
Ambiguity Hierarchy of Regular Infinite Tree
Languages
Alexander Rabinovich
Tel Aviv University, Israel
https://www.cs.tau.ac.il/~rabinoa/
rabinoa@tauex.tau.ac.il

Doron Tiferet1

Tel Aviv University, Israel
sdoron5.t2@gmail.com

Abstract
An automaton is unambiguous if for every input it has at most one accepting computation. An
automaton is k-ambiguous (for k > 0) if for every input it has at most k accepting computations.
An automaton is boundedly ambiguous if there is k ∈ N, such that for every input it has at most k

accepting computations. An automaton is finitely (respectively, countably) ambiguous if for every
input it has at most finitely (respectively, countably) many accepting computations.

The degree of ambiguity of a regular language is defined in a natural way. A language is k-
ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a k-ambiguous
(respectively, boundedly, finitely, countably ambiguous) automaton. Over finite words every regular
language is accepted by a deterministic automaton. Over finite trees every regular language is
accepted by an unambiguous automaton. Over ω-words every regular language is accepted by an
unambiguous Büchi automaton [1] and by a deterministic parity automaton. Over infinite trees
there are ambiguous languages [5].

We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every k > 1 there
are k-ambiguous languages which are not k− 1 ambiguous; there are finitely (respectively countably,
uncountably) ambiguous languages which are not boundedly (respectively finitely, countably)
ambiguous.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases automata on infinite trees, ambiguous automata, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.80

Funding Supported in part by Len Blavatnik and the Blavatnik Family foundation.

Acknowledgements We would like to thank an anonymous referee for pointing out to [3].

1 Introduction

An automaton is unambiguous if for every input it has at most one accepting computation.
An automaton is k-ambiguous (for k > 0) if for every input it has at most k accepting
computations. An automaton is boundedly ambiguous if it is k-ambiguous for some k ∈ N.
An automaton is finitely (respectively, countably) ambiguous if for every input it has at most
finitely (respectively, countably) many accepting computations.

For automata over finite words (and over finite trees), on every input there are at most
finitely many accepting computations. Hence, every automaton on finite words and on
finite trees is finitely ambiguous. However, over ω-words and over infinite trees there are
nondeterministic automata with uncountably many accepting computations. Over ω-words

1 corresponding author

© Alexander Rabinovich and Doron Tiferet;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 80; pp. 80:1–80:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1460-2358
https://www.cs.tau.ac.il/~rabinoa/
mailto:rabinoa@tauex.tau.ac.il
mailto:sdoron5.t2@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2020.80
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Ambiguity Hierarchy of Regular Infinite Tree Languages

and over infinite trees, finitely ambiguous automata are a proper subclass of the class of
countably ambiguous automata, which is a proper subclass of nondeterministic automata.

The cardinality of the set of accepting computations of an automaton over an infinite tree
t is bounded by the cardinality of the set of functions from the nodes of t to the state of the
automaton, and therefore, it is at most continuum 2ℵ0 . The set of accepting computations
on t is definable in Monadic Second-Order Logic (MSO). In Bárány et al. in [2] it was shown
that the continuum hypothesis holds for MSO-definable families of sets. Therefore, if the set
of accepting computations of an automaton on a tree t is uncountable, then its cardinality is
2ℵ0 . Hence, there are exactly two infinite degrees of ambiguity.

The degree of ambiguity of a regular language is defined in a natural way. A language
is k-ambiguous if it is accepted by a k-ambiguous automaton. A language is boundedly
ambiguous if it is k-ambiguous for some k; it is finitely (respectively, countably) ambiguous
if it is accepted by a finitely (respectively, countably) ambiguous automaton.

Over finite words, every regular language is accepted by a deterministic automaton. Over
finite trees, every regular language is accepted by a deterministic bottom-up tree automaton
and by an unambiguous top-down tree automaton. Over ω-words every regular language is
accepted by an unambiguous Büchi automaton [1] and by a deterministic parity automaton.

Hence, the regular languages over finite words, over finite trees and over ω-words are
unambiguous.

In [5] it was shown that the aforementioned situation is different for infinite trees. Carayol
et al. [5] proved that a language L∃a of infinite full-binary trees over the alphabet {a, c},
defined as L∃a := {t | t has at least one node labeled by a} is ambiguous. The proof is based
on the undefinability of a choice function in Monadic Second-Order logic (MSO) [8, 4].

Our results imply that the complement of every countable regular language is not finitely
ambiguous. Since L∃a is the complement (with respect to the alphabet {a, c}) of the language
which consists of a single tree (i.e. the tree with all nodes labeled by c), we conclude that
L∃a is not finitely ambiguous (this strengthens the above mentioned result of [5]). Our main
result states that over infinite trees there is a hierarchy of degrees of ambiguity:

I Theorem 1 (Hierarchy). 1. For every k > 1 there are k-ambiguous languages which are
not (k − 1)-ambiguous.

2. There are finitely ambiguous languages which are not boundedly ambiguous.
3. There are countably ambiguous languages which are not finitely ambiguous.
4. There are uncountably ambiguous languages which are not countably ambiguous.
The paper is organized as follows. In Sect. 2 we recall notations and basic results about
automata and monadic second-order logic. In Sect. 3 simple properties of languages are
proved. Sect. 4 gives a sufficient condition for a language to be not finitely ambiguous.
The proof techniques here use the fact that a choice function is not MSO-definable and
refine the proof techniques of [5]. Sect. 5 deals with k-ambiguous languages. For every
k ∈ N, we describe here a k-ambiguous language which is not (k − 1)-ambiguous. Sect. 6
provides an example of a finitely ambiguous language which is not boundedly ambiguous.
Sect. 7 provides a scheme that generates languages which are not countably ambiguous from
non-boundedly ambiguous languages. Conclusion is given in Sect. 8.

2 Preliminary

We recall here standard terminology and notations about trees, automata and logic [10, 11].

A. Rabinovich and D. Tiferet 80:3

Trees. We view the set {l, r}∗ of finite words over alphabet {l, r} as the domain of a
full-binary tree, where the empty word ε is the root of the tree, and for each node v ∈ {l, r}∗
we call v · l the left child of v, and v · r the right child of v. We define a tree order “≤”
as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u is a prefix of v. Nodes u and v

are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u; a set U of nodes is an
antichain, if its elements are incomparable with each other.

If Σ is a finite alphabet, then a Σ-labeled full-binary tree t is a labeling function
t : {l, r}∗ → Σ. We denote by TωΣ the set of all Σ-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Σ-labeled tree t and a node v ∈ {l, r}∗, the tree t≥v (called the subtree of t,
rooted at v) is defined by t≥v(u) := t(v · u) for each u ∈ {l, r}∗.

