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Abstract
Span programs are an important model of quantum computation due to their correspondence with
quantum query and space complexity. While the query complexity of quantum algorithms obtained
from span programs is well-understood, it is not generally clear how to implement certain query-
independent operations in a time-efficient manner. In this work, we prove an analogous connection for
quantum time complexity. In particular, we show how to convert a sufficiently-structured quantum
algorithm for f with time complexity T into a span program for f such that it compiles back into a
quantum algorithm for f with time complexity Õ(T ). This shows that for span programs derived
from algorithms with a time-efficient implementation, we can preserve the time efficiency when
implementing the span program, which means that span programs capture time, query and space
complexities and are a complete model of quantum algorithms.

One practical advantage of being able to convert quantum algorithms to span programs in a way
that preserves time complexity is that span programs compose very nicely. We demonstrate this by
improving Ambainis’s variable-time quantum search result using our construction through a span
program composition for the OR function.
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1 Introduction

Span programs are a model of computation first introduced in the context of classical
complexity theory [15], and later introduced to the study of quantum algorithms by Reichardt
and Špalek [18]. This connection to quantum algorithms proved to be particularly important
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26:2 Span Programs and Quantum Time Complexity

when Reichardt showed that span programs are equivalent to dual solutions to the adversary
bound, proving that the adversary bound is a tight lower bound on quantum query complexity,
and span program complexity is a tight upper bound [17]. In particular, this means that for
any decision problem, it is possible to design a query-optimal quantum algorithm using the
span program framework, although finding such an algorithm is generally hard in practice.
Later work connecting quantum space complexity to span programs enriched this connection
further, showing that span program algorithms can also have optimal space complexity [13],
although again, there is no prescriptive recipe for finding such algorithms.

While finding optimal span programs is difficult in general, span programs have been used
to design quantum algorithms for a variety of problems, including st-connectivity [7], cycle
detection and bipartiteness testing [3, 9], subgraph detection [6, 16], maximum bipartite
matching [4], graph connectivity [12], k-distinctness [5], and formula evaluation [18, 17, 14],
some of which have optimal query complexity. Given a span program P that decides a
function f and has complexity C(P ), there is a generic transformation that compiles the
span program into a quantum query algorithm with query complexity O(C(P )).

The resulting algorithm does phase estimation to precision C(P )−1 on a certain unitary
U associated with the span program (for details, see Section 3). While it is clear that this
unitary can be implemented using O(1) quantum queries to the input, it is not at all clear
how to efficiently implement the query-independent parts of U . There has been some success
in designing time-efficient span program algorithms for certain graph problems [7], but for
other algorithms, perhaps most notably the span program algorithm for k-distinctness [5],
no time-efficient implementation is known. This difficulty in analyzing the time complexity
of span program algorithms represents a major drawback to the framework.

In this work, we make progress in understanding the relationship between span programs
and quantum time complexity. We provide an explicit construction that turns any quantum
algorithm that has sufficient structure (i.e., that allows for the construction of an efficient
uniform access oracle) into a span program that compiles back to a quantum algorithm with
essentially the same query, time and space complexity. This means that the span program
framework is capable of producing time-efficient, well-structured quantum algorithms. The
main result is stated in Theorem 9. We also exemplify how one might use our construction
by improving Ambainis’s variable time search result, in Theorem 13.

2 Preliminaries

2.1 Quantum query algorithms
Let n ∈ N, X ⊆ {0, 1}n and f : X → {0, 1} be a (partial) Boolean function. We study
quantum algorithms that compute (or decide) the value of f(x) given quantum query access
to individual bits of the input x ∈ X.

Let A be a quantum algorithm that acts on a state space C[n]×W , where [n] := {1, . . . , n}
and W is a finite set that labels the workspace states. We denote the initial state of A by
|Ψ0〉 ∈ C[n]×W and the unitary transformations that A applies at respective time steps by
U1, . . . , UT ∈ U(C[n]×W), where T ∈ N is the total number of time steps and the unitary
tranformations are either oracle queries or efficiently implementable unitaries.

The algorithm A makes queries to an input string x ∈ {0, 1}n by having a subset of the
unitaries be (controlled) calls to an oracle Ox ∈ U(C[n]×W) defined as

∀i ∈ [n],∀j ∈ W, Ox : |i, j〉 7→ (−1)xi |i, j〉, (1)

where the two registers correspond to the input bit index and the workspace, respectively.
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We denote by Q ⊂ [T ] the set that contains all t ∈ Q, such that Ut = Ox. Then Q = |Q| is
the query complexity of A. We assume that U1 and UT are not queries.

For every x ∈ {0, 1}n we define the state of the algorithm at time t ∈ [T ]0 := {0, . . . , T}
on input x as

|Ψt(x)〉 := UtUt−1 · · ·U1|Ψ0〉, (2)

where the initial state |Ψ0〉 ∈ C[n]×W is a computational basis state. Note that the right-hand
side of Equation (2) has an implicit dependence on x since Ut = Ox for some t.

