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Abstract
The anti-Ramsey numbers are a fundamental notion in graph theory, introduced in 1978, by Erdös,
Simonovits and Sós. For given graphs G and H the anti-Ramsey number ar(G, H) is defined to be
the maximum number k such that there exists an assignment of k colors to the edges of G in which
every copy of H in G has at least two edges with the same color.

Usually, combinatorists study extremal values of anti-Ramsey numbers for various classes of
graphs. There are works on the computational complexity of the problem when H is a star. Along
this line of research, we study the complexity of computing the anti-Ramsey number ar(G, Pk), where
Pk is a path of length k. First, we observe that when k is close to n, the problem is hard; hence, the
challenging part is the computational complexity of the problem when k is a fixed constant.

We provide a characterization of the problem for paths of constant length. Our first main
contribution is to prove that computing ar(G, Pk) for every integer k > 2 is NP-hard. We obtain
this by providing several structural properties of such coloring in graphs. We investigate further and
show that approximating ar(G, P3) to a factor of n−1/2−ε is hard already in 3-partite graphs, unless
P = NP . We also study the exact complexity of the precolored version and show that there is no
subexponential algorithm for the problem unless ETH fails for any fixed constant k.

Given the hardness of approximation and parametrization of the problem, it is natural to study
the problem on restricted graph families. Along this line, we first introduce the notion of color
connected coloring, and, employing this structural property, we obtain a linear time algorithm to
compute ar(G, Pk), for every integer k, when the host graph, G, is a tree.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing→ Graph theory; Theory of computation→ Computational complexity and cryptography;
Theory of computation → Graph algorithms analysis

© Saeed Akhoondian Amiri, Alexandru Popa, Mohammad Roghani, Golnoosh Shahkarami, Reza
Soltani, and Hossein Vahidi;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7402-2662
mailto:amiri@informatik.uni-koeln.de
https://orcid.org/0000-0003-3364-1210
mailto:alexandru.popa@fmi.unibuc.ro
https://orcid.org/0000-0001-8247-3773
mailto:mohammadroghani43@gmail.com
https://orcid.org/0000-0002-6169-7337
mailto:gshahkar@mpi-inf.mpg.de
https://orcid.org/0000-0002-8875-5023
mailto:rsoltani97@gmail.com
https://orcid.org/0000-0002-0040-1213
mailto:hovahidi@mpi-inf.mpg.de
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Complexity of Computing the Anti-Ramsey Numbers for Paths

Keywords and phrases Coloring, Anti-Ramsey, Approximation, NP-hard, Algorithm, ETH

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.6

Related Version A full version of the paper is available at [3] https://arxiv.org/abs/1810.08004.

1 Introduction

For given graphs G and H, the anti-Ramsey number ar(G,H) is defined to be the maximum
number k such that there exists an assignment of k colors to the edges of G in which every
copy of H in G has at least two edges with the same color. Classically, the graph G is a
large complete graph and the graph H is from a particular graph class.

The study of anti-Ramsey numbers was initiated by Erdös, Simonovits and Sós in 1975 [10].
Since then, there have been a large number of papers on the topic. There are papers that
study the case when G = Kn and H is a: cycle, e.g., [10, 21, 5], tree, e.g., [20, 19], clique,
e.g., [14, 10, 6], matching, e.g., [22, 8, 17] and others, e.g., [10, 4].

The anti-Ramsey numbers are connected with the rainbow number [15] rb(G,H), which
is defined as the minimum number k such that in any coloring of the edges of G with k

colors, there exists a rainbow copy of H. Thus, ar(G,H) = rb(G,H)− 1. We call a coloring
without a rainbow copy of H, an H-free coloring.

Various combinatorial works studied the case when H is a path or a cycle. For instance,
the work of Simonovits and Sos [24] shows that there exists a constant t such that for a
sufficiently long path ar(Kn, Pt) ∈ O(t · n). The combinatorial analysis of the problem is
extremely difficult when instead of Kn we use an arbitrary graph as the host graph. For a
more detailed exposition of the combinatorial results on anti-Ramsey numbers, we refer the
reader to the following surveys: [23, 15].

Besides the extremal results, the anti-Ramsey numbers have been studied from the
computational point of view in several papers. The anti-Ramsey numbers when G is an
arbitrary graph was studied for the case when H is a star. The problem was introduced by
Feng et al. [11, 12, 13], motivated by applications in wireless mesh networks and was termed
the maximum edge q-coloring.

They provide a 2-approximation algorithm for q = 2 and a (1 + 4q−2
3q2−5q+2 )-approximation

for q > 2. They show that the problem is solvable in polynomial time for trees and complete
graphs in the case q = 2. Later, Adamaszek and Popa [2] show that the problem is APX-hard
and present a 5/3-approximation algorithm for graphs with a perfect matching. For more
results related to the maximum edge q-coloring, the reader can refer to [1].

