
Approximating Requirement Cut via a
Configuration LP
Roy Schwartz
Department of Computer Science, Technion, Haifa, Israel
schwartz@cs.technion.ac.il

Yotam Sharoni
Department of Computer Science, Technion, Haifa, Israel
yotamsh@cs.technion.ac.il

Abstract
We consider the Requirement Cut problem, where given an undirected graph G = (V, E) equipped
with non-negative edge weights c : E → R+, and g groups of vertices X1, . . . , Xg ⊆ V each equipped
with a requirement ri, the goal is to find a collection of edges F ⊆ E, with total minimum weight,
such that once F is removed from G in the resulting graph every Xi is broken into at least ri

connected components. Requirement Cut captures multiple classic cut problems in graphs,
e.g., Multicut, Multiway Cut, Min k-Cut, Steiner k-Cut, Steiner Multicut, and Multi-
Multiway Cut. Nagarajan and Ravi [Algoritmica‘10] presented an approximation of O(log n log R)
for the problem, which was subsequently improved to O(log g log k) by Gupta, Nagarajan and
Ravi [Operations Research Letters‘10] (here R =

∑g

i=1 ri and k = | ∪g
i=1 Xi|). We present an

approximation of O(X log R
√

log k log log k) for Requirement Cut (here X = maxi=1,...,g{|Xi|}).
Our approximation in general is incomparable to the above mentioned previous results, however
when all groups are not too large, i.e., X = o

(
(
√

log k log g)/(log R log log k)
)
, it is better. Our

algorithm is based on a new configuration linear programming relaxation for the problem, which is
accompanied by a remarkably simple randomized rounding procedure.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Math-
ematics of computing → Combinatorial optimization

Keywords and phrases Approximation, Requirement Cut, Sparsest Cut, Metric Embedding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.53

Category APPROX

Funding Roy Schwartz: Research is supported by ISF grant 1336/16.

1 Introduction

We consider the Requirement Cut problem (RC), where we are given an undirected graph
G = (V,E) equipped with non-negative edge weights c : E → R+ and g groups of vertices
X1, . . . , Xg ⊆ V . Every group Xi is associated with a requirement ri, where 2 ≤ ri ≤ |Xi|.
The goal is to find a collection of edges F ⊆ E, with total minimum weight, such that once
F is removed from G in the resulting graph GF = (V,E\F) every Xi is broken into at least
ri connected components. To simplify presentation we use the notation Cut(G,Xi) to denote
the number of connected components of G that contain at least one vertex of X. The above
requirement implies that Cut(GF , Xi) ≥ ri, ∀i = 1, . . . , g.

Requirement Cut captures multiple classic cut problems in graphs, e.g., Multicut
[11, 15], Multiway Cut [4, 5, 6, 9, 13, 22], Min k-Cut [19, 20, 21], Steiner k-Cut
[8], Steiner Multicut [14], and Multi-Multiway Cut [3]. To simplify presentation of
known results for (RC), we denote by R the sum of requirements, i.e., R =

∑g
i=1 ri, by X

the largest group, i.e., X = maxi=1,...,g{|Xi|}, and by k the number of vertices in groups,
i.e., k = | ∪gi=1 Xi|. Nagarajan and Ravi [18] were the first to consider (RC), presenting

© Roy Schwartz and Yotam Sharoni;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schwartz@cs.technion.ac.il
mailto:yotamsh@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.53
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Approximating Requirement Cut via a Configuration LP

approximations of O(logn logR) and O(logR) for general graphs and trees, respectively.1
They also proved that there is a hardness of approximation of Ω(log g) when the graph is a
tree. Subsequently, Gupta et al. [12] presented improved approximations of O(log k log g) and
O(log g) for general graphs and trees, respectively. Thus, providing a tight approximation
when the graph is a tree. In both these works, the main approach to solving (RC) in general
graphs is first to formulate a linear programming relaxation which finds a suitable spreading
metric over the vertices of V , then transform the metric into a tree metric, and finally round
the solution on the tree. In [18], an additional greedy combinatorial approach is presented.
In this approach the algorithm repeatedly finds cuts that (approximately) minimize the ratio
between their cost and the number of groups they separate. This algorithm also yields an
approximation of O(logn logR) for (RC).

1.1 Our Result
The following theorem summarizes our main result for the (RC) problem.

I Theorem 1. There is a randomized polynomial time algorithm for Requirement Cut
that achieves an approximation of O

(
X logR

√
log k log log k

)
.

We note that our approximation is incomparable to the current state of the art [12]. However,
when all groups are not too large, i.e., X = o

(
(
√

log k log g)/(logR log log k)
)
, our approxim-

ation is better. Our algorithm in fact provides an approximation guarantee of O (DX logR),
where D is the distortion of embedding a metric of negative type into `1 (refer to Section 2
for an exact definition). The guarantee of Theorem 1 follows by employing the embedding of
Arora et al. [2].

1.2 Our Techniques
Our approach for obtaining the result is based on three ingredients, on which we currently
elaborate.

The first is a new configuration linear programming relaxation of exponential size, in
which each cut S is associated with a variable λS . In this relaxation the goal is to assign
a fractional value λS to each cut S while satisfying two requirements: (1) for each group
Xi the total fractional value of cuts that separate it is high enough, i.e., Xi is broken into
enough pieces; and (2) for each vertex u the total fractional value of cuts containing u is at
most one, i.e., the connected components in the output are disjoint. This configuration LP
differs from the relaxation used in [12, 18], which imposes a metric over the vertices of the
graph while ensuring that for every Xi the total length of every tree spanning Xi is high
enough.

The second ingredient is a remarkably simple randomized rounding procedure of the
configuration LP. When considering classic randomized rounding applied to our setting, each
cut S, independently of other cuts, chooses all edges that cross it with a probability of λS .
This straightforward use of randomized rounding is problematic, as it might separate a group
into very few pieces, even though the total fraction of cuts that separate the group is quite
high. To intuitively exemplify this, it is enough to note that choosing ` cuts that separate
some group Xi might result in breaking Xi into only O(log `) pieces due to non-trivial

1 In [18], in contrast to what is cited above, the claimed approximation does not depend on R but rather
on the maximum requirement multiplied by g. However, the algorithms of [18] provide the above claimed
approximation guarantee.

