
10th International Conference on
Fun with Algorithms

FUN 2021, May 30–June 1, 2021, Favignana Island, Sicily, Italy

Edited by

Martin Farach-Colton
Giuseppe Prencipe
Ryuhei Uehara

LIPIcs – Vo l . 157 – FUN 2021 www.dagstuh l .de/ l ip i c s

Editors

Martin Farach-Colton
Rutgers University, NJ, USA
martin@farach-colton.com

Giuseppe Prencipe
Università di Pisa, Italy
giuseppe.prencipe@unipi.it

Ryuhei Uehara
Japan Advanced Institute of Science and Technology, Ishikawa, Japan
uehara@jaist.ac.jp

ACM Classification 2012
Theory of computation; Mathematics of computing; Computing methodologies; Security and privacy;
Applied computing; Information systems

ISBN 978-3-95977-145-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-145-0.

Publication date
September, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FUN.2021.0

ISBN 978-3-95977-145-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-3616-7788
mailto:martin@farach-colton.com
https://orcid.org/0000-0001-5646-7388
mailto:giuseppe.prencipe@unipi.it
https://orcid.org/0000-0003-0895-3765
mailto:uehara@jaist.ac.jp
https://www.dagstuhl.de/dagpub/978-3-95977-145-0
https://www.dagstuhl.de/dagpub/978-3-95977-145-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.FUN.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-145-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FUN 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara 0:vii

Conference Organization
. 0:ix

Authors
. 0:xi–0:xv

Regular Papers

Tatamibari Is NP-Complete
Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine,
Quanquan C. Liu, and Jayson Lynch . 1:1–1:24

Collaborative Procrastination
Aris Anagnostopoulos, Aristides Gionis, and Nikos Parotsidis . 2:1–2:20

Walking Through Doors Is Hard, Even Without Staircases: Proving
PSPACE-Hardness via Planar Assemblies of Door Gadgets

Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yenhenii Diomidov,
Dylan Hendrickson, and Jayson Lynch . 3:1–3:23

Taming the Knight’s Tour: Minimizing Turns and Crossings
Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda 4:1–4:20

Cutting Bamboo down to Size
Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and
Giacomo Scornavacca . 5:1–5:18

Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots
Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes . 6:1–6:19

1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete
Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson,
Adam Hesterberg, Adam Suhl, and Avi Zeff . 7:1–7:14

An Optimal Algorithm for Online Freeze-Tag
Josh Brunner and Julian Wellman . 8:1–8:11

Magic: The Gathering Is Turing Complete
Alex Churchill, Stella Biderman, and Austin Herrick . 9:1–9:19

Computational Fun with Sturdy and Flimsy Numbers
Trevor Clokie, Thomas F. Lidbetter, Antonio J. Molina Lovett,
Jeffrey Shallit, and Leon Witzman . 10:1–10:21

Efficient Algorithms for Battleship
Loïc Crombez, Guilherme D. da Fonseca, and Yan Gerard . 11:1–11:15

A Phase Transition in Minesweeper
Ross Dempsey and Charles Guinn . 12:1–12:10

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On the Treewidth of Hanoi Graphs
David Eppstein, Daniel Frishberg, and William Maxwell . 13:1–13:21

An Open Pouring Problem
Fabian Frei, Peter Rossmanith, and David Wehner . 14:1–14:9

Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard
Thomas Brocken, G. Wessel van der Heijden, Irina Kostitsyna,
Lloyd E. Lo-Wong, and Remco J. A. Surtel . 15:1–15:16

Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation
Tomasz Idziaszek . 16:1–16:9

Foundations for Actively Secure Card-Based Cryptography
Alexander Koch and Stefan Walzer . 17:1–17:23

Hyperbolic Minesweeper Is in P
Eryk Kopczyński . 18:1–18:7

Train Tracks with Gaps
William Kuszmaul . 19:1–19:11

Card-Based ZKP Protocols for Takuzu and Juosan
Daiki Miyahara, Léo Robert, Pascal Lafourcade, So Takeshige, Takaaki Mizuki,
Kazumasa Shinagawa, Atsuki Nagao, and Hideaki Sone . 20:1–20:21

Speeding up Networks Mining via Neighborhood Diversity
Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno . 21:1–21:12

Physical Zero-Knowledge Proof for Numberlink
Suthee Ruangwises and Toshiya Itoh . 22:1–22:11

The Computational Complexity of Evil Hangman
Jérémy Barbay and Bernardo Subercaseaux . 23:1–23:12

Singletons for Simpletons: Revisiting Windowed Backoff with Chernoff Bounds
Qian M. Zhou, Aiden Calvert, and Maxwell Young . 24:1–24:19

Preface

FUN with Algorithms is dedicated to the use, design, and analysis of algorithms and data
structures, focusing on results that provide amusing, witty but nonetheless original and
scientifically profound contributions to the area. Donald Knuth’s famous quote captures this
spirit nicely:.... pleasure has probably been the main goal all along. But I hesitate to admit it,
because computer scientists want to maintain their image as hard-working individuals who
deserve high salaries. Sooner or later society will realize that certain kinds of hard work are
in fact admirable even though they are more fun than just about anything else.

The previous FUNs were held in Elba Island, Italy; in Castiglioncello, Tuscany, Italy; in
Ischia Island, Italy; in San Servolo Island, Venice, Italy; in Lipari Island, Sicily, Italy; and
in La Maddalena Island, Sardinia, Italy. Special issues of Theoretical Computer Science,
Discrete Applied Mathematics, and Theory of Computing Systems were dedicated to them.

This volume contains the papers that will be presented at the 10th International Confer-
ence on Fun with Algorithms 2020. The conference was originally scheduled to be at Island
of Favignana, Sicily, Italy, from the 8th to the 10th of June, 2020. Unfortunately, due to the
COVID-19 global emergency, we were forced to delay it, which was not so fun. Fortunately,
FUN is held every two years; thus, we planned to postpone it until summer 2021. Different
dates, same venue, same FUN!

The call for papers attracted 48 submissions from all over the world, addressing a wide
variety of topics, reviewed by 31 Program Committee members. After a careful reviewing
process and a thorough discussion, the committee decided to accept 24 papers. Extended
versions of selected papers will appear in a special issue. In addition, the program features
invited talks by Eva Rotenberg and Bettina Speckmann.

We thank all authors who submitted their work to FUN 2020/2021, all Program Committee
members for their expert assessments and the ensuing discussions, all external reviewers
for their kind help, and Atsuki Nagao for taking care of the web management of the
conference. We used EasyChair (http://www.easychair.org/), that greatly facilitated the
entire preparation of the conference, for handling submissions, reviews, the selection of papers,
and the production of this volume. Warm thanks also go to Michael Wagner, and to the
LIPIcs team, for following carefully the process of proceedings’ publication in LIPIcs series.

When we are editing this volume, the things are not yet settled. However, we hope we
can share fun with algorithms even if, at least for now, it may be only shared by online.

May, 2020

Martin Farach-Colton
Giuseppe Prencipe

Ryuhei Uehara

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Program Committee
Flavia Bonomo, U. of Buenos Aires, Argentina
Arnaud Casteigts, U. de Bordeaux, France
Graham Cormode, U. of Warwick, United
Kingdom
Martin Farach-Colton, Rutgers U., USA
(co-chair)
Paolo Ferragina, U. di Pisa, Italy
Paola Flocchini, U. of Ottawa, Canada
Jie Gao, Rutgers U., USA
Seth Gilbert, National U. of Singapore,
Singapore
Inge Li Gørtz , Danmarks Tekniske U., Denmark
John Iacono, U. Libre de Bruxelles, Belgium
Hiro Ito, U. of Electro-Communications, Japan
Chuzo Iwamoto, Hiroshima U., Japan
Tomasz Jurdzinski, U. Wroc?awski, Poland
Irina Kostitsyna, Technische U. Eindhoven,
Nederlands
Michal Koucky, U. Karlova, Czech Republic
Stefan Langerman, U. Libre de Bruxelles,
Belgium
Giuseppe Di Luna, Sapienza U. di Roma, Italy
Javier Marenco, U. Nacional de General
Sarmiento, Argentina
Miguel A. Mosteiro, Pace U., USA
Yoshio Okamoto, U. of Electro-Communications,
Japan
Solon Pissis, Centrum Wiskunde & Informatica,
Nederlands
Simon Puglisi, Helsingin yliopisto, Finland
Eva Rotenberg, Danmarks Tekniske U.,
Denmark
Shikha Singh, Williams College, USA
Akira Suzuki, Tohoku U., Japan
Ryuhei Uehara, JAIST, Japan (co-chair)
Yushi Uno, Osaka Prefecture U., Japan
Przemek Uznanski, U. Wrocławski, Poland
Giovanni Viglietta, JAIST, Japan
Prudence Wong, U. of Liverpool, United
Kingdom
Maxwell Young, Mississippi State U., USA

Steering Commitee
Hiro Ito, U. of Electro-Communications, Japan
Stefano Leonardi, Sapienza U. di Roma, Italy
Linda Pagli, U. di Pisa, Italy
Giuseppe Prencipe, U. di Pisa, Italy
Geppino Pucci, U. degli Studi di Padova , Italy
Nicola Santoro, Carleton U., Canada

Organizers
Linda Pagli, U. di Pisa, Italy
Giuseppe Prencipe, U. di Pisa, Italy
Atsuki Nagao, Ochanomizu U., Japan (web
manager)
Giovanni Viglietta, JAIST, Japan (web
manager)
Miguel A. Mosteiro, Pace U., USA (publicity
chair)

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Adam Hesterberg
achesterberg@gmail.com
United States
Massachusetts Institute of Technology

Adam Suhl
asuhl@mit.edu
United States
Algorand

Adele Rescigno
arescigno@unisa.it
Italy
University of Salerno

Aiden Calvert
calverta20@themsms.org
United States
Mississippi School for Math. and Science

Alex Churchill
alex.churchill@cantab.net
United Kingdom
Independent

Alexander Koch
alexander.koch@kit.edu
Germany
Karlsruhe Institute of Technology

Antonio Molina Lovett
antonio@amolina.ca
Canada
University of Waterloo

Aris Anagnostopoulos
aris@diag.uniroma1.it
Italy
Sapienza University of Rome

Aristides Gionis
aristides.gionis@aalto.fi
Finland
Aalto University

Atsuki Nagao
a-nagao@is.ocha.ac.jp
Japan
Ochanomizu University

Austin Herrick
aherrick@wharton.upenn.edu
United States
University of Pennsylvania

Avi Zeff
avizeff@mit.edu
United States
MIT CSAIL

Aviv Adler
adlera@mit.edu
United States
Massachusetts Institute of Technology

Bernardo Subercaseaux
bernardosubercaseaux@gmail.com
Chile
Universidad de Chile

Charles Guinn
cguinn@princeton.edu
United States
Princeton University

Daiki Miyahara
daiki.miyahara.q4@dc.tohoku.ac.jp
Japan
Tohoku University

Daniel Frishberg
dfrishbe@uci.edu
United States
University of California, Irvine

David Eppstein
eppstein@uci.edu
United States
University of California, Irvine

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Authors

David Wehner
david.wehner@inf.ethz.ch
Switzerland
ETH Zurich

Davide Bilò
davidebilo@uniss.it
Italy
University of Sassari, Italy

Dylan Hendrickson
dylanhen@mit.edu
United States
Massachusetts Institute of Technology

Dylan Hendrickson
dylanhen@mit.edu
United States
Massachusetts Institute of Technology

Erik D. Demaine
edemaine@mit.edu
United States
Massachusetts Institute of Technology

Eryk Kopczynski
erykk@duch.mimuw.edu.pl
Poland
University of Warsaw

Fabian Frei
fafrei@inf.ethz.ch
Switzerland
ETH Zurich

G.W. van der Heijden
g.w.v.d.heijden@student.tue.nl
Netherlands
TU Eindhoven

Gennaro Cordasco
gennaro.cordasco@unicampania.it
Italy
University of Campania “Luigi Vanvitelli”

Giacomo Scornavacca
giacomo.scornavacca@graduate.univaq.it
Italy
University of Sassari, Italy

Guido Proietti
guido.proietti@univaq.it
Italy
Università L’Aquila, Italy and Istituto di Analisi
dei Sistemi ed Informatica, IASI-CNR, Roma,
Italy

Guilherme da Fonseca
guilherme.fonseca@lis-lab.fr
France
Université Aix Marseille

Hideaki Sone
Japan
Tohoku University

Irina Kostitsyna
i.kostitsyna@tue.nl
Netherlands
TU Eindhoven

Jayson Lynch
jaysonl@mit.edu
United States
Massachusetts Institute of Technology

Jeffrey Bosboom
jbosboom@csail.mit.edu
United States
Massachusetts Institute of Technology

Jeffrey Shallit
shallit@uwaterloo.ca
Canada
University of Waterloo

Jérémy Barbay
jeremy@barbay.cl
Chile
Universidad de Chile

Josh Brunner
brunnerj@mit.edu
United States
Massachusetts Institute of Technology

Authors 0:xiii

Joshua Ani
joshuaa@mit.edu
United States
Massachusetts Institute of Technology

Juan Jose Besa Vial
jjbesavi@uci.edu
United States
University of California, Irvine

Julian Wellman
wellman@mit.edu
United States
Massachusetts Institute of Technology

Kazumasa Shinagawa
shinagawakazumasa@gmail.com
Japan
Tokyo Institute of Technology

Leo Robert
leo.robert@uca.fr
France
LIMOS, University Clermont Auvergne

Leon Witzman
lwitzman@edu.uwaterloo.ca
Canada
University of Waterloo

Lily Chung
ikdc@mit.edu
United States
Massachusetts Institute of Technology

Lloyd E. Lo-Wong
l.e.lo-wong@student.tue.nl
Netherlands
TU Eindhoven

Loïc Crombez
loic.crombez@uca.fr
France
Université Clermont Auvergne

Luciano Gualà
guala@mat.uniroma2.it
Italy
Dipartimento di Matematica
Università di Tor Vergata, Roma, Italy

Luisa Gargano
lgargano@unisa.it
Italy
University of Salerno

Martha Osegueda
mosegued@uci.edu
United States
University of California, Irvine

Martin L. Demaine
mdemaine@mit.edu
United States
Massachusetts Institute of Technology

Maxwell Young
my325@msstate.edu
United States
Mississippi State University

Nikos Parotsidis
nickparo1@gmail.com
Italy
Google

Nil Mamano
nmamano@uci.edu
United States
University of California, Irvine

Pascal Lafourcade
pascal.lafourcade@udamail.fr
France
LIMOS, University Clermont Auvergne

Peter Rossmanith
rossmani@cs.rwth-aachen.de
Germany
RWTH Aachen

Qian Zhou
qz70@msstate.edu
United States
Mississippi State University

Quanquan C. Liu
quanquan@mit.edu
United States
Massachusetts Institute of Technology

FUN 2021

0:xiv Authors

Quentin Bramas
quentin.bramas@gmail.com
France
ICUBE, Université de Strasbourg, CNRS

Remco J. A. Surtel
r.j.a.surtel@student.tue.nl
Netherlands
TU Eindhoven

Ross Dempsey
rossd97@gmail.com
United States
Princeton University

So Takeshige
so.takeshige.q1@dc.tohoku.ac.jp
Japan
Tohoku University

Stefan Walzer
stefan.walzer@tu-ilmenau.de
Germany
TU Ilmenau

Stefano Leucci
stefano.leucci@univaq.it
Italy
University of L’Aquila

Stella Biderman
stellabiderman@gmail.com
United States
Georgia Institute of Technology

Stéphane Devismes
stephane.devismes@univ-grenoble-alpes.fr
France
VERIMAG UMR 5104

Suthee Ruangwises
ruangwises.s.aa@m.titech.ac.jp
Japan
Tokyo Institute of Technology

Takaaki Mizuki
tm-paper+zerotate@
g-mail.tohoku-university.jp
Japan
Tohoku University

Thomas Brocken
t.brocken@student.tue.nl
Netherlands
TU Eindhoven

Thomas Lidbetter
tflidbetter@mta.ca
Canada
University of Waterloo

Timothy Johnson
tujohnso@uci.edu
United States
University of California, Irvine

Tomasz Idziaszek
idziaszek@mimuw.edu.pl
Poland
algonotes.com

Toshiya Itoh
titoh@c.titech.ac.jp
Japan
Tokyo Institute of Technology

Trevor Clokie
trevor.clokie@uwaterloo.ca
Canada
University of Waterloo

William Kuszmaul
kuszmaul@mit.edu
United States
Massachusetts Institute of Technology

William Maxwell
maxwellw@oregonstate.edu
United States
Oregon State University

Authors 0:xv

Yan Gerard
yan.gerard@uca.fr
France
Université Clermont Auvergne

Yevhenii Diomidov
diomidov@mit.edu
United States
Massachusetts Institute of Technology

FUN 2021

Tatamibari Is NP-Complete
Aviv Adler
Massachusetts Institute of Technology, Cambridge, MA, USA
adlera@mit.edu

Jeffrey Bosboom
Massachusetts Institute of Technology, Cambridge, MA, USA
jbosboom@mit.edu

Erik D. Demaine
Massachusetts Institute of Technology, Cambridge, MA, USA
edemaine@mit.edu

Martin L. Demaine
Massachusetts Institute of Technology, Cambridge, MA, USA
mdemaine@mit.edu

Quanquan C. Liu
Massachusetts Institute of Technology, Cambridge, MA, USA
quanquan@mit.edu

Jayson Lynch
Massachusetts Institute of Technology, Cambridge, MA, USA
jaysonl@mit.edu

Abstract
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an m× n grid of cells, where
each cell possibly contains a clue among , , . The goal is to partition the grid into disjoint
rectangles, where every rectangle contains exactly one clue, rectangles containing are square,
rectangles containing are strictly longer horizontally than vertically, rectangles containing are
strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this
puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget
framework for proving hardness of similar puzzles involving area coverage, and show that it applies
to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font
for Tatamibari.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases Nikoli puzzles, NP-hardness, rectangle covering

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.1

Related Version This paper is also available on arXiv at https://arXiv.org/abs/2003.08331.

Supplementary Material The Z3-based Tatamibari solver and figures from Tatamibari NP-hardness
paper are available at https://github.com/jbosboom/tatamibari-solver [4].

Acknowledgements This work was initiated during open problem solving in the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.890) taught by Erik Demaine in Fall 2014.
We thank the other participants of that class for related discussions and providing an inspiring
atmosphere.

1 Introduction

Nikoli is perhaps the world leading publisher of pencil-and-paper logic puzzles, having invented
and/or popularized hundreds of different puzzles through their Puzzle Communication Nikoli
magazine and hundreds of books. Their English website [29] currently lists 38 puzzle types,
while their “omopa list” [28] currently lists 456 puzzle types and their corresponding first
appearance in the magazine.

© Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and
Jayson Lynch;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adlera@mit.edu
mailto:jbosboom@mit.edu
mailto:edemaine@mit.edu
mailto:mdemaine@mit.edu
mailto:quanquan@mit.edu
mailto:jaysonl@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.1
https://arXiv.org/abs/2003.08331
https://github.com/jbosboom/tatamibari-solver
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Tatamibari Is NP-Complete

Nikoli’s puzzles have drawn extensive interest by theoretical computer scientists (including
the FUN community): whenever a new puzzle type gets released, researchers tackle its
computational complexity. For example, the following puzzles are all NP-complete: Bag /
Corral [13], Country Road [20], Fillomino [31], Hashiwokakero [8], Heyawake [19], Hiroimono
/ Goishi Hiroi [7], Hitori [17, Section 9.2], Kakuro / Cross Sum [32], Kurodoko [22], Light Up
/ Akari [25], LITS [26], Masyu / Pearl [14], Nonogram / Paint By Numbers [30], Numberlink
[23, 2], Nurikabe [24, 18], Shakashaka [12, 3], Slitherlink [32, 31, 1], Spiral Galaxies / Tentai
Show [15], Sudoku [32, 31], Yajilin [20], and Yosenabe [21].

Allen et al. [5] defined the Nikoli gap to be the amount of time between the first
publication of a Nikoli puzzle and a hardness result for that puzzle type. They observed that,
while early Nikoli puzzles have a gap of 10–20 years, puzzles released within the past ten
years tend to have a gap of < 5 years.

In this paper, we prove NP-completeness of a Nikoli puzzle first published in 2004
[27] (according to [28]), establishing a Nikoli gap of 16 years.1 Specifically, we prove NP-
completeness of the Nikoli puzzle Tatamibari (タタミバリ), named after Japanese tatami
mats. A Tatamibari puzzle consists of a rectangular m × n grid of unit-square cells, some
k of which contain one of three different kinds of clues: , , and . (The remaining
m · n − k cells are empty, i.e., contain no clue.) A solution to such a puzzle is a set of k

grid-aligned rectangles satisfying the following constraints:
1. The rectangles are disjoint.
2. The rectangles together cover all cells of the puzzle.
3. Each rectangle contains exactly one symbol in it.
4. The rectangle containing a (“square”) symbol is a square, i.e., has equal width

(horizontal dimension) and height (vertical dimension).
5. The rectangle containing a (“horizontal”) symbol has greater width than height.
6. The rectangle containing a (“vertical”) symbol has greater height than width.
7. No four rectangles share the same corner (four-corner constraint).

To prove our hardness result, we first introduce in Section 2 a general “gadget area
hardness framework” for arguing about (assemblies of) local gadgets whose logical behavior is
characterized by area coverage. Then we apply this framework to prove Tatamibari NP-hard
in Section 3. In Appendix A, we show that our framework applies to at least one existing
NP-hardness proof, for the Nikoli puzzle Spiral Galaxies [15].

We also present in Section 4 a mathematical puzzle font [11] for Tatamibari, consisting of
26 Tatamibari puzzles whose solutions draw each letter of the alphabet. This font enables
writing secret messages, such as the one in Figure 1, that can be decoded by solving the
Tatamibari puzzles. This font complements a similar font for another Nikoli puzzle, Spiral
Galaxies [6].

