Quick Separation in Chordal and Split Graphs

Pranabendu Misra
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany
pmisra@mpi-inf.mpg.de

Fahad Panolan
Department of Computer Science and Engineering, IIT Hyderabad, India

fahad@iith.ac.in

Ashutosh Rai
Depaertment of Applied Mathematics, Charles University, Prague, Czech Republic
ashutosh@kam.mff.cuni.cz

Saket Saurabh

Institute of Mathematical Sciences, HBNI, India
UMI ReLax, Chennai, India

University of Bergen, Norway

saket@imsc.res.in

Roohani Sharma
Institute of Mathematical Sciences, HBNI, India
roohani@imsc.res.in

—— Abstract

In this paper we study two classical cut problems, namely MuLTICUT and MULTIWAY CUT on chordal
graphs and split graphs. In the MULTICUT problem, the input is a graph G, a collection of ¢ vertex

pairs (ss,t;),4 € [¢], and a positive integer k and the goal is to decide if there exists a vertex subset

S CV(G)\ {si,ti: i € [£]} of size at most k such that for every vertex pair (s;,t;), s; and ¢; are in

two different connected components of G — S. In UNRESTRICTED MULTICUT, the solution S can

possibly pick the vertices in the vertex pairs {(si,t;) : ¢ € [¢]}. An important special case of the

MurticuT problem is the MULTIWAY CUT problem, where instead of vertex pairs, we are given a set

T of terminal vertices, and the goal is to separate every pair of distinct vertices in 7' x T'. The fixed

parameter tractability (FPT) of these problems was a long-standing open problem and has been

resolved fairly recently. MULTICUT and MULTIWAY CUT now admit algorithms with running times

90,0 and 26pM) | respectively. However, the kernelization complexity of both these problems

is not fully resolved: while MULTICUT cannot admit a polynomial kernel under reasonable complexity

assumptions, it is a well known open problem to construct a polynomial kernel for MUuLTIWAY CUT.

Towards designing faster FPT algorithms and polynomial kernels for the above mentioned problems,

we study them on chordal and split graphs. In particular we obtain the following results.

1. MuLTICUT on chordal graphs admits a polynomial kernel with O(k*¢7) vertices. MuLTIWAY CUT
on chordal graphs admits a polynomial kernel with O(k'?) vertices.

2. MULTICUT on chordal graphs can be solved in time min{O(2* - (k* +£) - (n+m)), 20108 %) . (n 4
m) + £(n +m)}. Hence MULTICUT on chordal graphs parameterized by the number of terminals
is in XP.

3. MuLTICUT on split graphs can be solved in time min{O(1.2738" + kn+£(n+m), O(2°-£-(n+m))}.
UNRESTRICTED MULTICUT on split graphs can be solved in time O(4° - £- (n +m)).

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases chordal graphs, multicut, multiway cut, FPT, kernel
Digital Object ldentifier 10.4230/LIPIcs. MFCS.2020.70

Related Version A full version of the paper is available at https://kam.mff.cuni.cz/~ashutosh/
Papers/Conference/Multicut_Chordal.pdf.

© Pranabendu Misra, Fahad Panolan, Ashutosh Rai, Saket Saurabh, and Roohani Sharma;
37 licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).

Editors: Javier Esparza and Daniel Kral’; Article No. 70; pp. 70:1-70:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:pmisra@mpi-inf.mpg.de
mailto:fahad@iith.ac.in
https://orcid.org/0000-0003-2429-750X
mailto:ashutosh@kam.mff.cuni.cz
mailto:saket@imsc.res.in
mailto:roohani@imsc.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2020.70
https://kam.mff.cuni.cz/~ashutosh/Papers/Conference/Multicut_Chordal.pdf
https://kam.mff.cuni.cz/~ashutosh/Papers/Conference/Multicut_Chordal.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2

Quick Separation in Chordal and Split Graphs

Funding Ashutosh Rai: Supported by Center for Foundations of Modern Computer Science (Charles
University projectUNCE/SCI/004).

Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant DST/SJF/MSA-
01/2017-18.

1 Introduction

Graph cuts and flows are a central topic in computer science and combinatorial optimization.
A fundamental problem in this setting is MULTICUT, where the input is a graph G and a
collection of ¢ terminal vertex pairs (s;,t;),7 € [f], and the goal is to output a minimum
sized vertex subset S C V(G) \ {s,t;: @ € []} such that for every vertex pair (s;,%;), $;
and t; are in two different connected components of G — S. Another variant of the problem
where a solution can possibly contain vertices from terminal pairs is called UNRESTRICTED
MurTicuT. Note that UNRESTRICTED MULTICUT can be easily reduced to MULTICUT by
adding a new terminal of degree one for each existing terminal and making it adjacent to the
existing terminal. An important special case of MULTICUT is MULTIWAY CUT, where we are
given a set T' of terminal vertices, and the goal is to separate every pair of distinct vertices
in T x T. One can similarly define UNRESTRICTED MULTIWAY CUT, where the solution can
possibly pick terminal vertices. When |T| = 2 this is the famous MIN (s,¢)-CUT problem
which admits a classical polynomial time algorithm. However, MULTIWAY CUT becomes
NP-hard even for a set of three terminals [7].

