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Abstract
The Minimum Length Bounded Cut problem is a natural variant of Minimum Cut: given a
graph, terminal nodes s, t and a parameter L, find a minimum cardinality set of nodes (other
than s, t) whose removal ensures that the distance from s to t is greater than L. We focus on the
approximability of the problem for bounded values of the parameter L.

The problem is solvable in polynomial time for L ≤ 4 and NP-hard for L ≥ 5. The best known
algorithms have approximation factor d(L− 1)/2e. It is NP-hard to approximate the problem within
a factor of 1.17175 and Unique Games hard to approximate it within Ω(L), for any L ≥ 5. Moreover,
for L = 5 the problem is 4/3− ε Unique Games hard for any ε > 0.

Our first result matches the hardness for L = 5 with a 4/3-approximation algorithm for this case,
improving over the previous 2-approximation. For 6-bounded cuts we give a 7/4-approximation,
improving over the previous best 3-approximation. More generally, we achieve approximation ratios
that always outperform the previous d(L− 1)/2e guarantee for any (fixed) value of L, while for large
values of L, we achieve a significantly better ((11/25)L + O(1))-approximation.

All our algorithms apply in the weighted setting, in both directed and undirected graphs, as well
as for edge-cuts, which easily reduce to the node-cut variant. Moreover, by rounding the natural
linear programming relaxation, our algorithms also bound the corresponding bounded-length flow-cut
gaps.
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1 Introduction

In the Minimum Length Bounded Cut problem, we are given a directed (undirected)
graph G = (V,E), two distinguished vertices s, t ∈ V , called the source and the sink, and an
integer parameter L > 0, and wish to find a minimum cardinality L-bounded node cut (edge
cut, resp.): a subset F ⊆ V \ {s, t} of vertices (a subset F ⊆ E of edges, resp.) such that the
every path between the source s and the sink t in G \ F has length strictly greater than L;
the path length is the number of edges in it.

Various aspects of the problem have been studied for almost half a century: its relationship
to the maximum L-bounded flow [1, 2, 3, 17] and to the maximum number of disjoint
L-bounded s − t paths [1, 7, 16], its complexity [5, 3, 15] and approximability [3, 14],
fixed-parameter tractability [6, 9, 10, 11], and polynomial time solvability for various graph
classes [4, 9, 18, 14]. In this paper we focus on the approximability of the problem.
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41:2 How to Cut a Ball Without Separating

There are four basic versions of the L-Bounded Cut problem, depending on whether
the graph G is directed or undirected, and whether we cut nodes or edges. As observed
by Golovach and Thilikos [11], an α-approximation algorithm for Directed L-Bounded
Node Cut yields an α-approximation algorithm for Undirected L-Bounded Node Cut,
Undirected (L− 1)-Bounded Edge cut, and Directed (L− 1)-Bounded Edge Cut.
Thus, we describe all our algorithms just for the directed node version, and in the rest of the
paper we focus exclusively on this setting.

On the complexity and approximability side, the node (edge, resp.) version of Minimum
L-Bounded Cut is solvable in polynomial time for L ≤ 4 [16] (for L ≤ 3 [17], resp.) and is
NP-hard for L ≥ 5 (for L ≥ 4, resp.) [3]. With respect to the length parameter L, there are
several simple O(L)-approximation algorithms [3, 17], and the best known algorithm has
approximation ratio d(L− 1)/2e [3].

For L ≥ 4, L-Bounded Edge Cut is known to be NP-hard to approximate within
a factor of 1.1377 [3]. In fact, we observe that the reduction in that paper also implies
the NP-hardness of approximating the problem to within a factor of 1.1715, and Unique
Games hardness of approximating it to within 4/3− ε for any ε > 0 – see Appendix A for
details. Note that these results imply the same hardness for L-Bounded Node Cut for
L ≥ 5. Recently, Lee [15] showed that for bounded values of L it is Unique Games hard to
approximate the undirected edge variant within Ω(

√
L), and the other three variants within

Ω(L). Thus, assuming the Unique Games Conjecture, the best possible approximation for
all but the undirected edge variant is Θ(L). However, the exact best possible approximation
as a function of L is not known.

If the length bound is not a fixed constant but a part of the input, the gap between the
known hardness results and approximations is even bigger: there are no stronger hardness
results and the best known algorithms [3] have approximation ratio O(min{L, n/L}) ⊆ O(

√
n)

in the node case and O(min{L, n2/L2,
√
m}) ⊆ O(n2/3) in the edge case where m denotes

the number of edges.

1.1 Our results
Our first result is an algorithmic upper bound matching the Unique Games hardness of
4-Bounded Edge Cut and 5-Bounded Node Cut; note that these two problems are the
first hard instances of L-Bounded Cut – for L the corresponding problems are in P. For
reasons explained earlier we state all our results for the node case only.

I Theorem 1. There is a 4
3 -approximation algorithm for Minimum 5-Bounded Node Cut.

Similarly, for L = 6 we also describe a new algorithm with an improved approximation ratio.

I Theorem 2. There is a 7
4 -approximation algorithm for Minimum 6-Bounded Node Cut.

This algorithm is based on the same, yet more involved, techniques as the algorithm for
L = 5. More generally, we have an approximation algorithm that works for any value of L.

I Theorem 3. For any fixed length bound L ≥ 6, there exists an
(

L−1
2 − 3

L−2

)
-approximation

algorithm for Minimum L-Bounded Node Cut.

This algorithm is based on our algorithm for L = 6 and a general observation that an
α-approximation algorithm for L-Bounded Cut with certain properties can be used to
design an approximation algorithm for (L + 1)-Bounded Cut, with a slightly weaker
approximation ratio (see Theorem 10). This is always better than the previous best known
d(L− 1)/2e-approximation, but for large values of L it is not significantly better. Though
various algorithmic techniques, including the above theorem, all point to L/2− o(L) being
the best possible approximation (cf. [3]), we are able to improve over this bound.
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I Theorem 4. For any fixed length bound L > 5, there exists an ((11/25)L+O(1))-
approximation algorithm for Minimum L-Bounded Node Cut.

A succinct summary of the old and the new results on approximability of Minimum
L-Bounded Cut is provided in Table 1. It is worth mentioning that all our algorithms
work also in the more general setting where every node (edge) has a non-negative weight
and the objective is to find an L-bounded cut of minimum total weight, simply by including
these weights in the objective function of the linear program.

Table 1 Known and new (bold type) results for bounded values of L. All results hold for both
directed and undirected cases, unless stated otherwise. We note that a hardness result for some
value of L implies the same hardness result for larger values as well, thus we only state hardness
results here for the smallest L for which they hold. NP stands for NP hardness of approximation,
UG for Unique Games hardness of approximation.