2 Gadget Area Hardness Framework

Puzzles. The gadget area hardness framework applies to a general puzzle type (e.g.,
Tatamibari or Spiral Galaxies) that defines puzzle-specific mechanics. In general, a subpuzzle
is defined by an embedded planar graph, whose finite faces are called cells, together with an
optional clue (e.g., number or symbol) in each cell. The puzzle type defines which subpuzzles
are valid puzzles, in particular, which clue types and planar graphs are permitted, as well
as any additional properties guaranteed by a hardness reduction producing the puzzles.

1 While this gap may be caused by the puzzle being difficult to prove hard or simply overlooked (or both),
we can confirm that it took us nearly six years to write this paper.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:3

Figure 1 What do these Tatamibari puzzles spell when solved and the dark clues’ rectangles are
filled in? Figure 14 gives a solution.

We will use the unrestricted notion of subpuzzles to define gadgets. Define an area of a
puzzle to be a connected set of cells. An instance of a subpuzzle in a puzzle is an area of
the puzzle such that the restriction of the puzzle to that area (discarding all cells and clues
outside the area) is exactly the subpuzzle.

Solutions. An area assignment (potential solution) for a (sub)puzzle is a mapping from
clues to areas such that (1) the areas disjointly partition the cells of the (sub)puzzle, and
(2) each area contains the cell with the corresponding clue. The puzzle type defines when an
area assignment is an actual solution to a puzzle or a local solution to a subpuzzle.

Gadgets. A gadget is a subpuzzle plus a partition of its entire area (all of its cells) into
one mandatory area and two or more optional areas, where all clues are in the mandatory
area. A hardness reduction using this framework should compose puzzles from instances of
gadgets that overlap only in optional areas, and provide a filling algorithm that defines
which clues are in the areas exterior to all gadgets. Each gadget thus defines the entire set of
clues of the puzzle within the gadget’s (mandatory) area.

For a given gadget, a gadget area assignment is an area assignment for the subpuzzle
that satisfies three additional properties:
1. the assigned areas cover the gadget’s mandatory area;
2. every optional area is either fully covered or fully uncovered by assigned areas; and
3. every assigned area lies within the gadget’s entire area.
A gadget solution is a gadget area assignment that is a local solution as defined by the
puzzle type.

Profiles. A profile of a gadget is a subset of the gadget’s entire area. A profile is proper
if it satisfies two additional properties:
1. the profile contains the mandatory area of the gadget; and
2. every optional area of the gadget is either fully contained or disjoint from the profile.
Every gadget area assignment induces a proper profile, namely, the union of the assigned
areas.

A profile is locally solvable if there is a gadget solution with that profile. A profile
is locally impossible if, in any puzzle containing an instance of the gadget, there is no
solution to the entire puzzle such that the union of the areas assigned to the clues of the
gadget instance is that profile. These notions might not be negations of each other because
of differences between local solutions of a subpuzzle and solutions of a puzzle.

FUN 2021

1:4 Tatamibari Is NP-Complete

Each gadget is characterized by a profile table (like a truth table) that lists all profiles
that are locally solvable, and for each such profile, gives a gadget solution. A profile table is
proper if it contains only proper profiles. A profile table is complete if every profile not
in the table is locally impossible. A hardness reduction using this framework should prove
that the profile table of each gadget is proper and complete, in particular, that any improper
profile is locally impossible.

Given a puzzle containing some gadget instances, a profile assignment specifies a
profile for each gadget such that the profiles are pairwise disjoint and the union of the profiles
covers the union of the entire areas of the gadgets. In particular, such an assignment decides
which overlapping optional areas are covered by which gadgets. A profile assignment is valid
if every gadget is locally solvable with its assigned profile, i.e., every assigned profile is in the
profile table of the corresponding gadget.

A hardness reduction using this framework should prove that every valid profile assignment
can be extended to a solution of the entire puzzle by giving a composition algorithm for
composing local solutions from the profile tables of the gadgets, possibly modifying these
local solutions to be globally consistent, and extending these solutions to assign areas to
clues from the filling algorithm (exterior to all gadgets).

3 Tatamibari is NP-hard

In this section, we prove Tatamibari NP-hard by a reduction from planar rectilinear monotone
3SAT. In Section 3.1 we briefly discuss a more constrained (but still NP-hard) variant of the
classic 3SAT problem from which we will make our reduction; in Section 3.2, Section 3.3,
and Section 3.4, we describe the gadgets (wires, variables, and clauses) from which we build
the reduction; in Section 3.5, we discuss how the spaces between the gadgets are filled; and
in Section 3.6 we use everything to show the main result.

3.1 Reduction Overview
We reduce from planar rectilinear monotone 3SAT, proved NP-hard in [9]. An instance of
planar rectilinear monotone 3SAT comes with a planar rectilinear drawing of the clause-
variable graph in which each variable is a horizontal segment on the x-axis and each clause
is a horizontal segment above or below the axis, with rectilinear edges connecting variables
to the clauses in which they appear. Each clause contains only positive or negative literals
(i.e., is monotone); clauses containing positive (negative) literals appear above (below) the
variables. We can always lengthen the variable and clause segments to remove bends in the
edges, so we assume the edges are vertical line segments. We can further assume that each
clause consists of exactly three (not necessarily distinct) literals: if a clause has k < 3 literals,
we can just duplicate one of the clauses 3 − k times, which is easy to do while preserving the
tri-legged rectilinear layout.

We create and arrange our gadgets directly following the drawing, possibly after scaling
it up; see Figure 2. Edges between variables and clauses are represented by wire gadgets that
communicate a truth value in the parity of their covering. For each variable, we create a
variable gadget, which is essentially a block of wires forced to have the same value, and place
it to fill the variable’s line segment in the drawing. For each clause, we create a clause gadget
with three wire connection points and place it to fill the clause’s line segment. Negative
clauses and wires representing negative literals are mirrored vertically. Both the variable
and clause gadgets can telescope to any width to match the drawing; unused wires from
the variable gadgets are terminated at a terminator. By our assumption that the edges are
vertical segments, we do not need a turn gadget.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:5

clause wirevariable filler
Figure 2 The overall layout of the Tatamibari puzzles produced by our reduction follows the

input planar rectilinear monotone 3SAT instance. Clause, variable, and wire gadgets are represented
by purple, green, and red rectangles. Not drawn are terminator gadgets at the base of all unused
copies of variables. Grey rectangles correspond to individual filler clues. Figure inspired by [9,
Figure 2].

Covering a clause gadget without double-covering or committing a four-corner violation
requires at least one of its attached wires to be covered with the satisfying parity (the true
parity for positive clauses and the false parity for negative clauses).

To ensure clues in one gadget do not interfere with other gadgets, the wire gadget is
surrounded on its left and right sides by sheathing of clue rectangles and the clause gadget
is surrounded on three sides by a line of clues forced to form 1 × 1 rectangles. Wire
sheathing also ensures neighboring wires do not constrain each other, except in variable
gadgets where the sheathing is deliberately punctured.

In our construction, gadgets will not overlap in their mandatory areas, so in the intended
solutions, the mandatory area will be fully covered by rectangles satisfying the gadget’s clues.
Also in our construction, every optional area will belong to exactly two gadgets, and in the
intended solutions, such an area will be covered by clues in exactly one of those gadgets.

To apply the gadget area hardness framework, we define a local solution of a subpuzzle
to be a disjoint set of rectangles satisfying the gadget’s clues and the property that no four
of these rectangles share a corner. (At the boundary of the subpuzzle, there is no constraint.)
Our composition algorithm will combine these local solutions by staggering rectangles to
avoid four-corner violations on the boundary of and exterior to gadgets. We will prove that
valid profile assignments correspond one-to-one to satisfying truth assignments of the 3SAT
instance.

We developed our gadgets using a Tatamibari solver based on the SMT solver Z3 [10].
The solver and machine-readable gadget diagrams are available [4]. Unfortunately, the solver
can only verify the correctness of constant-size instances of the gadgets, but the variable and
clause gadgets must telescope to arbitrary width. Thus we still need to give manual proofs
of correctness.

FUN 2021

1:6 Tatamibari Is NP-Complete

(a) An unsolved wire gadget. Mandatory area
is purple and optional areas are brown.

(b) Wire communicating
false.

(c) Wire communicating
true.

Figure 3 Wire gadget and its profile table. The wire can be extended to arbitrary height by
repeating rows. Note that between figures (b) and (c), the clues stay in the same place (and the
rectangles shift to represent the different values of the wire).

3.2 Wire Gadgets and Terminators
The wire gadget, shown in Figure 3, consists of a column of clues surrounded by clues
which encodes a truth value in the parity of whether the squares are oriented with the
clues in their upper left or lower left corners. We will call this the wire parity or wire value.
In this construction, only vertical wires are needed, and thus we do not give a turn gadget or
horizontal wire. We call the column containing the clues and the empty column next to
it the inner wire. The inner wire is covered by columns of alternating clues, called the
(inner) sheathing. In the overall reduction, clues in columns just outside the wire at its
ends (in the variable gadget and either the clause or terminator gadget) add a further layer
of sheathing (called the outer sheathing) outside the wire gadget, ensuring neighboring wires
do not constrain each other.

The following lemmas will show that the clues in the wire must be covered by 2 × 2
squares, the squares must all have the same parity, and the wire does not impart any
significant constraints onto the surrounding region. These lemmas assume that no rectangle
from a clue can reach the cells to the right of the top and bottom clues in the wire, a
property which we call safe placement. We discharge this assumption in Section 3.5 by
showing all wire gadgets produced by our reduction are safely placed.

I Lemma 3.1. Each in a safely placed wire covers a 2 × 2 square in the wire.

Proof. There is no 3 × 3 square in the wire that contains a clue but does not contain any
other clue. Thus we cannot cover the clue by squares larger than 2 × 2.

Now suppose we cover a clue by a 1 × 1 square. Now the cells immediately above and
below this clue must be covered. The clues must be taller than they are long, so they
cannot cover these cells. Thus we must cover them by squares containing the clues above
and below. This leaves the cell directly to the right of the 1 × 1 uncovered. It is easy to see
that this cannot be covered by the nearby clues or clues. The cells next to the top and
bottom clues cannot be covered by a clue from outside the gadget by our assumption that
the wire is safely placed.

The only remaining possibility is a clue from outside the gadget extending into the
wire gadget. Such a rectangle cannot extend entirely through the wire because the clues
in the sheathing and the clues inside the wire are in alternating rows. If the external

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:7

(a) An unsolved terminator gadget. Manda-
tory area is purple and optional area is brown.

(b) Terminating a false wire. (c) Terminating a true wire.

Figure 4 Terminator gadget and its profile table.

horizontal rectangle enters the wire from the right and covers a cell next to the clue,
that clue is forced to be a 1 × 1 rectangle and the cell above it must be covered by the
next clue above. This results in a four-corner violation involving the two clues and
the left sheathing except when the clue is at the bottom of the wire. In that case, the
external horizontal rectangle blocks the bottom-right sheathing clue, making it 1 × 1 and
unsatisfied. J

I Corollary 3.2. Satisfied safely placed wires must have all of their 2 × 2 squares with the
clues in the lower left corner or all in the upper left corner.

Proof. By Lemma 3.1 all clues must be covered by 2 × 2 squares. To change whether the
clues are in the lower left or upper left, we will end up leaving a row of two cells between

clues blank. By the same arguments in Lemma 3.1 these cannot be covered by the nearby
clues or clues. J

I Lemma 3.3. The clues making up the inner sheathing of satisfied safely placed wires
must be covered by 1 × 2 rectangles of opposite parity to the wire’s squares.

Proof. By Corollary 3.2 the wire has one of two parities of squares. If a vertical rectangle
ends with the same y coordinate as an adjacent square, then we will have three right angles
at a single corner, forcing a four-corner violation or uncovered cell. Because the squares are
2 × 2, a vertical rectangle of odd height guarantees one of the ends will share a y-coordinate
with one of the squares. The clues occur every other cell, so the vertical rectangles cannot
be of length greater than 3. This forces them to be of length 2 and staggered with respect to
the squares. J

I Theorem 3.4. The safely placed wire gadget’s profile table is proper and complete.

Proof. By Lemma 3.1, each optional area must be fully covered or fully uncovered by the
neighboring clue, so the profile table is proper. Corollary 3.2 fixes the clue parity and
Lemma 3.3 fixes the sheathing parity, so all other profiles are locally impossible, so the profile
table is complete. J

We also have a terminator gadget to terminate unused wires regardless of their parity.
The terminator gadget is shown in Figure 4.

I Lemma 3.5. The terminator does not constrain the wire parity.

FUN 2021

1:8 Tatamibari Is NP-Complete

Proof. Figures 4b and 4c show solutions of the terminator with both parities. The same
arguments about wire correctness show this gadget does not allow any additional wire
solutions nor constrain other gadgets. J

I Theorem 3.6. The terminator gadget’s profile table is proper and complete.

Proof. The profile table in Figure 4 contains only proper profiles, so the profile table is
proper. By the same arguments in Lemma 3.1, the two local solutions shown are the only
way to cover the wire part of the gadget. A horizontal rectangle from a outside the gadget
could cover part of the top row of the gadget (or the entire top row when terminating a true
wire) while leaving the clues in the gadget satisfied and covering the remaining area. We
prevent this through the global layout: all clause gadgets (the only gadget containing
clues) appear strictly above (for positive clauses) or strictly below (for negative clauses) all
terminator gadgets, so it is not possible for any rectangles to cover area in the clause
gadget. Thus all other profiles are locally impossible, so the profile table is complete. J

3.3 Variable Gadgets
The variable gadget is essentially a series of wires placed next to each other with devices we
call couplers in between. Each coupler acts essentially as an “equality” constraint between
neighboring wires, thus forcing all the wires connected via a series of couplers to represent
the same variable; this collection of wires then forms the variable gadget of the reduction.

Each coupler takes two columns, and consists of (i) a clue which interacts with the
inner sheathing of the wires to force equality, and (ii) eight clues (two above and two
below the clue on each column), which prevent the inner sheathings of the neighboring
wires from constraining each other (except through the clue itself). See Figure 7 for an
example with two wires; additional wires can be added to either side of variable by using
more couplers (see Figure 6).

First, notice that both wires are constrained to have their squares in one of two parities
by the inner sheathing, as in Corollary 3.2. It is also important that wires do not constrain
each other outside the couplers, either directly (if they happen to be adjacent) or indirectly
(through the space in between); we address this in Section 3.5.

Now we have to show that two wires separated by the coupler must be in the same
configuration. This happens because the wire parity forces the parity of the inner sheathing,
which forces the parity of the coupler, which then forces the partiy of the inner sheathing
and the wire parity of the next wire over.

I Lemma 3.7. The coupler has only two valid coverings of its clue.

Proof. The location of the eight clues around the clue ensure that it cannot be larger
than 2 × 2. By Corollary 3.2 we know that the wire gadgets next to the coupler must have
their inner sheathing as 2 × 1 rectangles in either the up or down position. If the clue is
covered by a 1 × 1 it will create a four-corner violation with the inner sheathing. Thus it
must be one of the two possible positions for a 2 × 2 square. If both inner sheathings have
the same parity, as in Figure 7 then the constraints can be locally satisfied. J

I Lemma 3.8. All wires in a variable gadget must have the same value (i.e. upwards
branches must have the same orientation).

Proof. We know the coupler has at most two ways to satisfy its constraints, corresponding
to a 2 × 2 square in either the up or down position. Notice that the inner sheathing of both
wires must be of different parity from the square or they will cause a four-corner violation.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:9

Figure 5 The variable gadget. Mandatory
area is purple and optional areas are brown.

Figure 6 A variable gadget widened to provide
three wires, shown here set to true.

Thus the inner sheathing must have the same parity, ensuring that the wires themselves
must have the same parity. If multiple wires are all connected by couplers, then they will all
be forced to have the same parity by the same local argument. J

I Lemma 3.9. The variable gadget is locally solvable with a given profile if and only if
the profile satisfies (i) all upwards branches have the same orientation, (ii) all downwards
branches have the same orientation, and (iii) upwards and downwards branches have opposite
orientations from each other.

Proof. The “only if” direction follows from Lemma 3.8 and Corollary 3.2 (each wire indi-
vidually must have opposite orientation for upwards and downwards branches due to the
couplers, and all wires in the gadget must have the same upward orientation).

The “if” direction follows from Lemma 3.5, the individual solvability of each wire and
terminator in both orientations (as shown in Figure 3b, Figure 3c, Figure 4b, and Figure 4c),
and the solvability of the couplers given that adjacent wires have the same orientation
(Figure 7). Neighboring wires (within the variable gadget) do not conflict with each other
(outside of the coupler) because of the “outer sheathing” columns separating them; the
meeting points of the two clues in each “outer sheathing” column can be adjusted to avoid
four-corner violations with each other, as well as avoiding four-corner violations with the
neighboring “inner sheathing”. J

Note that this lemma is what we want from a variable gadget: it is locally solvable if and
only if its profile corresponds to a specific value for the variable it represents.

FUN 2021

1:10 Tatamibari Is NP-Complete

Figure 7 The variable gadget’s profile table. Left: variable set to true. Right: variable set to
false.

3.4 Clause Gadgets
The clause gadget, shown in Figure 8, interfaces with three wire gadgets representing the
three literals of this clause. In the upper-left of the variable gadget is an internal wire, which
we call the clause verification wire. The only way to cover the top two cells of that wire
is using the wire’s top clue. This is only possible when at least one of the wires is true,
allowing a variable enforcement line (drawn in figures as a purple horizontal bar) to
provide a parity shift to the clause verification wire. Otherwise, either those top two cells
cannot be covered, or some other cell in the clause will not be covered, or there will be a
four-corner violation.

The mandatory areas of the clause include all clues and cells shown in Figure 11 and
optional areas consisting of the row of cells at the bottom of the gadget, specifically the set
of cells under the clue lines at the bottom of the gadget.

Each of the three wires in this gadget has two intended solutions: true or false. In
Figure 11, the wire is blue if it represents true and red if it represents false. The leftmost wire
behaves somewhat differently from the others because it is closest to the clause verification
wire.

Importantly, the clause gadget can be expanded horizontally such that the variable wires
can be spaced an arbitrary amount beyond the width of the base gadget shown in Figure 11.
The columns between the literal wires in the clause gadget can be expanded an arbitrary
number of columns. Such an example expansion is shown in Figure 9. In this example, the
columns have been expanded such that the entire gadget is wider by 4 columns and the
number of columns between each literal in the gadget has been expanded by 2 columns.

I Lemma 3.10. If any wire is in the false configuration, then the variable enforcement line
corresponding to the wire will not be able to go across the gadget.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:11

Figure 8 An unsolved clause gadget. Mandatory area is purple and optional areas are brown.

Proof. If a wire is in the false configuration, then there exists at two cells on the top of the
wire that need to be covered. These two cells can be covered in two different ways. We first
prove this lemma for the leftmost wire and then prove the lemma for the other wires since
the leftmost wire is different from the others. In this case, the only way to cover the two cells
is with a 2 × 2 square (see Figure 10), blocking the variable enforcement line from crossing
the top of the wire.

For the other two wires, the top two cells can be covered in only two ways. Either a 1 × 1
square covers one of the two cells and a vertical line from the top covers the other cell or
vice versa (see Figure 11).

No other configurations are available that does not violate the four-corner constraint.
Thus, this configuration prevents the corresponding variable enforcement lines from going
across the gadget. J

I Corollary 3.11. When all wires in the gadget are false, the puzzle does not have a solution.

Proof. By Lemma 3.10, no variable enforcement line can go across the gadget if all wires
are false. In order to solve the puzzle presented by the gadget, the top two cells of the clause
verification line must be covered. These two cells cannot be covered by the horizontal line on
top of them nor can they be covered by the vertical lines beside them. Thus, they must be
covered by the 2 × 2 square formed in the clause verification line. However such a square
will either leave a cell in the middle of the clause verification line uncovered or will leave the
bottom two cells of the line uncovered. In this case, no configurations exist in covering these
bottom two cells without violating the four-corner rule. See Figure 11a. Thus, the gadget is
unsatisfiable if all wires into the gadget are false. J

I Lemma 3.12. If at least one of the wires entering the clause gadget is in the true
configuration, then the clause gadget is locally solvable.

FUN 2021

1:12 Tatamibari Is NP-Complete

︸ ︷︷ ︸
repeatable

︸ ︷︷ ︸
repeatable

Figure 9 Example where the columns in between literal wires in the clause gadget have been
expanded. The columns which are able to be repeated an arbitrarily number of times have been
labeled as “repeatable” in the figure since they can be repeated an arbitrarily number of times to
make the clause an arbitrary width.

Proof. In any wire is in the true configuration, then the variable enforcement line corre-
sponding to the gadget will be able to go across the gadget. For the leftmost wire, the clause
verification line will be in the configuration that ensures that all cells that need to be covered
by the line are covered. Otherwise, the variable enforcement line will be able to cause the
clause verification line to cover all the necessary cells. See Figures 11b to 11h. J

Using the above lemmas, we are able to prove the following properties of the profile table
of the clause gadget.

I Corollary 3.13. The profile table of the clause gadget is proper.

I Lemma 3.14. The profile table of the clause gadget is complete.

Proof. The clause gadget’s profile table contains all profiles shown in Figure 11 except for
the all-false configuration shown in Figure 11a. By Corollary 3.11, the all-false configuration
is not locally solvable. It remains to show the all-false configuration is locally impossible.