We can assume that there is a single-qubit answer register used to indicate the output of
the computation. If Πb denotes the orthogonal projector onto states with |b〉 in the answer
register, for b ∈ {0, 1}, then pb(x) := ‖Πb|ΨT (x)〉‖2 is the probability that the algorithm
outputs b on input x. We say that A computes a function f : X → {0, 1} with error
probability ε ∈ [0, 1/2) if p1−f(x)(x) ≤ ε for all x ∈ X.

We require all quantum query algorithms to have additional structure, which can be
assumed without loss of generality (see [10]). We call such algorithms clean.

I Definition 1 (Clean quantum algorithm). Let A be a quantum query algorithm acting on
C[n]×W = C[n]×W′×{0,1} with the last register being the answer register. Suppose that the
time complexity of A is T , the query complexity is Q, and the initial state has |0〉 in the
answer register, so it can be expressed as |Ψ0〉 = |ψ0〉|0〉 for some |ψ0〉 ∈ C[n]×W′ . Define the
final accepting state as |ΨT 〉 := |ψ0〉|1〉. A is a clean quantum algorithm if it satisfies the
following properties.
1. Consistency: For all inputs x ∈ {0, 1}n, 〈ΨT |ΨT (x)〉 = p1(x) and 〈ΨT |(I ⊗X)|ΨT (x)〉 =

p0(x), where pb(x) = ‖(I ⊗ |b〉〈b|)|ΨT (x)〉‖2 is the probability that A outputs b on input
x, and X denotes the Pauli matrix implementing the logical NOT.

2. Commutation: (I ⊗X) commutes with every unitary Ut of the algorithm, where X acts
on the answer register.

3. Query-uniformity: Two consecutive queries are not more than b3T/Qc time steps apart,
and the first and last queries are separated by at most b3T/Qc time steps from the start
and the end of the algorithm, respectively.

2.2 Accessing an algorithm as input

Throughout the rest of the paper, we will consider algorithms that, among other things, take
other algorithms as input. This section concerns how we model this through several oracles.
The model is essentially a generalization of the one used in [2].

Let m ∈ N and let A = {A(1), . . . ,A(m)} be a set of quantum query algorithms. For every
k ∈ [m], let T (k) be the time complexity of A(k), let Q(k) ⊆ [T (k)] be the set of time steps
at which A(k) performs queries to the input, let U (k)

1 , . . . , U
(k)
T (k) be the sequence of unitaries

in A(k), and suppose that A(k) evaluates a function fk : X(k) ⊆ {0, 1}n(k) → {0, 1} with
bounded error. For convenience we define Tmax = maxk∈[m] T

(k) and nmax = maxk∈[m] n
(k),

and we assume that all unitaries U (k)
t act on some common space C[nmax]×W , where the first

register is large enough to hold the input bit label for any of the Boolean functions fk.
We define three different oracles associated with A. First, the algorithm oracle, sometimes

referred to as “select” [8], acts on C[m]×[Tmax]×[nmax]×W as

OA : |k〉|t〉|ψ〉 7→ |k〉|t〉U (k)
t |ψ〉, ∀k ∈ [m], t ∈ [T (k)] \ Q(k), |ψ〉 ∈ C[nmax]×W .

MFCS 2020



26:4 Span Programs and Quantum Time Complexity

Second, the query time step oracle, which allows us to determine whether a given algorithm
A(k) performs a query at a given time step t, acts on C[m]×[Tmax] as

∀k ∈ [m], t ∈ [T (k)], OQ : |k〉|t〉 7→
{
−|k〉|t〉, if t ∈ Q(k),

|k〉|t〉, otherwise.

Finally, given a list of inputs x = (x(1), . . . , x(m)), where x(k) ∈ {0, 1}n(k) is the input to
function fk, the input oracle to x acts on C[m]×[nmax] as

∀k ∈ [m], Ox =
m∑

k=1
|k〉〈k|⊗Ox(k) , where ∀i ∈ [nk], Ox(k) : |i〉 7→ (−1)x

(k)
i |i〉.

On other states, the behavior of the three oracles can be arbitrary.
We say that we have uniform access to a set of algorithms A if we have access to the three

oracles OA, OQ and Ox defined above. Moreover, if the time complexity of implementing
the oracles OA and OQ is polylogarithmic in Tmax = maxk∈[m] T

(k) and m, then we say that
we have efficient uniform access to A.

