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Abstract
In this paper we consider the following total functional problem: Given a cubic Hamiltonian graph G
and a Hamiltonian cycle C0 of G, how can we compute a second Hamiltonian cycle C1 6= C0 of G?
Cedric Smith and William Tutte proved in 1946, using a non-constructive parity argument, that
such a second Hamiltonian cycle always exists. Our main result is a deterministic algorithm which
computes the second Hamiltonian cycle in O(n ·20.299862744n) = O(1.23103n) time and in linear space,
thus improving the state of the art running time of O∗(20.3n) = O(1.2312n) for solving this problem
(among deterministic algorithms running in polynomial space). Whenever the input graph G does not
contain any induced cycle C6 on 6 vertices, the running time becomes O(n·20.2971925n) = O(1.22876n).
Our algorithm is based on a fundamental structural property of Thomason’s lollipop algorithm,
which we prove here for the first time. In the direction of approximating the length of a second
cycle in a (not necessarily cubic) Hamiltonian graph G with a given Hamiltonian cycle C0 (where we
may not have guarantees on the existence of a second Hamiltonian cycle), we provide a linear-time
algorithm computing a second cycle with length at least n− 4α(

√
n+ 2α) + 8, where α = ∆−2

δ−2 and
δ,∆ are the minimum and the maximum degree of the graph, respectively. This approximation
result also improves the state of the art.
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1 Introduction

Graph Hamiltonicity problems are among the most fundamental problems in theoretical
computer science. Problems related to Hamiltonian paths and Hamiltonian cycles have
attracted a tremendous amount of work over the years, see for example the recent survey of
Gould [14] and the references therein. Deciding whether a given graph has a Hamiltonian
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cycle, i.e. a cycle that contains each vertex once, was among Karp’s 21 NP-hard problems [16].
On the other hand, there are several exponential-time algorithms for computing a Hamiltonian
cycle or a solution to the Traveling Salesman Problem (TSP), which is a direct generalization
of the Hamiltonian cycle problem. The first algorithms for the problem were based on dynamic
programming and required O(n22n) time [2, 15]. One of the next major improvements came
decades later by Eppstein [11] who showed that a Hamiltonian cycle in a graph of degree at
most three with n vertices can be computed in O(2 n

3 ) ≈ 1.26n time and linear space; at the
same time the algorithm can also compute an optimum solution for TSP on such graphs.
The algorithm of Eppstein works by forcing specific edges of the graph which must be part
of any generated cycle; a variation of this algorithm can also enumerate all Hamiltonian
cycles in a graph of degree at most three in O(2 3n

8 ) time [11]. After that, there has been
a series of improvements on the running time for TSP and the Hamiltonian cycle problem
in degree-three graphs. In this direction there are two different lines of research, one for
algorithms using polynomial space and one for algorithms using exponential space. With
respect to algorithms using polynomial space, the most recent results are an O(1.2553n)-time
algorithm by Liśkiewicz and Schuster [18] and an O∗(20.3n) = O(1.2312n)-time algorithm by
Xiao and Nagamochi [23], where O∗(·) suppresses polynomial factors. For bounded-degree
graphs, it is known by Björklund et al. [5] that TSP can be solved in O∗((2 − ε)n) time,
where ε > 0 only depends on the maximum degree of the input graph. Furthermore, for
general graphs there exists a Monte Carlo algorithm for computing a Hamiltonian cycle with
running time O∗(1.657n), given by Björklund [3]. By allowing exponential space, the running
time for solving TSP on degree-three graphs can be improved further to O∗(1.2186n) [6],
while a Hamiltonian cycle can also be detected in O∗(1.1583n) time using a Monte Carlo
algorithm [8]. In our paper we focus on algorithms running in polynomial space.

On the other hand, using a non-constructive parity argument, Cedric Smith and William
Tutte [21] proved in 1946 that, for any fixed edge in a cubic (i.e. 3-regular) graph G, there
exists an even (potentially zero) number of Hamiltonian cycles through this edge. Thus, the
existence of a first Hamiltonian cycle guarantees the existence of a second one too, and this
allows us to define the following total functional problem [19].

Smith
Input: A cubic Hamiltonian graph G and a Hamiltonian cycle C0 of G.
Task: Compute a second Hamiltonian cycle C1 6= C0 of G.

It is easy to see that any algorithm A for the Hamiltonian cycle (decision) problem on
graphs with maximum degree three can be trivially adapted to solve Smith as follows: for
every edge e of the initial Hamiltonian cycle C0, run A on G\ e, i.e. on the graph obtained by
removing e from G. Then, as a second Hamiltonian cycle C1 6= C0 always exists, at least one
of these n calls of A will return such a cycle C1. That is, Smith can be solved in n ·T (A) time,
where T (A) is the worst-case running time of A on input graphs with n vertices. Similarly,
any algorithm A′ which computes the parity of the number of Hamiltonian cycles in a given
graph can be also used as a subroutine to solve Smith. Such an algorithm A′, which runs
in time O(1.619n) and in polynomial space, was given by Björklund and Husfeldt [4] for
directed graphs, but the result carries over to undirected graphs as well.