These problems appear in a number of applications, and they have been intensively
studied over the past few decades, and several algorithmic tools and hardness results on them
have been obtained in the field of approximation algorithms. These problems have played an
important role in the development of the field of parameterized complexity. The first FPT
algorithm for MULTIWAY CUT parameterized by solution size k was given by Marx [17], who
introduced the notion of important separators. This notion has since become an important
algorithmic tool in the design of parameterized algorithms. Then, an algorithm of running
time 4*n®() was designed by Chen, Liu, and Lu [3], and later this was improved to 2kpOM)
by Cygan et al. [5]. In fact, the algorithm of Cygan et al. [5] also gives a 45~ £PnOM) time
algorithm for MuLTIWAY CUT, where LP is the optimal value of the LP relaxation of the
natural ILP formulation for the problem. Marx and Razgon [18] and Bousquet et.al [1]
independently proved that MULTICUT is FPT when parameterized by the solution size k. In
particular, the algorithm of Marx and Razgon [18] developed the technique of randomized
sampling of important separators which results in the best known algorithm for MuLTICUT
with running time 20(k*) o),

These problems are very well studied from the perspective of kernelization as well. For
UNRESTRICTED MULTIWAY CUT, a randomized polynomial kernel with O(k?) vertices
was obtained by Kratsch and Wahlstrom using the technique of representative families on
gammoids [16]. They also designed a randomized kernel for MUuLTIWAY CUT and MULTICUT
with O(k‘*1) and O(kwﬂHl) vertices, respectively.! Obtaining a polynomial kernel for
MurTiwAY CUT when the parameter is k alone remains a long standing open problem in
the field of kernelization. This is also posed as an open problem in the recent book on
kernelization [10]. However, for MULTICUT, it is known that if there exists a polynomial

L This work is an extension of their work of randomized polynomial kernel for ODD CYCLE TRANSVERSAL
which was awarded the EATCS-IPEC Nerode Prize 2018.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

kernel with parameter k, then co-NP C NP /poly and the polynomial hierarchy collapses
to the third level [4]. This effectively rules out a polynomial kernel for this problem when
parameterized by k alone, while a polynomial kernel when parameterized by both k and £ is
not ruled out for general graphs.
Obtaining an algorithm faster than 2¢
problem, and one way forward towards this is to understand the complexity of MULTICUT on

k)01 time for MULTICUT is an outstanding open

special classes of graphs. Let us recall some results obtained in this direction. Calinescu et al.

proved that MuLTICUT is NP-hard even on bounded degree trees, whereas UNRESTRICTED
MULTICUT can be solved in polynomial time [6]. They also showed that even UNRESTRICTED
MuLTICUT becomes NP-complete on bounded degree graphs of tree-width two. On the other
hand, Guo et al. proved that UNRESTRICTED MULTICUT is NP-complete on interval graphs,
while MULTICUT is polynomial time solvable on interval graphs [13]. Papadopoulos proved
that MULTICUT is polynomial time solvable on permutation graphs and co-bipartite graphs,
but NP-complete on split graphs (which is subclass of chordal graphs) [19]. For planar graphs,
Dahlhaus et al. showed that MULTIWAY CUT can be solved in time n®®) [7]. This running
time is improved to 20000 and a matching lower bound under ETH is provided by
Klein and Marx [15]. Note that this is not true in general graphs, as MULTIWAY CUT is
NP-hard even when ¢ = 3. Very recently, a polynomial kernel for MULTIWAY CUT on planar
graphs parameterized by k is obtained by Jansen et al. [14].

In this paper, we study MuLTICUT, UNRESTRICTED MULTICUT, and MULTIWAY CUT on
chordal graphs and split graphs, and obtain new fast FPT algorithms and polynomial kernels
for them. These problems are formally defined as follows.

MurticuT (MC)

Input: A graph G = (V,E), a set of pairs of vertices T =
{(si,t:) | © € [f]} and an integer k.

Parameter: k, ¢

Question: Does there exist S C V(G) \ Usce{si, t:} such that |S| < k

and there is no path from s; to ¢; for all ¢ € [¢(] in G — S?

UNRESTRICTED MuLTICUT (UMC)

Input: A graph G = (V,E), a set of pairs of vertices T =
{(si,t:) | ¢ € [{]} and an integer k.

Parameter: k, 2

Question: Does there exist S C V(G) such that |S| < k and there is

no path from s; to ¢; for all ¢ € [£] in G — S?

MurtiwAay Cut (MWC)

Input: A graph G = (V,E), T C V(G) and an integer k.
Parameter: k
Question: Does there exist S C V(G) \ T such that |S| < k and there

is no path from t; to t; for all ¢;,t; € T, i # j, in G — S?

Our results and methods

Chordal graphs are a well studied subclass of perfect graphs that contains several other
graph classes such as split graphs, interval graphs, threshold graphs and block graphs. They

are characterized by the property that every cycle of length 4 or more has a chord in it.

Alternatively, they are the class of intersection graphs of a collection of sub-trees of a tree;
and graphs that have a forest-decomposition where every bag induces a clique.

70:3

MFCS 2020



70:4

Quick Separation in Chordal and Split Graphs

Our first result is a polynomial kernel for MULTICUT on chordal graphs when parameterized
by k and ¢. This is obtained by a sequence of reduction rules that are based on the structure
of the clique-forest of the input chordal graph. First, we get rid of non-terminal simplicial
vertices, which helps us bound the number of leaves and higher degree nodes in the clique-
forest of GG. One key step here is to ensure that each terminal vertex occurs in exactly one
bag of the clique-forest decomposition. Then a marking procedure marks a bounded number
of vertices in high degree bags, and deletes unmarked vertices to bound the size of high degree
bags. After this, we only need to bound the lengths of degree 2 paths in the clique-forest and
the number of vertices occurring in them. For bounding the first, we look at the end nodes of
the degree 2 path which are either a bag containing a terminal or a high degree node in the
forest, and since their sizes are bounded, it helps us mark bounded number of “interesting”
degree 2 nodes on the path. Then we apply a reduction rule which deletes the “uninteresting”
bags from the path while preserving the size of the min-cut between the interesting nodes.
Finally we do a similar marking procedure for vertices in the bags of the degree 2, as we did
for high degree nodes. Then, deleting unmarked vertices gives us a polynomial kernel for
MC parameterized by k and #.

» Theorem 1. MC admits a kernel with O(k*(7) vertices on chordal graphs.

We extend this result to a polynomial kernel for MWC on chordal graphs, parameterized
by k alone. One of the key reduction rules here, first described by [5], shows that the number
of terminals in 7" can be reduced to 2k. Then, combined with a tighter analysis of our
previous kernelization result, we prove the following.

» Theorem 2. MWC admits a kernel with O(k'3) vertices on chordal graphs.