These oracles fully capture the set A and provide an interface for the higher-level
algorithms to execute the algorithms in A as subroutines. For very unstructured algorithms,
the implementation cost of the oracles would be large and one would need to have the
algorithms stored in QRAM or have access to them as quantum random access stored-program
machines [19]. However, quantum query algorithms that we encounter in practice can usually
be described very succinctly, meaning that efficient uniform access to the oracles OA and
OQ is possible. To illustrate this, observe that if we measure the implementation cost of
these oracles in terms of the number of gates, then the implementation of the uniform access
oracles OA and OQ cost only O(poly(n)) gates, even though it costs O(n

√
2n) gates to

implement Grover’s algorithm that evaluates the function OR : {0, 1}2n → {0, 1}. See [10]
for more details.

2.3 Span programs
Following [11], we define a span program for evaluating a Boolean function as follows.

I Definition 2 (Span program). A span program P = (H,V, A, |τ〉) on {0, 1}n consists of
1. a finite-dimensional Hilbert space H that decomposes as H = H1⊕· · ·⊕Hn⊕Htrue⊕Hfalse

where each Hi, i ∈ [n], decomposes further as Hi = Hi,0 ⊕Hi,1,
2. a finite-dimensional Hilbert space V,
3. a linear operator A : H → V, and
4. a target vector |τ〉 ∈ V.

With each string x ∈ {0, 1}n, we associate the subspaceH(x) = H1,x1⊕· · ·⊕Hn,xn⊕Htrue.
For any subspace H′ ⊆ H, we write ΠH′ to denote the projector onto H′ ⊆ H.

Intuitively, a span program encodes the decision problem “Is |τ〉 ∈ AH(x)?”. To answer
this question in the affirmative, it is sufficient to provide a preimage of |τ〉 under A in H(x),
called a positive witness. In the negative case, one would like to find an object, called a
negative witness, that precludes the existence of such a positive witness.

I Definition 3 (Positive and negative witnesses). Fix a span program P = (H,V, A, |τ〉) and
an input x ∈ {0, 1}n. We call a vector |w〉 ∈ H a positive witness for x if |w〉 ∈ H(x), and
A|w〉 = |τ〉. The positive witness size of x is

w+(x, P ) = w+(x) := min
|w〉∈H(x)

{‖|w〉‖2 : A|w〉 = |τ〉},
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if there exists a positive witness for x, and w+(x) =∞ otherwise. We say that |ω〉 ∈ V is a
negative witness for x if 〈ω|AΠH(x) = 0 and 〈ω|τ〉 = 1. The negative witness size of x is

w−(x, P ) = w−(x) := min
|ω〉∈V

{‖〈ω|A‖2 : 〈ω|AΠH(x) = 0, 〈ω|τ〉 = 1},

if there exists a negative witness, and w−(x) =∞ otherwise. We define the set of positive
and negative inputs of P , respectively, as

P1 := {x ∈ X : w+(x) <∞}, P0 := {x ∈ X : w−(x) <∞}.

One can think of a span program as a puzzle in which several pieces are supplied (the
space H(x)) together with assembly instructions (the map A) and a contour of a shape to be
constructed (the target vector |τ〉). The larger the number of pieces required to construct the
target, the harder it is to solve the puzzle. Alternatively, the larger the number of missing
pieces required to declare the problem unsolvable, the harder it is to do so. This justifies the
notion that larger witness sizes are indicative of harder span programs.

I Definition 4 (Span program complexity). Let P be a span program, f : X ⊆ {0, 1}n → {0, 1}
a Boolean function, and λ ∈ [0, 1). The positive and approximate negative complexity of P
(w.r.t. f) are, respectively,

W+(f, P ) = W+(P ) := max
x∈f−1(1)

w+(x, P ), W̃−(f, P ) = W̃−(P ) := max
x∈f−1(0)

w̃−(x, P ),

where w̃−(x, P ) is the following minimization over all approximate negative witnesses
|ω̃〉 ∈ V:

w̃−(x, P ) := min
|ω̃〉∈V

{
‖〈ω̃|A‖2 : 〈ω̃|τ〉 = 1,

∥∥〈ω̃|AΠH(x)
∥∥2 ≤ λ/W+(f, P )

}
.

We say that P positively λ-approximates f if f−1(1) ⊆ P1 and w̃−(x, P ) < ∞ for all
x ∈ f−1(0). The complexity of P with respect to f is

C(P ) :=
√
W+(f, P )W̃−(f, P ),

We say that P decides f exactly if it 0-approximates f .

3 The time complexity of implementing a span program

Span programs by themselves are not quantum objects. Nevertheless, the elements that
define a span program can be combined to form a quantum algorithm. In this section,
we describe such an algorithm and consider its implementation and time complexity in a
general setting. We express its time complexity in terms of the time complexities of several
subroutines derived from the span program. We do not show how to implement these in
general – such details will depend on the specific construction of the span program.

