
Hardness of Approximation of (Multi-)LCS over
Small Alphabet
Amey Bhangale
University of California Riverside, CA, USA
ameyrbh@gmail.com

Diptarka Chakraborty
National University of Singapore, Singapore
diptarka@comp.nus.edu.sg

Rajendra Kumar
IIT Kanpur, India
National University of Singapore, Singapore
rjndr2503@gmail.com

Abstract
The problem of finding longest common subsequence (LCS) is one of the fundamental problems in
computer science, which finds application in fields such as computational biology, text processing,
information retrieval, data compression etc. It is well known that (decision version of) the problem
of finding the length of a LCS of an arbitrary number of input sequences (which we refer to as
Multi-LCS problem) is NP-complete. Jiang and Li [SICOMP’95] showed that if Max-Clique is hard
to approximate within a factor of s then Multi-LCS is also hard to approximate within a factor of
Θ(s). By the NP-hardness of the problem of approximating Max-Clique by Zuckerman [ToC’07],
for any constant δ > 0, the length of a LCS of arbitrary number of input sequences of length n
each, cannot be approximated within an n1−δ-factor in polynomial time unless P=NP. However, the
reduction of Jiang and Li assumes the alphabet size to be Ω(n). So far no hardness result is known
for the problem of approximating Multi-LCS over sub-linear sized alphabet. On the other hand, it
is easy to get 1/|Σ|-factor approximation for strings of alphabet Σ.

In this paper, we make a significant progress towards proving hardness of approximation over
small alphabet by showing a polynomial-time reduction from the well-studied densest k-subgraph
problem with perfect completeness to approximating Multi-LCS over alphabet of size poly(n/k). As
a consequence, from the known hardness result of densest k-subgraph problem (e.g. [Manurangsi,
STOC’17]) we get that no polynomial-time algorithm can give an n−o(1)-factor approximation of
Multi-LCS over an alphabet of size no(1), unless the Exponential Time Hypothesis is false.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Longest common subsequence, Hardness of approximation, ETH-hardness,
Densest k-subgraph problem

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.38

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.13449.

Funding Diptarka Chakraborty: Supported in part by NUS ODPRT Grant, WBS No. R-252-000-
A94-133.
Rajendra Kumar : Supported in part by National Research Foundation Singapore under its AI
Singapore Programme [Award Number: AISG-RP-2018-005].

Acknowledgements Authors would like to thank anonymous reviewers for providing helpful com-
ments on an earlier version of this paper and especially for pointing out a small technical mistake in
the proof of Lemma 16. Authors would also like to thank Pasin Manurangsi for pointing out that
for certain regimes no hardness result is known for the densest k-subgraph problem.

© Amey Bhangale, Diptarka Chakraborty, and Rajendra Kumar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ameyrbh@gmail.com
mailto:diptarka@comp.nus.edu.sg
mailto:rjndr2503@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.38
https://arxiv.org/abs/2006.13449
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Hardness of Approximation of (Multi-)LCS over Small Alphabet

1 Introduction

Finding longest common subsequence (LCS) of a given set of strings over some alphabet is
one of the fundamental problems of computer science. The computational problem of finding
(the length of a) LCS has been intensively studied for the last five decades (see [16] and the
references therein). This problem finds many applications in the fields of computational
biology, data compression, pattern recognition, text processing and others. LCS is often
considered among two strings, and in that case it is considered to be one of the classic
string similarity measures (see [5]). The general case, when the number of input strings is
unrestricted, is also very interesting and well-studied. To avoid any confusion we refer to this
general version of the LCS problem as Multi-LCS problem. One of the major applications
of Multi-LCS is to find similar regions of a set of DNA sequences. Multi-LCS is also a
special case of the multiple sequence alignment and consensus subsequence discovery problem
(e.g. [27]). Interested readers may refer to the chapter entitled “Multi String Comparison-the
Holy Grail” of the book [13] for a comprehensive study on this topic. Other applications of
Multi-LCS include text processing, syntactic pattern recognition [22] etc.

Using a basic dynamic programming algorithm [30] we can find a LCS between two strings
of length n in quadratic time. However the general version, i.e., the Multi-LCS problem is
known to be NP-hard [23] even for the binary alphabet. This problem remains NP-hard even
with certain restrictions on input strings (e.g. [7]). For m input strings a generalization of
the basic dynamic programming algorithm finds LCS in time O(mnm). Recently, Abboud,
Backurs and Williams [2] showed that an O(nm−ε) time (for any ε > 0) algorithm for this
problem would refute the Strong Exponential Time Hypothesis (SETH) even for alphabet of
size O(m).

Due to the computational hardness of exact computation of a LCS, an interesting problem
is what is the best approximation factor that we can achieve within a reasonable time bound.
A c-approximate solution (for some 0 < c ≤ 1) of a LCS is a common subsequence of length
at least c · |LCS|, where |LCS| denotes the length of a LCS. For the Multi-LCS problem,
Jiang and Li [18] showed that if Max-Clique is hard to approximate within a factor of s then
Multi-LCS is also hard to approximate within a factor of Θ(s). By the NP-hardness of the
problem of approximating Max-Clique by Zuckerman [31], for any constant δ > 0, the length
of a LCS of arbitrary number of input sequences of length n each, cannot be approximated
within an n1−δ-factor in polynomial time unless P=NP. However, the result of Jiang and
Li [18] is only true for alphabets of size Ω(n). For smaller alphabets (even for size sublinear
in n) we do not know any such hardness result. Jiang and Li [18] conjectured that Multi-LCS
for even binary alphabet is MAX-SNP-hard (see [26] for the definition of MAX-SNP-hardness).
To the best of our knowledge no progress has been done so far on the direction of showing
any conditional hardness for smaller alphabets. On the other hand, it is very easy to get
a 1/|Σ|-approximation algorithm for the Multi-LCS problem over any alphabet Σ. The
algorithm just outputs the best subsequence among the subsequences of the same symbol.

In this paper, we make a significant progress towards showing hardness of approximation
of Multi-LCS by refuting the existence of a polynomial time constant factor approximation
algorithm under the Exponential Time Hypothesis (ETH).

I Theorem 1. There exists a growing function f(n) = no(1) such that assuming ETH, there
is no polynomial time 1

f(n) -factor approximation algorithm for the Multi-LCS problem over
no(1)-sized alphabet.

A. Bhangale, D. Chakraborty, and R. Kumar 38:3

This rules out any efficient poly-logarithmic factor approximation algorithm for the
Multi-LCS problem over any no(1)-sized alphabet. We show the above theorem by providing
a polynomial time reduction from the well-studied densest k-subgraph problem with perfect
completeness and its gap version γ-DkS (for the definition see Section 2).

