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—— Abstract

dxd

Consider a discrete dynamical system given by a square matrix M € Q and a starting point

s € QY. The orbit of such a system is the infinite trajectory (s, Ms, M?s,...). Given a collection
Ty, T2, ..., Tm C RY of semialgebraic sets, we can associate with each T; an atomic proposition P;
which evaluates to true at time n if, and only if, M"s € T;. This gives rise to the LTL Model-Checking
Problem for discrete linear dynamical systems: given such a system (M, s) and an LTL formula over
such atomic propositions, determine whether the orbit satisfies the formula. The main contribution
of the present paper is to show that the LTL Model-Checking Problem for discrete linear dynamical
systems is decidable in dimension 3 or less.
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1 Introduction

A discrete-time linear dynamical system consists of a square matrix M € Q4*¢ and a starting
point s € Q%. Tts trajectory, the orbit of s under M, is the infinite sequence (s, Ms, M?s, ...).
Such systems constitute a family of fundamental models, and decision problems associated
with their trajectories arise frequently in the analysis of automata, Markov chains, linear
recurrence sequences, and linear while loops (see, e.g., [8, 10, 13] and references therein).

One of the earliest decision problems for linear dynamical systems was formulated by
Harrison in 1969 [11], and subsequently baptised the “Orbit Problem” by Kannan and Lipton,
who famously solved it a decade later [12]. The Orbit Problem asks, given a linear dynamical
system (M, s) in ambient space R? together with a point target ¢ € Q%, whether the orbit of
s under M reaches t. Kannan and Lipton established polynomial-time decidability of the
Orbit Problem in all dimensions. In subsequent work [13], Kannan and Lipton speculated
that more complex decision problems might also be decidable; specifically, they considered
variants of the Orbit Problem in which the target ¢ is replaced by a linear subspace ' C R<.
They conjectured that for one-dimensional subspaces, reachability might remain decidable,
? Toghrul Karimov, .Joél Ouaknine, .and James Worrell;
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but in the same breath they noted that when T is a (d — 1)-dimensional subspace of R?, the
corresponding reachability problem is precisely equivalent to the well-known Skolem Problem
asking whether a linear recurrence sequence has a zero, which itself has been open for many
decades [10, 23] (although decidability is known in dimension 4 or less [18, 24]).

The problem of reaching a linear subspace was studied by Chonev et al. in [6, 8], in
which the authors established decidability for subspaces of dimension up to three (regardless
of the dimension of the ambient space). Chonev et al. then turned their attention to the
Polyhedron-Hitting Problem [7], in which the target is an arbitrary polyhedron. Decidability
in dimension 3 was established, but the authors showed that in dimensions 4 or higher,
solving the Polyhedron-Hitting Problem would necessarily entail major breakthroughs in
Diophantine approximation, considered out of reach at the present time. More recently,
Almagor et al. studied the Semialgebraic Orbit Problem, in which the target is an arbitrary
semialgebraic set [3]. Once again, decidability in dimension 3 was shown to hold. Finally, in
very recent work, and building on earlier results [2], Almagor et al. introduced a unifying
framework for formulating reachability queries for discrete linear dynamical systems [4],
subsuming all of the above problems. Roughly speaking, the authors considered instances in
which both the source and target are semialgebraic sets, and a specification formalism in
which one may quantify over members of these sets. Crucially, however, their First-Order
Orbit Queries framework only allows reachability queries (“is there a positive integer n such
that, after n steps, such and such properties hold?”). Almagor et al. established decidability
in dimension 3.

Main contributions. In this paper, going considerably beyond reachability, we tackle
the problem of full LTL model checking for orbits of discrete-time linear dynamical systems in
dimension 3 (or less). More precisely, we are given a linear dynamical system (M, s) (with a
singleton starting point s € Q?), together with a collection 77, ..., T,, C R? of semialgebraic
sets, and an LTL formula ¢ over atomic propositions P, ..., P,,. The atomic proposition
P; evaluates to true at time n if, and only if, the n-th component of the orbit lies in T3,
i.e., M"™s € T;. Such a framework enables one to formulate vastly more sophisticated and
complex properties of orbits than mere reachability. Our main result is that the LTL
Model-Checking Problem for discrete-time linear dynamical systems in three
dimensions is decidable, with complexity in exponential space.

Some remarks are in order:

1. Since we have a single starting point, the orbit consists of a single trajectory. The problem
we are solving is sometimes referred to in the literature as “path checking”, although
typical applications in runtime verification and online monitoring involve finite traces,
e.g., [15]. Path checking ultimately periodic infinite traces is considered in [16], but the
traces arising from linear dynamical systems need not be ultimately periodic (see [1]).