To improve our understanding on such problems, we continue the recent line of study of
the computational complexity of the problem. Similar to previous works we restrict H to a
basic class of graphs, paths. We let G be either an arbitrary graph or a restricted family of
graphs such as trees or bipartite graphs. We provide a big picture on what is tractable and
what is not tractable when we are dealing with anti-Ramsey numbers on paths. Namely we
prove the following.

Our Results
1. First, we show that computing the value of ar(G,Pk) is NP-hard for every k > 2 via a

reduction from the maximum independent set problem. Namely, we prove the following
theorem.
I Theorem 1. For every k > 2, Pk-free coloring problem is NP-hard.

https://doi.org/10.4230/LIPIcs.MFCS.2020.6
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The above theorem basically states that there is no XP algorithm, parameterized by k,
for the problem unless P = NP . The reduction is multi stage: firstly we distinguish
between the odd and even values of k. Then for each parity of k, given an instance of
independent set, we construct an auxiliary graph and prove several structural lemmas
on that graph to establish a one to one mapping between the maximum independent set
in the original graph and the maximum anti-Ramsey coloring on the auxiliary graph.
By a more careful analysis of the above proof for the special case of k = 3, we show the
problem is inapproximable by a factor n−1/2−ε, even on 3-partite graphs, unless P = NP .
Given the hardness of the problem, it is natural to investigate what would be the best
exponential algorithm for the problem. We study the running time of the exact algorithm
for a slight variant of the problem, namely, Precolored Pk-free coloring. We prove that
the problem does not admit an exact algorithm with running time 2o(|E(G)|) assuming
ETH.
I Theorem 2. There is no 2o(|E(G)|) algorithm for Precolored ar(G,Pk), for any fixed k,
unless ETH fails.
To obtain such a reduction, we provide a graph construction with low edge density gadgets.
This is unlike standard hardness proofs where it is possible to blow up the graph by any
polynomially bounded size.

2. Given the above hardness results, even for small values of k, it is natural to explore the
tractability of problem when the host graph has a nice structural property. We first
introduce a generic algorithmic idea, of color connected coloring and we exploit this to
develop a linear time algorithm on trees.
I Theorem 3. For a tree T , there is an exact linear time algorithm that computes
ar(T, Pk) for every constant integer k; the algorithm runs in time O(|V (T )|k4).
Our algorithm is based on dynamic programming on trees, however, unlike most problems
in trees, this one is not that straightforward and we employed several techniques to
solve the problem. There are known combinatorial results for cycles of length three on
outerplanar graphs [16] and the algorithm for trees for 3-consecutive coloring of [7]. Our
algorithm is independent of the latter; however, if we set k = 3 our algorithm solves the
aforementioned problem, while the other direction does not work.

The paper is organized as follows. In Section 2, we introduce preliminaries. Then, we
prove the NP-hardness of computing ar(G,Pk) in Section 3 and next, we show the hardness
of inapproximability for P3-free coloring. In Section 4 we show the exact complexity result
for Precolored P3-free coloring. In Section 5, we provide an exact polynomial time algorithm
for trees. Finally, in Section 6, we summarize the results and present directions for future
work.

2 Preliminaries

We use N to denote the set of natural numbers and we write [n] to denote the set {1, . . . , n}.
We refer the reader to [9] for basic notions related to graph theory. All the graphs considered
in this paper are simple and undirected.

Let G be a graph, we write V (G) for its vertices and E(G) for its edges. For k ∈ N+ we
denote by Pk a path with k+ 1 vertices. The length of Pk is k, the number of its edges. Also
let p be a Pk, depending on the context we may write p = (e1, . . . , ek) where ei ∈ E(p) or
p = (v1, . . . , vk+1) where vi ∈ V (p) to describe a path.

I Definition 4 (Coloring). Given an undirected graph G = (V,E), a coloring of the edges of
G is a function c : E → N. Similarly for any subset A ⊆ E we define c(A) =

⋃
e∈A c(e).

MFCS 2020
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We call a coloring of the edges of a graph G a rainbow coloring if for every pair of edges
e 6= e′ ∈ E we have c(e) 6= c(e′). Let G,H be two graphs, an edge coloring c of G is H-free
coloring if there is no rainbow subgraph of G isomorphic to H. We denote the number
of distinct colors used in c by cG,H . Let C be the set of all H-free colorings of G. The
anti-Ramsey number of G is ar(G,H) = maxc∈C cG,H . We observe that if k is part of the
input, then the problem of computing ar(G,Pk) is at least as hard as finding a Hamiltonian
path.

I Observation 5. Computing ar(G,P|V (G)|−1) is NP-hard.

Proof. ar(G,P|V (G)|−1) = |E| if and only if G does not have a Hamiltonian Path. J

In the above we can replace Hamiltonian Path in the proof with longest path and in addition
use the length of this path as parameter to prove the hardness for large values of k.

