al. [11]). There exists a polynomial-time algorithm which given a
graph that admits a 2/3-balanced vertex separator of size s, outputs a 3/4-balanced vertex
separator of size at most O(

√
logn · s).

Recall that an instance to the Minimum Set Cover problem consists of some set U (the
universe), and a set C of subsets of U . The goal is to find a subset of C of minimum cardinality
that covers U .

I Theorem 6 (Chvátal [9]). There exists a polynomial-time O(logn)-approximation algorithm
for the Minimum Set Cover problem.

2.3 Voronoi minors
For some metric spaceM = (X, ρ), and some R > 0, we say that some N ⊆ X is a R-net of
M if for any p, q ∈ N , ρ(p, q) > R, and X ⊆

⋃
p∈N BallM(p,R). For a graph G, we say that

some N ⊆ V (G) is a R-net of G if N is a R-net of the shortest-path metric of G.

I Definition 7 (Graphical Voronoi partition). Let G be a graph, and let Y ⊆ V (G). Let P be
a partition of V (G) satisfying the following conditions:
(1) Every cluster in P contains exactly one vertex in Y .
(2) For any v ∈ V (G), the cluster containing v, P(v), also contains some nearest neighbor

of v in Y .
(3) For any cluster C ∈ P, we have that G[C] is connected.
We say that P is a Voronoi partition of G centered at Y .

We note the following easy fact.

I Lemma 8. For any graph G, and Y ⊆ V (G), there exists a Voronoi partition P of G
centered at Y .



K. Chubarian and A. Sidiropoulos 36:7

y1

y2

y3

y1

y2

y3

Figure 5 A Voronoi partition centred at 3-net N = {y1, y2, y3} and a corresponding 3-minor.

Proof. Construct P by assigning each v ∈ V (G) to the cluster containing its nearest neighbor
in Y . In order to ensure that each cluster C induces connected subgraph G[C] it suffices to
ensure that shortest-paths in G are unique. This can be achieved by breaking ties between
different paths lexicographically (viewing paths as sequences of vertices with unique integer
labels) (see also [6]). J

I Definition 9 (R-Minor). Let G be a graph, R > 0, and let N be a R-net of G. Let P be a
Voronoi partition of G centered at N . Let H be the minor of G obtained by contracting each
cluster in C in P into the unique net point in C. Then we say that P is a R-partition and
H is a R-minor of G induced by P (see Figure 5 for an example).

3 The Main Algorithm

In this section we present and analyze the main algorithm of the paper. For the clarity, we
first state some key technical ingredients used by the algorithm. We then present the main
algorithm and its analysis. The proofs of the technical ingredients appear in latter Sections.

3.1 Technical ingredients used by the main algorithm
Density reduction. The first technical ingredient used by the main algorithm is a procedure
for reducing the local density of the input graph. This is summarized in Lemma 10. Its proof
is given in Section A.

I Lemma 10 (Density Reduction). There exists a polynomial-time algorithm given given a
graph G, k ≥ 0, c ≥ 1, terminates with exactly one of the following outcomes:
(1) Correctly decides that G does not admit a (k, c)-embedding into the line.
(2) Outputs some Y ⊆ V (G) such that ∆(G\Y ) ≤ c, with |Y | = O(ck log3/2 n). In particular,

if ∆(G) ≤ c, then the algorithm outputs ∅.

Eliminating large metrical cycles. The next technical ingredient is a procedure for elim-
inating large metrical cycles. This is summarized in Lemma 11, whose proof is given in
Section B.

I Lemma 11 (Embedding into a forest). There exists a polynomial-time algorithm which
given a graph G, c ≥ 1, and k ≥ 0, terminates with exactly one of the following outcomes:
(1) Correctly decides that G does not admit a (k, c)-embedding into the line.
(2) Outputs a c-net N of G, a c-partition P centered at N , a c-minor H induced by P, and

some feedback vertex set X of H, with |X| ≤ 2k.

APPROX/RANDOM 2020



36:8 Computing Bi-Lipschitz Outlier Embeddings into the Line

Figure 6 A 3× n grid G can be embedded into the line with distortion O(1); one could follow
the red dotted path on the grid an embed the vertices consequently. A yellow line depicts U . Now,
if we delete a yellow vertex from G \ U , the resulting graph will be just a path.

Eliminating large metrical tripods. The next obstruction that the main algorithm needs
to remove is large metrical tripods. This is done using Lemmas 12 and 13. Their proofs
appear in Section C.

I Lemma 12 (Tripods as obstructions to embeddability). Let G be a graph, R ≥ 1, and let J
be a R-tripod in G. Then for any c-embedding of G into the line we have c ≥ 2R.

I Lemma 13 (Tripod elimination). There exists a polynomial-time algorithm which given a
forest F , R ≥ 1, k ≥ 0, terminates with exactly one of the following outcomes:
(1) Correctly decides that there exists no X ′ ⊆ V (F ), with |X ′| ≤ k, such that F \X ′ does

not contain any R-tripod as a subgraph.
(2) Outputs some X ′ ⊆ V (F ), with |X ′| = O(k logn), such that F \X ′ does not contain any

R-tripod as a subgraph.

Embedding a tree with no large tripods into the line. Once all the obstructions have
been removed, the problem is reduced to computing an embedding of a tree with no large
tripods into the line. This is done using Lemma 14, whose proof appears in Section D.

I Lemma 14. Let R ≥ 1, and let T be a tree that does not contain any R-tripod as a
subgraph. Then T admits a O(∆(T ) ·R)-embedding into the line. Moreover, this embedding
can be computed in polynomial time.

3.2 The Repairing Lemma

The main algorithm proceeds in several steps. At each step, it uses some of the procedures
described above to delete small subsets of vertices. However, because c-embeddability into
the line is not a hereditary property, it is possible that the deletion of some small set of
vertices destroys some candidate solution. As an illustrative example, let G be the 3× (n/3)
grid. Note that G admits a O(1)-embedding into the line (i.e. without outliers). This
embedding can be realized by consecutively traversing the columns of the grid. Let U be
the set of vertices that do not lie on the outer boundary cycle of G. Then, G \ U is the
(2n/3 + 2)-cycle, and therefore any embedding of G \ U into the line has distortion Ω(n).
However, by removing one additional vertex from G \ U we obtain a path, which admits a
1-embedding into the line (see Figure 6). We show that the above “repairing” process can be
performed for arbitrary U . First, we prove two auxiliary statements.