2. Our framework is limited to dynamical systems in three (or fewer) dimensions. As men-
tioned earlier, it is known that mere polyhedral reachability is “hard” (in a Diophantine-
approximation sense) in dimensions 4 and above, and as LTL model checking with
semialgebraic targets vastly generalises polyhedral reachability, one cannot reasonably
expect to prove decidability in dimensions higher than 3.

3. Beyond the search for maximal versatility and generality, our use of semialgebraic sets —
rather than, say, products of intervals or polyhedra — in our specification framework has
a practical motivation: in application areas such as program analysis, semialgebraic sets
are indispensable to formulate sufficiently expressive properties, whether one seeks to
overapproximate a set of reachable states, or to synthesise invariants or barrier certificates;
see, e.g., [14].
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On a technical level, our approach makes extensive use of spectral techniques and relies on
various tools from algebraic and transcendental number theory, notably Baker’s theorem on
linear forms in logarithms of algebraic numbers, as well as Kronecker’s theorem in Diophantine
approximation.

In [1], Agrawal et al. consider a problem that is closely related to ours, namely the
approximate verification of the symbolic dynamics of Markov chains. More specifically, they
view a Markov chain as a distribution transformer: a stochastic matrix M and an initial
probability distribution s give rise to an orbit (s, M's, M?s,...). They further discretise the
probability space into finitely many boxes (products of intervals), which give rise to atomic
propositions in exactly the same manner as in our setting. They then consider LTL model
checking over the resulting formalism, but observe that the set of infinite words arising as
symbolic trajectories of a given Markov chain can fail to be w-regular; consequently, they
switch their attention to “e-approximations” of the model-checking problem (the precise
definitions are technical) and are able to establish decidability in all dimensions. This
variant of the model-checking problem does not allow to check a specific path and thereby
circumvents many of the difficulties arising in the present paper. The two pieces of work
are therefore fairly distinct, both in terms of their respective scope and in the mathematical
approach taken, despite sharing similar motivations.

2 Mathematical background

A semialgebraic set T' C R"™ is defined by a Boolean combination of polynomial inequalities
of the form p(xy,...,2,) > 0 and g(x1,...,2,) > 0 for polynomials p,q € Z[z1,...,z,].

2.1 Algebraic numbers

A complex number « is algebraic if it is a root of a polynomial p with integer coefficients. We
denote the set of algebraic numbers by A. For an algebraic number «, its defining polynomial
Pq is the unique polynomial of the least degree that has « as a root and coeflicients that do
not share common factors. Given a polynomial p € Z[x], let ||p|| denote the bit length of its
representation as a list of coefficients encoded in binary, deg(p) denote its degree and H (p)
denote its height (i.e. the maximum of the absolute value of coefficients of p). Throughout
this work we make an extensive use of the facts that for each pair «, § of algebraic numbers,
deg(af) < deg(a) 4 deg(B) and H(af) < H(a)H(p).

An algebraic number « can be represented using its defining polynomial p, together with
rational approximations of its real and imaginary parts to sufficient precision. More precisely,
« can be represented by (pa,a,b,r) € Z[x] x Q3 provided that « is the unique root of p, in
the circle of radius r around a + bi. A separation bound due to Mignotte [17] asserts that for
roots o # 3 of a polynomial p € Zlx],

6
lo — B| > L,
dd+1)/2 fyd-1

where d, H are the degree and height of p,, respectively. Thus if r is less than a quarter
of the root separation bound, then the representation is well-defined. Given a polynomial
p € Z[x], we can compute a standard representation of each of its roots in time polynomial
in ||p|| [5]. Thus for an algebraic number «, we denote by ||| the bit length of its standard
representation.

Given representations of algebraic numbers «, 3 we can effectively compute representations
for the algebraic numbers o + 3, 8, 1, |a|, Re(a), Im(cv) in time polynomial in ||| + || 3.
Efficient algorithms for these tasks can be found in [5, 9].
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2.2 Number-theoretic bounds

Throughout the paper, we make an extensive use of the following lemma, which itself is a
consequence of the celebrated Baker-Wiistholtz theorem.

» Lemma 1 ([19]). There exists a constant C such that for algebraic numbers «, 3, for

. 1
everyn > 2 if o™ # 3, then |a™ — 8| > — AT -

Lemma 2 below states the following: if we start at an arbitrary point v € T on the unit
circle, and repeatedly apply rotation through arg(A) radians for A € T N A that is not a root
of unity, we will enter any open interval J C T in at most a certain number of steps that
does not depend on the starting point v but depends on the size of J. Henceforth we denote
by |J| the arc length of the interval J C T in radians.