To do this, we show that no solution to a clue outside of this profile is able to solve any
part of the all-false clause profile–essentially that the clause gadget is fully isolated from the
rest of the puzzle. By design, no clue above, to the left of, or to the right of the clause can
cover any of the cells that are left uncovered by the literals, because the row and columns of
single-cell squares blocks any rectangles from reaching the uncovered cells.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:13

Figure 10 When the leftmost wire is set in the false configuration, the only way to cover the top
two cells of the wire is with a 2× 2 square that blocks the variable enforcement line.

We now prove that no clues from the bottom of the gadget can help cover any of these
cells. Such clues can only potentially cover the optional areas at the bottom of the gadget.
We show that such clues cannot cover parts of the literal gadgets. By Lemma 3.7, there are
only two possible configurations of the variable gadgets; thus, no other outside fillers can
cover any cells in the incoming wires. Hence, no clues adjacent to the bottom of the gadget
can help cover any part of the incoming wires.

Thus the all-false profile is locally impossible, so the profile table is complete. J

3.5 Layout, Sheathing, and Filler
In order to build the full Tatamibari instance corresponding to a planar rectilinear monotone
3SAT instance, we lay out the gadgets as shown in Figure 2: variable gadgets are positioned on
a central line, while positive and negative clauses are positioned above and below respectively
at heights corresponding with how many layers of clauses are nested below them, with wires
running vertically from variables to clauses (both variable and clause gadgets can be extended
arbitrarily far horizontally). Variable and clause gadgets have rectangular profiles (except
for where the wires “plug in” to them). Variables and clauses have a uniform height, and for
any two variable or clause gadgets, they are placed on exactly the same set of rows or they
share no rows.

All wire gadgets in the puzzle produced by our reduction are safely placed; that is, no
rectangle from a clue can reach the cells to the right of the top and bottom clues in
the wire. The only clues in those columns are in clause gadgets. The row of single-cell
squares at the top of the clause gadget blocks any rectangles from extending upwards out of
the clause gadget. If a rectangle from a clue in those columns of the clause gadget extends
downward past the first clue in the column to its left, the cell below that clue cannot

FUN 2021

1:14 Tatamibari Is NP-Complete

(a) The (false, false, false) configuration. (b) The (false, false, true) configuration.

(c) The (false, true, false) configuration. (d) The (false, true, true) configuration.

(e) The (true, false, false) configuration. (f) The (true, false, true) configuration.

(g) The (true, true, false) configuration. (h) The (true, true, true) configuration.

Figure 11 The clause gadget. All configurations shown here except the all-false configuration in
Figure 11a are in the clause gadget profile table. Clues highlighted in yellow also function as the
“outer sheathing” protecting the wires closest to them (see Section 3.5). For the false wires, the only
configuration that guarantees the two cells at the top are covered are the cases where one 1 × 1
square covers one (shown in brown) and a long rectangle extending from the top covers the other.

be covered by any clue, so rectangles cannot extend downward out of the clause gadget in
those columns. Thus clues from clause gadgets cannot interact with wire gadgets, so the
wires are safely placed.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:15

Because we want the solvability of the Tatamibari instance to depend only on solving
the gadgets, we need to add filler clues that are always able to cover the areas outside the
gadgets.

First, we set aside any cells horizontally adjacent to a wire gadget. These cells will be
covered by the outer sheathing clues described in described in Section 3.2 and Section 3.3 and
highlighted in yellow in Figure 9 and Figure 11. In the global solution, the areas assigned to
the outer sheathing clues thus extend vertically outside their gadget. For the purposes of the
filler algorithm, we consider the cells covered by the outer sheathing to be part of the wire
gadget.

Each filler clue corresponds to a rectangular area of space between gadgets, formed by
breaking each row into maximal horizontally contiguous strips between (and bordered by)
the gadgets, then joining vertically contiguous strips into a single rectangle if they have the
same width. The filler algorithm places a single clue in each of these rectangles (, , or
depending on the rectangle’s aspect ratio), placed arbitrarily inside (say, in the upper-right
corner). See Figure 2 for an example. While it may be possible for the solver to use these
clues differently than shown here, we only need to prove that if the solver does assign each
rectangular area to its associated clue, it will cover the area.

The only potential problem lies in the possibility of a four-corner violation involving a
filler rectangle. This can only happen where either (i) a corner of a filler rectangle meets
a gadget and a wire coming from that gadget, or (ii) where two corners of filler rectangles
meet along the edge of a gadget. If a corner of a filler section meets an edge of another filler
section or the edge of the board there cannot be a four-corner violation.

Remark. There is a potential third problem case, where two wires are directly adjacent with
only the outer sheathing (2 columns) between them (see Figure 8, which has this property).
This can be dealt with in either of two ways: ensuring that no wires are directly adjacent
to each other by stretching the instance horizontally, or noting that the meeting points of
the outer sheathing of the two adjacent wires can be adjusted to not produce a four-corner
violation between them.

I Proposition 3.15. If the gadgets can all be satisfied, the filler clues can also be satisfied.

Proof. Each filler clue will be satisfied by a rectangle covering its entire associated area; the
cells horizontally adjacent to wires will be filled by two width-1 vertical rectangles from the
outer sheathing clues, one coming from the clause gadget above and the other coming from
the variable gadget below. The meeting point between the two outer sheathing rectangles
can be adjusted as needed to avoid a four-corner violation. As mentioned, we have only two
problem cases: (i) a corner of the filler rectangle meets a gadget and protruding wire; and
(ii) corners of two sections meet on the side of a wire. Because both cases involve the side of
a wire, we can avoid violations in either case by appropriately adjusting the meeting point of
the sheathing clues.

(i) To avoid having a corner where the corner of the filler section meets the wire and
gadget, the meeting point of the two sheathing clues can be placed on the edge (not corner)
of the filler section, thus avoiding a four-corner violation since the corner of the filler section
meets the edge of one of the sheathing rectangles.

(ii) As long as the meeting point of the two sheathing rectangles of the wire is not at the
point where the two filler sections meet, there is no four-corner violation. The meeting point
can trivially be placed on the side of a filler section (while still respecting the parity of the
wire as expressed by the inner sheathing).

FUN 2021

1:16 Tatamibari Is NP-Complete

Therefore, since the sheathing can always be adjusted to accommodate filler rectangles,
the satisfiability of the Tatamibari instance depends only on the gadgets. J

3.6 Finale
Now we can show that Tatamibari is NP-hard. Let f be the reduction, which takes an
instance Φ of planar rectilinear monotone 3SAT and returns a Tatamibari instance f(Φ); we
want to show:

I Proposition 3.16. If Φ has n variables and m clauses, then f(Φ) has size polynomial in
n + m, and can be computed in time polynomial in n + m.

Proof. Our construction expands the given planar rectilinear monotone 3SAT instance by
a constant factor. Therefore it suffices to prove that planar rectilinear monotone 3SAT is
strongly NP-hard when given the coordinates of the rectilinear drawing. Indeed, the height
of the drawing is O(m) and the width of the drawing is O(e) if the graph has e edges, which
is O(m + n) by planarity. J

I Proposition 3.17. If Φ has a solution, then f(Φ) also has a solution.

Proof. We begin by taking the solution to Φ and setting the variable gadgets’ profiles
according to those values; by Lemma 3.9, they will all be locally solvable. By Lemma 3.12,
since each clause gadget is connected to wires representing variables which satisfy the clause,
there must be a solution to the clause gadget. Furthermore, by Proposition 3.15, if the
gadgets are satisfiable then the rest of the space can be filled without contradiction, producing
a solution to f(Φ). J

I Proposition 3.18. If Φ has no solution, then f(Φ) also has no solution.

Proof. We prove the equivalent statement that if f(Φ) has a solution, then Φ must also have
a solution.

First, we prove that any solution to f(Φ) must correspond to some setting of the variables
x1, . . . , xn of Φ. This is a consequence of Lemma 3.8, which shows that all wires in a single
variable gadget must carry the same value, which is then taken as the setting for that variable.

Next, we have to show that these settings of the variables xi are a solution of Φ; to do
this, note that by Corollary 3.2 each wire ending in a clause gadget must carry its value into
this clause gadget; and by Corollary 3.11 and Lemma 3.12 there is a solution to the clause
gadget if and only if the wires represent values which satisfy the clause.

Thus, the values of the variable gadgets must be a solution to Φ. J

The above three propositions imply our desired result:

I Theorem 3.19. Tatamibari is (strongly) NP-hard.

Because a given Tatamibari solution can be trivially checked in polynomial time, this theorem
implies that Tatamibari is NP-complete.

4 Font

Figure 12 shows a series of twenty-six 10 × 10 Tatamibari puzzles that we designed, whose
unique solutions shown in Figure 13 reveal each letter A–Z. To represent a bitmap image in
the solution of a Tatamibari puzzle, we introduce two colors for clues, light and dark, and
similarly shade the regions corresponding to each clue. As shown in Figure 13, the letter is

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:17

Figure 12 Puzzle font: each puzzle has a unique solution whose regions for dark clues (shown in
Figure 13) form the shape of a letter.

drawn by the dark regions from dark clues. These puzzles were designed by hand, using our
SAT-based solver [4] to iterate until we obtained unique solutions. The font is also available
online.2

2 http://erikdemaine.org/fonts/tatamibari/

FUN 2021

http://erikdemaine.org/fonts/tatamibari/

1:18 Tatamibari Is NP-Complete

Figure 13 Solved font: unique solutions to the puzzles in Figure 12.

Figure 14 Solution to Figure 1.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:19

5 Open Problems

There remain interesting open questions regarding the computational complexity of Tatami-
bari. When designing puzzles, it is often desired to have a single unique solution. We suspect
that Tatamibari is ASP-hard (NP-hard to determine whether it has another solution, given
a solution), and that counting the number of solutions is #P-hard. However, our reduction
is far from parsimonious. Some rework of the gadgets, and a unique filler between gadgets,
would be required to preserve the number of solutions.

We could ask about restrictions or natural variations of Tatamibari. For example, we
are curious whether a Tatamibari puzzle with only clues, or only clues, remains hard.
We have also wondered about the version of the puzzle without the four-corner constraint.
Although initially we thought of the four-corner constraint as a nuisance to be overcome in
our reduction, our final proof uses it extensively and centrally.

References
1 Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin

Kopinsky, Jayson Lynch, and Mikhail Rudoy. Who witnesses The Witness? Finding witnesses
in The Witness is hard and sometimes impossible. In Proceedings of the 9th International
Conference on Fun with Algorithms (FUN 2018), pages 3:1–3:21, La Maddalena, Italy, June
2018.

2 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,
Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is NP-complete.
Journal of Information Processing, 23(3):239–245, 2015. doi:10.2197/ipsjjip.23.239.

3 Aviv Adler, Michael Biro, Erik Demaine, Mikhail Rudoy, and Christiane Schmidt. Computa-
tional complexity of numberless Shakashaka. In Proceedings of the 27th Canadian Conference
on Computational Geometry (CCCG 2015), Kingston, Canada, August 2015.

4 Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and
Jayson Lynch. Z3-based Tatamibari solver, and figures from Tatamibari NP-hardness paper,
2020. Includes inputs for the gadgets in this paper. URL: https://github.com/jbosboom/
tatamibari-solver.

5 Addison Allen, Daniel Packer, Sophia White, and Aaron Williams. Pencils and
Sto-Stone are NP-complete [paper in review], 13 March 2018. URL: https://www.
researchgate.net/project/Computational-Complexity-of-Video-Games-and-Puzzles/
update/5aa7c402b53d2f0bba57bfb8.

6 Walker Anderson, Erik D. Demaine, and Martin L. Demaine. Spiral galaxies font. In Jennifer
Beineke and Jason Rosenhouse, editors, The Mathematics of Various Entertaining Subjects
(MOVES 2017), volume 3, pages 24–30. Princeton University Press, 2019.

7 Daniel Andersson. HIROIMONO is NP-complete. In Proceedings of the 4th International
Conference on FUN with Algorithms, volume 4475 of Lecture Notes in Computer Science,
pages 30–39, 2007. URL: http://www.springerlink.com/content/h31jq82185n0618h/?p=
408092624f724be298d11ec22a3da382&pi=4.

8 Daniel Andersson. Hashiwokakero is NP-complete. Information Processing Letters,
109(19):1145–1146, 2009.

9 Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In My T.
Thai and Sartaj Sahni, editors, Proceedings of the 16th Annual International Conference on
Computing and Combinatorics, volume 6196 of Lecture Notes in Computer Science, pages
216–225, July 2010.

10 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008), volume
4963 of Lecture Notes in Computer Science, pages 337–340, Budapest, Hungary, 2008. doi:
10.1007/978-3-540-78800-3_24.

FUN 2021

https://doi.org/10.2197/ipsjjip.23.239
https://github.com/jbosboom/tatamibari-solver
https://github.com/jbosboom/tatamibari-solver
https://www.researchgate.net/project/Computational-Complexity-of-Video-Games-and-Puzzles/update/5aa7c402b53d2f0bba57bfb8
https://www.researchgate.net/project/Computational-Complexity-of-Video-Games-and-Puzzles/update/5aa7c402b53d2f0bba57bfb8
https://www.researchgate.net/project/Computational-Complexity-of-Video-Games-and-Puzzles/update/5aa7c402b53d2f0bba57bfb8
http://www.springerlink.com/content/h31jq82185n0618h/?p=408092624f724be298d11ec22a3da382&pi=4
http://www.springerlink.com/content/h31jq82185n0618h/?p=408092624f724be298d11ec22a3da382&pi=4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

1:20 Tatamibari Is NP-Complete

11 Erik D. Demaine and Martin L. Demaine. Fun with fonts: Algorithmic typography. Theoretical
Computer Science, 586:111–119, June 2015.

12 Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara, and Yushi Uno. Computational complexity
and an integer programming model of Shakashaka. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E97-A(6):1213–1219, 2014. URL:
http://hdl.handle.net/10119/12147.

13 Erich Friedman. Corral puzzles are NP-complete. http://www.stetson.edu/~efriedma/
papers/corral/corral.html, August 2002.

14 Erich Friedman. Pearl puzzles are NP-complete, August 2002. URL: http://www.stetson.
edu/~efriedma/papers/pearl/pearl.html.

15 Erich Friedman. Spiral Galaxies puzzles are NP-complete, March 2002. URL: https://www2.
stetson.edu/~efriedma/papers/spiral/spiral.html.

16 Leslie M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. SIGACT News, 9(2):25–29, July 1977. doi:10.1145/1008354.1008356.

17 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peters, July
2009.

18 Markus Holzer, Andreas Klein, and Martin Kutrib. On the NP-completeness of the nurikabe
pencil puzzle and variants thereof. In Proceedings of the 3rd International Conference on FUN
with Algorithms, pages 77–89, Isola d’Elba, Italy, May 2004.

19 Markus Holzer and Oliver Ruepp. The troubles of interior design—a complexity
analysis of the game Heyawake. In Proceedings of the 4th International Confer-
ence on FUN with Algorithms, volume 4475 of Lecture Notes in Computer Science,
pages 198–212, 2007. URL: http://www.springerlink.com/content/77t44731124j6427/
?p=421c0ae5f9364a0880436edd93980bd7&pi=17.

20 Ayaka Ishibashi, Yuichi Sato, and Shigeki Iwata. NP-completeness of two pencil puzzles:
Yajilin and Country Road. Utilitas Mathematica, 88:237–246, 2012.

21 Chuzo Iwamoto. Yosenabe is NP-complete. Journal of Information Processing, 22(1):40–43,
2014. doi:10.2197/ipsjjip.22.40.

22 Jonas Kölker. Kurodoko is NP-complete. Journal of Information Processing, 20(3):694–706,
2012. doi:10.2197/ipsjjip.20.694.

23 Kouichi Kotsuma and Yasuhiko Takenaga. NP-completeness and enumeration of Number Link
puzzle. IEICE Technical Report, 109(465):1–7, March 2010. URL: http://ci.nii.ac.jp/
naid/110008000705/en/.

24 Brandon McPhail. The complexity of puzzles. Undergraduate thesis, Reed College, Portland,
Oregon, 2003. URL: http://www.cs.umass.edu/~mcphailb/papers/2003thesis.pdf.

25 Brandon McPhail. Light Up is NP-complete. http://www.mountainvistasoft.com/docs/
lightup-is-np-complete.pdf, 2005.

26 Brandon McPhail. Metapuzzles: Reducing SAT to your favorite puzzle. CS Theory talk,
December 2007.

27 Nikoli Co., Ltd. タタミバリ（仮題） (Tatamibari (temporary title)). Puzzle Communica-
tion Nikoli, 107, 10 June 2004. See https://www.nikoli.co.jp/ja/publication/various/
nikoli/back_number/nikoli107/ for a table of contents.

28 Nikoli Co., Ltd. パズル通信ニコリ > オモパリスト (Puzzle Communication Nikoli > Omopa
List), 2020.

29 Nikoli Co., Ltd. Nikoli puzzles, 2020. URL: http://www.nikoli.co.jp/en/puzzles/.
30 Nobuhisa Ueda and Tadaaki Nagao. NP-completeness results for NONOGRAM via parsi-

monious reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo
Institute of Technology, Tokyo, Japan, May 1996. URL: http://www.phil.uu.nl/~oostrom/
oudonderwijs/cki20/02-03/japansepuzzles/complexity.ps.

31 Takayuki Yato. Complexity and completeness of finding another solution and its application
to puzzles. Master’s thesis, University of Tokyo, Tokyo, Japan, January 2003. URL: http:
//www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf.

http://hdl.handle.net/10119/12147
http://www.stetson.edu/~efriedma/papers/corral/corral.html
http://www.stetson.edu/~efriedma/papers/corral/corral.html
http://www.stetson.edu/~efriedma/papers/pearl/pearl.html
http://www.stetson.edu/~efriedma/papers/pearl/pearl.html
https://www2.stetson.edu/~efriedma/papers/spiral/spiral.html
https://www2.stetson.edu/~efriedma/papers/spiral/spiral.html
https://doi.org/10.1145/1008354.1008356
http://www.springerlink.com/content/77t44731124j6427/?p=421c0ae5f9364a0880436edd93980bd7&pi=17
http://www.springerlink.com/content/77t44731124j6427/?p=421c0ae5f9364a0880436edd93980bd7&pi=17
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.2197/ipsjjip.20.694
http://ci.nii.ac.jp/naid/110008000705/en/
http://ci.nii.ac.jp/naid/110008000705/en/
http://www.cs.umass.edu/~mcphailb/papers/2003thesis.pdf
http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf
http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf
https://www.nikoli.co.jp/ja/publication/various/nikoli/back_number/nikoli107/
https://www.nikoli.co.jp/ja/publication/various/nikoli/back_number/nikoli107/
http://www.nikoli.co.jp/en/puzzles/
http://www.phil.uu.nl/~oostrom/oudonderwijs/cki20/02-03/japansepuzzles/complexity.ps
http://www.phil.uu.nl/~oostrom/oudonderwijs/cki20/02-03/japansepuzzles/complexity.ps
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:21

32 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solu-
tion and its application to puzzles. IEICE Transactions on Fundamentals of Electronics,
Communications, and Computer Sciences, E86-A(5):1052–1060, 2003. Also IPSJ SIG Notes
2002-AL-87-2, 2002. URL: http://ci.nii.ac.jp/naid/110003221178/en/.

A Example: Spiral Galaxies

As an example of the gadget area hardness framework, we show how the NP-hardness proof
for Spiral Galaxies from [15] can be described using the framework. A Spiral Galaxies puzzle
is a rectangular grid with clues in some grid cells or on some grid lines. The goal is to
partition the puzzle into areas with a single clue per area such that the area is rotationally
symmetric about the clue.

We reduce from planar3 Boolean circuit satisfiability. We have a wire gadget, a variable
gadget, NOT and AND gadgets, a fanout (wire duplicator) gadget, and a vertical shift gadget.
We lay out these gadgets to overlap in their optional areas (only), and communicate a truth
value in whether the optional area is covered or not.

(a) Unsolved wire gadget (b) Wire carrying true signal:
3× 2 rectangles

(c) Wire carrying false signal:
alternating 1 × 2 and 5 × 2
rectangles

Figure 15 Spiral Galaxies wire and its profile table (true and false solutions).

Wire. The wire gadget consists of repeating pairs of clues three grid units apart. There
are two gadget solutions, shown in Figure 15: repeating 3 × 2 rectangles, in which case the
wire covers the right optional area, and alternating 1 × 2 and 5 × 2 rectangles, in which
case the wire covers the left optional area. The wire carries a true signal when it covers the
right optional area and false when it covers the left optional area. The wire gadget can be
extended to arbitrary length in units of two clues. (The proof in [15] does not explicitly
state this parity requirement, but the gate gadgets assume the true signal protrudes into the
gadget to cover the optional input area and the false signal does not.)

Boolean circuit satisfiability requires the circuit produce a true output. We can force a
wire to be true simply by terminating it. Because the wire has height two, any filler clues to
the right of the wire cannot cover area in the wire gadget, so the wire must end in a 3 × 2
rectangle to cover the right optional area, forcing the rest of the wire to also carry a true
signal.

Variable. The variable gadget is shown in Figure 16. There are two gadget solutions, one
leaving the optional area uncovered (so the adjacent wire is set to true) and the other covering
it (so the adjacent wire is set to false). Choosing one solution or the other corresponds to
assigning true or false to the variable.

3 Friedman’s proof [15] provides a crossover gadget, but it is not necessary because AND and NOT build
a crossover [16].

FUN 2021

http://ci.nii.ac.jp/naid/110003221178/en/

1:22 Tatamibari Is NP-Complete

(a) Unsolved vari-
able gadget

(b) Variable set to
true

(c) Variable set to
false

Figure 16 Spiral Galaxies variable and its profile table (true and false solutions).

(a) Unsolved
NOT gadget

(b) NOT
gadget con-
verting true
to false

(c) NOT
gadget con-
verting false
to true

Figure 17 Spiral Galaxies NOT gadget and its profile table.