R. Schwartz and Y. Sharoni 53:3

overlaps between the cuts. To overcome this difficulty, we note that cuts S with a high
fractional value λS are disjoint. Hence, for these cuts the above difficulty does not occur.
Unfortunately, cuts S with a high fractional value λS might be few and we are not guaranteed
that choosing all of them breaks each Xi into enough pieces. To remedy this, we introduce a
remarkably simple analysis for the classic randomized rounding procedure that assumes all
cuts S have a small fractional value λS . In our analysis we show that for each cut S, if all
other cuts have a small fractional value, then with a high enough probability S is able to
break at least one additional piece from Xi on its own. This enables us to lower bound the
number of pieces each Xi is broken into.

The third and last ingredient relates to solving the configuration LP. Since the configura-
tion LP has an exponential number of variables, we need to present an (approximate) dual
separation oracle for it. It turns out that the dual separation oracle for the configuration
LP is a node weighted variant of Sparsest Cut with general demands where demands are
given over groups, as opposed to pairs. Our approximation algorithm for the dual separation
oracle, similarly to classic algorithms for Sparsest Cut, finds a suitable metric of negative
type, embeds it into `1, and chooses the best cut S among all cuts in the decomposition
of the `1 metric into a non-negative combination of cut metrics. The only caveat in this
approach is that, unlike Sparsest Cut, our problem is not symmetric, i.e., S and S have
different objective value. To overcome this, we break symmetry and introduce an artificial
point to the metric space, while ensuring that all cuts in the decomposition of the `1 metric
do not contain this artificial point.

We note that our dual separation oracle captures the Steiner Ratio problem (SR)
[14], used in the greedy step of the combinatorial approach of [18] for (RC). Thus, it can
be proved that our approximation guarantee of O(X

√
log k log log k) for the dual separation

oracle (Theorem 8) also extends to (SR). Incorporating this into the analysis of [18] yields
an overall approximation of O

(
X logR

√
log k log log k

)
, matching the result of Theorem 1

in yet another way.

1.3 Related Work
The literature on approximating cut problems and metric embedding is vast, we mention
here only some of the most relevant work. Let us start by surveying problems captured
by (RC). Multicut, a special case of (RC) where each group Xi is of size two and its
requirement ri also equals two, admits an approximation of O(logC log2 k) (where C is the
total weight of edges in the graph) [15] and O(log k) [11]. Multiway Cut, another special
case of (RC) where there is a single group X of size k and its requirement also equals k,
exhibits a long sequence of works [4, 5, 6, 9, 13, 22] which culminates in an approximation
of 1.2965 [22]. Min k-Cut, a special case of (RC) where there is a single group X that
spans all of V and its requirement equals k, admits a simple combinatorial approximation of
2(1− 1/k) [19, 20, 21]. Steiner k-Cut is similar to Min k-Cut, with the difference that
X does not necessarily equal all of V , also admits a similar approximation of 2(1− 1/k) [8].
Steiner Multicut is similar to Multicut, with the difference that each group Xi might
be larger than two, though its requirement ri still remains two. This problem admits an
approximation of O(log3 (gX)) [14], which was subsequently improved to O(log g logn) [18]
and to O(log g log k) [12]. Multi-Multiway Cut is similar to Multiway Cut, with the
difference that there are multiple groups (though the requirement of each group equals its
size). This problem admits an approximation of O(log g) [3].

Metric embedding also play a central role in our work, specifically embedding metrics
of negative type into `1. Chawla et al. [7] presented an embedding with a distortion of
O(log3/4 n), which was later improved to O(

√
logn log logn) by Arora et al. [1, 2]. The above

APPROX/RANDOM 2020

53:4 Approximating Requirement Cut via a Configuration LP

works are based on the seminal result of Arora et al. for Sparsest Cut, which obtained
an approximation of O(

√
logn), improving upon the O(logn) guarantee of Leighton and

Rao [16].

Paper Organization

Section 2 contains needed preliminaries regarding metric spaces. Section 3 presents our new
configuration LP for (RC). The rounding algorithm appears in Section 4, and Section 5 is
dedicated to approximately solving the configuration LP. All missing proofs appear in the
appendix.

2 Preliminaries

A metric space (V, d) embeds into `1 with distortion D if there exists an embedding f

satisfying: d(a, b) ≤ ||f(a)− f(b)||1 ≤ D · d(a, b), ∀a, b ∈ V . Moreover, a metric space (V, d)
is of negative-type if (V,

√
d) is isometric to a subset of Euclidean space. Arora et al. [1, 2]

proved that D = O(
√

logn log logn) for metrics of negative type, when |V | = n. We can
exploit a slightly improved guarantee (see Corollary 5.1 in [2]), which we rephrase here for
simplicity of presentation.2

I Theorem 2 (Corollary 5.1 in [2]). Given a metric space (V, d) of negative type and U ⊆ V
of size k, there exists an embedding f into `1 that satisfies: (1) ||f(a)− f(b)||1 ≤ D · d(a, b),
∀a, b ∈ V ; and (2) ||f(a)− f(b)||1 ≥ d(a, b), ∀a, b ∈ U . In the above D = O(

√
log k log log k).

Furthermore, f can be computed in polynomial time.

We note that in the above theorem, expansion is upper bounded for all pairs of points
in the metric space, whereas contraction is lower bounded only for pairs of points in the
given subset. This enables the improvement in the value of D from O(

√
logn log logn) to

O(
√

log k log log k).

3 Configuration LP

We consider the following new linear relaxation for the (RC) problem. In this relaxation each
possible cut S ⊆ V is associated with a variable λS . We denote by δG(S) the total weight of
edges crossing the cut S defines in the graph G, and let C (T) = {S : 0 < |S ∩ T | < |T |} be
the collection of cuts S that separate T , i.e., S contains at least one vertex of T but does not
contain T as a whole.

(LP) min
∑
S∈V

1
2δG (S) · λS

s.t.
∑

S∈C(Xi)

λS ≥ ri ∀i = 1, ...g (1)

∑
S:u∈S

λS ≤ 1 ∀u ∈ V (2)

λS ≥ 0 ∀S ⊆ V

In the above relaxation, Constraint (1) ensures that Xi is broken into at least ri pieces, and
Constraint (2) ensures that each vertex belongs to at most a single cut.

2 The cited theorem of [2] is originally given for `2 and not `1. However, standard arguments imply it
also applies to `1, see, e.g., [2], for further details.

R. Schwartz and Y. Sharoni 53:5

For our rounding algorithm to work we actually need to iteratively resolve (LP) for
subgraphs of G. To this end, let us formally define the relaxation when considering GF =
(V,E \F), for some F ⊆ E, which we denote by (LPF). Moreover, we denote by Yi,1, . . . , Yi,`i

the `i pieces Xi is broken into in GF . Formally, if GF is broken into ` connected components
C1, . . . , C`, which form a partition of V , then every Yi,j is obtained by Xi∩Cj and discarding
the result if Xi and Cj are disjoint (hence `i ≤ `). Additionally, let us denote by r′i the
residual requirement of Xi in GF , i.e., r′i = max{0, ri − `i} (we can assume that groups Xi

for which the residual requirement reached zero are removed from the instance).