I Lemma 15. Let G be a graph, k > 0, c > 1. Assume that G admits a (k, c)-embedding
into a line. Suppose G admits a (k, c)-embedding into the line realized by f : G \K → R.
Then, there exists a (k, c)-embedding f ′ of G into a line such that if j > i then for any
v ∈ Gi, w ∈ Gj we have f ′(w) > f ′(v).



K. Chubarian and A. Sidiropoulos 36:9

Proof. Let

v1 = arg min
v∈V (G)\K

{f(v)}

v2 = arg max
v∈V (G)\K

{f(v)}

and let M = f(v2)− f(v1). Without loss of generality, we can assume that f(v1) = 0 and
f(v2) = M by setting f(v) := f(v)− f(v1). For each v ∈ Gi we define f ′(v) = f(v) + 2i ·M .
We claim that f ′ and f have the same distortion. If v, w ∈ Gi then we have

|f ′(w)− f ′(v)| = |(f(w) + 2i ·M)− (f(w) + 2i ·M)| = |f(w)− f(v)|.

If v ∈ Gi and w ∈ Gj for i 6= j then the distance between them in the embedding does not
contribute to the distortion.

It remains to show that f ′(w) > f ′(v) for all w ∈ Gj , v ∈ Gi with j > i. We have

f ′(w)− f ′(v) = f(w)− f(v) + 2(j − i)M > −M + 2M > 0

and the claim follows by induction. J

Let G = (V (G), E(G)) be a graph and let f : G → R. Consider Z = {v1, . . . , vm} ⊆ V (G)
such that f(v1) < f(v2) < · · · < f(vm). Then Z is consecutive with respect to f if for all
w ∈ V (G) \ U either f(w) < f(v1) or f(vm) < f(w).

I Lemma 16. Let G be a graph, c > 0. Assume that G admits a (0, c)-embedding into the
line realized by f : G → R. Let Z = {z1, . . . , zm} ⊆ V be consecutive with respect to f .
Suppose that f(vm)− f(v1) ≥ c; then Z is a vertex separator in G.

Proof. We claim that

X = {x ∈ V (G) | f(x) < f(v1)}
Y = {y ∈ V (G) | f(vk) < f(y)}

are disconnected in G \ Z. Assume otherwise; then there exists {x, y} ∈ E(G) with
x ∈ X, y ∈ Y. Thus

|f(y)− f(x)| = f(y)− f(vk) + f(vk)− f(v1) + f(v1)− f(x) ≥ c+ 1 > c · dG(x, y)

which contradicts the distortion assumption. J

We can now prove the Repairing Lemma:

I Lemma 17 (Repairing Lemma). Let G be a graph, U ⊂ V (G), k ≥ 0, c ≥ 1. Suppose that G
admits a (k, c)-embedding into a line. Then, G\U admits a ((2c+1)|U |+k, 4c3 +c)-embedding
into a line.

Proof. Let f be a (K, c)-embedding of G into the line, with |K| = k. Let U ′ = U ∩K, and
U ′′ = U \K. For any v ∈ U \K, let

Iinner(v) = BallR(f(v), c),
Iouter(v) = BallR(f(v), 2c2) \ Iinner(v),
Vinner(v) = {u ∈ V (G) \K : f(u) ∈ Iinner(v)}
Vouter(v) = {u ∈ V (G) \K : f(u) ∈ Iouter(v)}

APPROX/RANDOM 2020



36:10 Computing Bi-Lipschitz Outlier Embeddings into the Line

exposed

v

inner

outer safesafe outer

inner

Figure 7 Inner, outer, safe and exposed vertices with respect to v for c = 2.

Let also

Iinner =
⋃

v∈U\K

Iinner(v)

Iouter =

 ⋃
v∈U\K

Iouter(v)

 \ Iinner

Vinner = {u ∈ V (G) \K : f(u) ∈ Iinner},
Vouter = {u ∈ V (G) \K : f(u) ∈ Iouter},

Vexposed = Vinner ∪ Vouter,

Vsafe = V (G) \ Vexposed.

We can now define

K ′ = K ∪ Vinner.

Since the minimum distance in G is one, and f is non-contracting, it follows that

|K ′| ≤ |K|+ (2c+ 1)|U |.

Let c′ = (4c3 + c). It remains to construct any (K ′, c′)-embedding f ′. By lemma 15 it is
enough to construct a c′-embedding for each connected component of G \K ′

We may thus focus on any connected component C of G \K ′. Let f ′ = (4c2 + 1) · f |C
(that is, f ′ is the restriction of f on C scaled by a factor of 4c2 + 1). It suffices to show that
f ′ is a (4c3 + c)-embedding of C.

If there exist v ∈ U \K, and u ∈ C such that f(v) < f(u), then we set

zL = arg max
v∈U\K:∀u∈C,f(zL)<f(u)

{f(v)},

Similarly, if there exist v ∈ U \K, and u ∈ C such that f(v) > f(u), then we set

zR = arg min
v∈U\K:∀u∈C,f(zR)>f(u)

{f(v)}.

Let u, v ∈ V (C). We first bound the expansion of f ′. Since K ⊂ K ′, it follows what
dG\K(u, v) ≤ dG\K′(u, v), and thus

|f ′(u)− f ′(v)| = (4c2 + 1) · |f(u)− f(v)| ≤ (4c3 + c) · dG\K(u, v)
≤ (4c3 + c) · dG\K′(u, v). (1)

It remains to show that f ′ is non-contractive. Let P be the shortest path between u and
v in G \K. Let us first assume that u, v ∈ Vsafe; we will consider the general case later. If
zL is defined and P ∩ Vouter(zL), we first construct a new path P ′ that avoids Vouter(zL), as



K. Chubarian and A. Sidiropoulos 36:11

follows. When traversing P starting from u, let u1 be the last vertex before visiting Vouter(zL)
for the first time; let also u2 be the first vertex visited immediately after leaving Vouter(zL)
for the last time.