I Theorem 2. Let k
n = β(n)

γ(n) for β < γ ≤ 1. If there is no polynomial time algorithm
that solves (γ2/4)-DkS(k, n), then there is no polynomial time algorithm that solves 2γ-
approximate Multi-LCS problem over some alphabet of size O(1

β6).

The above reduction together with the ETH-based hardness result for the densest k-subgraph
problem given by Manurangsi [24] implies Theorem 1. We refer to Appendix 1.2 for the
previous works related to the LCS problem and the densest k-subgraph problem.

1.1 Techniques
Our reduction starts with the reduction from the Max-Clique problem to Multi-LCS given
by [18]. Given a graph G on n vertices the reduction outputs a Multi-LCS instance I over
an alphabet {a1, a2, . . . , an} of size n with 2n strings. The reduction has a guarantee that
the maximum LCS size of I is equal to the size of the maximum clique in G.

A natural way to reduce the alphabet size is to replace each symbol ai in a string with
a string Si ∈ Σm over a smaller alphabet Σ. Let us denote this new instance by I ′. The
hope is that the only way to get a large LCS in I ′ is to match the corresponding strings
whenever the respective symbols in I are matched. But this wishful thinking is not true
when the alphabet size is much smaller than the original alphabet size as one might get a
large common subsequence by matching parts of strings Si, Sj corresponding to the different
symbols ai, aj in the original strings.

We get away with this issue by using a special collection of strings {S1, S2, . . . , Sn} with
the guarantee that for every pair i 6= j, LCS(Si, Sj) is much smaller than m. We can
construct such a set deterministically by using the known deterministic construction of the so
called long-distance synchronization strings [14, 9]. There is also a much simpler randomized
construction (see Theorem 11). It is easy to see that if the original strings have a LCS of
size t, then the new Multi-LCS instance I ′ over alphabet Σ has an LCS of size at least tm.

The interesting direction is to prove the converse i.e., if the LCS of I ′ is large then the
LCS of I is also large. We do not know if this is true in general. So we rely on the starting
problem of Max-Clique from which the instance I (and hence I ′) was created. We show that
if I ′ has large LCS, then we can find a large subgraph of G which has a non trivial density
(instead of finding a large clique). Thus, the reduction relies on hardness of approximation
of the DkS problem with perfect completeness. Then we use the result of Manurangsi [24]
which shows that given a graph G with a guarantee that there is a clique of size k, there is
no polynomial time algorithm which finds a subgraph of G of size k with density at least
γ(n) for some γ(n) = o(n), assuming the ETH.

1.2 Related works

1.2.1 Results on LCS problem
Finding LCS between two strings is an important problem in computer science. Wagner
and Fischer [30] gave a quadratic time algorithm, which is in fact prototypical to dynamic
programming. The running time was later improved to (slightly) sub-quadratic, more
specifically O(n

2 log logn
log2 n

) [25, 12]. Abboud, Backurs and Williams [2] showed that a truly

APPROX/RANDOM 2020

38:4 Hardness of Approximation of (Multi-)LCS over Small Alphabet

sub-quadratic algorithm (O(n2−ε) for some ε > 0) would imply a 2(1−δ)n time algorithm for
CNF-satisfiability, contradicting the Strong Exponential Time Hypothesis (SETH). They in
fact showed that for m input strings an algorithm with running time O(nm−ε) would refute
SETH. Abboud et al. [3] later further strengthened the barrier result by showing that even
shaving an arbitrarily large polylog factor from n2 would have the plausible, but hard-to-prove,
consequence that NEXP does not have non-uniform NC1 circuits. In case of approximation
algorithm for LCS over arbitrarily large alphabets a simple sampling based technique
achieves O(n−x)-approximation in O(n2−2x) time. Very recently, an O(n−0.497956) factor
approximation (breaking O(

√
n) barrier) linear time algorithm is provided by Hajiaghayi et

al. [15]. For binary alphabets another very recent result breaks 1/2-approximation factor
barrier in subquadratic time [29]. (Note, 1/|Σ|-approximation over any alphabet Σ is trivial.)
The only hardness (or barrier) results for approximating LCS in subquadratic time are
presented in [1, 4].

For the general case (which we also refer as Multi-LCS), when the number of input strings
is unrestricted, the decision version of the problem is known to be NP-complete [23] even
for the binary alphabet. The problem remains NP-complete even with further restriction
like bounded run-length on input strings [7]. As cited earlier, Jiang and Li [18] (along with
the result of Zuckerman [31]) showed that for every constant δ > 0, there is no polynomial
time algorithm that achieves n1−δ-approximation factor, unless P=NP. One interesting aspect
of the reduction in [18] is that in any input string any particular symbol appears at most
twice. It is worth mentioning that if we restrict ourselves to the input strings where a
symbol appears exactly once, then we can find a LCS in polynomial time. The algorithm
is just an extension of the dynamic programming algorithm that finds a longest increasing
subsequence of an input sequence. It is also not difficult to show that the decision version of
the Multi-LCS problem with the above restrictions on the input strings can be solved even
in non-deterministic logarithmic space. To see this consider a LCS as a certificate. Then
the verification algorithm makes single pass on the certificate, and check whether every two
consecutive symbols in the certificate appears in the same order in all the input strings.
Clearly, the above verification algorithm uses only logarithmic space. Since we know that
each symbol appears exactly once in a string, the above verification algorithm correctly
decides whether the given certificate is a valid LCS or not.

1.2.2 Hardness results related to densest k-subgraph problem
Our starting point of the reduction is the hardness of approximating the densest k-subgraph
problem. In the densest k-subgraph problem (DkS), we are given a graph G(V,E) and an
integer 1 ≤ k ≤ |V |. The task is to find a subgraph of G of size k with maximum density.
Various approximation algorithms are known for DkS [21, 10], and the current best known is
by [6] which gives n1/4+ε-approximation algorithm for any constant ε > 0.

A special case of DkS is when it is guaranteed that G has a clique of size k and the
task is to find a subgraph of size1 k with density at least γ for 0 < γ ≤ 1. In this perfect
completeness case, Feige and Seltser [11] gave an algorithm which finds a k sized subgraph
with density (1− ε) in time nO((1+log n

k)/ε).
There are several inapproximability results known for DkS based on worst-case assump-

tions. Khot [19] ruled out a PTAS assuming NP * BPTIME (2nε) for some constant ε > 0.
Raghavendra and Steurer [28] showed that DkS is hard to approximate to within any constant
ratio assuming the Unique Games Conjecture where the constraint graph satisfies a small set
expansion property.