Thomason [20] was the first one who provided an algorithm, known as the lollipop
algorithm, for Smith. This algorithm starts from the given Hamiltonian cycle C0 of G
and creates a sequence of distinct Hamiltonian paths where the last of these Hamiltonian
paths trivially augments to a different Hamiltonian cycle of G. This algorithm was actually
used by Papadimitriou to place Smith within the complexity class PPA [19]. Although
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Thomason’s lollipop algorithm is well-known for decades, the internal structure of the
algorithm’s execution on cubic Hamiltonian graphs remains so far mostly unclear and not
well understood. In an attempt to construct worst-case instances for the lollipop algorithm,
Cameron proved in 2001 [7] that on a specific family of cubic graphs (which is a variation
of the family introduced by Krawczyk [17]) the lollipop algorithm runs in time at least 2cn,
for some constant c. Thus, the state of the art running time (using polynomial space) for
computing a second Hamiltonian cycle in Smith is to use the best known algorithm for
the Hamiltonian cycle problem in cubic graphs which runs in O∗(20.3n) [23]. However, a
tantalizing longstanding question is whether the knowledge of the first Hamiltonian cycle C0
strictly helps to reduce the running time for computing a second Hamiltonian cycle C1. In
this paper we provide evidence for the affirmative answer to this question.

A relaxation of Smith is, given a Hamiltonian cycle C0, to efficiently compute a second
cycle (different than C0) that is large enough. This relaxed problem becomes more meaningful
for graphs with degrees larger than three, as it is well known that uniquely Hamiltonian
graphs (i.e. graphs with a unique Hamiltonian cycle) exist, even when all vertices have degree
three except two vertices which have degree four [10, 12]. For cubic Hamiltonian graphs,
Bazgan, Santha, and Tuza [1] showed that the knowledge of the first Hamiltonian cycle C0
algorithmically strictly helps to approximate the length of a second cycle. In fact, if C0 is
not given along with the input, there is no polynomial-time constant-factor approximation
algorithm for finding a long cycle in cubic graphs, unless P=NP. In contrast, if C0 is given,
then for every ε > 0 a cycle C ′ 6= C0 of length at least (1− ε)n can be found in 2O(1/ε2) · n
time, i.e. there is a linear-time PTAS for approximating the second Hamiltonian cycle [1].
The main ingredient in the proof of the latter result is an O(n 3

2 logn)-time algorithm which,
given G and C0, computes a cycle C ′ 6= C0 of length at least n− 4

√
n [1]. In wide contrast to

cubic graphs, for graphs of minimum degree at least three, only existential proofs are known
for a second large cycle. In particular, Girão, Kittipassorn, and Narayanan recently proved
with a non-constructive argument that any n-vertex Hamiltonian graph with minimum degree
at least 3 contains another cycle of length at least n− o(n) [13].

Our contribution. In this paper we do the first attempt to understand the internal structure
of the lollipop algorithm of Thomason [20]. Our main result in this direction embarks from
the following trivial observation, which is not specific to Thomason’s algorithm or to cubic
graphs.

I Observation 1. Let G be a cubic Hamiltonian graph and let C0, C1 be any two different
Hamiltonian cycles of G. Then the symmetric difference C0 ∆ C1 of the edges of the two
cycles is a 2-factor, i.e. a collection of cycles in G.

Although Observation 1 determines that the symmetric difference of any two Hamiltonian
cycles C0 and C1 is a collection of cycles in G, it does not rule out the possibility that
C0 ∆ C1 contains more than one cycle. Our first technical contribution is that, for any
given Hamiltonian cycle C0, there exists at least one other Hamiltonian cycle C1 such that
C0 ∆ C1 is connected, i.e. it contains exactly one cycle. More specifically, we prove that
this holds for the particular Hamiltonian cycle C1 that is computed by Thomason’s lollipop
algorithm when starting from the cycle C0. For our proof we simulate the execution of the
lollipop algorithm by simultaneously assigning to every edge one of four distinct colors in a
specific way such that four coloring invariants are maintained. Using this coloring procedure,
an alternating red-blue path is maintained during the execution of the algorithm, which
becomes an alternating red-blue cycle at the end of the execution. As it turns out, this
alternating cycle coincides with the symmetric difference C0 ∆ C1.

MFCS 2020
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This fundamental structural property of the lollipop algorithm (see Theorem 3 in Section 3)
has never been revealed so far, and it enables us to design a novel and more efficient algorithm
for detecting a second Hamiltonian cycle of G. This improves the current state of the art in the
computational complexity of Smith among deterministic algorithms running in polynomial
space (see Section 4). Instead of trying to generate the second Hamiltonian cycle C1 directly
from C0 (as Thomason’s lollipop algorithm does), our new algorithm enumerates –almost– all
alternating red-blue cycles, until it finds one alternating cycle D such that the symmetric
difference C0 ∆ D is a Hamiltonian cycle of G (and not just a collection of cycles that
collectively contain all vertices of G). During its execution, this algorithm iteratively has
a choice between two different options for the next edge to be colored red, in which cases
it branches to create two new instances. However, in order for the algorithm to achieve a
strictly better worst-case running time than O∗(20.3n), it has to refrain from just always
blindly branching to new instances. We are able to do this by identifying appropriate disjoint
quadruples of edges, which we call ambivalent quadruples, and by deferring the choice for
the colors of each of these quadruples until the very end. Then, at the last step of the
algorithm we are able to choose their colors in linear time. That is, using the ambivalent
quadruples we do not generate all possible alternating red-blue cycles but only a succinct
representation of them. The running time of the algorithm that we eventually achieve is
O(n ·20.299862744n) = O(1.23103n), while our algorithms runs in linear space. In the particular
case where the input graph G contains no induced cycle C6 on 6 vertices, the running time
becomes O(n · 20.2971925n) = O(1.22876n).

