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Abstract
We consider homomorphisms of signed graphs from a computational perspective. In particular, we
study the list homomorphism problem seeking a homomorphism of an input signed graph (G, σ),
equipped with lists L(v) ⊆ V (H), v ∈ V (G), of allowed images, to a fixed target signed graph (H,π).
The complexity of the similar homomorphism problem without lists (corresponding to all lists being
L(v) = V (H)) has been previously classified by Brewster and Siggers, but the list version remains
open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint
satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by
Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to
the combinatorial classification for the version without lists completed by Brewster and Siggers. We
illustrate the possible complications by classifying the complexity of the list homomorphism problem
when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time
solvable for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will
be useful for classifications of other classes of signed graphs, and we mention some follow-up research
of this kind; those classifications are surprisingly complex.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases complexity, dichotomy, graph homomorphism, signed graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.20

Funding The second and fourth authors were supported by their NSERC Canada Discovery Grants.
The work of the first and fifth author was also partially supported by the grant SVV–2020–260578.
Jan Bok: The first author received funding from the European Union’s Horizon 2020 project H2020-
MSCA-RISE-2018: Research and Innovation Staff Exchange and from Charles University Grant
Agency project 1580119.
Nikola Jedličková: The fifth author was partially supported by the fourth author’s NSERC Canada
Discovery Grant, and partially supported by Charles University Grant Agency project 1198419.

1 Motivation

We investigate a problem at the confluence of two popular topics – graph homomorphisms
and signed graphs. Their interplay was first considered in an unpublished manuscript of
Guenin [12], and has since become an established field of study [19].

© Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell, and Nikola Jedličková;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7973-1361
mailto:bok@iuuk.mff.cuni.cz
https://orcid.org/0000-0001-7237-4288
mailto:rbrewster@tru.ca
mailto:tomas@theory.stanford.edu
https://orcid.org/0000-0001-7609-9746
mailto:pavol@cs.sfu.ca
https://orcid.org/0000-0001-9518-6386
mailto:jedlickova@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.MFCS.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 List Homomorphism Problems for Signed Graphs

We now introduce the two topics separately. In the study of computational aspects of
graph homomorphisms, the central problem is one of existence – does an input graph G admit
a homomorphism to a fixed target graph H? This is known as the graph homomorphism
problem. It was shown in [15] that this problem is polynomial-time solvable when H has
a loop or is bipartite, and is NP-complete otherwise. This is known as the dichotomy of
graph homomorphisms (see [16]). Now suppose the input graph G is equipped with lists,
L(v) ⊆ V (H), v ∈ V (G), and we ask if there is a homomorphism f of G to H such that each
f(v) ∈ L(v). This is known as the graph list homomorphism problem. This problem also
has a dichotomy of possible complexities [9] – it is polynomial-time solvable when H is a
so-called bi-arc graph and is NP-complete otherwise. Bi-arc graphs have turned out to be an
interesting class of graphs; for instance, when H is a reflexive graph (each vertex has a loop),
H is a bi-arc graph if and only if it is an interval graph [8].

These kinds of complexity questions found their most general formulation in the context
of constraint satisfaction problems. The Feder-Vardi dichotomy conjecture [10] claimed that
every constraint satisfaction problem with a fixed template H is polynomial-time solvable
or NP-complete. After a quarter century of concerted effort by researchers in theoretical
computer science, universal algebra, logic, and graph theory, the conjecture was proved
in 2017, independently by Bulatov [7] and Zhuk [25]. This exciting development focused
research attention on additional homomorphism type dichotomies, including ones for signed
graphs [4, 6, 11].

The study of signed graphs goes back to [13, 14], and has been most notably investigated
in [20, 21, 22, 23, 24], from the point of view of colourings, matroids, or embeddings.
Following Guenin, homomorphisms of signed graphs have been pioneered in [5] and [18]. The
computational aspects of existence of homomorphisms in signed graphs – given a fixed signed
graph (H,π), does an input signed graph (G, σ) admit a homomorphism to (H,π) – were
studied in [4, 11], and eventually a complete dichotomy classification was obtained in [6].
Although typically homomorphism problems tend to be easier to classify with lists than
without lists (lists allow for recursion to subgraphs), the complexity of the list homomorphism
problem for signed graphs appears difficult to classify [2, 6]. If the analogy to (unsigned)
graphs holds again, then the tractable cases of the problem should identify an interesting class
of signed graphs, generalizing bi-arc graphs. In this paper, we begin the exploration of this
concept. It turns out that even for signed trees the classification is complex. We illustrate
this by classifying the complexity of the list homomorphism problem when H is a (irreflexive,
Theorem 9, or reflexive, Theorem 11) signed tree. The problems are polynomial-time solvable
for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will
be useful for classifications of other classes of signed graphs, and we mention some follow-up
research of this kind.

2 Terminology and notation

A signed graph is a graph G, with possible loops and multiple edges (at most two loops
per vertex and at most two edges between a pair of vertices), together with a mapping
σ : E(G)→ {+,−}, assigning a sign (+ or −) to each edge of G, so that different loops at a
vertex have different signs, and similarly for multiple edges between the same two vertices.
We denote such a signed graph by (G, σ), and call G its underlying graph and σ its signature.
When the signature name is not needed, we denote the signed graph (G, σ) by Ĝ to emphasize
that it has a signature even though we do not give it a name.
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We remark that we view a loop as a special case of an edge (in which the two endpoints
coincide). If we need to distinguish an edge other than a loop, we call it a non-loop edge.