Grafting Given two labeled trees t1 and t2 and a node v ∈ {l, r}∗, the grafting of t2 on
v in t1 is the tree t which is obtained from t1 by replacing the subtree of t1 rooted at v by t2.

Formally, t(u) :=
{
t2(w) ∃w ∈ {l, r}∗ : u = v · w
t1(u) otherwise

More generally, given a tree t1, an antichain Y ⊆ {l, r}∗ and a tree t2, the grafting of t2
on Y in t1 is obtained by replacing each subtree of t1 rooted at a node y ∈ Y by the tree t2.

A language L over an alphabet Σ is a set of Σ-labeled trees. We denote by L := TωΣ \ L
the complement of L.

Automata on infinite trees. We use standard notations and terminology about parity
automata on Σ-labeled full-binary trees, and on ω-strings. A parity automaton A is a tuple
(QA,Σ, QI , δA,CA) with an alphabet Σ, a finite set of states QA, initial states QI ⊆ QA,
a transition relation δA, and a coloring function CA. For a parity automaton on ω-string,
δA ⊆ QA × Σ×QA; for a parity tree automaton, δA ⊆ QA × Σ×QA ×QA.

Given a parity automaton A = (QA,Σ, QI , δA,CA) and a set Q′ ⊆ QA, we define
AQ′ := (QA,Σ, Q′, δA,CA) as the automaton obtained from A by replacing the set of initial
states QI with Q′. For a singleton Q′ = {q}, we simplify the notation by Aq := AQ′ .

The notion of a computation/run of a parity automaton A on a tree/ω-string is defined
as usual. We use the letters φ, φ′ for computations. A computation φ is accepting if the
maximal number which C assigns infinitely often to the states along every branch of φ is
even. We denote by ACC(A, t) the set of accepting computations of A on t. We denote by
L(A) := {t | ACC(A, t) is not empty} the language accepted by A.

A tree language L is called regular if it is accepted by a parity tree automaton.
A state q of A is called useful if there is a tree t, a computation φ ∈ ACC(A, t) and a

node u such that φ(u) = q. Throughout the paper, we will assume that all states are useful.
Degree of Ambiguity. We denote by |X| the cardinality of a set X. An automaton A

is k-ambiguous if |ACC(A, t)| ≤ k for all t ∈ L(A). A is unambiguous if it is 1-ambiguous. A
is boundedly ambiguous if there is k ∈ N such that A is k-ambiguous, A is finitely ambiguous
if ACC(A, t) is finite for all t, A is countably ambiguous if ACC(A, t) is countable for all t.

The degree of ambiguity of A, denoted by da(A), is defined by da(A) = k if A is k-
ambiguous and either k = 1 or A is not k − 1 ambiguous, da(A) = finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) = ℵ0 if A is countably ambiguous and not
finitely ambiguous, and da(A) = 2ℵ0 if A is not countably ambiguous.

We order the degrees of ambiguity in a natural way: i < j < finite < ℵ0 < 2ℵ0 , for
i < j ∈ N.

Language Ambiguity We say that a regular tree language L is unambiguous (re-
spectively, k-ambiguous, finitely ambiguous, countably ambiguous) if it is accepted by an

MFCS 2020

80:4 Ambiguity Hierarchy of Regular Infinite Tree Languages

unambiguous (respectively, k-ambiguous, finitely ambiguous, countably ambiguous) auto-
maton. We define da(L) := minA{da(A) | L(A) = L}.

Monadic Second-Order Logic. We use standard notations and terminology about monadic
second-order logic (MSO) [11, 13, 12].

Let τ be a relational signature. A structure (for τ) is a tuple M = (D, {RM | R ∈ τ})
where D is a domain, and each symbol R ∈ τ is interpreted as a relation RM on D.

MSO-formulas use first-order variables, which are interpreted by elements of the structure,
and monadic second-order variables, which are interpreted as sets of elements. Atomic
MSO-formulas are of the following form:

R(x1, . . . , xn) for an n-ary relational symbol R and first order variables x1, . . . , xn

x = y for two first-order variables x and y
x ∈ X for a first-order variable x and a second-order variable X

MSO-formulas are constructed from the atomic formulas, using boolean connectives, the
first-order quantifiers, and the second-order quantifiers.

We write ψ(X1, . . . , Xn, x1, . . . , xm) to indicate that the free variables of the formula ψ
are X1, . . . , Xn (second order variables) and x1, . . . , xm (first order variables).

Coding Let ∆ be a finite set. We can code a function from a set D to ∆ by a tuple of
unary predicates on D. This type of coding is standard, and we shall use explicit variables
which range over such mappings and expressions of the form “F (u) = d” (for d ∈ ∆) in
MSO-formulas, rather than their codings.

Formally, for each finite set ∆ we have second-order variables X∆
1 , X

∆
2 , . . . which range

over the functions from D to ∆, and atomic formulas X∆
i (u) = d for d ∈ ∆ and u a first

order variables [13]. Often the type of the second order variables will be clear from the
context and we drop the superscript ∆.

Definable Relations The powerset of D is denoted by P(D). We say that a relation
R ⊆ P(D)n ×Dm is MSO-definable in a structure S with universe D if there is an MSO-
formula ψ(X1, . . . , Xn, x1, . . . , xm) such that R = {(D1, . . . , Dn, u1, . . . , um) ∈ P(D)n×Dm |
S |= ψ(D1 . . . , Dn, u1 . . . , un)}.

An element d ∈ D is MSO-definable in a structure S if there is a formula ψ(x) such that
S |= φ(u) iff u = d. A set U ⊆ D is MSO-definable if there is a formula φ(X) such that
S |= φ(V) iff V = U . A function is MSO-definable if its graph is.

The unlabeled binary tree is the structure ({l, r}∗, {El, Er}) where El and Er are binary
symbols, respectively interpreted as {(v, v · l) | v ∈ {l, r}∗)} and {(v, v · r) | v ∈ {l, r}∗)}.

I Lemma 2. The following relations are MSO-definable in the unlabeled full-binary tree.
The ancestor relation ≤.
“A set of nodes is a branch,” “A set of nodes is an antichain.”
Let A = (Q,Σ, QI , δ,C) be a parity automaton. We use φ for a function {l, r}∗ → Q and
σ for a function {l, r}∗ → Σ.

“φ is a computation of A on the tree σ.”
“φ is an accepting computation of A on the tree σ.”