3.1 The span program algorithm
Let P be a span program that positively λ-approximates f . We call |w0〉 = A+|τ〉 the
minimal positive witness of P , where A+ is the Moore-Penrose pseudoinverse of A. Suppose
that P is normalized, i.e., ‖|w0〉‖ = 1, and that W+(P ) ≤ 2. The span program unitary of P
on input x ∈ {0, 1}n is

U = U(P, x) = (2ΠH(x) − I)
(

2
(
Πker A + |w0〉〈w0|

)
− I
)
. (3)

MFCS 2020
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The span program algorithm of [11] works by doing phase estimation of U on the initial state
|w0〉 to precision Θ and error probability at most ε, and then estimating the amplitude of
this process on a 0 in the phase register using precision Θ′ where

Θ = Ω
(√

1− λ
W̃−(P )

)
, ε = Ω (1− λ) , and Θ′ = Ω (1− λ) .

This algorithm requires constructing the state |w0〉, and then making O( 1
Θ′

1
Θ log 1

ε ) controlled
calls to U . Note that

1
Θ′

1
Θ log 1

ε
= O


√
W̃−(P )

(1− λ)3/2 log 1
1− λ

 ,

where the big-O-notation corresponds to λ ↑ 1 and W̃−(P ) → ∞. For a more detailed
description of this algorithm, see [11].

In [10], we show that if P is not normalized or does not satisfy W+(P ) ≤ 2, then we
can turn it into a normalized span program P ′ that 2λ-approximates f with W+(P ′) ≤ 2
and W̃−(P ′) ≤W+(P )W−(P ). The resulting number of calls to the span program unitary
U(P ′, x) is then

O


√
W+(P )W̃−(P )
(1− 2λ)3/2 log 1

1− 2λ

 , (4)

where the big-O-notation corresponds to λ ↑ 1/2 and W+(P ), W̃−(P )→∞. We refer to this
algorithm as the algorithm compiled from P , or the span program algorithm for P .

3.2 Time complexity of the span program algorithm
We now turn our attention to the time complexity of the span program algorithm for P .
We express it in Theorem 6 in terms of the number of calls to certain black-box operations
defined directly from the span program P . In principle, the time complexity of any span
program algorithm can be analyzed using this theorem, and we expect that its relevance is
not restricted to the application we present in subsequent sections.

In our analysis of span program time complexity we introduce a central concept of an
implementing subspace. This subspace depends on the particular input x ∈ {0, 1}n, and it is
often much smaller than the ambient Hilbert space H. Throughout the execution of the span
program algorithm the state vector remains in this subspace, so all operations in the span
program algorithm need only be defined in this subspace to ensure successful computation of
the span program.

I Definition 5 (Implementing subspace). Let λ ∈ [0, 1) and let P = (H,V, A, |τ〉) be a span
program that positively λ-approximates a Boolean function f : X ⊆ {0, 1}n → {0, 1}. Let
x ∈ X and let Hx be a subspace of H such that:
1. Πker(A)Hx ⊆ Hx.
2. ΠH(x)Hx ⊆ Hx.
3. |0〉 ∈ Hx, where |0〉 is the all-zeros computational basis state.
4. |w0〉 ∈ Hx, where |w0〉 = A+|τ〉 is the minimal witness for P .
Then we refer to Hx as an implementing subspace of P for x.
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For example, for any x ∈ X, a valid implementing subspace Hx of P for input x is H
itself. Now, we can state the main result of this section.

I Theorem 6. Fix λ ∈ [0, 1/2). Suppose P = (H,V, A, |τ〉) is a span program that positively
λ-approximates a function f : X ⊆ {0, 1}n → {0, 1}. For all x ∈ X, let Hx be an imple-
menting subspace for P . Suppose that we have access to the following subroutines and their
controlled versions:
1. A subroutine Rker(A) that acts on Hx as 2Πker(A) − I.
2. A subroutine C|w0〉 that leaves Hx invariant and maps |0〉 to |w0〉/ ‖|w0〉‖.
3. A subroutine RH(x) that acts on Hx as 2ΠH(x) − I.
4. A subroutine R|0〉 that acts on Hx as 2|0〉〈0| − I.
Then we can implement the span program algorithm for P using a number of calls to the
previous subroutines that satisfies

O


√
W+(P )W̃−(P )
(1− 2λ)3/2 log 1

1− 2λ

 ,

where the big-O-notation refers to the limit where λ ↑ 1/2 and W+(P ), W̃−(P ) → ∞.
Moreover, the number of extra gates and auxiliary qubits used is O(polylog(C(P ), 1/(1−2λ))).1
Finally, it suffices to merely use upper bounds on W+(P ), W−(P ) and λ, if one substitutes
these upper bounds in the relevant complexities.