We will usually view signs of edges as colours, and call positive edges blue, and negative
edges red. It will be convenient to call a red-blue pair of edges with the same endpoint(s) a
bicoloured edge; however, it is important to keep in mind that formally they are two distinct
edges. By contrast, we call edges that are not part of such a pair unicoloured; moreover,
when we refer to an edge as blue or red we shall always mean the edge is unicoloured blue or
red. The sign of a closed walk consisting of unicoloured edges in Ĝ is the product of the signs
of its edges. Thus a closed walk of unicoloured edges is negative if it has an odd number
of negative (red) edges, and positive if it has an even number of negative (red) edges; in
the case of cycles, we also call a positive cycle balanced. We call a signed graph balanced if
all of its cycles are balanced; we also call a signed graph anti-balanced if each cycle has an
even number of positive edges. A bicoloured edge can be viewed as a trivial cycle with one
red and one blue edge, and hence is neither balanced nor anti-balanced; for us a balanced
or anti-balanced signed graph does not have bicoloured edges. There is a symmetry to
viewing the signs as colours, in particular Ĝ is balanced if and only if Ĝ′, obtained from Ĝ

by exchanging the colour of each edge, is anti-balanced.
We call a signed graph Ĥ connected if the underlying graph H is connected. We call Ĥ

reflexive is each vertex of H has a loop, and irreflexive if no vertex has a loop. We call Ĥ a
tree if H, with loops removed, is a tree.

We now define the switching operation. This operation can be applied to any vertex of a
signed graph and it negates the signs of all its incident non-loop edges. (The signs of loops
are unchanged by switching.) We say that two signatures σ1, σ2 of a graph G are switching
equivalent if we can obtain (G, σ2) from (G, σ1) by a sequence of switchings. In that case we
also say that the two signed graphs (G, σ1) and (G, σ2) are switching equivalent. In a very
formal way, a signed graph is an equivalence class under the switching equivalence, and we
sometimes use the notation Ĝ to mean the entire class. It was proved by Zaslavsky [21] that
two signatures of G are switching equivalent if and only if they define exactly the same set
of negative (or positive) cycles. Thus a balanced signed graph is switching equivalent to a
signed graph with all edges blue, and an anti-balanced signed graph is switching equivalent
to a signed graph with all edges red.

We now consider homomorphisms of signed graphs. Since signed graphs Ĝ, Ĥ can be
viewed as equivalence classes, a homomorphism of signed graphs Ĝ to Ĥ should be a
homomorphism of one representative (G, σ) of Ĝ to one representative (H,π) of Ĥ. It is
easy to see that this definition can be simplified by prescribing any fixed representative
(H,π) of Ĥ. In other words, we now consider mapping all possible representatives (G, σ′)
to one fixed representative (H,π) of Ĥ. At this point, a homomorphism f of one concrete
(G, σ′) to (H,π) is just a homomorphism of the underlying graphs G to H preserving the
edge colours. Since there are multiple edges, we can either consider f to be a mapping of
vertices to vertices and edges to edges, preserving vertex-edge incidences and edge-colours,
as in [19], or simply state that blue edges map to blue or bicoloured edges, red edges map to
red or bicoloured edges, and bicoloured edges map to bicoloured edges. We follow the second
convention.

I Definition 1. We say that a mapping f : V (G)→ V (H) is a homomorphism of the signed
graph (G, σ) to the signed graph (H,π), written as f : (G, σ) → (H,π), if there exists a
signed graph (G, σ′), switching equivalent to (G, σ), such that whenever uv is a positive edge
in (G, σ′), then (H,π) contains a positive edge joining f(u) and f(v), and whenever uv is a
negative edge in (G, σ′), then (H,π) contains a negative edge joining f(u) and f(v).
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There is an equivalent alternate definition (see [19]). A homomorphism of the signed
graph (G, σ) to the signed graph (H,π) is a homomorphism f of the underlying graphs G
to H, such that for any closed walk W in (G, σ) with only unicoloured edges for which the
image walk f(W ) has also only unicoloured edges, the sign of f(W ) in (H,π) is the same as
the sign of W in (G, σ). This definition does not require switching the input graph before
mapping it. The equivalence of the two definitions follows from the theorem of Zaslavsky [21]
cited above. That result is constructive, and the actual switching required to produce the
switching equivalent signed graph (G, σ′) can be found in polynomial time [19].

I Lemma 2. Suppose (G, σ) and (H,π) are signed graphs, and f is a mapping of the vertices
of G to the vertices of H. Then f is a homomorphism of the signed graph (G, σ) to the
signed graph (H,π) if and only if f is a homomorphism of the underlying graph G to the
underlying graph H, which moreover maps bicoloured edges of (G, σ) to bicoloured edges of
(H,π), and for any closed walk W in (G, σ) with only unicoloured edges for which the image
walk f(W ) has also only unicoloured edges, the signs of W and f(W ) are the same.