NOT. The NOT gadget is shown in Figure 17. If the left optional area is covered by the
input wire (carrying a true signal), the clue in the NOT gadget must cover a 1 × 2 rectangle,
so the right optional area must be covered by the output wire carrying a false signal. If the
left optional area is uncovered (when the input wire is false), the clue in the NOT gadget
covers both optional areas, so the output wire must carry a true signal. Thus the NOT
gadget inverts the wire’s signal.

(a) Unsolved AND gadget
(inputs at left)

(b) AND with true and true
inputs

(c) AND with true and false
inputs

(d) AND with false and true
inputs

(e) AND with false and false
inputs

Figure 18 Spiral Galaxies AND gadget and its profile table.

A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:23

(a) Unsolved fanout
gadget (input at top)

(b) Fanout gadget du-
plicating true wire

(c) Fanout gadget du-
plicating false wire

Figure 19 Spiral Galaxies fanout gadget and its profile table.

(a) Unsolved shift
gadget

(b) Shift gadget shift-
ing a true wire

(c) Shift gadget shift-
ing a false wire

Figure 20 Spiral Galaxies upward shift gadget and its profile table; the downward shift gadget is
this gadget flipped vertically.

AND. The AND gadget is shown in Figure 18. When both inputs are true, both of the
left optional areas are covered by the wire, so the clues to the right of the optional area are
rectangles and the clue at the center of the gadget is a long vertical rectangle, allowing the
right optional area to be covered, propagating a true signal from the gadget. When either or
both of the inputs are false, one or both of the left optional areas must be covered by the
clue(s) to the right of the areas, blocking the central clue from covering a vertical rectangle,
preventing the right optional area from being covered, thus propagating a false signal from
the gadget.

Fanout. Like the AND gadget, the fanout gadget (Figure 19) is also based around forming
or not forming a vertical rectangle. The upper optional area is the input. When it is covered
by the input wire (a true signal), the central clue cannot form a vertical rectangle, so the
upper-right optional area must be covered by the clue to its left, and because the bottom cell
in the central column is covered by the clue to its upper-left, the lower-right optional area
must also be covered by the clue to its left. When the upper optional area is not covered by
the input wire, it must be covered by the central clue forming a vertical rectangle, so the
output optional areas cannot be covered by the clues to their left.

Shift. Because variable and gate outputs are on the right and gate inputs are on the left,
we do not need a turn gadget, but we do need to shift wires vertically, which is done using
the shift gadget. An upward shift gadget is shown in Figure 20; the downward shift gadget
is that gadget’s reflection across the horizontal axis. When the input wire is true, the input
wire covers the left optional area, so the left clue is covered by a single cell and the right clue
covers the right optional area, propagating true on the output. When the input wire is false,
the left clue covers the left optional area and forces the right clue to be a 1 × 2 rectangle,
leaving the right optional area uncovered, propagating false on the output.

FUN 2021

1:24 Tatamibari Is NP-Complete

Layout. Friedman’s proof in [15] omits discussion of layout, but we sketch a layout algorithm
here. We start with a grid embedding of the input planar Boolean circuit. We scale the grid
by at least 6 so that our wire gadget fits for unit-length wires, but possibly by a greater
factor if the grid embedding has long vertical segments, because our shift gadget consumes
horizontal distance to move vertically.

Filling algorithm. The filling algorithm places a clue in the center of every cell that isn’t
part of a gadget, forcing them to be covered by single-cell areas. Filler clues could only cover
area in a gadget if two cells in the gadget area are separated by one filler clue and those cells
do not themselves have clues. This is avoided in all gadgets by ensuring all gadget cells that
are separated by filler are separated by two or more filler cells, so only local gadget solutions
are possible.

Composition algorithm. The local gadget solutions are already consistent with each other,
so to form an area assignment for the entire puzzle, the composition algorithm simply takes
the local gadget solutions and assigns each filler clue to the cell containing it.

Proper and complete profile tables. The profile tables are proper because they contain
only proper profiles. Because the filler clues cannot cover area in the gadgets, we can verify
by case analysis that the profile tables are complete (all other profiles are locally impossible).
This completes the proof.

Collaborative Procrastination
Aris Anagnostopoulos
Sapienza University of Rome, Italy
http://aris.me
aris@diag.uniroma1.it

Aristides Gionis
KTH Royal Institute of Technology, Stockholm, Sweden
https://www.kth.se/profile/argioni
argioni@kth.se

Nikos Parotsidis
University of Copenhagen, Denmark
https://sites.google.com/view/nikosparotsidis
nipa@di.ku.dk

Abstract
The problem of inconsistent planning in decision making, which leads to undesirable effects such
as procrastination, has been studied in the behavioral-economics literature, and more recently in
the context of computational behavioral models. Individuals, however, do not function in isolation,
and successful projects most often rely on team work. Team performance does not depend only
on the skills of the individual team members, but also on other collective factors, such as team
spirit and cohesion. It is not an uncommon situation (for instance, experienced by the authors while
working on this paper) that a hard-working individual has the capacity to give a good example to
her team-mates and motivate them to work harder.

In this paper we adopt the model of Kleinberg and Oren (EC’14) on time-inconsistent planning,
and extend it to account for the influence of procrastination within the members of a team. Our
first contribution is to model collaborative work so that the relative progress of the team members,
with respect to their respective subtasks, motivates (or discourages) them to work harder. We
compare the total cost of completing a team project when the team members communicate with
each other about their progress, with the corresponding cost when they work in isolation. Our main
result is a tight bound on the ratio of these two costs, under mild assumptions. We also show that
communication can either increase or decrease the total cost.

We also consider the problem of assigning subtasks to team members, with the objective of
minimizing the negative effects of collaborative procrastination. We show that whereas a simple
problem of forming teams of two members can be solved in polynomial time, the problem of assigning
n tasks to n agents is NP-hard.

2012 ACM Subject Classification Applied computing → Economics; Applied computing → Sociology

Keywords and phrases time-inconsistent planning, computational behavioral science, collaborative
work, collaborative environments

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.2

Funding Aris Anagnostopoulos: Supported by the ERC Advanced Grant 788893 AMDROMA, the
EC H2020RIA project “SoBigData++” (871042), and the MIUR PRIN project ALGADIMAR
“Algorithms, Games, and Digital Markets”.
Aristides Gionis: Supported by three Academy of Finland projects (286211, 313927, 317085), the
EC H2020RIA project “SoBigData++” (871042), and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.
Nikos Parotsidis: Supported by Grant Number 16582, Basic Algorithms Research Copenhagen
(BARC), from the VILLUM Foundation.

© Aris Anagnostopoulos, Aristides Gionis, and Nikos Parotsidis;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9183-7911
http://aris.me
mailto:aris@diag.uniroma1.it
https://orcid.org/0000-0002-5211-112X
https://www.kth.se/profile/argioni
mailto:argioni@kth.se
https://orcid.org/0000-0003-3888-7391
https://sites.google.com/view/nikosparotsidis
mailto:nipa@di.ku.dk
https://doi.org/10.4230/LIPIcs.FUN.2021.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Collaborative Procrastination

1 Introduction

Procrastination has taught me how to do 30 minutes of work in 8 hours and 8 hours
of work in 30 minutes.

– anonymous internet user

The synthesis of teams is a fundamental activity within organizations. The importance of
teams in the production of knowledge is increasing. For instance, in the context of scientific
research, teams typically produce more frequently cited research than single individuals [15].
Furthermore, it has been observed that simply putting together the best individuals does
not necessarily create a great team [11], as there are aspects characterizing effective group
members and successful collaborations that are not evident in an individual’s performance.
When forming teams, it is necessary to take many aspects of the team into account, such as
diversity, learning, and cohesion. Although all the aforementioned characteristics play an
important role in the performance of a team, they fail to characterize how team dynamics
evolve when individuals tend to procrastinate.

In many cases, a project is divided in subtasks, which are assigned to the members of a
team. Such a division facilitates cooperation and takes advantage of the different skillsets of
the team members. In such situations, typically the final outcome of the project depends
on the completion of the subtasks that are assigned to the team members. In this work we
assume that the individual members of the team work independently on the subtasks that
have been assigned to them, they are aware of the progress that has been made by their
teammates, and they do not help each other by working on others’ tasks, lacking either the
expertise or the incentive to do so. This is a reasonable assumption, especially in the case
that each subtask requires different skillsets.

To motivate our setting, consider the following example.

Example. A software company gets assigned a project and the project manager gathers a
team of engineers to form a team and work on the project. The project has a number of
different subtasks and the project manager recruits one person with the required skills for
each subtask (e.g., back-end development, data analytics, user interface). Success in the
project depends on completing all subtasks; if one subtask fails, the whole project fails. The
team holds regular meetings, sets milestones, discusses problems that occur, and reports
progress made in the different subtasks. The collective progress affects the motivation and
performance of the team members. An engineer who would normally be motivated to work
and would rarely procrastinate might feel unmotivated if the others do not make progress on
their subtasks. Conversely, if everyone makes good progress, an engineer who is prone to
procrastination might fear that the project will fail because of him and he would put his
best effort to keep up with the team. �

In this example it is clear that progress by motivated individuals may help to motivate
others. At the same time, motivated individuals can be discouraged to make further progress
if they realize that their reward will be unfairly proportional to their effort. Similarly for
procrastinating individuals, their “free-ride” attitude may discourage other team members,
or they can get motivated by realizing that they are the ones who keep the team behind.
Therefore, the overall process is governed by complex dynamics.

Motivated by this discussion, the questions that we study in this paper are the following:
Q1: How can we model interactions among members of a team who work on the same project,

such as to capture the dynamics for motivating (or demotivating) each other?

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:3

Q2: What are the effects of such a model of interaction among team members, and to what
extent the performance of the team can be sped up or slowed down?

Q3: Can we assign optimally team members to the subtasks of a project such as to take
advantage of the interactions among the team members and to minimize the total cost of
completing a project?

The time-inconsistent planning model. To model procrastination of individual team mem-
bers we use the time-inconsistent planning model [1, 13, 14]. Here we adopt the formulation
introduced by Kleinberg and Oren [8]. We refer to individual team members as agents.
According to this model, the progress of an agent for a particular task is represented as a
single-source–single-sink directed acyclic graph. The graph simulates a discrete-time process.
Each vertex in the graph represents the current state in the project and the progress made
so far. An agent being at vertex u at time t picks an edge (u, v) going out of u and moves to
vertex v at time t+ 1. The source vertex represents the start of the project, and the sink
vertex the completion of the project. Edge weights model the effort required to move along
the edges, and agents are assumed that they try to minimize their total effort to complete
the project. An agent with no bias will move from start to completion by following a shortest
path from source to sink. To simulate procrastination, the model assumes a present-time
bias, where agents perceive the cost at present time higher than what it is in reality. In
particular, at any given time, the weights of the outgoing edges from the current vertex are
multiplied by a factor b ≥ 1. The agent calculates the shortest path to the sink using the
inflated weights for the next-step edges. This leads agents to bias their choice of next-step
edges towards low-cost edges, and as a result they follow paths whose total cost is larger
than the cost of the shortest path.

The proposed model. To model collaborative procrastination, and provide an answer to
Q1, we extend the time-inconsistent planning model, to account for interaction among
team members. In particular, we assume that the overall project is divided in subtasks,
each team member is assigned to one of the subtasks, and each subtask is represented by
a single-source–single-sink directed acyclic graph, which is used to model the actions and
progress of the assigned agent to the subtask. We assume that each agent i has a present-time
bias bi. In addition to the original model, we assume that an agent i takes steps towards
completing her subtask, the fraction qi(t) ∈ [0, 1] capturing the progress made up to time
t. The fraction qi(t) is known to agent i, as well as to all other agents. Given two agents i
and j, the difference qi(t)− qj(t) expresses the difference in their progress in their respective
subtasks, at time t. If qi(t) − qj(t) > 0 agent i is ahead in her subtask and she may feel
discouraged by the fact that j has not worked as hard. Conversely, agent j is behind and he
may feel motivated to catch up. To capture the dynamics of this interaction, we propose
to introduce a multiplicative factor γqi(t)−qj(t)

i in the present-time bias factor of i, for some
γi ≥ 1. The effect of our model is that, in addition to the personal present-time bias factor
bi, which captures the tendency of i for procrastination, agents further slow down if they
have done more progress than their peers, or speed up if they have done less progress.

Our results. We define formally the collaborative-procrastination model, outlined above.
To answer research question Q2 we consider the total cost required by the team to complete
a task when they interact and their behavior follows the collaborative procrastination model,
and we compare this with the cost that would be required if each agent was working
independently on their subtasks. We focus on grid graphs, where at each state of the subtask

FUN 2021

2:4 Collaborative Procrastination

an agent has two options: make progress or procrastinate. This family of graphs reportedly
captures the worst-case task graphs that exhibit the less efficient planning by an agent.

To avoid pathological cases, we consider that the subtask graphs satisfy certain natural
assumptions, as proposed by Gravin et al. [7] . Namely, we consider a bounded distance
property, where in all subtask graphs the optimal path to complete the subtask from any
state is never worse than the optimal path from the initial state, and a monotonicity property,
which ensures that in each subtask graph the cost to complete the subtask does not increase
over time. We express our results with respect to the size (n) of the subtask graph, and the
number of agents (k) in the team.

Our main result is to show that, assuming the bounded-distance and monotonicity
properties, the total cost paid by all agents in the collaboration model, compared to the
total cost paid by all agents when they work in isolation, cannot increase more than a factor
of Θ(n). Furthermore, we provide an example, which indicates that this bound is tight.

It is also possible that collaboration helps the overall team performance. We show that,
under an additional (mild) assumption for subtask graphs, namely, that procrastinating
is less costly at the current step than taking an action towards completing the task, our
collaborative model can lead to speeding up the time to complete the overall task by a factor
of Θ(n).

Finally, we turn to our research question Q3, for assigning team members to subtasks
such as to minimize the total cost of completing the project. We consider a simple version of
the problem when the subtask graphs are fixed for all agents, and each agent is characterized
by their own present-time bias parameter, and interaction parameters with other agents. We
show that even this simple version of the problem is NP-hard. We leave as an open problem
the design of an efficient approximation algorithm.

2 Model

Our model builds on the graph-theoretic planning model that was introduced by Kleinberg
and Oren [8] for a single agent. According to that model, a task is represented by a directed
acyclic graph G = (V,E), where each vertex represents a possible state of the task at a
specific time point. In this paper we work with a specific family of task graphs that have
a grid structure. Specifically, we identify every vertex v`

t by its time step t and an index
` ∈ {0, 1, . . . , `max} indicating the progress that has been made so far towards completion of
the task. We assume that no agent is failing her task, even at the expense of heavy cost by
the last-minute work. Hence, the vertex set of the task graph consists of all vertices v`

t with
` ≥ t and tmax − t ≥ `max − `. See Figure 1 for two examples of graphs.

There is a distinguished start vertex σ = v0
0 and a target vertex τ = v`max

tmax
that represent

the starting point and the completion of the task, respectively. The edge set E contains
the following directed edges: (1) an edge (v`

t , v
`+1
t+1) for each vertex v`

t such that for ` =
0, . . . , `max − 1, t = `, . . . , tmax − 1, (2) an edge (v`

t , v
`
t+1) for each vertex v`

t such that
tmax − t ≥ `max − ` (this condition ensures that the agent does not procrastinate when there
is no time for procrastination). For an easy interpretation of the notation, we denote each
edge of type (1) by e �(v`

t) and each edge of type (2) by e�(v`
t), and they represent progression

and procrastination of the agent at state v`
t , respectively. Each edge e = (u, v) ∈ E has a

cost c(e), which represents the effort to go from state u to state v.
We note that the family of grid graphs is not a compromise. Kleinberg and Oren [8]

showed that all graphs that exploit the worst-case behavior of a time inconsistent agent on
general directed acyclic graphs, contain as a minor a graph that is trivially simulated by a grid

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:5

!

"##

"#$

%

3/2
")#1

1

+ = 10

3/2

7/4 7/4

0 = {1,2}
4 #) = 4)# = 1
5# = 2
5) =4
6 = 4

"))

+ = 1/2

q = 0 !

"##

"#$
7/5

")#1

1

0

7/5

6/5 6/5

0 = {1,2}
4 #) = 4)# = 1
5# = 2
5) = 6
6 = 4

"))

")$

%

":#1

1

q = 1
0

7/5

6/5

q = 1/2

+ = 0

":)

Figure 1 On the left an example task graph where the overall cost of completing the tasks
increases compared to the case where the individuals are not aware of each other. On the right, a
task graph where the overall cost to complete the tasks decreases.

graph. Specifically, Kleinberg and Oren [8] show that every task graph that forces an agent
to follow a path that has exponentially larger cost compared to the optimum path, contains
as a minor the graph that has n+ 2 states σ = v0, v1, . . . , vn, τ and edges (vi, vi+1) and (vi, τ)
for all 0 ≤ i ≤ n. We construct a grid with states σ = v0

0 , v
0
1 , . . . , v

0
n, v

1
1 , v

1
2 , . . . , v

1
n+1 = τ ,

and edges (v0
i , v

0
i+1) for all 0 ≤ i ≤ n− 1 with cost equal to the cost of the edges (vi, vi+1) in

the worst-case graph; edges (v0
i , v

1
i+1) for 1 ≤ i ≤ n with cost equal to the cost of the edges

(vi, τ) in the worst-case graph; and edges (v1
i , v

1
i+1) for 0 ≤ i ≤ n with cost 0. The grid graph

essentially splits the state τ of the worst-case graph and replaces it with a path of cost 0 in
all of its edges. This path represents completion of the task, as the remaining path to τ is
zero.

Given a task graph, present-time biased agents act according to their interpretation of
the most effective sequence of actions. Notice that the (objectively) optimum sequence of
actions by the agent corresponds to the shortest path in the task graph from σ to τ . An
agent who follows the shortest path from a state executes the best actions and minimizes
her overall cost. However, according to the quasi-hyperbolic–discounting model [12] the
agent misinterprets the cost of her next actions: the costs of all actions in the next step
are amplified by a multiplicative factor b. In other words, at state v`

t the agent perceives
the overall effort to accomplish the task as b · c(e �(v`

t)) + d(v`+1
t+1 , τ), if she chooses to make

progress, and as b · c(e�(v`
t)) + d(v`

t+1, τ), if she chooses to postpone actions to future time
steps. Subsequently, the agent picks the action that minimizes the perceived cost. Throughout
the paper we assume that if the perceived cost of making progress equals the perceived cost
to procrastinate, the agent chooses to make progress.

In our model we assume that the members of a team T are assigned individual tasks
graphs. Each agent (team member) performs on his own task graph. The present-time bias
of each agent is affected by two factors, the personal bias and the social bias. The personal
bias bi ≥ 1 depends solely on the agent and it does not change throughout the process. As
the agents proceed by performing the tasks assigned to them they interact with each other
and learn their progress. The unnormalized progress of an agent i ∈ T at time t is denoted by
ri(t) ∈ {0, . . . , `max}, where `max is the maximum progress level on i’s task graph. We define
also the (normalized) progress qi(t) ∈ [0, 1] of agent i as qi(t) = ri(t)/`max. This allows us to
compare the progress of agents with different task graphs and different number of progress
levels.

Being aware of the progress made by the other members of the team might affect the
motivation of an agent. We assume that agents exert to each other an amount of social
influence, which is denoted by a weight wij ∈ [0, 1], for each pair of agents i and j (in general
wij 6= wji). We assume wii = 0, for all agents i ∈ T . We are now ready to define the
social-bias factor of our model.

FUN 2021

2:6 Collaborative Procrastination

I Definition 1. The social bias of an agent i ∈ T at time t is denoted by ΓT
i (t) and defined

as

ΓT
i (t) = γ

∑
j∈T

wij(qi(t)−qj(t))
i ,

where γi ≥ 1 is a social-bias parameter, wij ∈ [0, 1] is the social influence between agents i
and j, and qj(t) is the (normalized) progress level of each agent j ∈ T at time t.

Obviously one can consider different functions ΓT
i (t), but in this paper we specialize to

this particular form. Notice that our model is a generalization of the model by Kleinberg and
Oren because T = {i} implies that ΓT

i (t) = 1. The simplest, nontrivial, case for our model
is when there are only two agents, that is, T = {i, j}. In that case Γ{i,j}i (t) = γ

qi(t)−qj(t)
i .

Often we assume that we have γi = γj for all i, j ∈ T and in this case we just use γi = γ.
Whenever ΓT

i (t) < 1 we say that agent i is motivated because of the influence of j, and when
ΓT

i (t) > 1 we say that agent i is discouraged. The following property follows from our model.

I Property 2. Consider a team T and an agent i ∈ T , with γi ≥ 1 and wij ≥ 0, for all
j ∈ T . If qj(t) ≥ qi(t) for all j ∈ T then ΓT

i (t) ≤ 1. Similarly, if qj(t) ≤ qi(t) for all j ∈ T
then ΓT

i (t) ≥ 1.

The present-time bias of an agent i ∈ T is defined as BT
i (t) = max{biΓT

i (t), 1}. The
present-time bias affects the perceived cost of a path for an agent. A path p is a sequence of
nodes p = 〈v1, . . . , vk〉 such that (vj , vj+1) is an edge of the graph for all 1 ≤ j ≤ k − 1. The
cost of p is

∑k−1
j=1 c(vj , vj+1). Consider a path p = 〈v1, . . . , vk〉, where v1 = v`

t is the current
state of an agent i ∈ T . Then the perceived cost for an agent i for the path p is

BT
i (t) · c(v1, v2) + d(v2, τ).