I Theorem 3 (Rabin [11]). A tree language is regular iff it is MSO-definable in the unlabeled
binary tree structure.
A labeled tree is regular iff it has finitely many different subtrees. An equivalent definition is:
a tree is regular iff its labeling is MSO-definable [11]. Hence, for every Σ-labeled regular tree
t0, there is an MSO-formula ψt0(σΣ) which is satisfied by t iff t = t0.

A. Rabinovich and D. Tiferet 80:5

I Theorem 4 (Rabin’s basis theorem [11]). Any non-empty regular tree language contains a
regular tree.

Choice Function. A choice function is a mapping which assigns to each non-empty set of
nodes one element from the set.

I Theorem 5 (Gurevich and Shelah [8]). There is no MSO-definable choice function on the
full-binary tree.

The following lemma follows from Theorem 5.

I Lemma 6. There is no MSO-definable function which assigns to every non-empty antichain
Y a finite non-empty subset X ⊆ Y .

3 Simple Properties of Languages

In this section some simple lemmas are collected. Their proofs are easy.

I Lemma 7. Let A1 = (Q1,Σ1, Q
1
I1
, δ1,C1) and A2 = (Q2,Σ2, Q

2
I1
, δ2,C2) be two parity tree

automata. Then:
1. There exists an automaton B such that L(B) = L(A1) ∪ L(A2) and for each t ∈ L(A1) ∪

L(A2), |ACC(B, t)| ≤ |ACC(A1, t)|+ |ACC(A2, t)|
2. There exists an automaton B such that L(B) = L(A1) ∩ L(A2) and for each t ∈ L(A1) ∩

L(A2), |ACC(B, t)| ≤ |ACC(A1, t)| · |ACC(A2, t)|
From Lemma 7, we obtain:

I Corollary 8. Boundedly, finitely and countably ambiguous tree languages are closed under
finite union and intersection.

I Lemma 9. Let A be a parity automaton with a set Q of useful states. Then, for each state
q ∈ Q, da(Aq) ≤ da(A).

I Corollary 10. Let A be a boundedly (respectively, finitely, countably) ambiguous parity tree
automaton with a set Q of useful states. Let Q′ ⊆ Q. Then AQ′ is boundedly (respectively,
finitely, countably) ambiguous.

I Lemma 11. Let L1 and L2 be two tree languages such that da(L1) 6= da(L2) and L1 ⊆ L2.
Then, there exists a tree t ∈ L2 \ L1.

I Lemma 12. Let A = (Q,Σ, QI , δ,C) be a parity tree automaton. Then, there is a parity
tree automaton B = (QB,Σ, {qBI }, δB,C) with single initial state such that L(B) = L(A), and
da(B) ≤ da(A).

I Definition 13 (Moore machine). A Moore machine is a tuple M = (Σ,Γ, Q, qI , δ, out),
where Σ is a finite input alphabet, Q is a finite set of states, qI ∈ Q is an initial state,
δ : Q × Σ → Q is a transition function, Γ is an output alphabet, and out : Q → Γ is an
output function.

Define δ̂ : Σ∗ → Q by δ̂(ε) := qI and δ̂(w) := δ(δ̂(w′), a) for w = w′ · a where w′ ∈ Σ∗
and a ∈ Σ. We say that a function F : Σ∗ → Γ is definable by a Moore machine if there is a
Moore machine M such that F (w) = out(δ̂(w)) for all w ∈ Σ∗.

I Definition 14. Let F : Σ∗1 → Σ2 be a function definable by a Moore machine, and let
t1 ∈ TωΣ1

. We define t2 := F̂ (t1) as a tree in TωΣ2
such that t2(v) := F (t1(v1) · · · · · t1(vk))

where v1, v2, . . . , vk is the path from the root to v.
For a tree language L ⊆ TωΣ1

, we define F̂ (L) := {F̂ (t) | t ∈ L} ⊆ TωΣ2
.

MFCS 2020

80:6 Ambiguity Hierarchy of Regular Infinite Tree Languages

I Lemma 15 (Reduction). Let L1 and L2 be regular tree languages over alphabets Σ1 and
Σ2, respectively. Let F : Σ∗1 → Σ2 be a function definable by a Moore machine. Assume that
for each t ∈ TωΣ1

, t ∈ L1 iff F̂ (t) ∈ L2. Then da(L1) ≤ da(L2).

4 Not-Finitely Ambiguous Languages

We provide here sufficient conditions for a language to be not finitely ambiguous. First, we
state our main technical result - Proposition 17. Then, we derive some consequences. Finally,
a proof of Proposition 17 is given. Our proof relies on the fact that there is no MSO-definable
function which assigns to every non-empty antichain Y a finite non-empty subset X ⊆ Y

(Lemma 6), and our proof techniques refine the proof techniques of [5].

I Definition 16. For a tree language L over alphabet Σ, we denote by Subtree(L) the tree
language {t ∈ TωΣ | ∃t′ ∈ L ∃v : t′≥v = t}.

I Proposition 17. Let L be a non-empty regular language over an alphabet Σ such that
Subtree(L) 6= TωΣ . Then, the complement of L is not finitely ambiguous.

I Corollary 18 (not finitely ambiguous languages). The following languages are not finitely
ambiguous:
1. The complement of a non-empty regular countable tree language.
2. The complement of a regular language which contains a single tree.
3. The language L∃a1 := {t ∈ TωΣ | t has at least one node labeled by a1} over alphabet

Σ = {a1, . . . , am, c}.

Proof.
(1) Every tree has countably many subtrees. Since L is countable, we conclude that

Subtree(L) is countable. Therefore, Subtree(L) does not contain all trees. By Proposition
17, we conclude that L is not finitely ambiguous.

(2) Follows immediately from (1).
(3) By the definition of L∃a1 we have L∃a1 ∩ Tω{c,a1} = Tω{c,a1} \ {tc}, and therefore by (2),

L∃a1 ∩ Tω{c,a1} is not finitely ambiguous. It is easy to see that Tω{c,a1} is unambiguous
(since there is a deterministic automaton which accepts it). Therefore, by Corollary 8 we
conclude that L∃a1 is not finitely ambiguous. J

It is easy to prove that the complement of every finite language is countably ambiguous.
Therefore, we obtain:

I Corollary 19. If L is regular and its complement is finite and non-empty, then da(L) = ℵ0.