Since the expansion of f is at most c, it follows that

f(u1) ∈ (f(zL) + 2c2, f(zL) + 2c2 + c],
f(u2) ∈ (f(zL) + 2c2, f(zL) + 2c2 + c],

and thus

dG\K(u1, u2) ≤ |f(u1)− f(u2)| ≤ c. (2)

Let W be the shortest path between u1 and u2 in G \ K. Since every edge of W is
stretched by at most a factor of c in f , it follows by (2) that W cannot enter Vinner(zL),
and thus W ⊆ G \K ′. Therefore dG\K′(u1, u2) = dG\K(u1, u2) ≤ c. We can replace P be
the path P ′ := P [u, u1] ◦W ◦ P [u2, v], which does not intersect vouter(zL). We obtain that
length(P ′) = length(P [u, u1])+ length(W )+ length(P [u2, v]) ≤ c+ length(P ) ≤ c+dG\K(u, v).

Next, if zR exists and P ′ ∩ Vouter(zR) 6= ∅, then via a symmetric process we can replace
P ′ by a new path P ′′ between u and v in G \K avoids Vouter(zR) ∪ Vouter(zL), with

length(P ′′) ≤ length(P ′) + c ≤ length(P ) + 2c.

This implies that P ′ ⊆ G \K ′.
We therefore obtain

|f ′(u)− f ′(v)| = (4c2 + 1) · |f(u)− f(v)| ≥ (4c2 + 1) · dG\K(u, v)
≥ (4c2 + 1) · (dG\K′(u, v)− 2c) > dG\K′(u, v). (3)

By (1) and (3) we obtain that f is a (4c3 + c)-embedding of G \K ′, as required.
It remains to consider the case where either u ∈ Vexposed, or v ∈ Vexposed. Let Q be a

shortest path between u and v in G \K ′. If Q ∩ Vsafe = ∅, then length(Q) ≤ 4c2 − 2c, thus

dG\K′(u, v) ≤ (4c2 − 2c) ≤ (4c2 − 2c) · dG\K′(u, v),

which implies that f ′ is non-contractive, as required. We may therefore assume for the
remainder of the proof that Q ∩ Vsafe 6= ∅. If u ∈ Vexposed, then we may assume w.l.o.g. that
u ∈ Vouter(zL). When traversing P starting from u, let u1 be the first vertex visited
immediately after leaving Vouter(zL). When traversing Q starting from u, let u2 be the
first vertex visited in Vsafe. By an argument identical to the one used in the previous
case, we can obtain a new path between u and v, given by Q[u, u2] ◦W ◦ P [u1, v], where
length(Q[u, u2]) ≤ 2c2 − c (since all vertices in Q[u, u2] except the last one are contained in
the rightmost segment of Vouter(zL)), W ⊆ G \K ′, and length(W ) ≤ c (as in the previous
case). We thus obtain a path of length at most dG\K(u, v) + 2c2. If v ∈ Vexposed, we repeat
the above process after exchanging u and v. We thus arrive at a path between u and v of
length at most dG\K(u, v)+4c2 ≤ (4c2 +1) ·dG\K , which does not intersect Vinner, and thus it
is contained in G \K ′. It follows that f ′ is non-contractive, and thus a (4c3 + c)-embedding,
which concludes the proof. J

3.3 The algorithm
Given the technical ingredients presented above, we are now ready to describe our main
algorithm. Recall that the input consists of a graph G, and k ≥ 0, c ≥ 1. The algorithm
proceeds in the following steps.

APPROX/RANDOM 2020



36:12 Computing Bi-Lipschitz Outlier Embeddings into the Line

Step 1: Density reduction. Using the algorithm from Lemma 10 we can either correctly
decide that G does not admit a (k, c)-embedding into the line, in which case we terminate,
or we compute some Xdensity ⊆ V (G), with |Xdensity| ≤ O(ck log3/2 n), such that ∆(G \
Xdensity) ≤ c.

Step 2: Cycle elimination. Let k′ = (2c + 1)|Xdensity| + k and c′ = 4c3 + c. Using the
algorithm from Lemma 11 we either correctly decide that G′ does not admits a (k′, c′)-
embedding into the line, or we compute a c′-net N of G′, a c′-partition P centered at N ,
a c′-minor H induced by P , and some feedback vertex set Yforest of H, with |Yforest| ≤ 2k′.
If G′ does not admit a (k′, c′)-embedding into the line, then we terminate by deciding
that G does not admit a (k, c)-embedding into the line.

Step 3: Tripod elimination. Let F = H \ Yforest, and recall that Yforest is a feedback vertex
set for H, and thus F is a forest. Using the algorithm from Lemma 13, in polynomial
time, we either decide that there exists no Ytripod ⊆ V (F ), with |Ytripod| ≤ k′, such that
F \Ttripod does not contain any (c′/2+1)-tripod, in which case we terminate deciding that
G does not admit a (k, c)-embedding into the line, or we compute some Ytripod ⊆ V (F ),
with |Ytripod| = O(k logn), such that F \ Ytripod does not contain any (c′/2 + 1)-tripods.

Step 4: Embedding into a forest. Let F ′ = F \ Ytripod. Let

Xforest =
⋃

v∈Yforest

P(v),

Xtripod =
⋃

v∈Ytripod

P(v),

and

K = Xdensity ∪Xforest ∪Xtripod.

Let F ′′ be the forest obtained from F ′ as follows. Initially, we set F ′′ := F ′. For each
v ∈ V (G) \ K, let u(v) be the unique vertex in N ∩ P(v); we add v to F ′′ as a leaf
attached to u(v). This completes the construction of the forest F ′′.

Step 5: Embedding into the line. Finally, we compute an embedding f of F ′′ into the line
using the algorithm from Theorem 14. We output the embedding ϕ := 2c′c · f (that is, f
scalled by a factor of 2c′c).

3.4 Analysis of the main algorithm
We now analyze the main algorithm presented above. First, we state some auxiliary properties
of c-minors and c-partitions.

I Lemma 18. Let G be a graph, R ≥ 1. Let N be a R-net of G, P a corresponding R-
partition and H a R-minor G induced by P. Then for any Y ⊆ V (H) all of the following
hold:
(1) N ′ := N \ Y is a R-net in G′ := G \ (∪v∈Y P(v))
(2) P ′ := P \ (∪v∈Y {P(v)}) is the R-partition of G′ centered at N ′

(3) H ′ := H \ Y is the R-minor of G′ induced by P ′.