An agent, who aims to complete the assigned task G, follows a path from σ to τ . Note
that each such path is of the form p = 〈σ = v0

0 , v
`1
1 , . . . , v

`max
tmax

= τ〉. We call such a path
progress path on task G. Given two progress paths p = 〈σ = v0

0 , v
`1
1 , v

`2
2 , . . . , v

`max
tmax

= τ〉 and
p′ = 〈σ = v0

0 , v
`′

1
1 , v

`′
2

2 , . . . , v
`max
tmax

= τ〉 on the same task G, we say that p is above path p′, and
write p �G p′, if for each t = 1, . . . , tmax we have that `t ≥ `′t. We define �G (i.e., below)
analogously. Let pT (i) be the progress path of agent i ∈ T . We use p(i) to denote p{i}(i).

Example 1.1 We demonstrate our model with two examples in the case of teams with two
members. In the first example, in Figure 1 (left), the total cost of the progress paths followed
by the two agents increases when the two agents interact compared to the case where the two
agents do not have knowledge of each other’s progress. The two agents operate on the same
task graph. Agent 1 has personal bias b1 = 2 and agent 2 has b2 = 4. If agent 1 would operate
independently of agent 2, it would start from state σ = v0

0 , and would evaluate the options of
following either edge e �(v0

0) (i.e., to make progress) or edge e�(v0
0) (i.e., procrastinate). The

perceived cost of following edge e �(v0
0) is Γ1(0) · b1 · c(e �(v0

0)) + d(v1
1 , τ) = 19/4, whereas

the perceived cost of following the edge e�(v0
0) is Γ1(0) · b1 · c(e�(v0

0)) + d(v0
1 , τ) = 21/4.

Therefore, at state σ agent 1 would follow edge e �(v0
0). At state v1

1 the agent would again
proceed based on the perceived cost of following either edge e �(v1

1) or e�(v1
1). The perceived

cost of following edge e �(v1
1) is Γ1(1) · b1 · c(e �(v1

1)) + d(v2
2 , τ) = 14/4, whereas the perceived

cost of following the edge e�(v1
1) is Γ1(1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 15/4. Therefore, at

1 In the appendix we provide the examples with the calculations performed explicitly.

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:7

state v1
1 agent 1 would follow edge e �(v1

1). For the last edge, the agent has only the option
to follow the edge e�(v2

2) with cost 0 to reach τ . Hence, the cost of the progress path of
agent 1 when operating individually would be 13/4.

Similarly, if agent 2 operates independently of agent 1, the perceived cost of following
edge e �(v0

0) is Γ2(0) · b2 · c(e �(v0
0)) + d(v1

1 , τ) = 31/4, whereas the perceived cost of following
the edge e�(v0

0) is Γ2(0) · b2 · c(e�(v0
0)) + d(v0

1 , τ) = 29/4. Therefore, at state v0
0 agent 2

would follow edge e�(v0
0). At state v0

1 the agent has no other options that to follow the edges
e �(v0

1) and then the edge e �(v1
2) to reach τ . Hence, the cost of the progress path of agent 2

when operating individually would be 17/4.
Now we analyze the behavior of agents 1 and 2 when they collaborate on the same project

and they both have to perform the same task. At time step t = 0, we have that the social
bias is Γ{1,2}

1 (0) = γq1(0)−q2(0) = 40 = 1. Analogously, we have that Γ{1,2}
2 (0) = 1. Therefore,

the choice of each agent at time step t = 0 is the same as when they perform independently
as their personal bias remains unchanged. That is, agent 1 follows the edge e �(v0

0) making
progress 1 at time t = 1 and agent 2 follows the edge e�(v0

0) making no progress at time
t = 1. At time step t = 1, agent 1 evaluates the options of following edge e �(v1

1) or e�(v1
1).

Notice that now the social bias of agent 1 is Γ{1,2}
1 (1) = γq1(1)−q2(1) = 41/2 = 2. Hence, the

perceived cost of following edge e �(v1
1) is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 28/4, whereas
the perceived cost of following the edge e�(v1

1) is Γ{1,2}
1 (1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 23/4.

Therefore, at state v1
1 agent 1 would follow edge e�(v1

1). For the last edge, agent 1 has only
one option, that is, to follow the edge e �(v1

2) to reach τ . Hence, the cost of the progress
path of agent 1 is 17/4, compared to the cost 13/4 of the progress path that it would follow
independently. The progress path of agent 2 does not change when operating with agent 1,
as after the first choice to follow edge e�(v0

0) there are not alternative paths that agent 2
could follow. In conclusion, the total cost of the two agents when operating together is 34/4
compared to the 30/4 when operating independently.

Example 2. We now proceed with an example where the collaboration of two agents leads
to a decrease to the total cost of their progress paths. Consider the case where two agents
1, 2 with personal biases b1 = 2, b2 = 6 operate on the task graph in Figure 1 (right). It can
be verified that the progress path of agent 1 is p(i) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and the

progress path of agent 2 is p(2) = 〈σ = v0
0 , v

0
1 , v

0
2 , v

1
3 , v

2
4 = τ〉. Therefore, the total cost of the

p(1) and p(2) is 36/5.
Now we consider the case where the two agents interact with each other. Similarly to

the first example, at time step t = 0 the social bias is Γ{1,2}
1 (0) = Γ{1,2}

2 (0) = 1 and hence
the choices at time t = 0 of agents 1, 2 are the same as in the case where they operate
independently. That is, q1(1) = 1/2 and q2(1) = 0. At time step t = 1, the social bias of
agent 1 is Γ{1,2}

1 (1) = γq1(1)−q2(1) = 41/2 = 2. According to our model, the perceived cost
of following edge e �(v1

1) by agent 1 is Γ{1,2}
1 (1) · b1 · c(e �(v1

1)) + d(v2
2 , τ) = 24/5, whereas

the perceived cost of following the edge e�(v1
1) is Γ{1,2}

1 (1) · b1 · c(e�(v1
1)) + d(v1

2 , τ) = 26/5.
Therefore, at state v1

1 agent 1 follows edge e �(v1
1). We now review the decision of agent 2 at

time t = 1, whose social bias is Γ{1,2}
2 (1) = γq2(1)−q1(1) = 4−1/2 = 1/2. Hence, agent 2 at time

t = 1 perceives cost Γ{1,2}
2 (1) · b2 · c(e �(v0

1)) + d(v1
2 , τ) = 27/5 for following edge e �(v0

1), and
cost Γ{1,2}

2 (1) ·b1 ·c(e�(v0
1))+d(v0

2 , τ) = 28/5 for following edge e�(v0
1). Therefore, at state v0

1
agent 2 follows edge e �(v0

1) to reach state v1
2 . At time t = 2, we have q1(2) = 1, q2(2) = 1/2.

Agent 1 has no options other than to follow the path 〈v2
2 , v

2
3 , τ〉 to reach τ . The social bias of

agent 2 at time t = 2 is Γ{1,2}
2 (2) = γq2(2)−q1(2) = 1/2. Hence, the perceived cost of agent 2 at

FUN 2021

2:8 Collaborative Procrastination

!"#$%

!"#&&
2"#&

1

0* = {1,2}
/ &$ = / $& = 1
0& = 3
0$ = 10
2 = 4

!"#&%

4

2"

1

5 = 1
0

5 = 1/2

5 = 0

!"$

7

!&&

!&%
4

1

0!$$

8

1

0!9$

8 2" 2

!$&
4

8 16

!"&

2

!;&

!;#&%

0!;<&$

2;<&

2;
<$

2;
<&

1

2"
<&

Figure 2 An example where the interaction of two agents increases the total cost of the
two progress paths exponentially, even when they operate on the same task graph. When
the agents operate independently, they follow the progress paths p(1) = 〈σ, v1

1 , v
2
2 , v

2
3 , . . . , τ〉,

p(2) = 〈σ, v0
1 , . . . , v

0
n−1, v

1
n, τ〉, with total cost Θ(n). When the agents collaborate, they follow

the progress paths p{1,2}(1) = 〈σ, v1
1 , v

1
2 , . . . , v

1
n, τ〉, p{1,2}(2) = 〈σ, v0

1 , . . . , v
0
n−1, v

1
n, τ〉, with total

cost Θ(2n).

time t = 2 in the case of following the edge e �(v1
2) is Γ{1,2}

2 (2) ·b2 ·c(e �(v1
2))+d(v2

3 , τ) = 18/5,
and in the case of following the edge e�(v1

2) is Γ{1,2}
2 (2) · b2 · c(e�(v1

2)) + d(v1
3 , τ) = 21/5.

Therefore, at state v1
2 agent 2 follows edge e �(v1

2). Finally, at time t = 3, both agents have
no other option than to follow edge (v2

3 , τ) to reach τ . In conclusion, agent 1 follows the
progress path p{1,2}(1) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and agent 2 follows that progress path

p{1,2}(2) = 〈σ = v0
0 , v

0
1 , v

1
2 , v

2
3 , v

2
4 = τ〉, with total cost 31/5. That is, if agents 1, 2 collaborate

they decrease the total cost.

I Corollary 3. The total cost of the progress paths of a team can either decrease or increase
(or, of course, remain the same) compared to the total cost of the progress paths of the team
members when they operate in isolation (i.e., with no communication) on the same tasks.

3 Limitations and Further Assumptions

We now show that the vanilla version of our model can lead to unnatural phenomena in the
interaction of the agents in a team. We construct examples having two interacting agents.
Guided by these extreme behaviors we make a set of reasonable assumptions that eliminate
those unnatural phenomena. Similar assumptions have been made previously for the behavior
of individual agents in absence of a team. More specifically, Gravin et al. [7] showed that
the progress path of a time-inconsistent agent can have exponentially larger cost compared
to the optimal progress path on a task graph. Here, we extend their example to show that
there can be an exponential increase to the total cost of the progress paths of two agents,
compared to the case where they operate individually. Our example is depicted in Figure 2.
We note that unlike Gravin et al. [7] , where the cost of an agent can be exponentially larger
compared to the optimal progress path, which was never an option of the agent, in our case
the increase in the total cost is compared to the progress path in the case where the agents
operate individually.

The main reason behind the exponential increase in the total cost of two agents is that
the optimal cost of completing the task can increase at a future state in the progress path of
an agent. In many scenarios, this is an unnatural phenomenon as it implies that the required
effort to complete a task increases exponentially over time. Gravin et al. [7] introduce the
following two assumptions on the task graph that eliminate such pathological instances.

I Property 4 (Bounded-distance property). Let G be a task graph. For every vertex v ∈ V (G),
it is d(v, τ) ≤ d(σ, τ).

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:9

!

"##

"#$

%

3 −
2)

"*#

3 −)

+ = 10/ = 1,2
1 #* = 1 *# = 1
2# = 3
2* = 2
3 = 4

"**

+ = 1/2

+ = 0

3 −)
4 −
6)

3−
17)
/2

1

Figure 3 An example where the motivator affects the procrastinator to procrastinate further.

The bounded-distance property allows only task graphs in which the optimal path to
complete the task from any state is never worse than the optimal progress path from the
initial state. This is a natural assumption in a plethora of real-world tasks. For instance,
this includes the tasks in which starting over is always a free and feasible option. Gravin
et al. [7] show that for task graph with the bounded-distance property the cost of an agent
increases by at most a factor of O(n), compared to the optimal progress path.

I Property 5 (Monotone-distance property). For every transition from a vertex u to a vertex v,
where u, v ∈ V (G), it holds that d(v, τ) ≤ d(u, τ).

The monotone-distance property of task graphs implies that the cost to complete the
task does not increase over time. Notice that the monotone-distance property implies
the bounded-distance property: any graph with the monotone-distance property also has
the bounded-distance property. Gravin et al. [7] show that if the task graph has the
monotone-distance property, and the present-time bias of the agent is drawn from a restricted
distribution, then the cost of the progress path compared to the optimal progress path is
bounded by a factor much smaller than n.

In Section 4 we study the behavior of agents in task graphs that obey Properties 4 and 5.
More specifically, we show that the total cost of progress paths by all agents cannot increase
more than a factor of O(n), compared to the cost of the progress paths in the case where the
agents operate individually. We further show that this bound is tight.

In our model, we consider the interaction of two or more agents, which introduces further
pathological scenarios in the behavior of the agents. For instance, consider the example in
Figure 3, where both agents in a team T = {1, 2} operate on the same task graph. Agent
1 has a higher bias than agent 2, and follows the optimal progress path (that is, the path
p(1) = 〈σ = v0

0 , v
0
1 , v

1
2 , v

2
3 = τ〉 with cost 7 − 9.5ε), while the agent with lower bias follows

a progress path with larger cost (that is, the path p(2) = 〈σ = v0
0 , v

1
1 , v

2
2 , v

3
3 = τ〉 with cost

7− 8ε). This phenomenon is unnatural as in this example the motivated individual (i.e., the
agent with smaller personal bias) follows a progress path with larger cost compared to the
procrastinating individual (i.e., the agent with larger personal bias). Moreover, when the two
agents in Figure 3 interact, the motivated individual causes the procrastinating individual to
further procrastinate (follow a progress path with larger cost). To eliminate such behaviors,
we introduce an additional assumption on the task graph. Our assumption is that from any
state the action leading to progress costs more than the action of postponing the progress.

I Property 6. Given a task graph G = (V,E) it holds that c(e �(v`
t)) ≥ c(e�(v`

t)), for all
v`

t ∈ V .

FUN 2021

2:10 Collaborative Procrastination

4 Team Behavior on Task Graphs

We now study the behavior of time-inconsistent agents in teams under our model. We begin
by bounding the change in the total cost of all progress paths compared to the cost in the
case where the agents operate individually. The objective is to bound the maximum loss on
the total effort made by the team when the agents communicate their progress, compared to
the case where the agents operate individually.2

I Lemma 7. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs should be completed in tmax = n

time steps and all task graphs have Properties 4 and 5. The scenario in which the agents
collaborate can lead to total cost of their progress paths that is larger than the case where
they operate individually by a factor Ω(n).

Gravin et al. [7] showed that the cost of an agent on a graph with Properties 4 and
5 cannot exceed n times the cost of the shortest path. Their proof suffices to prove the
following lemma.

I Lemma 8. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs have tmax = n time steps and all
task graphs have Properties 4 and 5. Collaboration can increase by at most a factor of n the
total cost spent by the agents to accomplish the assignment compared to the total cost of the
agents operating individually.

We now provide a lower bound on the speedup that the collaboration in a team can
achieve.

I Lemma 9. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs should be completed in tmax = n

time steps and all task graphs obey Properties 4, 5 and 6. The total cost may decrease by a
factor of Ω(n) due to collaboration.

Agents operating on identical task graphs. We now compare the progress paths of the
agents and the way they relate to each other, in the case where all agents perform on the
same task graph. We begin with the following lemma that states that the order of the
progress paths of the agents is the same as the reverse order of their personal biases.

I Lemma 10. Consider two agent i, j ∈ T operating on the same task graph G. If bi ≥ bj,
then p(i) �G p(j).

Next we relate all progress paths when the agents collaborate with respect to the progress
paths of the agents with the maximum and minimum personal biases. That is, throughout
the process of collaboration in a team, no agent does more (resp., less) progress than the
most (resp., least) motivated agent does independently, at any time. The lemma suggests
that all progress paths in the case where the agents collaborate are between the progress
paths of the most motivated and the least motivated agents when operating individually. We
call this the envelope property.

I Lemma 11 (Envelope property). Consider a team with agents T = {i1, . . . , ik}, with
bi1 ≥ · · · ≥ bik

, operating over the same task graph G. For each i ∈ T we have that
pT (i) �G p(i1) and pT (i) �G p(ik).

2 The proof of this and further results appear in the appendix.

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:11

We now have developed a better understanding on the interaction between agents of a
team operating on the same task graph. Next, we use these results to further bound the
ratio of the total cost of progress paths when the team collaborates compared to the cost of
operating individually. We observe that this setting still allows examples in which the cost
can increase by a factor of Ω(n) (as in Figure 4, used to prove Lemma 7). To cope with such
extreme examples, we introduce the following restriction on the task graph on which the
team operates.

I Property 12. For every two vertices vj
i , v

l
i ∈ V (G), where j ≤ l, it holds that c(vj

i , v
j
i+1) ≥

c(vl
i, v

l
i+1).

Essentially, Property 12 implies that procrastinating at a specific time step cannot cost
more if the agent made more progress compared to the case where the agent made less
progress at the same time step. This is a reasonable restriction to the structure of the task
graph. We acknowledge, however, that there exist scenarios where Property 12 is not natural.
For instance, such a scenario appears in the case of lab experiments where the procrastination
of an agent after starting the experiment might lead to a waste of the whole experiment (i.e.,
the resources), while postponing the starting time of the experiment simply delays the whole
process.

I Lemma 13. Let T be a team of k agents operating on the same task graph, which has
Properties 4, 5, 6, and 12. The total cost of all progress paths when the agents collaborate
is at most k times higher than the sum of cost of progress paths when the agent operate
independently.

5 Assignment Problems

Until now we studied the scenario where the assignment of task graphs to agents is given in
advance. Another natural scenario is when a given task can be assigned to more than one
agents with similar skills. Can we then determine the best assignment so as to minimize the
cost due to procrastination? A simple special case is when a project consists of n/2 identical
tasks and there exist n agents which should be grouped into n/2 two-member teams, such
that the total cost payed by all agents is minimized.

I Problem 14. Assume that we are given n/2 copies of the same task graph G, n agents
1, . . . , n with personal biases b1, . . . , bn and social-influence weights wij for all 1 ≤ i, j ≤
n, i 6= j. The goal is to partition the n agents into n/2 two-member teams, such that when
the two agents of each team work on the common task specified by G, the total cost over all
agents is minimized.

Problem 14 has a simple solution. For each of the
(

n
2
)
pairs of agents, we can compute

the cost of the two agents collaborating together on the given task. We obtain a complete
weighted graph where each node represents an agent and each edge weights correspond to
the total cost of the two agents paired as a team. The problem then reduces to finding a
minimum-weight matching.

Assume that we have a single team of n agents, one project consisting of n tasks, each
one having its own task graph, and we need to assign one agent to each of the tasks, so as to
minimize the total cost of finishing the project. Without much loss of generality we assume
that each team member can perform all tasks. The optimal assignment problem takes the
following form.

FUN 2021

2:12 Collaborative Procrastination

I Problem 15 (OptimalGroupAssignment). Consider n task graphs G1, . . . , Gn, n agents
1, . . . , n with personal biases b1, . . . , bn and social-influence weights wij for all 1 ≤ i, j ≤
n, i 6= j. The task is to assign one agent to each task, such that the total cost of completing
all the tasks in the collaborative-procrastination model is minimized.

We next prove that this problem is hard.

I Theorem 16. The OptimalGroupAssignment problem is NP-hard.

6 Related Work

Some of the first studies in economics attempting to formulate time-inconsistent planning
behavior was the work of Strotz [14] and Pollak [13]. The theory of time-inconsistency
developed to what is called quasi-hyperbolic discounting Laibson [12], Frederick et al. [5].
The theory provides a natural way to model the decision of an agent to procrastinate, using
the notion of present-time bias – the tendency to view costs and benefits that are incurred at
the present moment to be more salient than those incurred in the future. Kleinberg and Oren
[8] propose a graph-theoretic model, in which dependencies among actions are represented
by a directed acyclic graph, and a time-inconsistent agent follows a path through this graph
based on the agent’s biased evaluation of the actions at each time step. Kleinberg and
Oren [8] characterize the worst-case procrastination ratio, and they consider the problem of
reducing the procrastination cost by deleting nodes and/or edges from an underlying graph.

Gravin et al. [7] consider the case where the present-time bias of the agent is drawn at
each time step at random, from a distribution F , They characterize the worst possible cost
of a path chosen by an agent compared to the cost of the optimal path, and under reasonable
assumptions they provide bounds for this ratio. Kleinberg et al. [9] model the behavior of
sophisticated agents – agents who are aware of their tendency to procrastinate and they plan
in advance. Their study includes tight upper bounds on the procrastination relatively to the
optimal path in a task graph. Kleinberg et al. [10] consider the interaction of multiple biases
on an agent’s behavior: they study the interaction of present-time bias factor and sunk-cost
bias factor – the tendency to incorporate costs incurred in the past into ones plans for the
future, even when these past costs are no longer relevant to optimal planning. Moreover,
based again on the model of Kleinberg and Oren [8], several studies consider optimization
problems where the objective is to minimize the cost of the path followed by an agent [2, 4, 3].

Gans and Landry [6] consider the interaction of teams with two present-time biased
agents who collaborate to accomplish a common goal. They assume that both agents can
accomplish all subtasks, and that the agents can either be sophisticated or be naïve – in the
sense that they either know their present-time bias factor or not. The objective of each agent
is to complete the task with the minimum possible effort from their side. The model of Gans
and Landry [6] is different from ours as progress can be done by any agent, and at each time
step there is no distinction with respect to which agent achieved the progress in the previous
step.

7 Conclusion and Open Problems

In this paper we extended the model of Kleinberg and Oren [8] on time-inconsistent planning
into settings where individuals are members of a team and the decision on whether to
perform a task or postpone it depends on the progress of the other team members. Our
model incorporates phenomena that are encountered in real life: participating in a team

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:13

can motivate (or demotivate) individuals compared to when they work individually. In
the proposed setting we showed how different assumptions allow to deduce the extent that
participation to a team may increase or decrease performance. We also showed that our
model can be used to define matching and team-formation problems, when the goal is to
form teams that keep the members motivated.

Whereas our model captures some elements of how agents in teams may collaborate, there
are many other modeling choices. Often, the load of one member who has not progressed
may be transferred to other team members; this may lead to free-riding phenomena, and
a game-theoretic approach may be suitable to model such settings. Note that Lemma 11
implies that the effort of a member who participates on a team cannot exceed the one of
the most efficient member; in particular, it implies that the most efficient member cannot
improve by participating in a team. Often this is not the case: for instance, one can attempt
to model competition between team members, which may lead to more efficient performance.

References

1 George A Akerlof. Procrastination and obedience. The American Economic Review, 81(2):1–19,
1991.

2 Susanne Albers and Dennis Kraft. Motivating time-inconsistent agents: A computational
approach. In Web and Internet Economics, pages 309–323, 2016.