» Lemma 2. There exists a constant D such that for every X € T N A that is not a root of

1P
unity and open subinterval J of T, for each v € T, yA™ € J for some n < 27 (%) .

Proof. By the Pigeonhole principle, if there are Ny > % points on the unit circle, at least

two of them will have arc distance smaller than |J|. We select Ny = L%J +1 > |27”| and
consider the sequence (A, A\2,...). By the preceding argument, there exist 1 <k <m < N;

such that A¥ and A™ have arc distance smaller than |J|. That is, arg(A™ ) < |J|.
Bounding arc length from below with Euclidean distance and using Lemma 1,

1 1
m — k) IAFINT = 7, (NN
kil

argV" ) 2 [N ] = A1 2

(m=k) for 4 > 0. As the arc distance between any

consecutive terms z;, z;+1 is less than |J|, this sequence must enter J before winding around
the unit circle once. We therefore obtain that for some

C C
o — |J] o (A1) o\ (A1)
< | — 1< |27 = |J]) | — 1<2 —
m < |ty * —{(” 7] =

Now consider the sequence z; = Y\

Zn, € J. Translating this back to the sequence (A, A\?,...) we have that YA € J for some

or 97\ (IAIHITIDE o\ (AN +1
< —.2 — =2 — .
=T ”<J|> ”<|J|>

Finally, choosing D such that (|A|| + ||1])C + 1 < |A|” yields the desired result. <

3 The LTL Model-Checking Problem

Suppose we are given a matrix M € Q3*3, a point s € Q% and an LTL formula ¢ over
semialgebraic predicates 11, ..., T, C R? as an input. We associate with each T; an atomic
proposition P; which evaluates to true at time n in case M"™s € T;. Hence we associate an
w-word w over 211 Pm} with the orbit (s, Ms, M?s,...) in the standard manner. The LTL
Model-Checking Problem is then to decide whether w = ¢.

We assume that ¢ is given in the form

p=T|oNp|oVe|pUp|oRe | Xe
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where T is an atomic semialgebraic set described via a single polynomial inequality of the
form p(x) > 0 or p(z) > 0. Observe that ¢ does not contain the — operator: an arbitrary
formula v over semialgebraic sets (defined by a Boolean combination of inequalities of the
type p(x) > 0 or p(x) > 0) can be translated into an equivalent formula in this form by first
translating ¢ into negation-normal form and then replacing —p(x) > 0 with —p(z) > 0 and
—p(z) > 0 with —p(z) > 0. This translation incurs at most a linear blowup in size.

Throughout the paper we assume that the polynomials p defining the atomic predicates
are given as a list of coefficients including (possibly many) zeros. Hence it is always the case
that [|p|| > deg (p).

We analyse the problem based on the eigenvalues of M. Our main result is the following.

» Theorem 3. Given M € Q3*3, s € Q3 and ¢, the LTL Model-Checking Problem is
decidable in EXPSPACE in | M| + ||s| + [|¢]|-

4 When not all three eigenvalues are real

We first consider the case in which M has complex eigenvalues A, X and a real eigenvalue p.

Moreover, we assume that \¥ ¢ R for all k € N, i.e. v = ﬁ is not a root of unity. This case
requires by far the most detailed analysis. However, the final model-checking algorithm is
quite simple in that it does not involve any non-trivial manipulations of algebraic numbers
or semialgebraic sets.

4.1 Preliminary analysis

In this section we introduce normalised expressions in order to study the set of all values of
n for which the term M™s of the orbit is in an atomic semialgebraic set T. The treatment
here mostly mirrors that in [4].

Since M is assumed to have three distinct eigenvalues, we can diagonalise M = PDP~!

A0 O
where D = |0 A 0|. Observe that M"s = PD"P~'s and P, P~! contain algebraic
0 0 p

entries of constant degree and height polynomial in ||M||. Hence we can write

al A" + chXn +c1p"
M"s = |agA\™ + chXn + cop”
azA\"™ + chX" + c3p™

where a1, as2,a3 and cq, co, c3 are all algebraic numbers with fixed degree and description
length polynomial in | M| + ||s]|.