Next we present FPT algorithms for these problems on chordal graphs. These algorithms
are based on two crucial ingredients. The first ingredient is a fact that there is a unique
important ({v}, X)-separator in a chordal graph G of a fixed size k, for any v € V(G) and
X C V(G) \ {v} such that X induces a clique in G. This result uses the fact that minimal
separators in a chordal graph are cliques and a lemma from [18] that bounds the number
of important separators inducing cliques. Our second ingredient is the design of a Pushing
Lemma for MC on chordal graphs based on the clique-forest decomposition of the chordal
graph. These two ingredients are combined with the structure of the graph, to yield fast
FPT algorithms for MC on chordal graphs parameterized by k or k + ¢. This is formalized
in the theorems below.

» Theorem 3. MC on chordal graphs can be solved in O(2F - (k® +£) - (n +m)) time.

» Theorem 4. MC on chordal graphs can be solved in 20198 %) . (n 4-m) + £(n +m) time.

Finally, we turn to MC on split graphs. Split graphs are a subclass of chordal graphs,
where the vertex set can be partitioned into an independent set and a clique. It is known
that the problem remains NP-hard on split graphs [19]. We design fast FPT algorithms
for it parameterized by k or £. We also consider UMC on split graphs and design an FPT
algorithm for it parameterized by ¢. Let us note that, while UMC can be easily reduced
to MC, the reduction does not produce a split graph. Hence, we need a slightly different
algorithm for it.

» Theorem 5. MC on split graphs can be solved in O(1.2738% + kn + £(n +m)) time.
» Theorem 6. MC on split graphs can be solved in O(2°-¢ - (n+m)) time.

» Theorem 7. UMC on split graphs can be solved in O(4° - £ - (n +m)) time.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

2 Preliminaries

We use [n] to denote the set of first n positive integers {1,2,3,...n}. For a graph G, we

denote the set of vertices of the graph by V(G) and the set of edges of the graph by F(G).
We denote |V (G)| and |E(G)| by n and m respectively, where the graph is clear from context.

We abbreviate an edge {u,v} as uv sometimes. For a set S C V(G), the subgraph of G
induced by S is denoted by G[S] and it is defined as the subgraph of G with vertex set S
and edge set {{u,v} € E(G) : u,v € S} and the subgraph obtained after deleting S (and
the edges incident to the vertices in S) is denoted by G — S. For v € V(G), we will use
G — v to denote G — {v} for ease of notation. All vertices adjacent to a vertex v are called
neighbours of v and the set of all such vertices is called the open neighbourhood of v, denoted
by Ng(v). For a set of vertices S C V(G), we define Ng(S) = (UpyesN(v)) \ S. We define
the closed neighbourhood of a vertex v in the graph G to be N¢[v] := Ng(v) U {v} and
closed neighbourhood of a set of vertices S C V(G) to be Ng[S] := Ng(S)US. We drop the
subscript G when the graph is clear from the context. We say a vertex v is simplicial in G if
N (v) forms a clique in G.

Let P be a path in the graph G on at least three vertices. We say that {u,v} € E(Q)
is a chord of P if u,v € V(P) but {u,v} ¢ E(P). Similarly, for a cycle C on at least four
vertices, {u,v} € E(G) is a chord of C' if u,v € V(C) but {u,v} ¢ E(C). A path P or cycle
C'is chordless if it has no chords. The length of a path or a cycle is the number of vertices
in it. We also use P and C to denote the set of vertices or edges of the path P or cycle C
respectively, when it is clear from the context.

A set S CV(G)\ {u,v} is called a (u,v)-separator for u,v € V(G), if there is no path
from u to v in G — S. For X, Y C V(G), an (X,Y)-separator in G is a set S C V(G) such
that there is no path from z toy in G— S forallz € X,y € Y. A set S C V(G) is a minimal
separator of a graph G, if there exist u,v € V(G) such that S is an inclusion-wise minimal
(u, v)-separator.

» Definition 8. A forest-decomposition of a graph G is a pair (F, 3), where F is a forest and
B:V(F) = 2V such that (i) Uzev(mB(x) = V(G), (ii) for every edge uv € E(G) there
exists © € V(F) such that {u,v} C B(x), and (iii) for every vertex v € V(G) the subgraph of
F induced by the set B~ 1(v) := {z | v € B(x)} is connected.

For z € V(F), we call 8(x) the bag of x, and for the sake of clarity of presentation, we
sometimes use x and B(z) interchangeably. We refer to the vertices in V(F') as nodes. A
tree-decomposition is a forest-decomposition where F is a tree. For two adjacent nodes x
and zg, B(z1) N B(z2) is called adhesion of x1 and z5. For a path P = z122...2p_12p in F,
the set of adhesions on the path P refers to the set {8(z;) N f(xiy1): i € [p — 1]}. We will
state a simple property of adhesions which we will use repeatedly.

» Lemma 9 (folklore). Let (F, ) be a forest-decomposition of G, and let P = zoz122 ... 2
be a path in F such that u € B(zo), v € B(xp) and {u,v}NB(x;) =0 foralli € {1,...,p—1}.
Then for all A; := B(xi—1) N B(x;), there is no path from u to v in G — A;.

Chordal Graphs: A graph G is called chordal if it does not contain any chordless cycle
of length at least four. It is well known that the set of chordal graphs is closed under the
operation of taking induced subgraphs and contracting edges [12]. A clique-forest of G is
a forest-decomposition of G where every bag is a maximal clique. We further insist that
every bag of the clique-forest is distinct. The following lemma shows that the class of chordal
graphs is exactly the class of graphs that have a clique-forest.

70:5

MFCS 2020



70:6

Quick Separation in Chordal and Split Graphs

» Lemma 10 ( [12]). A graph G is a chordal graph if and only if G has a clique-forest.

It is also known that if G is chordal, then its clique-forest can be computed in O(m + n)
time [11]. Observe that since every bag is a maximal clique, not only the bags are distinct
in the clique-forest (F, ) of G, but also for any x,y € V(F'), we have that none of 8(x)
and f(y) is a subset of the other, i.e., A(z) € B(y) and B(y) € B(z). Also, given a forest
F and a surjective function 3 : V(F) — & where S C 2V, such that it satisfies property
3 of Definition 8, we can associate a graph G with V(G) = UgesS and E(G) defined by
wv € E(QG) if and only if there exists € V/(F) such that {u,v} C B(z). It is easy to see that
in this case the graph G is chordal and that the bags of (F, ) correspond to the maximal
cliques of G and we say that G is the chordal graph associated with the clique-forest (F, ).