3 Susanne Albers and Dennis Kraft. On the Value of Penalties in Time-Inconsistent Planning.
In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017),
pages 10:1–10:12, 2017.

4 Susanne Albers and Dennis Kraft. The price of uncertainty in present-biased planning. In
Web and Internet Economics, pages 325–339, 2017.

5 Shane Frederick, George Loewenstein, and Ted O’donoghue. Time discounting and time
preference: A critical review. Journal of economic literature, 40(2):351–401, 2002.

6 Joshua S Gans and Peter Landry. Procrastination in teams. Technical report, National Bureau
of Economic Research, 2016.

7 Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Pountourakis. Procrastin-
ation with variable present bias. In Proc. of the 2016 ACM Conference on Economics and
Computation, EC ’16. ACM, 2016.

8 Jon Kleinberg and Sigal Oren. Time-inconsistent planning: a computational problem in
behavioral economics. In Proc. of the fifteenth ACM conference on Economics and computation,
EC ’14, pages 547–564. ACM, 2014.

9 Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning problems for sophisticated agents
with present bias. In Proc. of the 2016 ACM Conference on Economics and Computation, EC
’16, pages 343–360, New York, NY, USA, 2016. ACM. doi:10.1145/2940716.2940764.

10 Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning with multiple biases. arXiv
preprint arXiv:1706.01062, 2017.

11 Jon Kleinberg and Maithra Raghu. Team performance with test scores. In Proc. of the
Sixteenth ACM Conference on Economics and Computation, pages 511–528. ACM, 2015.

12 David Laibson. Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics,
112(2):443–478, 1997.

13 Robert A Pollak. Consistent planning. The Review of Economic Studies, 35(2):201–208, 1968.
14 Robert Henry Strotz. Myopia and inconsistency in dynamic utility maximization. The Review

of Economic Studies, 23(3):165–180, 1955.
15 Stefan Wuchty, Benjamin F Jones, and Brian Uzzi. The increasing dominance of teams in

production of knowledge. Science, 316(5827):1036–1039, 2007.

FUN 2021

https://doi.org/10.1145/2940716.2940764

2:14 Collaborative Procrastination

A Appendix

Examples of Section 2 with Calculations

In this section we provide the calculations used for the examples in Section 2.

Example 1. We demonstrate our model with two examples in the case of teams with
two members. In the first example, in Figure 1 (left), the total cost of the progress paths
followed by the two agents increases when the two agents interact compared to the case
where the two agents do not have knowledge of each other’s progress. The two agents
operate on the same task graph. Agent 1 has personal bias b1 = 2 and agent 2 has
b2 = 4. If agent 1 would operate independently of agent 2, it would start from state
σ = v0

0 , and would evaluate the options of following either edge e �(v0
0) (i.e., to make

progress) or edge e�(v0
0) (i.e., procrastinate). The perceived cost of following edge e �(v0

0)
is Γ1(0) · b1 · c(e �(v0

0)) + d(v1
1 , τ) = 1 · 2 · 3

2 + 7/4 + 0 = 19
4 , whereas the perceived cost of

following the edge e�(v0
0) is Γ1(0) · b1 · c(e�(v0

0)) + d(v0
1 , τ) = 1 · 2 · 1 + 3

2 + 7
4 = 21

4 . Therefore,
at state σ agent 1 would follow edge e �(v0

0). At state v1
1 the agent would again proceed

based on the perceived cost of following either edge e �(v1
1) or e�(v1

1). The perceived cost
of following edge e �(v1

1) is Γ1(1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 1 · 2 · 7
4 + 0 = 14

4 , whereas the
perceived cost of following the edge e�(v1

1) is Γ1(1) ·b1 ·c(e�(v1
1))+d(v1

2 , τ) = 1 ·2 ·1+ 7
4 = 15

4 .
Therefore, at state v1

1 agent 1 would follow edge e �(v1
1). For the last edge, the agent has only

the option to follow the edge e�(v2
2) with cost 0 to reach τ . Hence, the cost of the progress

path of agent 1 when operating individually would be 3
2 + 7

4 + 0 = 13
4 .

Similarly, if agent 2 operates independently of agent 1, the perceived cost of following
edge e �(v0

0) is Γ2(0) · b2 · c(e �(v0
0)) + d(v1

1 , τ) = 1 · 4 · 3
2 + 7

4 + 0 = 31
4 , whereas the perceived

cost of following the edge e�(v0
0) is Γ2(0) · b2 · c(e�(v0

0)) + d(v0
1 , τ) = 1 · 4 · 1 + 3

2 + 7
4 = 29

4 .
Therefore, at state v0

0 agent 2 would follow edge e�(v0
0). At state v0

1 the agent has no other
options that to follow the edges e �(v0

1) and then the edge e �(v1
2) to reach τ . Hence, the

cost of the progress path of agent 2 when operating individually would be 1 + 3
2 + 7

4 = 17
4 .

Now we analyze the behavior of agents 1 and 2 when they collaborate on the same project
and they both have to perform the same task. At time step t = 0, we have that the social bias
is Γ{1,2}

1 (0) = γq1(0)−q2(0) = 40 = 1. Analogously, we have that Γ{1,2}
2 (0) = 1. Therefore, the

choice of each agent at time step t = 0 is the same as when they perform independently as their
personal bias remains unchanged. That is, agent 1 follows the edge e �(v0

0) making progress 1
at time t = 1 and agent 2 follows the edge e�(v0

0) making no progress at time t = 1. At time
step t = 1, agent 1 evaluates the options of following edge e �(v1

1) or e�(v1
1). Notice that now

the social bias of agent 1 is Γ{1,2}
1 (1) = γq1(1)−q2(1) = 41/2 = 2. Hence, the perceived cost

of following edge e �(v1
1) is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 2 · 2 · 7
4 + 0 = 28

4 , whereas the
perceived cost of following the edge e�(v1

1) is Γ{1,2}
1 (1)·b1·c(e�(v1

1))+d(v1
2 , τ) = 2·2·1+ 7

4 = 23
4 .

Therefore, at state v1
1 agent 1 would follow edge e�(v1

1). For the last edge, agent 1 has only
one option, that is, to follow the edge e �(v1

2) to reach τ . Hence, the cost of the progress
path of agent 1 is 3

2 + 1 + 7
4 = 17

4 , compared to the cost 13/4 of the progress path that it
would follow independently. The progress path of agent 2 does not change when operating
with agent 1, as after the first choice to follow edge e�(v0

0) there are not alternative paths
that agent 2 could follow. In conclusion, the total cost of the two agents when operating
together is 34/4 compared to the 30/4 when operating independently.

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:15

!"#$%

!"#&&
'

1

0* = {-&, -$, … , -0}
234 = 1, -, 5 ∈ *, - ≠ 5
83& = 7 ⋅ 20
83< = 5, > > 1
@ = 4

!"#&%

B

!"&'

1

C = 1
0

C = 1/2

C = 0

!"E

F

!&&

!&%6/5

1

0!$$

'

1

0!EE

!$&
'6/
5

'

6/5

'6/
5

6/5

'6/
5

6/5

'6/
5

Figure 4 An example where the collaboration leads to an increase, by an O(n) factor, on the
total cost.

Example 2. We now proceed with an example where the collaboration of two agents leads
to a decrease to the total cost of their progress paths. Consider the case where two agents
1, 2 with personal biases b1 = 2, b2 = 6 operate on the task graph in Figure 1 (right). It can
be verified that the progress path of agent 1 is p(i) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and the

progress path of agent 2 is p(2) = 〈σ = v0
0 , v

0
1 , v

0
2 , v

1
3 , v

2
4 = τ〉. Therefore, the total cost of the

p(1) and p(2) is 36
5 .

Now we consider the case where the two agents interact with each other. Similarly to the
first example, at time step t = 0 the social bias is Γ{1,2}

1 (0) = Γ{1,2}
2 (0) = 1 and hence the

choices at time t = 0 of agents 1, 2 are the same as in the case where they operate independently.
That is, q1(1) = 1/2 and q2(1) = 0. At time step t = 1, the social bias of agent 1 is Γ{1,2}

1 (1) =
γq1(1)−q2(1) = 41/2 = 2. According to our model, the perceived cost of following edge e �(v1

1)
by agent 1 is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 2 · 2 · 6
5 + 0 + 0 = 24

5 , whereas the perceived
cost of following the edge e�(v1

1) is Γ{1,2}
1 (1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 2 · 2 · 1 + 6

5 + 0 = 26
5 .

Therefore, at state v1
1 agent 1 follows edge e �(v1

1). We now review the decision of agent 2
at time t = 1, whose social bias is Γ{1,2}

2 (1) = γq2(1)−q1(1) = 4−1/2 = 1/2. Hence, agent 2
at time t = 1 perceives cost Γ{1,2}

2 (1) · b2 · c(e �(v0
1)) + d(v1

2 , τ) = 1
2 · 6 ·

7
5 + 6

5 + 0 = 27
5 for

following edge e �(v0
1), and cost Γ{1,2}

2 (1) · b1 · c(e�(v0
1)) + d(v0

2 , τ) = 1
2 · 6 · 1 + 7

5 + 6
5 = 28

5
for following edge e�(v0

1). Therefore, at state v0
1 agent 2 follows edge e �(v0

1) to reach
state v1

2 . At time t = 2, we have q1(2) = 1, q2(2) = 1/2. Agent 1 has no options other
than to follow the path 〈v2

2 , v
2
3 , τ〉 to reach τ . The social bias of agent 2 at time t = 2 is

Γ{1,2}
2 (2) = γq2(2)−q1(2) = 4−1/2 = 1/2. Hence, the perceived cost of agent 2 at time t = 2 in

the case of following the edge e �(v1
2) is Γ{1,2}

2 (2)·b2 ·c(e �(v1
2))+d(v2

3 , τ) = 1
2 ·6·

6
5 +0 = 18

5 , and
in the case of following the edge e�(v1

2) is Γ{1,2}
2 (2) ·b2 ·c(e�(v1

2))+d(v1
3 , τ) = 1

2 ·6 ·1+ 6
5 = 21

5 .
Therefore, at state v1

2 agent 2 follows edge e �(v1
2). Finally, at time t = 3, both agents have

no other option than to follow edge (v2
3 , τ) to reach τ . In conclusion, agent 1 follows the

progress path p{1,2}(1) = 〈σ = v0
0 , v

1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and agent 2 follows that progress path

p{1,2}(2) = 〈σ = v0
0 , v

0
1 , v

1
2 , v

2
3 , v

2
4 = τ〉, with total cost 31/5. That is, if agents 1, 2 collaborate

they decrease the total cost.

Proofs
Detailed proof of Lemma 7. See Figure 4, where all agents operate on the same task graph.
For agent i1 at state v0

0 the perceived cost is

BT
i1

(0) · c(e �(v0
0)) + d(v1

1 , τ) = bi1 · ΓT
i1

(0) · 6
5 + 6n

5

= 7 · 2k · 40 · 6
5 + 6n

5 = 42 · 2k + 6n
5

FUN 2021

2:16 Collaborative Procrastination

for following edge e �(v0
0) and

BT
i1

(0) · c(e�(v0
0)) + d(v1

0 , τ) = bi1 · ΓT
i1

(0) + 6
5 + 6n

5

= 7 · 2k · 40 + 6
5 + 6n

5 = 35 · 2k + 6 + 6n
5

for following the edge e�(v0
0). Hence, agent i1 follows the edge e�(v0

0).
For agent ix, x > 1, at state v0

0 the perceived cost is

BT
ix

(0) · c(e �(v0
0)) + d(v1

1 , τ) = bix
· ΓT

ix
(0) · 6

5 + 6n
5

= 5 · 40 · 6
5 + 6n

5 = 30 + 6n
5

for following edge e �(v0
0) and

BT
ix

(0) · c(e�(v0
0)) + d(v1

0 , τ) = bix · ΓT
ix

(0) + 6
5 + 6n

5
= 5 · 40 + 6

5 + 6n
5 = 31 + 6n

5

for following the edge e�(v0
0). Hence, agent ix chooses to follow edge e �(v0

0).
At t = 1 agent i1 is at state v0

1 and all other agents are at state v1
1 .

For agent i1 at state v0
1 the perceived cost is

BT
i1

(1) · c(e �(v0
1)) + d(v1

2 , τ) = bi1 · ΓT
i1

(1) · 6
5 + 6n

5
= 7 · 2k · 4−(k−1)/2 · 6

5 + 6n
5 = 84 + 6n

5

for following edge e �(v0
1) and

BT
i1

(1) · c(e�(v0
1)) + d(v0

2 , τ) = bi1 · ΓT
i1

(1) + 6
5 + 6n

5
= 7 · 2k · 4−(k−1)/2 + 6

5 + 6n
5 = 76 + 6n

5

for following edge e �(v0
1). Hence, agent i1 follows edge e�(v0

1).
For agent ix, x > 1, at state v1

1 the perceived cost is

BT
ix

(1) · c(e �(v1
1)) + d(v2

2 , τ) = bix
· ΓT

ix
(1) · 6n

5
= 5 · 41/2 · 6n

5 = 60n
5

for following edge e �(v1
1) and

BT
ix

(1) · c(e�(v1
1)) + d(v1

2 , τ) = bix · ΓT
ix

(1) · n + 6n
5

= 5 · 41/2 · n+ 6n
5 = 56n

5

for following edge e�(v1
1). Hence, agent ix chooses to follow edge e�(v1

1).
Notice that after time t = 2, all agents continue procrastinating as their perceived cost

does not change. Eventually, the progress path pT (i1) of agent i1 costs 6
5 + n · (n− 2) + 6n

5
and the progress path pT (ix) for an agent ix, x > 1, costs n− 2 + 6

5 + 6n
5 . Hence, the total

cost is Ω(k · n2).

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:17

!"#$
%

!"#&
&

1

1

0

!"#&
%

)

1

1

* = 1
0

* = 1/2

* = 0

!"$

.

!&
&

!&
%

6/
5

1

0!$
$

1

1

0!1
$

6/
5

6/
5

6/
5

!$
&

1

6/
5

6/
5

6/
5

6/
5

!"&

2 = {4&, 4$, … , 47}
9:; = 1, 4, < ∈ 2, 4 ≠ <
?:@ = 7
?:B = 3 − E, F > 1
H = 4

Figure 5 An example where collaboration leads to a decrease, by an Ω(n) factor, on the total
cost.

Notice that in the case where ΓT
iz

(t) = 1 for all z ∈ T , agent i1 would still follow the same
progress path, agent ix, x > 1, would follow the edge e �(v1

1) at state v1
1 as its perceived cost

would be:

BT
ix

(1) · c(e �(v1
1)) + d(v2

2 , τ) = bix

6n
5 = 5 · 6n

5 = 6n

for following edge e �(v1
1) and

BT
ix

(1) · c(e�(v1
1)) + d(v1

2 , τ) = bix
n + 6n

5 = 5 · n+ 6n
5 = 31n

5

for following edge e�(v1
1). Hence, agent ix would choose to follow edge e �(v1

1). In this
scenario, agent i1 would pay cost n− 2 + 6

5 + 6n
5 and ix, x > 1, would pay cost 6

5 + 6n
5 . Hence,

the total cost would be Ω(k · n). Collectively, the total cost of progress paths can increase by
a factor Ω(n). J

Proof of Lemma 8. Follows from Claim 5.1 from Gravin et al. [7] J

Proof of Lemma 9. See Figure 5. J

Proof of Lemma 10. In the case that bi = bj the lemma is clearly true, assuming that i and
j break ties consistently: the two agents will follow the exact same path. For the rest of the
proof, and w.l.o.g., we assume that bi > bj . Note that for each t we have that B{i}i (t) = bi

and B{j}j (t) = bj . For the sake of leading to a contradiction assume that the statement of
the lemma is false. Let v`

t be the first state that agent j went below agent i, formally, that
(v`

t , v
`+1
t+1) ∈ p(i) and (v`

t , v
`
t+1) ∈ p(j). Let pi = 〈v`

t = v0, v
i
1, . . . , v

i
k = τ〉 be the subpath of

p(i) from v`
t to τ and pj = 〈v`

t = v0, v
j
1, . . . , v

j
k = τ〉 be the subpath of p(j) from v`

t to τ . The
perceived cost of the path pi for i is bi · c(v0, v

i
1) + d(vi

1, τ). By the definition of p(i) we have
that

bi · c(v0, v
i
1) + d(vi

1, τ) ≤ bi · c(v0, v
j
1) + d(vj

1, τ)

⇒ bi · (c(v0, v
i
1)− c(v0, v

j
1)) + d(vi

1, τ)− d(vj
1, τ) ≤ 0. (1)

Similarly, for j we have that

bj · (c(v0, v
j
1)− c(v0, v

i
1)) + d(vj

1, τ)− d(vi
1, τ) ≤ 0,

⇒ bj · (c(v0, v
j
1)− c(v0, v

i
1))− d(vi

1, τ) + d(vj
1, τ) ≤ 0, (2)

FUN 2021

2:18 Collaborative Procrastination

By the fact that bi > bj , and our assumption that when the perceived cost of making
progress and procrastinating is equal then the agent chooses to make progress, it follows that
at most one of the two inequalities can hold with equality. Summing the two inequalities, we
obtain that

bi · (c(v0, v
i
1)− c(v0, v

j
1)) + bj · (c(v0, v

j
1)− c(v0, v

i
1)) < 0,

which, recalling that v0 = v`
t , that vi

1 = v`+1
t+1 , and that vj

1 = v`
t+1, can be rewritten as

bi · (c(e �(v`
t))− c(e�(v`

t))) + bj · (c(e�(v`
t))− c(e �(v`

t))) < 0,

⇒ (bi − bj) · (c(e �(v`
t))− c(e�(v`

t))) < 0.

But this is a contradiction because we assumed that bi > bj and by Property 6 it follows
that c(e �(v`

t)) ≥ c(e�(v`
t)). J

Proof of Lemma 11. We prove it by contradiction. Let v`
t be the first node for which there

exists an agent i for whom (v`
t , v

`
t+1) ∈ pT (i) and (v`

t , v
`+1
t+1) ∈ p(i1). Given that this is

the first time that this happens, for each j ∈ T we have that qj(t) ≥ qi(t). Note that by
Property 2 we have that ΓT

i (t) ≤ 1, which implies BT
i (t) ≤ max{bi, 1} ≤ bi1 .

Arguing as in Lemma 10 we obtain that (bi1 −BT
i (t))(c(e �(v`

t))− c(e�(v`
t))) < 0, leading

to a contradiction, which means that pT (i) �G p(i1).
Repeating the argument, and observing that by Property 2 we have that ΓT

i (t) ≥ 1,
giving BT

i (t) ≥ max{bi ΓT
i (t), 1} ≥ bik

, we obtain that pT (i) � p(ik). J

Proof of Lemma 13. First, we show that whenever, at some state v`
t agent i follows the edge

e �(v`
t), then i follows the shortest path from v`

t to σ. That is, d(v`+1
t+1 , τ) = d(v`

t , τ)−c(e �(v`
t)).

To prove our claim, we notice that

BT
i (t) · c(e �(v`

t)) + d(v`+1
t+1 , τ) < BT

i (t) · c(e�(v`
t)) + d(v`

t+1, τ).

⇒ BT
i (t) · (c(e �(v`

t))− c(e�(v`
t))) < d(v`

t+1, τ)− d(v`+1
t+1 , τ).

Since BT
i (t) ≥ 1 and c(e �(v`

t)) > c(e�(v`
t)) by Property 6, we have

c(e �(v`
t))− c(e�(v`

t)) < d(v`
t+1, τ)− d(v`+1

t+1 , τ),

which proves that d(v`+1
t+1 , τ) = d(v`

t , τ)− c(e �(v`
t)). Hence, each time an agent follows an

edge e �(v`
t) from any state v`

t the remaining shortest path to τ decreases by c(e �(v`
t)) (by

Property 5). Notice that this does not imply anything about the behavior of agent i at any
other time t′ 6= t. Our goal is to rely on Property 5 to guarantee that remaining shortest
path cannot increase (independently of the followed path) and to bound the additional cost
that each agent pays when not decreasing its distance to the target state. By our first claim,
the progress path of agent i only increases (compared to the shortest path) when the agent
procrastinates, that is, the agent follows an edge e�(v`

t) from some state v`
t .

Assume that imin is the agent in T with the smallest personal bias bimin
. Then, by

Lemma 11, pT (j) � p(imin), for all j ∈ T, j 6= imin. Let i ∈ T be any agent i 6= imin. For
any state v`

t such that i follows the edge e�(v`
t), agent imin at time t at state v`′

t follows
either the edge e �(v`′

t) or the edge e�(v`′

t). By Properties 6 and 12 and the fact that `′ ≤ `
(since pT (i) � p(imin)) we have that c(e �(v`′

t)) ≤ c(e�(v`′

t)) ≤ c(e�(v`
t)). That is, each time

agent i follows an edge e�(v`
t) from some state v`

t , agent imin follows an edge with larger
cost when operating independently. As the total increase in the progress path of agent i,
compared to the shortest progress path, is bounded by the number of procrastination edges

A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:19

!

"##

"#$

"%#1

1

0"%%

"%$

(

")#1

1

* = 1
0

* = 1/2

q = 0

")%

!

