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Abstract
We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity
graph under the recently introduced Dasgupta objective function. We introduce a proof technique,
called the normalization procedure, that takes any such clustering of a graph G and iteratively
improves it until a desired target clustering of G is reached. We use this technique to show both
a negative and a positive complexity result. Firstly, we show that in general the problem is NP-
complete. Secondly, we consider min-well-behaved graphs, which are graphs H having the property
that for any k the graph H(k) being the join of k copies of H has an optimal hierarchical clustering
that splits each copy of H in the same optimal way. To optimally cluster such a graph H(k) we thus
only need to optimally cluster the smaller graph H. Co-bipartite graphs are min-well-behaved, but
otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle
on 6 vertices is min-well-behaved.
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1 Introduction

Clustering is an unsupervised machine learning technique and one of the most important
problems in data-mining [3, 9–11]. Given a data set and a pairwise similarity measure, the
task is to partition the data set into clusters so that similar data points belong to the same
cluster. In a hierarchical clustering the data set is recursively partitioned into smaller clusters,
by means of a rooted binary tree whose leaves are in one-to-one correspondence with the
data points. Hierarchical clustering emerged as a central task in the study of phylogenetic
trees [2, 12]. Such a clustering is very general, capturing clustering structure at all levels of
granularity, with a clustering into two parts given by the root of the tree, and finer clusterings
given by lower levels of the tree. Algorithms for hierarchical clustering have been widely used
for many years, but it was only recently that an objective function to measure their quality
was formalized. In a STOC 2017 paper [6] Dasgupta introduced a natural objective function
measuring the global cost of a hierarchical clustering. From now on, this function will be
called the Dasgupta Clustering function - DC function. Several follow-ups to Dasgupta’s
work have appeared, we mention only a couple: in [4], the authors improve the ratio of the
approximation algorithm proposed by Dasgutpa; in [5], the authors revisit the DC function
and propose some axioms that a “good” cost function should satisfy.

In this paper we investigate the complexity of finding the DC-optimal hierarchical
clustering for unweighted similarity graphs. Thus, we assume that any pair of data points has
been marked as either ’similar’ or ’non-similar’ and represent this information as an undirected,
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47:2 Hierarchical Clusterings of Unweighted Graphs

unweighted graph G whose vertex set V (G) is the set of data points and adjacencies represent
similarity. We ask for an HC-tree (a Hierarchical Clustering tree), a rooted binary tree T
with leaves in one-to-one correspondence with V (G), such that the DC-cost of T - i.e. the
sum over all edges uv of G, of the number of leaves of the subtree rooted at the least common
ancestor of u and v - is minimized. Dasgupta [6] showed that the edge-weighted version of
this problem, with weights representing degree of similarity, is NP-complete. In this paper we
focus on unweighted graphs, the hardness of which was left open by Dasgupta [7]. Unweighted
graphs naturally appear in this context, for example in the correlation clustering problem [1].
It is also a common approach to transform a similarity matrix into a similarity graph by
fixing a threshold value that determines whether two objects are similar or not (see [9] for
example). We focus on dense similarity graphs. Such graphs typically appear when there
is a fixed threshold for similarity that is set to be very low, for example the existence of
email correspondence within a single (small) organization, or existence of non-zero trade
relations between countries. We show that the problem remains NP-complete, already for
dense graphs. More precisely, by a reduction building on the one used in [6], we establish the
NP-hardness for unweighted n-vertex graphs where every vertex has at least n−6 neighbours.

Note that all pairs of vertices will be split into distinct clusters at some point in the
HC-tree, namely at their least common ancestor. Minimizing the DC-cost encourages pairs of
adjacent vertices (similar data points) to be split lower in the tree than non-adjacent vertex
pairs (non-similar data points). For example, if G is the complement of a bipartite graph
on color classes A,B then any HC-tree T that splits A and B at the root is optimal, which
follows easily from observations in [6] since G[A] and G[B] are complete graphs. Dasgupta
showed that minimizing the DC-cost of G is equivalent to maximizing the DC-cost of the
complement of G. Thus the previous result can be restated to say that for a bipartite graph
any HC-tree splitting the two color classes at the root will have max DC-cost, rendering
the result trivial as all edges are now split at the root. In the current paper we will usually
take this viewpoint, thus considering unweighted sparse graphs and looking for an HC-
tree maximizing the DC-cost, typically splitting pairs of adjacent vertices, now denoting
non-similarity, at higher levels of the tree.

As noted, bipartite graphs are then trivial, but what other graphs can be handled
efficiently? What about G being a collection of disjoint copies of the same bipartite graph?
Maximizing DC-cost is still trivial, in fact G is again bipartite, so at the root we can simply
split each copy in the same optimal way. Let us define a more complex property generalizing
this behavior. Consider a graph H of max DC-cost W achievable by some HC-tree T and
let the graph H(k) consist of k disjoint copies of H. If we use T to simultaneously cluster
each of the k copies of H then each leaf of T will contain k copies of the same vertex. These
vertices induce a stable set so we can further cluster them in an arbitrary way to get an
HC-tree T (k). Note that this tree will have DC-cost k2W since each edge of H has k copies
in H(k), and the subtree of T (k) that splits an edge contains a multiplicative factor k more
vertices than the similar subtree of T . We call such H max-well-behaved if for any k the
max DC-cost of H(k) is no higher than k2t, and the complement of H min-well-behaved.