3 Hardness of Pk Anti-Ramsey Coloring

In this section for every k > 2, we prove the hardness by a reduction from the maximum
independent set (MIS) problem.

Proof Sketch. We construct a new graph G′ from a graph G such that from a maximum
Pk-free coloring of G′, we can derive the size of the maximum independent set of G. To obtain
the desired result, we divide the problem into three subproblems. We use the reduction with
different approaches for
1. k = 4,
2. every even k > 4,
3. every odd k > 1.

Roughly speaking, we replace every vertex and edge with specific gadgets; this depends
on the parity of k. Afterward, in each case, intuitively, we prove that if a vertex belongs to
an independent set, its corresponding gadget can be colored with more distinct colors than a
vertex that does not belong to an independent set. On the other hand, for each case, we
design edge gadgets such that their coloring can be (almost) fixed in advance, despite the
choice of colors for the vertex gadgets. The crucial part of the proofs lies in the analysis of a
structure of the maximum Pk-free coloring of G′ and, exploiting the dependency between
vertex gadgets.

In the following, we provide a short version of the proof for odd and even values of k; for
detailed proof, we refer the reader to the full version [3]. Besides, by a slight modification
to the proof of odd values of k, we obtain an approximation hardness for the case of k = 3.
Every missing proof is available in the full version [3].

Hardness of the Problem for Odd k > 1

Assumption I. In this part we assume k > 1 is an odd integer.
In the following, we first present an upper bound on the number of colors when the graph

H is a path. For certain technical reasons that we will see in the proofs, we define a constant
ck depending only on k with a particular lower bound.

I Lemma 6. ar(G,Pk) ≤ ck|V (G)| for some ck ∈ Θ(k
√

log k) and ck > 3k
√

log k.
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Assumption II. In this section, ck is what we used in Lemma 6. Whenever we write I it
means the maximum independent set in the graph G.

Given an undirected graph G, we construct a graph G′ as follows:
1. For each v ∈ V (G) we introduce two new vertices sv, tv ∈ V (G′) and (fk + 1)ck|V (G)|

internally disjoint paths of length k − 1, Pv = {P v1 , . . . , P v(fk+1)ck|V (G)|}, connecting sv
to tv. Later in Lemma 12 we determine the value of fk.

2. For each edge {v, u} ∈ E(G), add 4 new edges in E(G′): {sv, tu}, {tv, su}, {tv, tu},
{sv, su}. Let us define the union of all such edges in the entire graph G′ as Est , more
formally Est =

⋃
{u,v}∈E(G){{sv, tu}, {tv, su}, {tv, tu}, {sv, su}}.

An edge coloring is valid if it is a Pk-free coloring. We start by providing some lemmas
and observations on the structure of valid colorings of G′ to establish a connection between
such a coloring and an independent set in G.

I Lemma 7. In any Pk-free coloring of G′ the edges in Est will receive at most 2ck|V (G)|
distinct colors.

The next lemma bounds the number of distinct colors of each individual Pv.

I Lemma 8. If G is a cycle of length 2(k − 1) then ar(G,Pk) = 2(k − 2).

I Lemma 9. Let H be a graph isomorphic to Pv for any v ∈ V (G). Then there is a valid
coloring of H with (k − 2) · (fk + 1)ck|V (G)| distinct colors.

I Lemma 10. There is no valid coloring of G′ with more than (k − 2) · (fk + 1)ck|V (G)|
distinct colors in one Pv for v ∈ V (G), |V (G)| ≥ 2.

I Definition 11 (Family of Distinct Colored Paths). A set of paths P is a family of distinct
colored paths if the following conditions hold:
1. Their union is a graph with a valid Pk-free coloring.
2. For every P 6= Q ∈ P and, for every e ∈ P, e′ ∈ Q we have that c(e) 6= c(e′).

Note that from the above Definition 11, it is clear that the set of paths should be pairwise
edge disjoint (otherwise it does not meet the second condition), also one path may repeat
some of its own colors.

The following lemma, basically states that we cannot have two adjacent nodes u, v in
G such that their corresponding paths receive many distinct colors in G′. We employ this
key property later in the hardness proof to obtain an MIS based on the size of the family of
distinct colored paths.

I Lemma 12. Let {v, u} ∈ E(G), then there is a constant fk (this is what we used to
construct G′), depending only on k, such that, in any valid coloring of G′ if there are families
of distinct colored paths P ⊆ Pv,Q ⊆ Pu, such that each P ∈ P ∪Q is colored with at least
k − 2 distinct colors, then min{|P| , |Q|} < fk.

For a better understanding of the above lemma see Figure 1. The following establishes a
lower bound on the number of distinct colors w.r.t. the size of a maximum independent set I.