We need another property of clique-forests of chordal graphs, which says that deleting
some adhesion is necessary to disconnect vertices that do not occur in the same bag.

» Lemma 11 (x2?). Let (F,5) be the clique-forest of a chordal graph G, and let P =
ToL1T2 ... Tp be a path in F such that w € B(xg), v € f(xp) and {u,v} N B(z;) =0 for all
ie{l,....,p—1}. Let A; = B(x;) N B(x;—1) be the adhesions on P for i € [p]. Then for any
(u,v)-separator S in G, there exists i € [p] such that A; C S.

3 A Polynomial Kernel for Multicut on Chordal graphs

In this section we will show that MurLTicUT (MC) admits a polynomial kernel on chordal
graphs parameterized by the solution size and the number of terminal pairs, that is, we will
prove Theorem 1. Throughout this section, we will assume that the input graph G in an
MC instance (G, T, k) is chordal, unless otherwise stated. We will use 7™ to denote the set
of all terminals, i.e., T* := [J;c,{si,t:}. We also associate a measure 7 with the instance
(G, T,k), where 7 := |T™*|. We present a series of reduction rules, which will be applied in
order, assuming that while applying a reduction rule, none of the previous reduction rules
apply to the current instance.

» Reduction Rule 1. Let (G, T, k) be an instance of MC. If there exist (s;,t;) € T such that
sit; € E(G), say No. Let S; := N(s;) N N(t;) for alli € [¢] and let S := U;c(gS;. Output

The correctness of the reduction rule follows from the fact that any solution must delete
S; for all i € [¢]. Now we present a rule which deletes simplicial vertices from the graph
which are not terminals.

» Reduction Rule 2. Let (G,T,k) be an instance of MC. If there exists v € V(G)\ T* such
that v is a simplicial vertez in G, delete v.

» Lemma 12 (x). Reduction Rule 2 is correct.
Now we can show that each leaf bag in the clique-forest of G must contain a terminal.

» Lemma 13 (%). Let (G, T, k) be an instance of MC after applying Reduction Rule 2, and
let (F,3) be a clique-forest of G. Then for each leaf node x € V(F), f(x) NT* £ 0.

2 Proofs of the results marked with () and full proofs of most of the theorems in Section 1 have been
omitted due to space constraints. We give proof ideas for all the theorems in Section 1. Detailed proofs
for all the results can be found in the appended full version of the paper.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

Now we apply another reduction rule to make sure that all the terminals are part of
exactly one bag in the clique-forest of G.

» Reduction Rule 3. Let (G, T, k) be an instance of MC. Let G' be obtained from G by making
k+ 1 copies of each t € T*, deleting t, and introducing a new terminal vertez t' to G’ which
forms a clique with the copies of t. More formally, V(G') = (V(G) \ T*) |J(Uter~C) U T,
where C; = {v}l, ..., of T}, T = Uyer-{t'}, V(G) N (T"™* U (Uer-Cy)) = 0, Ne[vl] =
Ne(t)UC,U{t'}, and Ng:(t') = Cy for allt € T and j € [k + 1]. Then (G',T",k) is the
new instance, where T" = Uy, 1 er{ (s}, t})}.

» Lemma 14 (). Reduction Rule 3 is correct.

Observe that if reduction rules 1 and 2 do not apply before the application of Reduction
Rule 3, then they do not apply after the application of Reduction Rule 3 as well. This
happens because we do not add any simplicial vertices, and also do not introduce any edge
between terminal pairs or vertex in the common neighbourhood of terminal pairs.

» Lemma 15 (x). Let (G, T, k) be an instance of MC obtained after applying Reduction Rule 3.
For each t € T*, t belongs to exactly one bag of the clique-forest of G, and |N(t)| = k + 1.

» Lemma 16 (x). Let (G, T, k) be an instance obtained after applying Reduction Rule 3 and
let (F,3) be the clique forest of G. Let V(F) = Fy U Fy U F>3, where Fy is the set of leaves
of F', Fy is the set of nodes of F' with degree exactly 2 and F>3 is the set of nodes of degree
at least 3. Let Frr be the set of nodes that contain terminals. Then Fy C Fp; |Fpl|,|F>3| < 7;

and |Ux€FT B(x)| < (k+2)r.

So far, we have bounded |Fi|, |F>3|, and |Fr|. We have also bounded the number of
vertices appearing in the bags that contain terminals (which includes leaf bags). Next we
will bound the number of vertices appearing in the bags in F3. For that, we first define
some notions.

We have established that after applying the aforementioned reduction rules, every terminal
appears in exactly one bag of the clique-forest (F, ) of G. This enables us to define the
notion of clique-paths between terminals. For (s;,t;) € T, let x5, and z, be the unique and
distinct nodes in V(F') that contain s; and ¢; respectively. Now, we look at the unique path
between x4, and zy, in F and call it I (s;,t;). We will drop the subscript G if the graph is
clear from the context.

Now, for each pair (s;,t;) € T such that II(s;, ;) is non-empty, for each bag 5(z) for
x € (s, t;) of degree at least 3 that does not contain a terminal, we want to mark at most
2k + 2 vertices in B(x). Let II(s;,t;) := 122 ... x4 be a nonempty path where x5, = 21 and
xy, = xq. Let ), € II(s;,t;),p € {2,...,d — 1} be an internal node of II(s;, t;) with degree
at least 3 that does not contain a terminal. We define two orderings <, ;,) and <, s,
on vertices of #(x,) as follows. For u,v € B(x,), u <(5,+,) v if and only if, for all ¢ > p,
p,q € [d], if u € B(x,) then v € B(x,). Similarly, for defining <(, ,,), we say that u <(, 5,y v
if and only if, for all ¢ < p, p,q € [d], if u € B(z,) then v € B(z;). In other words, the
ordering represents how far along II(s;,t;) the vertices of S(x,) go, ranking the ones that go
the farthest on either side as the largest.