(LPF) min
∑
S∈V

1
2δGF

(S) · λS

s.t.
`i∑
j=1

∑
S∈C(Yi,j)

λS ≥ r′i ∀i = 1, ...g (3)

∑
S:u∈S

λS ≤ 1 ∀u ∈ V (4)

λS ≥ 0 ∀S ⊆ V

Similarly to (LP), Constraint (3) ensures thatXi is broken to at least r′i pieces, and Constraint
(4) ensures that each vertex belongs to at most a single cut.

The following lemma proves that (LPF), for every F ⊆ E, is a relaxation when considering
GF . We denote by OPTLPF

the value of an optimal solution to (LPF) and by OPT the
value of an optimal solution to the original instance.

I Lemma 3. OPTLPF
≤ OPT, for every F ⊆ E.

Proof. Let F ∗ be an optimal solution to the problem with respect to the original instance, and
denote by F̃ = F ∗ \F the edges of F ∗ still remaining in GF . Thus, GF̃∪F = (V,E \ (F̃ ∪F))
denotes the graph resulting in the removal of F ∗ from GF . Let S∗1 , ..., S∗` be the connected
components in GF̃∪F . Define the following solution to (LPF): λS∗

i
= 1 for every i = 1, ..., `

(and λS = 0 for all other cuts S). We notice that S∗1 , ..., S∗` are disjoint cuts, hence Constraint
(4) is satisfied for every u ∈ V . Since F ∗ is a feasible solution with respect to the original
instance, i.e., Xi is broken to at least ri pieces in GF∗ (or equivalently Cut(GF∗ , Xi) ≥ ri),
we can conclude that removing F̃ from GF breaks Xi to at least the same number of pieces.
Thus, since Xi is already broken into `i pieces in GF : Yi,1, . . . , Yi,`i

, we can conclude that∑`i

j=1 Cut(GF̃∪F , Yi,j) ≥ r′i. Therefore, Constraint (3) is also satisfied and the defined
solution is feasible for (LPF). Since δGF

(S) ≤ δG(S), for every S ⊆ V , we can conclude that
the value of the solution is at most OPT. This finishes the proof. J

A main challenge is solving (LPF) since it has an exponential number of variables. The
following theorem summarizes our guarantee for solving (LPF), and Section 5 is dedicated
to its proof. The solution found is bicriteria as it violates the constraints and incurs some
loss in the objective.

I Theorem 4. For every F ⊆ E, there exists an efficient algorithm that finds a bicriteria
solution {λS}S⊆V ⊆ R+ to (LPF) satisfying:
1.
∑
S:u∈S λS ≤ α, ∀u ∈ V .

2.
∑`i

j=1
∑
S∈C(Yi,j) λS ≥ β · r′i, ∀i = 1, . . . , g.

3.
∑
S⊆V

1
2δGF

(S)λS ≤ γ ·OPT.
In the above α = γ = O(XD) (where D is as in Theorem 2 when considering U = ∪gi=1Xi ⊆
V) and β = 1.

APPROX/RANDOM 2020

53:6 Approximating Requirement Cut via a Configuration LP

4 Rounding the Configuration LP

In this section we present our rounding algorithm and prove the main result, Theorem 1,
given Theorem 4. Our rounding algorithm progresses in iterations, similar in spirit to the
classic randomized rounding for the Set Cover problem (a similar method was employed
in the context of (RC) by [18]). However, unlike the latter rounding method, we require a
different handling of cuts S with a large λS fraction and cuts S with a small λS fraction.

We start by focusing on the algorithm for a single iteration, which given GF , for some
F ⊆ E, outputs a random collection L ⊆ E \ F of edges such that: (1) if L is removed from
GF then the number of pieces every Xi is broken into increases additively in expectation, up
to some scaling, by Xi’s residual requirement r′i; and (2) the expected cost of edges in L is
not too large. We denote by {λ̃S}S⊆V the solution {λS}S⊆V scaled by a factor of 1/α, where
α is as in guarantee (1) of Theorem 4, i.e., λ̃S = λS/α. The single iteration algorithm removes
all edges crossing a collection of cuts chosen according to two different criterions to ensure
that the number of pieces Xi is broken into increases as required. The first criterion consists
of all cuts whose λ̃S value is sufficiently large. The second criterion consists of executing
randomized rounding on all cuts whose λ̃S is sufficiently small. Algorithm 1 summarizes
the single iteration rounding procedure (in the algorithm’s description we denote by ΓG(S)
the collection of edges in the graph G crossing the cut S), and Lemma 5 summarizes the
guarantee of Algorithm 1.

Algorithm 1 Single Iteration.

Input: GF = (V,E\F) , {λ̃S}S⊆V
Output: L ⊆ E\F

1 F1 ← {e ∈ E \ F : ∃S, λ̃S ≥ 2/3 ∧ e ∈ ΓGF
(S)}

2 let {IS}S⊆V :λ̃S<2/3 be independent random indicators where Pr[IS = 1] = λ̃S

3 F2 ← {e ∈ E \ F : ∃S s.t. λ̃S < 2/3 ∧ IS = 1 ∧ e ∈ ΓGF
(S)}

4 L← F1 ∪ F2
5 output L

I Lemma 5. For every F ⊆ E and {λS}S⊆V guaranteed in Theorem 4, executing Algorithm
1 on GF with {λ̃S}S⊆V results in L ⊆ E \ F satisfying:
1. E [Cut(GF∪L, Xi)] ≥ Cut(GF , Xi) + Ω (β/α) · r′i, ∀i = 1, ...g.
2. E

[∑
e∈L ce

]
≤ O (γ/α) ·OPT.