In the direction of approximating the length of a second cycle on graphs with minimum
degree δ and maximum degree ∆, we provide in Section 5 a linear-time algorithm for
computing a cycle C ′ 6= C0 of length at least n− 4a(

√
n+ 2α) + 8, where α = ∆−2

δ−2 . On the
one hand, this improves the results of [1] in two ways. First, it provides a direct generalization
to arbitrary Hamiltonian graphs of degree at least 3. Second, our algorithm works in linear
time in n for all constant-degree regular graphs; in particular it works in time O(n) on cubic
graphs (see Corollary 14). On the other hand, we complement the results of [13] as we
provide a constructive proof for their result in case where the ∆ and δ are o(

√
n)-factor away

from each other. Formally, our algorithm constructs in linear time another cycle of length
n− o(n) whenever ∆

δ = o(
√
n) (see Corollary 15).

Due to space constraints, the missing proofs can be found in the full version of the
paper [9].

2 Preliminaries

Given a graph G = (V,E), an edge between two vertices u and v is denoted by uv ∈ E, and
in this case u and v are said to be adjacent in G. The neighborhood of a vertex v ∈ V is the
set N(v) = {u ∈ V : uv ∈ E} of its adjacent vertices. A graph G is cubic if |N(v)| = 3 for
every vertex v ∈ V . Given a path P = (v1, v2, . . . , vk) (resp. a cycle C = (v1, v2, . . . , vk, v1))
of G, the length of P (resp. C) is the number of its edges. Furthermore, E(P ) (resp. E(C))
denotes the set of edges of the path P (resp. of the cycle C). A path P (resp. cycle C) in G
is a Hamiltonian path (resp. Hamiltonian cycle) if it contains each vertex of G exactly once.
Every cubic Hamiltonian graph is referred to as a Smith graph. Given a Smith graph G and
a Hamiltonian cycle C0 of G, an edge of G which does not belong to C0 is called a chord
of C0, or simply a chord. The next theorem allows us to assume without loss of generality
that the input Smith graph G is triangle-free.
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I Theorem 1. Let G = (V,E) be a Smith graph with n vertices that contains at least one
triangle, and let C0 be a Hamiltonian cycle of G. In linear time we can compute either a
second Hamiltonian cycle C1 of G or a triangle-free Smith graph G′ with fewer vertices such
that every Hamiltonian cycle in G bijectively corresponds to a Hamiltonian cycle in G′.

Now we define the auxiliary notion of an X-certificate which is a pair of chords forming
the shape of an “X” in a given Hamiltonian cycle. If an X-certificate exists then a second
Hamiltonian cycle can be immediately computed.

I Definition 2. Let G = (V,E) be a Smith graph with n vertices and let C0 = (v1, v2, . . . , vn)
be a given Hamiltonian cycle of G. Let i, k ∈ {1, 2, . . . , n}, where k /∈ {i− 1, i, i+ 1} (here we
consider all indices modulo n), such that vivk, vi+1vk+1 ∈ E. Then the pair {vivk, vi+1vk+1}
of chords is an X-certificate of G.

I Observation 2. Let G be a Smith graph with n vertices, let C0 = (v1, v2, . . . , vn) be a
Hamiltonian cycle of G, and let the pair {vivk, vi+1vk+1} of chords be an X-certificate of G,
where i < k. Then C1 = (v1, v2, . . . , vi, vk, vk−1, . . . , vi+1, vk+1, vk+2, . . . , vn) is a second
Hamiltonian cycle of G.

3 A connected symmetric difference of the two Hamiltonian cycles

In this section we present the fundamental structural property of Thomason’s lollipop
algorithm that the symmetric difference of the two involved Hamiltonian cycles is connected.
For the sake of presentation, in this section we simulate Thomason’s lollipop algorithm [20]
on an arbitrary given Smith graph G and, during this simulation, we assign colors to some of
the edges of G. In particular, we assign to some edges of G one of the colors red, blue, black,
and yellow. Note that the colors of the edges change in every step of the lollipop algorithm.
Furthermore, every such (partial) edge-coloring of G uniquely determines one step of the
lollipop algorithm on G that starts at a specific initial configuration.

Thomason’s lollipop algorithm starts (at Step 0) with a Hamiltonian cycle C0 =
(v1, v2, . . . , vn, v1); at this step we color all n edges of C0 black, while all other edges are
colored yellow. Any Step i ≥ 1 of the lollipop algorithm is called non-final if the Hamiltonian
path at this step does not correspond to a Hamiltonian cycle, i.e. v1 is not connected in G to
the last vertex of this Hamiltonian path.