1 Note, here size of a subgraph refers to the number of vertices present in that subgraph.

A. Bhangale, D. Chakraborty, and R. Kumar 38:5

Assuming the Exponential Time Hypothesis, Braverman et al. [8], showed that for some
constant ε > 0, there is no polynomial time algorithm which when given a graph with a
k-clique finds a k sized subgraph with density (1− ε). This result is significantly improved
by Manurangsi [24] in which he showed that assuming ETH, no polynomial time algorithm
can distinguish between the cases when G has a clique of size k and when every k sized
subgraph has density at most n−1/(log logn)c for some constant c > 0.

2 Preliminaries

Notations

We use [n] to denote the set {1, 2, · · · , n}. For any string S we use |S| to denote its length.
By abuse of notation, for any set V we also use the notation |V | to denote the size of V . For
any string S of length n and two indices i, j ∈ [n], S[i, j] denotes the substring of S that
starts at index i and ends at index j. We use α(n), β(n), γ(n) to denote that α, β, γ are
allowed to depend on n.

2.1 Longest Common Subsequence
Given m sequences S1, . . . , Sm of length n over an alphabet Σ, the longest common subse-
quence is the longest sequence S such that ∀i ∈ [m], S is a subsequence of Si.

We will refer to the computational problem of finding or deciding the length of LCS as a
Multi-LCS problem. In this paper, we consider the decision variant of this problem: Given
an integer ` ≤ n, we have to decide whether LCS has a length greater than equal to `, or
less than `. For the approximation, we consider the following gap-version of this problem.

I Problem 3. For any 0 < κ < 1, the κ-approximate Multi-LCS problem is defined as:
Given sequences S1, . . . , Sm of length n over an alphabet Σ and an integer `, the goal is to
distinguish between the following two cases

YES instance: A LCS of S1, . . . , Sm has length greater than or equal to `.
NO instance: A LCS of S1, . . . , Sm has length less than κ · `.

We use the following definition of alignment.

I Definition 4 (Alignment). Given two strings S1 and S2 of lengths n and m respectively,
alignment σ is a function from [n] to [m]∪{∗} which satisfies ∀i ∈ [n], if σ(i) 6= ∗ then S1[i] =
S2[σ(i)] and for any i and j if σ(i) 6= ∗, σ(j) 6= ∗ then for i > j, σ(i) > σ(j).

For an alignment σ between two strings S1 and S2 we say σ aligns some subsequence
T1 = S1[i1]S1[i2] · · ·S1[i`1] of S1 with some subsequence T2 = S2[j1]S2[j2] · · ·S2[j`2] of S2 if
and only if for all p ∈ [`1], σ(ip) ∈ {j1, j2, · · · , j`2}.

2.2 Exponential Time Hypothesis
The Exponential Time Hypothesis (ETH) was introduced by Impagliazzo and Paturi [17]. It
refutes the possibility of getting much faster algorithm to decide satisfiability of a 3-CNF
formula (also referred as 3-SAT problem) than that by the trivial brute force method.

I Hypothesis 5 (ETH). There is no 2o(n) time algorithm for the 3-SAT problem over n
variables.

APPROX/RANDOM 2020

38:6 Hardness of Approximation of (Multi-)LCS over Small Alphabet

2.3 Densest k-Subgraph problem and related hardness results

For any graph, the density is defined as the ratio of the number of edges present in it and
the number of edges in any complete graph of the same size. So given a graph G = (V,E),
the density of G is 2|E|

|V |2−|V | .
The Densest k-Subgraph (DkS) problem is the following: Given a graph G on n vertices

and a positive integer k ≤ n, the goal is to find a subgraph of G with k vertices which has
maximum density.

In this paper we will consider the following gap-version of densest k-subgraph, which in
the literature is sometimes referred as densest k-subgraph with perfect completeness.

I Problem 6. For any γ ≤ 1, γ-DkS(k, n) is defined as: Given a graph G on n vertices and
a positive integer k ≤ n, the goal is to distinguish between the following two cases

YES instance: There exists a clique of size k.
NO instance: All subgraphs of size k have density at most γ.

We say that an algorithm solves γ-DkS(k, n) if given any input it can distinguish whether
the input is a YES instance or a NO instance. If the algorithm is randomized then it should
succeed with probability at least 2/3.

In this paper we use the following hardness result by Manurangsi [24].

I Theorem 7 ([24]). There exists a constant c0 > 0 such that assuming the Exponential Time
Hypothesis, for all constants ε > 0, there is no polynomial time algorithm for γ-DkS(k, n)
where γ = n

−O
(

1
(log log n)c0

)
and k

n ∈
[
n−ε, n−Ω(1

log log n)
]
.

3 Reduction

In this section we provide a reduction from the densest k-subgraph problem to the problem
of approximating Multi-LCS and prove Theorem 2. Note that, Theorem 2 and Theorem 7
together immediately imply Theorem 1 by plugging γ(n) = n

−O
(

1
(log log n)c0

)
, β(n) = γ(n)2.

I Remark 8. If we want to get the hardness of Multi-LCS for a constant sized alphabet
using Theorem 2 then k must be Ω(n). However, when k = Ω(n) Theorem 7 does not
imply any hardness result. In fact, when k = Ω(n), there is a polynomial time algorithm
for (1 − ε)-DkS(k, n) for any constant ε > 0 [11]. Therefore our reduction will not give
any hardness for constant sized alphabet. However, if one can improve Theorem 7 for
k/n = 1/poly(logn) and γ(n) = 1/poly(logn), then our main reduction in Theorem 2 will
imply Multi-LCS hardness for poly(logn) sized alphabet!

Our reduction involves two steps: First, we use the reduction from the Max-Clique problem
to the Multi-LCS problem over large alphabet given in [18]. Next we perform alphabet
reduction by replacing each character by a “short” string over a small-sized alphabet.

Revisiting the reduction from Max-Clique to Multi-LCS

We first recall the reduction from [18]. We are given a graph G = (V,E) on n vertices and an
integer k ≤ n. Fix an arbitrary labeling on the vertices of V as v1, . . . , vn. For every vertex
vi, partition its neighbors into two subsets: N<(vi) contains all the neighboring vertices vj
with j < i; and N>(vi) contains all the neighboring vertices vj with j > i.