Proof. Let us start with requirement (1) above. Note that for every vertex u ∈ V , since
{λS}S⊆V satisfies guarantee (1) of Theorem 4, we can conclude that:

∑
S:u∈S λ̃S ≤ 1. Thus,

we can conclude that all cuts S whose λ̃S is large, i.e., λ̃S ≥ 2/3, are disjoint. Therefore,
removing F1 from GF additively increases the number of pieces every Xi is broken into by:

`i∑
j=1

∣∣{S : S ∈ C(Yi,j) ∧ λ̃s ≥ 2/3
}∣∣ ≥ `i∑

j=1

∑
S:S∈C(Yi,j)∧λ̃S≥2/3

λ̃S ,

where the above inequality follows from the fact that λ̃S ≤ 1,∀S ⊆ V .
Let us now consider cuts S ⊆ V whose λ̃S is small, i.e., λ̃S < 2/3. We analyze the expected

additive increase in the number of pieces Xi is broken into when removing F2 from GF . A
cut S satisfying: λ̃S < 2/3 and S ∈ C(Yi,j), increases the number of pieces Yi,j is broken into
by one if there exists a vertex u ∈ Yi,j ∩ S such that S is the only cut having IS = 1, among
all cuts T with λ̃T < 2/3 containing u. Let us denote this event by AYi,j ,S,u. Thus,

Pr
[
AYi,j ,S,u

]
= λ̃S ·

∏
T :λ̃T<2/3∧u∈T

(
1− λ̃T

)
.

R. Schwartz and Y. Sharoni 53:7

We note that since
∑
T :u∈T λ̃T ≤ 1 (as previously mentioned in the proof), and the fact that we

consider only cuts T satisfying λ̃T < 2/3, the following holds:
∏
T :λ̃T<2/3∧u∈T (1− λ̃T) = Ω(1).

Hence, Pr[AYi,j ,S,u] ≥ Ω(λ̃S). Therefore, removing F2 from GF additively increases the
expected number of pieces every Xi is broken into by at least:

`i∑
j=1

∑
S:S∈C(Yi,j)∧λ̃S<2/3

Pr
[
∃u ∈ Yi,j ∩ S s.t. AYi,j ,S,u

]
≥

`i∑
j=1

∑
S:S∈C(Yi,j)∧λ̃S<2/3

Ω(λ̃S).

The above inequality follows since for every Yi,j and every S ∈ C(Yi,j), satisfying λ̃S < 2/3,
one can choose an arbitrary vertex u ∈ Yi,j ∩S and apply the lower bound on the probability
of the event AYi,j ,S,u.

Recall that {λS}S⊆V satisfies guarantee (2) of Theorem 4, therefore we can conclude that
∀i = 1, . . . , g:

`i∑
j=1

∑
S:S∈C(Yi,j)∧λ̃S<2/3

λ̃S ≥
β

2αr
′
i or

`i∑
j=1

∑
S:S∈C(Yi,j)∧λ̃S≥2/3

λ̃S ≥
β

2αr
′
i.

Thus, removing all edges in F1 ∪ F2 from GF additively increases the number of pieces
every Xi is broken into, in expectation, by at least Ω (β/α) r′i. This concludes the proof of
requirement (1).

Let us focus on requirement (2). It is easy to note that the definition of F1 implies
that

∑
e∈F1

ce ≤ 3/2
∑
S:λ̃S≥2/3 δGF

(S)λ̃S . Additionally, it is easy to note from the definition
of F2 that E[

∑
e∈F2

ce] ≤
∑
S:λ̃S<2/3 δGF

(S)λ̃S . Summing the former and the latter and
recalling that λ̃S = λS/α ∀S ⊆ V , along with the fact that {λS}S⊆V satisfies guarantee (3)
of Theorem 4, we can conclude that: E[

∑
e∈L ce] ≤ O(γ/α)OPT. This concludes the proof of

requirement (2). J

We are now ready to describe our rounding algorithm, which is depicted in Algorithm
2. The algorithm is straightforward, as it iteratively applies the single iteration algorithm,
Algorithm 1, as long as there is a group Xi that is not broken to its required ri number of
pieces. We note that unlike previous algorithms for the (RC) problem, e.g., [18], we need
to resolve (LPF) in each iteration as it is not clear whether the original fractional solution
remains feasible for GF .

Algorithm 2 Rounding.

Input: G (V,E) , {Xi}gi=1 , {ri}
g
i=1 , c : E → R+

Output: F ⊆ E
1 F ← ∅
2 while ∃i = 1, . . . , g s.t. Xi is not broken into at least ri pieces in GF do
3 solve (LPF) to obtain {λS}S⊆V using Theorem 4
4 λ̃S ← λS/α, ∀S ⊆ V
5 execute Algorithm 1 with GF and {λ̃S}S⊆V to obtain L
6 F ← F ∪ L
7 output F

The following lemma bounds the number of iterations Algorithm 2 performs, and its
proof follows similar lines to the proof of [18]. We present it here for completeness.

APPROX/RANDOM 2020

53:8 Approximating Requirement Cut via a Configuration LP

I Lemma 6. With a probability of at least 1/2 Algorithm 2 performs at most O(α/β · logR)
iterations.

Proof. Let Rsi be the random variable that equals the residual requirement of Xi at the
beginning of iteration s of Algorithm 2, and let Rs =

∑g
i=1R

s
i be the random variable that

equals the total residual requirement at the beginning of iteration s. Requirement (1) of
Lemma 5 implies that there exists an absolute constant c such that for every iteration s:
E[Rsi |Rs−1

i] ≤ (1− c · β/α)Rs−1
i , where (1− c · β/α) < 1. From linearity of expectation we get

that for every iteration s: E[Rs] ≤ (1 − c · β/α)sR. Recall that R denotes the total initial
requirement, i.e., R = R0 =

∑g
i=1 ri. Thus, if we choose s∗ = log (4R)/ log ((1− c · β/α)−1)

then E[Rs∗] ≤ 1/4. Using Markov’s Inequality we get that Pr[Rs∗ < 1/2] ≥ 1/2. However,
since Rs∗ is integral we can conclude that with a probability of at least 1/2 Algorithm 2
terminates after s∗ iterations because all requirements are satisfied, i.e., Rs∗ reached a value
of 0. Noting that s∗ = O(α/β · logR) concludes the proof. J

Proof of Theorem 1. Lemma 6 proves that with a probability of at least 1/2 Algorithm 2
performs O(α/β · logR) iterations. Requirement (2) of Lemma 5 implies that the expected
cost of every iteration is at most O(γ/α) · OPT. Hence, the expected value of the output
of the algorithm is O(γ/β · logR) · OPT. Plugging the values of γ and β as guaranteed in
Theorem 4 concludes the proof. J

5 Solving the Configuration LP

In this section we address the problem of solving the relaxation (LPF). This task requires us
to provide an (approximate) separation oracle for the dual of (LPF), thus proving Theorem 4.
Intuitively, the dual separation oracle is a node weighted variant of sparsest cut where
demands are given over subsets, as opposed to pairs, of vertices. We denote this problem
by Sparsest Requirement Cut (SRC). There are multiple methods of proving that an
approximate dual separation oracle provides a bicriteria solution to the primal formulation,
e.g., via the Ellipsoid algorithm. In this version of the paper we use Young’s iterative
method [23]. To simplify presentation, let us denote by Cross(S, i) = |{Yi,j : S ∈ C(Yi,j)}|
the number of sets among Yi,1, . . . , Yi,`i

that S separates.