L Node Cuts Edge Cuts
Hardness Approximations Hardness Approximations

≤ 3 1 (in P) 1 (in P) [17]
4 1 (in P) [16] NP 1.1715 [3, 12] 2 [3]

UG 4/3 [3, 13] 4/3
5 NP 1.1715 [3, 12] 2 [3] 3 [3]

UG 4/3 [3, 13] 4/3 7/4
6 3 [3] 3 [3]

7/4 12/5
any UG Ω(L) [15] d(L− 1)/2e [3] UG Ω(L) directed, dL/2e [3]

(L− 1)/2− 3/(L− 2) Ω(
√

L) undir. [15] L/2− 3/(L− 1)
0.44(L− 1) + O(1) 0.44L + O(1)

Approximate duality of L-bounded flows and cuts

As we have already mentioned earlier, researchers investigated the relation between the
minimum L-bounded cut and the maximum L-bounded flow (where an L-bounded flow is a
flow that can be decomposed into flows along paths of length at most L) (e.g., [2, 3, 17]); in
fact, this was one of the first questions Adámek and Koubek [1] asked back in 1971.

All our algorithms are based on rounding the linear program (1) (given in the next
subsection) which is the dual of the exact linear programming formulation of the maximum L-
bounded flow. Thus, as a corollary of our algorithmic results, we obtain improved approximate
duality relations between L-bounded cuts and flows that are tighter than those previously
known. For the sake of brevity we state the result just for 4-bounded edge cuts and flows.

I Corollary 5. Given a graph G = (V,E) and nodes s, t ∈ V , let F denote a maximum
4-bounded flow, and C a minimum 4-bounded edge cut. Then

|F| ≤ |C| ≤ 4
3 |F|,

and these bounds are tight.

APPROX/RANDOM 2020



41:4 How to Cut a Ball Without Separating

1.2 Overview of our approach
All our algorithms are based on a rounding of a natural linear programming relaxation of
the problem. This relaxation was studied in earlier works on L-Bounded Cut (e.g., [3, 17])
but for the sake of completeness we provide it here again. In the following linear program
(solvable via a simple separation oracle), Ps,t(L) denotes the set of all paths between s and t
of length at most L.

min
∑

v∈V \{s,t}

xv (1)

∑
v∈p\{s,t}

xv ≥ 1 ∀p ∈ Ps,t(L) (2)

xv ≥ 0 ∀v ∈ V

The previous approximation algorithms were based on cutting only shortest paths, which
can be done optimally by taking a minimum cut in the layered graph of shortest paths from
s to t. By iteratively cutting all shortest s − t paths until the distance between s and t

becomes larger then L, we get an L-approximation.
This approach can also be framed as a rounding of the above linear programming

relaxation, via the following classical rounding which cuts in every iteration all shortest paths
while paying at most the LP value:

Exact-Round(G, (xv)v∈V )

For every v ∈ V \{s, t}, let yv := min{x(p) | p : s; v, |p| = d(s, v)} and Iv := [yv, yv+xv],
where s; v stands for an s− v path, d is the hop-distance in G and x(p) is defined to
be the total LP value of vertices in p excluding its endpoints.
Sample r ∈ [0, 1] uniformly at random.
Return the cut {v | r ∈ I(v)}.

In words, every vertex v ∈ V \ {s, t} is mapped to an interval Iv of length xv in such a way
that for every s− t path p of interest (i.e., path of length d(s, v)), we have [0, 1] ⊆

⋃
v∈p Iv.

The algorithm then cuts all vertices whose corresponding intervals lie on the boundary of a
ball of uniformly random radius; by cutting these vertices the algorithm separates s from t

in the layered subgraph of shortest s− t paths, and, thus, increases the distance between s
and t on the whole graph by one at least. The property that is important in the analysis,
and that will be important later in our new algorithms, is the following:

I Observation 6. Given a solution (xv)v∈V of the LP (1), for every v ∈ V , Exact-Round
cuts v with probability at most xv.

The difficulty with the outlined iterative approach to construct an L-bounded cut is that it
uses up to L iterations (or up to d(L−1)/2e, if we first cut all vertices with xv ≥ 1/d(L−1)/2e),
where each iteration may yield a cut as large as the LP value. See Figure 1 for an instance
where more than one iteration is performed. Our idea is to circumvent the need for multiple
iterations by mapping every vertex v to multiple intervals, each interval representing a
possible position of the vertex in an L-bounded path. Thus, our algorithms are similar to
classical ball cutting algorithms, yet they differ in that they do not (necessarily) separate s
from t.

However, this is only a framework for our improvements. A naïve random ball growing
algorithm would not yield a better approximation ratio when applied to these intervals. To
fully take advantage of this framework, we introduce additional ideas such as cutting only a
carefully chosen subset of the boundaries of more than one ball, and/or modifying the LP
values in order to take better advantage of the structure of our mappings.
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Figure 1 In this instance, L = 5, and the LP values appear above the vertices. In the first
iteration of Exact-Round, we have Iu = [0, 1/2], Iv = [1/2, 1], and Iw = [1, 3/2]. Intervals for
other vertices will have length 0. Thus, in this iteration either u or v will be cut (no other vertex
is assigned an interval with a positive length intersection with [0, 1]), and we will need a second
iteration to cut some remaining path of length 5.

2 A 4/3-approximation for L = 5

Here we prove Theorem 1. Specifically, we give a rounding of the natural LP relaxation for
5-Bounded Node Cut which cuts every vertex v ∈ V with probability at most (4/3) · xv.

Before describing our rounding, we describe here a certain mapping of the vertices V \{s, t}
to intervals. For a graph G = (V,E) and an LP solution (xv)v∈V , we map every vertex v at
distance most 2 from s or to t to two intervals, I+

G (v), I−G (v). For any vertices u, v such that
(s, u), (v, t) ∈ E, we define

I−G (u) = I+
G (u) = [0, xu] I−G (v) = I+

G (v) = [1− xv, 1].

Next, for any vertex u (for which (u, t) 6∈ E) at distance 2 from s, define

y+
G(u) = min

u′:(s,u′),(u′,u)∈E
xu′ I+

G (u) = [y+
G(u), y+

G(u) + xu].

If dG(u, t) > 2, define I−G (u) = I+
G (u); note that in such a case, within any 5-bounded s− t

path containing it, u will be at distance 2 from s and 3 from t. Finally, for any vertex v (for
which (s, v) 6∈ E) at distance 2 to t, define

y−G(v) = min
u:(v,v′),(v′,t)∈E

xv′ I−G (v) = [1− y−G(v)− xv, 1− y−G(v)].