Let T'= {z € R3 : p(x) ~ 0}, ~ € {>,>} be an atomic semialgebraic set. We study the
set Z(T)={n>0: M"se€T}={n>0:p(M"s) ~0}. In the full version of the paper we
show that p(M™s) can be written as

P2 - NP2

npi nps npi nps

E Qpypa,ps A TN PP O s AN (1)
0<p1,p2,p3<deg(p)

where each oy, p,.p, i an algebraic number of degree polynomial and height exponential
in || M| + |Is|| + ||p|l- If all the coefficients oy, p, p, above are 0 then p(M™s) = 0 for all n,
and hence the orbit is either always or never in the semialgebraic set 7. In this case, we
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can replace T in any LTL formula with true or false. Otherwise, let A = max{}/\plxm pp?" :

Qpy po.ps 7 0}. Dividing the expression in (1) by A we obtain that p(M™s) ~ 0 if and only if

k
D By 4 B 4 1) ~ 0
m=0
where
v = ﬁ with degree at most 12 and height polynomial in || M||,
k < deg(p),

r(n) = Z;il X+ with |y < 1 for every 1 <1 <k,
and all the coefficients and exponents f3,,, 0 < m < k and x;, i, 1 <1 <k’ are algebraic.

We refer to e(n) = an:o Biny™™ + BmA"™ + 7(n) as the normalised expression corres-
ponding to T, and denote the bit-length of its syntactic representation by ||e||, which can
again be shown to be of size polynomial in | M| + ||s|| + ||p||-

4.2 On visiting atomic semialgebraic sets

Recall that we defined, for an atomic semialgebraic set T', a matrix M and a starting point s,
Z(T)={n>0: M"s € T}. We now study the structure of Z(T") and show how to compute
a useful finite representation for it.

In this section, let ||Zr|| = [|M]| + ||s|| + ||p||, where p is the polynomial defining T
Let e(n) = anzo BinA™™ + BmA™™ + r(n) be the normalised expression corresponding to
T. We call the function f(z) = anzo Bmz™ 4 Bmz™, f : C — R the dominant function
corresponding to T. Observe that e(n) = f(y™) + r(n).

From [4] we know that f has at most 4k zeros in the unit circle T, which are algebraic
numbers with description length polynomial in || f|, and that

» Lemma 4. There exists N = 2”6“0(1)

f(y") #0, and
f&) >0 f(™) +r(n) >0 ¢ff MPs e T.
Since f is a continuous real-valued function, it maintains its sign between its (at most 4k)

such that for allm > N,

roots on the unit circle. Recalling that |le| = HIT||O(1), we rephrase Lemma 4 as follows:
» Theorem 5. Let T' be an atomic semialgebraic set. There exist N = 2”IT”O(1) and J CT
that is a union of finitely many open intervals such that for n > N, M"s € T if and only if
e J.

Such J can be written uniquely as a disjoint union of open arcs in T. We refer to such
intervals as the component intervals or components of J. Observe that the endpoints of
components of J are roots of f. Recall that 7y is not a root of unity, and hence by Kronecker’s
theorem, the sequence (7%);ey is dense in T. Tt follows that the sequence (7¥ %),y is likewise
dense in T, and we obtain that J is unique, in the sense of being independent from any N
that satisfies the conclusion of Theorem 5. Hence we refer to J as the finite union of (open)
intervals corresponding to T .
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4.3 Z(p) for general ¢

We now study the set Z(p) = {n > 0:(M"s, M" s ...) = ¢}, i.e. the set of all suffixes
of the original orbit (s, Ms, M?s,...) that satisfy ¢, for an arbitrary LTL formula ¢. We
extend Theorem 5 by showing that Z(¢) also has a corresponding union of finitely many
open intervals that can be effectively computed from the finite unions of open intervals
corresponding to its subformulas.

In this section, let | Zp|| = ||M|| + ||s|| + Yiv, | T3]| where Ty, T5,...,T,, are atomic
predicates appearing in some formula ¢. Intuitively, ||Zs|| is the “basic length” of the input
that doesn’t account for the structure of ¢. Our main result is the following:

» Theorem 6. Let ¢ be an LTL formula. There exists N = 2lIZo ) O and a finite union of

open intervals J, C T such that for alln > N, n € Z(p) if and only if y* € J,,.
To prove this, we will combine Theorem 5 with the following result:

» Theorem 7. Let semialgebraic sets T1,Ts, ..., Ty, time step N and finite unions of open
intervals Jy, Jo, ..., Jm C T be such that for all 1 <i < m and time stepsn > N, n € Z(T;)
if and only if v € J;. Then for every LTL formula @ over 11,15, ..., T,, there exists a finite
union of open intervals J, C T such that for alln > N, n € Z(p) if and only if v € J,,.
Moreover, such J, is unique.

Proof. The uniqueness of J,, if such a finite union of open sets exists, can be established
using the same topological argument as the one used in the uniqueness result accompanying
Theorem 5. In order to prove existence of J, with the desirable properties we proceed by
induction on the structure of ¢. If ¢ = Tj, then J, = J; by assumption.