5.1 The Sparsest Requirement Cut Problem
Let us start by formally introducing the (SRC) problem, which is essential to proving
Theorem 4.

I Definition 7. An instance of the Sparsest Requirement Cut problem consists of
the following tuple (G,F, {{Yi,j}`i

j=1}
g
i=1, c, y, z), where: G = (V,E) is an undirected graph,

F ⊆ E is a collection of edges removed from G, for every i = 1, . . . , g: {Yi,j}`i
j=1 is the

partition of Xi according to the connected components of GF , non-negative edge weights
c : E → R+, non-negative group weights z : {1, . . . , g} → R+, and non-negative vertex
weights y : V → R+. The goal is to find a cut S ⊆ V minimizing:

δGF
(S) +

∑
u∈S yu∑g

i=1 Cross(S, i)zi
.

The following theorem summarizes our algorithm for (approximately) solving (SRC), and
it has a key role in proving Theorem 4. Its proof follows the lines of the classic algorithm
for Sparsest Cut (SC) with general demands (see, e.g., [17]): first a metric is found that
forms a lower bound on the value of an optimal solution, then it is rounded by embedding it

R. Schwartz and Y. Sharoni 53:9

into `1. Unfortunately, (SRC) is inherently different from (SC) since it is not symmetric,
i.e., S and S have (possibly) different objective values. To overcome this we introduce a new
artificial point o to the metric space which represents S. Furthermore, when embedding the
metric into `1 we make sure to consider only cuts that do not contain o.

I Theorem 8. Given an instance (G,F, {{Yi,j}`i
j=1}

g
i=1, c, y, z) of the Sparsest Require-

ment Cut problem, there exists a polynomial time algorithm that returns a cut S satisfying:
δGF

(S) +
∑
u∈S yu∑g

i=1 Cross(S, i)zi
≤ (X − 1) ·D ·OPTSRC,

where OPTSRC is the value of an optimal solution to the given instance, and D is as in
Theorem 2 when considering U = ∪gi=1Xi ⊆ V .

Proof. Our proof is comprised of two steps: (1) introducing a semi-definite relaxation and
proving it lower bounds OPTSRC; and (2) rounding the fractional solution and proving it
yields the desired approximation factor.

Step 1. We start by presenting a semi-definite relaxation for (SRC) which we denote by
(SDP). In (SDP), a squared Euclidean metric space is imposed over V ∪ {o}, where o
denotes a special artificial point which is the origin. Thus, every vertex a ∈ V ∪ {o} is
associated with a vector va and vo is constrained to be the origin, i.e., the zero vector.
Moreover, we denote by Ti,j the collection of all spanning trees over the complete graph
whose vertices are Yi,j .

min
∑

e=(a,b)∈E\F

ce||va − vb||22 +
∑
a∈V

ya||va||22

s.t. ||va − vb||22 + ||vb − vc||22 ≥ ||va − vc||22 ∀a, b, c ∈ V ∪ {o} (5)

||vo||22 = 0 (6)∑
(a,b)∈T

||va − vb||22 ≥ si,j ∀i = 1, . . . , g, ∀j = 1, . . . , `i,∀T ∈ Ti,j (7)

g∑
i=1

zi

`i∑
j=1

si,j ≥ 1 (8)

Constraint (5) is the triangle inequality, whereas Constraint (6) enforces that vo is
the origin. Constraint (7) states that each si,j is upper bounded by the length of the
minimum spanning tree in Ti,j . Constraint (8) is a scaling constraint, similar to the
standard relaxation for (SC). Clearly, (SDP) is solvable in polynomial time since the
separation oracle is just the computation of a minimum spanning tree.
Let us now prove that the optimal value of (SDP) lower bounds OPTSRC. Let S∗ be an
optimal solution to the problem, let us define the following solution to (SDP):

va =

0 a /∈ S∗
1√∑g

i=1
Cross(S∗,i)zi

e a ∈ S∗ and si,j =


1∑g

i=1
Cross(S∗,i)zi

S∗ ∈ C(Yi,j)

0 S∗ /∈ C(Yi,j)
,

where e is an arbitrary unit vector. Additionally, we set v0 = 0. The crucial observation
is that ||va − vb||22 = (

∑g
i=1 Cross(S∗, i)zi)−1 if a and b are on different sides of S∗ and

0 otherwise. Clearly, the above solution satisfies Constraints (5) and (6). Focusing on
Constraint (7), if si,j 6= 0 then S∗ ∈ C(Yi,j) and the minimum spanning tree of Yi,j crosses
S∗ exactly once and its length equals (

∑g
i=1 Cross(S∗, i)zi)−1e · e = si,j . Considering

Constraint (8), we note that:
g∑
i=1

zi

`i∑
j=1

si,j =
g∑
i=1

zi
Cross(S∗, i)∑g

i=1 Cross(S∗, i)zi
= 1.

APPROX/RANDOM 2020

53:10 Approximating Requirement Cut via a Configuration LP

Hence, we can conclude that the above solution is feasible. Moreover, we note that the
objective value of the above defined solution equals:

∑
e=(a,b)∈E\F

ce||va − vb||22 +
∑
a∈V

ya||va||22 =
δGF

(S∗) +
∑
u∈S∗ yu∑g

i=1 Cross(S∗, i)zi
.

Therefore, the value of an optimal solution to (SDP) lower bounds OPTSRC.
Step 2. We start by presenting the rounding algorithm, Algorithm 3. As previously men-

tioned, Algorithm 3 follows the lines of classis algorithms for (SC) with non-uniform
demands [17]. The main difference is that we make sure to consider only cuts that do
not contain o when decomposing the `1 metric into a non-negative combination of cut
metrics (such a decomposition can be easily found, see, e.g., [10, 17]). In what follows we
use the notation δS to denote the cut metric S defines, i.e., δS(a, b) = 1 if a and b are on
different sides of S and 0 otherwise.

Algorithm 3 Rounding (SDP).

