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—— Abstract

What combinatorial properties are satisfied by a random subspace over a finite field? For example, is
it likely that not too many points lie in any Hamming ball? What about any cube? In this talk, I will
discuss the answer to these questions, along with a more general characterization of the properties
that are likely to be satisfied by a random subspace. The motivation for this characterization comes
from error correcting codes. 1 will discuss how to use this characterization to make progress on
the questions of list-decoding and list-recovery for random linear codes, and also to establish the
list-decodability of random Low Density Parity-Check (LDPC) codes.

This talk is based on the works [11] and [6], which are joint works with Venkatesan Guruswami,
Ray Li, Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, and Shashwat Silas.
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1 Introduction

Let F, be the finite field of order ¢, and let C C F be a random linear subspace of dimension
k. What combinatorial properties does C satisfy? For example, how far apart (in Hamming
distance) can we expect the closest two elements in C to be? What’s the maximum number
of elements of C likely to lie in any Hamming ball? What’s the maximum number to lie in
any cube S X Sg X --- xS, of size £™7

These questions are interesting from a mathematical point of view, but they are also
relevant to the study of error correcting codes. In coding-theoretic language, the set C is a
random linear code of rate k/n. The questions above ask about the distance, list-decodability,
and list-recoverability of C, respectively. While answer to the first question — about the
distance — is a classical result of Varshamov [14], the second two questions are much more
challenging and aspects of them are still open.

In this talk, I will discuss a recent characterization of properties that are satisfied by a
random linear code C, from [11] (Section 3). Then I will discuss (Section 4) how to use this
characterization to both make progress on the second and third questions above (list-decoding
and list-recovery of random linear codes), as well as to establish the list-decodability of
Gallager’s ensemble of Low-Density Parity-Check (LDPC) codes. This talk is based on the
works [11] and [6].
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2 Background

List-decoding was introduced by Elias and Wozencraft in the 1950’s [2, 16]. For p € [0, 1]
and integer L > 1, we say that a code C C Fy is (p, L)-list-decodable if, for all z € Fy,

[{ceC: dle,2) <p}| < L,

where 0(z,y) = L|{i : 2; # y;}| denotes relative Hamming distance. That is, C is list-
decodable if not too many codewords of C live in any small enough Hamming ball.

List-recovery is a more recent notion, which arose in the context of designing list-
decodable codes, but which has since found other applications and become interesting in its
own right. For integers £ < L, we say that a code C C Fy is (¢, L)-list-recoverable if, for all
Si,...,S, €y so that |S;] < ¢,

|{C€CZCiESiVZ'}|<L.

That is, C is list-recoverable if not too many codewords of C live in any ¢ x £ x --- x £ cube.!

For both list-decoding and list-recovery, we are interested in the trade-offs between the
parameters (p, L) or (¢, L) and the rate of the code. Codes which acheive the largest rate
possible, in terms of p or ¢, while keeping the list size L small (constant), are said to achieve
capacity for list-decoding or list-recovery respectively.

The list-decodability and list-recoverability of random linear codes has been well-studied
[17,4, 1, 15, 12, 13, 10], and by now it is known in many (but not all) parameter regimes that
random linear codes achieve list-decoding capacity with high probability. Understanding the
list-decodability /recoverability of random linear codes is motivated both as a fundamental
question and because it can lead to improvements in other constructions that use random
linear codes as a building block [5, 7, 9, 8]. Moreover, as was shown in [11] and as we
will see later in this extended abstract, understanding the list-decodability /recoverability of
random linear codes can lead to an understanding of another structured ensembles of codes:
Gallager’s ensemble of LDPC codes [3].

An LDPC code is based on a sparse (constant-degree) bipartite graph, G = (V, W, E)
with |[V] = n,|W| = m, and m < n. The n symbols of a codeword ¢ € C are identified with
n vertices in V. The vertices in W are parity checks: a vector ¢ € Fy is in C if, for every
vertex j € W, we have Ziel"(j) a; j¢; = 0, where I'(7) denotes the neighbors of ¢ in G and
oy ; € Fy are some fixed coefficients. LDPC codes are notable for their extremely efficient
algorithms for unique decoding (that is, the case that L = 1), and are ubiquitous in both
theory and applications. Gallager’s ensemble is given by a particular distribution on random
graphs. Gallager showed that the codes arising from such graphs have good distance with
high probability, but until the work [11], nothing was known about their list-decodability.

3 Characterization of sets in a random linear code

The problems of list-decoding and list-recovery of random linear codes are special cases of
the following question:

Let R € (0,1). Let B be a collection of subsets B C Fy, so that |B| < L for all B € B.
Is it likely that B is represented in a random subspace C C Fy of dimension k = Rn?

L This definition of “list-recoverability” is often referred to as “zero-error list-recoverability.” There is a
more general notion of (p, ¢, L)-list-recoverability, where the requirement is that ¢; € S; for at least a
(1 — p) fraction of the coordinates ¢ € [n]. However, since we will not discuss this more general notion
here, we use “list-recovery” to refer to the zero-error setting.
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Above, by “B is represented in C,” we mean that there is some B € B so that B C C. For
list-decoding, B is the collection of all sets of L vectors that lie in a Hamming ball; for
list-recovery, B is the collection of all sets of L vectors that lie in an £ X ... x £ cube.