We have argued that any bipartite graph is max-well-behaved, but this is not the case
for all H. For a simple example, in Figure 1 we see that complete split graphs are not
max-well-behaved. In this paper, as a spin-off of our NP-completeness proof, we initiate
the study of well-behaved graphs. We introduce a normalization procedure that makes
incremental changes to a given HC-tree of some H(k), while observing monotonicity in the
DC-cost, to arrive at a new HC-tree showing that H is well-behaved. We employ this to
show that the prism graph (the complement of a 6-cycle) is max-well-behaved, and thus C6
min-well-behaved, establishing the aforementioned NP-completeness along the way.
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Figure 1 The complete split graph Q2,3 is not max-well-behaved. We have DC-cost(Q2,3, T ) =
6 × 5 + 1 × 2 = 32 which is the maximum possible. The HC-tree T ′ of Q

(k)
2,3 with k = 2 (vertices

s1, c1, ... in one copy and s′
1, c′

1, ... in the other copy) satisfies DC-cost(Q(k)
2,3, T ′) = 130 which is larger

than DC-cost(Q2,3, T )× k2 = 128, i.e. the DC-cost of the factorized HC-tree clustering both copies
according to T simultaneously.

2 Preliminaries

We use standard graph-theoretic notation [8]. A hierarchical clustering of a similarity graph
G = (V,E) is a full rooted binary tree T , together with a bijection δ from V to L(T ), the set
of leaves of T . We call such a pair (T, δ) an HC-tree of G. For a node t of T we denote by
T [t] the subtree of T rooted at t. The Dasgupta cost function [6] is this (lca means least
common ancestor):

DC-cost(G, (T, δ)) =
∑
uv∈E

w(uv) · |L(T [x])| : x is the lca of δ(u) and δ(v)

and an HC-tree of minimum DC-cost (under Dasgupta’s objective function) is thus an
HC-tree (T ∗, δ∗) that minimizes DC-cost. In this paper, when we talk about “hierarchical
clustering” as a problem, we always refer to the problem of finding a HC-tree that is optimal
(minimum or maximum) with respect to DC-cost.

Dasgupta shows that any HC-tree with minimum weight for graph G is also an HC-
tree with maximum weight for its complement G. We consider only unweighted graphs,
equivalently w(uv) = 1 for all uv ∈ E and 0 otherwise. For any node t ∈ T , we define
G(T,δ)[t] as the subgraph of G induced by δ−1(L(T [t])), the vertices of G mapped to leaves
in T [t]. Similarly, for any two nodes t1, t2 ∈ T with L[t1] ∩ L[t2] = ∅, we define G(T,δ)[t1, t2]
as the bipartite subgraph of G consisting of all edges with one endpoint in δ−1(L(T [t1])) and
the other endpoint in δ−1(L(T [t2])). If (T, δ) is inferred from context, we further shorten
these to G[t] and G[t1, t2]. We can now simplify the Dasgupta cost function on unweighted
graphs as follows:

DC-cost(G, (T, δ)) =
∑

t∈V (T )\L(T )

|V (G[t])| · |E(G[cl, cr])| : cl, cr children of t

We start with a simple but useful fact.

I Property 1. Let G,G′ be two edge-disjoint graphs over the same vertex set V (G), and (T, δ)
an HC-tree of V . The DC-cost of the decomposition on their union GU = (V (G), E(G) ∪
E(G′)) is the sum of the costs on each graph:

DC-cost(GU , (T, δ)) = DC-cost(G, (T, δ)) + DC-cost(G′, (T, δ))

MFCS 2020
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Proof. The cost of (T, δ) on GU is simply the sum, over every edge e ∈ E(GU ), of the size
(i.e. number of vertices) of the subgraph in which e is cut. This is the same as adding
together the sums over every edge in G and every edge in G′. J

I Corollary 1 ( [6], Section 4.1). An HC-tree of G with minimum DC-cost is also an HC-tree
of G with maximum DC-cost.