Input: {va}a∈V ∪{o}
Output: S ⊆ V

1 let f be the embedding into `1 of Theorem 2 when considering U = ∪gi=1Xi ⊆ V ∪{o}
2 find {µr}Lr=1 ⊆ R+ and {Sr}Lr=1 ⊆ 2V s.t. ||f(a)− f(b)||1 =

∑L
r=1 µrδSr (a, b),

∀a, b ∈ V ∪ {o}
3 for r = 1 to L do
4 if o ∈ Sr then
5 swap Sr with V ∪ {o} \ Sr

6 output argminr=1,...,L{(δGF
(Sr) +

∑
a∈Sr

ya)/(
∑g
i=1 Cross(Sr, i)zi)}

Let us now analyze Algorithm 3. Note that:

min
r=1,...,L

{
δGF

(Sr) +
∑
a∈Sr

ya∑g
i=1 Cross(Sr, i)zi

}
≤

∑L
r=1 µr

(∑
e=(a,b)∈Γ(Sr) ceδSr

(a, b) +
∑
a∈Sr

ya

)
∑L
r=1 µr

∑g
i=1 Cross(Sr, i)zi

.

Focusing on the numerator we get that:

L∑
r=1

µr

 ∑
e=(a,b)∈Γ(Sr)

ceδSr (a, b) +
∑
a∈Sr

ya


=

∑
e=(a,b)∈E\F

ce

L∑
r=1

µrδSr
(a, b) +

∑
a∈V

ya

L∑
r=1

µrδSr
(o, a)

=
∑

e=(a,b)∈E\F

ce||f(a)− f(b)||1 +
∑
a∈V

ya||f(a)− f(o)||1

≤ D

 ∑
e=(a,b)∈E\F

ce||va − vb||22 +
∑
a∈V

ya||va||22

 .

The first equality follows from changing the order of summation and the fact that o /∈ Sr,
∀r = 1, . . . , L, i.e., 1{a∈Sr} = δSr (o, a). The inequality follows from Theorem 2 and
Constraint (6).

R. Schwartz and Y. Sharoni 53:11

Focusing on the denominator and choosing an arbitrary spanning tree Ti,j ∈ Ti,j , we get
that:

L∑
r=1

µr

g∑
i=1

Cross(Sr, i)zi =
L∑
r=1

µr

g∑
i=1

zi

`i∑
j=1

1{Sr∈C(Yi,j)}

≥
L∑
r=1

µr

g∑
i=1

zi

`i∑
j=1

1
|Yi,j | − 1

∑
(a,b)∈Ti,j

δSr
(a, b)

≥ 1
X − 1

g∑
i=1

zi

`i∑
j=1

∑
(a,b)∈Ti,j

L∑
r=1

µrδSr
(a, b)

= 1
X − 1

g∑
i=1

zi

`i∑
j=1

∑
(a,b)∈Ti,j

||f(a)− f(b)||1

≥ 1
X − 1

g∑
i=1

zi

`i∑
j=1

∑
(a,b)∈Ti,j

||va − vb||22

≥ 1
X − 1

g∑
i=1

zi

`i∑
j=1

si,j ≥
1

X − 1 .

The first equality follows from the definition of Cross(Sr, i). The first inequality follows
from the fact that any spanning tree in Ti,j can cross the cut Sr ∈ C(Yi,j) at most |Yi,j |−1
times. The second inequality follows from changing the order of summation and from
|Yi,j | ≤ X. The third inequality follows from Theorem 2 and the fact that if (a, b) ∈ Ti,j
then a, b ∈ Yß,j ⊆ U . The before last inequality follows from Constraint (7), whereas the
last inequality follows from Constraint (8). The second step of the proof is concluded by
combining the upper bound on the nominator with the lower bound on the denominator,
along with the first step of the proof. J

5.2 Proving Theorem 4
As previously mentioned we follow the footsteps of Young’s iterative method [23]. Please
refer to Appendix A for the details.

References
1 Sanjeev Arora, James R. Lee, and Assaf Naor. Fréchet embeddings of negative type metrics.

Discret. Comput. Geom., 38(4):726–739, 2007.
2 Sanjeev Arora, James R. Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. J.

Amer. Math. Soc., 21(1):1–21, 2008.
3 Adi Avidor and Michael Langberg. The multi-multiway cut problem. Theor. Comput. Sci.,

377(1-3):35–42, 2007.
4 Niv Buchbinder, Joseph (Seffi) Naor, and Roy Schwartz. Simplex partitioning via exponential

clocks and the multiway-cut problem. SIAM J. Comput., 47(4):1463–1482, 2018.
5 Niv Buchbinder, Roy Schwartz, and Baruch Weizman. Simplex transformations and the

multiway cut problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, pages 2400–2410. SIAM, 2017.

6 Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm
for MULTIWAY CUT. J. Comput. Syst. Sci., 60(3):564–574, 2000.

APPROX/RANDOM 2020

53:12 Approximating Requirement Cut via a Configuration LP

7 Shuchi Chawla, Anupam Gupta, and Harald Räcke. Embeddings of negative-type metrics and
an improved approximation to generalized sparsest cut. ACM Trans. Algorithms, 4(2):22:1–
22:18, 2008.

8 Chandra Chekuri, Sudipto Guha, and Joseph (Seffi) Naor. The steiner k-cut problem. SIAM
J. Discrete Math., 20(1):261–271, 2006.

9 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

10 Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15 of
Algorithms and combinatorics. Springer, 1997.

11 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. Comput., 25(2):235–251, 1996.

12 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. An improved approximation algorithm
for requirement cut. Operations Research Letters, 38(4):322–325, 2010.

13 David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young. Rounding
algorithms for a geometric embedding of minimum multiway cut. Math. Oper. Res., 29(3):436–
461, 2004.

14 Philip N. Klein, Serge A. Plotkin, Satish Rao, and Éva Tardos. Approximation algorithms for
steiner and directed multicuts. J. Algorithms, 22(2):241–269, 1997.

15 Philip N. Klein, Satish Rao, Ajit Agrawal, and R. Ravi. An approximate max-flow min-cut
relation for unidirected multicommodity flow, with applications. Combinatorica, 15(2):187–202,
1995.

16 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

17 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995.

18 Viswanath Nagarajan and R. Ravi. Approximation algorithms for requirement cut on graphs.
Algorithmica, 56(2):198–213, 2010.

19 Joseph (Seffi) Naor and Yuval Rabani. Tree packing and approximating k-cuts. In Proceedings
of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington,
DC, USA, pages 26–27, 2001.

20 R. Ravi and Amitabh Sinha. Approximating k-cuts via network strength. In Proceedings of
the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002,
San Francisco, CA, USA, pages 621–622, 2002.

21 Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM J.
Comput., 24(1):101–108, 1995.

22 Ankit Sharma and Jan Vondrák. Multiway cut, pairwise realizable distributions, and descending
thresholds. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,
pages 724–733, 2014.

23 Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, pages 538–546, 2001.