Note that each negative closed walk contains a negative cycle, and in particular an
irreflexive tree (H,π) has no negative closed walks. Thus if (H,π) is an irreflexive tree, then
the condition simplifies to having no negative cycle of (G, σ) mapped to unicoloured edges in
(H,π). For reflexive trees, the condition requires that no negative cycle of (G, σ) maps to a
positive closed walk in (H,π), and no positive cycle of (G, σ) maps to a negative closed walk.

Let Ĥ be a fixed signed graph. The homomorphism problem S-Hom(Ĥ) takes as input
a signed graph Ĝ and asks whether there exists a homomorphism of Ĝ to Ĥ. The formal
definition of the list homomorphism problems for signed graphs is very similar.

I Definition 3. Let Ĥ be a fixed signed graph. The list homomorphism problem List-S-
Hom(Ĥ) takes as input a signed graph Ĝ with lists L(v) ⊆ V (H) for every v ∈ V (G), and
asks whether there exists a homomorphism f of Ĝ to Ĥ such that f(v) ∈ L(v) for every
v ∈ V (G).

We note that when Ĥ and Ĥ ′ are switching equivalent signed graphs, then any homo-
morphism of an input signed graph Ĝ to Ĥ is also a homomorphism to Ĥ ′, and therefore
the problems S-Hom(Ĥ) and S-Hom(Ĥ ′), as well as the problems List-S-Hom(Ĥ) and
List-S-Hom(Ĥ ′), are equivalent.

3 More background and connections to constraint satisfaction

We now briefly introduce the constraint satisfaction problems, in the format used in [10]. A
relational system G consists of a set V (G) of vertices and a family of relations R1, R2, . . . , Rk

on V (G). Assume G is a relational system with relations R1, R2, . . . , Rk and H a relational
system with relations S1, S2, . . . , Sk, where the arity of the corresponding relations Ri and Si

is the same for all i = 1, 2, . . . , k. A homomorphism of G to H is a mapping f : V (G)→ V (H)
that preserves all relations, i.e., satisfies (v1, v2, . . . ) ∈ Ri =⇒ (f(v1), f(v2), . . . ) ∈ Si, for
all i = 1, 2, . . . , k. The constraint satisfaction problem with fixed template H asks whether
or not an input relational system G, with the same arities of corresponding relations as H,
admits a homomorphism to H.

Note that when H has a single relation S, which is binary and symmetric, then we obtain
the graph homomorphism problem referred to at the beginning of Section 1. When H has a
single relation S, which is an arbitrary binary relation, we obtain the digraph homomorphism
problem [1] which is in a certain sense [10] as difficult to classify as the general constraint



J. Bok, R. Brewster, T. Feder, P. Hell, and N. Jedličková 20:5

satisfaction problem. When H has two relations +,−, then we obtain a problem that is
superficially similar to the homomorphism problem for signed graphs, except that switching
is not allowed. This problem is called the edge-coloured graph homomorphism problem [3],
and it turns out to be similar to the digraph homomorphism problem in that it is difficult to
classify [4]. On the other hand, the homomorphism problem for signed graphs [4, 6, 11], seems
easier to classify, and exhibits a dichotomy similar to the graph dichotomy classification, see
Theorem 5.

For homomorphism of signed graphs, Brewster and Graves introduced a useful construction.
The switching graph (H+, π+) of (H,π) is an edge-coloured graph, which has two vertices
v1, v2 for each vertex v of (H,π), and in which each edge vw of (H,π) gives rise to edges
v1w1, v2w2 of colour π(vw) and edges v1w2, v2w1 of the opposite colour. The same definition
applies also for loops, using v = w. Then each homomorphism of the signed graph (G, σ)
to the signed graph (H,π) corresponds to a homomorphism of (G, σ), this time viewed
as an edge-coloured graph, to the edge-coloured graph (H+, π+) and conversely. Indeed,
mapping a vertex x of G to v1 corresponds to mapping x to v without first switching at x,
and mapping x to v2 corresponds to first switching at x and then mapping it to v. (Recall
that we agreed to only switch in G, in the definition of a homomorphism of signed graphs.)
For list homomorphisms of signed graphs, we can use the same transformation, modifying
the lists of the input signed graph. If (G, σ) has lists L(v), v ∈ V (G), then the new lists
L+(v), v ∈ V (G), are defined as follows: for any x ∈ L(v) for x ∈ V (H), v ∈ V (G), we
place both x1 and x2 in L+(v). It is easy to see that the signed graph (G, σ) has a list
homomorphism to the signed graph (H,π) with respect to the lists L if and only if the
edge-coloured graph (G, σ) has a list homomorphism to the edge-coloured graph (H+, π+)
with respect to the lists L+. The new lists L+ are symmetric sets in H+, meaning that for
any x ∈ V (G), v ∈ V (H), we have x1 ∈ L+(v) if and only if we have x2 ∈ L+(v). Thus we
obtain the list homomorphism problem for the edge-coloured graph (H+, π+), restricted
to input instances (G, σ) with lists L that are symmetric in H+. It is well known that list
homomorphism problems can be modeled by constraint satisfaction problems if we replace
lists by unary relations. (Each subset X ⊆ V (H) gives rise to a unary relation RX = X

in the fixed system H and imposing the corresponding relation SX on a vertex v of the
input system G causes v to map to X, i.e., it is the same as setting the list L(v) = X.) We
can similarly transform the above list homomorphism problem for the edge-coloured graph
(H+, π+), to a constraint satisfaction problem with the template H∗ obtained by adding
unary relations RX = X, for sets X ⊆ V (H+) that are symmetric in H+. We conclude that
our problems List-S-Hom(Ĥ) fit into the general constraint satisfaction framework, and
therefore it follows from [7, 25] that dichotomy holds for problems List-S-Hom(Ĥ). We
therefore ask which problems List-S-Hom(Ĥ) are polynomial-time solvable and which are
NP-complete.