A. Bhangale, D. Chakraborty, and R. Kumar 38:7

Consider an alphabet Σ containing a separate symbol for each vertex. We use vi to denote
both the vertex and its corresponding symbol in Σ. Now for each vertex vi ∈ V , construct
the following two strings Xi and X ′i

Xi = v1 . . . vi−1vi+1 . . . vnvivir . . . vis and X ′i = vip . . . viqviv1 . . . vi−1vi+1 . . . vn

where N>(vi) = {vir , · · · , vis} with ir < · · · < is, and N<(vi) = {vip , · · · , viq} with ip <

· · · < iq. The following proposition is immediate from the above construction.

I Proposition 9 ([18]). If there is a clique of size c in G, then there is a common subsequence
of X1, · · · , Xn, X ′1, · · · , X ′n of length c.

The converse has also been shown in [18].

I Proposition 10 ([18]). For any common subsequence S of X1, · · · , Xn, X
′
1, · · · , X ′n, all

the vi’s present in S form a clique in G.

The proofs of these propositions follow from the facts that any common subsequence is of
the form vi1 , vi2 , . . . , vit where i1 < i2 < . . . < it and that there must be an edge between
vij and vij′ for 1 ≤ j < j′ ≤ t.

Reducing the size of the alphabet

For some parameter α(n) < 1, let {S1, . . . , Sn} be a set of strings of length m over some
alphabet Σ′ such that: for all i 6= j |LCS(Si, Sj)| ≤ αm. We will fix the value of m and |Σ′|
later. The following theorem (Theorem 1 of [20]) shows that if we pick strings from Σ′m
uniformly at random then for |Σ′| = O(1/α2), with high probability the sampled strings will
satisfy the above desired property.

I Theorem 11 ([20]). For every ε > 0 there exists c > 0 such that for large enough sized
alphabet Σ′ for any m if two strings S1, S2 are picked uniformly at random from Σ′m then

Pr
[∣∣∣|LCS(S1, S2)| − 2m√

|Σ′|

∣∣∣ ≥ ε 2m√
|Σ′|

]
≤ e−cm/

√
|Σ′|.

Now by suitably choosing ε,m the following lemma directly follows from a union bound over
every pair of n chosen strings.

I Lemma 12. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−2) such
that for any m ≥ cα−1 logn (for some suitably chosen constant c > 0), if we choose a set of
strings S1, · · · , Sn uniformly at random from Σ′m then with probability at least 1− 1/n for
each i 6= j, |LCS(Si, Sj)| ≤ αm.

The above lemma gives us a randomized reduction. However we can deterministically find
such a collection (with a slight loss in the parameters) using the known construction of
synchronization strings. The proof of the following Lemma is deferred to Appendix A.

I Lemma 13. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−3)
such that for any m > 2α−2 logn, there is a deterministic construction of a set of strings
S1, · · · , Sn ∈ Σ′m such that for each i 6= j, |LCS(Si, Sj)| ≤ αm. Moreover, all the strings
can be generated in time O(α−2nm).

I Remark 14. One advantage of using the randomized construction is the alphabet size (as
well as the length of strings); randomized construction has only a quadratic loss whereas the
deterministic construction has a cubic loss in the alphabet size. However this will not matter
much for the parameters we need to prove our main theorem.

APPROX/RANDOM 2020

38:8 Hardness of Approximation of (Multi-)LCS over Small Alphabet

Now let us continue with the description of our reduction. We replace each vj ∈ Σ by
the string Sj . After the replacement we get the following two strings Yi and Y ′i respectively
from Xi and X ′i.

Yi = S1 . . . Si−1Si+1 . . . SnSiSir . . . Sis and Y ′i = Sip . . . SiqSiS1 . . . Si−1Si+1 . . . Sn

Note, Yi and Y ′i ’s are over the alphabet Σ′. For notational convenience we use SN>i
to

denote the substring Sir . . . Sis , and SN<i
to denote the substring Sip . . . Siq . From now on,

for simplicity, we will refer to these Si’s as blocks. Note, due to deterministic construction of
strings Si’s by Lemma 13 our whole reduction is deterministic and polynomial time.

It follows directly from Proposition 9 that:

I Lemma 15 (Completeness). If graph G is a YES instance of γ
2

4 -DkS (with clique of size
k), then a LCS of Y1, . . . , Yn, Y

′
1 , . . . , Y

′
n is of length at least km.

We devote the rest of this section to proving the soundness of our reduction.

I Lemma 16 (Soundness). Let α ∈ (0, 1/8) and β =
√

8α. If graph G is a NO instance of γ
2

4 -
DkS (every subgraph of size k has density less than γ2

4), then a LCS of Y1, . . . , Yn, Y
′
1 , . . . , Y

′
n

has length at most 2βmn.

3.1 Proof of Soundness
Let L be an (arbitrary) LCS of Y1, · · · , Yn, Y ′1 , · · · , Y ′n of size greater than 2βmn. By the
construction Yn = S1 . . . Sn (since N>(vn) = ∅). So we can partition the subsequence L as
Z1, · · · , Zn where ∀i ∈ [n] Zi is a subsequence of Si. (Zi can be an empty string). Now
consider all the Zi of length at least βm, and let W denote the set of all such Zi’s, i.e.,
W = {Zi | |Zi| ≥ βm}. Suppose L1 is the string formed by removing all Zi 6∈ W from L.
Clearly, |L1| ≥ |L| − βmn ≥ βmn.

For all i, j ∈ [n] such that i < j, define C[i, j] as: C[i, j] := {Zt ∈ W | i ≤ t ≤ j}. Note,
W = C[1, n]. Next we show that either the size of C[1, n] is small or there exists a subgraph
in G which has large density.

Let us consider the set of vertices VH := {vt|Zt ∈ W}. So |VH | = |W| ≥ |L|m − βn ≥ βn.
If we could show that the subgraph H of G induced by the set of vertices VH has high density
(ideally, a clique), then that will imply Lemma 16.

Now consider an (arbitrary) alignment between L1 and Y1, · · · , Yn, Y ′1 , · · · , Y ′n. Let us
denote the alignment between L1 and Yi (Y ′i) by σi (σ′i). From now on whenever we will
talk about alignment we will refer to these particular alignments (σi or σ′i depending on
strings under consideration) without specifying them explicitly. Consider a Zt ∈ W. We say
Zt is ε-aligned (for some ε ∈ [0, 1]) with some substring S′ of some Yi (or Y ′i) if and only if
either the first or the last ε fraction of symbols of Zt is aligned by the alignment σ′i (or σ′i)
with some subsequence of S′. Throughout this proof we will set ε = 1/2. Note that, if we
partition Yi into (any) two parts Y li and Y ri then Zi is 1/2-aligned to at least one of Y li and
Y ri , and this justifies our setting of parameter ε.