One of the contributions of [11] is a characterization of the collections B that are
represented in a random linear code of a given rate. More precisely, suppose that B is
permutation-invariant (in the sense that 7(B) € B for all B € B and for all © € S,,, where 7
acts by permuting the coordinates of a vector ¢ € Fy). Then we have the following theorem.

» Theorem 1 ([11]). Let e > 0. For any permutation-invariant collection B of sets of size
at most L, there is a threshold rate R* so that the following holds. Let R be the rate of a
random linear code C. If R > R* + ¢, then w.h.p. B is represented in C; while if R < R* — ¢,
the w.h.p. B is not represented in C.

Moreover, [11] gives a characterization of the threshold rate R*. We describe the intuition
behind this characterization below, and refer the reader to [11] for the precise statements.

We can break up a set B into permutation-invariant classes: if we view a list B € B
as a matrix B € F’;XL with the elements of B as columns, then a class corresponds to a
distribution 7 on Fé given by the rows of B. For simplicity, suppose that B consists of only
one such class, given by the distribution 7. Below, we will conflate the list B C Fy with the
matrix B € FZXL as above.

Intuitively, if the entropy H(7) of this distribution is small, then there are not many
sets B € B; therefore, from the union bound, it is not likely that a random linear code will
contain them. Quantitatively, suppose that the support of 7 has dimension? L, and that
H(r) < yLlog(q) for some v € (0,1). Tt is not hard to see that there are at most ¢“?(7=°(1)
sets B € B. Since the elements of B are linearly independent, the probability that they are
all contained in a random linear code of rate R is at most ¢~ f"*. By a union bound, if
R <1 —~ — ¢ for some small € > 0, then no B € B is contained in C with high probability.

This allows us to partially answer the question above: if B corresponds to a class 7
so that dim(Supp(7)) = L and so that H(7) < (1 — R)Llogg, then B is not likely to be
represented in C. However, it is not hard to see that this picture is incomplete. In particular,
there are examples of distributions 7 of full rank L where H(7) is significantly larger than
(1 — R)Lloggq, but so that B is not likely to be represented in a random linear code of rate
R. One example of when this can happen is when there is some linear map A : IFqL — IF,];/ for
L’ < L so that H(A(1)) < (1 — R)L'logq. If this happens, then consider the collection B’
given by 7" = A(7). (So, elements of B’ are sets B’ C I of size L). The logic above shows
that B’ is not likely to be represented in C. But for any B’ € B/, we have B’ = BA7T for
some B € B, and hence B C C implies that B’ C C as C is linear. Thus, if B’ is not likely to
be represented in C, then neither is B.

The characterization of [11] shows that in fact this is the only way that the simple
computation above is incomplete. That is, we can characterize the threshold rate R* for a
set B in terms of the entropy of linear maps of the corresponding row distributions 7:

!
R* =min max 1— — H(r) ’
i L Supp(r ) oEg

where the minimum is over all distributions 7 that appear as permutation-invariant classes
in B, and the maximum is over all linear maps A.

2 A similar argument will hold if 7 has dimension smaller than L, after a suitable projection.
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4 Applications

We conclude by briefly mentioning some applications of the characterization described above.

List-decodability of Gallager's ensemble of LDPC codes. The work [11] uses the charac-
terization above to show that if a collection B is likely to be represented in a random LDPC
code from Gallager’s ensemble, then it is likely to be represented in a random linear code.
Since recent works have shown that random linear codes achieve list-decoding capacity, this
implies that Gallager’s ensemble does as well.

New lower bounds for list-recovery random linear codes. The work [6] uses this charac-
terization to obtain lower bounds on the list size for list-recovery of random linear codes.
Because of this characterization, it is sufficient to exhibit a distribution 7 so that the class
B associated with 7 is bad for list-recovery, and so that H(A(w)) is large for every linear
transformation A. This can show that a random linear code of rate 1 — log,(¢) — € requires

list size L > ¢(1/¢) | This may be surprising, because for completely random codes a list size
of L = O(¢/¢) suffices.

Three-point concentration of the list size for list-decoding random linear codes. The
work [6] uses the characterization in a similar way to prove an extremely tight lower bound
on the list size for list-decoding random linear codes. Combined with an upper bound of
[10], this establishes that the list size of a binary random linear code is concentrated on at
most? three values: |hq(p)/e| + 2, |hq(p)/e] + 1, and |hy(p)/e + 0.99], where hy(z) denotes
the g-ary entropy.

5 Conclusion

In this extended abstract we have discussed a recent characterization of [11], which gives
a precise threshold for the rate at which a random linear code satisfies a combinatorial
property defined by the exclusion of a collection of small sets B. As we have discussed, this
characterization has proved useful for analyzing random linear codes themselves, as well
as for analyzing other structured random codes (Gallager’s ensemble). We hope that this
characterization can be useful even more broadly: the main open question posed by this talk
is to find more applications!
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