Proof. G is by definition edge-disjoint from G, therefore DC-cost(GU , (T, δ)) =
DC-cost(G, (T, δ))+DC-cost(G, (T, δ)) by Property 1. But the union of G and G is isomorphic
to Kn where n = |V (G)|, and we know that every HC-tree of Kn has the same cost,
namely 1

3 (n3 − n) ( [6], Theorem 3). Therefore, for any HC-tree (T, δ), DC-cost(G, (T, δ)) =
1
3 (n3 − n)− DC-cost(G, (T, δ)). We conclude that a HC-tree of G with minimum cost is a
HC-tree of G with maximum cost, and vice versa. J

3 Well-behaved Graphs

Minimizing DC-cost of a graph is accomplished by the exact same HC-trees that maximize
DC-cost for the complement graph. However, for specific graph classes, like bipartite graphs,
it can be easy to find an HC-tree maximizing the DC-cost but hard to minimize the DC-cost,
or vice-versa. Let us consider a very simple operation to construct sparse graphs. Take
G(k), consisting of k disjoint copies of some graph G. If we are given an HC-tree T for
G of minimum DC-cost then any HC-tree for G(k) hierarchically clustering each copy of
G as done in T will have minimum DC-cost. However, maximizing the DC-cost for G(k)

seems harder. Given an HC-tree T of maximum DC-cost for G we call any HC-tree for G(k)

that hierarchically clusters each copy of G as in T a factorized HC-tree. Let us define this
formally:

I Definition 2 (Factorized HC-tree). Let G be a graph, (T, δ) an HC-tree of G of maximum
DC-cost W , and k a natural number. A factorized HC-tree (T, δ)(k) of the graph G(k) is
made as follows: Make a copy of (T, δ) and for every node t, make

G
(k)
(T,δ)(k) [t] =

k⋃
i=1

G(T,δ)[t]

This is not a complete HC-tree, since for t ∈ L(T ), G(k)[t] is not a single vertex, but k
vertices. But these k vertices are all disjoint, therefore any extension of this partial HC-tree
will have the same DC-cost k2W and be regarded as a factorized HC-tree.

As previously mentioned, if G is bipartite then for any k the factorized HC-tree for G(k)

will have max DC-cost. We give this property a name.

I Definition 3 (Well-behaved graph). Let G be an unweighted graph, and W the maximum
DC-cost over HC-trees of G. We call G max-well-behaved, or just well-behaved if, for any
natural number k, the maximum Dasgupta cost over HC-trees of the graph G(k) is equal to
k2W . The complementary graph G is called min-well-behaved.

So any bipartite graph G is well-behaved and thus computing the max DC-cost of any
G(k) can be reduced to computing the max DC-cost of G, or equivalently, computing the
min DC-cost of G(k) (the join of k copies of G) reduces to computing the min DC-cost of
G. We may naturally ask: Is every graph well-behaved? On the contrary, counterexamples
abound, even for very small graphs, see Figure 1 for an example.
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How to show that some interesting non-bipartite graph G is well-behaved? We need to
show that for any value of k no HC-tree of G(k) has higher DC-cost than the factorized
HC-tree. We will show this by what we call a normalization procedure on HC-trees: starting
with an arbitrary HC-tree we incrementally, step by step, modify it into the factorized
HC-tree and show that at no step does the cost decrease. We formalize this notion:

I Definition 4 (Safe operation). An operation that takes an HC-tree of a graph G as input
and outputs another HC-tree of the same graph is called safe (for maximization) if the
DC-cost of the input is no larger than the DC-cost of the output.

I Property 2. [Normalization Procedure] Let G have max HC-tree (T, δ). If there is a
procedure that for any k takes as input any HC-tree of G(k), iteratively applies safe operations,
and outputs a factorized HC-tree (T, δ)(k) of G(k) then G is well-behaved.

The prism P is the graph on six vertices shown in Figure 2. It is non-bipartite, and its
complement is a cycle. P exhibits a high degree of symmetry (it is vertex-transitive), and
thus has a limited number of non-isomorphic decompositions. The optimal HC-tree we will
base our normalization procedure around is also shown in Figure 2, and has the maximum
cost of 48 (note P has also another optimal HC-tree). To be convinced that this is indeed
optimal, note that in a minimum optimal HC-tree (T, δ) of its complement, every subgraph
induced by a node in T must be connected if the whole graph is connected. We will show in
Section 5 a normalization procedure for the prism as described in Property 2 to establish the
following:

I Lemma 5. The prism is max-well-behaved, and thus C6 is min-well-behaved.

This result is non-trivial, and should be seen in light of e.g. the five-vertex graph in
Figure 1, whose complement is a 3-cycle and two isolated vertices, that is not max-well-
behaved.

4 NP-Hardness for Unweighted Graphs

Dasgupta shows that for edge-weighted graphs, finding an HC-tree of maximum DC-cost is
NP-hard, by reduction from an NP-complete problem he called NAESAT*:

I Definition 6 (NAESAT*). We are given a boolean CNF formula where every clause contains
either two or three literals (called “2-clauses” and “3-clauses”, respectively), and every variable
appears in exactly one 3-clause, and in exactly two 2-clauses with one appearance positive
and the other negative. Moreover, no 2-clause nor its copy with polarities reversed is part
of any 3-clause. Is there a not-all-equal-satisfying assignment, i.e. one where every clause
contains at least one true and one false literal?

Dasgupta first gave a simple reduction from NAE3SAT, where every clause has exactly 3
literals but there is no restriction on how many times each variable appears in the formula, to
NAESAT*. In that reduction it follows trivially that no 2-clause nor its copy with polarities
reversed will be contained in a 3-clause, so we have included that property in our definition
of NAESAT*. We will assume, as Dasgupta [7] does, that if there is a 2-clause C whose
literals also appear in a 2-clause C ′, but with reversed polarity, then C ′ is removed.