Next, let J,, and J,, be the finite unions of open intervals corresponding to ¢ and s,
respectively. Recall from Section 3 that we can assume ¢ does not contain the — operator.
1. Suppose ¢ = 1 V 2. Then J, = J,, U Jg,.

2. Similarly, if ¢ = @1 A @o then J, = J,, N Jy,.
3. Consider ¢ = X1. Suppose n > N. Then
ne€Z(Xp1) < n+1le Z(e)
= "t e,
= Y ey,

The first equivalence follows from the semantics of the X operator, and the second from

the fact that n 4+ 1 > N. Hence J, = v~ 1J,,.

4. The main difficulty lies in analysing the case ¢ = 1 Uwps. If J,, is empty, then J, will

be empty too. Now suppose J,, is not empty, and let I be length of a maximal interval
in J,,. Using Lemma 2 we can effectively compute a bound

such that 4" returns to J,, after at most b time steps — that is, for every n > N, there
exists 0 < A < b such that vt ¢ Jp,. Thus we have that for n > N,

n€ Z(piUps) < FA>0.n+A € Z(p2) A¥Ym € [n,n+ A). m € Z(¢p1)
<~ JA€[0,b]. n+ A€ Z(p2) A\Vm € [n,n+ A). m € Z(p1)

b A-1
= \/ <n+AEZ(<p2)/\ /\ n—i—mEZ(gol)).

A=0 m=0
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By the induction hypothesis, n + A € Z(p2) < "2 € J,,, which is equivalent to
RS ’y‘AJw. Similarly, n +m € Z(p1) <= " € v~™J,,. Hence we obtain that

b A—-1
n€ Z(p1Up) < 7" € \/ (vAJW A vagol)

A=0 m=0

and therefore, the union of open intervals corresponding to ¢ is

b A-1
Jo=U <7AJ<P2 n N 7’"%) :

A=0 m=0
5. Finally, suppose ¢ = p1R2. If J, np, = Jp, NJy, is empty, then J, = T if J,, = T and
J, is empty otherwise. If, on the other hand, J,, A, is not empty, then J, = J,, (o Ap2)
which can be computed using the preceding analysis. |
From the construction described above we can observe that the endpoints of components of
J, come from those of its immediate subformulas. For example, the endpoints in J,, yy, are
all endpoints of either (; or ¢1 which have been multiplied by v~! for at most b(yp2) steps.
In general, the endpoints of component intervals in .J, are of the form v~"z where n is an
integer and z is a zero of a dominant function (as defined in Section 4.2) corresponding to

some semialgebraic target set T; appearing in ¢.

To prove Theorem 6, recall from Theorem 5 that we already know that for each atomic
T;, there exist N; = 2UIMI+sIHITIN apd J; such that for n > N, n € Z(T;) if and only

if y* € J;. Taking N = maxj<j<m NV; = 2”117“0(1) we obtain the desired result.

4.4 Analysing the inductive construction of Z(T) quantitatively

We now study how small the component intervals in the set J, corresponding to a formula ¢
can be. Our aim with this analysis is to be able to bound the return time T'(p) of ¢ with
respect to the orbit m = (s, Ms, M?s,...), defined as

T(p) =sup{ts —t1 | t1,t2 € NAT[ta,00) F o A7[t,00) F ¢ for every t1 <t < {2}

Informally, T'() denotes the longest time ¢ remains false in ™ = (s, M's, M?s,...) before
becoming true.

Recall from Section 4.3 that the endpoints of intervals in J,, are of the form y~"z for some
z that is a root of a dominant function corresponding to an atomic predicate T; appearing in
. Hence for an endpoint v € T we define the retraction depth of u to be the smallest integer
n such that u = v~z for such z. Next, for an LTL formula ¢ over T1,...,T,,, define

d(p) to be the length of a smallest maximal interval in the finite union J, of intervals

corresponding to ¢,

R(¢p) to be the maximum of retraction depths of endpoints in J,,, called the retraction

depth of p, and

D(y) denote the maximum nesting depth of temporal operators in ¢, with atomic formulas

having depth 0.
Further, throughout this section let ||Zp|| = | M||+||s||+>i- [|T;]| and ||Z|] = | M|+ s+l ¢l
where T1, ..., T, are the atomic semialgebraic sets appearing in the input formula ¢. We link
the quantities defined above by analysing the inductive construction described in Theorem 7.