The benefit implementing subspaces becomes clear from Theorem 6. If we take Hx = H,
then implementing R|0〉 takes Θ(log dimH) gates, as we must simply check that every qubit
is in the state |0〉. However, for algorithms with large space complexity, such as the element
distinctness algorithm [1], this is very costly, especially if we have to do it many times.
In some cases, as in our main result Theorem 9 in Section 4, we can show that the span
program has an implementing subspace with much smaller dimension, thus circumventing an
undesired log(dimH) overhead in the time complexity of the span program algorithm.

4 From algorithms to span programs

Let A be a clean quantum algorithm that evaluates a function f : X ⊆ {0, 1}n → {0, 1}
with error probability 0 ≤ ε < 1/2, as in Definition 1. Based on this algorithm, one can
construct a span program that approximates the same function and whose complexity is
equal to the query complexity of A, up to a multiplicative constant. This construction was
first introduced by Reichardt [17] in the case where the algorithm has one-sided error, and
extended to the case of bounded (two-sided) error in [13].

Our contribution is to extend this construction so that it not only preserves the query
complexity of A but also the time complexity. Starting with a quantum algorithm A whose
query complexity is Q and time complexity is T , we construct a corresponding span program
PA. If the span program is compiled back to a quantum algorithm, the resulting algorithm
still solves the same problem, its query complexity is Õ(Q) and its time complexity remains
Õ(T ). This requires modifications to the span program construction, but more importantly,
an additional highly non-trivial analysis of the time complexity of the span program algorithm.

1 By f(x, y) = O(polylog(x, y)), we mean that there exist constants C1, C2 > 0 such that f(x, y) =
O(logC1 (x) logC2 (y)), in the limit where x, y →∞.

MFCS 2020
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4.1 The span program of an algorithm
Recall from Section 2.2 that we can assume without loss of generality that there are no two
consecutive queries in the algorithm A, and that the first and last unitaries are not queries.
We label the time steps where the algorithm queries the inputs by

Q = {q1, . . . , qQ} ⊆ [T ], (5)

where T is the total time complexity and Q is the total number of queries. For convenience,
we also define q0 = 0, qQ+1 = T + 1. We denote the `-th block of contiguous non-query time
steps by B` ⊆ [T ], with ` ∈ [Q+ 1]. See Fig. 1 for an overview of this notation.

Time step

Type

Label

0 1 2 3 4 5 6 7 · · ·

· · ·

T−1T−2 T+1T

q0 q1 q2 qQ qQ+1B1 B2 BQ+1

Figure 1 Synopsis of our notation. The cells indexed from 1 to T denote time steps of the
algorithm A where time progresses to the right. The hatched cells denote time steps in which a
query to the input x is performed. In all other time steps t a unitary Ut independent of x is applied.

Recall that W is a finite set that labels the basis of the workspace of A. Let [T ]0 :=
{0, . . . , T}. We define the following objects:

∀i ∈ [n], b ∈ {0, 1}, Hi,b = span{|t, b, i, j〉 : t+ 1 ∈ Q, j ∈ W},
Hfalse = {0}, Htrue = span{|t, 0, i, j〉 : t+ 1 ∈ [T + 1] \ Q, i ∈ [n], j ∈ W}, (6)

|τ〉 = |0〉|Ψ0〉 − |T 〉|ΨT 〉, V = span{|t, i, j〉 : t ∈ [T ]0, i ∈ [n], j ∈ W}.

where |Ψ0〉 is the initial state of A (see Equation (2)) and |ΨT 〉 is the final accepting state
(see Definition 1). As usual, the spaces H(x) and H are defined from these as:

∀x ∈ {0, 1}n, H(x) =
( n⊕

i=1
Hi,xi

)
⊕Htrue ; H =

( ⊕
i∈[n],b∈{0,1}

Hi,b

)
⊕Htrue⊕Hfalse. (7)

For better intuition, we provide a graphical depiction of H, Htrue, H(x) and Hi,b in Fig. 2.
Recall that Q denotes the total number of queries and ε is the error probability of A. Let

a =
√

ε

2Q+ 1 and M = max
`∈[Q+1]

√
|B`|, (8)

where B` ⊆ [T ] is the `-th contiguous block of non-query gates (see Fig. 1). Since any
quantum algorithm can be made clean as in Definition 1, without loss of generality we can
assume that M ≤

√
3T/Q. For all computational basis vectors |t, b, i, j〉 in H, we define the

action of the span program operator A : H → V as follows:

A|t, b, i, j〉 =


a|T, i, j〉 if t = T,

M(|t, i, j〉 − |t+ 1〉Ut+1|i, j〉) if ∃` ∈ [Q+ 1] : t+ 1 ∈ B`,

|t, i, j〉 − (−1)b|t+ 1, i, j〉 if ∃` ∈ [Q] : t+ 1 = q`.