By following the argument of the proof of Proposition 10 given in [18], it is possible
to show that if σ aligns all Zt with some subsequence of St in all strings Yi (and Y ′i),
then the subgraph H induced by vertices in VH has high density (actually forms a clique).
Unfortunately we do not know whether all the Zt’s are aligned with their corresponding St’s
in all the Yi’s (and Y ′i ’s). Following are the different cases of mapping Zi ∈ W with Yi:

A. Bhangale, D. Chakraborty, and R. Kumar 38:9

1. Zi is 1/2-aligned with the substring S1 . . . Si−1 of Yi.
2. Zi is 1/2-aligned with Si+1 . . . SnSiSN>i

of Yi and there exists a j > i such that a symbol
of Zj in L1 is aligned with some symbol of Sj in the substring Si+1 . . . SnSi.

3. Zi is 1/2-aligned with the substring Si+1 . . . SnSiSN>i in Yi and there exists no j > i such
that a symbol of Zj ∈ W is aligned with some symbol of Sj in the substring Si+1 . . . Sn.

Similarly, we will also consider the mapping with Y ′i ’s. We will categorize first and second
case as sparse case and the third one as the dense case. Next we analyze these cases.

3.1.1 Sparse Case: Improper mapping leads to small LCS locally
Let us recall that Yi = S1 . . . Si−1Si+1 . . . SnSiSN>i

and Y ′i = SN<i
SiS1 . . . Si−1Si+1 . . . Sn.

The next two claims demonstrate that if Zi is not mapped to Si in Yi (or Y ′i) then there is a
portion C[j, i] (or C[i, j]) in L1 such that |C[j,i]|

i−j (or |C[i,j]|
j−i) is small, i.e., that portion of L1

is “sparse” with respect to the number of Zt blocks present in it.

B Claim 17. If Zi ∈ W is 1/2-aligned with the substring S1 . . . Si−1 of Yi (by the alignment
σi), then there exists a j < i such that |C[j, i]| ≤ 2α

β (i − j + 1). Similarly, if Zi ∈ W is
1/2-aligned with the substring Si+1 . . . Sn of Y ′i (by the alignment σ′i), then there exists a
j > i such that |C[i, j]| ≤ 2α

β (j − i+ 1).

Proof. Suppose Zi is 1/2-aligned with S1 . . . Si−1 of Yi. Let j be the largest index less than
i such that a symbol in Zj is aligned (by σi) with some symbol in Sj in Yi (if there does not
exist such a j then take j = 0). Note, by the definition of 1/2-alignment at least first βm/2
symbols of Zi are mapped (by σi) in S1 . . . Si−1. Recall, the definition of 1/2-alignment
ensures the mapping of the first or the last half fraction of symbols. However in this case if
Zi’s last βm/2 symbols are mapped in S1 . . . Si−1 then the whole Zi is actually mapped in
S1 . . . Si−1, which is even stronger than what we state.

By the properties of strings Sk’s specified in Lemma 13, the first βm/2 symbols of Zi
require at least β

2α blocks from {Sj , Sj+1, . . . , Si−1} to map completely (see Figure 1).

Si−1St

ZiL1

Yi

≥ β
2α blocks

Figure 1 Zi is 1/2-aligned with S1 . . . Si−1 where t > j.

Similarly each element of C[j+ 1, i−1] also requires at least β
α blocks from {Sj , Sj+1, . . . ,

Si−1}. However any two Zp, Zp+1 ∈ C[j + 1, i] may share a block (more specifically, the last
block used for Zp and the first block used for Zp+1) for mapping. So, we get

β

2α + (β
α
− 1)|C[j + 1, i− 1]| ≤ i− j ⇒ β

2α |C[j + 1, i]| ≤ i− j.

Note, βα − 1 ≥ β
2α as α ≤ 1/8 (recall, β =

√
8α), and C[j + 1, i− 1] ∪ {Zi} = C[j + 1, i].

Similarly, suppose Zi is 1/2-aligned with Si+1 . . . Sn of Y ′i . Let j be the smallest index
greater than i such that a symbol of Zj is aligned (by σ′i) with some symbol of Sj in Y ′i (if
there does not exist any j then take j = n+ 1). Using an argument similar to the above, we
get

β

2α + (β
α
− 1)|C[i+ 1, j − 1]| ≤ j − i⇒ β

2α |C[i, j − 1]| ≤ j − i. C

APPROX/RANDOM 2020

38:10 Hardness of Approximation of (Multi-)LCS over Small Alphabet

B Claim 18. Suppose (by the alignment σi) Zi ∈ W is 1/2-aligned with Si+1 . . . SnSiSN>i

of Yi, and there exists a j > i such that a symbol of Zj in L1 is aligned with some
symbol of Sj in the substring Si+1 . . . SnSi. Then there exists r such that i < r ≤ j and
|C[i, r − 1]| ≤ 2α

β (r − i).
Similarly, suppose (by the alignment σ′i) Zi ∈ W is 1/2-aligned with SN<iSiS1 . . . Si−1

of Y ′i , and there exists a j < i such that a symbol of Zj in L1 is aligned with some
symbol of Sj in the substring SiS1 . . . Si−1. Then there exists r such that j ≤ r < i and
|C[r + 1, i]| ≤ 2α

β (i− r).

Proof. Suppose Zi is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi and there exists a j > i

such that a symbol of Zj in L1 is aligned (by σi) with some symbol of Sj in the substring
Si+1 . . . SnSi. Let us choose r to be the smallest j with the above condition. By the argument
used in the proof of Claim 17, Zi requires at least β

2α blocks from {Si+1, Si+2, · · · , Sr}, and
every element in C[i+ 1, r − 1] requires at least β

α blocks from {Si+1, Si+2, · · · , Sr}. Again,
any two Zp, Zp+1 ∈ C[i, r − 1] may share a block (more specifically, the last block used for
Zp and the first block used for Zp+1) for mapping. So we get

β

2α + |C[i+ 1, r − 1]|(β
α
− 1) ≤ r − i⇒ β

2α |C[i, r − 1]| ≤ r − i.

Similarly, suppose Zi is 1/2-aligned with SN<iSiS1 . . . Si−1 of Y ′i and there exists a j < i

such that a symbol of Zj in L1 is aligned (by σ′i) with some symbol of Sj in the substring
SiS1 . . . Si−1. Let us choose r to be the largest j with the above condition. Then we get

β

2α + |C[r + 1, i− 1]|(β
α
− 1) ≤ i− r ⇒ β

2α |C[r + 1, i]| ≤ i− r. C

3.1.2 Dense Case: Proper mapping implies large number of neighbors
Recall that VH = {vt | Zt ∈ W}. For each vi ∈ VH further define V >iH := {vt ∈ VH | t > i}
and V <iH := {vt ∈ VH | t < i}. The next two claims show that if Zi is aligned with Si in Yi
and Y ′i then “most” of the vertices in VH are connected to (i.e., neighbors of) the vertex vi.
This eventually helps us to show that density of H is high.