In the rest of this section, Proposition 17 is proved. Let us sketch some ideas of the proof. For
a language L, as in Proposition 17, and any antichain Y we construct trees t0 ∈ L and t ∈ L
with the following property: if A does not accept t0 and accepts t, then every φ ∈ ACC(A, t)
chooses (in an MSO-definable way) an element from Y . Hence, the computations in ACC(A, t)
choose together a subset X of Y of cardinality ≤ |ACC(A, t)| (each computation chooses
a single element). Therefore, if A accepts L and is finitely ambiguous, then X is finite -
a contradiction to Lemma 6. To implement this plan, in Subsect. 4.1 we recall a game
theoretical interpretation of “a tree is accepted by an automaton.” Then, in Subsect. 4.2 we
analyze which concepts related to these games are MSO-definable. Finally, in Subsect. 4.3,
the proof is completed.

A. Rabinovich and D. Tiferet 80:7

4.1 Membership Game
Let A = (Q,Σ, {qI}, δ,C) be a parity tree automaton, and let t be a Σ-labeled tree. A
two-player game Gt,A (called a “membership game”) between Automaton and Pathfinder
is defined as follows. The positions of Automaton are {l, r}∗ × Q, and the positions of
Pathfinder are {l, r}∗ ×Q×Q. The initial position is (ε, qI).

From a position (v, q) ∈ {l, r}∗ × Q Automaton chooses a tuple (ql, qr) ∈ Q × Q such
that ∃a ∈ Σ : (q, a, ql, qr) ∈ δ, and moves to the position (v, ql, qr). From a position
(v, ql, qr) ∈ {l, r}∗ × Q × Q Pathfinder chooses a direction d ∈ {l, r}, and moves to the
position (v · d, qd).

We define a play s := e0, d0, e1, d1, . . . , ei, di, · · · ∈ (Q × Q × {l, r})ω as an infinite
sequence of moves, corresponding to the choices of Automaton and Pathfinder from the initial
position. We say that the move ei = (ql, qr) from position (q, v) is invalid for Automaton if
(q, t(v), ql, qr) /∈ δ.

A strategy for a player in Gt,A is a function which determines the next move of the
player based on previous moves of both players.

A positional strategy for a player in Gt,A is a strategy which determines the next move
of the player based only on the current position. A positional strategy for Automaton is a
function str : {l, r}∗ × Q → Q × Q, and a positional strategy for Pathfinder is a function
STR : {l, r}∗ ×Q×Q→ {l, r}.

Let CG be a coloring function which maps each position in Gt,A to a color in N. We
define CG(v, q) := C(q) for Automaton’s positions, and CG(v, ql, qr) := 0 for Pathfinder’s
positions.

For each play s define πs as the infinite sequence of positions corresponding to the
moves in s. A play s is winning for Automaton iff s does not contain an invalid move for
Automaton, and the maximal color which CG assigns infinitely often to the positions in πs is
even. Since all Pathfinder’s positions are colored by 0, it is sufficient to consider the coloring
of Automaton’s positions in πs.

We say that a play is consistent with a strategy of a player if all moves of the player are
according to the strategy. A winning strategy for a player is a strategy such that each
play which is consistent with the strategy is winning for the player.

Parity games are positionally determined [6], i.e., for each parity game, one of the players
has a positional winning strategy. Therefore, if a player has a winning strategy, then he has
a positional winning strategy. Additionally, if a positional strategy of a player wins against
all positional strategies of the other player, then it is a winning strategy.

We recall standard definitions and facts about the connections between games and tree
automata [7, 10].

Let φ : {l, r}∗ → Q be a function such that φ(ε) = qI and ∀v ∈ {l, r} : ∃a ∈ Σ :
(φ(v), a, φ(v · l), φ(v · r)) ∈ δ. We define a positional strategy strφ : {l, r}∗ × Q → Q × Q
for Automaton, by strφ(v, q) := (φ(v · l), φ(v · r)). Conversely, for each positional strategy
str : {l, r}∗ × Q → Q × Q of Automaton we construct a function φstr : {l, r}∗ → Q

by φ(ε) := qI and for all v ∈ {l, r}∗ we set φ(v · l) := ql, and φ(v · r) := qr where
str(v, φ(v)) = (ql, qr).

B Claim 17.1.
1. Let s be a play which is consistent with strφ, and let (vi, qi) be the i-th position of

Automaton in πs. Then, φ(vi) = qi.
2. If φ ∈ ACC(A, t), then strφ is a positional winning strategy for Automaton.
3. If str is a positional winning strategy for Automaton, then φstr ∈ ACC(A, t).

MFCS 2020

80:8 Ambiguity Hierarchy of Regular Infinite Tree Languages

The next claim describes what happens when Pathfinder plays his winning strategy in
Gt,A against an Automaton’s winning strategy in Gt′,A (for t′ 6= t).

B Claim 17.2. Assume t /∈ L(A) and let φ be an accepting computation of A on a tree t′,
and STR be a winning strategy of Pathfinder in Gt,A. Let s := e0, d0, e1, d1, . . . , ei, di, . . .

be the play which is consistent with strφ and STR. Then, there is i ∈ N such that ei is an
invalid move for Automaton in Gt,A. Moreover, if ei is the first invalid move for Automaton
in s, then t(v) 6= t′(v) for v := d0 . . . di−1.

Proof. Assume towards a contradiction that s does not contain an invalid move for Automaton,
and let (vi, qi) be the i-th position of Automaton in πs. By definition of Gt,A it is easy to see
that π = v0, . . . , vi, . . . is a branch in the full-binary tree. Since φ is an accepting computation
of A on t′, we conclude that the maximal color which C assigns infinitely often to states in
φ(π) is even. By Claim 17.1(1) we have φ(vi) = qi, and therefore φ(π) = q0 . . . qi By the
definition of CG we have CG(vi, qi) = C(qi) and we conclude that the maximal color which
C assigns infinitely often in πs is even, and therefore the play is winning for Automaton - a
contradiction to STR being a winning strategy of Pathfinder.

Therefore, Automaton makes an invalid move in s. Let ei = (ql, qr) be the first invalid move
of Automaton in s. Since ei is invalid we have (qi, t(vi), ql, qr) /∈ δ, and by definition of strφ we
obtain (ql, qr) = (φ(vi · l), φ(vi ·r)). Since φ(vi) = qi we have (φ(vi), t(vi), φ(vi · l), φ(vi ·r)) /∈ δ.
φ is a computation of A on t′ and therefore (φ(vi), t′(vi), φ(vi · l), φ(vi · r)) ∈ δ, and we
conclude that t(vi) 6= t′(vi). Notice that by the definition of Gt,A we have vi = d0 . . . di−1,
and the claim follows. C

4.2 MSO-definability
Throughout this section we will use the following conventions and terminology.
Positional Pathfinder strategies as labeled trees A positional strategy STR for Pathfinder

is a function in {l, r}∗×Q×Q→ {l, r}. Hence, it can be considered as a Q×Q→ {l, r}
labeled tree. Below we will not distinguish between a positional Pathfinder’s strategy
and the corresponding Q×Q→ {l, r} labeled full-binary tree. In particular, we call such
a strategy regular, if the corresponding tree is regular.