(9)

The unitary Ut+1 is the (t + 1)-th unitary of algorithm A as defined in Section 2.1. The
weights a and M are the main difference between our construction and that of [13], and will
enable the time-efficient implementation of the span program.
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1
2
3
4

1 2 3
j

i

=

H(x)

Figure 2 Graphical depiction of the relevant spaces when T = 8, Q = {2, 5, 7}, n = 4, |W| = 3
and x = 0110. The total space H is a direct sum of all blocks on the left, where the block at position
(t, b) ∈ [T ]0 × {0, 1} denotes the subspace spanned by all computational basis states of the form
|t, b, ·, ·〉. Every block is of one of three types, white, 0 or 1, shown on the right. The subspace
Htrue is the direct sum of all white blocks. Each block further decomposes as a direct sum over
computational basis states |i, j〉, i ∈ [n], j ∈ W. The gray cells of all blocks together span the space
H(x). Finally, for a given i ∈ [n], the subspaces Hi,0 and Hi,1 consist of the i-th row within all 0
and 1 blocks, respectively.

I Definition 7 (Span program of an algorithm). The span program of a quantum algorithm
A is PA = (H,V, A, |τ〉), where H, V, |τ〉, and A are defined in Equations (6), (7) and (9).

This newly-defined span program evaluates the same function as the algorithm A, as
shown by the following lemma.

I Lemma 8. Let A be a clean quantum algorithm for f with error probability 0 ≤ ε < 1/5,
making Q queries, and let PA the span program for A from Definition 7. Then PA positively
5ε-approximates f with complexities W+(PA) ≤ 3(2Q+ 1) = O(Q) and W̃−(PA) = O(Q).

We prove this lemma by finding explicit positive and negative witnesses for different
inputs x ∈ X (see [10]).

4.2 Time complexity of algorithms compiled from span programs of
algorithms

We can now analyze the time complexity of the algorithm compiled from PA. Our main
result is summarized below.

I Theorem 9. Let A be a clean quantum query algorithm that acts on S qubits, has query
complexity Q, time complexity T , and evaluates a function f : X ⊆ {0, 1}n → {0, 1} with
bounded error. Let PA be the span program for this algorithm, as in Definition 7. Then we
can implement the algorithm compiled from PA with:
1. O(Q log(Q)) calls to Ox.
2. O(T log(Q)) calls to OA and OQ, as defined in Section 2.2.
3. O(Tpolylog(T )) additional gates.
4. O(polylog(T ) + So(1)) auxiliary qubits.
If we additionally require that the error probability of A is o(1/Q2), then the log(Q) factors
and the So(1) term can be removed. We can also drop So(1) if we assume that T = S1+Ω(1).

The proof leans on the structure of Theorem 6. This theorem says that every quantum
query algorithm can be converted into a span program and back into a quantum algorithm
while keeping the query and time complexity unaffected up to polylogarithmic factors. This
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implies that span programs fully capture both query, time and space complexity up to
polylogarithmic factors, which establishes an equivalence between quantum algorithms and
span programs, and strengthens the motivation for considering the latter as an important
formalism from which to derive quantum algorithms.

We define a suitable implementing subspace that allows for efficient implementations of
the four subroutines that are required.

I Definition 10 (Implemeting subspace for A). Let x ∈ X and for all t ∈ [T − 1]0, let
|Ψ̃t(x)〉 = U†t+1 · · ·U

†
T |ΨT 〉. Furthermore, let |Ψ̃T (x)〉 = |ΨT 〉. We define two subspaces of H

as follows, where we let t range over {0, . . . , T}:

Hx = span{|t〉|0〉|Ψt(x)〉 : t+ 1 6∈ Q} ⊕ span{|t〉|+〉|Ψt(x)〉, |t〉|−〉|Ψt+1(x)〉 : t+ 1 ∈ Q},

H̃x = span{|t〉|0〉|Ψ̃t(x)〉 : t+ 1 6∈ Q} ⊕ span{|t〉|+〉|Ψ̃t(x)〉, |t〉|−〉|Ψ̃t+1(x)〉 : t+ 1 ∈ Q}.

Next, we let Hx = Hx if f(x) = 1 and Hx = Hx + H̃x if f(x) = 0.

The intuition behind our use of implementing subspaces is that, for a given input x ∈ X,
the state of the algorithm moves through the Hilbert space in a simple, one-dimensional path.
So, given a time step t ∈ [T ]0 and an input x ∈ X, we can deduce what the corresponding
state in algorithm A must be at that time step, and hence we can deduce the state in the
last register of H. The only difficulty arises at the query time steps, where we use the state
before the query when the first two registers are in state |t〉|+〉, and the state after the query
when the first two registers are in state |t〉|−〉.

Note that Hx and H̃x are very close to one another when x is a positive instance. This is
because |ΨT (x)〉 is very close to |ΨT 〉 when f(x) = 1. Hence, in this case it makes sense to
only take one of the spaces as the implementing subspace. On the other hand, if f(x) = 0,
the two spaces Hx and H̃x are almost orthogonal, and hence we take both.