If dG(s, v) > 2, define I+
G (v) = I−G (v).

We will drop the subscript G from the above definitions when it is clear from the context.
Note that I+(v), I−(v) have length xv for every v, and I−(v) = I+(v) for all vertices v
except those which are both at distance 2 from s and at distance 2 to t. For v such that
I−(v) 6= I+(v), there exists a path 〈s, u′, v, v′, t〉 such that y+(v) = xu′ and y−(v) = xv′ .
Thus, the intervals have the same length, and I−(v) starts to the left of I+(v) (when plotted
on the real number line). Indeed, the left endpoint of I+(v) will be xu′ , while the left
endpoint of I−(v) will be 1− (xv′ + xv), which is at most xu′ by Constraint (2).

We are now ready to define our rounding:

Algorithm 5-Round

Let C0 = {v ∈ V | xv ≥ 3/4}. Let G′ be the remaining graph after deleting all vertices in
C0.
Sample r ∈ [0, 1] uniformly at random.

APPROX/RANDOM 2020



41:6 How to Cut a Ball Without Separating

Sample r1 ∈ [0, 1/2] uniformly at random, and let r2 = r1 + 1/2.
Let C1 be the set of all vertices v such that r ∈ I−G′(v) ∪ I+

G′(v).
Let C2 be the set of all vertices v for which at least one of the following conditions holds:
1. r1 ∈ I−G′(v) ∩ I+

G′(v) or r2 ∈ I−G′(v) ∩ I+
G′(v), or

2. r1, r2 ∈ I−G′(v) or r1, r2 ∈ I+
G′(v).

With probability 2/3, return C0 ∪ C1. Otherwise (with probability 1/3), return C0 ∪ C2.

I Remark 7. This algorithm can be easily derandomized by trying O(|V |) possible radii r, r1
and choosing the better of the two cuts C0 ∪ C1, C0 ∪ C2.

First let us see why this is a valid 5-bounded cut.

I Lemma 8. Algorithm 5-Round cuts all paths of length at most 5 from s to t.

Proof. Since vertices in C0 are always cut, we focus on paths not cut by C0. That is, on
paths in G′.

First, let us see that C1 cuts all 5-bounded s − t paths in G′ (the proof for paths of
length < 5 is similar or simpler). Let p = 〈s, u′, u, v, v′, t〉 be such a path and assume
that (s, u), (v, t) 6∈ E; otherwise cutting a vertex in a shorter path (i.e., 〈s, u, v, v′, t〉 or
〈s, u′, u, v, t〉) cuts p as well. Let u′′, v′′ be vertices such that y+(u) = xu′′ and y−(v) = xv′′ .
Since 〈s, u′′, u, v, v′′, t〉 is also a path in G′, it follows from the definition of the intervals and
Constraint (2) that [0, 1] ⊆ I+(u′′) ∪ I+(u) ∪ I−(v) ∪ I−(v′′). Moreover, we clearly have
I+(u′′) ⊆ I+(u′) and I+(v′′) ⊆ I+(v′), so r must be contained in one of of the intervals
I+(u′), I+(u), I−(v), I−(v′), and so p will be cut by C1.

Now we consider the cut C2. First consider a path p = 〈s, u′, v, v′, t〉 of length 4. Note
that I+(u′) = I−(u′) and I+(v′) = I−(v′), and by similar reasoning to the above, we
have [0, 1] ⊆ I+(u′) ∪ (I+(v) ∩ I−(v)) ∪ I−(v′), and so at least one of r1 or r2 must be in
I−(u) ∩ I+(u) for some u ∈ {u′, v, v′}, and this vertex will be cut by C2.

Finally, let p = 〈s, u′, u, v, v′, t〉 be a 5-path in G′, and let us see that p is cut by C2.
Since I+(u′) = I−(u′) and I+(v′) = I−(v′), we may assume that r1 > xu′ and r2 < 1− xv′

(otherwise, u′ or v′, respectively, will be cut). Thus, r1, r2 ∈ I+(u) ∪ I−(v). In particular,
r1 ∈ I+(u) or r2 ∈ I−(v); otherwise, we would have r2 ∈ I+(u) and r1 to the left of I+(u),
that is r1 < y+(u) ≤ xu′ , contradicting our current assumption.

If both radii were in I+(u) or both in I−(v), then again the corresponding vertex would
be cut by C2, so assume r1 ∈ I+(u) and r2 ∈ I−(v). We claim that in this case we must
have r1 ∈ I−(u) ∩ I+(u) or r2 ∈ I−(v) ∩ I+(v), and then the corresponding vertex will be
cut in C2. For the sake of contradiction, assume r1 ∈ I+(u) \ I−(u) and r2 ∈ I−(v) \ I+(v).
The fact that both of these vertices are mapped to two distinct intervals means that there
exist vertices u′′, v′′ in G′ such that 〈s, v′′, v〉 and 〈u, u′′, t〉 are paths in G′ and y−(u) = xu′′

and y+(v) = xv′′ . As r1 is to the right of I−(u) and r2 is to the left of I+(v), we have
r1 > 1− xu′′ and r1 + 1/2 = r2 < xv′′ . Thus, we get xu′′ + xv′′ > 3/2, contradicting the fact
that the LP value of every vertex in G′ is at most 3/4. J

Next we bound the expected value of the cut.

I Lemma 9. Every vertex v ∈ V is cut by Algorithm 5-Round with probability at most
(4/3) · xv.

Proof. If xv ≥ 3/4, this is trivial. Thus, let us look at vertices in V \ C0.
First, consider a vertex v such that xv < 1/2. Note that v is cut by C1 with probability at

most |I−(v)∪ I+(v)| (it is exactly this probability if both intervals are contained in [0, 1], but
this is not necessarily the case). Now consider the definition of C2. As xv < 1/2, Condition 2
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0 11
2

y+(v)

I−(v)
I+(v)

1 + b

0 11
2

y+(v)

I−(v)
I+(v)

1 + b

xv xv

{ b { b

Figure 2 Two examples of the final case in the proof of Lemma 9. The black rectangles denote
the range of r2 for which v ∈ C2. This range has length at most |I−(v)∩ I+(v)|+ b, while the range
of r for which v ∈ C1 has length at most |I−(v) ∪ I+(v)| − b.

in the algorithm can never occur. Thus the probability that v is cut by C2 is the probability
that it will be cut because of Condition 1, which is exactly 2 · |I−(v) ∩ I+(v) ∩ [0, 1/2]|+ 2 ·
|I−(v) ∩ I+(v) ∩ [1/2, 1]| = 2 · |I−(v) ∩ I+(v)|. Thus the overall probability that v is cut is
at most

2
3 · |I

−(v) ∪ I+(v)|+ 1
3 · 2 · |I

−(v) ∩ I+(v)| = 2
3 · (|I

−(v)|+ |I+(v)|) = 4
3 · xv.