I Lemma 13. ar(G′, Pk) > |I|(k−2)(fk+1)ck|V (G)|+(|V (G)|−|I|)(k−3)(fk+1)ck|V (G)|

Now we can prove the hardness for every odd k > 1. You can find the complete proof in
[3], however the idea is to use Lemma 12: given a coloring, we cannot have many blow up
vertices that are colored with many colors by Lemma 12. Basically such vertices form an
independent set in the original graph, the second part employs Lemma 13 at its heart. We
have to be careful in our counting arguments. We suggest the reader see several important
details in the full proof in [3].

MFCS 2020
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Figure 1 The coloring scheme of vertex gadgets for P7-free coloring. Colors are represented by
numbers. To simplify the visualization, some connector edges and some parallel paths are not drawn.
For v ∈ I each path gets k − 2 = 5 colors and for u ∈ V \ I each path gets k − 3 = 4 colors. Two
paths of length 7 are highlighted, neither of them are rainbow.

I Lemma 14. For every odd k > 1, Pk-free coloring problem is NP-hard.

With a slight twist we get the following, for its proof please see [3].

I Theorem 15. Unless P = NP , for any fixed δ > 0, there is no polynomial time 1√
|V (G)|

1−δ -

approximation for P3-free coloring even in 3-partite graphs.

Hardness of the Problem for Even Values of k > 2
Assumption: In this part we assume k = 2t, t > 2.

I Definition 16 (S(d)). For an integer d ≥ 1, let S(d) be a subdivided star, i.e., S(d) is
obtained by subdividing every edge of K1,d. We call the corresponding vertex of K1,d in the
partition with size one, as the center of S(d). Every subdivided edge of K1,d is a branch.
Therefore, S(d) has exactly d branches.

I Definition 17 (wasted edge). In a coloring of G, we choose one arbitrary edge from each
color and call each unchosen edge of G a wasted edge.

Therefore, if D is a set of all wasted edges of a maximum H-free coloring of G, then
|D|+ ar(G,H) = |E(G)|.

I Definition 18 (Dl,w). We construct an edge gadget Dl,w as follows. Let u1, u2, ..., ul+1 be
l + 1 distinct vertices. Then for every i ∈ [l], we connect ui to ui+1 by w internally disjoint
paths each of length two.

We call u1 head and ul+1 tail of Dl,w.
Graph Construction Given a graph G, we construct a graph G′ as follows.

1. For each vertex v ∈ V (G) with degree dv, we add one S(dv), named Sv, to G′. Each
branch of Sv corresponds to one of the incident edges of v.

2. For every edge e = {u, v} ∈ E(G), we add a Dt−2,4|E(G)|+8 to G′, named De, such that
its head is the leaf of the corresponding branch of e in Su and its tail is the leaf of the
corresponding branch of e in Sv.
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FFEA1E

Sv1

Sv2

Sv3

Sv4

De1

v1

v2

v3

e1
v4

I = {v1, v3}

Figure 2 Illustration of graph construction for k = 6. The left figure shows the graph G, and the
right figure shows its corresponding G′. All black edges of G′ have some unique new color. The
coloring is the maximum P6-free coloring of G′.

For a better understanding of the graph construction see Figure 2.

I Lemma 19. In any maximum Pk-free coloring c of G′, for every De, e ∈ E(G), there
exist at least eight edge disjoint paths, each of length 2t− 4 between its head and tail such
that their union is rainbow.

I Lemma 20. In any maximum Pk-free coloring of G′, in each Sv for v ∈ V (G), there are
at least dv − 1 wasted edges.

I Lemma 21. In any maximum Pk-free coloring of G′, for any v ∈ V (G) if Sv has dv − 1
wasted edges, then its coloring has the following properties: 1) all incident edges of the center
vertex of Sv have the same color and 2) each remaining edge of Sv has a distinct color.

I Lemma 22. Let u, v ∈ V (G) and e = {u, v} ∈ E(G). In any maximum Pk-free coloring
of G′, Sv has at least dv wasted edges or Su has at least du wasted edges.

I Lemma 23. Let I be a maximum independent set of G and let D be the set of all wasted
edges in a maximum Pk-free coloring of G′, then |I| = 2|E(G)| − |D|.

Proof. We provide a coloring c as follows. For every v ∈ I, color Sv with dv − 1 wasted
edges as explained in the Lemma 21. For every u ∈ V (G) \ I, for each branch b of Su, we
color both of its edges with a new color, cvbe . For every e ∈ E(G), we color De as a rainbow
with new distinct colors. See Figure 2 for a better understanding of the coloring c.

First, we claim that c is a maximum Pk-free coloring of G′ and then we show that |I| can
be derived from the size of c, or equivalently from ar(G′, Pk).

To show that c is a Pk-free coloring we perform a case distinction for every path of length
k in G′, in the following u, v are two arbitrary adjacent vertices in the graph G:
1. A path P between the center of Su to the center of Sv for {u, v} ∈ E(G).
2. A path P that contains center of Sv as one of its non-leaf vertices.
For the first case, as e = {u, v} by Lemma 22 w.l.o.g. we can suppose Su has been colored
with at least du wasted edges. Therefore, the first two edges of P starting from the center of
Su belong to a branch b of Su, have the same color cub in c, so P is not a rainbow path.