Step 1 is derived from Step 0 by removing the edge v1vn from the cycle C0, thus obtaining
the Hamiltonian path P1 = (v1, v2, . . . , vn). We color this removed edge v1vn red. Let
N(vn) = {v1, vn−1, vk}. At Step 2, the lollipop algorithm continues by adding to the current
Hamiltonian path P1 the edge vnvk, thus obtaining a “lollipop” in which vk keeps all its three
incident edges, v1 keeps only the incident edge v1v2, and every other vertex keeps exactly two
of its incident edges. Step 2 is completed by removing the edge vkvk+1 from P1, thus “breaking”
the lollipop and obtaining the next Hamiltonian path P2 = (v1, v2, . . . , vk, vn, . . . , vk+1). It
is important to note here that vk+1 is the vertex immediately after vertex vk in the path
Pi−1, where we consider that the path starts at v1. At Step 2 we color the newly added edge
vnvk blue and the removed edge vkvk+1 red, while the last vertex of the path P2 is vk+1. The
algorithm continues towards Step 3 by adding to P2 the third edge incident to vk+1 (i.e. the
unique incident edge vk+1v` different from the edges vkvk+1 and vk+1vk+2 that belonged to
the previous path P1) and by removing again the other incident edge of v` that “breaks” the
lollipop. Similarly to Step 2, in Step 3 we color the newly added edge vk+1v` blue and the
newly removed incident edge of v` red.

MFCS 2020



27:6 Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle

As the lollipop algorithm progresses, the (partial) coloring of the edges of G continues,
according to the following rules at Step i ≥ 1. Recall that the Hamiltonian path at Step i ≥ 1
is denoted by Pi. Furthermore, assume that during Step i, the path Pi is obtained by adding
to Pi−1 the edge vxvy (where vx is the last vertex of Pi−1, thus building a lollipop) and by
subsequently removing from Pi−1 the edge vyvz, thus breaking the constructed lollipop.

The description of the edge-coloring procedure that we apply at every step of the lollipop
algorithm can be formally given by four coloring rules, which are intuitively described as
follows. At every step, the black edges are those edges of the initial cycle C0 which are still
contained in the current Hamiltonian path, while the red edges are all the remaining edges
of C0, i.e. those edges which do not belong to the current Hamiltonian path. The blue edges
are those chords of C0 that belong to the current Hamiltonian path. Finally, the yellow
edges are all the remaining chords of C0, i.e. those chords that do not belong to the current
Hamiltonian path. Initially we start with the cycle C0 that contains n black edges and we
remove one of them (the edge v1vn) which becomes red. At every step of the algorithm we
build the new lollipop when all three incident edges of some vertex vy become either black or
blue. This can happen either by adding a new (previously yellow) chord (thus coloring it
blue) or by adding a new (previously colored red) C0-edge (thus coloring it black). Once we
have build the new lollipop, we break it within the same step of the lollipop algorithm, either
by removing a (previously colored black) C0-edge (thus coloring it red) or by removing a
(previously colored blue) chord (thus coloring it yellow).

As we prove in our main technical contribution in this section (see Theorem 3), the
coloring of the edges proceeds such that the following main invariant is maintained:

I Main Invariant. When the lollipop is built during any non-final Step i ≥ 2, the set of all
red and blue edges form an alternating path of even length in G, starting at v1 with a red
edge. Furthermore, at the final step (i.e. when we build a second Hamiltonian cycle instead
of a lollipop) the set of all red and blue edges form an alternating cycle D in G.

I Theorem 3. The Main Invariant is maintained at every (final or non-final) Step i ≥ 1 of
Thomason’s lollipop algorithm. Thus, after the final step of the algorithm, the symmetric
difference C0 ∆ C1 of C0 with the produced Hamiltonian cycle C1 is the alternating red-blue
cycle D.

The next corollary follows by the proof of Theorem 3, and will allow us to reduce the
asymptotic running time of our algorithm in Section 4 by a factor of n.

I Corollary 4. Let C0 be a given Hamiltonian cycle of a Smith graph G. Let (vi, vj , vk) be
three consecutive vertices of C0. Then there exists a second Hamiltonian cycle C1 of G such
that (i) C0 ∆ C1 is a cycle in G and (ii) either the edge vivj or the edge vjvk does not belong
to C1.

4 The alternating cycles’ exploration algorithm

In this section we present our O(n · 2(0.3−ε)n)-time algorithm for Smith, where ε > 0 is a
strictly positive constant. This algorithm improves the state of the art, as it is asymptotically
faster than all known algorithms for detecting a second Hamiltonian cycle in cubic graphs
(among algorithms running in polynomial space). Our algorithm is inspired by the structural
property of Theorem 3. It starts from a designated vertex v1 and constructs an alternating
cycle D of red-blue edges (with respect to C0, in the terminology of Section 3) such that the
symmetric difference C0 ∆ D is a Hamiltonian cycle C1 of G. Equivalently, the algorithm
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constructs a second Hamiltonian cycle C1 such that the symmetric difference D = C0 ∆ C1
is connected, i.e. one single cycle D of G in which every edge alternately belongs to C0 and
to C1, respectively.

Before we present and analyze our algorithm, we first present some necessary definitions
and notation. Let G be a Smith graph and C0 = (v1, v2, . . . , vn) be the initial Hamiltonian
cycle of G. For every vertex vi of G, we denote by v∗i the unique vertex that is connected to
vi through a chord. That is, whenever vivj is a chord, we have that vj = v∗i and vi = v∗j .
Furthermore, every vertex vi is incident to exactly two C0-edges vi−1vi and vivi+1, where we
consider all indices modulo n. The algorithm iteratively forces specific edges to be colored
red (C0-edges not belonging to C1), black (C0-edges belonging to C1), blue (chords belonging
to C1), and yellow (chords not belonging to C1). Initially, the algorithm starts by coloring
the C0-edge v1vt red, where vt ∈ {v2, vn}, the chord vtv∗t blue, and the two C0-edges adjacent
to the edge vtv1 black. That is, if vt = v2 (resp. if vt = vn) then the edges v1vn and v2v3
(resp. v1v2 and vn−1vn) are initially black. During its execution, the algorithm maintains
an alternating red-blue path D of even length (starting with the red edge v1vt and ending
with a blue edge), until D eventually becomes an alternating cycle. Note that D can only
become a cycle when we color the chord v1v