Dasgupta’s reduction to hierarchical clustering takes as input a NAESAT* formula ϕ on
n variables with m = 1

3n 3-clauses and m′ ≤ n 2-clauses, and constructs a graph G with two
vertices for each variable x appearing in the formula ϕ: one corresponding to x and one to
x. For every 2-clause (x̃ ∨ ỹ), where a variable with a tilde above, x̃, is shorthand for “x or

MFCS 2020



47:6 Hierarchical Clusterings of Unweighted Graphs

x”, he adds an edge between x̃ and ỹ, and also between x̃ and ỹ (these 2m′ edges are called
the 2-clause edges). For every 3-clause (x̃ ∨ ỹ ∨ z̃), he adds a triangle between x̃, ỹ and z̃,
and also between x̃, ỹ and z̃ (these 6m edges are called the 3-clause edges). In addition, he
adds one edge between x and x for every variable (these n edges are called the matching
edges). He shows that ϕ is in NAESAT* if and only if G has weighted DC-cost at least M
(for some fixed M that we do not specify here). Let us see how this comes about. Given a
not-all-equal assignment of truth values to the n variables of ϕ, he constructs an HC-tree
of G by first splitting V (G) evenly at the root into True literals and False literals and then
splitting all remaining edges at the next level.

This HC-tree cuts all n matching edges at the top since x and x have opposite truth
values. Since the assignment is not-all-equal satisfying all 2m′ 2-clause edges are cut at the
top, and also 4m of the 6m 3-clause edges are cut at the top. Thus 4m+ 2m′ + n are cut at
the top. The remaining 2m 3-clause edges are all disjoint, without sharing any endpoints,
and can thus be cut in one single split at the level below the root. Dasgupta in his reduction
gives a high weight to the matching edges (specifically, the matching edges have weight
2nm + 1) to ensure that any HC-tree of weighted DC-cost M will be a tree that cuts all
matching edges at the top. Note that an HC-tree cutting all matching edges at the top will
naturally define a truth assignment to the variables of the formula. We will show the same
result even when all edges have unit weight; this will imply the following:

I Theorem 7. Hierarchical clustering of unweighted graphs is NP-hard.

Proof. Let the graph G constructed by the Dasgupta reduction when given ϕ be unweighted.
What is then the cost of the HC-tree described above on G, given some not-all-equal
assignment of the underlying Boolean formula ϕ? As described above, in G there are
4m + 2m′ + n edges that are cut at the top and each receive a cost of 2n, and 2m edges
that are split at the next level and each receive a cost of n. The total cost is thus W ∗ =
10nm+4nm′+2n2. We have already argued that if ϕ is not-all-equal-satisfiable then DC-cost
of G is at least W ∗, but now we need to argue the converse. If we restrict to HC-trees that
split V (G) into two equally big parts, then we see that W ∗ is the maximum possible and it
can only be reached if the resulting assignment is not-all-equal satisfying. This is because it
will have to cut all matching edges at the top and furthermore there is no way to cut more
than two edges of a triangle in a single split.

It remains to show that an HC-tree not splitting V (G) evenly at the top will have DC-cost
less than W ∗. To this purpose, we partition the edges of G into two subgraphs G′ and G′′,
with G′ being the graph containing only the 2m′ 2-clause edges, and G′′ containing the
3-clause edges and matching edges. We observe that the 3-clause edges comprise 2m disjoint
triangles, and that the matching edges bind together pairs of triangles, as shown in Figure
2. This means that G′′ is a collection of m disjoint prisms. The graph G′ is also easy to
describe; every variable appears in either one or two 2-clauses. It will belong to a single
2-clause when there was a 2-clause C whose literals also appeared with reversed polarity in
a 2-clause C ′ and C ′ was removed, otherwise it will belong to two 2-clauses. Thus G′ will
be a collection of disjoint components that are 1-regular (single edges) or 2-regular (cycles).
Since G′ is a collection of edges and cycles it is easy to see that no HC-tree whose root is
an uneven split can cut all its 2m′ edges at the top. From Property 1 we know that for an
HC-tree (T, δ) of G we have DC-cost(G, (T, δ)) = DC-cost(G′, (T, δ)) + DC-cost(G′′, (T, δ)).
Thus, for an uneven HC-tree (T, δ) of G to have cost at least W ∗, then DC-cost(G′′, (T, δ)′)
must be strictly higher than W ∗ − 4nm′ since G′ would contribute less than 4nm′. By the
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equality n = 3m, we get

W ∗ − 4nm′ = 10mn+ 2n2 = 30m2 + 18m2 = 48m2

so that G′′ must contribute more than 48m2. But our main Lemma 5 showing that the prism
is well-behaved, implies that 48m2 is the maximum cost achievable for G′′ being m copies of
the prism. It must then be the case that there is no uneven HC-tree of G with cost at least
W ∗.