Now consider a vertex v ∈ V such that xv ≥ 1/2 (but less than 3/4). If Condition 2
never occurs, or only occurs when Condition 1 also occurs (for example, if I−(v) = I+(v)),
then we are done by the same calculation as above. Otherwise, there exist values of r1 for
which Condition 2 occurs but not Condition 1. That is, either

Case (i): There exists r1 such that r1, r2 ∈ I−(v) and r2 is to the left of I+(v), or
Case (ii): There exists r1 such that r1, r2 ∈ I+(v) and r1 is to the right of I−(v).

Note that at most one of these cases is possible for a given vertex v, since Case (i) implies
that I−(v) intersects the interval [1/2, 1], whereas Case (ii) implies that I−(v) is strictly
to the left of 1/2. Without loss of generality, assume (only) Case (i) holds. Let b =
min{1/2− y−(v), y+(v)− 1/2}, that is, the maximum value such that 1/2 + b ∈ I−(v) and
1/2 + b ≤ min I+(v) (see Figure 2). By our assumption, b ≥ 0. Thus, v ∈ C2 only if
(not iff) r2 ∈ I−(v) ∩ I+(v) or r2 ∈ [1/2, 1/2 + b]. This happens with probability at most
2|I−(v)∩I+(v)|+2b. As we’ve noted, v is cut by C1 with probability at most |I−(v)∪I+(v)|.
However a tighter upper bound on this probability is |(I−(v)∪I+(v))∩ [0, 1]|. Since xv ≥ 1/2,
b ≤ y+(v)− 1/2, and I+(v) = [y+(v), y+(v) + xv], we have that |I+(v) \ [0, 1]| ≥ b, and so
the total probability that v will be cut is upper bounded by

2
3 |(I

−(v) ∪ I+(v)) ∩ [0, 1]|+1
3 ·
(
2|I−(v) ∩ I+(v)|+ 2b

)
= 2

3
(
|I−(v) ∪ I+(v)| − |I+(v) \ [0, 1]|+ |I−(v) ∩ I+(v)|+ b

)
= 2

3
(
|I−(v)|+ |I+(v)| − |I+(v) \ [0, 1]|+ b

)
≤ 2

3
(
|I−(v)|+ |I+(v)|

)
= 4

3xv.

Figure 2 illustrates this final case. J

3 Improved approximations for other small values of L

In this section, we prove Theorem 3. Our approximation is based on an algorithm which
takes as a black box a rounding for (L− 1)-Bounded Cut and converts it into a rounding
for L-Bounded Cut. In particular, we show the following result:

APPROX/RANDOM 2020



41:8 How to Cut a Ball Without Separating

I Theorem 10. Given a rounding algorithm for (L− 1)-Bounded Cut which cuts every
vertex v with probability at most α · xv, there is a rounding for L-Bounded Cut which cuts
every vertex v with probability at most (1 + α · (1− 1/(L− 2))) · xv.

Theorem 3 now follows easily.

Proof of Theorem 3. Follows immediately by induction, where the base case is Theorem 2
for L = 6 (or technically, the more specific Lemma 19), and Theorem 10 gives the inductive
step. J

We now describe our technique for converting a rounding for (L− 1)-Bounded Cut to
a rounding for L-Bounded Cut. The following algorithm takes as a black box a rounding
algorithm AL−1 for (L− 1)-Bounded Cut:

L-Recurse(G, (xv)v∈V , AL−1)

Cut every vertex v ∈ V such that xv ≥ 1, and let V ′ be the remaining vertices.
Define (zv)v∈V ′ as follows:

zv =
(

1− 1
L−2

)
· xv

1−xv
.

Run algorithm AL−1 on graph G|V ′ and LP solution (zv)v∈V ′ . Let V ′′ be the remaining
vertices (not cut in this step).
Run Exact-Round(G|V ′′ , (xv)v∈V ′′).

To understand this algorithm, first let us see the feasibility of the solution (zv)v∈V ′ defined
in the second step.

I Lemma 11. If (xv)v∈V ′ is a feasible solution for the natural LP relaxation for (L − 1)-
Bounded Cut on a graph with vertex set V ′, such that xv < 1 for all v ∈ V ′, then the
solution (zv)v∈V ′ defined above is also a feasible LP solution for the same LP relaxation.

Proof. By our assumption that xv < 1 for all v ∈ V ′, we have zv ≥ 0 for all vertices. Now
let 〈s, v1, . . . , vL−2, t〉 be a path of length L− 1. By the feasibility of (xv)v∈V ′ we know that∑L−2

i=1 xvi ≥ 1. Therefore, by the convexity of the function f(x) = x/(1 − x) for all x < 1
(and Jensen’s inequality), we have

L−2∑
i=1

zv = (L− 3) · 1
L−2

∑L−2
i=1 xvi

/(1− xvi
)

≥ (L− 3) · 1
L−2

∑L−2
i=1 xvi

/
(

1− 1
L−2

∑L−2
i=1 xvi

)
≥ (L− 3) · 1

L−2/(1−
1

L−2 ) = 1.

Thus, Constraint (2) is satisfied for this path. For paths of length L′ < L− 1, the argument
follows from the above calculation by taking the LP values along the path and appending
additional values xL′−1 = . . . = xL−2 = 0 which are mapped to zL′−1 = . . . zL−2 = 0. J

We can now show our main guarantee for this section.

Proof of Theorem 10. Let us see that Algorithm L-Recurse satisfies the requirements. First
note that the algorithm returns a feasible L-bounded cut. Indeed, by Lemma 11, (zv)v∈V ′

is a feasible solution for the relaxation for (L− 1)-Bounded Cut, and so the application of
algorithm AL−1 will cut all paths of length at most L− 1 not already cut in the first step.
In the remaining graph we have d(s, t) ≥ L, and so all remaining paths (if any) of length L
will be cut in the last step.
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As for the approximation guarantee, if xv ≥ 1, then the theorem follows trivially. For
v ∈ V ′, we know that algorithm AL−1 will cut v with probability α′v · zv, for some α′v ≤ α.
Conditioned on surviving this phase, by Observation 6, v will be cut in the last step with
probability at most xv. Thus the overall probability that v is cut will be at most

α′v · zv + (1− α′v · zv)xv = xv + (1− xv)α′v · zv

= xv + α′v · (1− 1/(L− 2)) · xv

≤ (1 + α · (1− 1/(L− 2))) · xv. J

4 An ((11/25) · L + O(1))-approximation

Here we prove Theorem 4, showing that L(1/2− o(1)) is not the best possible approximation
for general (bounded) L. Similarly to our algorithm for L = 5, we will map every vertex
to different intervals corresponding to different positions the vertex can have in an L-
bounded path from s to t, and then cut all intervals containing a random radius in [0, 1].
Our improvement follows from showing that these intervals will be mapped close together.
However, for vertices with small LP value, this will not be sufficient, since the intervals can
still be disjoint. See Appendix B for an example. To avoid this problem, we will define a
new LP solution which will greatly decrease the LP value of vertices which already have a
small LP value, giving us an advantage over previous algorithms for these vertices as well.