MSO-definability We will use “MSO-definable” for “MSO-definable in the unlabeled full-
binary tree.”

The rest of the proof deals with MSO-definability. By Claim 17.2, there is a function
InvalidA(φ, STR, t, v) which, for every accepting computation φ of A on t′, returns a node
v such that t′(v) 6= t(v). This function depends on the strategy STR of Pathfinder. The
restriction of InvalidA to the Pathfinder positional winning strategies in Gt,A is MSO-
definable (with parameters t and STR) by the following formula LeadsA(φ, STR, t, v), which
describes in MSO the play of φ against STR up to the first invalid move of Automaton (at
the position (v, φ(v)).

Define LeadsA(φ, STR, t, v) as the conjunction of:
1. φ(ε) = qI -the play starts from the initial position.
2. ∀u < v : ((φ(u), t(u), φ(u · l), φ(u · r)) ∈ δ - all Automaton’s moves at the positions (u, q),

where u is an ancestor of v respect δ. (By Claim 17.1(1), in any play consistent with φ,
Automaton can reach only the positions of the form (u, φ(u))).

3. (φ(v), t(v), φ(v · l), φ(v · r)) /∈ δ - the Automaton move at (v, φ(v)) is invalid.
4. ∀u < v : (STR(u, φ(u · l), φ(u · r)) = l)↔ u · l ≤ v)) - the Pathfinder moves d0 . . . dj . . .

are consistent with STR and are along the path from the root to v, i.e., d0d1 . . . dj ≤ v.
To sum up, we have the following claim:

A. Rabinovich and D. Tiferet 80:9

B Claim 17.3. LeadsA(φ, STR, t, v) defines a function which, for every tree t 6∈ L(A), every
Pathfinder’s positional (in Gt,A) winning strategy STR, and every φ ∈ ACC(A, t′), returns
a node v such that t(v) 6= t′(v).

Claim 17.3 plays a crucial role in our proof. It is instructive to compare it with Theorem 5
which implies that there is no MSO-definable function F (t,D, v) which for a tree t 6= t′ and
D := {u | t(u) 6= t′(u)} returns a node v such that t(v) 6= t′(v).

The following claim is folklore.

B Claim 17.4. Let t0 be a regular tree such that t0 /∈ L(A). Then, Pathfinder has a regular
positional winning strategy in Gt0,A.

Let t0 be a regular tree such that t0 /∈ L(A). By Claim 17.4 there is a regular positional
winning strategy ŜTR of Pathfinder in Gt0,A. Now, we can substitute ŜTR and t0 for
arguments STR and t of LeadsA and obtain the following claim:

B Claim 17.5. For every regular tree t0 /∈ L(A) and a regular positional winning strategy
ŜTR for Pathfinder in Gt0,A, there is an MSO-definable function which, for each accepting
computation φ of A on t′, returns a node v such that t0(v) 6= t′(v).

Proof. Let ψt0(σ) and ψ
ŜTR

(STR) be MSO-formulas that define t0 and ŜTR. Then, by
Claim 17.3, ∃σ∃STR : ψt0(σ) ∧ ψ

ŜTR
(STR) ∧ LeadsA(φ, STR, σ, v) defines such a function.

C

Notations. For trees t and t′ and an antichain Y , we denote by t[t′/Y] the tree obtained
from t by grafting t′ at every node in Y .

B Claim 17.6. Let t0 and t1 be regular trees. Then, there is an MSO-formula graftt0,t1(Y, σ)
defining a function which for every antichain Y returns the tree t0[t1/Y].

4.3 Finishing Proof of Proposition 17
Now, we have all the ingredients ready for the proof of Proposition 17. Let L be as in
Proposition 17. We claim that there are regular Σ-labeled trees t0 ∈ L and t1 6∈ Subtree(L).
Indeed, by Rabin’s basis theorem there is a regular t0 ∈ L. Since L is regular, there is an
automaton B = (Q,Σ, {qI}, δ,C) (with only useful states) which accepts L. It is clear that
BQ accepts Subtree(L), and therefore Subtree(L) is regular. The complement of Subtree(L)
is regular (as the complement of a regular language) and non-empty (since Subtree(L) 6= TωΣ),
and therefore contains a regular tree t1 (by Rabin’s basis theorem). Note that t0[t1/Y] 6∈ L
for every non-empty antichain Y .

Let A be such that L(A) = L, and let α
t0,A,ŜTR

(φ, v) be a formula which defines the
function from Claim 17.5 (t0[t1/Y] now takes the role of t′).

Define a formula: ChoiceA,t0,t1,ŜTR(Y, φ, y) := y ∈ Y ∧ ∃v(α
t0,A,ŜTR

(φ, v) ∧ v ≥ y).

B Claim 17.7. ChoiceA,t0,t1,ŜTR(Y, φ, y) defines a function which for every non-empty
antichain Y and an accepting computation φ of A on t0[t1/Y], returns a node y ∈ Y .

Proof. By Claim 17.5, α
t0,A,ŜTR

(φ, v) returns a node v such that t0(v) 6= (t0[t1/Y])(v). By
definition of t0[t1/Y], there is a unique node y ∈ Y such that v ≥ y. C

Define ChooseSubsetA,t0,t1,ŜTR(Y,X) := ∀x : x ∈ X iff the following conditions hold:
1. x ∈ Y and
2. ∃σ such that

MFCS 2020

80:10 Ambiguity Hierarchy of Regular Infinite Tree Languages

a. graftt0,t1(Y, σ) - “σ = t0[t1/Y]” and
b. ∃φAcceptingRunA(σ, φ) ∧ ChoiceA,t0,t1,ŜTR(Y, φ, x), where AcceptingRunA(σ, φ)

defines “φ is an accepting computation of A on the tree σ.”

B Claim 17.8. ChooseSubsetA,t0,t1,ŜTR(Y,X) defines a function which maps every non-
empty antichain Y to a non-empty subset X ⊆ Y . Moreover, |X| ≤ |ACC(A, t0[t1/Y])|.