We conclude that there exists an HC-tree of G with weight at least 10nm+ 4nm′ + 2n2

if and only if the underlying Boolean formula is not-all-equal satisfiable. J

x̃

x̃

ỹ
ỹ

z̃
z̃

x̃ x̃

ỹ ỹ

z̃ z̃
x̃ ỹ

z̃ x̃

ỹ z̃

Figure 2 The prism P , made from 3-clause edges and matching edges. By our definition of
NAESAT*, every 3-clause in ϕ is represented in G. To the middle and right, one possible HC-tree
of P with maximum DC-cost, and the top split of this tree.

5 The Normalization Procedure

We give a normalization procedure for G = P (k) = P1 ∪ P2 ∪ . . . ∪ Pk consisting of k disjoint
copies of the prism P . This procedure takes as input an HC-tree for G, performs a series of
safe operations, and outputs a factorized HC-tree where every prism is clustered according
to the evenly balanced HC-tree T in Figure 2. We could have done this naively by a single
Bottom-Up traversal of the tree, performing some PowerfulBalancing operation on each node
t of the tree. For every possible split of a subgraph of a prism at node t, PowerfulBalancing
would have to perform a safe operation that changes this split into one that is closer to
the desired end goal. However, the number of subgraphs of a prism, and the number of
distinct splits of these subgraphs is very high, 11 and 83 respectively. Thus the naive
PowerfulBalancing is not a practical option to try and prove that the prism is well-behaved.
Instead, our normalization procedure will lower the number of distinct subgraphs and splits
of these subgraphs that appear in a node of the tree before doing the Balancing. In total, we
employ 3 subroutines at each node t of the tree:

Cut Optimization: ensures that every sub-prism split at t involves one of the 6 subgraphs
given in Figure 3 and is split according to one of 8 specific splits plus 6 distinct mirror-
images.
Left-Heavy Distribution: ensures that no sub-prism split at t has the subgraph in the
right child bigger than the one in the left child, restricting to the 8 distinct splits; in the
full version is a picture of these splits.
Balancing: ensures that every sub-prism split at t is split as evenly as possible

MFCS 2020



47:8 Hierarchical Clusterings of Unweighted Graphs

The normalization procedure will make 2 traversals of the tree: the first is a Top-Down
traversal that will perform Cut Optimization on each node, the second is a Bottom-Up
traversal that on each node will perform Left-Heavy Distribution followed by Balancing.
Pseudo-code for this can be found in the full version.

For every prism Pi in G and every internal node t in T , we define Pi[t] to be the subgraph
of Pi that lies inside the cluster at t: Pi[t] = Pi ∩G[t]. Each step of the procedure works on
each of these subgraphs, striving to optimize the way these subgraphs are split.

In the next section we show that after the Cut Optimization is done on all nodes of
the tree, every subgraph Pi[t] is one of the six subgraphs S1, . . . , S6 that are depicted in
Figure 3. This means that in the continuation we only have to consider splits involving these
subgraphs.

We introduce some symbolic notation to easily talk about these splits. Let t be an internal
node in the HC-tree T and let cl and cr be its children. Let Pi[t] be any subgraph. If we
have done Cut Optimization on (T, δ), we know that Pi[t], Pi[cl] and Pi[cr] are isomorphic to
some Sa, Sal

and Sar , respectively. Then we denote the split of Pi at t as Sa → (Sal
, Sar ).

S6 S5 S4 S3 S2 S1

Figure 3 The sub-prisms arising from optimal splits.

We must say a few words on what it means for a subtree of an HC-tree to be fully
normalized, i.e. after we have performed Balancing on the root of the subtree. The end goal
is clear: when we are finished, i.e. when we have performed Balancing on the root r of T , we
want every prism being split into two S3’s at the root, and those S3’s split into S2’s and S1’s
at the children of the root, as seen in Figure 2. But when dealing with the subtree T [t] for a
node t further down the tree, the subgraphs involved can be any Sa. Therefore we define
“fully normalized” as every such Sa in the subtree T [t] being split the same way, for all a.
The allowed splits are S6 → (S3, S3), S5 → (S3, S2), S4 → (S2, S2) and S3 → (S2, S1).

The next sections are devoted to proving that in our normalization procedure, both
the top-down traversal is a safe operation, performing Cut Optimization on every node,
and also the subsequent bottom-up traversal is a safe operation, performing Left-Heavy
Distribution followed by Balancing on every node of the tree. In the full version are a number
of illustrations to help visualizing each step of the normalization procedure.