B Claim 19. Suppose (by the alignment σi) Zi ∈ W is 1/2-aligned with Si+1 . . . SnSiSN>i

in Yi, and there exists no j > i such that a symbol of Zj ∈ W is aligned with some symbol
of Sj in the substring Si+1 . . . Sn. Then

|V >iH

⋂
N>(vi)|+

β

2α |V
>i
H \ N>(vi)| ≤ 2(n− i) + 1.

Proof. Zi is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi. So to align all Zr ∈ C[i+ 1, n] (note,

|C[i + 1, n]| = |V >iH |) at most 2(n − i) + 1 blocks of Sp’s are available. Since for no j > i

a symbol of Zj ∈ W is aligned with some symbol of Sj in Si+1 . . . Sn, each Zr such that
vr ∈ V >iH \ N>(vi) requires at least β

α blocks of Sp’s to map. Any two Zr, Zr+1 such that
vr, vr+1 ∈ V >iH \ N>(vi) may share a block (more specifically, the last block used for Zp
and the first block used for Zp+1) for mapping. Recall for our choice of parameters α, β,
β
α − 1 ≥ β

2α . So we get

|V >iH

⋂
N>(vi)|+

β

2α |V
>i
H \ N>(vi)| ≤ 2(n− i) + 1. C

Similarly, we consider the mapping of Zi in the string Y ′i .

A. Bhangale, D. Chakraborty, and R. Kumar 38:11

p1 q1 p2 q2

p1
i1

i2
j1 i3

j2 q1
j3

C[1, n]
Shaded region is included in T

Considering s = 3,
(i1, j1),(i2, j2),(i3, j3) is a series
of pairs to cover C[p1, q1] where
i1 = p1 and j3 = q1.

Figure 2 T as a union of disjoint subsets.

B Claim 20. Suppose (by the alignment σ′i) Zi ∈ W is 1/2-aligned with SN<i
SiS1 . . . Si−1

in Y ′i , and there exists no j < i such that a symbol of Zj ∈ W is aligned with some symbol
of Sj in the substring S1 . . . Si−1. Then

|V <iH

⋂
N<(vi)|+

β

2α |V
<i
H \ N<(vi)| ≤ 2i− 1.

Proof. Zi is 1/2-aligned with SN<i
SiS1 . . . Si−1 of Y ′i . So to align all Zr ∈ C[1, i− 1] (note,

|C[1, i−1]| = |V <iH |), at most 2i−1 blocks of Sp’s are available. Since for no j < i a symbol of
Zj ∈ W is aligned with some symbol of Sj in S1 . . . Si−1, each Zr such that vr ∈ V <iH \N<(vi)
requires at least β

α blocks of Sp’s to map. Any two Zr, Zr+1 such that vr, vr+1 ∈ V <iH \N<(vi)
may share a block (more specifically, the last block used for Zp and the first block used for
Zp+1) for mapping. Recall for our choice of parameters α, β, βα − 1 ≥ β

2α . So we get

|V <iH

⋂
N<(vi)|+

β

2α |V
<i
H \ N<(vi)| ≤ 2i− 1. C

3.1.3 Removing sparse blocks from LCS
Next we choose a subset of vertices from the set VH so that the graph induced by that subset
has high density. For that purpose we remove the “sparse” portions from the subsequence L1
in the following way:
1. Initialize an empty set T .
2. For each Zi ∈ W identify the largest j > i such that |C[i,j]|

j−i+1 ≤
2α
β , and then add all

Zk ∈ C[i, j] in the set T . (If no such j exists then do not add anything to T .)
3. Define a new set W ′ =W \ T .
Let L2 be the string formed by removing all Zi 6∈ W ′ from L1. Let us also define a set of
vertices V ′H = {vt|Zt ∈ W ′}. (Note, V ′H ⊆ VH .) Now we will argue that the set VH has not
shrunk by much after removing the sparse blocks and each vertex in V ′H has high degree in
the subgraph H, which eventually implies that the subgraph H has high density.

B Claim 21. |V ′H | ≥ |VH | − 4α
β n.

Proof. Let us consider the set T . We can write T as a union of disjoint subsets as T =
C[p1, q1]∪C[p2, q2]∪· · ·∪C[pr, qr] for some integer r ∈ [n], such that ∀1≤`≤r−1 C[q`, p`+1] 6= ∅
(see Figure 2).

Now if we could show that for each ` ∈ [r], |C[p`, q`]| ≤ 4α
β (q` − p`), then

|T | =
r∑
`=1
|C[p`, q`]| ≤

4α
β

r∑
`=1

(q` − p`) ≤
4α
β
n

where the last inequality is true since p1 < q1 < p2 < q2 < · · · < pr < qr. So to conclude the
proof of the claim next we show that for all ` ∈ [r] |C[p`, q`]| ≤ 4α

β (q` − p`).

APPROX/RANDOM 2020

38:12 Hardness of Approximation of (Multi-)LCS over Small Alphabet

It is immediate from the construction of the set T that there exists a sequence of pair of
indices (i1, j1), · · · , (is, js) (for some positive integer s) where i1 = p` and js = q`, such that
for all t ∈ [s] while processing Zit we add blocks of C[it, jt] in T , and C[p`, q`] =

⋃
t∈[s] C[it, jt].

We can further assume that there exists no t′ ∈ [s] such that C[it′ , jt′] ⊆
⋃
t∈[s]\{t′} C[it, jt].

(In words it means that C[i1, j1], · · · , C[is, js] is a minimal sequence of subsets whose union
is C[i1, js].) Due to this assumption we can write that i2 ≤ j1 ≤ i3 ≤ j2 ≤ · · · ≤ is ≤ js−1
and ∀t ∈ [s− 2], it+2 ≥ jt + 1 (see Figure 2). So,

|C[p`, q`]| ≤
s∑
t=1
|C[it, jt]| ≤

2α
β

s∑
t=1

(jt − it + 1)

= 2α
β

[
s+ (js − i1) +

s−1∑
t=1

(jt − it+1)
]

≤ 2α
β

[
s+ (js − i1) + (js−1 − i2 − (s− 2))

]
≤ 2α

β

[
2(js − i1)

]
where second last inequality uses the fact that ∀t ∈ [s−2], it+2 ≥ jt+1 and last inequality uses
the fact that js ≥ js−1 + 1 and i2 ≥ i1 + 1. Hence we conclude that |C[p`, q`]| ≤ 4α

β (q` − p`),
and this completes the proof. C

B Claim 22. For each vertex vi ∈ V ′H , |VH
⋂
N (vi)| ≥ |VH | − 4α

β n.