MFCS 2020
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For the second case, the path P has at least one branch, b, of Sv and at least one incident
edge to the center of Sv in another branch b′ of Sv. Hence, if we colored Sv with dv − 1
wasted edges, then by Lemma 21 two edges of P that are incident to the center of Sv have
the same color. Otherwise, if Sv is colored with dv wasted edges, both edges of b have the
same color cvb , therefore P is not a rainbow path.

Now we show that c is a maximum Pk-free coloring of G′. Note that by Lemma 20,
the minimum number of wasted edges in an individual Sv for v ∈ V (G) is at least dv − 1.
Observe that by Lemma 22, number of Sv’s for v ∈ V (G) with dv − 1 wasted edges is at
most |I|. Moreover, in c, number of such Sv’s is exactly |I| which is the maximum possible
number of them. Also, for each remaining vertex, v ∈ V (G) , Sv has exactly dv wasted edges
(the minimum number of possible wasted edges other than dv − 1). Also, c does not have
any wasted edge in the rest of G′. Therefore, c has the least number of wasted edges. Hence,
c has the maximum number of distinct colors in any Pk-free coloring of G′.

Total number of wasted edges in c is |D| =
∑
v∈I(dv − 1) +

∑
v/∈I dv. Hence, we get that

|I| = 2|E(G)| − |D| as claimed. J

Hence, we get the following.

I Lemma 24. For every even k > 4, Pk-free coloring problem is NP-hard.

I Lemma 25. For k = 4, Pk-free coloring problem is NP-hard.

Proof of Theorem 1. By Lemma 24, Lemma 25, and Lemma 14 we show that for every
integer k > 2 the problem is hard. J

4 Precoloring ar(G, Pk) Has No Subexponential Algorithm for all
k > 2

In this section, we study the complexity of exact algorithms computing the anti-Ramsey
number ar(G,Pk) where Pk is a path with k edges. We now consider a variant of the problem
for the exact time complexity of the problem.

I Problem 26 (Precolored ar(G,H)). The input consists of a graph G = (V,E) where
E = E1 ∪ E2. The edges in E1 have assigned a color while the edges in E2 are uncolored.
Color the edges in E2 with as many new colors as possible such that there is no rainbow copy
of H in G.

For this problem, we provide a fine grained reduction from 3SAT to show the hardness of
the problem. That is, we provide an instance of Precolored ar(G,Pk) problem (for a constant
k > 2). Due to the page limits, you can see the entire proof and gadget constructions in [3]
and here we just show an example of a clause gadget and explain the main idea behind the
proof by this example.

The example clause is actually (x∨ y ∨ z̄). The bottom edges in the Figure 3 are actually
literal gadgets (a single edge), so each variable gets exactly one color (all other clauses are
connected to it, we did not draw all of them). Later we will see a color of a literal gadget is
either Tk−2 or Fk−2 which later determines value of the variable in the SAT formula. The
construction of the clause gadget is such that among all uncolored edges, only the edges
{vk−1, x1}, {vk−1, y1}, {uk−1, z1} are able to get a new color (a color that is not in the set
of predefined colors). It is possible to show that these 3 edges together can afford only one
new color for the corresponding clause gadget. This new color enforces the coloring of other
uncolored edges, and in particular determines whether the corresponding literal gadget will
get the color Tk−2 or Fk−2. Hence, from a coloring that assigns one new color per clause, we
can find the satisfying assignment and vice versa.
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Figure 3 Sketch of a gadget where the clause has exactly one negative literal. Edge {u1, v1} is
forced to get the color of one of its neighbors. The gadget is sparse and has 5k − 7 edges.

The above line of analysis shows the problem is NP-hard in this graph. However our
gadgets are light weight: each of them has O(k) edges, hence the constructed graph is sparse.
Given the sparsification lemma [18] and the fact that our constructed graph has linear size
w.r.t. the size of the 3-SAT instance, we conclude that there is no 2o(|E(G)|) time algorithm
for Precolored ar(G,Pk) assuming ETH. Hence, we can prove the following theorem. See [3]
for a complete proof.

I Theorem 2. There is no 2o(|E(G)|) algorithm for Precolored ar(G,Pk), for any fixed k,
unless ETH fails.

5 Color Connected Coloring and its Applications

In this section, we introduce the notion of color connected coloring and using that we provide
a polynomial time algorithm to compute ar(T, Pk), where T is a tree. Roughly speaking, in
a color connected coloring we try to color the graph with the maximum number of colors so
that the set of edges of every color class induces a connected subgraph. The main result of
this section is the following theorem.

I Theorem 3. For a tree T , there is an exact linear time algorithm that computes ar(T, Pk)
for every constant integer k; the algorithm runs in time O(|V (T )|k4).