The solution of the Feder-Vardi dichotomy conjecture involved an algebraic classification
of the complexity pioneered by Jeavons [17]. A key role in this is played by the notion of a
polymorphism of a relational structure H. If H is a digraph, then a polymorphism of H is a
homomorphism f of some powerHt toH, i.e., a function f that assigns to each ordered t-tuple
(v1, v2, . . . , vt) of vertices of H a vertex f(v1, v2, . . . , vt) such that two coordinatewise adjacent
tuples obtain adjacent images. For general templates, all relations must be similarly preserved.
A polymorphism of order t = 3 is a majority if f(v, v, w) = f(v, w, v) = f(w, v, v) = v for all
v, w. A Siggers polymorphism is a polymorphism of order t = 4, if f(a, r, e, a) = f(r, a, r, e)
for all a, r, e. One formulation of the dichotomy theorem proved by Bulatov [7] and Zhuk [25]
states that the constraint satisfaction problem for the template H is polynomial-time solvable

MFCS 2020



20:6 List Homomorphism Problems for Signed Graphs

if H admits a Siggers polymorphism, and is NP-complete otherwise. Majority polymorphisms
are less powerful, but it is known [10] that if H admits a majority then the constraint
satisfaction problem for the template H is polynomial-time solvable. Moreover, we have
shown in [9] that a graph H is a bi-arc graph if and only if the associated relational system
H∗ admits a majority polymorphism. Thus the list homomorphism problem for a graph
H with possible loops is polynomial-time solvable if H∗ admits a majority polymorphism,
and is NP-complete otherwise. A similar result may hold for signed graphs. Since List-S-
Hom(H,π) is polynomial-time if (H,π)∗ admits a majority polymorphism, we ask if it is true
that List-S-Hom(H,π) is NP-complete if (H,π)∗ does not admit a majority polymorphism.

There is a convenient way to think of polymorphisms f of the relational system (H,π)∗. A
mapping f is a polymorphism of (H,π)∗ if and only if it is a polymorphism of the edge-coloured
graph (H+, π+) and if, for any symmetric set X ⊆ V (H+), we have v1, v2, . . . , vt ∈ X then
also f(v1, v2, . . . , vt) ∈ X. We call such polymorphisms of (H+, π+) semi-conservative.

We can apply the dichotomy result of [7, 25] to obtain an algebraic classification.

I Theorem 4. For any signed graph (H,π), the problem List-S-Hom(H,π) is polynomial-
time solvable if (H+, π+) admits a semi-conservative Siggers polymorphism, and is NP-
complete otherwise.

As mentioned above, we ask whether in the theorem one can replace the semi-conservative
Siggers polymorphism by a semi-conservative majority polymorphism.

In this paper we focus on seeking a graph theoretic classification, at least for some classes
of signed graphs.

One of the reasons that, unlike in other contexts, combinatorial dichotomy classification
for list homomorphisms of signed graphs appears harder to obtain than for homomorphisms
without lists, may be the fact that in the proofs we have to deal with the switching graph of the
input signed graph. Indeed, while for graphs the NP-completeness of the list homomorphism
problem for an induced subgraph implies the NP-completeness for the whole graph, this is
not true for induced subgraphs of the switching graph (because of the required symmetry of
the lists).

4 Basic facts

First we record the fact that when Ĥ is a simple signed graph, i.e., Ĥ contains no bicoloured
loops or edges, a dichotomy classification of the complexity of the problems List-S-Hom(Ĥ)
is given in [2].

We also mention the dichotomy classification of the problems S-Hom(Ĥ) from [6]. We
recall that a signed graph Ĝ is the s-core of a signed graph Ĥ if there is a homomorphism
f : Ĥ → Ĝ, and every homomorphism Ĝ→ Ĝ is a bijection on V (G). (We also remind the
reader that a loop counts as an edge.)

I Theorem 5. [6] The problem S-Hom(Ĥ) is polynomial-time solvable if the s-core of Ĥ
has at most two edges, and is NP-complete otherwise.