5.1 Cut Optimization
Let G = P (k) be k disjoint prisms, and let (T, δ) be any HC-tree of G. We look at some
node t ∈ T . Every subgraph Pi[t] is split into two subgraphs Pi[cl] and Pi[cr], with some r
and s vertices, respectively. Not every way to split one graph into two subgraphs with given
numbers of vertices is equally good. The optimal split of Pi[t] into subgraphs with r and s
vertices, is simply the split that cuts the most edges.
I Remark 8. Let G and (T, δ) as above. Let t be an internal node in T with children cl, cr,
and assume that some Pi[t] is split optimally. Furthermore, let S1, . . . , S6 be the graphs
depicted in Figure 3. Whenever Pi[t] = Sa for some a, then Pi[cl] = Sal

and Pi[cr] = Sar
for

some al, ar.
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Proof. It is not hard to verify via simple counting that the subgraphs S1, . . . , S6 have the
minimal number of edges among the subgraphs of the prism. Since there, for any Sa, Sb with
a + b ≤ 6, exists a split of Sa+b into Sa and Sb, this split must cut more edges than any
other split of Sa+b.

Obtaining an optimal split is thus a matter of simply switching around vertices between
Pi[cl] and Pi[cr]. Formally, switching vertices u and v in G with respect to (T, δ) can be
seen as an operation on δ, yielding a new bijection δ′ with the property that δ(u) = δ′(v),
δ(v) = δ′(u), and for every vertex w 6= u, v, δ(w) = δ′(w). This operation preserves the size
of every subgraph of G induced by (T, δ), therefore the only edges affected are the ones that
lie on u or v. We thus conclude that every split that cuts some Sa optimally, cuts it into
Sal

, Sar
for some al, ar. J

I Lemma 9. For any node t ∈ T , Cut Optimization on (T [t], δ) is a safe operation.

Proof. From the proof of Remark 8, we see that for all Pi[t] that is isomorphic to some Sa,
performing Cut Optimization is a safe operation, as it never decreases the DC-cost of (T, δ).
Now, note that we perform this operation on each node of T in top-down fashion. At the
root of T , r, we have that for every 1 ≤ i ≤ k, Pi[r] = P = S6, so the operation is safe on r.
At any other node t, we have already optimized the cuts in u, the parent of t. By Remark 8,
we again have that for every 1 ≤ i ≤ k, there exists some a such that Pi[t] = Sa. Therefore,
the operation also is safe on every other node of T . J

5.2 Left-Heavy Distribution
Now we show that also Left-Heavy Distribution is a safe operation on each node. This step
is performed after Cut Optimization, therefore we can assume every split in the HC-tree is
an optimal one. Furthermore, since this step is done in tandem with the Balancing step, on
each node before moving up to its parent, we can assume that when performing Left-Heavy
Distribution on some node t in T with children cl and cr, then T [cl] and T [cr] are already
fully normalized.

The goal of the second step, Left-Heavy Distribution, is to ensure that for every i,
|Pi[cl]| ≥ |Pi[cr]|. The intuition behind this step is clear: if we first split one component
unevenly, we would expect more uncut edges in the big part than in the small part. Indeed,
this is true for the subgraphs S1, . . . , S6; Sa does not have more edges than Sa+1 for any
a ∈ {1, . . . , 5}. Splitting all components unevenly with the big part on the same side, we
give more weight to these remaining edges when they are cut, further down in T .

We begin by dividing G[t] into two pieces, G[t]L and G[t]R. G[t]L is the union of all those
Pi[t] for which |Pi[cl]| ≥ |Pi[cr]| (the left-heavily split subgraphs), while G[t]R is the union
of all those Pi[t] for which |Pi[cl]| < |Pi[cr]| (the right-heavily split subgraphs). G[t]L and
G[t]R are clearly disjoint, since every connected subgraph lies wholly within one of these
parts. We make a couple of observations about these two subgraphs:
I Remark 10. Every edge in G[cl] is also in G[t]L, and every edge in G[cr] except those
arising from (3-3)-splits is also in G[cr].

Proof. We begin looking at G[cl]: As we have performed Cut Optimization on the HC-tree,
we can assume that Pi[cl] is isomorphic to Sal

for some al ∈ {0, . . . , 6} for every i, and
equivalently every Pi[cr] is isomorphic to some Sar

. Now, for any Pi[t], if this subgraph has
been put into G[t]R it is because it has been split right-heavily, i.e. al < ar. Since al + ar is
at most 6, is follows that al is at most 2. But the optimal subsets of the prism that contain
edges all have at least 3 vertices, therefore Pi[t] cannot contain any edges.
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The proof for G[cr] is roughly equivalent to the one above, but we have to factor in
that there can exist some Pi[cr] in G[t]L that is isomorphic to S3. If this is the case, then
we know that Pi[cl] also must be isomorphic to S3, therefore Pi[t] is a prism that is split
(3-3)-wise. J

I Remark 11. Let (T, δ) be a HC-tree, and t a node with children cl, cr. We give the
children of cl and cr names l1, l2 and r1, r2 respectively. Furthermore, we give the children of
these 4 nodes names x1, x2, x3, x4, y1, y2 and y3, y4 respectively. If T [cl] and T [cr] are fully
normalized, then for every i ∈ {1, . . . , 4}, G[xi] and G[yi] have no edges.