A Proving Theorem 4

For simplicity of presentation, for the remainder of this section, we assume that F ⊆ E is
given and fixed. Let M be a guess of the value of OPT, and given M define the following
polytope capturing (LPF):

R. Schwartz and Y. Sharoni 53:13

Q(M) =
{
λ ∈ R2V

: 1
M

∑
S⊆V

1
2δGF

(S)λS ≤ 1 , (9)

∑
S:u∈S

λS ≤ 1 ∀u ∈ V, (10)

1
r′i

`i∑
j=1

∑
S∈C(Yi,j)

λS ≥ 1 ∀i = 1, . . . , g, (11)

λS ≥ 0 ∀S ⊆ V
}
.

We refer to Constraints (9) and (10) as the packing constraints, and Constraint (11) as the
covering constraint. For a sufficiently large parameter N , to be determined later, we use the
smoothed definitions of the max and min functions for the packing and covering constraints
of Q(M), respectively:

`max(λ) , 1
N

ln
(
R(λ) +

∑
u∈V

y(λ, u)
)

and `min(λ) , − 1
N

ln
(

g∑
i=1

z(λ, i)
)
,

where:

R(λ) , exp

N

M

∑
S⊆V

1
2δGF

(S)λS


y(λ, u) , exp

(
N
∑
S:u∈S

λS

)

z(λ, i) , exp

−N
r′i

`i∑
j=1

∑
S∈C(Yi,j)

λS

 .

To simplify presentation, we denote the following value of a cut S ⊆ V by φλ(S):

φλ(S) ,
∑g
i=1 z(λ, i)

R(λ) +
∑
u∈V y(λ, u) ·

1
M

1
2δGF

(S)R(λ) +
∑
u∈S y(λ, u)∑g

i=1
1
r′

i
Cross(S, i)z(λ, i)

.

There are two important things to note regarding φλ. First, for every S ⊆ V :

φλ(S) =
∂`max(λ)
∂λS

∂`min(λ)
∂λS

. (12)

Observation (12) plays a crucial role when analyzing Young’s iterative method applied to
our setting. Second, φλ(S) equals the value of S when considering the following instance
(G,F, {{Yi,j}`i

j=1}
g
i=1, cλ, yλ, zλ) of (SRC):

cλ(e) =
1

2MR(λ)ce
R(λ) +

∑
u∈V y(λ, u) ∀e ∈ E \ F

yλ(u) = y(λ, u)
R(λ) +

∑
u∈V y(λ, u) ∀u ∈ V

zλ(i) =
1
r′

i
z(λ, i)∑g

i=1 z(λ, i)
∀i = 1, . . . , g.

The following lemma proves that there exists a solution to the above instance of (SRC)
whose value is at most 1, assuming our guess for M is not smaller than OPT.

APPROX/RANDOM 2020

53:14 Approximating Requirement Cut via a Configuration LP

I Lemma 9. For every λ ∈ R2V , if M ≥ OPT then there exists a cut S ⊆ V such that
φλ(S) ≤ 1.

Proof. We define two vectors a,b ∈ R2V , indexed by S, as follows:

aS ,
1
M

1
2δGF

(S)R(λ) +
∑
u∈S y(λ, u)

R(λ) +
∑
u∈V y(λ, u) and bS ,

∑g
i=1

1
r′

i
Cross(S, i)z(λ, i)∑g
i=1 z(λ, i)

,

and prove that 〈a, λ∗〉 ≤ 1 and 〈b, λ∗〉 ≥ 1, for some non-negative vector λ∗ ∈ R2V

+ . Since a,
b, and λ∗ are all non-negative, we can conclude that there exists S ⊆ V such that aS ≤ bS .
This will conclude the proof.

We note that since M ≥ OPT, Q(M) is non-empty. The reason for the latter is that
λ∗ ∈ Q(M), where λ∗ is an optimal solution to the (RC) problem applied to GF (as defined
in the proof of Lemma 3). Hence, we know that:∑

S⊆V

1
2δGF

(S)λ∗S ≤ OPT (13)

∑
S:u∈S

λ∗S ≤ 1 ∀u ∈ V (14)

`i∑
j=1

∑
S∈C(Yi,j)

λ∗S ≥ r′i ∀i = 1, . . . , g. (15)

We note that (13) above follows from Lemma 3. First, let us prove that 〈a, λ∗〉 ≤ 1:

〈a, λ∗〉 =
∑
S⊆V

1
M

1
2δGF

(S)R(λ) +
∑
u∈S y(λ, u)

R(λ) +
∑
u∈V y(λ, u) λ∗S

=
R(λ)
M

∑
S⊆V

1
2δGF

(S)λ∗S +
∑
u∈V y(λ, u)

∑
S:u∈S λ

∗
S

R(λ) +
∑
u∈V y(λ, u)

≤
R(λ)
M OPT +

∑
u∈V y(λ, u)

R(λ) +
∑
u∈V y(λ, u) ≤ 1.

The second equality follows from changing the order of summation. The first inequality
follows from (13) and (14), whereas the last inequality follows since M ≥ OPT. Second, let
us prove that 〈b, λ∗〉 ≥ 1:

〈b, λ∗〉 =
∑
S⊆V

∑g
i=1

1
r′

i
Cross(S, i)z(λ, i)∑g
i=1 z(λ, i)

λ∗S

=

∑g
i=1

1
r′

i
z(λ, i)

∑`i

j=1
∑
S∈C(Yi,j) λ

∗
S∑g

i=1 z(λ, i)
≥ 1.

The second equality follows from changing the order of summation, whereas the inequality
follows from (15). J

The following lemma establishes the connection between the above and our algorithm for
(approximately) solving (SRC), i.e., Theorem 8.

R. Schwartz and Y. Sharoni 53:15

I Lemma 10. Given λ ∈ R2V , if M ≥ OPT then executing the algorithm of Theorem 8
on the instance (G,F, {{Yi,j}`i

j=1}
g
i=1, cλ, yλ, zλ) of (SRC) yields a cut S̃ ⊆ V satisfying:

φλ(S̃) ≤ (X − 1)D.

Proof. Let S∗ be an optimal solution to the instance (G,F, {{Yi,j}`i
j=1}

g
i=1, cλ, yλ, zλ) of

(SRC), or equivalently, a cut that minimizes φλ(S∗). Since M ≥ OPT, we can apply Lemma
9 and obtain that OPTSRC ≤ 1 for the given instance. Theorem 8 concludes the proof. J

We are now ready to present Young’s iterative approach adapted to (LPF), Algorithm
4. The parameter ζ > 0 in the input determines the step size of the algorithm and will be
determined later.