Proof. By the construction of W ′, for each Zi ∈ W ′ we know that there exists no j > i (or
< i) such that |C[i,j]|

j−i+1 ≤
2α
β (or |C[j,i]|

i−j+1 ≤
2α
β). Then by Claim 17 and Claim 18 it follows that

all Zi ∈ W ′ satisfy preconditions of both Claim 19 and Claim 20. Otherwise by Claim 17 and
Claim 18 we know that there exists a j > i (or < i) such that |C[i,j]|

j−i+1 ≤
2α
β (or |C[j,i]|

i−j+1 ≤
2α
β).

For j > i when we process Zi to construct the set T we add all the blocks of C[i, j], and
for j < i when we process Zj we add all the blocks of C[j, i]. So it must be the case that
the alignment σi between L1 and Yi, 1/2-aligns Zi to the substring Si+1 . . . SnSiSN>i

and
there exists no j > i such that Zj ∈ W aligns with Sj in the substring Si+1 . . . Sn. Also, σ′i
1/2-aligns Zi to the substring SN<i

SiS1 . . . Si−1 and there exists no j < i such that Zj ∈ W
aligns with Sj in the substring S1 . . . Si−1. So by Claim 19

|V >iH

⋂
N>(vi)|+

β

2α |V
>i
H \ N>(vi)| ≤ 2(n− i) + 1,

and by Claim 20

|V <iH

⋂
N<(vi)|+

β

2α |V
<i
H \ N<(vi)| ≤ 2i− 1.

These two claims together imply

|VH
⋂
N (vi)|+

β

2α |VH \ N (vi)| ≤ 2n

⇒|VH
⋂
N (vi)|+

β

2α (|VH | − |VH
⋂
N (vi)|) ≤ 2n

⇒(β2α − 1)|VH
⋂
N (vi)| ≥

β

2α |VH | − 2n

⇒|VH
⋂
N (vi)| ≥ |VH | −

4α
β
n. C

A. Bhangale, D. Chakraborty, and R. Kumar 38:13

Now we are ready to complete the proof of soundness (Lemma 16).

Proof of Lemma 16. For the sake of contradiction let us assume that the LCS is of size at
least 2βmn. Recall, we have already seen that |VH | ≥ βn. Now we consider the following
two cases depending on the size of VH .
Case 1: (When |VH | ≤ β

γ
n). Suppose |VH | ≤ β

γn (= k). Let V ′ ⊇ VH be an arbitrary set
of size exactly β

γn. Let H
′ be the subgraph induced by the vertices V ′. Using Claim 21

and Claim 22, we can lower bound the density of the subgraph H ′ by:

1
2
∑
v∈V ′

H

(
|VH | − 4α

β n
)

(|V ′|
2
) ≥

(
β − 4α

β

)
n ·
(
β − 4α

β

)
n

β
γn ·

β
γn

≥
(
γ − 4αγ

β2

)2
.

As we set α = β2/8, we get that the density of the subgraph induced by V ′ is at least
(γ/2)2.

Case 2: (When |VH | > β
γ

n). If |VH | > β
γn, the density of the subgaph H induced by VH

is lower bounded by:

1
2
∑
v∈V ′

H

(
|VH | − 4α

β n
)

(|VH |
2
) ≥

|V ′H |
(
|VH | − 4α

β n
)

|VH |(|VH | − 1)

≥

(
|VH | − 4α

β n
)2

|VH |2

=
(

1− 4αn
β|VH |

)2

≥ (1− γ

2)2 (since |VH | >
β

γ
n and we set α = β2/8)

≥ (γ/2)2 (since γ ≤ 1).

Now since density of the subgraph is at least (γ/2)2, it follows from the following simple
claim that there exists a subgraph of H of size β

γn which has density at least (γ/2)2.

B Claim 23. Suppose a graph G = (V,E) has edge density c, then for any 2 ≤ k ≤ |V |,
there exists a subgraph of size k with density at least c.

Proof. Let n = |V |. Pick a subset H ⊆ V of size exactly k uniformly at random. For a fixed
edge e in G, the probability that the edge e is present in the subgraph induced by H is
exactly (n−2

k−2)
(n

k) . Since G has c ·
(
n
2
)
edges, by linearity of expectation, the expected number

of edges in the subgraph induced by H is equal to c ·
(
n
2
)
· (n−2

k−2)
(n

k) = c ·
(
k
2
)
. Therefore, the

expected density of the subgraph is exactly equal to c. Hence, by an averaging argument,
there exists a subgraph of G of size k with density at least c. C

In both the cases, we have shown that there exists a subgraph of size β
γn(= k) with density

at least (γ/2)2, which is a contradiction to the fact that we started with a NO instance of
γ2

4 -DkS
(
β
γn, n

)
. Therefore in this case, the size of LCS must be at most 2βmn. J

APPROX/RANDOM 2020

38:14 Hardness of Approximation of (Multi-)LCS over Small Alphabet

Proof of Theorem 2

If there is no polynomial time algorithm to distinguish between the YES and NO instances of
γ2

4 -DkS
(
β
γn, n

)
, then using Lemma 15 and Lemma 16, it follows that there is no polynomial

time algorithm to distinguish between the cases when the LCS of Y1, · · · , Yn, Y ′1 , · · · , Y ′n is
of size β

γmn vs. 2βmn. Also note that if we use Lemma 13 to construct the strings Si’s then
the alphabet size is O(α−3) = O(β−6). This proves the main theorem.

4 Conclusion

In this paper we show hardness of constant factor approximation of Multi-LCS problem
with input of length n over no(1) sized alphabet assuming the Exponential Time Hypothesis
(ETH). This is the first hardness result for approximating Multi-LCS problem for sublinear
sized alphabet. To prove our result we provide a reduction from the densest k-subgraph
problem with perfect completeness, and then use the known hardness results for the latter
problem from [24]. One interesting fact is that if one could show hardness of the γ-DkS(k, n)
problem for k = Θ(n

poly logn) and γ = (logn)−c for some c > 0, then due to our reduction
that will directly imply constant factor hardness for Multi-LCS over poly-logarithmic sized
alphabet under ETH.

References
1 Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time

problems. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January
9-11, 2017, Berkeley, CA, USA, pages 11:1–11:26, 2017.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78,
2015.

3 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.

4 Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approximation
algorithms for LCS imply new circuit lower bounds. In 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 35:1–35:14,
2018.