∗
1 blue. At every iteration the algorithm has

(at most) two choices for the next red edge to be added to D, and thus it branches to (at
most) two new instances of the problem, inheriting to both of them the choices of the forced
(i.e. previously colored) edges made so far. At an arbitrary non-final step, let vy be the last
vertex of the alternating path D, and let vxvy be the last (blue) edge of D. For each of the
two C0-edges vy−1vy and vyvy+1 that are incident to vy, this edge is called eligible if it has
not been forced (i.e. colored) at a previous iteration; otherwise it is called non-eligible. Here
the term “eligible” stands for “eligible for branching”. We define the following operations;
note that, once an edge has been assigned a color, it can never be forced to change its color.

Blue-Branch: Whenever a chord vxvy is colored blue (where vy is the last vertex of the
current red-blue alternating path D) and both C0-edges vyvy+1, vyvy−1 are eligible, we
create two new instances I1 and I2, where I1 (resp. I2) has the edge vyvy+1 (resp. vyvy−1)
colored red and the edge vyvy−1 (resp. vyvy+1) colored black.
Blue-Force: Whenever a chord vxvy is colored blue (where vy is the last vertex of the
current red-blue alternating path D) and exactly one of the two C0-edges vyvy+1, vyvy−1
is eligible, we color this eligible C0-edge red.
Red-Force: Assume that a C0-edge is colored red; note that this edge must be incident
to a blue chord (i.e. its previous edge in the alternating path D). If its other incident
chord is uncolored, we color it blue. Otherwise, if it has been previously colored yellow,
we announce “contradiction”. Moreover, if this new red edge is incident to a C0-edge that
is uncolored, we color this edge black.
Black-Force: Assume that a C0-edge vivi+1 is colored black, where this edge is adjacent
to the (previously colored) black C0-edge vi−1vi (resp. vi+1vi+2). If their commonly
incident chord viv∗i (resp. vi+1v

∗
i+1) is so far uncolored, we color it yellow. Otherwise, if

it has been previously colored blue, we announce “contradiction”.
Yellow-Force: Assume that a chord viv∗i is colored yellow by the operation Black-Force
(i.e. once both C0-edges vi−1vi, vivi+1 become black); furthermore let vk = v∗i . If at
least one of the C0-edges vk−1vk, vkvk+1 has been previously colored red, we announce
“contradiction”. Otherwise, for each of the C0-edges vk−1vk, vkvk+1, if this edge is
uncolored, we color it black. (Note that, if the Yellow-Force operation does not announce
“contradiction”, at the end of the operation all four C0-edges vi−1vi, vivi+1, vk−1vk, vkvk+1
that are incident to the chord viv∗i are colored black.)

MFCS 2020
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The main idea of the algorithm is as follows. If both edges vyvy+1, vyvy−1 are eligible,
the algorithm branches (in most cases) to two new instances I1 and I2, where I1 (resp. I2)
has the eligible edge vyvy+1 (resp. vyvy−1) colored red. After the algorithm has branched
to these two new instances I1 and I2, it exhaustively applies the four forcing operations
Blue-Force, Red-Force, Black-Force, and Yellow-Force, until none of them is applicable any
more. The correctness of these forcing operations becomes straightforward by recalling our
interpretation of the four colors, i.e. that the C0-edges belonging (resp. not belonging) to
C1 are colored black (resp. red), while the chords belonging (resp. not belonging) to C1 are
colored blue (resp. yellow).

In some cases, the exhaustive application of the forcing rules in the two new instances
I1, I2 may only force very few edges, which results in a large running time of the algorithm
before we reach a state where D becomes an alternating red-blue cycle. To circumvent this
problem, we refrain from just always applying the operation Blue-Branch. Instead, in some
cases we are able to defer the choice of the forced color of specific edges until the very end.
More specifically, in some cases we are able to determine specific sets of four edges (each
containing three C0-edges and one chord) which build a C4 in G (i.e. a cycle of length 4)
such that all colored edges in the two different instances I1, I2 are identical, apart from the
colors of these four edges. Therefore all forcing operations in the subsequent iterations of
the algorithm are identical in both these instances I1, I2, regardless of the specific colors
of these four edges. Furthermore, as it turns out, every such a quadruple of edges can
receive forced colors in exactly two alternative ways. We call every such a set an ambivalent
quadruple of edges. In these few cases, where an ambivalent quadruple occurs, we do not
apply the operation Blue-Branch; instead we continue our forcing and branching operations
in the subsequent iterations of the algorithm by only starting from one of these instances
(instead of starting from both instances). Then, at the final step of the algorithm, i.e. when
D becomes an alternating red-blue cycle, we are able to decide which of the two alternative
edge colorings is correct for each ambivalent quadruple of edges.