Observe that an instance of the problem S-Hom(Ĥ) can be also viewed as an instance
of List-S-Hom(Ĥ) with all lists L(v) = V (H), therefore if S-Hom(Ĥ) is NP-complete,
then so is List-S-Hom(Ĥ). Moreover, if Ĥ ′ is an induced subgraph of Ĥ, then any in-
stance of List-S-Hom(Ĥ ′) can be viewed as an instance of List-S-Hom(Ĥ) (with the same
lists), therefore if the problem List-S-Hom(Ĥ ′) is NP-complete, then so is the problem
List-S-Hom(Ĥ). This yields the NP-completeness of List-S-Hom(Ĥ) for all signed graphs
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Ĥ that contain an induced subgraph Ĥ ′ whose s-core has more than two edges. Furthermore,
when the signed graph (H,π) is balanced, then we may assume π is positive on all edges, and
therefore if the list homomorphism problem for H is NP-complete, then so is the problem
List-S-Hom(H,π). In particular, this means that List-S-Hom(H,π) is NP-complete if
(H,π) is a balanced signed graph and H is not a bi-arc graph [9].

We have observed that List-S-Hom(Ĥ) is NP-complete if the s-core of Ĥ has more
than two edges. Thus we will focus on signed graphs Ĥ whose s-cores have at most two
edges. There are, however, many complex signed graphs with this property, including, for
example, all irreflexive bipartite signed graphs that contain a bicoloured edge, and all signed
graphs that contain a bicoloured loop. In this paper we focus on List-S-Hom(Ĥ) when the
underlying graph of Ĥ is a reflexive or irreflexive tree. We also study an additional class of
irreflexive bipartite signed graphs Ĥ in which the unicoloured edges span a Hamiltonian path.
We classify the complexity of these graphs; the classification turns out to be surprisingly
complex.

We now introduce our basic tool for proving NP-completeness.

I Definition 6. Let (U,D) be two walks in Ĥ of equal length, say k, with vertices u =
u0, u1, . . . , uk = v and D, with vertices u = d0, d1, . . . , dk = v. We say that (U,D) is a chain,
provided uu1, dk−1v are unicoloured edges and ud1, uk−1v are bicoloured edges, and for each i,
1 ≤ i ≤ k − 2, we have
1. both uiui+1 and didi+1 are edges of Ĥ while diui+1 is not an edge of Ĥ, or
2. both uiui+1 and didi+1 are bicoloured edges of Ĥ while diui+1 is not a bicoloured edge

of Ĥ.

I Theorem 7. If a signed graph Ĥ contains a chain, then List-S-Hom(Ĥ) is NP-complete.

5 Irreflexive trees

In this section, Ĥ will always be an irreflexive tree. As trees do not have any cycles, they
are balanced, and hence we may assume that all edges are either blue or bicoloured.

I Lemma 8. Let Ĥ be an irreflexive tree. If the underlying graph H contains the graph F1
in Figure 1, or Ĥ contains one of the signed graphs in family F from Figure 3 as an induced
subgraph, then List-S-Hom(Ĥ) is NP-complete.

Proof. If the underlying graph H contains the graph F1 in Figure 1, then H is not a bi-arc
graph by [9], whence List-S-Hom(Ĥ) is NP-complete by the remarks following Theorem 5.
If Ĥ contains one of the signed graphs in family F as an induced subgraph, then in each
case we apply Theorem 7. The figure lists a chain for each of these forbidden subgraphs. J

An irreflexive tree H is a 2-caterpillar if it contains a path P = v1v2 . . . vk, such that
each vertex of H is either on P , or is a child of P , i.e., is adjacent to a vertex on P , or is a
grandchild of P , i.e., is adjacent to a child of P . We also say that H is a 2-caterpillar with

Figure 1 The subgraph F1. Figure 2 An example of a good 2-caterpillar.

MFCS 2020



20:8 List Homomorphism Problems for Signed Graphs

blue path

bicolored path

a)

b)

c)

d)

1 2 3 k − 1 k

1

1

1

2

2

2

3

3

3

k − 1k − 2 k4

4 5 6 7

8

9

8

4 5 6 7

e)
1 2 3

8

4 5 6 7

9

U = 2− 3− . . .− k − (k − 1)
D = 2− 1− 2− . . .− (k − 1)

U = 3− 2− 1− 2− . . . . . . . . . . . . . . .− (k − 2)
D = 3− . . .− (k − 1)− k − (k − 1)− (k − 2)

U = 4− 8− 9− 8− 4− 5− 6− 7− 6− 5− 4
D = 4− 3− 2− 1− 2− 3− 4− 8− 9− 8− 4

U = 4− 3− 2− 1− 2− 3− 4− 8− 4
D = 4− 8− 4− 5− 6− 7− 6− 5− 4

U = 8− 4− 5− 6− 7− 6− 5− 4− 8− 9− 8
D = 8− 9− 8− 4− 3− 2− 1− 2− 3− 4− 8

Figure 3 The family F of signed graphs yielding NP-complete problems, and a chain in each.

respect to the spine P . (Note that the same tree H can be a 2-caterpillar with respect to
different spines P .) In such a situation, let T1, T2, . . . , T` be the connected components of
H \ P . Each Ti is a star adjacent to a unique vertex vj on P . The tree Ti together with
the edge joining it to vj is called a rooted subtree of H (with respect to the spine P ), and is
considered to be rooted at vj . Note that there can be several rooted subtrees with the same
root vertex vj on the spine, but each rooted subtree at vj contains a unique child of P (and
possibly no grandchildren, or possibly several grandchildren).