Distort-Round

Cut all vertices v ∈ V with xv ≥ 25/(11(L − 1)). Let G′ be the graph on remaining
vertices.
For every remaining vertex v, let imin(v) = d(s, v) and imax(v) = L − d(v, t) (the first
and last possible positions of v in an L-bounded path), where d is the hop-distance in G′.
Let V ′ = {v ∈ G | imin(v) ≤ imax(v)}, and on these vertices define (x′v)v∈V ′ as follows:

x′v = max{0, (23/20) · xv − 3/(20(L− 1))}.

For all v ∈ V ′ and i ∈ {imin(v), . . . , imax(v)} define the following intervals, where paths
are in G′ and as before x′(p) is the total x′ value of all vertices in p excluding the
endpoints:

yi(v) := min
p:s;v
|p|≤i

x′(p) and Ii(v) = [yi(v), yi(v) + x′v].

Sample r ∈ [0, 1] uniformly at random.
Return the cut {v ∈ V ′ | r ∈ Ii(v) for some i}.

Let us first see the correctness of the algorithm:

I Lemma 12. Algorithm Distort-Round returns a valid L-bounded vertex cut.

Proof. Since the first step cuts all paths not entirely in G′, let us focus on paths in G′. It is
straightforward to see that in this graph, the interior vertices of every L-bounded s− t path
are all in V ′, since if v is ith vertex in such a path, then imin(v) ≤ i ≤ imax(v). For any such
path we have

∑
v∈p\{s,t} x

′
v ≥

∑
v∈p\{s,t}(23/20) · xv − ((|p| − 1)/(L− 1)) 3/20 ≥ 1.

Let us see that such a path will necessarily be cut. Denote p = 〈s, v1, . . . , vL′ , t〉 for some
L′ ≤ L− 1. By the definition of our intervals, it can be shown by induction that for every
i ∈ [L′] we have [0, yi(vi) + x′vi

] ⊆
⋃i

j=1 Ij(vj). Thus, to see that the path is cut in the last
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41:10 How to Cut a Ball Without Separating

step, it suffices to show that yL′(vL′) + x′vL′ ≥ 1. But since (vL′ , t) ∈ E, by the definition of
y, this is the total x′ value of some s− t path of length at most L′ + 1, and so it must be at
least 1. J

To bound the approximation guarantee, we need to bound the probability that any vertex
v ∈ V ′ is cut. Let D(v) := imax(v) + 1− imin(v) denote the number of intervals defined for v.
Then one trivial bound is the following:

I Observation 13. Every vertex v ∈ V ′ is cut with probability at most D(v) · x′v.

However, this bound may be too conservative. In fact, if v participates in a large number
of intervals, we can show that these intervals cannot be too spread out.

I Lemma 14. For any given vertex v ∈ V ′, all the intervals Ii(v) are contained in a single
interval of length at most 161/110−D(v) · 271/(110(L− 1)) +O(xv).

Proof. Let p be a shortest path from s to v in G′. By the definition of G′, all vertices u ∈ p
have xu < 25/(11(L− 1)), and so x′u < 271/(110(L− 1)). By definition of yi(v), this means
that for all i ≥ imin(v) we have

yi(v) ≤ x′(p) ≤ (d(s, v)− 1)271/(110(L− 1)) = (imin(v)− 1)271/(110(L− 1)),

and in particular,

yi(v) + x′v ≤ (imin(v)− 1)271/(110(L− 1)) + x′v (3)

Similarly, for any i ∈ {imin(v), . . . , imax(v)}, let pi be an s− v path of length ≤ i such that
yi(v) = x′(pi), and let p′ be a shortest path from v to t. Then pi ◦ p′ is an L-bounded s− t
path with x′ value

x′(pi) + x′v + x′(p′) ≤ yi(v) + x′v + (|p′| − 1)271/(110(L− 1))
= yi(v) + x′v + (L− imax(v)− 1)271/(110(L− 1))
= yi(v) + x′v − imax(v)271/(110(L− 1)) + 271/110.

However, its x′ value must also be at least 1, and so we get

yi(v) ≥ imax(v)271/(110(L− 1))− 161/110− x′v. (4)

Since Ii(v) = [yi(v), yi(v) + x′v], equations (3) and (4) imply that all these intervals are
contained in a single interval of length at most

(imin(v)− 1)271/(110(L− 1)) + x′v − (imax(v)271/(110(L− 1))− 161/110− x′v)
= 161/110−D(v) · 271/(110(L− 1)) +O(xv). J

We can now prove our final guarantee for general (bounded) L:

I Lemma 15. Every vertex v ∈ V is cut by Algorithm Distort-Round with probability at
most ((11/25)(L− 1) +O(1))xv.

Proof. For vertices v 6∈ V ′, this is trivial, so assume v ∈ V ′. Also, let us assume x′v > 0,
since otherwise v would not be cut. First, from Observation 13 and Lemma 14, we have that
the probability that v is cut is at most

min{D(v) ·x′v, 161/110−D(v) ·271/(110(L−1))}+O(xv) ≤ 161x′v
110x′v + 271/(L− 1) +O(xv),
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where the inequality is obtained by maximizing over all possible values of D(v). Let us
scale up xv and denote cv = (L− 1)xv, which (by our assumption that x′v 6= 0) implies that
x′v = ((23− 3/cv)/20)xv. Thus, we can rewrite the above upper bound on the probability as(

23− 3/cv

20 · 161(L− 1)
11(23cv − 3)/2 + 271 +O(1)

)
xv

Ignoring the O(1) term, the expression in parentheses is maximized for cv =(3+
√

1626/11)/23,
and so is at most 0.43954(L− 1) < (11/25) · (L− 1). J

5 A 7/4-approximation for L = 6

We now prove Theorem 2. We note first that the techniques we have seen already give
an improvement over the previous 3-approximation for Minimum 6-Bounded Node Cut.
Indeed, Lemma 9 and Theorem 10 together give a 2-approximation.