Proof. Assume that T [cl] and T [cr] are fully normalized. By definition, we know that all
the subgraphs in G[cl] and G[cr] have been split optimally as balanced as possible. This
means that all the subgraphs in G[l1], G[l2], G[r1] and G[r2] have at most 3 vertices. These
subgraphs are also split optimally and balanced. This means that for any T [xi] or T [yi],
every subgraph is isomorphic to either of ∅, S1, s2 and thus have no edges. J

When explaining the operation, we assume that the nodes have the same names as in
Remark 11. From here, we identify the nodes that are children of l1, l2, r1 and r2. We then
switch around all the subgraphs that are split right-heavy, so they become left-heavy split.
In the full version is shown a visual representation of this operation. Specifically, we modify
(T, δ) into (T ′, δ′) such that for each pair of nodes xi, yi ∈ T ′, we have

G(T ′,δ′)[xi] = (G(T,δ)[xi] ∩G[t]L) ∪ (G(T ′,δ′)[yi] ∩G[t]R)

G(T ′,δ′)[yi] = (G(T,δ)[xi] ∩G[t]R) ∪ (G(T ′,δ′)[yi] ∩G[t]L)

I Lemma 12. Left-Heavy Distribution on any node t is a safe operation.

Proof. As implied by Remark 11, none of the subgraphs G[xi] or G[yi] have any edges. This
means that for every i, any HC-tree of G(T ′,δ′)[xi] or G(T ′,δ′)[yi] has DC-cost zero. When
this step is done, every edge in G[t] is cut at one of the nodes t, cl, cr, l1 or l2. It is also
evident that every edge is cut in a subgraph that is at least as big in T ′ as it was in T ,
except the edges in cr. Following Remark 10, these edges must necessarily follow from a
S6 → (S3, S3) split at t. The decrease in cost for these edges are therefore matched by the
increase in cost for the other S3 that is split at cl. It follows that (T ′, δ′) has at least as
high DC-cost as (T, δ). Note that every subgraph in T ′[cl] and T ′[cr] is still fully normalized,
since they are split the same way as before. J

5.3 Balancing the HC-tree
Let t be a node of HC-tree (T, δ) on which we have just performed Left-Heavy Distribution.
This means that every split at a node t is optimal and left-heavy, and also that we have
performed Balancing on both its children cl, cr, so that T [cl], T [cr] are both fully normalized.
In the Balancing step we fully normalize T [t]. Since splits at the children are left-heavy,
there are 12 possible splits of sub-prisms at t before we perform Balancing. 4 of these 12
(the first 4 in below) are as even as possible, while 8 are uneven.

a splits of type S6 → (S3, S3)
b splits of type S5 → (S3, S2)
c splits of type S4 → (S2, S2)
d splits of type S3 → (S2, S1)
a′ splits of type S6 → (S6, ∅)
b′ splits of type S6 → (S5, S1)

c′ splits of type S6 → (S4, S2)
d′ splits of type S5 → (S5, ∅)
e′ splits of type S5 → (S4, S1)
f ′ splits of type S4 → (S4, ∅)
g′ splits of type S4 → (S3, S1)
h′ splits of type S3 → (S3, ∅)
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The Balancing step is done as follows: Each uneven split of a sub-prism is modified into
the unique even split on the same sub-prism, by way of moving some vertices from the left
side over to the right side. The details of this operation is shown in a figure in the full
version. In the resulting HC-tree, the sub-prisms are not necessarily split left-heavily in cl or
cr anymore. This does not affect the cost, as these nodes are the lowest that cut edges. We
still flip the left and right side of these sub-prisms to guarantee the behavior of performing
Left-Heavy distribution on the parent of t.

As an example of this type of modification, consider a sub-prism that is split S5 → (S4, S1)
before the modification. We will modify it into S5 → (S3, S2). In this case, we move one
single vertex from the left side to the right side. To optimize the split, we must pick the one
vertex that is not adjacent to the vertex already lying on the right side. However, note that
these movements of vertices from left subtree to right subtree affect also the cost of edges
belonging to even splits, as the sizes of the subtrees in which these edges are cut change.

For every possible split, we have denoted the number of sub-prisms that are split this
way at t with a letter as shown above, where the letters a to d are reserved for even splits
and ticked letters a′ through h′ are reserved for uneven splits.

From Remark 11, we know that before the Balancing step at t, every edge in G[t] is cut
at one of the nodes t, cl, cr, l1 and l2 (where the nodes are named as in Remark 11). After
the modification, every edge in G[t] is cut at one of the nodes t, cl and cr in (T ′, δ′). How
much is gained and lost for each type of split is shown in the figure in the full version.

I Lemma 13. In the bottom-up traversal the Balancing operations collectively contribute to
making this bottom-up traversal a safe operation.