If H is a 2-caterpillar with respect to the spine P , and additionally the bicoloured edges
of Ĥ form a connected subgraph, and there exists an integer d, with 1 ≤ d ≤ k, such that:

all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path vdvd+1 . . . vk

are blue,
the edges of all subtrees rooted at v1, v2, . . . , vd−1 are bicoloured, except possibly edges
incident to leaves, and
the edges of all subtrees rooted at vd+1, . . . , vk are all blue,

then we call Ĥ a good 2-caterpillar with respect to P = v1v2 . . . vk.
The vertex vd is called the dividing vertex of Ĥ. Note that the subtrees rooted at vd

are not limited by any condition except the connectivity of the subgraph formed by the
bicoloured edges. A typical example of a good 2-caterpillar is depicted in Figure 2.

I Theorem 9. Let Ĥ be an irreflexive tree. If Ĥ is a good 2-caterpillar, then List-S-Hom(Ĥ)
is polynomial-time solvable. Otherwise, H contains a copy of F1, or Ĥ contains one of the
signed graphs in family F as an induced subgraph, and the problem is NP-complete.

6 Reflexive trees

We now turn to reflexive trees, and hence in this section, Ĥ will always be a reflexive tree.
We may have red, blue, or bicoloured loops, but we will assume that all non-loop unicoloured
edges are of the same colour (blue or red).
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I Lemma 10. Let Ĥ be a reflexive tree. If the underlying graph H contains the graph F2
in Figure 4, or Ĥ contains one of the signed graphs in family G depicted in Figure 6 as an
induced subgraph, then List-S-Hom(Ĥ) is NP-complete.

Deciding if there exists a list homomorphism (of unsigned graphs) to the graph F2 is
NP-complete [8]. A direct reduction of List-Hom(F2) to List-S-Hom(Ĥ) as in the proof
of Lemma 8 is complicated by the fact that the loops in Ĥ can be red, blue, or bicoloured.
However, the proof from [8] can itself be adapted to our setting; we skip the details.

A reflexive tree H is a caterpillar if it contains a path P = v1 . . . vk such that each vertex
of H is on P or is adjacent to P . Note that the path P , which we again call the spine of
H, is not unique, and we sometimes make it explicit by saying that H is a caterpillar with
spine P . A vertex x not on P is adjacent to a unique neighbour vi on P , and we call the
edge vix (with the loop at x) the subtree rooted at vi. A vertex on the spine can have more
than one subtree rooted at it. We say that Ĥ is a good caterpillar with respect to the spine
v1 . . . vk if the bicoloured edges of Ĥ form a connected subgraph, the unicoloured non-loop
edges all have the same colour c, and there exists an integer d, with 1 ≤ d ≤ k, such that

all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path vdvd+1 . . . vk

are unicoloured with colour c,
all loops at the vertices v1, . . . , vd−1 and all non-loop edges of the subtrees rooted at these
vertices are bicoloured,
all loops at the vertices vd+1, . . . , vk and all edges and loops of the subtrees rooted at
these vertices are unicoloured with colour c,
if vd has a bicoloured loop, then all children of vd with bicoloured loops are adjacent to
vd by bicoloured edges,
if vd has a unicoloured loop of colour c, then all children of vd have unicoloured loops of
colour c, and are adjacent to vd by unicoloured edges, and
if d < k, then the loops of all children of vd adjacent to vd by unicoloured edges also have
colour c.

The vertex vd will again be called the dividing vertex. We also say that Ĥ is a good caterpillar
with preferred colour c. Figure 5 shows an example of good caterpillar with preferred colour
blue. We emphasize that in the case d = k (not depicted), it is possible (if vd has a bicoloured
loop) that vd has some children with red loops and some with blue loops, adjacent to vd by
unicoloured edges.

Let G be the family of signed graphs depicted in Figure 6, together with the family of
complementary signed graphs where all unicoloured edges are red, rather than blue, and
vice versa. Note that the complementary signed graphs are not switching equivalent to the
original signed graphs because switching does not change the colour of loops.

I Theorem 11. Let Ĥ be a reflexive tree. If Ĥ is a good caterpillar, then the problem
List-S-Hom(Ĥ) is polynomial-time solvable. Otherwise, H contains F2 from Figure 4, or
Ĥ contains one of the signed graphs in family G as an induced subgraph, and the problem is
NP-complete.

Figure 4 The subgraph F2.
Figure 5 An example of a good caterpillar with preferred

colour blue.
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Figure 6 A family G of signed graphs yielding NP-complete problems. (The solid edges/loops
are blue, the dashed edges/loops are red. The dotted loops can be either blue, red or bicoloured.)

We prove the first statement. Thus assume that Ĥ is a good caterpillar, with spine
v1 . . . vk and dividing vertex vd. By symmetry, we may assume it is a good caterpillar with
preferred colour blue. We distinguish three types of rooted subtrees.

Type T1: a bicoloured edge vix with a bicoloured loop on x;
Type T2: a bicoloured edge vix with a unicoloured loop on x;
Type T3: a blue edge vix with a unicoloured loop on x.