Proof. We first show (1). Since by deleting vertices the shortest-path distances cannot
increase, we have that for all u, v ∈ N ′, dG′(u, v) ≥ dG(u, v) > R. It thus remains to show
that for any x ∈ V (G′) there exists v ∈ N ′ such that dG′(x, v) ≤ R. Consider an arbitrary



K. Chubarian and A. Sidiropoulos 36:13

x ∈ V (G′). Let v ∈ N be such that x ∈ P(v). Since the shortest path between v and x in G
is contained in P(v), it follows that

dG′(x, v) ≤ dG′[P(v)](x, v) = dG[P(v)](x, v) = dG(x, v) ≤ c,

which implies that N ′ is a c-net of G′.
Next, we show (2). Since for all v ∈ N ′, we have P ′(v) = P(v), it follows that P ′ is a

partition of V (G′). Since by (1) N ′ is a R-net of G′, and for all v ∈ N ′, and for all x ∈ P ′(v)
we have dG′(v, x) ≤ R, it follows that P ′ is a R-partition of G′ centered at N ′.

Finally, we show (3). Let H̃ be the R-minor of G′ induced by P ′. We prove that
V (H ′) = V (H̃) and E(H ′) = E(H̃). For the first equality, observe that

V (H ′) = V (H \ Y ) = N \ Y = N ′ = V (H̃).

It remains to show that E(H ′) = E(H̃). Consider an arbitrary {u, v} ∈ E(H ′). Since
H ′ ⊆ H we have that {u, v} ∈ E(H). Then there must exist a path P ⊆ G between
u, v with P ⊆ P(u) ∪ P(v). Since u, v ∈ V (H \ Y ) = N ′ we have that P(u) = P ′(u),
P(v) = P ′(v). Thus, P ⊆ P ′(u) ∪ P ′(v) which yields {u, v} ∈ E(H̃). Now consider an
arbitrary {u, v} ∈ E(H̃); it induces a path Q ⊆ G′ between u, v such that Q ⊆ P ′(u)∪P ′(v).
Since P ′(u) = P(u), P ′(v) = P(v) we obtain {u, v} ∈ E(H). Then from u, v ∈ N ′ = N \ Y
we have {u, v} ∈ E(H \ Y ) = E(H ′) which concludes the proof. J

I Lemma 19. Let G be a graph and let R > 0. Let N be c-net of G, P a c-partition centered
at N , and H a R-minor induced by P. Then for any u, v ∈ N we have dH(u, v) ≤ dG(u, v).

Proof. Let P ⊆ G be a shortest path between u, v and let J := {w ∈ N : P ∩ P(w) 6= ∅}.
Let Q ⊆ H be a shortest path between u, v. We claim that

length(Q) ≤ |J | − 1 ≤ length(P ).

Assume for contradiction that length(Q) > |J | − 1. Consider arbitrary {x1, x2} ∈ E(P ) such
that x1 ∈ P(w1), x2 ∈ P(w2) for w1 6= w2; hence {w1, w2} ∈ E(H). Therefore, P induces a
walk W ⊆ H such that v, u ∈ V (W ). Hence, there is a path Q′ ⊆W such that v, u ∈ V (Q′);
note that length(Q) ≤ |V (W )| − 1 = |J | − 1. Thus,

length(Q′) ≤ |J | − 1 < length(Q) = dH(v, u).

which gives a contradiction, and concludes the proof. J

We now have all the necessary ingredients in place to prove Theorem 1, which is the main
result of this paper.

Proof of Theorem 1. We analyze the algorithm presented above. By Lemma 10, if we
terminate at Step 1, then we correctly decide that G does not admit a (k, c)-embedding.
Otherwise, by Lemma 17, it follows that if G admits a (k, c)-embedding into the line, then
G′ = G \Xdensity admits a (k′, c′)-embedding into the line, with k′ = (2c+ 1)|Xdensity|+ k =
O(c2k log3/2 n)) and c′ = 4c3 + c.

By Lemma 11, if we decide that G′ does not admit a (k′, c′)-embedding into the line,
then, by the above discussion, this certifies that G does not admit a (k, c)-embedding into
the line; we can thus correctly decide this fact in Step 2.

Suppose that G′ admits a (k′, c′)-embedding into the line. Thus, there exists some K ′ ⊆
V (G′), with |K ′| ≤ k′, such that G′ \K ′ admits a c′-embedding into the line. Let J be the set
of all v ∈ N such that the Voronoi cell of v intersects K ′, that is J = {v ∈ N : K ′∩P(v) 6= ∅}.

APPROX/RANDOM 2020



36:14 Computing Bi-Lipschitz Outlier Embeddings into the Line

We claim that F \J does not contain any (3c′/2+1)-tripod. For the sake of contradiction,
suppose that F \ J contains some (3c′/2 + 1)-tripod T = P1 ∪ P2 ∪ P3, where P1, P2, P3
are three paths sharing a root r. For any i ∈ [3] let zi be the endpoint of Pi other than r.
Then for any i ∈ [3] there exists a path Qi in G′ \K ′ between r and zi. We claim that for
all i 6= j ∈ [3], for all u ∈ V (Qj), we have dG\K(zi, u) ≥ c′/2 + 1. By Lemma 18, F \ J is
a c′-minor of G′ \K ′ with respect to the Voronoi partition PJ with P(w) = PJ(w) for all
w ∈ V (F \ J). Let w′ be such that u ∈ PJ(w′). By Lemma 19 obtain

dG′\K′(zi, u) ≥ dG′\K′(zi, w′)− dG′\K′(w′, u) (by the triangle inequality)
≥ dG′\K′(zi, w′)− c′ (since u ∈ PJ(w′))
≥ dF\J(zi, w)− c′ (by Lemma 19)
≥ 3c′/2 + 1− c′ (since T is a (3c′/2 + 1)-tripod)
= c′/2 + 1.

Therefore, by Lemma 12 we conclude that G′ \K ′ does not admit a c′-embedding into
the line, which is a contradiction. Therefore, we have established that if G′ admits a (k, c)-
embedding into the line, then there exists some J \V (F ), with |J | ≤ k′, such that F \ J does
not contain any (3c′/2 + 1)-tripods.

Therefore, in Step 3, if we do not find a set Ytripod of the desired size, then we correctly
decide that G does not admit a (k, c)-embedding into the line.