. PR S—
» Lemma 8. For every ¢, d(p) > o2
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Proof. We proceed by bounding how close two endpoints of an interval in J, can be given
the retraction depth R(yp) of J,. Let 21, 22 be roots of dominant functions corresponding to
Ty,T5 that appear in ¢ and 7~ 21,7~ "2 22 two endpoints of component intervals in J,. We

show that ||y ™zy — vy "2z > s where N = |n; — na|. The statement of the

[ S
(N+2)”IbHO(1
lemma then follows from the fact that N < R(y) by definition.

For simplicity assume n; > ns. Recall that the roots z1, 2z have degree ||Ib||o(1) and

height 21701 whereas ~ has degree at most 12 and height ||Ib||o(1). Next, observe that
H,y—nlzl _ 7—71222” _ Hzl _ ,_ynl—ngzzu _ % _ ,ynl—ng _ ||Z/ _ ,ynl—ngH

where 2’ € T is also of degree HIbHO(l) and height 21717
If n;y — ng < 2, then we use the root separation bound given in Section 2.1 to obtain
that ||z; — 4™ ™2 25| > ——547. This can done by separating the roots of the product

2llzp O
polynomial p1ps where pi, ps are polynomials that have 2z’ and "1 ~"2 as roots. Observe
o
that p;py itself is also of degree HIbHO(I) and height 21717
If ny — no > 2, then by a direct application of Lemma 1 we obtain that

1 1
(1 — ng) U+ o (ny — n2)”Ib”o(l>.

PESARE

Combining the two bounds yields the desired result. <

We now move onto analysing the retraction depth of ¢. If ¢ does not contain any temporal
operators then all the endpoints in J,, are roots of dominant functions themselves. Hence,
by definition, R(¢) = 0. For general ¢, on the other hand, we have the following result.

» Lemma 9. For every formula ¢ with temporal operator depth D(y) > O there exist
k < D(y) formulas ¢1,...,pr over the same atomic predicates as ¢ such that D(p1) <
D(p2) <+ < D(pr) < D(p) and

"

Proof. Let ¢ be a formula with D(¢) > 0. We first show that there exist a subformula ¢’ of
¢ with smaller temporal operator depth and a formula ¢” (possibly not a subformula of ¢)
with D(¢”) < D(¢) such that

k 2
R(p) < k+27r; (d(%)

) o lIv11P
R(<p)§1+R(<p)+27r(d(<pH)) .

The statement of the lemma then follows by repeatedly applying the inequality to R(¢’) at

most D(p) times. We proceed by a case analysis on the structure of ¢.

1. If o =1 Aws or p = 1 V e, then R(p) < max{R(yp1), R(p2)}. Hence we can take
¢’ to be the immediate subformula with the larger retraction depth and ¢” to be any
subformula of ¢;

2. If ¢ = X1, then R(p) <1+ R(¢’) for a smaller subformula ¢’ (namely ¢1);

3. If o = 1 Uys, and J,,, is empty, then so is J, and R(yp) = 0. If J,, is not empty, then
the inductive construction shows that the endpoints of J, are all endpoints of J,, or

2
d(p2)

117
Jp, multiplied by v~ for at most b = b(p2) = 27 ( ) steps (Theorem 7, case
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4). Hence R(p) < max{R(p1), R(¢2)} + b(p2) and we can take ¢’ to be the immediate
subformula of ¢ with larger retraction depth and ¢” to be o (which indeed does have a
smaller temporal operator depth and also happens to be a subformula of ).

4. Finally, suppose ¢ = ¢1Ry2. The only non-trivial case arises from non-empty Jy,, rp,,
where the endpoints of J, are all endpoints of J, rp, or J,,, multiplied by 4~ for at most

D
b(p1 A o) steps. In this case, similarly to the above, R(¢) < R(y') + 27 (%) o
where ¢’ is the immediate subformula of ¢ with smaller temporal operator depth and
" is a formula with smaller temporal operator depth (namely, ¢1 A 2, which is not a
subformula of ). <

We now combine Lemmas 8 and 9 in the following way. Let ¢ be a polynomial such

D
that [[v[” < q(|Zs]]) and d(y) > W~

operator depth D(p) > 0 there exist k < D(y) formulas @1, ..., ¢, with D(p1) < D(¢2) <
-+ < D(pr) < D(p) such that

1 1

> |

(R(p) + 2)amD = () )
<k+2+27r D i1 (d(w)) >

In the full version of this paper we analyse this recursive relation and show the following.

We obtain that for every ¢ with temporal

d(p) >

» Theorem 10. For any LTL formula ¢, d(p) = In particular, d(yp) =

1
L2 1+D() 7 *

—rory s where ||Z|| = [ M|+ [|s[| + [l

92l TN 7

The interpretation is that all intervals in J, have length bounded below by the reciprocal of
quantity whose magnitude is doubly exponential in the length of the input. In particular, we
can compute a uniform lower bound that only depends on the encoding length of the atomic
predicates and the depth of the temporal operators (in addition to ||M]| and ||s||) and not
on the structure of .