Proof. If Y is non-empty, then t0[t1/Y] ∈ L, because t1 6∈ Subtree(L). Hence, A has at least
one accepting computation on t0[t1/Y]. Therefore, X is non-empty, by Claim 17.7. The
“Moreover” part immediately follows from Claim 17.7. C

Let A be such that L(A) = L and assume towards a contradiction that A is finitely ambiguous.
In particular, there are finitely many accepting computations of A on t0[t1/Y], and therefore
by Claim 17.8, we conclude that ChooseSubsetA,t0,t1,ŜTR(Y,X) assigns to every non-empty
antichain Y a finite non-empty X ⊆ Y - a contradiction to Lemma 6.

5 k-Ambiguous Languages

In this section we prove that for every 0 < k ∈ N, there is a tree language with the degree of
ambiguity equal to k. First, we introduce some notations. For a letter σ, we denote by tσ,
the full-binary tree with all nodes labeled by σ. Let L¬a1∨···∨¬ak

:= L¬a1 ∪ · · · ∪ L¬ak
be a

tree language over alphabet Σn = {c, a1, a2, ..., an}, where L¬ai
:= {t ∈ TωΣn

| no node in t is
labeled by ai}.

I Proposition 20. The degree of ambiguity of L¬a1∨···∨¬ak
for k ≤ n is k.

It is easy to see that L¬ai are accepted by deterministic automata. Therefore, by Lemma
7, we obtain that L¬a1∨···∨¬ak

is k-ambiguous. In the rest of this section we will show that
L¬a1∨···∨¬ak

is not (k − 1)-ambiguous. It was shown in [3] that L¬a1∨¬a2 is ambiguous.

I Lemma 21. Let L∃a1∧···∧∃am
:= {t ∈ TωΣn

| for every i ≤ m there is a node in t labeled
by ai}, and let L be a tree language such that tc /∈ L and L∃a1∧···∧∃am ∩ Tω{c,a1,...,am} ⊆ L.
Then, L is not finitely ambiguous.

Proof. Define a function F : Σ∗ → Σ such that F (σ1 . . . σk) := ak−i+1 if there is i such that
σi = a1, for all j < i : σj 6= a1 and k − i+ 1 ≤ m. Otherwise, F (σ1 . . . σk) := c.

It is easy to see that F is definable by a Moore machine, and ∀t ∈ TωΣ : t ∈ L∃a1 iff
F̂ (t) ∈ L. Therefore, by Lemma 15 we conclude that da(L) ≥ da(L∃a1). Since L∃a1 is not
finitely ambiguous (by Corollary 18 (3)), we conclude that L is not finitely ambiguous. J

Notations. Let a ∈ Σ, t1 ∈ TωΣ and t2 ∈ TωΣ . We define Tree(a, t1, t2) ∈ TωΣ as a tree t
where t(ε) = a, t≥l = t1 and t≥r = t2.

I Lemma 22. Let A be a finitely ambiguous automaton over alphabet Σn such that L(A) =
L¬a1∨···∨¬ak

for k ≤ n. Then |ACC(A, tc)| ≥ k.

Proof. We will prove by induction on k. For k = 1 the claim holds trivially, since tc ∈ L(A)
implies that |ACC(A, tc)| ≥ 1.

Assume the claim holds for all k < m ≤ n and prove for k = m.
Let A = (Q,Σ, QI , δ,C) be a finitely ambiguous automaton which accepts L¬a1∨···∨¬am

.
Define R := {(q1, q2) ∈ Q×Q | ∃qi ∈ QI : (qi, c, q1, q2) ∈ δ)}, and let R[1] and R[2] be the
projections of the first and second coordinate of R on Q, respectively.

A. Rabinovich and D. Tiferet 80:11

Define Q∃am := {q ∈ R[1] | L(Aq) ∩ L∃am 6= ∅}, and let Q∃am∧tc := {q ∈ Q∃am | tc ∈
L(Aq)} and Q∃am∧¬tc := Q∃am

\Q∃am∧tc .
By definition of Q∃am∧¬tc we have tc /∈ L(AQ∃am∧¬tc

) and therefore L(AQ∃am∧¬tc
) ∩

Tω{c,am} ⊆ T
ω
{c,am} \ {tc}. The language Tω{c,am} \ {tc} is not finitely ambiguous by Corollary

18 (2). L(AQ∃am∧¬tc
) is finitely ambiguous (by Corollary 10) and since Tω{c,am} is unambiguous

we conclude that L(AQ∃am∧¬tc
)∩Tω{c,am} is finitely ambiguous, by Corollary 8. Therefore, by

Lemma 11, there is a tree t′ ∈ Tω{c,am} \ {tc} = L∃am
∩ Tω{c,am} such that t′ /∈ L(AQ∃am∧¬tc

),
and since L∃am ∩ Tω{c,am} ⊆ L(AQ∃am

) = L(AQ∃am∧tc
) ∪ L(AQ∃am∧¬tc

) we conclude that
t′ ∈ L(AQ∃am∧tc

).
Define Q′ := {q ∈ R[1] | t′ ∈ L(Aq)} and R′ := {(q1, q2) ∈ R | q1 ∈ Q′}. Since t′ ∈ L∃am

∩
Tω{c,am}, we conclude that {t ∈ TωΣ | Tree(c, t′, t) ∈ L¬a1∨···∨¬am} = L¬a1∨···∨¬am−1 . There-
fore, L(AR′[2]) = L¬a1∨···∨¬am−1 , and by induction assumption we obtain |ACC(AR′[2], tc)| ≥
m− 1.

For each computation φ ∈ ACC(AR′[2], tc) we will construct a computation g(φ) ∈
ACC(A, tc), as following. Let q2 := φ(ε). By the definition of R′, there is (q1, q2) ∈ R′

such that t′ ∈ L(Aq1). Since t′ ∈ L(AQ∃am∧tc
) we have tc ∈ L(Aq1), and therefore there

is a computation φc ∈ ACC(Aq1 , tc). Let qi ∈ QI such that (qi, c, q1, q2) ∈ δ. By defining
g(φ) := Tree(qi, φc, φ) we obtain that g(φ) ∈ ACC(A, tc), as requested.

Let Φ := {g(φ) | φ ∈ ACC(AR′[2], tc)}. g(φ)≥r = φ and therefore g is injective, and we
conclude that |Φ| = |ACC(AR′[2], tc)| ≥ m− 1.

We now need to find an additional computation φ ∈ ACC(A, tc) such that φ /∈ Φ,
resulting |ACC(A, tc)| ≥ m.

Let Q∃a1∧···∧∃am−1 := {q ∈ R[2] | L(Aq) ∩ L∃a1∧···∧∃am−1 6= ∅} and let
Qtc∧∃a1∧···∧∃am−1 := {q ∈ Q∃a1∧···∧∃am−1 | tc ∈ L(Aq)} and
Q¬tc∧∃a1∧···∧∃am−1 := Q∃a1∧···∧∃am−1 \Qtc∧∃a1∧···∧∃am−1 .