The main benefit of this implementing subspace is that we reduce the cost of reflecting
around the state |0〉|0〉|Ψ0〉 significantly. Such a reflection is in principle very simple because
we can assume that |Ψ0〉 = |0〉⊗ log(n)+log(|W|). However, in general, the time complexity of
this reflection is Θ(log(T ) + log(n) + log(|W|)), since it is necessary to check that every qubit
is in the |0〉 state.2 As |W| can be exponentially large in T , this incurs significant overhead
on the resulting time complexity of the algorithm. Using our implementing subspace, we get
the number of gates down to Θ(log(T )).

5 Application to variable time search

In the previous section, we described a construction that turns a quantum algorithm into
a span program. One advantage of the latter is that span programs compose very nicely
(see [17] for a number of examples). We illustrate this by describing a construction that,
given span programs for n functions {fk : {0, 1}mk → {0, 1}}n

k=1, outputs a span program
for the logical OR of their output: f(x(1), . . . , x(n)) =

∨n
k=1 fk(x(k)). In short, we show that

given query-, time- and space-efficient quantum implementations for each fk, the resulting
algorithm compiled from the OR span program can also be implemented query-, time- and

2 This detail has been neglected in previous work. For example, efficient implementation of such a
reflection is not discussed in [2]. While this is not inconsistent with the stated results, since the result
only claims to count oracle calls to Ox and OA, this is not true of subsequent work that uses the
results of [2]. We suspect that an argument like ours could also be made in previous work, but feel it is
sufficiently non-trivial that it should not be taken for granted.
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space-efficiently. Throughout this section we write fk as functions on {0, 1}mk for the sake
of simplicity, even though the results also hold for partial Boolean functions with arbitrary
domains Xk ⊆ {0, 1}mk .

5.1 The OR of span programs
Fix λ ∈ (0, 1/n). For k ∈ [n], let P (k) = (H(k),V(k), A(k), |τ (k)〉) be a span program on
{0, 1}mk that positively λ-approximates fk : {0, 1}mk → {0, 1}.3 Let W (k)

+ and W (k)
− be some

upper bounds on W+(P (k)) and W̃−(P (k)) respectively, and assume that every x ∈ f−1
k (0)

has an approximate negative witness |ω̃(k)〉 ∈ V(k) with
∥∥〈ω̃(k)|A(k)ΠH(k)(x)

∥∥2 ≤ λ/W (k)
+ and∥∥〈ω̃(k)|A(k)

∥∥2 ≤W (k)
− . Let Ck =

√
W

(k)
+ W

(k)
− .

Assume, by applying an appropriate basis change, that |τ (k)〉 = |0〉 for every k ∈ [n]. For
each k, extend |τ (k)〉 = |0〉 to an orthonormal basis {|0〉, |k, 1〉, . . . , |k, dim(V(k))−1〉} for V(k)

so that, aside from the single overlapping dimension |0〉, the subspaces V(k) are orthogonal to
one another. Let V(k) = span{|k, 1〉, . . . , |k,dim(V(k))− 1〉}, so that V(k) = span{|0〉} ⊕ V(k).

Let f : {0, 1}m1+···+mn → {0, 1} be defined by f(x(1), . . . , x(n)) =
∨n

k=1 fk(x(k)). We can
define a span program P on {0, 1}m1+···+mn that decides f as follows:

∀k ∈ [n], ` ∈ [mk], b ∈ {0, 1}, Hk,`,b = span{|k〉} ⊗ H(k)
`,b , Htrue =

n⊕
k=1
H(k)

true,

Hfalse = span{|0, 0〉}, V = span{|0〉} ⊕
n⊕

k=1
V(k)

, A =
n∑

k=1

√
W

(k)
+ 〈k| ⊗A(k). (10)

Above, we are indexing into an input x ∈ {0, 1}m1+···+mn by using a pair of indices, k ∈ [n]
and ` ∈ [mk], in the obvious way. From this definition of P , we get:

H(x) =
⊕

k∈[n]

span{|k〉} ⊗ H(k)(x(k)), where ∀k ∈ [n],H(k)(x(k)) =
⊕

`∈[mk]

H(k)
`,x

(k)
`

. (11)

IDefinition 11. Let {P (k)}n
k=1 be a set of span programs, where P (k) =(H(k),V(k), A(k),|τ (k)〉).

Then we let P = (H,V, A, |0〉) be the OR span program of these span programs, where H, V
and A are defined in Equation (10).

We prove that the OR span program P indeed evaluates f (see [10] for proof).

I Lemma 12. P positively nλ-approximates f with complexity C(P ) ≤
√∑n

k=1 C
2
k .