"##

"#$
5

"%#1

2

0

5

5 5

0 = {1,2}
4 #% = 4 %# = 1
5# = 5% = 2
6 = 4

"%%

"%$

(

")#1

2

* = 1
0

5

5

* = 1/2

* = 0

")%

Type 1 graph Type 2 graph

1 1

1 1

1

1

Figure 6 Graphs of type 1 (left) and type 2 (right) that are used in the proof of Theorem 16.

followed by agent i, it follows that the total increase is bounded by the cost of the progress
path p(imin). Hence, each agent adds at most cost equal to the cost of the progress path
p(imin). That is, the total cost increases by a factor of at most k. J

Proof of Theorem 16. We obtain a reduction from the SetCover problem. In the Set-
Cover problem, we are given a universe of items U and a family of sets C1, C2, . . . , C` and we
are asked to find k sets such that each element from the universe is contained in at least one
selected set. Our overall strategy is to construct an instance of the OptimalGroupAssign-
ment problem, in polynomial time, from an instance of the SetCover problem. This means,
if we can solve the OptimalGroupAssignment problem in polynomial time, then our
reduction is a polynomial time algorithm for the SetCover problem, which is known to be
NP-hard.

Assume that we are given an instance of the SetCover problem with universe U and
sets C1, C2, . . . , C`. We construct an instance of the OptimalGroupAssignment problem
as follows. We include k graphs of type 2 and ` + |U | − k graphs of type 1, as they are
shown in Figure 6. For each element u ∈ U , we include an element-agent au. For each
set Ci ∈ {C1, C2, . . . , C`}, we include a set-agent ai. All agents have personal bias b = 2,
and γ = 2. Finally, we set wui = 1 if u ∈ Ci, where Ci ∈ {C1, C2, . . . , C`} and u ∈ U , and
wui = 0 otherwise. Notice that any agent operating on a type-2 graph always pays cost 2
as it always follows the path 〈s, v1

1 , v
2
2 , v

2
3 , t〉. Therefore, the total cost only depends on the

agents that operate on type 1 graphs. An agent operating individually on a type-1 graph
follows the path 〈s, v0

1 , v
0
2 , v

1
3 , t〉, and therefore, pays 14. If for an agent i, that is operating

on a type-1 graph, it holds that wji = 1 and agent j is operating on a type-2 graph, agent i
follows the path 〈s, v0

1 , v
1
2 , v

1
3 , t〉 with cost 13. In the case where wji = 0, for all agents j 6= i,

or wji = 1 but agent j follows a path containing v0
1 (i.e., operates on a type 1 graph), it

holds that i follows the path 〈s, v0
1 , v

0
2 , v

1
3 , t〉 with cost 14.

We show that for any instance of the SetCover problem there exist k sets covering all
elements of the universe if and only if there is a solution to the OptimalGroupAssignment
problem such that the total cost is k · 2 + |U | · 13 + (` − k)14. We begin with the first
direction, that is, we show that if there exists a solution to the SetCover problem, then
there exists an assignment in the OptimalGroupAssignment problem for which the total
cost is k · 2 + |U | · 13 + (`− k)14. For each set Ci in the solution of the SetCover problem,
we assign its corresponding set-agent ai to a type-2 graph (they pay collectively k · 2 cost).
For the rest set-agents corresponding to sets Cj of the SetCover instance, it holds wij = 0,
for all i 6= j, and therefore those (`− k) agents collectively pay (`− k) · 14 cost (i.e., they all
follow the path 〈s, v0

1 , v
0
2 , v

1
3 , t〉 as we explained above). Finally, each element-agent u pays

cost |U | · 13 in total, as there exists a weight wiu = 1, for some i 6= u such that ai operates
on a type 2 graph (as there is a set Ci covering u). This proves the first direction.

Now we prove that if there exists an assignment in the OptimalGroupAssignment
problem for which the total cost is k · 2 + |U | · 13 + (`− k)14 then there is a solution to the
SetCover problem. Notice that, independently of which agents operate on graphs of type

FUN 2021

2:20 Collaborative Procrastination

2, they always pay cost 2. Every agent au, for u ∈ U , pays cost 2 if it operates on a type-2
graph, cost 13 if it operates on a type-1 graph and there exists wiu = 1 where ai operates on
a type-2 graph, and 14 otherwise. Note that for each wiu = 1, there exists a set Ci covering
the element u in the SetCover instance Therefore, the only agents that can pay cost 13 are
the element-agents. Since in any solution there are exactly k agents paying cost 2 (i.e., those
operating on type-2 graphs) and at least (`− k) agents paying cost 14 (i.e., the set-agents
that operate on type-2 graphs), the minimum possible total cost is k · 2 + |U | · 13 + (`− k)14,
which is achieved by assigning k set-agents to type-2 graphs, such that for each element-agent
u it holds wiu = 1 for at least one of the set-agents that were assigned to type-2 graphs.
Such an assignment indicates that there exists a set of k set-agents a1, a2, . . . , ak such that
for each u ∈ C, there exists a 1 ≤ i ≤ k such that wiu = 1. These k set-agents correspond to
a solution of the SetCover instance. This concludes the proof. J

Walking Through Doors Is Hard, Even Without
Staircases: Proving PSPACE-Hardness via
Planar Assemblies of Door Gadgets
Joshua Ani
Massachusetts Institute of Technology, Cambridge, MA, USA
joshuaa@mit.edu

Jeffrey Bosboom
Massachusetts Institute of Technology, Cambridge, MA, USA
jbosboom@mit.edu

Erik D. Demaine
Massachusetts Institute of Technology, Cambridge, MA, USA
edemaine@mit.edu

Yenhenii Diomidov
Massachusetts Institute of Technology, Cambridge, MA, USA
diomidov@mit.edu

Dylan Hendrickson
Massachusetts Institute of Technology, Cambridge, MA, USA
dylanhen@mit.edu

Jayson Lynch
Massachusetts Institute of Technology, Cambridge, MA, USA
jaysonl@mit.edu

Abstract
A door gadget has two states and three tunnels that can be traversed by an agent (player, robot,
etc.): the “open” and “close” tunnel sets the gadget’s state to open and closed, respectively, while
the “traverse” tunnel can be traversed if and only if the door is in the open state. We prove that it
is PSPACE-complete to decide whether an agent can move from one location to another through
a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and
thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario
Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible
local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one
remaining case, we prove NP-hardness.

We also introduce and analyze a simpler type of door gadget, called the self-closing door. This
gadget has two states and only two tunnels, similar to the “open” and “traverse” tunnels of doors,
except that traversing the traverse tunnel also closes the door. In a variant called the symmetric
self-closing door, the “open” tunnel can be traversed if and only if the door is closed. We prove that
it is PSPACE-complete to decide whether an agent can move from one location to another through
a planar assembly of either type of self-closing door. Then we apply this framework to prove new
PSPACE-hardness results for several 3D Mario games and Sokobond.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases gadgets, motion planning, hardness of games

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.3

Related Version https://arxiv.org/abs/2006.01256

Acknowledgements This work was initiated during open problem solving in the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught by Erik Demaine in Spring
2019. We thank the other participants of that class for related discussions and providing an inspiring
atmosphere.

© Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yenhenii Diomidov, Dylan Hendrickson, and
Jayson Lynch;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshuaa@mit.edu
mailto:jbosboom@mit.edu
mailto:edemaine@mit.edu
mailto:diomidov@mit.edu
mailto:dylanhen@mit.edu
mailto:jaysonl@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.3
https://arxiv.org/abs/2006.01256
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

1 Introduction

Puzzle video games are rife with doors that block the player’s passage when closed/locked.
To open such a door, the player often needs to collect the right key or keycard, or to press
the right combination of buttons or pressure plates, or to solve some other puzzle. Many
of these game features in sufficient generality imply that the video game is NP-hard or
PSPACE-hard, according to a series of metatheorems starting at FUN 2010 [7, 9, 10].

An intriguing twist is to use doors as a framework for proving hardness of video games that
do not “naturally” have doors, but have some mechanics that suffice to simulate doors via a
gadget. The first use of a local “door gadget” was by Viglietta to prove Lemmings PSPACE-
complete at FUN 2014 [11]. This door gadget is a portion of a level design containing three
directed paths that the player can traverse: a “traverse” path that can be traversed if and
only if the door is open, a “close” path that forces the door to close, and an “open” path that
allows the player to open the door if desired. Viglietta [11, Metatheorem 3] proved that such
a door gadget, together with the ability to wire together door entrance/exit ports according
to an arbitrary graph (including crossovers for a 2D game like Lemmings), where the player
has the choice of how to traverse the graph, suffice to prove PSPACE-hardness of deciding
whether an agent can move from one location to another. At the same FUN, Aloupis et
al. [1] used this door framework to prove Legend of Zelda: Link to the Past and Donkey
Kong Country 1, 2, and 3 PSPACE-complete [1]. At the next FUN, Demaine et al. [6] used
this door framework to prove Super Mario Bros. PSPACE-complete. All of these proofs
feature a crossover gadget for wiring paths between door gadgets.

The motion-planning-through-gadgets framework of [4, 5] (initiated at FUN 2018) for-
malizes the idea of moving one or more agents through a graph of local gadgets, where each
gadget has local state and traversal paths whose traversal affects that gadget’s state (only).
In the 1-player unbounded setting considered here, past work analyzed gadgets that are
1. deterministic, meaning that when an agent enters a gadget at any location, it has a

unique exit location and causes a unique state change;
2. reversible, meaning that every such traversal can be immediately undone, both in terms

of agent location and gadget state change; and
3. k-tunnel, meaning that the 2k entrance/exit locations can be paired up such that, in

any state, traversal paths only connected paired locations (in some direction).
Restricted to deterministic reversible k-tunnel gadgets, Demaine et al. [5] characterized
which gadget sets make motion planning of an agent from one location to another PSPACE-
complete: whenever the gadget set contains a gadget with interacting tunnels, meaning
that traversing some traversal path changes (adds or removes) the traversability of some
other traversal path (in some direction). Furthermore, they proved the same characterization
when the gadgets are connected in a planar graph, obviating the need for a crossover gadget.

Door gadgets naturally fit into this motion-planning-through-gadgets framework. (Indeed,
they were one of the inspirations for the framework.) Notably, however, the door gadget
used in [1, 6, 11] is neither deterministic (the open path can open the door or not, according
to the player’s choice) nor reversible (the paths are all directed in fixed directions), so the
existing characterization and planarity result do not apply.

In this paper, we develop a specialized motion-planning-through-doors framework, com-
pleting another subspace of the motion-planning-through-gadgets framework. Our framework
applies to a variety of different door gadgets, including the door gadget of [1, 6, 11]. In all
cases, a door gadget has two states and three disjoint traversal paths: “traverse”, “close”, and
“open”. Each path may be individually directed (traversable in one direction) or undirected

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:3

(traversable in both directions). In addition, the open traversal path may have identical
entrance and exit locations, meaning that its traversal changes the door’s state but does
not move the agent (breaking the k-tunnel assumption). In this way, we can require that
traversing the open and close traversal paths force the door’s state to open and closed,
respectively, but still effectively allow the player to make a choice of whether to open the
door (by skipping or including the open traversal, which leaves the agent in the same location
either way).

In Section 2, we introduce two more families of door gadgets. A self-closing door has
two states but only two traversal paths: “open” and “self-close”. The self-close traversal is
possible only in the open state, and it forcibly changes the state to closed. As before, each
traversal path can be either directed or undirected; and the open traversal forces the state to
open, but we allow the open traversal path to have identical start and end locations, which
effectively allows optional opening. A symmetric self-closing door has two states and
two traversal paths: “self-open” and “self-close”. The self-open/close traversal is possibly
only in the closed/open state, respectively, and it forcibly changes the state to open/closed,
respectively. (This definition is fully symmetric between “open” and “close”.) Each traversal
path can be either directed or undirected, but we no longer allow optional traversal.

In Section 3, we prove that planar 1-player motion planning is PSPACE-complete for
every door gadget, for every local combinatorial planar embedding of every type door gadget
except for one (which we only prove NP-hard). Thus, all that is needed to prove a new game
PSPACE-hard is to construct any single supported door gadget, and to show how to connect
the door entrances/exits together in a planar graph. In particular, the crossover gadgets
previously constructed for Lemmings [11, Figure 2(e)], Legend of Zelda: Link to the Past and
Donkey Kong Country 1, 2, and 3 [1, Figures 28 and 20], and Super Mario Bros. [6, Figure 5]
are no longer necessary for those PSPACE-hardness proofs: they can now be omitted. (See
Section 4 for details.) Our result should therefore make it easier in the future to prove 2D
games PSPACE-hard. Because of their reduced conceptual complexity – only two traversal
paths, which behave essentially identically for symmetric self-closing doors – we have found
it even easier to prove games PSPACE-hard by building self-closing door gadgets.

In the full version of the paper we prove that every door is universal, meaning that any
one of them can simulate all gadgets in the motion-planning-through-gadgets framework
of [4, 5]. This provides the first examples of fully universal gadgets.

In Section 4, we illustrate this approach by proving PSPACE-hardness for one 2D game,
Sokobond, and several different 3D Mario games: Super Mario 64, Super Mario 64 DS,
Super Mario Sunshine, Super Mario Galaxy, and Captain Toad: Treasure Tracker (and
the associated levels in Super Mario 3D World). Additional applications to Super Mario
Galaxy 2 and Super Mario 3D Land/World are presented in the full version of the paper.
These reductions consist of just one gadget, a symmetric self-closing door, along with easy
methods for connecting these gadgets. For the 3D games, the main benefit is the simplicity
of the symmetric self-closing door: crossovers are generally easy in the 3D games, though
conveniently we still do not need to explicitly build them.

2 Self-Closing Doors

In this section, we introduce different kinds of self-closing doors and show that 1-player
motion planning is PSPACE-hard for them.

FUN 2021

3:4 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

2.1 Terminology
A self-closing door is a 2-state gadget that has a tunnel that closes itself when traversed
(the self-closing tunnel), a tunnel/port that reopens said tunnel (the opening tunnel/port),
and no other ports. We will talk about two major kinds of self-closing door. A normal
self-closing door is a self-closing door where the open path/tunnel is always open. A
symmetric self-closing door is a self-closing door where the open path/tunnel is a tunnel
and also closes itself when traversed. As with doors, these can be directed, undirected, or
mixed, and a normal self-closing door can also be open-required or open-optional. An
‘X’ on a tunnel indicates that the tunnel closes itself when traversed. A dotted line indicates
a closed tunnel and a solid line indicates an open tunnel. For normal self-closing doors, the
open path/tunnel will be colored green. Figure 1 shows some self-closing doors.

Figure 1 Left: An undirected open-required normal self-closing door. Right: A directed open-
optional normal self-closing door. Bottom: A mixed symmetric self-closing door.

2.2 PSPACE-hardness of Self-Closing Doors
In this section we show PSPACE-hardness for 1-player motion planning with any of the
self-closing doors. We do so by showing undirected self-closing doors can simulate diodes,
and self-closing doors without open-optional tunnels can simulate ones with open-optional
tunnels. We then prove the main Theorem 2.3 which gives PSPACE-hardness of the directed,
open-optional, normal self-closing door by simulating a directed, open-optional door gadget.

I Lemma 2.1. In 1-player motion planning, any normal or symmetric self-closing door can
simulate an open-optional self-closing door.

Proof. In the case of an open-optional normal self-closing door, we are done. In the case
of an open-required normal self-closing door, we do the same thing we did for the proof for
Theorem 3.6. In the case of a symmetric self-closing door, we pick a tunnel to be the opening
tunnel and do what we did for Theorem 3.6. This simulates an open-optional self-closing
door. J

I Lemma 2.2. 1-player motion planning with the undirected open-optional normal self-closing
door can simulate a directed open-optional normal self-closing door.

Proof. We can simulate a diode by wiring 2 undirected open-optional normal self-closing
doors as shown in Figure 4. The player can enter from the left, open the left self-closing
door, traverse it, and do the same for the right self-closing door. The player cannot enter
from the right. If the player tries to open the left self-closing door and then leave, the player

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:5

still cannot enter from the right. If the player tries to open the right self-closing door and
then leave, they will not be able to leave. So this simulates a diode. We can wire a diode to
each side the self-closing tunnel to get a directed self-closing tunnel which can be applied to
make the undirected self-closing door directed. J

I Theorem 2.3. 1-player motion planning with the directed open-optional normal self-closing
door is PSPACE-hard.

Proof. We can simulate a diode by wiring the opening port to the input end of the self-closing
tunnel. The player can open the self-closing tunnel then traverse it, but cannot go the other
way because the self-closing tunnel is directed. Then we show that we can duplicate the open
port and the self-closing tunnel as in Figure 2. We then actually triplicate the open port and
duplicate the self-closing tunnel, and wire them up to simulate the directed open-optional
door as shown in Figure 3, for which PSPACE-hardness is known. J

sim

Figure 2 The directed open-optional normal self-closing door can simulate a version of itself with
the opening port and the self-closing tunnel duplicated. Note that the opening port duplicator is
planar.

Chaining the simulations in Lemmas 2.1 and 2.2 with Theorem 2.3 we obtain PSPACE-
hardness for all variations.

I Corollary 2.4. 1-player motion planning with any normal, symmetric, or open-optional
normal self-closing door is PSPACE-hard.

FUN 2021

3:6 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

Figure 3 Simulation of the directed open-
optional door. Green wires correspond to the
opening port; blue wires correspond to the traverse
tunnel; and red wires correspond to the closing
tunnel. Note that the player has no reason to not
open the gadget after traversing the blue wire.

Figure 4 Undirected open-optional normal
self-closing door simulating a diode.

3 Planar Doors

In this section, we adapt the door framework of [1, Section 2.2] (a cleaner presentation of the
framework from [11]) into the motion-planning-through-gadgets framework. We then improve
upon those results by showing most variations on the door gadget remain PSPACE-hard
in the planar case. We also show that 1-player planar motion planning with any normal or
symmetric self-closing door is PSPACE-hard.

3.1 Terminology

We define a door to be a gadget with an opening port or tunnel, a traverse tunnel, and
a closing tunnel, and each of the tunnels may be directed or undirected. The opening
port/tunnel opens the traverse tunnel, and the closing tunnel closes the traverse tunnel.
Throughout this paper, the opening port/tunnel will be colored green, the traverse tunnel
will be colored blue, and the closing tunnel will be colored red. In addition, a solid traverse
tunnel represents an open door, and a dotted traverse tunnel represents a closed door. A
directed door is a door where all tunnels are directed. An undirected door is a door where
all tunnels are undirected. A door that is neither undirected nor directed is a mixed door .
An open-required door is a door with an opening tunnel, and an open-optional door is
one with an opening port. A directed open-required door, an undirected open-required door,
and a mixed open-optional door are shown in Figure 5.

In 2D, we care about the arrangement of ports in a gadget. For planar motion planning
problems we want a planar system of gadgets, where the gadgets and connections are drawn
in the plane without crossings. Planar gadgets also specify a clockwise ordering of their ports,
although we consider rotations and reflections of a gadget to be the same. A single gadget
type thus corresponds to multiple planar gadget types, depending on the choice of the order
of locations. For a planar system of gadgets, the gadgets are drawn as small diagrams with
points on their exterior coorisponding to their ports and connections are drawn as paths
connecting the points corresponding to the ports without crossing gadget interiors or other
connections.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:7

Closed Open Closed Open

Closed Open

Figure 5 Left: A directed open-required door. Right: An undirected open-required door. Bottom:
A mixed open-optional door.

3.2 PSPACE-hardness for Planar Self-Closing Doors
For completeness, we give a proof that the planar directed open-optional normal self-closing
door is PSPACE-hard. This result was also given in [2].

I Theorem 3.1. 1-player planar motion planning with the directed open-optional normal
self-closing door is PSPACE-hard.

Proof. Since Theorem 2.3 shows PSPACE-completeness in the non-planar case, it will suffice
to build a crossover gadget. First, we wish to duplicate the opening ports as in the prior
proof. We show how to do so in Figure 2. Note that this time we cannot directly duplicate
the self-closing tunnel as the construction from Theorem 2.3 uses crossovers. We can also
simulate a diode as proven in Theorem 2.3 since the construction is planar. We use these
to simulate a pair of self-closing doors where the opening ports alternate which door they
open, shown in Figure 6. If the agent enters from port 1 or 4, they will open door E or F,
respectively, and then leave. If the agent enters from port 2, they can open doors A, B, and
C. Assume they then traverse door B. If they then open door E, they would have to traverse
door C, maybe open F, and get stuck. So instead of opening door E, the agent traverses
door A, ending up back at port 2 with no change except that door C is open. Entering port
2 or 3 gives the opportunity to open door C without being forced to take a different path,
so leaving door C open does not help. So instead of traversing door B, the agent traverses
door C. The agent is then forced to go right and can open door F. Then they are forced to
traverse door B. If the agent opens door E, they will be stuck, so the agent traverses door A
instead and returns to port 2, leaving door F open. Similarly, if the agent enters from port 3,
the only useful thing they can do is open port E and return to port 3.

Using this, we then simulate a directed crossover as in Figure 7 which are able to
simulate an undirected crossover, removing the planar restriction and reducing this problem
to Theorem 2.3. In the simulation of a directed crossover, the agent must open the left tunnel
of a gadget and then open both tunnels of the other one, forcing them to cross over, since
the only path forward goes through the left tunnels of both gadgets. J

I Theorem 3.2. 1-player planar motion planning with any normal or symmetric self-closing
door is PSPACE-hard.

FUN 2021

3:8 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

sim

D

E

C

F

B

A

1

2

3

4

6

5

7

8

Figure 6 Directed open-optional normal self-closing door simulating the gadget on the right,
where solid opening ports control the top self-closing tunnel and dotted opening ports control the
bottom self-closing tunnel. The gadgets and external ports are labelled to help with the proof.

sim

Figure 7 Directed open-optional normal self-closing door simulating a crossover.

Proof. Any normal or symmetric self-closing door can simulate a diode as shown in Fig-
ure 8(a–f). Then we can simulate the directed open-optional normal self-closing door as
shown in Figure 9(a–d). Finally we apply Theorem 3.1 to show PSPACE-hardness. J

3.3 PSPACE-hardness for Planar Doors
We will show that 1-player planar motion planning with almost any door is PSPACE-hard
by showing that 1-player planar motion planning with almost any fully directed door is
PSPACE-hard and that mixed and undirected doors can planarly simulate at least one of
the PSPACE-hard fully directed doors.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:9

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8 Six types of self-closing doors simulat-
ing diodes. Filled-in arrows indicate directions that
are required to exist, and outlined arrows indicate
optional directions. Case (a) is the same as Figure 4.