We are now in a position to apply our quantitative analysis to the model-checking problem
via the return time, as discussed at the beginning of this section.

» Theorem 11. The return time T(p) of any LTL formula ¢ with respect to an orbit
2 - o271 +D(2)) 0 . _ 5olTI%®
(s, Ms, M?s,...) is 2 . In particular, T(p) = 2 .
Proof. Let N = 2I%11°" be the time after which whether the suffix (M™s, M™ s, ...} & ¢
depends only on 4", as described in Theorem 7. Applying Lemma 2 to Theorem 10 we obtain
o(1)
that the return time 7”(¢) of ¢ with respect to (MN*1s, MN+25 ) is 92(IZll+ D)7

o(1)
Hence the return time with respect to the original orbit is at most N+7"(¢) = 92+ 2T

<
We will use this result in Section 6 to construct, given an input formula, an equivalent

formula (with respect to the given orbit) that only has bounded quantifiers and then proceed
to solve the resulting finitary model-checking problem.

5 The remaining cases

Now suppose M has three real eigenvalues or eigenvalues \, \, p with v = ﬁ a root of unity.
In the full version of this paper we show that in both cases, for an atomic semialgebraic
target T, Z(T) = {n > 0: (M"s, M"*'s ...) € T} is a semilinear set for which an explicit
representation can be computed. In particular,
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Listing 1 Recursive model-checking algorithm for formulas with only bounded temporal operators.

ModelCheck (formula F, starting point n)
case F = Until(F1, F2, upper bound B):
for i=0 to B do
if ModelCheck (F2, n+i) return true
if not ModelCheck(F1l, n+i) return false
return false
case F = Release(F1, F2, upper bound B):
for i=0 to B do
if not ModelCheck(F2, n+i) return false
if ModelCheck(F1l, n+i) return true
return true
case F = Next(F1)
return ModelCheck (F1, n+1)
case F = And(F1, F2):
1 = ModelCheck(F1, n)
r = ModelCheck (F2, n)
return 1 and r
case F = 0r(F1, F2):
1 = ModelCheck(F1, n)
r = ModelCheck (F2, n)
return 1 or r
case F = atomic semialgebraic T:
return Oracle(T, n)

» Theorem 12. Given a semialgebraic set T, a square matriz M € Q3*3 with three real
o
eigenvalues, and a starting point s € Q, there exists an integer N = 217l ) and a

computable X C {0,1} such that for alln > N, M™s € S if and only if n mod 2 € X.

» Theorem 13. Given a semialgebraic set T, a square matriz M € Q3*3 with eigenvalues
A A, p where v = ﬁ is a root of unity, and a starting point s € Q, there exists an integer

N = 2z and a computable X C {0,1,...,287} such that for alln > N, M"s € S if
and only if n mod 288 € X.

Here once again || Zr|| = ||pl| + | M| + ||s||, where p is the polynomial defining 7. In the next
section we discuss how to utilise Theorems 12 and 13 in order to obtain a decision procedure
for the relevant cases of the LTL Model-Checking Problem.

6 Model-checking algorithm and its complexity

In this section we summarize our algorithmic contribution. Suppose we are given M € Q3*3,
s € Q% and an LTL formula ¢ over semialgebraic 11, ..., T}, as the input. We describe a
decision procedure for determining whether (s, Ms, M?s,...) = .

Let us first consider the complexity of determining, for a given n, M € Q3*3, s € Q2 and
a semialgebraic target T defined via p(x) ~ 0, whether M™s € T. Using iterated squaring
we can encode the statement p(M™s) ~ 0 into the existential theory of real numbers using
a formula of size O(||M||logn + ||p|| + ||s||). If the input is M, s and an LTL formula ¢
containing T, this can be written as O(||Z|| + logn). Since the existential theory of real
numbers can be decided in polynomial space (see, e.g., [21]), an oracle for determining

whether M™s is in a target set T' can be implemented using space polynomial in ||Z] + logn.
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We now move onto the main algorithm. As the first step, determine whether M has
three real eigenvalues p1, p2, p3 or two complex eigenvalues A\, A and a real eigenvalue p. If
the latter is the case, additionally determine whether v = ﬁ is a root of unity or not.