5 Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Pablo de la Fuente, editor, Seventh International Symposium on String
Processing and Information Retrieval, SPIRE 2000, A Coruña, Spain, September 27-29, 2000,
pages 39–48. IEEE Computer Society, 2000.

6 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 201–210. ACM, 2010.

7 Guillaume Blin, Laurent Bulteau, Minghui Jiang, Pedro J. Tejada, and Stéphane Vialette.
Hardness of longest common subsequence for sequences with bounded run-lengths. In Combi-
natorial Pattern Matching - 23rd Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5,
2012. Proceedings, pages 138–148, 2012.

8 Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness for
densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341. SIAM, 2017.

A. Bhangale, D. Chakraborty, and R. Kumar 38:15

9 Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchronization
strings: Highly efficient deterministic constructions over small alphabets. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 2185–2204, 2019.

10 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

11 Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Algorithmica, 29, 1997.
12 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for

sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.
13 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.
14 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit construc-

tions, local decoding, and applications. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 841–854, 2018.

15 MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. Approxi-
mating LCS in linear time: Beating the

√
n barrier. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1181–1200, 2019.

16 D.S. Hirschberg. Recent results on the complexity of common subsequence problems. In Time
Warps, String Edits, and Macromolecules, D. Sankoff and J.B. Kruskal, ed., Addison-Wesley,
pages 323–328, 1983.

17 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

18 Tao Jiang and Ming Li. On the approximation of shortest common supersequences and longest
common subsequences. SIAM J. on Computing, 24(5):1122–1139, 1995.

19 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

20 Marcos Kiwi, Martin Loebl, and Jiří Matoušek. Expected length of the longest common
subsequence for large alphabets. Advances in Mathematics, 197(2):480–498, 2005.

21 G Kortsarz and D Peleg. On choosing a dense subgraph. In Proceedings of the 1993 IEEE
34th Annual Foundations of Computer Science, pages 692–701. IEEE Computer Society, 1993.

22 S. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis. IEEE
Transactions on Systems, Man, and Cybernetics, 8(5):381–389, May 1978.

23 David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,
25(2):322–336, April 1978.

24 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 954–961. ACM, 2017.

25 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

26 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

27 Pavel A. Pevzner. Multiple alignment with guaranteed error bounds and communication cost.
In Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona,
USA, April 29 - May 1, 1992, Proceedings, pages 205–213, 1992.

28 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the forty-second ACM symposium on Theory of computing, pages 755–764.
ACM, 2010.

29 Aviad Rubinstein and Zhao Song. Reducing approximate longest common subsequence to
approximate edit distance. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1591–1600. SIAM, 2020.

APPROX/RANDOM 2020

38:16 Hardness of Approximation of (Multi-)LCS over Small Alphabet

30 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974.

31 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(6):103–128, 2007.

A Derandomized version of Lemma 12

To achieve deterministic reduction we need to construct the set of strings S1, · · · , Sn deter-
ministically in time poly(n). For that purpose we use the notion of synchronization strings
used in the literature of insertion-deletion codes [14, 9].

I Definition 24 (c-long-distance ε-synchronization string). A string S ∈ Σn is called a c-long-
distance ε-synchronization string for some parameter ε ∈ (0, 1), if for every 1 ≤ i < j ≤ i′ <
j′ ≤ n with i′ − j ≤ n · 1(j+j′−i−i′)>c logn, |LCS(S[i, j], S[i′, j′])| ≤ ε(j + j′ − i− i′), where
1(j+j′−i−i′)>c logn is the indicator function for (j + j′ − i− i′) > c logn.

Note, in the definition of c-long-distance ε-synchronization string in [9] authors used the notion
of edit distance instead of LCS. More specifically, they specified the edit distance between
S[i, j] and S[i′, j′]) is at least (1− ε)(|S[i, j]|+ |S[i′, j′]|). However both the notions can be
used interchangeably since for any two strings S, S′, |LCS(S, S′)| = |S|+ |S′| −ED(S, S′),
where the edit distance ED(S, S′) is defined as the minimum number of insertion and deletion
operations required to transform S to S′. One may note that, generally while defining the edit
distance we also allow substitution operation. However here we are not allowing substitution
operation, and that is why we are able to write the following equivalence between LCS and
the edit distance of two strings S, S′: |LCS(S, S′)| = |S|+ |S′| − ED(S, S′). We would like
to mention that in [9] authors also used this particular version of the edit distance notion
(i.e., without substitution operation).

Several constructions of such long-distance synchronization strings are given in [14, 9]
with different parameters. However we restate one of the theorems from [9] that we find
useful for our purpose.

I Theorem 25 (Rephrasing of Theorem 5.4 of [9]). For any n ∈ N and parameter ε ∈ (0, 1),
there is a deterministic construction of an ε−2-long-distance ε-synchronization string S ∈ Σn
for some alphabet Σ of size O(ε−3). Moreover, for any i ∈ [n] the substring S[i, i + logn]
can be computed in time O(ε−2 logn).

Now using the above we will provide deterministic construction of set of strings S1, · · · , Sn
with our desired property.

I Lemma 13. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−3)
such that for any m > 2α−2 logn, there is a deterministic construction of a set of strings
S1, · · · , Sn ∈ Σ′m such that for each i 6= j, |LCS(Si, Sj)| ≤ αm. Moreover, all the strings
can be generated in time O(α−2nm).

Proof. For a specified α and n, set ε = α/2. Then use the construction from Theorem 25 to
get an ε−2-long-distance ε-synchronization string S of length 2nm, for any m > 1

2ε
−2 logn.

The bound on m is required to satisfy the condition that (j + j′ − i − i′) > c logn of
Definition 24. (Note, in our case (j + j′ − i− i′) = 2m and c = ε−2.) Then divide the string
S into m length blocks. Finally choose alternate blocks as S1, · · · , Sn. More specifically,
S1 = S[1,m], S2 = S[2m+ 1, 3m], · · · , Sn = S[(2n− 2)m+ 1, (2n− 1)m]. Now the bound on
|LCS(Si, Sj)| for any i 6= j, directly follows from Definition 24. J

	Introduction
	Techniques
	Related works
	Results on LCS problem
	Hardness results related to densest k-subgraph problem

	Preliminaries
	Longest Common Subsequence
	Exponential Time Hypothesis
	Densest k-Subgraph problem and related hardness results

	Reduction
	Proof of Soundness
	Sparse Case: Improper mapping leads to small LCS locally
	Dense Case: Proper mapping implies large number of neighbors
	Removing sparse blocks from LCS

	Conclusion
	Derandomized version of Lemma 12