Let c be a Pk-free coloring of a graph G and let c1 be one of such colors used in c. Then,
we call the induced graph G[{v | ∃u ∈ V (G), e = {u, v} ∈ E(G), c(e) = c1}] as an induced
c1-graph and we write it G[c1]. If G[c1] is connected then we say c1 is a connected color ;
otherwise, it is a disjoint color.

I Definition 27 (Color Connected Coloring). Given a graph G, a Pk-free coloring c of G is a
color connected coloring if for every color ci used in c, G[ci] is a connected component.
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In the rest of this section, we assume that T is a rooted tree with rT as its root. We
define Tv as the largest subtree with v ∈ V (T ) as its root. Depth of a vertex v ∈ V (T ), Hv,
is the number of edges between v and the root. Furthermore, we define C(v) as the set of
children of v in a rooted tree. As we can color the graph with at most |E| many colors, in
this proof we use a palette of colors C = {ce | e ∈ E(T )}. That is whenever we color an edge
e with a new color, its color will be ce, otherwise, e will get a color of one of the already
colored edges.

I Lemma 28. There exists a maximum Pk-free coloring of T , which is color connected.

Proof. Let c be a maximum Pk-free coloring of T with the minimum number of color
connected components. If for every ci, T [ci] has one connected component we are done.
Otherwise, towards the contradiction, let c1 be a color used in c, for which T [c1] has more
than one connected components, {T1, . . . , Tr} for some r > 1. W.l.o.g. suppose T1 is the
component of T [c1] with the deepest root, in other words argmaxi∈[r] minu∈V (Ti) Hu equals
to one. Since r > 1, the root of subtree T1, v, has a parent. Let e be the edge between v and
its parent. We recolor all of E(T1) with color c(e). This clearly creates a new coloring c′
with the same set of colors as c; however, it has one less color connected component than
c which contradicts our minimality assumption on c. To complete the contradiction, it is
sufficient to show that c′ is a Pk-free coloring.

Towards the contradiction, let P be a rainbow Pk in c′. We perform a case distinction on
|E(P ) ∩ E(T1)| to derive a contradiction.
1. |E(P ) ∩ E(T1)| = 0: In this case, the coloring of P in c and c′ is identical. Moreover, P

is not rainbow in c, hence P is not rainbow in c′ either, a contradiction.
2. |E(P ) ∩ E(T1)| = 1: In this case, let e′ ∈ E(P ) ∩ E(T1) be the only edge of P that

is recolored in c′. There must exist another edge e′′ of P which is colored by c1. We
know that e′′ 6∈ E(T1), so e′′ is not incident to v. We claim that e′′ 6∈ E(Tv). Suppose
by contradiction, e′′ ∈ E(Tv). Since e′′ 6∈ E(T1), w.l.o.g. assume e′′ ∈ E(T2). Since T1
and T2 are two disjoint connected components in Tv and v ∈ V (T1), minu∈V (T1) Hu <

minu∈V (T2) Hu which contradicts the fact that T1 is the component of T [c1] with deepest
root. We showed that e′′ 6∈ E(Tv). Since |E(P ) ∩ E(T1)| = 1, its obvious that e ∈ E(P ).
c′(e) = c′(e′), a contradiction.

3. |E(P ) ∩E(T1)| > 1: In this case, at least two edges of P have the same color c(e), hence
P is not rainbow, a contradiction. J

The purpose of our algorithm is to find a maximum Pk-free color connected coloring of a
tree, T , since by Lemma 28 it is a maximum Pk-free coloring of T .

I Definition 29 (Lv1, Lv2). For a color connected coloring c of T , we define Lv1 to be a longest
rainbow path in Tv starting from v. Moreover, let Lv2 be the longest rainbow path such that
Lv1 and Lv2 are edge disjoint and Lv1 ∪ Lv2 is also rainbow.

I Lemma 30. A color connected coloring c of T is Pk-free if and only if |E(Lv1)|+|E(Lv2)| < k,
for all v ∈ V (T ).

Proof. If there exist v ∈ V (T ) such that |E(Lv1)|+ |E(Lv2)| ≥ k, c is not a Pk-free coloring,
since Lv1 ∪ Lv2 is a rainbow path.

To prove the other direction of the lemma, first we need to prove the following claim.