The above crucial trick of not always applying the operation Blue-Branch allows us
to avoid generating all possible red-blue alternating cycles, thus obtaining an exponential
speed-up of the algorithm and beating the state of the art running time of O∗(20.3n) which is
implied by the TSP-algorithm of [23]. For example, in one of the cases where an ambivalent
quadruple occurs, if we would branch to two new instances we would only force 5 new
edges. Thus, since G has 3

2n edges (as a cubic graph), forcing 5 edges at a time would
imply the generation of at most O∗

(
2 3

2 ·
1
5n
)

= O∗
(
20.3n) instances in the worst case, each

of them corresponding to a different red-blue alternating cycle. However, by deferring the
exact coloring of all ambivalent quadruples until the end of the algorithm, we bypass this
problem: instead of generating all possible red-blue alternating cycles, we create a succinct
representation of them by only generating O

(
2(0.3−ε)n) alternating cycles (for some constant

ε > 0), and then we determine from them the desired alternating cycle, i.e. the one which gives
us a second Hamiltonian cycle as its symmetric difference with the given first Hamiltonian
cycle C0. Now we define the operation Ambivalent-Flip, which appropriately changes at the
end of the algorithm the already chosen colors of an ambivalent quadruple. Recall here that
every ambivalent quadruple q contains exactly three C0-edges and one chord.

Ambivalent-Flip: Let q be an ambivalent quadruple of (already colored) edges. For
every C0-edge of q, if it has been colored red (resp. black), change its color to black
(resp. red). Also, if the (unique) chord of q has been colored yellow (resp. blue), change
its color to blue (resp. yellow).
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Before we proceed with the proof of our main technical lemmas in this section (see
Lemmas 6 and 7), we first need to define the notions of a forcing path and a forcing cycle.
Intuitively, a forcing path consists of a sequence of edges of G such that, during the execution
of the algorithm, once the first edge is forced to receive a specific color, every other edge of
the path is also forced to receive some other specific color.

I Definition 5 (forcing path and cycle). Let G be a Smith graph. At an arbitrary iteration of
the algorithm, a path P = (vi1 , vi2 , . . . , vik ) of G is a forcing path starting at vertex vi1 if:

each of its edges vi1vi2 , . . . , vik−1vik is yet uncolored and
each of its first k− 1 vertices vi1 , . . . , vik−1 is incident to exactly one already colored edge,
while its last vertex vik is incident to three yet uncolored edges.

Similarly, a cycle C = (vi1 , vi2 , . . . , vik , vi1) of G is a forcing cycle if:
each of its edges vi1vi2 , . . . , vik−1vik , vikvi1 is yet uncolored and
each of its k vertices vi1 , . . . , vik is incident to exactly one already colored edge.

In the next lemma (Lemma 6) we prove the correctness of our algorithm, and after
that we prove our crucial technical Lemma 7 which specifies how the current instance
is transformed in one iteration of the algorithm. The input instance I of the algorithm
consists of a Smith graph G = (V,E), a Hamiltonian cycle C0 of G, the set Q of all
ambivalent quadruples, and four disjoint sets of forced (i.e. colored) edges Red, Blue,
Black, Y ellow. Initially the four sets of uncolored edges as well as the set Q are all
empty. Given such an instance I = (G,C0, Q,Red,Blue,Black, Y ellow), we denote by
U(I) = E \ {Red ∪Blue ∪Black ∪ Y ellow} be the set of all unforced (i.e. uncolored) edges
in this instance. Furthermore we denote by W (I) the set of vertices which are not incident
to any edge of Red∪Black in I; we refer to the vertices of W (I) as biased vertices, while all
other vertices in V −W (I) are referred to as unbiased vertices.

I Lemma 6. Let G = (V,E) be a Smith graph and C0 be a Hamiltonian cycle of G.
Then, the algorithm correctly computes a second Hamiltonian cycle C1 of G on the input
I = (G,C0, ∅, ∅, ∅, ∅, ∅).

I Lemma 7. Let I = (G,C0, Q,Red,Blue,Black, Y ellow) be the instance at some iteration
of the algorithm, where G = (V,E) is a Smith graph, and let D = Red ∪Blue be the current
alternating red-blue path of even length. Then, within a constant number of iterations, either
a “contradiction” is announced or the algorithm transforms the instance I either to a single
instance I ′, where |U(I ′)| ≤ |U(I)| − 2, or to two instances I1 and I2, where one of the
following is satisfied:
1. |W (I1)|, |W (I2)| ≤ |W (I)| − 2 and |U(I1)|, |U(I2)| ≤ |U(I)| − 7,
2. |W (I1)|, |W (I2)| ≤ |W (I)| − 2 and |U(I1)|, |U(I2)| ≤ |U(I)| − 9,
3. |W (I1)|, |W (I2)| ≤ |W (I)| − 4 and |U(I1)|, |U(I2)| ≤ |U(I)| − 4,
4. |W (I1)| ≤ |W (I)|−4, |U(I1)| ≤ |U(I)|−4, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−6,
5. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−9, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−6,
6. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−5, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−8,
7. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−3, and |W (I2)| ≤ |W (I)|−6, |U(I2)| ≤ |U(I)|−7,
8. |W (I1)| ≤ |W (I)| − 2, |U(I1)| ≤ |U(I)| − 3, and
|W (I2)| ≤ |W (I)| − 4, |U(I2)| ≤ |U(I)| − 10,

9. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−3, and |W (I2)| ≤ |W (I)|−5, |U(I2)| ≤ |U(I)|−9.

We are now ready to use the results of our technical Lemma 7 to derive an upper bound
for the running time of the algorithm.