A min ordering of a graph H is a linear ordering < of the vertices of H, such that for
vertices x < x′, y < y′, if xy′, x′y are both edges in H, then xy is also an edge in H. If a
graph H admits a min ordering, then the list homomorphism problem for H can be solved in
polynomial time by applying the arc consistency test, which repeatedly visits edges xy and
removes from L(x) any vertex of H not adjacent to some vertex of L(y), and similarly removes
from L(y) any vertex of H not adjacent to some vertex of L(x). After the arc consistency
test, if there is an empty list, no list homomorphism exists, and if all lists are non-empty,
choosing the minimum element of each list, according to <, defines a list homomorphism as
required [10]. Now suppose Ĥ is a good caterpillar with spine v1 . . . vk and preferred colour
blue. A special min ordering of Ĥ is a min ordering of the underlying graph H such that for
any vertices vi, x, x

′ with non-loop edges vix, vix
′ we have x < x′ whenever (i) the edge vix

is bicoloured and the edge vix
′ is blue, or (ii) x has a bicoloured loop and x′ a unicoloured

loop, or (iii) x has a blue loop and x′ has a red loop. It is not hard to see that a good
caterpillar has a special min ordering.

We now describe our polynomial-time algorithm. We first perform the arc consistency test
to check for the existence of a homomorphism of the underlying graphs (G to H), using the
special min ordering <. Then we also perform the arc consistency test using the bicoloured
edges. (Visit bicoloured edges xy of G, remove from L(x) any vertex without a bicoloured
edge to some vertex of L(y), and similarly for L(y).) If we get an empty list, there is no list
homomorphism. Otherwise, taking again the minima of all lists defines a list homomorphism
f : G→ H of the underlying graphs, which now also ensures that f maps bicoloured edges
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of Ĝ to bicoloured edges of Ĥ. Therefore, by Lemma 2 and the remarks following it, f is
also a list homomorphism of signed graphs Ĝ→ Ĥ, unless a negative cycle C of unicoloured
edges of Ĝ maps to a positive closed walk f(C) of unicoloured edges in Ĥ, or a positive
cycle C of unicoloured edges of Ĝ maps to a negative closed walk f(C) of unicoloured edges
in Ĥ. The minimum choices in all lists imply that no vertex x of C can be mapped to an
image y with y < f(x). We proceed to modify the images of such cycles C one by one, in
the order of increasing smallest vertex in f(C) (in the ordering <), until we either obtain a
homomorphism of the signed graphs, or we find that no such homomorphism exists.

Let w be the leaf of the last subtree of type T2 rooted at vd. We note that if d < k, then
all edges and loops amongst the vertices that follow w in < are blue, by the properties of a
special min ordering. We distinguish three possible cases.

At least one vertex y of f(C) satisfies y ≤ w:
The only unicoloured closed walks including y are (red or blue) loops, so f maps the
entire cycle C to y. We may remove y from all lists of vertices of C and continue seeking
a better homomorphism of the underlying graphs (G to H).
All vertices of f(C) follow w in the order < and d < k:
In this case C is a negative cycle of unicoloured edges. The subgraph of Ĥ induced by
vertices after w in the order < has only blue edges. Thus there is no homomorphism of
signed graphs mapping Ĝ→ Ĥ.
All vertices of f(C) follow w in the order < and d = k:
In this case a fairly complex situation may arise because f(C) can be a closed walk using
both red and blue loops, along with blue edges; see below.

We now consider the final case in detail. Since f chooses minimum possible values of images
(under <), we could only modify f by mapping some vertices of C that were taken by f to a
vertex with a blue loop, to vertex with a red loop instead, if lists allow it. We show how
to reduce this problem to solving a system of linear equations modulo two, which can then
be solved in polynomial time by (say) Gaussian elimination. We begin by considering the
pre-image (under f) of all vertices in the subtrees of type T3 rooted at vd. We denote by P
the set of vertices v ∈ V (G) with f(v) equal to a vertex with a blue loop and by N the set
of vertices v ∈ V (G) with f(v) equal to a vertex with a red loop. We say that a vertex x of
G is a boundary point if f(x) = vd. The set of boundary points is denoted by B. Thus the
pre-image of the subtrees of type T3 rooted at vd is the disjoint union B ∪ P ∪N . We now
focus on the subgraph Ĝ′ of Ĝ induced by B ∪ P ∪N . A region is a connected component of
Ĝ′ \ B together with all its boundary points, i.e. between any pair of vertices in a region
there is a path with no boundary point as an internal vertex.

Given a region r and boundary points x and y (not necessarily distinct), we construct
(possibly several) boolean equations on the corresponding variables, using the same symbols
x, y, and r. The variables x, y indicate whether or not the corresponding boundary vertices
x and y should be switched before mapping them with f (true corresponds to switching),
and the variable r indicates whether the region r will be mapped by f to a blue loop or a
red loop (true corresponds to a blue loop). The equations depend of the parity and the sign
of walks between the two vertices. If c and d denote parities (even or odd), we say a walk W
from x to y in Ĝ′ is a (c, d)-walk if it contains no boundary points other than x and y, the
parity of the number of blue edges in W is c, and the parity of the number of red edges in W
is d. The equations generated by the (c, d)-walks are as follows. (We indicate the reasoning
only in the first case; the other cases are similar.)