Proof. Assume Balancing has been performed at a node t as explained above, with the
letters a, ..., d, a′, ...h′ denoting the number of sub-prisms before the Balancing of each of the
12 types. To calculate the change in cost, we must look at the sizes of subgraphs of G[t],
with A the number of leaves of the subtree rooted at left child before Balancing at t and A′
this number after the balancing at t, and similarly for B,B′, C (remember that (T, δ) is the
tree before this step and (T ′, δ′) is the modified HC-tree):

A := |G(T,δ)[cl]| = 6(a′) + 5(b′ + d′) + 4(c′ + e′ + f ′) + 3(a+ b+ g′ + h′) + 2(c+ d)
A′ := |G(T ′,δ′)[cl]| = 3(a+ b+ a′ + b′ + c′ + d′ + e′) + 2(c+ d+ f ′ + g′ + h′)
B := |G(T,δ)[cr]| = 3(a) + 2(b+ c+ c′) + 1(d+ e+ b′ + e′ + g′)
B′ := |G(T ′,δ′)[cr]| = 3(a+ a′ + b′ + c′) + 2(b+ c+ d′ + e′ + f ′ + g′) + 1(d+ h′)
C := |G(T,δ)[l1]| ≤ 3(a′ + b′ + d′) + 2(a+ b+ c′ + e′ + f ′ + g′ + h′ + c+ d)
N := |G[t]| = A+B = A′ +B′

Back to our example, we see that in each of the e′ sub-prisms that used to be split
S5 → (S4, S1) there are 3 edges that have their cost changed, for two of them a gain of
B = (A+B)−A since these edges used to be on the left side but are now cut at t, while
one edge incurs a loss of A−A′ since the left side has shrunk in size. The net gain (Gain
minus Loss) for these e′ sub-prisms is thus e′(2B −A+A′).

The net gain for all sub-prisms split at t is found by summing in a similar way the net gain
for all the 12 cases. Into this total net gain we now plug the definitions of A,A′, B,B′, C,N
given above, to get a large sum of products of pairs of the variables a, ..., d, a′, ..., h′. After a
simple, but tedious reorganizing of this sum each pair will be multiplied by a coefficient in
this total net gain; these coefficients are shown in the table in the full version.

In this sum, every coefficient is non-negative, except for two terms: −b′h′ and −c′h′.
This means that if G[t] consists of only S6 → (S4, S2)’s (denoted by c′) and S3 → (S3, ∅)’s
(denoted by h′), then the modified (T ′, δ′) actually has lower DC-cost than the original
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(T, δ). In other words, not every call to Balancing will be safe. But in every ancestor of t,
the c′ S6 → (S4, S2)’s are S6 → (S6, ∅)’s, and the h′ S3 → (S3, ∅)’s will at some ancestor be
involved in one of S4 → (S3, S1), S5 → (S3, S2) or S6 → (S3, S3). The coefficients for these
combinations in the sum are 8, 13 and 24, respectively. Therefore, even when including these
combinations of sub-prisms, the cost for these sub-prisms must increase more at the ancestors
of t than it decreases at t. The same argument can be put forward for the combination −b′h′.
This implies that no pair of sub-prisms contributes a lower DC-cost in the finished, factorized
HC-tree than at the start of the bottom-up traversal. J

I Lemma 14. The top-down traversal of (T, δ) in which Cut Optimization is performed is
a safe operation. The bottom-up traversal of (T, δ) in which Left-Heavy Distribution and
Balancing is performed is a safe operation.

Proof. Lemma 9 has already established that the top-down traversal consists of a series of
safe operations and is therefore itself a safe operation, i.e. the DC-cost of the HC-tree that
was given as input is no higher than the DC-cost of the HC-tree after top-down traversal. By
Lemma 12 the Left-heavy Distribution on each node is also safe. By Lemma 13 the combined
result of all the Balancing operations together imply that the bottom-up traversal is also a
safe operation, i.e. the DC-cost of the HC-tree resulting from the top-down traversal does
not have DC-cost higher than the DC-cost of the HC-tree after the bottom-up traversal. J

I Lemma 5. The prism P is max-well-behaved, and thus C6 is min-well-behaved.

Proof. We have demonstrated a safe normalization procedure that works for any k and any
HC-tree of G = P (k) as described by Property 2. Safeness of the procedure follows from
the safeness of the two steps, both the top-down traversal and the bottom-up traversal, as
established by Lemma 14. This means that no HC-tree of G = P (k) has DC-cost higher than
the tree output by the normalization procedure. This output tree is a factorized HC-tree
since at its root node r every connected subgraph Pi[r] of G[r] is the prism S6 and every
prism at r is split into two S3’s, which are further split into the independent sets S2 and S1,
as in Figure 2. This decomposition is thus the factorized HC-tree, of DC-cost 48k2. J

6 Conclusion

We leave as an open problem the complexity of deciding if a graph is max or min well-behaved.
A related question arises if we assume that we are given an HC-tree T of max DC-cost for a
graph H and also an integer k, and we ask for an HC-tree of max DC-cost for H(k). Note
that the equivalent min DC-cost version of this problem, where adjacency denotes similarity,
instead looks at the join of k copies, i.e. a dense graph where an edge is added between
any two vertices from distinct copies. It is not clear to us if these problems on k copies are
solvable in polynomial time, even though we assume an optimal HC-tree is given for a single
copy.

It is also currently an open problem whether an optimal hierarchical clustering can be
found efficiently when the input graph is an unweighted tree.
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