B Claim 22.1. There is a tree t′′ ∈ L∃a1∧···∧∃am−1 ∩ Tω{c,a1,...,am−1} such that t′′ ∈
L(AQtc∧∃a1∧···∧∃am−1

) and t′′ /∈ L(AQ¬tc∧∃a1∧···∧∃am−1
).

Proof. By the definition of R[2] we have L∃a1∧···∧∃am−1∩Tω{c,a1,...,am−1} ⊆ L(AR[2]) and there-
fore by the definition of Qtc∧∃a1∧···∧∃am−1 and Q¬tc∧∃a1∧···∧∃am−1 , we have L∃a1∧···∧∃am−1 ∩
Tω{c,a1,...,am−1} ⊆ L(AQtc∧∃a1∧···∧∃am−1

) ∪ L(AQ¬tc∧∃a1∧···∧∃am−1
).

Assume towards contradiction that the claim does not hold. Then, we obtain
L∃a1∧···∧∃am−1 ∩ Tω{c,a1,...,am−1} ⊆ L(AQ¬tc∧∃a1∧···∧∃am−1

). We have tc /∈
L(AQ¬tc∧∃a1∧···∧∃am−1

), and therefore by Lemma 21 we obtain that L(AQ¬tc∧∃a1∧···∧∃am−1
) is

not finitely ambiguous - a contradiction to A being finitely ambiguous. C

Let t′′ be a tree as in Claim 22.1. We have t′′ ∈ L∃a1∧···∧∃am−1 ∩Tω{c,a1,...,am−1}, and therefore
Tree(c, tc, t′′) ∈ L¬a1∨···∨¬am

= L(A), and there is a computation φ ∈
ACC(A, T ree(c, tc, t′′)). Let q := φ(r). By definition of t′′, we have q ∈ Qtc∧∃a1∧···∧∃am−1

and therefore tc ∈ L(Aq). Let φc ∈ ACC(Aq, tc), and let φ′ be the computation obtained
from φ by grafting φc on r. We conclude that φ′ ∈ ACC(A, tc).

Assume towards contradiction that φ′ ∈ Φ, and let q1 := φ′(l) and q2 := φ′(r). We have
t′ ∈ L(Aq1) (by definition of |Φ|) and t′′ ∈ L(Aq2) (by definition of φ′). Therefore, by grafting
computations φt′ ∈ ACC(Aq1 , t

′) and φt′′ ∈ ACC(Aq2 , t
′′) to the left and right children of

the root of tc, respectively, we obtain Tree(c, t′, t′′) ∈ L(A). That is a contradiction, since
t′ contains an am labeled node, and t′′ contains a1, . . . , am−1 labeled nodes, and therefore
Tree(c, t′, t′′) /∈ L¬a1∨···∨¬am .

We conclude that φ′ /∈ Φ, and therefore |ACC(A, tc)| ≥ 1 + |Φ| = 1 + (m− 1) = m. J

MFCS 2020

80:12 Ambiguity Hierarchy of Regular Infinite Tree Languages

6 Finitely Ambiguous Languages

I Definition 23. Let Σ = {a1, a2, c}. We define the following languages over Σ:
For k,m ∈ N such that k < m, we define Lk,m as the set of trees t which are obtained
from tc by grafting a tree t′ ∈ L¬a1∨¬a2 on node lkr, and grafting ta1 on node lm.
For m ∈ N we define Lm := ∪k<mLk,m.
Lfa := ∪m∈NLm.

I Proposition 24. The degree of ambiguity of Lfa is finite.
The proposition follows from Lemma 25 and Lemma 27 proved below.

I Lemma 25. There is a finitely ambiguous automaton which accepts Lfa

Sketch. On a tree t ∈ Lm the automaton “guesses” a position i < m and checks that
t≥lir ∈ L¬a1∨¬a2 (using a 2-ambiguous automaton), and checks that t≥ljr = tc for all
j 6= i ∧ j < m, and checks that t≥lm = ta1 (using deterministic automata). J

I Lemma 26. Let L be a tree language such that Lm ⊆ L ⊆ Lfa. Then, L is not m − 1
ambiguous.

Proof. Let A be an automaton with states Q which accepts L, and assume A is finitely
ambiguous. Define a set Q′ ⊆ Q by Q′ := {φ(lir) | i < m ∧ ∃t ∈ L : φ ∈ ACC(A, t)} and
Q∃a1 := {q ∈ Q′ | L∃a1 ∩ L(Aq) 6= ∅}, and let Qtc∧∃a1 := {q ∈ Q∃a1 | tc ∈ L(Aq)} and
Q¬tc∧∃a1 := Q∃a1 \Qtc∧∃a1 .

Relying on the fact that Tω{c,a1} \ {tc} is not finitely ambiguous (by Corollary 18 (2)), we
derive the following claim:

B Claim 26.1. There is a tree t∃a1 ∈
(
Tω{c,a1} \ {tc}

)
∩
(
L(AQtc∧∃a1

) \ L(AQ¬tc∧∃a1
)
)
.

Recall that tm is the tree which is obtained from tc by grafting ta1 on node lm. For each
i < m, define tmi as the tree which is obtained from tm by grafting t∃a1 on node lir. It is
clear that tmi ∈ L(A), and therefore there is an accepting computation φi of A on tmi .

t∃a1 ∈ L(AQtc∧∃a1
) \ L(AQ¬tc∧∃a1

) and since t∃a1 ∈ Aφi(lir) we conclude that φi(lir) ∈
Qtc∧∃a1 and therefore tc ∈ L(Aφi(lir)). Let φci ∈ ACC(Aφi(lir), tc), and construct a compu-
tation φ′i from φi by grafting φci on lir. This tree which is obtained from tmi by grafting tc
on lir is the tree tm and therefore φ′i ∈ ACC(A, tm).

We are going to show that for all i < j < m, the computations φ′i, φ′j ∈ ACC(A, tm)
are different. Assume towards a contradiction φ′i = φ′j and let φ̂ := φ′i. Define pi := φ̂(lir),
pj := φ̂(ljr), and let φpi

∈ ACC(Api
, t∃a1) and φpj

∈ ACC(Ap2 , t∃a1). Construct t′ from tm

by grafting t∃a1 on nodes lir and ljr, and construct φ′ from φ̂ by grafting φpi
on lir and φp2

on ljr. It follows that φ′ is an accepting computation of A on t′, which is a contradiction,
since t′ /∈ Lfa (since t′≥ljr = t′≥lir = t∃a1 6= tc) and therefore t′ /∈ L (since L ⊆ Lfa). We
conclude that there are at least m different accepting computations of A on tm. J

I Remark. The language Lm is 2m ambiguous but not m− 1 ambiguous. This implies that
the hierarchy of ambiguous languages is infinite. The point of the more complex construction
in Sect. 5 is to show that this hierarchy is populated at every level.