Now we describe the marking procedure. For each bag = € F>3 \ Fr, for each (s;,t;) € T

for which x is an internal vertex of TI(s;, we mark k + 1 vertices which are largest in the

ti),
ordering <(y, +,) and call the set M, (s;,t;). We also mark k 4 1 vertices which are largest

in the ordering <(4, ,) and call that set M, (t;,s;). Let the set of all marked vertices inside

70:7

MFCS 2020



70:8

Quick Separation in Chordal and Split Graphs

a bag B(z), such that @ € F>3 \ Fr be M(z) := U, 4,)er(Ma(si, i) U My (t;, 5;)) and let

M= (UacEng\FT M(x)) U (UteT* 5(%&))
Now we give the next reduction rule which will help us bound the size of bags in F>3.

» Reduction Rule 4. Let (G,T,k) be an instance of MC where G is chordal graph and let
(F, B) be the clique-forest of G. If there exists a node x € F>3 \ Fr such that B(x) \ M is
nonempty, then delete an arbitrary vertex v € S(z) \ M from G.

» Lemma 17 (x). Reduction Rule 4 is correct.

The key idea behind the proof of this lemma is that, given any path between s; and ¢;,
we can replace the deleted unmarked vertex by a pair of marked vertices to obtain another
path that is present in the reduced graph.

» Lemma 18 (x). Let (G,T,k) be an instance of MC after applying Reduction Rule 4
exhaustively, and let (F, 3) be the clique-forest of G. Let F>3 be set of nodes of F with degree
at least 3. Then, |B(x)| = O(klr) for all x € F>3 and | B(x)| = O(ktr?).

IEFzg

Now we have bounded the number of vertices in the graph which are part of any bags
in F1, F>3, and Fr. What remains to be bounded is the number of degree 2 nodes and the
number of vertices of G that appears in the bags corresponding to the degree 2 nodes. For
that, first we will bound the length of a path which consists of only degree 2 nodes. To that
end, we first describe a marking procedure, that marks a bounded number of degree 2 nodes.

Let @ := z122...x4 be a path in F such that 1,2, € F>3 U Fp and ; ¢ F>3 U Fp for
all i € {2,3,...,g— 1}. That is, Q) is a path in F' with all internal nodes having degree 2
and not containing any terminal, while the first and the last nodes either have degree at
least 3 or they contain a terminal. Now, we mark some nodes in @ as D(Q) C V(Q). For
that, let By := B(x1) and let By, = §(z,). Suppose z; and z;41, ¢ € [¢ — 1] are such that
By N (B(z;) \ B(zi41)) # 0. In such a case, we add z; and z,41 to D(Q). Similarly, if z; and
zj_1, j €{2,3,...,q} are such that B, N (B(z;) \ B(z;—1)) # 0, then we add z; and z;_4
to D(Q). Observe that for any pair of marked nodes z; and z;11 (or z; and x;_1), we can
find a vertex v; € x1 (or vj € x4), such that the nodes x; and ;11 (or z; and x;_1) differ
on v; (or on v;). No other two consecutive nodes of @ differ on v; or v; due to property (iii)
of Definition 8. This shows that for every vertex in (z1) U 8(x,), at most two nodes are
marked by the procedure.

» Observation 1. Let Q := z122... 24 be a path in F such that x1,24 € F>3U Fp and ; ¢
Fs3UFp foralli € {2,3,...,q—1}. Let By := (1) and By := B(zq). Let Q' :=vy1y2...yr
be a subpath of Q such that y1,y, € D(Q) but y; ¢ D(Q) for alli € {2,3,...,r—1}. Then
BinpB(y1) =BiNpy2) =...=B1NPByr) and BaNPB(y1) = BgNPB(y2) = ... = ByNB(yr).

We next state a lemma, which shows that it is necessary and sufficient to pick one adhesion
in the solution for every terminal pair, and that any minimal solution can be looked at as a
collection of adhesions of the clique-forest, at most one of which comes from any degree 2
path in the clique-forest.

» Lemma 19 (%). Let S be a minimal solution to an instance (G,T,k) of MC and let (F, 3)

be the clique-forest of G. Then, there exists S; C S for all (s;,t;) € T, such that

1. S; is an adhesion on I1(s;,t;),

2. 8 =Us,t)er Sir and

3. if Q :=x122...24 i a path in F such that x, ¢ F>3 U Fp for all z € {2,3,...,q — 1},
then at most one adhesion from the path Q is picked as S; for some pair(s) (s;,t;) € T.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

Observe that the adhesions picked by Lemma 19 for a minimal solution for different
pairs might not be distinct or disjoint. Now we are ready to give the reduction rule which
decreases the number of degree 2 nodes.

» Reduction Rule 5. Let (G, T, k) be an instance of MC and (F, 3) be the clique-forest of
G. Let Q :=z122...24 be a path in F such that 1,24 € F>3U Fr and x4 ¢ F>3U Fr for
allye€{2,3,...,q—1}. Let Q' :=y1,...y, be a subpath of Q of length at least 3 such that
y1,yr € D(Q) but yo ¢ D(Q) for all « € {2,3,...,r —1}. Let W = Uzeq B(x). Consider
an auziliary graph G* with vertex set W U {s,t} where s and t are new vertices such that
Ng+(s) = B(y1), Ng=(t) = B(yr) and G*[W] = G[W]. Let the size of a minimum vertex cut
between s and t in G* be c. Let z:=c—|B8(y1) N B(y.)| and let U = {uy,...,u.} be a set of
new vertices such that UNV(G) = 0. To get a new clique-forest (F', '), delete y, for each
a€{2,3,...,q— 1}, make y1 and y, adjacent in F’ while preserving all other adjacencies
of F, and put B'(y1) = B(y1) VU, B'(y) = By,) VU and B'(x) = B(x) for all z ¢ V(Q').
Let G' be the chordal graph corresponding to (F', ). Output (G',T,k).

» Lemma 20 (x). Reduction Rule 5 is well defined. That is, z > 0, F’' is a forest, and
(F',B') satisfies property (iii) of Definition 8.