MFCS 2020
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I Theorem 8. Let G be a Smith graph on n vertices with a given Hamiltonian cycle C0.
Then the algorithm runs in O(n · 20.299862744n) = O(1.23103n) time and in linear space.
If G does not contain any induced cycle C6 on 6 vertices, then the running time becomes
O(n · 20.2971925n) = O(1.22876n).

5 Efficiently computing another long cycle in a Hamiltonian graph

In this section we prove our results on approximating the length of a second cycle on graphs
with minimum degree δ ≥ 3 and maximum degree ∆. In [1], Bazgan, Santha, and Tuza
considered the optimization problem of efficiently (i.e. in polynomial time) constructing a
large second cycle different than the given Hamiltonian cycle C0 in a given Hamiltonian
graph G. In particular they proved the following results.

I Theorem 9 ([1]). Let G be an n-vertex cubic Hamiltonian graph and let C0 be a Hamiltonian
cycle of G. Given G and C0, for every ε > 0, a cycle C ′ 6= C0 of length at least (1− ε)n can
be found in time 2O(1/ε2) × n.

I Theorem 10 ([1]). Let G be an n-vertex cubic Hamiltonian graph and let C0 be a Hamilto-
nian cycle of G. There is an algorithm which, given G and C0, computes a cycle C ′ 6= C0 of
length at least n− 4

√
n in time O(n3/2 logn).

5.1 Notation and preliminary results
Before we proceed to the main result of the section, we introduce some necessary notation
and state preliminary results. Let G = (V,E) be a graph with a designated Hamiltonian
cycle C0 = (v1, v2, . . . , vn, v1). Two chords of C0 are independent if they do not share an
endpoint. The length of a chord vivj , with i < j, is defined as min{j − i, n+ i− j}. We say
that two vertices u, v ∈ V are chord-adjacent if they are connected by a chord of G. Two
independent chords e1 and e2 are called crossing if their endpoints appear in an alternating
order around C0; otherwise e1 and e2 are called parallel.

For x, y ∈ V , we denote by d(x, y) the length of the path from x to y around C0. Note
that, in general, d(x, y) 6= d(y, x). We define the distance between two independent chords
xy and ab as follows:
1. if xy and ab are crossing, such that a lies on the path from x to y around C0, then

dist(xy, ab) = min{d(x, a) + d(y, b), d(b, x) + d(a, y)};
2. if xy and ab are parallel such that neither y nor b lie on the path from x to a around C0,

then dist(xy, ab) = d(x, a) + d(b, y).

In the proof of our main result of this section (see Theorem 13) we use the following two
lemmas. The first one is a basic fact from graph theory and the second one is straightforward
to check (see Figure 1 for an illustration).

I Lemma 11. [[22], Exercise 3.1.29] Let G = (V,E) be a bipartite graph of maximum
degree ∆. Then G has a matching of size at least |E|∆ .

I Lemma 12. Let G = (V,E) be an n-vertex graph with a Hamiltonian cycle C0.
(1) If G has a chord of length `, then G contains a cycle C ′ 6= C0 of length at least n− `+ 1.
(2) If G has two crossing chords e1, e2 and dist(e1, e2) = d, then G contains a cycle C ′ 6= C0

of length at least n− d+ 2.
(3) If G has four pairwise independent chords e1, e2, f1, and f2 such that

a. e1, e2 are parallel and f1, f2 are parallel,
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b. ei and fj are crossing for every i, j ∈ {1, 2},
c. dist(e1, e2) = d1 and dist(f1, f2) = d2,
then G contains a cycle C ′ 6= C0 of length at least n− d1 − d2 + 4.

(a) A short chord. (b) A pair of
crossing chords.

(c) Crossing pairs of
parallel chords.

Figure 1 An illustration of Lemma 12.

5.2 Long cycles in Hamiltonian graphs
I Theorem 13. Let G = (V,E) be an n-vertex Hamiltonian graph of minimum degree δ ≥ 3.
Let C0 = (v1, v2, . . . , vn, v1) be a Hamiltonian cycle in G and let ∆ denote the maximum
degree of G. Then G has a cycle C ′ 6= C0 of length at least n − 4α(

√
n + 2α) + 8, where

α = ∆−2
δ−2 . Moreover, given C0, such a cycle C ′ can be computed in O(m) time, where

m = |E|.

Proof. We start by showing the existence of the desired cycle C ′. Without loss of generality
we assume that α <

√
n

2 , as otherwise any cycle C ′ 6= C0 in G satisfies the theorem.
Furthermore, we assume that the length of every chord in G is at least 4α(

√
n+ 2α)− 6, as

otherwise the existence of C ′ follows from Lemma 12 (1).
Let q = α

√
n. We arbitrarily partition the vertices1 of the Hamiltonian cycle C0 into r

consecutive intervals B0, B1, . . . , Br−1, such that r ∈
{⌊√

n
α

⌋
,
⌊√

n
α

⌋
+ 1
}
and bqc ≤ |Bi| ≤

bqc+ 2α2 for every i ∈ {0, 1, . . . , r − 1}. It is a routine task to check that such a partition
exists.