If M only has real eigenvalues or - is a root of unity, we proceed by computing an explicit
representation for the semilinear set Z(¢) = {n > 0: (M"s, M" s ...} = p}. We illustrate
how this can be done by using Theorem 13 and repeatedly combining semilinear sets in case
where 7y is a root of unity. In case M has three real eigenvalues the same procedure can be
applied to Theorem 12.

We first compute an explicit representation for Z(T;) = {n > 0: (M"s, M"*1s,...) € T;}

o described
in Section 5 for each 1 <7 < m and then take the maximum N = max;<;<,, N;. Next we
determine F; = {n < N : M"s € T;} and compute X; C {0,1,...,287} such that for n > N,
M"s € T; if and only if n mod 288 € X. These sets can be determined by making queries

to the oracle of the form M"s é T; for 0 < n < N + 288, requiring oIz space in total.
Finally, from sets F;, X; for 1 < i < m we can construct, for arbitrary formula ¢, sets F' and
X such that for all n < N, (M"s, M"*1s,...) |= ¢ if and only if n € F and for all n > N,
(M"s, M"*1s ...} = ¢ if and only if n mod 288 € X. It only remains to check whether
0 € F. Hence we have a decision procedure that is in EXPSPACE in ||Z||.

for each atomic T; in ¢. To this end, we compute the value of N; = 9l|Zz:

If, on the other hand, v is not a root of unity, then we proceed by replacing each R
and U operator in ¢ with a bounded one. Suppose ¢1Uys is a subformula of ¢. Using
Theorem 11 we can compute an upper bound B on return time T'(p3) of po with respect
to (s, Ms, M?s,...). We then simply replace ¢ Uy in ¢ with 1 USP s (“p; remains true
until g is true, and ¢y becomes true within the first B steps”), with the justification that
at any time step n, if the formula ¢, remains false for all suffixes (M"+9s, M +o+1s ),
0 < 0 < B, then ¢, will remain false for all (M"9s, M™+o+ls ) § > 0. Similarly, for
a subformula of the form @1 R2 we first compute bounds B; and By on the return times
T(p1 A1) and T(—p2), respectively, and set B = max{Bj, Ba}. Observe that B is at most
the bound stipulated in Theorem 11 on the return time of ;R 2 as the latter has higher
temporal operator depth. Finally, we replace ¢1 R s with the bounded version ¢ R<P
with the semantics that either ¢; successfully releases ¢o within the first B steps or s
remains true for the first B steps.

We have now reduced the original problem of checking whether the orbit (s, M's, M?s,...)
satisfies ¢ to determining whether it satisfies ¢’ with all operators bounded by at most
22HIHO(1) steps. Moreover, note that our algorithm so far does not involve any manipulation
of semialgebraic sets or algebraic numbers. In Listing 1 we describe a simple recursive
procedure for determining whether a path satisfies such a formula ¢’ with only bounded

temporal operators starting from a time step n.

To analyse the complexity of our main algorithm, let B be a maximum bound on
a temporal operator in ¢’ (i.e. maximum bound on the return time of a subformula
of ¢). Observe that during the run of the model-checking algorithm, all calls to the

oracle are for time steps n < D(¢')B = 22HI||O(1), where D(y) is the temporal operator
depth of ¢ as defined in Section 4.4. Therefore, the total space required by the oracle is
O (| Z]| +log(D(p)B)) = 2I711° " With respect to the oracle, our algorithm operates in
O(D(p) - log(D(p)B)) = 21Z11°" space as it simply maintains at most D(p)-many counters
with D(¢)B bits. Adding the two space requirements we conclude that our decision procedure
lies in EXPSPACE in ||Z].
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7 Conclusion

We have given an algorithm to model check an LTL formula on the orbit of a linear dynamical
system in dimension at most 3. The procedure reduces the LTL Model-Checking Problem
to an equivalent bounded model-checking problem, which can be solved directly. The heart
of the proof is the effective upper bound, given in Theorem 11, of the so-called return time
of an LTL formula on a given orbit. Establishing this bound requires the use of several
number-theoretic tools. As we have noted in the introduction, there are formidable obstacles
to generalising this result to matrices of higher dimensions, since the LTL Model-Checking
Problem generalises numerous longstanging open decision problems on linear dynamical
systems. Another direction for further work is to consider the problem of model checking
MSO, i.e., to generalise the logic. Here we plan to explore connections with the respective
frameworks of Semenov [22] and Rabinovitch [20] on decidable extensions of MSO with almost
periodic predicates. Finally, in this work we have considered the unique orbit determined by
a fixed starting point. But many situations ask to quantify over different orbits, e.g., one
could ask whether there is a neighbourhood of a given point such that all orbits starting in
the neighbourhood satisfy a given LTL formula — see [4] and [1] for work in this direction.
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