Algorithm 4 Solving (LPF).

Input: G = (V,E) , F ⊆ E, {{Yi,j}`i
j=1}

g
i=1, c : E → R+, ζ > 0

Output: λ ∈ R2V

+
1 λ← 0
2 while ∃i = 1, . . . , g s.t. 1

r′
i

∑`i

j=1
∑
S∈C(Yi,j) λS < 1 do

3 apply Theorem 8 on instance (G,F, {{Yi,j}`i
j=1}

g
i=1, cλ, yλ, zλ) of (SRC) to obtain

S̃

4 λS̃ ← λS̃ + ζ

5 output λ

The following lemma is used to upper bound the step size ζ in Algorithm 4 and it follows
directly by adapting Lemma 1 of [23] to our setting.

I Lemma 11. For every 0<ε≤1 and ζ > 0 such that ζ ≤ εmin{1, 1/X, (2M)/(
∑
e∈E\F ce)},

the following two hold for every S ⊆ V :

`max(λ+ ζ1S)− `max(λ)
ζ(1 + ε) ≤ ∂`max(λ)

∂λS
=

1
M ·

1
2δGF

(S) ·R(λ) +
∑
u∈S y(λ, u)

R(λ) +
∑
u∈V y(λ, u) (16)

`min(λ+ ζ1S)− `min(λ)
ζ(1− ε/2) ≥ ∂`min(λ)

∂λS
=

∑g
i=1

1
r′

i
· Cross(S, i)z(λ, i)∑g
i=1 z(λ, i)

. (17)

The following lemma states that when Algorithm 4 terminates, assuming M ≥ OPT, it
produces an approximate solution to Q(M).

I Lemma 12. For every 0 < ε ≤ 1, ζ > 0 satisfying the conditions of Lemma 11, and
N = ε−1 ln (g(n+ 1)), when Algorithm 4 terminates, assuming M ≥ OPT, it outputs
λ ∈ R2V

+ satisfying:∑
S:u∈S

λS ≤ α ∀u ∈ V (18)

1
r′i

`i∑
j=1

∑
S∈C(Yi,j)

λS ≥ β ∀i = 1, . . . , g (19)

1
M

∑
S⊆V

1
2δGF

(S)λS ≤ γ. (20)

In the above α = γ = ε+ (1+ε)(1+2ε)
1−ε/2 (X − 1)D and β = 1.

APPROX/RANDOM 2020

53:16 Approximating Requirement Cut via a Configuration LP

Proof. From the stopping condition of Algorithm 4, it is clear that (19) holds with β = 1,
i.e., the covering constraints are satisfied. Let us now focus on the remaining two covering
constraints. Denote the sequence of cuts Algorithm 4 increased by: S1, . . . , SL (note that some
cuts might appear several times in the sequence), and by λ the output, i.e., λ = ζ

∑L
r=1 1Sr .

For simplicity of presentation, we denote by λr the solution Algorithm 4 maintains after the
rth iteration, i.e., λr = ζ

∑r
s=1 1Ss . Note that λ0 = 0 and λL = λ. Let us now upper bound

the worst packing constraint upon termination of the algorithm:

max

 1
M

∑
S⊆V

1
2δGF

(S)λS ,max
u∈V

{ ∑
S:u∈S

λS

} ≤ `max(λ)

= ln (n+ 1)
N

+
L∑
r=1

(
`max (λr)− `max

(
λr−1))

≤ ln (n+ 1)
N

+ 1 + ε

1− ε/2

L∑
r=1

φλr−1(Sr)
(
`min (λr)− `min

(
λr−1))

≤ ln (n+ 1)
N

+ 1 + ε

1− ε/2(X − 1)D
L∑
r=1

(
`min (λr)− `min

(
λr−1))

= ln (n+ 1)
N

+ 1 + ε

1− ε/2(X − 1)D ln g
N

+ 1 + ε

1− ε/2(X − 1)D`min(λ)

≤ ε+ ε(1 + ε)
1− ε/2 (X − 1)D + 1 + ε

1− ε/2(X − 1)D min
i=1,...,g

 1
r′i

`i∑
j=1

∑
S∈C(Yi,j)

λS


≤ ε+ ε(1 + ε)

1− ε/2 (X − 1)D + 1 + ε

1− ε/2(X − 1)D · (1 + ζX)

≤ ε+ ε(1 + ε)
1− ε/2 (X − 1)D + 1 + ε

1− ε/2(X − 1)D · (1 + ε)

= ε+ (1 + ε)(1 + 2ε)
1− ε/2 (X − 1)D.

The first inequality follows from the definition of `max. Since `max(λ0) = `max(0) =
ln (n+ 1)/N , the first equality follows. The second inequality follows from Lemma 11 and
the definition of φ. We note that the third inequality follows from Lemma 10 and how Sr is
chosen by Algorithm 4. Since `min(λ0) = `min(0) = − ln g/N , the second equality follows.
The fourth inequality follows from the choice of N and the definition of `min. Note that the
fifth inequality follows from the stopping condition of Algorithm 4, i.e., the algorithm stops
once all coverings constraints are satisfied. The last inequality follows from the restrictions
on ζ. J

Proof of Theorem 4. All that remains is to choose ζ, such that for every guess of M
Algorithm 4 performs a polynomial number of iterations. We do this by tracking the
following potential: Φ(λ) ,

∑
u∈V

∑
S:u∈S λS . Note that initially Φ(λ) = Φ(0) = 0. From

guarantee (18) of Lemma 12, we know that once Algorithm 4 terminates the value of
Φ(λ) cannot exceed n(ε + (1 + ε)(1 + 2ε)/(1 − ε/2) · (X − 1)D). Setting the step size
ζ = εmin{1, 1/X, (2M)/(

∑
e∈E\F ce)} and choosing ε = 1 implies that Algorithm 4 performs

at most O(nXD/ζ) iterations. Applying standard weight rescaling techniques, we can assume
without loss of generality, that 1 ≤ ce ≤ poly(n), ∀e ∈ E. Thus, given a guess M , Algorithm
4 performs at most a polynomial number of iterations (recall thatM ≥ 1 due to the rescaling).
Since all edge weights are rescaled as above, one can find in polynomial time a value M such
that OPT ≤M ≤ 2OPT. This concludes the proof. J

	Introduction
	Our Result
	Our Techniques
	Related Work

	Preliminaries
	Configuration LP
	Rounding the Configuration LP
	Solving the Configuration LP
	The Sparsest Requirement Cut Problem
	Proving Theorem 4

	Proving Theorem 4