As a warm-up to our final algorithm, let us first see an alternative 2-approximation which
does not use Theorem 10 or our algorithm for L = 5. We introduce some notation which we
will use both for our warm-up algorithm for L = 6 as well as our main algorithm.

Similarly to our algorithm for L = 5, we will map every vertex to a small number of
possible intervals, corresponding to its possible positions in a 6-bounded path, relative to s
and t. For all i ∈ [3], and all vertices u, v ∈ V \ {s, t} such that dG(s, u) ≤ i and dG(v, t) ≤ i,
define

yG
i (u) := min

p:s;u
|p|≤i

x(p) and yG
−i(v) := 1− min

p:v;t
|p|≤i

x(p).

As before, if (s, u), (v, t) ∈ E, for such neighbors of s, t we define

IG
1 (u) = [0, xu] IG

−1(v) = [1− xv, 1].

For other vertices v, wherever the relevant yG
i (v) values are defined, we also define intervals

IG
2 (v) =

[
yG

2 (v), yG
2 (v) + xv

]
IG

3 (v) =
[
yG

3 (v), yG
−3(v)

]
I−2(v) =

[
yG

−2(v)− xv, yG
−2(v)

]
.

We will drop the superscript G from the above definitions when it is clear from the
context. If I1(v) (resp. I−1(v)) is defined, we do not define any other interval for v, as such
an interval would be contained in I1(v) (resp. I−1(v)). Note that every interval associated
with a vertex v has length at most xv (in fact, exactly xv except for I3(v)). As before, it is
not hard to see that the left (resp. right) endpoints of the intervals I2(v), I3(v), I−2(v) (or
whichever subsequence of intervals is defined for this vertex) form a monotone non-increasing
sequence.

Consider the following rounding algorithm.

Algorithm Simple-6-Round

Cut all vertices v with xv ≥ 1/2, and let G1/2 be the remaining graph after deleting these
vertices.
Sample r ∈ [0, 1] uniformly at random.
Cut all vertices v such that r ∈ IG1/2

i (v) for some i ∈ {1, 2, 3,−2,−1}.
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41:12 How to Cut a Ball Without Separating

One can check easily that this algorithm will cut all 6-bounded s− t paths (the proof is nearly
identical to the first part of the proof of Lemma 8). To see that it gives a 2-approximation,
first note that trivially every vertex v with xv ≥ 1/2 or for which at most two of the intervals
IG1/2

2 (v), IG1/2

3 (v), IG1/2

−2 (v) are defined, will be cut with probability at most 2xv. Thus we
only need to concern ourselves with vertices for which all three intervals are defined. Since
we removed vertices with LP value at least 1/2, this means that in the remaining graph
we have yG1/2

2 (v) < 1/2 and yG1/2

−2 (v) > 1/2, and so by monotonicity, IG1/2

2 (v) and IG1/2

−2 (v)
must intersect, and IG1/2

3 (v) must be contained in their union. Thus, the union of the three
intervals has length at most 2xv, which bounds the probability of cutting v.

To improve over this algorithm, we must make a number of changes. First of all, we
cannot cut all vertices with xv ≥ 1/2. We must allow some (at least slightly) costlier vertices
to remain. This means that we will not have the nice overlap property described above.
We can overcome this by avoiding a small subinterval in the middle of [0, 1] in our radius
sampling. However, this does not resolve the issue that some vertices will still be mapped
to two possibly disjoint intervals, and in fact will exacerbate the problem by increasing the
probability of hitting any given interval (since we are restricting our radius to a smaller
sample space). We are able to overcome all these pitfalls by choosing at random either a
single radius or a two-radius cut as we did in Algorithm 5-Round, and defining our two-radius
cut carefully.

Algorithm 6-Round

Let C0 = {v ∈ V | xv ≥ 4/7}. Let G′ be the remaining graph after deleting all vertices in
C0.
Sample r ∈ [0, 3/7] ∪ [4/7, 1] uniformly at random.
Sample r1 ∈ [0, 3/7] uniformly at random, and let r2 = r1 + 4/7.
Let C1 be the set of all vertices v such that r ∈ IG′

i (v) for some i ∈ {1, 2, 3,−2,−1}.
Let C2 be the set of all vertices v satisfying at least one of the following conditions:
1. r1 ∈ IG′

1 (v) or r2 ∈ IG′

−1(v).
2. r1 ∈ IG′

2 (v).
3. r1 ∈ IG′

3 (v) and 3
7 ∈ I

G′

3 (v).
4. r2 ∈ IG′

−2(v) and 3
7 ∈ I

G′

−2(v).
Let C3 be the set of all vertices v satisfying at least one of the following conditions:
1. r1 ∈ IG′

1 (v) or r2 ∈ IG′

−1(v).
2. r2 ∈ IG′

−2(v).
3. r2 ∈ IG′

3 (v) and 4
7 ∈ I

G′

3 (v).
4. r1 ∈ IG′

2 (v) and 4
7 ∈ I

G′

2 (v).
Return a random cut according to the following distribution: C0 ∪ C1 with probability
1/2, C0 ∪ C2 with probability 1/4, and C0 ∪ C3 with probability 1/4.

First let us see why this is a valid 5-bounded cut.

I Lemma 16. Algorithm 6-Round cuts all paths of length at most 6 from s to t.

Proof. As we did for L = 5, we focus on paths in G′. Also, the proof of the correctness
of C0 ∪ C1 is essentially the same as the proof of correctness of the corresponding cut in
Lemma 8.

Since C2 and C3 are symmetrically defined, let us focus on C2. Let 〈s, u, u′, w, v′, v, t〉 be
a 5-path from s to t in G′. The proof for paths of length < 5 is similar or simpler. As before,
it can easily be seen that [0, 1] ⊆ I1(u)∪I2(u′)∪I3(w)∪I−2(v′)∪I−1(v). If the first condition
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in the definition of C2 does not hold w.r.t. I1(u) or I−1(v), then r1 and r2 must both intersect
the intervals I2(u′)∪ I3(w)∪ I−2(v′). If in addition, the second condition does not hold w.r.t.
u, then both these radii (in fact all points in [r1, r2]) intersect the intervals I3(w) ∪ I−2(v′).
Since r2− r1 = 4/7 and all intervals corresponding to vertices in G′ have length less than 4/7,
this necessarily means that r1 ∈ I3(w) and r2 ∈ I−2(v′). Since 3

7 ∈ [r1, r2], either 3
7 ∈ I3(w)

or 3
7 ∈ I−2(v′). In the first case, w ∈ C2 by Condition 3, and in the second, 3

7 ∈ I−2(v′) and
so v′ ∈ C2 by Condition 4. J

Before bounding the expected value of the cut, we note that, as before (in Algorithm
Simple-6-Round), Algorithm 6-Round also has the property that for every v 6∈ C0, at
most two intervals are responsible for v being in the single radius cut.