5.2 Implementation of the OR span program
We are now in position to state the main theorem of this section.

I Theorem 13 (Variable-time quantum search). Let A = {A(k)}n
k=1 be a finite set of quantum

algorithms, where A(k) acts on Sk ≤ Smax qubits and decides fk : {0, 1}mk → {0, 1} with
bounded error with query complexity Qk and time complexity Tk ≤ Tmax. Suppose that we
have uniform access to the algorithms in A through the oracles OA, OQ and Ox, as elaborated
upon in Section 2.2. Then we can implement a quantum algorithm that decides f =

∨n
k=1 fk

with bounded error, with the following properties:

3 We require λ to be quite small here. One way to achieve this from an arbitrary span program is to
convert it to an algorithm, reduce the error to O(1/n) at the expense of a O(logn) multiplicative factor,
and then convert that back to a span program using the construction in Section 4.1. Furthermore, we
can just as well use partial functions here, but we don’t for notational simplicity.
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1. The number of calls to Ox is O
(√∑n

k=1Q
2
k · log

(∑n
k=1Q

2
k

))
.

2. The number of calls to OA and OQ is O
(√∑n

k=1 T
2
k · log

(∑n
k=1Q

2
k

))
.

3. The number of extra gates is O
(√∑n

k=1 T
2
k · polylog(Tmax, n)

)
.

4. The number of auxiliary qubits is O
(

polylog(Tmax, n) + S
o(1)
max

)
.

If we additionally require that the error probabilities of the A(k)’s are all o(1/
∑n

k=1Q
2
k),

then the log(
∑n

k=1Q
2
k) factors and the So(1)

max term can be dropped. We can also drop the term
S

o(1)
max if Tk = S

1+Ω(1)
k for all k ∈ [n].

The proof of this theorem follows from converting the algorithms A(k) into span programs
using the construction in Section 4, applying Theorem 6 to their OR span program defined
in Definition 11, and subsequently providing sufficiently efficient implementations of RkerA,
C|w0〉, RH(x) and R|0〉. Further details can be found in [10].

A similar result was reached by Ambainis in [2]. Let us discuss how our result compares
to that of Ambainis.

The uniform access model described in Section 2.2 is a slight generalization of the model
considered by Ambainis, as explained in [2, Appendix A]. Unlike Ambainis, we differentiate
between query and non-query time steps in the algorithms A(k). Therefore, Ambainis only
considers the algorithm oracle OA and includes the queries to x as part of this oracle, whereas
we also assume to have explicit access to the oracles OQ and Ox.

One can obtain the same number of calls to Ox or to OA and OQ separately using
Ambainis’s construction. If one counts every query to x in the original algorithms as having
unit cost, then Ambainis’s construction yields an algorithm that evaluates f =

∨n
k=1 fk

with O(
√∑n

k=1Q
2
k) queries to Ox. Similarly, if one assigns a unit cost to every gate in the

original algorithms, then the algorithm that follows from Ambainis’s construction performs
O(
√∑n

k=1 T
2
k ) calls to OA, OQ and Ox. We show that one can attain both desired scalings

in the number of calls to Ox, OQ and OA simultaneously, up to a single logarithmic factor.
Moreover, our construction is also efficient with respect to the time and space complexities,
as we show that we only suffer from polylogarithmic overhead in the number of extra gates
and auxiliary qubits. As our construction goes via a rather simple composition of span
programs, this exemplifies the power of the span program framework.

There are, however, some aspects to Ambainis’s work that we did not reproduce. Ambainis
proved a version of his theorem for the search problem whereas we only consider a decision
version. By a standard reduction from the search version to the decision version, we also
recover the analogous search result, but with an extra factor of log(n) overhead in the query
and time complexities. Ambainis also gives a result for the case where the costs of the
original algorithms are unknown. We leave modifying our approach to reproduce this result
for future research.

From Theorem 13 we easily deduce that if we have efficient uniform access to a set of
algorithms, i.e., the oracles OA and OQ can be implemented in time logarithmic in Tmax
and n, then the algorithm compiled from P has query complexity Õ(

√∑n
k=1Q

2
k) and time

complexity Õ(
√∑n

k=1 T
2
k ).

6 Open problems

There remain several open problems related to our results. The main question that arises
from Theorem 9 is whether it is possible to remove the logarithmic factors in the number of
calls to Ox, OQ and OA.
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On the other hand, Theorem 13 leaves several open ends for further research. The most
interesting direction that we foresee is whether the relative ease with which span programs
can be composed can be exploited to obtain more composition results. The variable time
search result composes a set of arbitrary functions with the OR function and obtains a
Grover-like speed-up in the query and time complexity of the resulting algorithm. A natural
next step would be to investigate if similar types of speed-ups can be obtained when one
composes some arbitrary functions with threshold functions.
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