Now we prove a lemma that relates the adhesions of the input and output instances of
the reduction rule, and then prove the correctness of the reduction rule.

» Lemma 21 (x). Let (G',T,k) be obtained by applying Reduction Rule 5 on (G, T, k). Let
A* =B (y1) N B (yr), and let A be set of adhesions on the path Q. Let (s;,t;) € T. Then for
any adhesion A = $(z1) N B(z2) on g(s;i,t;) such that A¢ A, A= p'(z1) NG (22) is also
an adhesion on g (s;,t;). Similarly, for any adhesion A’ = §'(21) N ' (22) on g (s;,t;)
such that A" # A*, A" = B(z1) N B(22) is also an adhesion on Ug(s;, t;).

» Lemma 22 (). Reduction Rule 5 is correct.

» Lemma 23 (). Let (G, T, k) be an instance obtained after exzhaustively applying Reduction
Rule 5 and (F, B) be the clique-forest of G. Then |V (F)| = O(kér?).

Now, we are ready to give the final reduction rule which would bound the size of the
graph. For that, we make use of the marking procedure defined for Reduction Rule 4 once
again. Let Fy = V(F) \ (F>3 U Fr) where (F, ) is the clique-forest of G.

For each pair (s;,t;) € T such that II(s;, ;) is non-empty, for each bag x € F that is an
internal node of II(s;,t;), we would mark at most 2k + 2 vertices in 5(z). Let II(s;,¢;) :=
Z1Z2...xq be a nonempty path where x5, = x; and @, = x4. Let z, € I(s;,t;),p €
{2,3,d — 1} be an internal node of II(s;,t;) such that z, € F>. We define two orderings
L(sints) and <(q, 4,y on B(x) for all € F, as before. That is, for u,v € B(x), u <(4, 4, v if
and only if, for all ¢ > p, p,q € [d], if u € f(z,4) then v € f(x,). Similarly, for <, ,,), we
say that u <, ,,) v if and only if, for all ¢ < p, p,q € [d], if u € B(x,) then v € F(z,). We
then mark k + 1 vertices which are highest in each of these orderings exactly as before and
call them Z,(s;,t;) and Zy(t;, s;) respectively. Let Z(z) := U, 1,)er(Za(si: i) U Za(ts, 51))
and let Z := (Uxer Z(x)) U (UxeFTuF23 ﬁ(x))

» Reduction Rule 6. Let (G, T,k) be an instance of MC and let (F, ) be the clique-forest

of G. If there exists a node x € Fy such that 5(x) \ Z is nonempty, then delete an arbitrary
vertexv € B(x) \ Z from G.

The proof of correctness of Reduction Rule 6 is exactly the same as proof of Lemma 17.
Now we are ready to prove the final lemma that bounds the size of the instance.

70:9

MFCS 2020



70:10

Quick Separation in Chordal and Split Graphs

» Lemma 24. Let (G, T,k) be an instance of MC after ezhaustive application of Reduction
Rule 6. Then |V(Q)| = O(K36314).

Proof. Let (F, ) be the clique-forest of G. We already know due to Lemmas 16, 18, and
23 that |V(F)| = O(k(r?) and |B(z)| = O(klr) for all x € Fr U F>3. We also know that
|Fo| = O(k(1?). So if we can show |3(x)| = O(k?¢?72) for all & € Fy, this would prove
the lemma. For that, we want to show that |Z| = O(k*¢?7?). This would mean that
|B(x)| = O(K*(?72) for all x € Fy, as otherwise Reduction Rule 6 would apply.

Now, for a bag (z) such that x € Fy, we want to give a bound for Z,. We mark at most
2k + 2 vertices for each pair of terminals (s;,¢;) € T. That gives us |Z;| < (2k + 2)¢. Now,
combining that with |Fy| = O(kf7?), we get that | User, Z(z)| = O(k%20%7%). We already
know that | Upe prurs, B(z)| = O(klr2), so this gives us |Z| = O(k?¢?72) as desired. <

The proof of Theorem 1 follows from Lemma 24, since the reduction rules can be applied
in polynomial time, and we know that 7 < 2/.

4 Kernel for Multiway Cut on Chordal Graphs

In this section we will give a polynomial kernel for MurLTiway CuT (MWC) on chordal graphs
parameterized by k alone, that is, we will prove Theorem 2. The following preprocessing
decreases the number of terminals to a linear function of the solution size.

» Lemma 25 ( [5]). Given an instance (G',T', k") of MuLTiwAaYy CUT, in polynomial time
we can arrive at an equivalent instance (G, T, k) such that T CT', k <k, |T| <2k and G
is obtained from G’ by performing one of the following two operations iteratively.

1. Taking an induced subgraph, and

2. contracting an edge.

» Reduction Rule 7. Apply Lemma 25 to get an instance (G, T, k) such that |T| < 2k.

The correctness follows from Lemma 25 and the fact that chordal graphs are closed under
taking induced subgraphs and contracting edges.

Now, for proving Theorem 2, we first apply Reduction Rule 7 and then reduce the MWC
instance obtained to an MC instance. Then we kernelize the MC instance and get a size
bound using Lemma 24. Finally, we reduce the kernelized MC instance back to a MWC
instance. We can do that safely because the kernelization procedure for MC preserves
one-to-one correspondence of terminals with respect to the initial instance.

5 FPT algorithms for Multicut on Chordal Graphs

In this section, we design FPT algorithms for MurLTicUT (MC) on chordal graphs. In
particular, we prove Theorems 3 and 4. The most crucial ingredient for the proofs in this
section is the fact that in any graph (not necessarily chordal), amongst all the important
({v}, W)-separators that induce a clique, where W C V(G) and v € V(G) \ W, there is
at most one important separator of a fixed size k [18]. Below we state a classical result
concerning chordal graphs that we use to design our algorithms.

» Proposition 26 ( [9]). Every minimal separator in a chordal graph is a clique.