I Lemma 17. For v 6∈ C0, If IG′

−2(v) and IG′

2 (v) are both defined, then the random radius r
is in C1 iff it is in IG′

−2(v) ∪ IG′

2 (v).

Proof. Note that in this case, IG′

3 (v) is also defined. Since all three intervals are defined
for v (and IG′

1 (v), IG′

−1(v) are not defined – so d(s, v), d(v, t) > 1), there must exist paths
〈s, u, v〉 and 〈v, v′, t〉 in G′, and by the bound on LP values of vertices in G′, we have
y2(v) ≤ xu < 4/7 and y−2(v) ≥ 1 − xv′ > 3/7. Thus, by the monotonicity of the interval
sequence, I3(v) \ (3/7, 4/7) is contained in (I−2(v) ∪ I2(v)) \ (3/7, 4/7), and the lemma
follows. J

Since this is the only case in which v will be mapped to more than two intervals, this
immediately bounds the probability that such a vertex participates in C1:

I Corollary 18. For every v 6∈ C0, the probability that v ∈ C1 is at most 7
6 · 2xv.

Now let us bound the expected value of the cut in our final algorithm.

I Lemma 19. Every vertex v ∈ V is cut by Algorithm 6-Round with probability at most
(7/4) · xv.

Proof. If xv ≥ 4/7, this is trivial. Thus, let us look at vertices cut by C1, C2, or C3.
For convenience, define a random set

C ′ =
{
C2, with probability 1/2
C3, otherwise.

Thus the final step in the algorithm can be equivalently stated as returning C0 ∪C1 w.p. 1/2
and C0 ∪ C ′ w.p. 1/2.

To analyze the probability that a vertex v in G′ will be cut overall, we will consider a
number of different of cases for this vertex.

Case 1: v is mapped to only one interval. Suppose I1(v) or I−1(v) are defined. Then
v ∈ C ′ with probability at most 7

3 · xv (by Condition 1 in both C2 and C3). In total, it
will be cut with probability at most

( 1
2 ·

7
6 + 1

2 ·
7
3
)
xv = 7

4 · xv. This holds similarly for
any vertex v which is not necessarily a neighbor of s or t but which is mapped to only
one interval.

Case 2: v is mapped to at least two intervals, and both I−2(v) and I2(v) are defined
for v. Again, note that this implies that I3(v) is also defined and I1(v), I−1(v) are not
defined. Recall that I3(v) = [y3(v), y−3(v)] and as noted above, in this case we must have
y−3(v) ≥ y−2(v) ≥ 3

7 and y3(v) ≤ y2(v) ≤ 4
7 . Thus, I3(v) cannot be entirely to the left of

3/7 or entirely to the right of 4/7. This together with monotonicity of intervals gives us
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41:14 How to Cut a Ball Without Separating

the following implications: Conditions 2 and 3 of C2 each imply r1 ∈ I3(v) ∩
[
0, 3

7
)
and

Conditions 2 and 3 of C3 each imply r2 ∈ I3(v) ∩
[ 4

7 , 1
)
, giving two possible ways v may

be in C ′:
r1 ∈ I3(v) ∩

[
0, 3

7
)
and C ′ = C2, or

r2 ∈ I3(v) ∩
[ 4

7 , 1
)
and C ′ = C3.

Note that the probability that at least one of these events occurs is at most 7
6 · |I3(v)|.

The final reason we may have v ∈ C ′ is due to Condition 4 in either C2 or C3. That is, if
one of the following occurs:

(a) r1 ∈ I2(v) ∩
[
0, 3

7
)
and C ′ = C3, or

(b) r2 ∈ I−2(v) ∩
[ 4

7 , 1
)
and C ′ = C2.

Note that each of these two events implies that the given radius (r1 in (a) and r2 in (b))
is in fact in I2(v) ∩ I−2(v). Indeed, take event (b) for example. As we’ve noted, y2(v)
(the left endpoint of I2(v)) is at most 4

7 , so r2 cannot be to the left of I2(v). On the other
hand, by monotonicity of intervals, since r ∈ I−2(v), it also cannot be to the right of
I2(v). Thus, r2 ∈ I2(v) ∩ I−2(v). Thus, the probability that (a) or (b) occurs is at most
7
6 · |I−2(v) ∩ I2(v)|.
Combining these bounds with Lemma 17 for C1, we can bound the total probability that
v will be cut by

1
2 ·

7
6 · |I2(v) ∪ I−2(v)|+ 1

2 ·
(

7
6 · |I3(v)|+ 7

6 · |I2(v) ∩ I−2(v)|
)

= 1
2 ·

7
6 · (|I3(v)|+ |I2(v)|+ |I−2(v)|) ≤ 7

4 · xv.

Case 3: v is mapped to at two distinct intervals, I3(v) is defined, but only one of I−2(v),
I2(v) is defined. As before, because v is mapped to two distinct intervals, Condition 1
for both C2 and C3 is irrelevant. Without loss of generality, assume only I2(v) and I3(v)
are defined for v, and note that Condition 4 for C2 and Condition 2 for C3 are now also
irrelevant. Thus, v can be in C ′ only if Conditions 2 or 3 for C2 or Conditions 3 or 4 for
C3 occur. We further divide this case (under this assumption) into several subcases.

Subcase 3a: 4
7 6∈ I2(v). As we’ve noted, I2(v) cannot lie entirely to the right of 4

7 , so
in this subcase it must lie entirely to the left of 4

7 , and by monotonicity, so must I3(v).
Thus, in fact v can only be in C ′ when C ′ = C2. For C2 consider two possibilities.
If 3

7 6∈ I3(v), then only Condition 2 can apply. Otherwise, we have 3
7 ∈ I3(v) and so

by monotonicity Condition 2 would imply Condition 3, and so we need only consider
Condition 3. Either way, only one interval is responsible for v being in C ′, and the
probability that this occurs is at most 7

6 · xv. This together with Corollary 18 gives
the desired bound on the probability that v is cut.