For every i ∈ {0, 1, . . . , r− 1} we denote by Wi the set of vertices that are chord-adjacent
to a vertex in Bi, and by Ei we denote the set of chords that are incident to a vertex in
Bi. Furthermore, we denote by Hi the graph with vertex set Bi ∪Wi and edge set Ei.
Since the length of every chord in G is at least 4α(

√
n + 2α) − 6, observe that for every

i ∈ {0, 1, . . . , r − 1}, the set Wi is disjoint from Bi−1 ∪ Bi ∪ Bi+1 (where the arithmetic
operations with indices are modulo r). The latter, in particular, implies that Hi is a bipartite
graph with color classes Bi and Wi.

Let i, j ∈ {0, 1, . . . , r − 1} be two distinct indices, we say that the intervals Bi and Bj
are matched if there exist two independent chords such that each of them has one endpoint
in Bi and the other endpoint in Bj . We claim that every interval Bi is matched to another
interval Bj for some j ∈ {0, 1, . . . , r − 1} \ {i− 1, i, i+ 1}. Indeed, by Lemma 11, graph Hi

has a matching Mi of size at least

bqc(δ − 2)
∆− 2 = bα

√
nc

α
>
α
√
n− 1
α

≥
√
n− 1 >

⌊√n
α

⌋
− 2 ≥ r − 3,

1 More formally, we partition the interval [1, n] into the consecutive intervals B0, B1, . . . , Br−1, which
immediately implies a partition of the vertices of the Hamiltonian cycle C0.
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and therefore, by the pigeonhole principle, there exists j ∈ {0, 1, . . . , r − 1} \ {i− 1, i, i+ 1}
such that at least two edges in Mi have their endpoints in Bj , meaning that Bi is matched
to Bj .

Let σ : {0, 1, . . . , r− 1} → {0, 1, . . . , r− 1} be a function such that Bi is matched to Bσ(i),
and denote by fi,1 and fi,2 some fixed pair of independent chords between Bi and Bσ(i). We
observe that dist(fi,1, fi,2) ≤ 2

(
bqc+ 2α2 − 1

)
≤ 2α(

√
n+ 2α)− 2, as the endpoints of fi,1

and fi,2 lie in the intervals Bi and Bσ(i) each of length at most bqc+ 2α2.
Let now R be an auxiliary graph with a Hamiltonian cycle (x0, x1, . . . , xr−1) and the

chord set being {xixσ(i) : i = 0, 1, . . . , r − 1}. Let xixj be a chord in R of the minimum
length, where j = σ(i). Without loss of generality, we assume that i < j and j− i ≤ r+ i− j.
Let xk be a vertex of R such that i < k < j and let s = σ(k). Since xixj is of minimum
length, the chords xixj and xkxs are crossing, and hence each of fi,1 and fi,2 crosses both
fk,1 and fk,2.

Finally, if fi,1, fi,2 or fk,1, fk,2 are crossing, then by Lemma 12 (2) there exists a cycle
C ′ 6= C0 of length at least n−2α(

√
n+ 2α) + 4. Otherwise, fi,1, fi,2 are parallel and fk,1, fk,2

are parallel, and hence by Lemma 12 (3) there exists a cycle C ′ 6= C0 of length at least
n− 4α(

√
n+ 2α) + 8, which proves the first part of the theorem.

The above proof is constructive. We now explain at a high level how the proof can be
turned into the desired algorithm. First, if α ≥

√
n

2 , then we output any cycle formed by
a chord and the longer path of C0 connecting the endpoints of the chord. Otherwise, we
partition the vertices of C0 into the intervals B1, . . . , Br−1 and we assign to each vertex the
index of its interval. Clearly, this can be done in O(n) time. Next, we traverse the vertices
of G along the cycle C0 and for every vertex v of an interval Bi we check the chords incident
to v. If we encounter a chord f of length less than 4α(

√
n + 2α) − 6, then we output the

cycle formed by f and the longer path of C0 connecting the endpoints of f . Otherwise, for
the interval Bi we keep the information of how many and which vertices of Wi belong to
other intervals Bj for j ∈ {0, 1, . . . , r− 1} \ {i− 1, i, i+ 1}. When we find an interval Bj that
has at least two elements from Wi, we set σ(i) to j and proceed to the first vertex of the
next interval Bi+1. By doing this, we also keep the information of the current shortest chord
in the graph R (defined in the proof above). After finishing this procedure: (1) we have a
function σ(·); (2) for every i ∈ {0, 1, . . . , r− 1} we know a pair fi,1, fi,2 of independent edges
between Bi and Bσ(i); and (3) we know k such that xkxσ(k) is a minimum length chord in R.
Clearly, this information is enough to identify the desired cycle in constant time. In total,
we spent O(n) time to compute the partition of the vertices into the intervals and we visited
every chord at most twice, which implies the claimed O(m) running time. J

The next two corollaries are implied as immediate consequences of Theorem 13, and they
provide immediate extensions of the results of [1] and [13], respectively.

I Corollary 14. Let G = (V,E) be an n-vertex Hamiltonian δ-regular graph with δ ≥ 3, and
let C0 be a Hamiltonian cycle of G. Then G has a cycle C ′ 6= C0 of length at least n− 4

√
n,

which can be computed in O(δn) time.

I Corollary 15. Let G = (V,E) be an n-vertex Hamiltonian graph of minimum degree
δ ≥ 3. Let C0 be a Hamiltonian cycle of G and let ∆ denote the maximum degree of G. If
∆
δ = o(

√
n), then G has a cycle C ′ 6= C0 of length at least n− o(n), which can be computed

in O(m) time.
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