Next consider the case where in Step 3 we compute a set Ytripod of the desired size. Since
F ′ does not contain any (3c′/2 + 1)-tripods, it follows by the construction of F ′′, that F ′′
does not contain any (3c′/2 + 3)-tripods (since every leaf in F becomes the center of a
star in F ′). Moreover, we have ∆(F ′′) ≤ ∆(F ′) · O(c′∆(G′)), since every vertex in F ′′

corresponds to a star that contains the vertices of a Voronoi cell in G′, and every such cell
has size at most O(c′∆(G′)). Thus, by Lemma 14 we compute a c′′-embedding of F ′′ into the
line, where c′′ = O(∆(F ′′)c′) = O(∆(F ′)c3∆(G′)) = O(∆(F )c3∆(G)) = O(∆(H)c4), since
∆(Γ1) ≤ ∆(Γ2) for all Γ1 ⊂ Γ2. Moreover we have ∆(H) ≤ ∆(G′) · O(c′ ·∆(G′)) = O(c5),
since every vertex in H corresponds to a Voronoi cell consisting of at most O(c′ ·∆(G′))
vertices. Therefore c′′ = O(c9), and thus we have obtained a O(c9)-embedding f of F ′′ into
the line. Note that since V (F ′′) = V (G \K), it follows that f is also a (κ, σ)-embedding of
G into the line, where κ = |K|, for some σ ≥ 1.

It remains to bound κ and σ. We have

κ = |Xdensity|+ |Xforest|+ |Xtripod|.

Since G admits a (k, c)-embedding into the line, it follows from Lemma 10 that

|Xdensity| = O(ck log3/2 n).

Moreover, ∆(G \Xdensity) ≤ c, thus for any c̃-partition P induced by an arbitrary c̃-net N of
G \Xdensity, and any v ∈ N , we have

|P(v)| = O(c̃ ·∆(G \Xdensity)) = O(c̃ · c).

Therefore, using Lemma 11 with c̃ := c′ in the Step 3 we obtain

|Xforest| = O(c′ · c) · 2k′ = O((4c3 + c) · c · (c2k log3/2 n)) = O(c6k log3/2 n).

Similarly, from Lemma 13, we have



K. Chubarian and A. Sidiropoulos 36:15

|Xtripod| = O(c′ · c)O(k′ logn) = O((4c3 + c) · c) ·O(c2k log3/2 n) logn) = O(c6k log5/2 n),

which implies that

κ = O(ck log3/2 n) +O(c6k log3/2 n) +O(c6k log5/2 n) = O(c6k log5/2 n).

To find σ, we show that G \K admits a O(c4)-embedding ι into F ′′ with ι(v) = v for all
v ∈ G \K. By Lemma 18 F ′ is a c′-minor of G′ \ (Xforest ∪Xtripod) = G \K with respect to
the partition P ′ := P \ (∪v∈Yforest∪YtripodP(v)). Consider arbitrary x1, x2 ∈ V (G \K) and let
v1, v2 ∈ V (F ′) be such that x1 ∈ P ′(v1), x2 ∈ P ′(v2). Let Q be the unique v1-v2 path in F ′.
We use Q to construct a v1-v2 path P in G \K, with

length(Q) ≤ length(P ) ≤ 2c′c · length(Q).

Since F ′ is a c′-minor of G \K, for any {w1, w2} ∈ E(Q) there is {z1, z2} ∈ E(G \K) with
zi ∈ P ′(wi) for i ∈ [2]. Moreover, for any w ∈ V (Q) the corresponding P ′(w) is a connected
subgraph such that |V (P ′(wi))| ≤ 2c′∆(G \ K) + 1 = 2c′c + 1. Thus, Q induces a walk
W ⊆ G \K with |V (W )| ≤ 2c′c · length(Q) and v1, v2 ∈W . It follows that there is a v1-v2
path P in W , such that

length(P ) ≤ 2c′c · length(Q).

Note that since Q is the v1-v2 shortest path in F ′, we obtain

length(P ) ≤ 2c′c · dF ′(v1, v2) = 2c′c · dF ′′(v1, v2),

where the last equality follows from the construction of F ′′.
We claim that ι has contraction O(c4). By construction of F ′′ we have that dF ′′(xi, vi) = 1

thus

dG\K(xi, vi) ≤ c′ ≤ c′dF ′′(xi, vi).

Therefore, we have that

dG\K(x1, x2) ≤ dG\K(x1, v1) + dG\K(v1, v2) + dG\K(v2, x2)
≤ c′dF ′′(x1, v1) + 2c′c · length(Q) + c′dF ′′(v2, x2)
≤ 2c′c · dF ′′(x1, v1) + 2c′c · dF ′′(v1, v2) + 2c′c · dF ′′(v2, x2).

Since F ′′ is a tree, it follows that

2c′c · dF ′′(x1, v1) + 2c′c · dF ′′(v1, v2) + 2c′c · dF ′′(v2, x2) = 2c′c · dF ′′(x1, x2).

Since c′ = O(c3), it follows that the contraction of ι is at most O(c4). Now we prove that the
expansion of ι is O(1). We claim that dF ′′(x1, x2) ≤ dG\K(x1, x2) + 2. By the construction
of F ′′ we have

dF ′′(x1, x2) = dF ′′(x1, v1) + dF ′′(v1, v2) + dF ′′(v2, x2)
= dF ′′(x1, v1) + dF ′(v1, v2) + dF ′′(v2, x2) = dF ′(v1, v2) + 2.

Since F ′ is a c′-minor of G \K, by Lemma 19 we get

dF ′(v1, v2) + 2 ≤ dG\K(v1, v2) + 2,

thus the expansion of ι is O(1). Therefore, the distortion of ι is O(c4). Hence, we obtain that
the map φ := f ◦ ι : G \K → R1 has distortion σ = O(c9) ·O(c4) = O(c13), which concludes
the proof. J

APPROX/RANDOM 2020



36:16 Computing Bi-Lipschitz Outlier Embeddings into the Line

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297,
1999.

2 Karol Borsuk. Drei sätze über die n-dimensionale euklidische sphäre. Fundamenta Mathemat-
icae, 20(1):177–190, 1933.

3 Mihai Bădoiu, Piotr Indyk, and Anastasios Sidiropoulos. Approximation algorithms for
embedding general metrics into trees. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors,
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 512–521. SIAM, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283438.

4 Mihai Bǎdoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropou. Embedding ultrametrics
into low-dimensional spaces. In Proceedings of the twenty-second annual symposium on
Computational geometry, pages 187–196, 2006.

5 Mihai Bǎdoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Low-distortion
embeddings of general metrics into the line. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 225–233, 2005.