(odd,odd)-walk: We add the equation x = y + 1. This ensures that exactly one of the
boundary vertices has to be switched, in particular x and y must be distinct. The image
of the walk must be balanced or anti-balanced (as the whole walk maps to exactly one
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subtree of type T3). An even length walk with an odd number of red edges is neither.
However, if we switch at exactly one of the endpoints, we can freely map all of the
non-boundary points to a blue loop or a red loop.
(even,even)-walk: We add the equation x = y.
(odd,even)-walk: We add the equation x = y + r + 1.
(even,odd)-walk: We add the equation x = y + r.

It is possible that there are several kinds of walks between the same x, y, but we only need
to list one of each kind, so the number of equations is polynomial in the size of G. A
simple labelling procedure can be used for determining which kinds of walks exist, for given
boundary points x and y and a region r. We start at the vertex x, and label its neighbours
nx by the appropriate pairs (c, d), determined by the signs of the edges xnx. Once a vertex
is labelled by a pair (c, d), we correspondingly label its neighbours; a vertex is only given
a label (c, d) once even if it is reached with that label several times. Thus a vertex has at
most four labels. Any time a vertex receives a new label its neighbours are checked again.
The process ends in polynomial time (in the size of the region) as each edge of the region is
traversed at most four times. The result is inherent in the labels obtained by y.

Finally, for each region we examine the connected component of the non-boundary vertices.
Since the arc consistency procedure was done in the first step of the algorithm, all lists of
non-boundary points for a given region are the same. Also, by the ordering <, these lists
must only contain leaves of vd. Thus, the non-boundary vertices of the region must map to a
single loop. We ensure the choice of the loop is consistent with the lists of each region. If
the lists of vertices of some region do not contain a vertex with a red loop, then we add the
equation r = 1 for the region. Similarly, if the lists do not contain a blue loop, then we add
the equation r = 0.

Such a system of boolean linear equations can be solved in polynomial time. Also, the
system itself is of polynomial size measured by the size of Ĝ. This completes the proof.

7 Conclusions and future directions

It follows from the dichotomy of constraint satisfaction problems ([7, 25]) that each signed
graph Ĥ yields a problem List-S-Hom(Ĥ) that is polynomial-time solvable or NP-complete.
We have given explicit graph theoretic dichotomy classifications in the case when Ĥ is a
reflexive or irreflexive tree. The case of general trees (where some vertices have loops and
others don’t) is a bit more technical, and we will return to it in a journal version of this
paper. There we will also illustrate other cases of the classification; even in the irreflexive
case the situation is complex, and the tools that we developed here are helpful. In particular,
we focus there on graphs in which the unicoloured edges form simple structures, such as
spanning cycles, paths, or trees. For an illustration, we state here the results in the case of
paths. In this case we may again assume all unicoloured edges are blue.

We say that an irreflexive signed graph Ĥ is path-separable if the unicoloured edges of Ĥ
form a Hamiltonian path P in the underlying graph H. In other words, all the edges of the
Hamiltonian path P are unicoloured, and all the other edges of Ĥ are bicoloured. Recall
that the distinction between unicoloured and bicoloured edges is independent of switching,
and the Hamiltonian path P = v1v2 . . . vn is unique, if it exists. A block in a path-separable
signed graph Ĥ is a subpath vivi+1vi+2vi+3 of P , with the bicoloured edge vivi+3. A segment
in Ĥ is a maximal subpath vivi+1 . . . vi+2j+1 of P with j ≥ 1, which has all bicoloured edges
vi+evi+e+o where e is even, 0 ≤ e ≤ 2j − 2, and o is odd, 3 ≤ o ≤ 2j + 1 − e. (Such a
subpath is maximal if no such subpath properly contains it.) Note that a segment can be
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Figure 7 An example of a segmented signed graph of the third kind. The additional bicoloured
edges from all white vertices before v12 to all black vertices after v15 are not shown.

just one block. We say that segments vivi+1 . . . vi+2j+1 and vi′vi′+1 . . . vi′+2j′+1 with i < i′

avoid each other if i′ ≥ i+ 2j + 1. We say that a segment vivi+1 . . . vi+2j+1 is right-leaning if
vi+evi+e+o is a bicoloured edge for all e is even, 0 ≤ e ≤ 2j−2, and all odd o ≥ 3; and we say
it is left-leaning if vi+2j+1−evi+2j+1−e−o is a bicoloured edge for all e even, 0 ≤ e ≤ 2j − 2
and all odd o ≥ 3. We say that a path-separable signed graph Ĥ is segmented if all segments
avoid each other, and one of the following three cases occurs:
1. all segments are left-leaning, or
2. all segments are right-leaning, or
3. a unique segment vivi+1 . . . vi+2j+1 is both left-leaning and right-leaning, all segments

preceding it are left-leaning, all segments following it are right-leaning, and there are
additional bicoloured edges vi−evi+2j+o with even e ≥ 2 and odd o ≥ 3.

See Figure 7: there are three segments, the left-leaning segment v5v6v7v8v9v10, the left- and
right-leaning segment v12v13v14v15, and the right-leaning segment v15v16v17v18v19v20.

I Theorem 12. Let Ĥ be a path-separable signed graph. Then List-S-Hom(Ĥ) is polynomial-
time solvable if Ĥ is switching equivalent to a segmented signed graph Ĥ. Otherwise, the
problem is NP-complete.
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