B Claim 30.1. For any v ∈ V (T ), Lv1 ∪ Lv2 is a maximum length rainbow path including v
in Tv.
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Proof of Claim 30.1. We prove the claim by contradiction, suppose there is a rainbow path
which can be partitioned as L3 ∪ L4, each starting from v, such that |E(L3)|+ |E(L4)| >
|E(Lv1)|+|E(Lv2)|. Since Lv1 is a longest rainbow path we have that |E(L3)|, |E(L4)| > |E(Lv2)|.
Hence, L3 and L4 must have a common color with Lv1. We know that the incident edge of v
in each path Lv1, L3, L4 must have the same color, since c is a color connected coloring. But
we assumed that L3 ∪ L4 is rainbow, a contradiction. Hence, the claim is proved. C

Now we can prove the remaining direction of the lemma. Suppose P is a rainbow
path in Tv. Thus, P can be partitioned as P1 ∪ P2, each starting from u ∈ V (Tv). Note
that |E(Lu1 )| + |E(Lu2 )| < k by the lemma statement. Also, by the above claim, we know
|E(P )| ≤ |E(Lu1 )|+ |E(Lu2 )|. Therefore, |E(P )| < k for any arbitrary rainbow path in Tv. J

I Definition 31 (D(v, i, j)). Let i ≥ j, i+ j < k, and v ∈ V (T ), we define D(v, i, j) to be
the number of distinct colors in a color connected maximum Pk-free coloring of Tv such that
|E(Lv1)| = i and |E(Lv2)| = j.

For e = {u, v} where v is the parent of u, we define Te to be a subgraph of Tv with
E(Tu) ∪ e as its edge set, that is a subgraph of Tv that is hanging from e.

Proof of Theorem 3. By Definition 31, we know that ar(T, Pk) = max{D(rT , i, j)|i+j < k}.
We show that D(v, i, j) can be computed using the values of D(u, ·) for u ∈ V (Tv) \ {v}.
Hence, D(·) can be computed by a post-order traversal of T .

To compute D(v, i, j), if v is a leaf of T , the only valid case is D(v, 0, 0), since there is no
edge in Tv. Hence, in the remaining, we suppose that v is not a leaf. We proceed by case
distinction based on types of children of v. A child u of v is of the following types:
1. u ∈ Lv1,
2. u ∈ Lv2,
3. u /∈ Lv1 ∪ Lv2

Now for each child u of v and z ∈ [3], such that e = {v, u} ∈ E(T ), we define Au,z as the
maximum number of distinct colors in Te if u belongs to case z, such that it does not violate
the definition of D(v, i, j). Note that only one child of v belongs to the first case. Also, for
j > 0, there is only one child of v in the second case. Moreover, for j = 0 there is not any
child in the second case. All other children of v belong to the third case. Therefore, we can
compute D(v, i, j) by Equation (1) and Equation (2), for j > 0 and j = 0, respectively.

D(v, i, j) = max{Au1,1 +Au2,2 +
∑

u∈C(v)\{u1,u2}

Au,3
∣∣u1, u2 ∈ C(v), u1 6= u2}, (1)

D(v, i, 0) = max{Au1,1 +
∑

u∈C(v)\{u1}

Au,3
∣∣u1 ∈ C(v)}. (2)

In what follows, we show how to compute the value of Au,z.

a) u ∈ Lv
1. Let e = {u, v} ∈ E(T ) and u ∈ Lv1. Then we have that E(Lv1) \ {{v, u}} is

a rainbow path of length i − 1. Observe that, since c(e) is in at most one of c(E(Lu1 )) or
c(E(Lu2 )), hence by appending e to their tails, at least one of the two paths, Lu1 or Lu2 , extends
to a longer rainbow path. If Lu1 extends to a longer rainbow path, we have |E(Lu1 )| = i− 1.
Otherwise, c(e) ∈ c(E(L1

u)) and by Definition 29 every rainbow path with greater length
than L2

u starting from u in Tu has a common color with Lu1 . Moreover the common color is
c(e), since the coloring is color connected. Hence, Lu2 is the longest rainbow path in Tu that
extends to a longer rainbow path which results in |E(Lu2 )| = i− 1. Therefore, |E(Lu1 )| = i− 1
or |E(Lu2 )| = i− 1. Thus, Au,1 equals to the maximum value obtained from these two cases.
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1. |E(Lu
1 )| = i− 1: In this case, e can get a new color ce. Hence, the maximum number

of distinct colors used in Te for D(v, i, j) is maxx<iD(u, i− 1, x) + 1.
2. |E(Lu

2 )| = i− 1, |E(Lu
1 )| > i− 1 : Then c({v, u}) ∈ c(E(Lu1 )), since the length of the

longest rainbow path must not exceed i. Also, e must have the same color as the incident
edge of u in Lu1 , since the coloring is color connected. However, in this case, P := Lu2 ∪ e
forms a rainbow path, since c(e) ∈ c(E(Lu1 )) and |c(E(Lu1 )) ∩ c(E(Lu2 ))| = 0. Moreover,
P is the longest rainbow path of Tv starting with e, since every other path with longer
length has a common color with Lu1 and we are looking for a color connected coloring,
thus this color is c(e). So the maximum number of distinct colors used in Te for D(v, i, j)
in this case is maxx≥iD(u, x, i− 1).

b) u ∈ Lv
2. Au,2 can be computed similar to the previous case.

c) u /∈ Lv
1 ∪ Lv

2. In the following let e1 = {v, u1} ∈ Lv1 and e2 = {v, u2} ∈ Lv2. For every
child u of v such that u /∈ {u1, u2}, suppose that x = |E(Lu1 )|, y = |E(Lu2 )|. Also, let
e = {u, v}. Hence, Au,3 is equal to the maximum value obtained from the following cases by
iterating over all combination of x and y such that x+ y < k and x ≥ y.