6 Mihai Bǎdoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Räcke,
Ramamoorthi Ravi, and Anastasios Sidiropoulos. Approximation algorithms for low-distortion
embeddings into low-dimensional spaces. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 119–128. Society for Industrial and Applied Math-
ematics, 2005.

7 Timothy Carpenter, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Anastas-
ios Sidiropoulos. Algorithms for low-distortion embeddings into arbitrary 1-dimensional
spaces. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium on
Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary, volume 99
of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.SoCG.2018.21.

8 Victor Chepoi, Feodor F Dragan, Ilan Newman, Yuri Rabinovich, and Yann Vaxes. Constant
approximation algorithms for embedding graph metrics into trees and outerplanar graphs.
Discrete & Computational Geometry, 47(1):187–214, 2012.

9 Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

10 Mark de Berg, Krzysztof Onak, and Anastasios Sidiropoulos. Fat polygonal partitions with
applications to visualization and embeddings. arXiv preprint, 2010. arXiv:1009.1866.

11 Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation al-
gorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–657,
2008.

12 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A.
Rosamond, and Saket Saurabh. Distortion is fixed parameter tractable. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in
Computer Science, pages 463–474. Springer, 2009. doi:10.1007/978-3-642-02927-1_39.

13 Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning robust
against adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

14 Piotr Indyk, Jiří Matoušek, and Anastasios Sidiropoulos. 8: low-distortion embeddings of
finite metric spaces. In Handbook of discrete and computational geometry, pages 211–231.
Chapman and Hall/CRC, 2017.

15 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 760–776. SIAM, 2011. doi:10.1137/1.9781611973082.60.

http://dl.acm.org/citation.cfm?id=1283383.1283438
https://doi.org/10.4230/LIPIcs.SoCG.2018.21
http://arxiv.org/abs/1009.1866
https://doi.org/10.1007/978-3-642-02927-1_39
https://doi.org/10.1137/1.9781611973082.60


K. Chubarian and A. Sidiropoulos 36:17

16 Jiří Matoušek and Anastasios Sidiropoulos. Inapproximability for metric embeddings into
rˆd. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA, pages 405–413. IEEE Computer Society, 2008.
doi:10.1109/FOCS.2008.21.

17 Amir Nayyeri and Benjamin Raichel. Reality distortion: Exact and approximate algorithms for
embedding into the line. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 729–747. IEEE, 2015.

18 Amir Nayyeri and Benjamin Raichel. A treehouse with custom windows: Minimum distortion
embeddings into bounded treewidth graphs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 724–736. SIAM, 2017.

19 Anastasios Sidiropoulos, Dingkang Wang, and Yusu Wang. Metric embeddings with outliers.
In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 670–689. SIAM, 2017. doi:10.1137/1.9781611974782.43.

A Density Reduction

A.1 The algorithm for density reduction
Let us describe the algorithm for reducing the density of a graph. The algorithm takes as
input a graph G and some k ≥ 0, c ≥ 1, and outputs some Y ⊆ V (G), such that ∆(G\Y ) ≤ c.
This is summarized in Algorithm 1.

Algorithm 1 SPARSIFY.

1: procedure SPARSIFY(G, c)
2: if ∆(G) ≤ c then
3: return ∅
4: else
5: Let X be a 3/4-balanced vertex separator of G computed by Theorem 5.
6: Let G1, . . . , Gt be the connected components of G \X.
7: return X ∪

(⋃t
i=1 SPARSIFY(Gi, c)

)

A.2 Analysis of the algorithm for density reduction
We now analyze the algorithm described above. We first recall the following result from [6].

I Lemma 20 (Bădoiu et al. [6]). If G admits a c-embedding into the line then ∆(G) ≤ c.

The following establishes the existence of small balanced separators.

I Lemma 21. Let G be a graph such that G admits a (k, c)-embedding into the line. Let
Z ⊆ V (G) with |Z| = k be such that G \ Z is c-embeddable into the line. Then any H ⊆ G
contains a 2/3-balanced vertex separator of size at most c+ |Z ∩ V (H)|.

Proof. Let f : G \Z → R be an embedding with distortion c. Let V (H) = {v1, . . . , vh}, and
assume w.l.o.g. that f(v1) < f(v2) < . . . < f(vh). Let X = {vbh/3c+1, vmax{h,bh/3c+c+1}}.
By lemma 16 we get that X is a balanced separator of H \ Z = H \ (Z ∩ V (H)). Therefore,
W := X ∪ (V (H) ∩ Y ) is a balanced separator for H, with |W | = |X| + |Z ∩ V (H)| ≤
c+ |Z ∩ V (H)|, as required. J

We are now ready to prove the main result of this Section.

APPROX/RANDOM 2020

https://doi.org/10.1109/FOCS.2008.21
https://doi.org/10.1137/1.9781611974782.43


36:18 Computing Bi-Lipschitz Outlier Embeddings into the Line

Proof of Lemma 10. It is immediate that the output, Y , of the procedure SPARSIFY is
such that ∆(G \ Y ) ≤ c. Also, if ∆(G) ≤ c, the algorithm outputs Y = ∅.

It thus remains to bound |Y |. Fix some K ⊆ V (G), with |K| = k, and some c-embedding
f of G \K into the line. Consider some recursive call of procedure SPARSIFY(H, c), for
some H ⊆ G. If H ∩K = ∅, then H ⊆ G \K, and thus ∆(H) ≤ ∆(G \K) ≤ c, where the
last inequality follows by lemma 20. Therefore, procedure SPARSIFY computes a balanced
separator, XH , only if H intersects K. By lemma 21 and Theorem 5 it follows that

|XH | ≤ O
(√

logn · (c+ |K ∩ V (H)|)
)
≤ O

(
|K ∩ V (H)| · c ·

√
logn

)
.

We charge the vertices in XH to the vertices in K ∩H; thus every vertex in K ∩H receives
at most O

(√
logn

)
units of charge. Since any two subgraphs on the same level of the

recursion are disjoint, it follows that each vertex in K receives at most O
(
c
√

logn
)
units

of charge per level of the recursion. Since each separator is 3/4-balanced, it follows that
the depth of the recursion is at most log4/3 n. Thus, every vertex in K receives at most
log4/3 n ·O(c logn) = β · c log3/2

4/3 n units of charge throughout the execution of the procedure
SPARSIFY. The constant β comes from the bound on the size of the vertex separator
computed by Theorem 5. Hence, if Y > β · kc log3/2

4/3 n, then we have certified that G does
not admit a (k, c)-embedding into the line, which concludes the proof. J

B Eliminating large metrical cycles

B.1 The algorithm
The input consists of a graph G, some c ≥ 1, and k ≥ 0. The algorithm proceeds in steps,
that are formally described below.