» Corollary 27 (). Let G be a chordal graph, and let X C V(G) such that G[X] is a clique.
Then every minimal ({v}, X)-separator in G is a clique.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

Let G be a graph and X, Y C V(G). Let S C V(G) be an (X, Y)-separator in G and let
R denote the set of vertices reachable from X \ S in G — S (if X (resp. V) is a singleton set
then SN X =0 (resp. SNY =0)). Then S is called an important (X,Y)-separator if it is
inclusion-wise minimal and there is no (X, Y )-separator S’ such that |S’| < |S] and R C R/,
where R’ is the set of vertices reachable from X in G — 5.

» Lemma 28 ( [18], Lemma 3.16). For any graph G (not necessarily chordal), W C V(G),
and v € V(G) \ W, there is at most one important ({v}, W)-separator of size exactly k
inducing a clique.

While the lemma in [18] is stated as there are at most k important ({v}, W)-separators of
size at most k that induce a clique, the proof follows by proving the statement in Lemma 28.

» Lemma 29. For a positive integer k, a chordal graph G, v € V(G), and X C V(G) such
that G[X] is a clique, there is at most one ({v}, X)-important separator of size k in G.

The proof of Lemma 29 follows from Corollary 27 and Lemma 28.

» Proposition 30 ( [3,17]). Given a graph G and X,Y C V(G) and a positive integer k,
the set Sg of all important (X,Y)-separators of G of size at most k can be computed in time
O(|Sk| - k2 - (n +m)).

We now step towards stating and proving our pushing lemma that, together with
Lemma 29, leads to the design of a branching algorithm for MC on chordal graphs. Let
(G, T, k) be an instance of MC where G is a chordal graph. Consider the clique forest, say
(F, ), of G, defined in Lemma 10. Without loss of generality, let G be a connected graph.
Thus, it will be safe to assume that F' is a tree. Root the tree I’ at an arbitrary node. Also,
we will assume (G, T, k) to be reduced with respect to Reduction Rules 1 and 3 for the rest of
this section. Note that Reduction Rule 1 can be applied in O(¢- (n+m)) time and Reduction
Rule 3 can be applied in O(k - (n +m)) time. Also both these rules are applied only once in
the course of the algorithms. Thus the application of these rules exhaustively contribute a
factor of O((k + £)(n +m)) to the running times of our algorithms. From Lemma 15, for
each (s;,t;) € T, s; and t; belong to exactly one bag of the clique-forest (F, ). We denote
the unique bag of F' containing s; (resp. t;), as x,, (resp. z,). Let x°® denote the bag which
is the unique least common ancestor of x5, and x;, in the rooted tree F.

> Claim 31. Let (G,T,k) be an instance of MC where G is a chordal graph. Let S be any
solution to the instance (G, T, k). Let (F, ) be a rooted clique-forest of G. For each pair
(si,ti) € T, every (s;,t;)-separator contains an adhesion on the unique z,, to x¢, path in F.

The proof of the above claim follows from Lemma 11.

» Lemma 32 (x, Pushing Lemma for MC on Chordal Graphs). Let (G,T,k) be an instance
of MC where G is a connected chordal graph, and let (F, ) be a rooted clique tree of G as
defined above. Let y denote the root bag of F. Let (sp,t,) € T be such that mﬁf“ is deepest

in the rooted tree F, that is, ¢ is such that distp(y, z'¢*) = max{distp(y,}**) : i € [(]},

where distr(y,x'°*) denote the distance between y and !

to (G,T,k) that contains either an important ({sp},ﬁ(xéca))-sepamtor or an important

({tp}, B(zlc™))-separator of size at most k.

in F'. Then there is a solution

Observe that none of important ({s,}, B(zk®))-separator and important ({t,}, 3(x*))-

separator can contain a terminal, as these are minimal separators in G and each of the

70:11

MFCS 2020



70:12

Quick Separation in Chordal and Split Graphs

terminals occur in only one bag due to Reduction Rule 3, and hence do not belong to any
adhesions in G, which are also minimal separators of G.

The algorithms of Theorem 3 and 4 are based on a branching algorithm that branches on
important separators described in Lemma 32.

Description of the algorithm for MC on chordal graphs (Algorithm 1): Let (G,T,k)
be an instance of MC where G is a connected chordal graph. Let (F,3) be a rooted
tree-decomposition of G. Let Z, (resp. Z;) be the collection of all important ({s,}, B(azif“))—
separator (resp. ({t,}, B(z!c®))-separator) of size at most k. The algorithm branches on the
sets in Z,UZ;. That is, it reduces the instance (G, T, k) to the set of instances (G—I,T", k—|I|),

where I € Z, UZ; and T denotes the set of pairs of terminals with are connected in G — I.

Proof of Theorem 3. The correctness of Algorithm 1 follows from Lemma 32. To prove
the theorem, we show that it runs in O(2% - (k* + ¢) - (n + m)) time. Let T'(k) denote the
number of leaves in the branching tree rooted at an instance where the budget parameter
is k. Since, from Lemma 29, there is a unique important ({s,}, B(xéf"))—separator (and
({tp}, B(zlcr))-separator) of a fixed size, from the description of the algorithm we get the
following recurrence: T'(k) < 23,y T(k — 1), T(1) = 1. Using induction one can show
that T(k) < 281, Thus, the number of nodes in the branching tree are at most 2 - 2++1,
Also the time spent at each node is equal to the time taken by Reduction Rules 1 and 3,
which is O((k + ¢)(n + m)), plus time taken by the algorithm of Proposition 30, which is
O(k®- (n+m)) because S, in the proposition has size at most k£ from Lemma 29. The desired
running time thus follows. <

We give the following reduction rule, which helps in proving Theorem 4.

» Reduction Rule 8. Let (G, T, k) be an instance of MC. If there exists (s;,t;) € T such that
there is no path from s; to t; in G, then delete (s;,t;) from T, that is, the reduced instance is

(GaT \ {(Sivti)}a k)

The correctness of Reduction Rule 8 is easy to see and it can be applied in O(¢(n + m))
time. Theorem 4 is obtained by applying Reduction Rule 8 after each branching step of the
algorithm, hence decreasing the size of the terminal set, and solving a recurrence reflecting
this. That is, T'(k, £) < >_,cpp T'(k, € — 1), T(k,0) = 1, which solves to T'(k, () < (2k)*.