1. x < j: In this case, e can get a new color ce. Therefore, the optimal solution for this case
of Te is D(u, x, y) + 1.

2. j ≤ x < i: In this case, e can not get the new color ce. For the contradiction, suppose
that e has the new color ce. Therefore, Lu1 will extend to a longer rainbow path with
length x+ 1 which starts from v. Moreover, we are looking for color connected coloring,
thus the extended path has not any common color with Lv1. Since x+ 1 > j, it leads to a
contradiction to the assumption that Lv2 is the longest path such that Lv1 ∪Lv2 is rainbow.
Thus, e cannot have a new color ce. Hence, the optimal solution for this case of Te is
at most D(u, x, y). Let c(e) = c(e1), then any rainbow path starting from e in Te has
length less than or equal to Lv1 and has a common color with Lv1. Therefore, the optimal
solution for this case of Te is exactly D(u, x, y).

3. i ≤ x and y < j: In this case, c(e) ∈ c(E(Lu1 )), otherwise the concatenation of e and Lu1
creates a rainbow path of length x+ 1 which is larger than length of Lv1. Hence, e must
have the same color as the first edge of the path Lu1 starting from u, since the coloring is
color connected. Therefore, the optimal solution for this case of Te is D(u, x, y).

4. i ≤ x and j ≤ y < i: In this case, c(e) ∈ c(E(Lu1 )), otherwise the concatenation of e and
Lu1 creates a rainbow path longer than Lv1, a contradiction. Let suppose e3 be the first
edge of the path Lu1 which is incident to u. Hence, e must have the same color as e3,
since we are looking for a color connected coloring. In addition, e must have the same
color as e1, otherwise, Lu2 extends to a rainbow path of length y + 1 which is longer that
Lv2 and it does not have any common color with Lv1, a contradiction. Hence, e, e1, and
e3 must have the same color. We have counted the color of e1 as a distinct color before.
On the other hand, we count the color of e3 in the calculation of D(u, x, y). Therefore,
we have to subtract it by one to avoid duplication. Hence, the optimal solution for this
case is at most D(u, x, y)− 1. Consider the coloring of Tu that results D(u, x, y) distinct
colors. Let us recolor all edges in Tu[c(e3)] by c(e1). Also, let c(e) = c(e1). Length of the
longest rainbow path starting from v in Te in the proposed coloring is y + 1 which is not
more than i. Furthermore, all rainbow paths starting from v in Te have a common color
with Lv1, hence they do not violate the definition of Lv2. Therefore, the optimal solution
for this case of Te is exactly D(u, x, y)− 1.



S. A. Amiri, A. Popa, M. Roghani, G. Shahkarami, R. Soltani, and H. Vahidi 6:13

5. i ≤ x and i ≤ y: In this case, as i < y + 1, at least one of the Lu1 ∪ {e} or Lu2 ∪ {e} is a
longer rainbow path than Lv1, a contradiction to the choice of Lv1. Therefore, this case is
not possible and does not take part in the calculation of the value of the D(v, i, j).

Notice that we only defined D(v, i, j) for i+ j < k. Hence, by Lemma 30, our coloring
for every D(v, i, j) is Pk-free color connected coloring.

B Claim 32. Let A,B,C be three arrays of length n. There is an O(n) algorithm for finding
max{As +Bt +

∑
r∈[n]\{s,t} Cr|s 6= t, {s, t} ⊆ [n]}.

According to the previous cases, we can compute Au,z for all z ∈ [3] and u ∈ C(v) in
O(k2). Moreover, by Equation (1), Equation (2), and the above claim we can compute
D(v, i, j) in O(deg(v)), if we use dynamic programming approach. Therefore, the total time
complexity of our algorithm is O(|V (T )|k4), since there are O(|V (T )|k2) values of D(·) that
we need to compute. J

6 Conclusions and Open Problems

We studied the complexity of computing the anti-Ramsey number for simple paths. We
proved that computing the ar(G,Pk) is hard for every constant integer k > 2, and for k = 3,
the problem is hard to approximate to a factor of n−1/2−ε. To analyze the exact complexity
of the problem, we provided a fine grain reduction, for a slight variation of it. It remains
unanswered whether the inapproximability result extends to all paths of length at least 3.

On the positive side, we provided a linear time algorithm for trees. Color connected
coloring does not apply to bounded treewidth graphs. However, we believe our techniques
can be extended to provide an approximation algorithm for these graphs. We covered paths
in depth, another natural class of graphs to be considered might be complete graphs or
cycles.
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