I Lemma 27. Lfa is not boundedly ambiguous

Proof. ∀m ∈ N : Lm ⊆ Lfa, and therefore from Lemma 26 it follows that Lfa is not
(m− 1)-ambiguous. That is, Lfa is not boundedly ambiguous. J

A. Rabinovich and D. Tiferet 80:13

7 Uncountably Ambiguous Languages

I Definition 28. Let L¬ba be an arbitrary regular tree language over alphabet Σ which is not
boundedly ambiguous. Let c ∈ Σ and define a language Luc over alphabet Σ. t ∈ Luc iff the
following conditions hold:
∀v ∈ l∗ : t(v) = c

∀v ∈ l∗r : t≥v ∈ L¬ba.
It is immediate to formalize Luc using an MSO-formula, and therefore it is regular.

I Proposition 29. The degree of ambiguity of Luc is 2ℵ0 .

Proof. Let A = (Q,Σ, QI , δ,C) be a parity automaton such that L(A) = Luc. Let Q′ :=
{φ(v) | v ∈ l∗r and ∃t : φ ∈ ACC(A, t)}. First, observe the following Claim:

B Claim 29.1. L(AQ′) = L¬ba

Next, define Qunam := {q ∈ Q′ | Aq is unambiguous}, and Qamb := Q′ \Qunam. Let k :=
|Qunam|. By Lemma 7(1), L(AQunam) is k-ambiguous, since it is accepted by an automaton
AQunam

and L(AQunam
) is a union of k unambiguous languages. Clearly, L(AQunam

) ⊆
L(AQ′), and therefore by Claim 29.1 we obtain L(AQunam) ⊆ L¬ba. Applying Lemma 11 we
obtain a tree t′ ∈ L¬ba such that t′ /∈ L(AQunam

). Since L(AQunam
)∪L(AQamb

) = L(AQ′) =
L¬ba, we conclude that t′ ∈ L(AQamb

).
Construct a tree t̂ from tc by grafting t′ on all nodes l∗r. It is clear that t̂ ∈ L(A) = Luc,

and therefore there is a computation φ̂ ∈ ACC(A, t̂). By definition of t′, ∀v ∈ l∗r : φ̂(v) ∈
Qamb.

For every q ∈ Qamb, there is a tree tq ∈ L(Aq) such that there are two different
computations φq1, φ

q
2 of Aq on tq.

Let qi := φ̂(lir); let t̄ be the tree which is obtained from t̂ as follows: graft tqi on lir in t̂
for i ∈ N. We will show that there are uncountable many accepting computations on t̄.

For S ⊆ N, let φS be a computation on t̄ which coincides with φ̂ on the nodes in l∗ ∪ l∗r,
and for each i: if i ∈ S, then φS coincides with φqi

1 on t̄≥lir = tqi ; if i 6∈ S, then φS coincides
with φqi

2 on t̄≥lir = tqi . It is easy to see that φS is an acceptiong computation on t̄, and
φS1 6= φS2 for S1 6= S2. Hence, |ACC(A, t̄)| ≥ |{S | S ⊆ N}| = 2ℵ0 , and da(Luc) = 2ℵ0 . J

8 Conclusion

We proved that the ambiguity hierarchy is strict for regular languages over infinite trees. A
natural question is whether the ambiguity degree is decidable. However, this is not a trivial
matter. In [3] some partial solutions for variants of the problem whether a given language is
unambiguous are provided.

We provided sufficient conditions for a language to be not finitely ambiguous and for a
language to have uncountable degree of ambiguity.

In particular, we proved that the degree of ambiguity of the complement of a countable
regular language is ℵ0 or 2ℵ0 , and provided natural examples of such languages with countable
degree of ambiguity. Yet, it is open whether the degree of ambiguity of the complement
of countable regular languages is ℵ0. Relying on Niwiński’s characterization of countable
regular languages [9], we can prove that every countable language is unambiguous.

MFCS 2020

80:14 Ambiguity Hierarchy of Regular Infinite Tree Languages

References
1 André Arnold. Rational omega-languages are non-ambiguous. Theor. Comput. Sci., 26:221–223,

September 1983. doi:10.1016/0304-3975(83)90086-5.
2 Vince Bárány, Łukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in

monadic second-order logic over trees. Fundamenta Informaticae, 100(1-4):1–17, 2010.
3 Marcin Bilkowski and Michal Skrzypczak. Unambiguity and uniformization problems on

infinite trees. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL
2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 81–100.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.81.

4 Arnaud Carayol and Christof Löding. MSO on the infinite binary tree: Choice and order. In
International Workshop on Computer Science Logic, pages 161–176. Springer, 2007.

5 Arnaud Carayol, Christof Löding, Damian Niwinski, and Igor Walukiewicz. Choice functions
and well-orderings over the infinite binary tree. Open Mathematics, 8(4):662–682, 2010.

6 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368–377. Citeseer, 1991.

7 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 60–65, 1982.

8 Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem 1. The Journal of Symbolic
Logic, 48(4):1105–1119, 1983.

9 Damian Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata. In
Andrzej Tarlecki, editor, Mathematical Foundations of Computer Science 1991, pages 367–376,
Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

10 D. Perrin and J.É. Pin. Infinite Words: Automata, Semigroups, Logic and Games. ISSN.
Elsevier Science, 2004. URL: https://books.google.fr/books?id=S7hHhJc4iNgC.

11 Michael O Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the american Mathematical Society, 141:1–35, 1969.

12 Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages
133–191. Elsevier, 1990.

13 Boris A. Trakhtenbrot and Ya. M. Barzdin. Finite automata, behavior and synthesis. 1973.

https://doi.org/10.1016/0304-3975(83)90086-5
https://doi.org/10.4230/LIPIcs.CSL.2013.81
https://books.google.fr/books?id=S7hHhJc4iNgC

	Introduction
	Preliminary
	Simple Properties of Languages
	Not-Finitely Ambiguous Languages
	Membership Game
	MSO-definability
	Finishing Proof of Proposition 17

	k-Ambiguous Languages
	Finitely Ambiguous Languages
	Uncountably Ambiguous Languages
	Conclusion