Algorithm for eliminating large metrical cycles:
Step 1. Compute a c-net N of G.
Step 2. Compute a Voronoi partition P of G centered at N , and the corresponding c-minor

H of G.
Step 3. Using the algorithm from Theorem 4 compute a 2-approximate solution S to the

Minimum Feedback Vertex Set problem on H. If |S| > 2k, then decide that G does not
admit a (k, c)-embedding into the line.

B.2 Analysis
First, we prove the following statement about embeddability into a subgraph of a c-minor.

I Lemma 22. Let G be a graph, R > 0, let N be a R-net in G, let P be a R-partition
centered at N , and let H be the R-minor of G induced by P. Let X ⊂ N , and let

Y =
⋃
x∈X
P(x).

Then the metric space (N \X, dG\Y ) admits a (2R+ 1)-embedding into H \X. Moreover,
this embedding can be computed in polynomial time.

Proof. Let u, v ∈ N \X. Let Q be a u-v shortest path in G \Y . When traversing Q starting
from u let C1, . . . , C` be the sequence of clusters of P visited. For each i ∈ [`] let qi be the
center of Ci; that is, Ci = P(qi). Since for all i ∈ [`− 1] there is an edge in G \ Y between
some vertex in Ci and some vertex in Ci+1, it follows that there also exists an edge in H \X
between qi and qi+1. Therefore Q′ = q1, . . . , q` is a path in H \X. We thus obtain



K. Chubarian and A. Sidiropoulos 36:19

dH\X(u, v) ≤ length(Q′) ≤ length(Q) = dG\Y (u, v). (4)

Let W = w1, . . . , wt be a u-v shortest path in H \X. Since each cluster in P has radius
at most R, it follows that for all i ∈ [t− 1] there exists a wi-wi+1 path in G \ Y of length at
most 2R+ 1. Concatenating all these paths we obtain a u-v path W ′ in G \ Y of length at
most (t− 1) · (2R+ 1). Thus

dG\Y (u, v) ≤ length(W ′) ≤ (2R+ 1)(t− 1) = (2R+ 1)dH\X(u, v). (5)

Combining (4) and (5) the assertion follows. J

We recall the Borsuk-Ulam Theorem [2].

I Theorem 23 (Borsuk-Ulam Theorem [2]). Let d ≥ 1, and let Sd denote the d-dimensional
sphere. Let f : Sd → Rd be a continuous map. Then there exists x ∈ Sd, such that
f(x) = f(−x).

The following is a simple consequence of Theorem 23. A similar argument is used in [6].

I Lemma 24. Let C be a cycle and let f : V (C)→ R be an injective map. Then there exist
u, v, w ∈ V (C), such that {u, v} ∈ E(C), and f(u) < f(w) < f(v).

Proof. Suppose that C is the n-cycle for some n ∈ N. We identify the vertices in C with
distinct points in S1, so that the points appear in the same order as in C along a clockwise
traversal of S1. For each {x, y} ∈ E(C) ther exists an arc Ax,y in S1 that does not contain
any other vertex in C; we extend f to Ax,z affinely. After repeating for all edges in C, we
obtain a continuous map f : S1 → R1. By Theorem 23 we get that there exists x ∈ S1

with f(x) = f(−x). This means that there exist two edges in C whose images in f span
overlapping intervals in R1. Since f is injective on V (C) this implies that one endpoint is
contained inside the interval of the other edge, which concludes the proof. J

We next establish the existence of a small feedback vertex set in the minor computed by
the algorithm.

I Lemma 25. Let G be a graph, c ≥ 1, k ≥ 0, such that G admits a (k, c)-embedding into
the line. Let H be a R-minor of G, for some R ≥ c. Then there exists a feedback vertex set
X in H with |X| ≤ k.

Proof. Let P be the R-partition of G such that H is the R-minor of G induced by P . Since
G admits a (k, c)-embedding into the line, it follows that there exists some Y ⊆ V (G), with
|Y | ≤ k, such that G \ Y admits a c-embedding f into the line.

Let X be the set of all v ∈ V (H), such that Y intersects the cluster in P centered at
v; that is X = {v ∈ V (H) : P(v) ∩ Y 6= ∅}. Since P is a partition, it is immediate that
|X| ≤ |Y | ≤ k. It therefore remains to show that H \X is acyclic. Suppose, for the sake of
contradiction, that H \X is not acyclic. Let C be a cycle in H \X. By Lemma 24 there
exist u, v, w ∈ V (C), such that {u, v} ∈ E(C), and f(u) < f(w) < f(v).

Since {u, v} ∈ E(C), and C ⊆ H, it follows that {u, v} ∈ E(H). Since H is R-minor, it
follows that there exists a path Q between u and v, with Q ⊆ P(u) ∪P(v). When traversing
Q starting from u let u′ be the last vertex visited with f(u′) < f(w); let also v′ be the vertex
visited immediately after u′. We have f(u′) < f(w) < f(v′).

APPROX/RANDOM 2020



36:20 Computing Bi-Lipschitz Outlier Embeddings into the Line

Since H is a R-minor and u′ /∈ P(w), it follows that dG(w, u′) ≥ dG(u, u′). By the
definition of a R-partition we have that dG(u,w) > c, and therefore dG(u′, w) > R/2.
Similarly, we obtain dG(v′, w) > R/2. Since f is non-contracting, we obtain |f(u′)− f(v′)| =
|f(u′)− f(w)|+ |f(w)− f(v′)| ≥ d(u,w) + d(w, v) > R/2 +R/2 = R ≥ c, which contradicts
the fact that f has expansion at most c, and concludes the proof. J

We are now ready to prove the main result of this Section.

Proof of Lemma 11. By Lemma 25, either G does not admit a (k, c)-embedding into the
line, or there exists X ⊆ V (H), with |X| ≤ k, such that H \X is acyclic. Using the algorithm
from Theorem 4 we compute in Step 3 a 2-approximation S ⊆ V (H) to the Minimum
Feedback Vertex Set in H. Therefore, if |S| > 2k, then we can terminate with outcome (1),
and otherwise terminate with outcome (2), which completes the proof. J

C Eliminating large metrical tripods

In this Section we present and analyze the procedure for eliminating large metrical tripods.
We begin by showing that large tripods are an obstruction to embeddability into the line.
This is summarized in Lemma 12.