6 FPT algorithms for Multicut on Split Graphs

In this section, we design FPT algorithms for MULTICUT on split graphs. In particular, we
prove Theorems 5, 6, and 7. Recall that a graph G is a split graph if and only if V(G) can
be partitioned into two parts: C' and I, such that the set G[C] is a clique and G[I] is an
independent set. It is known that given a split graph G, such a partition can be obtained
in time O(n + m) [8]. Henceforth, we assume that such a partition of the input split graph
is given to us. In what follows, we denote an instance of MULTICUT or UNRESTRICTED
MULTICUT on split graphs by (G = (C,I),T,k). Note that split graphs are also chordal
graphs, hence the reduction rules designed for chordal graphs can also be applied on split
graphs. We assume that the input instance (G = (C,I),T, k) is reduced with respect to
Reduction Rule 1 and Reduction Rule 8. Note that the exhaustive application of these
reduction rules contribute O(¢ - (n + m)) to the running time of our algorithms.

» Lemma 33 (x). Let (G = (C,I),T,k) be an instance of MC which is reduced with respect
to Reduction Rule 1 and 8. Then, for each (s;,t;) € T, s;,t; € 1.



P. Misra, F. Panolan, A. Rai, S. Saurabh, and R. Sharma

» Lemma 34 (x). If (G,T,k) is an instance of MC on split graphs that is reduced with
respect to Reduction Rules 1 and 8, then for each (s;,t;) € T, the length of any shortest path
from s; to t; in G is 4. Also, the internal vertices of this shortest path belong to C.

Let (G = (C,I),T, k) be an instance of MC where G is a split graph. For each (s;, ;) € T,
we associate a set of pairs of the vertices in C as follows. For each ¢ € [¢], we now define
P; CC xC. A pair (u,v) € C x C, u# v, belongs to P;, if s;uvt; is a path in G.

» Lemma 35 (x). Let (G = (C,I),T,k) be an instance of MC on split graphs. For each
(siyt;) €T, let P; be as defined above. Then S is a multicut for the instance (G, T, k) if and
only if S contains a vertex from each of the pairs in P;, for each i € [{].

The proof of Theorem 5 follows by Lemma 35 and reducing the MC instance to a VERTEX
COVER instance using Lemma 35 and then solving it using the algorithm in [2].

» Lemma 36 (x). Let (G = (C,I),T,k) be an instance of MC that is reduced with respect
to Reduction Rules 1 and 8. Let S be a multicut for (G = (C,I),T,k). For any (s;,t;) € T,
either N(s;) €S or N(t;) C S.

Proof of Theorem 6. We design a branching algorithm for MC on split graphs. Let (G =
(C,1),T, k) be an instance of MC that is reduced with respect to Reduction Rules 1 and 8.
Pick a pair (s;,t;) € T. From Lemma 36, we know at least one of the following definitely
hold: either N(s;) belongs to the solution or N(¢;) belongs to the solution. Thus, we branch
on the following two instances: (G — N(s;),Th =T — s;,k — |N(s;)|) and (G — N(¢;), T =
T —t;,k —|N(t;)]), where T — s; (similarly T — t;) denote the set of terminal pairs in T
that do not contain s; (or t;). Since the deletion of the neighbours of s; (resp. t;) isolates s;
(resp. t;) in the resulting graph, the correctness of the algorithm follows from Lemma 36.
Also, |Ty|,|Ta| < £, as (s;,t;) € T but, (s;,t;) € Ty and (s;,t;) & Th.

Since we stop when T = ), the depth of the branching tree of this branching algorithm
is at most £. Since at each time, we branch in two branches, the number of leaves in this
branching tree is at most 2¢. Also, the time taken at each node (which is equal to checking
if T is empty and if it is not empty, then computing the two instances to recurse on) is
O(n+m), and the reduction rules can be applied in O(¢- (n+m)) time, we get an algorithm
with running time O(2¢ - £ (n +m)). <

The algorithm of Theorem 7 is similar to the algorithm of Theorem 6, except in this case
we also branch on the possibilities of including s; or ¢; in the solution.

—— References

1 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166-207, 2018.

2 Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736-3756, 2010.

3  Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1-13, 2009.

4  Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michat Pilipczuk, and Magnus Wahlstrém.
Clique cover and graph separation: New incompressibility results. TOCT, 6(2):6:1-6:19, 2014.

5 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3:1-3:11, 2013.

6  Gruia Calinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width. Journal of Algorithms, 48(2):333-3509,
2003.

70:13

MFCS 2020



70:14

Quick Separation in Chordal and Split Graphs

10

11

12

13

14

15

16

17

18

19

E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The complexity
of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894, 1994.

Elias Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition. J. Algorithms, 36(2):205-240, 2000.

Reinhard Diestel. Graph theory. 2005. Grad. Texts in Math, 101, 2005.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2019.

Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their clique graphs.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 21st International
Workshop, WG ’95, Aachen, Germany, June 20-22, 1995, Proceedings, volume 1017 of Lecture
Notes in Computer Science, pages 358-371. Springer, 1995.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
1980.

Jiong Guo, Falk Hiiffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Complexity
and exact algorithms for vertex multicut in interval and bounded treewidth graphs. Furopean
Journal of Operational Research, 186(2):542-553, 2008.

Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A Deterministic Polynomial
Kernel for Odd Cycle Transversal and Vertex Multiway Cut in Planar Graphs. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 39:1-39:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Philip N. Klein and Déniel Marx. Solving planar k -terminal cut in o(n“/g) time. In Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
569-580. Springer, 2012.

Stefan Kratsch and Magnus Wahlstrém. Representative sets and irrelevant vertices: New tools
for kernelization. In 58rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer
Society, 2012.

Déniel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406,
2006.

Déniel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355-388, 2014.

Charis Papadopoulos. Restricted vertex multicut on permutation graphs. Discrete Applied
Mathematics, 160(12):1791-1797, 2012.



	Introduction
	Preliminaries
	A Polynomial Kernel for Multicut on Chordal graphs
	Kernel for Multiway Cut on Chordal Graphs
	FPT algorithms for Multicut on Chordal Graphs
	FPT algorithms for Multicut on Split Graphs