Subcase 3b: 4
7 ∈ I2(v) and 3

7 ∈ I3(v). In this subcase, we need to be slightly more
precise for C1, and note that the probability that v ∈ C1 is at most 7

6 |I2(v) ∪ I3(v)|.
As above, because 3

7 ∈ I3(v), Condition 2 for C2 implies Condition 3 for C2, so the
relevant conditions are Condition 3 in both C2 and C3, and Condition 4 in C3. The
probability that v ∈ C ′ because of Condition 3 in either set is clearly at most 7

6 · xv.
Similarly, Condition 4 for C3 also implies that r1 ∈ I3(v), so the probability that
C ′ = C3 and Condition 4 occurs is at most 7

6 · |I2(v) ∩ I3(v)|. Putting these three
bounds together, the probability that v is cut is at most

1
2 ·

7
6 · |I2(v)∪I3(v)|+ 1

2 ·
(

7
6 · xv + 7

6 · |I2(v) ∩ I3(v)|
)

= 1
2 ·

7
6 ·(xv + |I2(v)|+ |I3(v)|) ≤ 7

4 ·xv.
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Subcase 3c: 4
7 ∈ I2(v) and I3(v) lies to the right of 3

7 . In this subcase, only Condition
3 for C3 is relevant, and so v ∈ C ′ with probability at most 7

6 · xv, which as we’ve
noted (see Case 3a) is enough.

Subcase 3d: 4
7 ∈ I2(v) and I3(v) lies to the left of 3

7 . Note that in this case we
will have v ∈ C ′ precisely when r1 ∈ I2(v) ∩ [0, 3

7 ] (regardless of whether C ′ = C2 or
C ′ = C3), which occurs with probability 7

3 · |I2(v) ∩ [0, 3
7 ]|. Thus, we may also assume

3
7 ∈ I2(v), since otherwise we will never have v ∈ C ′, and the probability that v is cut
will be much better than we require. However, this means that [ 3

7 ,
4
7 ] ⊆ I2(v), so we

can improve our probability bounds by not charging for this omitted interval. That
is, the probability that v ∈ C1 is at most 7

6 ·
(
|(I2(v) ∪ I3(v)) ∩ [0, 1]| − 1

7
)
, and the

probability that v ∈ C ′ is 7
3 · (|I2(v) ∩ [0, 4

7 ]| − 1
7 ).

Now, suppose first that xv ≤ 3
7 . Then by the above bounds, the probability that v is

cut is at most
1
2 ·

7
6 ·
(
|I2(v)|+ |I3(v)| − 1

7

)
+ 1

2 ·
7
3 ·
(
|I2(v)| − 1

7

)
≤ 7

3 · xv −
1
4

≤ 7
4 · xv. since xv ≤

3
7

Otherwise, we have xv ≥ 3
7 (and, since v 6∈ C0, xv <

4
7 ), and so the proof will follow if

we can show that v is cut with probability at most 3
4 . To see that this holds, recall

that I2(v) = [y2(v), y2(v) + xv]. There are three ways that v might be cut:
In C1:

If r ∈ [0, 3
7 ] (where possibly r ∈ I2(v) ∪ I3(v)) – with probability 1

2 .
If r ∈ [ 4

7 , y2(v) + xv] (where r ∈ I2(v)) – with probability 7
6 ·
(
y2(v) + xv − 4

7
)
<

7
6 · y2(v).

In C ′:
If r1 ∈ [y2(v), 3

7 ] (where r1 ∈ I2(v)) – with probability 7
3 ·(

3
7−y2(v)) = 1− 7

3 ·y2(v).
And indeed, as required, the probability that at least one of these events happens is at
most

1
2 ·
(

1
2 + 7

6 · y2(v)
)

+ 1
2 ·
(

1− 7
3 · y2(v)

)
= 3

4 −
7
6 · y2(v) ≤ 3

4 . J
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A Hardness of L-Bounded Cut for L ≥ 5

The 1.1377-hardness of approximation result of Baier et al. [3] is based on a reduction from
Vertex Cover. Given an instance G = (V,E) of Vertex Cover, they construct an
instance (G′, s, t) of L-Bounded Cut such that, given a vertex cover of size x in G, one
can efficiently construct an L-bounded cut of size |V |+ x in G′, and vice versa. This yields
the following general hardness:

I Theorem 20 (Implicit in [3]). For any 0 ≤ c ≤ s ≤ 1, approximating L-Bounded Edge
Cut for L ≥ 4 or L-Bounded Node Cut for L ≥ 5 to within (1 + s)/(1 + c) is at least as
hard as Gap Vertex Cover(c, s).

The 1.1377-hardness of approximation of L-Bounded Cut is in fact the hardness one
gets from the above theorem by plugging in the NP-hardness of Gap Vertex Cover for
c = (

√
5− 1)/2 + ε and s = (71− 31

√
5)/2− ε, implied by the work of Dinur and Safra [8].

However, we can also plug in newer or different hardness results for Vertex Cover in
the above theorem. For instance, the NP-hardness of Gap Vertex Cover has since been
improved to include the case of c = 1/

√
2 + ε, s = 1− ε [12], which improves the hardness

of approximation of L-Bounded Cut to 2/(1 + 1/
√

2) − ε < 1.1715. Also, plugging in
the Unique Games hardness of Gap Vertex Cover(1/2 + ε, 1− ε) [13] gives a (4/3− ε)
Unique Games hardness of approximation for L-Bounded Cut, which is now matched by
our algorithm for 4-Bounded Edge Cut and 5-Bounded Node Cut.
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B Short intervals may be disjoint

We motivate the distorted LP values x′v in algorithm Distort-Round by giving an example
in which, if the original LP values xv are used instead of x′v, some vertices may be cut with
probability at least L/2−O(1) times their LP value.

s v2v1 v3 v4 v5 v6 vL/4−1 vL/4 u

w1

w2

w3

wL/4+1

t

a1 a2

b1 b2 b3

c1 c2 c3 c4

2
L

2
5L − 4

5L2

Figure 3 Motivating example for Algorithm Distort-Round.

Consider the graph in Figure 3, and suppose we are given the following LP values:
xvi

= 2/L for all i ∈ [L/4], xwi
= 2/L for all i ∈ [L/4 + 1], xa1 = xa2 = 1/L − 1/(2L2),

xb1 = xb2 = xb3 = 2/(3L)− 2/(3L2), xci
= 1/(2L)− 3/(4L2) for all i ∈ [4], all other white

vertices have LP value 2/(5L)− 4/(5L2), and finally xu = 1/(2L2).
The following is easy to check:

1. These values are a feasible LP solution.
2. The vertex u may have all possible positions in an L-bounded path from imin(u) = L/4+1

up to imax(u) = 3L/4− 2.
3. Defining yi(u) analogously to algorithm Distort-Round with values xv instead of x′v,

for all k ∈ [L/2− 3] we have yL/4+k = 1/2− (k − 1)/L2, and IL/4+k = [yL/4+k, yL/4+k +
1/(2L2)].

Thus, u is indeed mapped to L/2− 3 disjoint intervals, and the probability that it would
be cut by a uniformly chosen radius as in algorithm Distort-Round is (L/2− 3)xu.
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