Proof of Lemma 12. Let f be a non-contractive embedding of J into the line. Let v be the
common endpoint of P1, P2, P3. For each i ∈ [3] let vi be the other endpoints of Pi. We may
assume w.l.o.g. (by change of indices) that f(v1) < f(v2) < f(v3). Let Q be the unique v1-v3
path in J . It follows that there exists {u,w} ∈ E(Q), such that f(u) < f(v2) < f(w). This
implies that |f(u)− f(w)| = |f(u)− f(v2)|+ |f(v2)− f(w)| ≥ dG(u, v2) + dG(v2, w) ≥ 2R =
2RdJ(u,w). Therefore the distortion of f is at least 2R, which concludes the proof. J

The above easily implies the following results, which asserts the existence of a small set
of vertices whose removal eliminates all large tripods.

I Lemma 26. Let F be a forest that admits a (k, c)-embedding into the line. Then there
exists some X ⊆ V (F ), with |X| ≤ k, such that F \X does not contain any (c/2 + 1)-tripod
as a subgraph.

Proof. Since F admits a (k, c)-embedding into the line, it follows that there exists some
X ⊆ V (F ), with |X| ≤ k, such that F \X admits a c-embedding into the line. It suffices
to show that F \ X does not contain any (c/2 + 1)-tripods. Suppose, for the sake of
contradiction, that F \X contains some (c/2 + 1)-tripod J . Since (V (J), dJ ) is a submetric
of (V (F ) \X, dF\X), it follows that J admits a c-embedding into the line, which contradicts
Lemma 12, and concludes the proof. J

Now are now ready to prove the main result of this Section.

Proof of Lemma 13. Any tripod T ⊆ F can be uniquely specified by selecting its root and
its three leaves. Therefore, there are at most O(|V (F )|4) distinct tripods in F . Moreover,
the set of all tripods, T , can be enumerated in polynomial time. We form an instance of the
Minimum Set Cover problem with universe U = T . We also let

C =
⋃

v∈V (F )

{Cv},



K. Chubarian and A. Sidiropoulos 36:21

where Cv = {T ∈ T : v ∈ V (T )}. It is immediate that for any Y ⊆ V (F ), F \ Y contains no
R-tripods iff

⋃
v∈Y Cv = U . Therefore, computing a minimum-cardinality subset of vertices

of F whose deletion removes all R-tripods, is equivalent to solving the Minimum Set Cover
instance on (U, C). The result now follows from Theorem 6. J

D Embedding Trees Without Large Tripods into the Line

This Section is devoted to proving Lemma 14, which asserts that any tree with no large
tripods admits a low-distortion embedding into the line.

Proof of Lemma 14. Since T is a tree, we can compute in polynomial time a longest path
Q in T . Let Q = v1, . . . , vt. Let P be a Voronoi partition centered at V (Q). Since T does
not contain any R-tripod as a subgraph, it follows that for all u ∈ V (T ), there exists some
v ∈ V (Q), with dT (u, v) < R. Therefore, for each vi ∈ V (Q), we have

|P(vi)| ≤ |BallT (vi, R− 1)| ≤ ∆(T ) · 2(R− 1) + 1 ≤ ∆(T ) · 2R− 1.

By the definition of a graphical Voronoi partition we have that for all i ∈ [t], the vertex-
induced subgraph Ti := T [P(vi)] is connected, and thus Ti is a subtree of T . Let Wi be
a closed walk in Ti that visits all vertices in Ti, obtained by duplicating every edge (or,
equivalently, the walk obtained by any traversal of Ti). Since every edge in Ti is traversed
twice, we have length(Ti) = 2(|V (Ti)| − 1). Let Wi = wi,1, . . . , wi,ti .

We define the embedding fi : V (Ti) → R as follows. For each v ∈ V (Ti), we define
fi(v) = min{j ∈ [ti] : v = wi,j}.

We combine the mappings f1, . . . , ft into a mapping f : V (G)→ R. Informally, this is
done by translating each fi so that for all i ∈ [t− 1], the image of fi appears to the left of
the image of fi+1, and there is a gap of length 2R between these two images.

Formally, for each u ∈ Pvi
, we set f(u) = Li + fi(u), where

Li =
{

0 if i = 0
Li−1 + maxz∈P(vi−1){fi−1(z)}+ 2R otherwise

This completed the definition of the embedding f .
It remains to bound the distortion of f . For vertices that lie in the same cluster in P , the

map is non-contractive since the distance in the embedding is at least the distance in some
walk Wi, which is at least the distance in T . Moreover, the expansion is upper bounded by
the length of the walk, which is at most ∆(T ) · (2R− 1).

Next, let us consider p, q ∈ V (T ) that fall in different clusters in P. Suppose that
p ∈ P(vi), and q ∈ P(vj), for some i, j ∈ [t], with i < j. We have

|f(p)− f(q)| ≤ 2R(j − 1) +
j∑
r=i

length(Wi) ≤ (j − 1)2R+ (j − i+ 1)∆(T ) · (2R− 1)

≤ (j − i) ·O(∆(T ) ·R) = dT (vi, vj) ·O(∆(T ) ·R) ≤ dT (p, q) ·O(∆(T ) ·R).

Moreover |f(p)− f(q)| ≥ 2R(j − i) + 1 ≥ 2R+ (j − i) ≥ dT (p, vi) + dT (vi, vj) + dT (vj , q) =
dT (p, q).

Therefore, in all cases, f is non-contractive and has expansion at most O(∆(T ) ·R). J

APPROX/RANDOM 2020


	Introduction
	Our contribution
	Related work
	High-level overview of the algorithm
	Organization

	Preliminaries
	Graphs
	Some useful approximation results
	Voronoi minors

	The Main Algorithm
	Technical ingredients used by the main algorithm
	The Repairing Lemma
	The algorithm
	Analysis of the main algorithm

	Density Reduction
	The algorithm for density reduction
	Analysis of the algorithm for density reduction

	Eliminating large metrical cycles
	The algorithm
	Analysis

	Eliminating large metrical tripods
	Embedding Trees Without Large Tripods into the Line