(a) (c)

(b) (d)

Figure 9 Four types of directed self-
closing doors simulating the directed open-
optional normal self-closing door. Filled-in
arrows indicate directions that are required
to exist, and exactly one of the outlined
directions must exist.

We first show that mixed and undirected doors can simulate fully directed doors in
Lemmas 3.3 and 3.4. Since undirected and partially directed doors can planarly simulate at
least one fully directed door, it suffices to prove hardness for all fully directed doors. Next, we
show hardness for all fully directed doors with at least one pair of crossing tunnels. We then
show we can collapse adjacent opening ports to optional opening ports in Theorem 3.6, this
leaves 12 fully directed doors with no crossing tunnels (Figure 10)s. These 12 doors are shown
and named in Figure 10. Proofs for 11 of the 12 of these cases are given in Theorem 3.8.
Finally, we show NP-hardness for the remaining Case 8: OTtocC door in Theorem 3.11.

I Lemma 3.3. Any mixed door can planarly simulate some fully directed door which is not
the Case 8: OTtocC door.

Proof. Consider an arbitrary mixed door M . Since M is mixed, it has a directed tunnel. No
tunnel changes its own traversability when crossed, so this tunnel simulates a diode. We wire
each undirected tunnel of M through diodes at each end pointing in the same direction. This
simulates a directed door. If M is not the door in Case 8: OTtocC, we are done. Otherwise,
flip one set of diodes wired through an undirected tunnel of M , simulating a different directed
door. J

FUN 2021

3:10 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

I Lemma 3.4. An undirected door can planarly simulate a fully directed door which is not
the Case 8: OTtocC door.

Proof. Consider an arbitrary undirected door U . We wire an external wire to a port of the
opening port/tunnel. The player can visit the port, or if it is a tunnel, cross the tunnel both
ways, to open the gadget. If the opening port/tunnel was a tunnel, this turns it into a port,
making the gadget U ′. Consider the order of the ports of the opening port O, the traverse
tunnel {T0, T1}, and the closing tunnel {C0, C1} around the edge of U ′, and label the ports
p0, p1, p2, p3, p4. We want to show that a traverse tunnel port is adjacent to a closing tunnel
port. Assume not. Without loss of generality, let p0 = T0. Then {p1, p4} = {T1, O}. But
then {p2, p3} = {C0, C1}, and one of {p2, p3} must be adjacent to a traverse tunnel port, a
contradiction. Since one of the traverse tunnel ports, say T1, is adjacent to one of the closing
tunnel ports, say C0, we wire T1 to C0 without blocking an opening port or opening tunnel
port. This simulates a directed open-optional normal self-closing door: The player can open
the gadget by going to the opening port (or if it is a tunnel, by going through the tunnel
and back). If the gadget is open, the player can go through the traverse tunnel and then the
closing tunnel, but cannot go the other way. If the gadget is closed, the player cannot go
either way through the traverse-tunnel-closing-tunnel path. J

I Theorem 3.5. 1-player planar motion planning with any directed door with an internal
crossing is PSPACE-hard.

Proof. If the opening tunnel crosses the closing tunnel, then we have a crossover because
these tunnels are always open. If the opening tunnel crosses the traverse tunnel, then we
start the door open and have a crossover because neither tunnel closes itself or the other.
Otherwise, the traverse tunnel crosses the closing tunnel and the opening port/tunnel can

Case 1: OtTCc Case 2: OTtCc Case 3: OtTcC Case 4: OTtcC

Case 5: OtToCc Case 6: OTtoCc Case 7: OtTocC Case 8: OTtocC

Case 10: OTcCtCase 9: OTCct Case 11: OCTtc Case 12: OCtTc

Figure 10 The twelve cases of a planar directed door without internal crossings. Opening tunnels
with adjacent ports are merged into opening ports.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:11

simulate an opening port. Then we have four cases, as shown in Figure 11. In cases 1, 2,
and 4, we can simulate a crossover by connecting the opening port to either the input of the
traverse tunnel or the output of the closing tunnel to ensure that the traverse tunnel is open
when we need to use it. (Figure 12).

Case 3, however, is more tricky, as both of these ports are separated from the opening
port by other ports. We use 2 copies to provide a path from the input of the traverse tunnel
to the opening port without giving access to the close tunnel. The horizontal path of the
crossover involves crossing from the left door to the right door, which is allowed as long as
the left door is open. To take the vertical path, the player opens the middle door, goes down
closing the left door, opens the right door, traverses the middle door, opens the left door (to
keep the horizontal path open), and traverses the right door. The player can leave partway
through this traversal, but this does nothing useful. So all doors with internal crossings can
simulate crossovers, removing the planarity constraint. J

Case 1 Case 2 Case 3 Case 4

Figure 11 The four cases where the traverse tunnel crosses the closing tunnel but the opening
port/tunnel does not cross either and can thus simulate a port.

Case 1 Case 2 Case 4Case 3

Figure 12 All four cases of the traverse tunnel crossing the closing tunnel can each simulate a
crossover.

I Theorem 3.6. In 1-player motion planning, any door can simulate its corresponding
open-optional door.

Proof. In case of a door that is not already open-optional, we wire one end of the open
tunnel to the other end and wire some point on this loop externally as shown in Figure 13.
This turns the open tunnel into an open port. J

Before continuing, we prove another gadget, the directed tripwire lock, is PSPACE-
complete. Recall that a tripwire lock is a 2-state 2-tunnel gadget with an undirected tunnel
that is traversable in exactly 1 state and an undirected tunnel that toggles the state of the
gadget [4]. The directed tripwire lock is similar except that its tunnels are directed.

I Lemma 3.7. 1-player planar motion planning with the parallel directed tripwire-lock is
PSPACE-hard.

FUN 2021

3:12 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

sim

Figure 13 An open-required door simulates its corre-
sponding open-optional door. Outlined arrows indicate op-
tionally allowed traversals.

Figure 14 Simulation of a diode
with an undirected door.

A proof can be found in the full version of the paper.
For directed doors, there are only the cases without internal crossings left. If the opening

port/tunnel is a tunnel and its ports are adjacent, we easily simulate an opening port,
reducing the number of cases to consider. There are twelve cases, shown in Figure 10. We
name these cases based on the cyclic order of ports, with exits-only having lowercase letters.

I Theorem 3.8. 1-player planar motion planning with any directed door without internal
crossings except the Case 8: OTtocC door is PSPACE-hard.

Proof. We divide into multiple cases. Note the cases are numbered according to Figure 10,
not in the order they are addressed in this proof.

Case 2: OTtCc, Case 10: OTcCt, and Case 12: OCtTc doors. In all these doors the
opening port/tunnel is a port, and the traverse tunnel output is adjacent to the closing
tunnel input. Thus, we can simulate a directed open-optional self-closing door by wiring the
traverse tunnel output to the closing tunnel input and by attaching a wire to the open port,
and these wires do not cross each other. Then this reduces to Theorem 3.2.

Case 1: OtTCc door. can simulate the directed version of the tripwire lock, as shown
in Figure 15. We will refer to the gadgets numbered left to right. The lock is simply the
traverse tunnel on door 1. In the two simulated states we will either have doors 1 and 3 open
or door 2 open. If door 2 is open, when traversing the tripwire tunnel we can go through
the traverse tunnel allowing us to open doors 1 and 4. With door 4 now open, we can go
through its traverse tunnel opening door 3, and then closing door 4 on the way out. This
leaves us with doors 1 and 3 open. Going through the tripwire tunnel again closes door 1
but allows us to go through the traverse tunnel of door 3, allowing us to open door 2. Doors
3 and 4 are then closed on the way out. There are states where we could fail to open all
of these doors while traversing the close tunnel, but this will leave the gadget with strictly
less traversability and thus the agent will never want to take such a path. Thus the Case 1:
OtTCc door is PSPACE-complete by Lemma 3.7.

Case 3: OtTcC door. This door can simulate a directed open-optional normal self-closing
door (Figure 16). If the agent enters from port O (the opening port), they can open doors 2
and 3. If they then leave, they have accomplished nothing because door 2 was already open,
and door 3 can be opened from port O anyway and cannot be traversed from port T0 or T1
as we will see later. So they close door 2 instead. Then they can open door 1 and they are
forced to traverse door 3. The agent can then reopen door 2 and return to port O. Now all
the doors are open. If the agent then enters from port T0, then they are forced to close door

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:13

sim =

1 2
2 1

2

Figure 15 The Case 1: OtTCc door simulates the parallel directed tripwire lock. In addition, the
state diagram of the directed tripwire lock. Arrows are drawn directly on wires to represent diodes.

3. They can then open door 1 (useless), and then they are forced to traverse door 2 and close
door 1, leading to port T1. The agent could not have taken this path initially because door 1
was closed, and they cannot take it again without visiting port O because they just closed
door 1.

O

T0

T1

1

2 3

Figure 16 Simulation of a self-closing door with the Case 3: OtTcC door. The simulation starts
in the closed state. Ports and gadgets are labelled.

Case 4: OTtcC door. A proof of this case can be found in the full paper.

Case 6: OTtoCc door. This door can simulate a directed open-optional normal self-closing
door (Figure 17). If the agent enters from port O, they are forced to close door 3. If the agent
then traverses door 2, they are forced to open door 3 and return to port O, accomplishing
nothing. So the agent has no other option but to close door 1. If the agent tries to open door
2, they get stuck, so they instead open door 1. Continuing the loop involving door 1 does
nothing, so the agent then traverses door 2, opens door 3, and returns to port O. Now door
1 is open. If the agent enters from port T0, then they are forced to close door 2, traverse
door 1, and close door 1. Reopening door 1 puts the agent back into the situation of being
forced to close door 1, so the agent instead opens door 2 and traverses door 3 to port T1.

FUN 2021

3:14 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

The agent could not have taken this path initially since door 1 was closed, and they cannot
take it again without visiting port O because they closed door 1.

O

T0

T1

1 2

3

Figure 17 Simulation of a self-closing door with the Case 6: OTtoCc door. The simulation starts
in the closed state. Ports and gadgets are labelled.

Case 5: OtToCc door. This door can simulate the Case 6: OTtoCc door, which has been
covered, by effectively flipping the traverse tunnel. (Figure 18). Door 1 is the gadget that
we flip the traverse tunnel of. If the agent enters from port T0, they must open door 2, the
close door 2. If door 1 is open and the agent then traverses it, they are back to a previous
position with nothing changed. Instead, the agent opens door 3. If the agent then closes
door 3, they get stuck because door 2 is closed. So they must close door 2 (again) or traverse
door 3. These actions lead to the same situation. If the agent opens door 3 (again), they are
back to the same situation that occurred after opening door 3 the first time. If door 1 is
open, the agent then traverses door 1. Then they must open door 2. Closing door 2 leads to
a previous situation, so the agent then traverses door 3. If the agent then traverses door
1 (again), they must open door 2 (again), leading to a previous situation. So they instead
open door 3. Closing door 2 and traversing door 3 lead to different previous situations, so
the agent then closes door 3, and then is forced to traverse door 2 to port T1, leaving all the
doors unchanged. If door 1 is not open, then the agent is unable to leave.

T0

T1

1

2
3

Figure 18 Simulation of the Case 6: OTtoCc with the Case 5: OtToCc door. The traverse tunnel
of the leftmost gadget is effectively flipped.

Case 7: OtTocC door. This door can simulate a directed open-optional normal self-closing
door (Figure 19). If the agent enters from port O, they must open door 1, then close door
2. If the agent then closes door 3, they get stuck because door 2 is closed. The agent can
traverse door 1 and leave via port O, but they can also open and then traverse door 3 and
then do the same thing, which is advantageous. So the agent opens and traverses door 3,

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:15

then traverses door 1 to port O. Now door 1 is open, door 2 is closed, and door 3 is open. If
the agent enters from port T0, they must close door 1, then open door 2, then traverse door
3. Opening door 3 and then traversing it is a no-op, and door 1 is closed, so the agent closes
door 3 and then must traverse door 2 to port T1. This leaves door 1 closed, door 2 open,
and door 3 closed. The agent could not have taken this path initially because door 3 was
closed, and cannot take it again without visiting port O first for the same reason.

O

1

T1

2

3

T0

Figure 19 Simulation of a self-closing door with the Case 7: OtTocC door.

Case 9: OTCct door. This door can simulate a directed open-optional normal self-closing
door (Figure 20). If the agent enters from port O, they can open door 1 and must close door
2. If the agent later enters from port T0, then they must traverse door 1. They then can
open door 2 (and must, since that is the only way out) and must close door 1. Then the
agent traverses door 2 to port T1. The agent could not have taken this path initially because
door 1 was closed, and cannot take the path again without visiting port O first for the same
reason.

O

T0

T1

1

2

Figure 20 Simulation of a self-closing door with the Case 9: OTCct door.

Case 11: OCTtc door. A proof of this case can be found in the full paper.
This covers all the planar directed doors without internal crossings except the OTtocC

door, finishing the proof. J

I Theorem 3.9. 1-player planar motion planning with any door except the door in Case 8:
OTtocC is PSPACE-hard.

FUN 2021

3:16 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

Proof. This follows from Theorems 3.5, 3.8, 3.3, and 3.4, as those cover all the cases. J

To prove NP-hardness of the last case (Case 8: OTtocC), we first prove NP-hardness
of other useful gadgets. A NAND gadget is a directed 2-tunnel gadget where traversing
either tunnel closes both tunnels (preventing all future traversals). There are three planar
types of NAND gadgets, named by analogy with 2-toggles [4]: one crossing type (where the
two tunnels cross); and two noncrossing types, parallel (where the directions are the same)
and antiparallel (where the directions are opposite). The notion of NAND gadgets was
introduced in [3], which proved NP-hardness using a combination of parallel and antiparallel
NAND gadgets, “one-way” gadgets, “fork” gadgets, and “XOR” gadgets. We prove that
NAND gadgets alone suffice:

I Lemma 3.10. 1-player planar motion planning is NP-hard with either antiparallel NAND
gadgets or crossing NAND gadgets.

Proof. Figures 21 and 22 show that antiparallel NAND gadgets can simulate crossing NAND
gadgets and vice versa. Figure 23 shows how crossing NAND gadgets can simulate parallel
NAND gadgets. Therefore we can assume the availability of all three planar types of NAND
gadgets.

Figure 21 Simulation of
crossing NAND gadget by an-
tiparallel NAND gadgets.

Figure 22 Simulation of an-
tiparallel NAND gadget by cross-
ing NAND gadgets.

Figure 23 Simulation of par-
allel NAND gadget by crossing
NAND gadgets.

We follow the NP-hardness reduction from Planar 3-Coloring to Push-1-X in [3]. This
reduction requires four types of gadgets. Their “NAND gadget” is our parallel and antiparallel
(noncrossing) NAND gadgets, which we have. Their “XOR-crossing gadget” is a crossing
2-tunnel gadget that breaks down (in a particular way) if both tunnels get traversed. The
reduction guarantees that at most one tunnel in an XOR-crossing gadget will be traversed
(because they correspond to different color assignments), so we can replace this gadget with a
crossing NAND gadget (which even prevents both tunnels from being traversed). Their “fork
gadget” is a one-entrance two-exit gadget such that either traversal closes the other traversal;
we can simulate this gadget with a parallel NAND gadget by connecting together the two
entrances. Their “one-way gadget” is a gadget that prevents traversal in one direction, but
provides no constraint after being traversed in the other direction. Because this gadget is
required only to block certain traversals, and each gadget gets visited only once (in particular
because the reduction is to Push-1-X where the robot is not permitted to revisit a square), we
can replace this gadget with a NAND gadget where one tunnel is not connected to anything.
Therefore we have established NP-hardness using only NAND gadgets. J

I Theorem 3.11. 1-player planar motion planning with the door in Case 8: OTtocC is
NP-hard.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:17

Proof. We show how to simulate antiparallel NAND gadgets, which is NP-hard by
Lemma 3.10. First, Figure 24 shows how to combine two Case 8: OTtocC doors to build a
door-like gadget with an open tunnel and two traverse–close tunnels, where traversing the
open tunnel opens both traverse–close tunnels, and traversing either traverse–close tunnel
closes the other traverse–close tunnel. Next, Figure 25 shows how to combine two of these
gadgets to build an antiparallel NAND gadget. The top tunnel in the top gadget is initially
closed, forcing the agent to open it and thus close the bottom tunnel of the bottom gadget,
which is possibly only if the bottom tunnel of the bottom gadget was not already traversed.
Because the open tunnel of the bottom gadget is not connected to anything, both tunnels of
the bottom gadget will remain closed once closed. J

Figure 24 Simulation of parallel double-
close door with the Case 8: OTtocC door.

Figure 25 Simulation of an antiparallel NAND
gadget with a parallel double-close door.

4 Applications

In this section we use our results about the complexity of door gadgets to prove PSPACE-
hardness for seven new video games: Sokobond, and several different 3D Mario games. More
applications are in the full paper.

Sokobond is a 2D block pushing game where the blocks are able to fuse into polyominoes.
The Mario games considered are all 3D platformers in which the player controls Mario in an
attempt to collect resources or reach target locations while avoiding or defeating enemies
and environmental hazards. The player’s main actions are having Mario jump and walk
in an approximately continuous environment. Mario also has health and ways of taking
damage which can cause the player to lose the game. More details on the needed additional
mechanics are given in the section for each game. Captain Toad: Treasure Tracker is a 3D
puzzle platformer and is mechanically similar to Mario except that Toad is unable to jump.

In addition, our planar door results simplify prior uses of a door framework. The
Lemmings door [11, Figure 4] has an internal crossing, so Theorem 3.5 applies. The
Donkey Kong Country 1, 2, and 3 doors [1, Figures 21–23] are the Case 10: OTcCt door,
Case 4: OTtcC door, and internal crossing door, respectively, so Theorems 3.8 and 3.5
applies. The Legend of Zelda: A Link to the Past door [1, Figure 30] has an internal
crossing, so Theorem 3.5 applies. The Super Mario Bros. door [6, Figure 6] is is the Case
4: OTtcC door, so Theorem 3.8 applies. Therefore all of the crossover gadgets in these
reductions [11, Figure 2(e)], [1, Figure 20], [1, Figure 28], [6, Figure 5] are not in fact needed
to prove PSPACE-hardness of these games.

FUN 2021

3:18 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

4.1 Sokobond
Sokobond [8] is a 2D block pushing game where the blocks are atoms/molecules. Movement
is discrete along a square grid. The player starts as a single atom. Each atom except He has
some number of free electrons (H has 1, O has 2, N has 3, C has 4). When two atoms that
both have free electrons are adjacent, they both lose a free electron and bond into a molecule.
Molecules are rigid, so pushing an atom in a molecule results in the entire molecule moving.
Atoms/molecules can also push each other.

Sokobond with He atoms is trivially NP-hard as it includes Push-∗ [3]. We show
PSPACE-hardness even without He atoms:

I Theorem 4.1. Completing a level in Sokobond with H and O atoms is PSPACE-hard.

Proof. We reduce from 1-player planar motion planning with a door that is not the Case 8:
OTtocC door and use Theorem 3.9.

Let the player start as an H atom trying to reach another H atom. We can simulate a
door that is not the Case 8: OTtocC door as shown in Figure 26. To open the door, the
player pulls down on the big molecule. The player can go through the traverse tunnel if and
only if the molecule is down. When going through the closing tunnel, the player is forced to
push up on the molecule, closing the traverse tunnel. The molecule used to simulate a door
has no free electrons, so the level can be completed if and only if the player can reach the
other H atom. J

O O O O H

O

O

O

H O

Figure 26 Simulation of a door in Sokobond. The opening port is at the bottom left. The
traverse tunnel is undirected and runs between the top left and the top right. The closing tunnel is
undirected and runs between the middle right and the bottom right.

4.2 Captain Toad: Treasure Tracker
Captain Toad: Treasure Tracker is a 3D puzzle platformer in the Mario universe, originally
appearing as a type of level in Super Mario 3D World, and then released as a stand-alone
game on the Wii U and ported to the 3DS and Switch. Notably, Toad can fall but not
jump. The game contains rotating platforms controlled by a wheel which Toad must be
adjacent to to move. The platforms move in 90◦ increments. We show PSPACE-hardness by
constructing an antiparallel symmetric self-closing door (Theorem 2.4).

I Theorem 4.2. Collecting Stars in a Captain Toad: Treasure Tracker is PSPACE-hard
assuming no level size limit.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:19

Proof. Figure 27 gives a top-down view of the construction. There is a U-shaped rotating
platform at a height slightly below the high ground and far above the low ground. The
U-shaped platform rotates counterclockwise and can be reached from the nearby high ground;
however, the gap between the back of the U and the other side is too far for Toad to jump.
Further, the dividing wall sits slightly above the rotating platform, preventing Toad from
crossing. Toad is able to go onto the U platform from the high ground, activate the gear
twice, and jump off of the U platform onto the low ground across the gap. The U platform
is now facing the other way, allowing Toad to enter from the high ground on the other side,
but preventing other traversals. J

Figure 27 Top view of a simulation of a symmetric self-closing door.

4.3 Super Mario 64/Super Mario 64 DS
Super Mario 64 is a 3D Mario game for the Nintendo 64 where Mario collects Stars from
courses inside paintings to save the princess, who is trapped behind a painting. Super Mario
64 DS is a remake of Super Mario 64 for the Nintendo DS (still in 3D), featuring the same
courses as in Super Mario 64 plus new courses, as well as the ability to play as characters
other than Mario. In this reduction, we will primarily make use of quicksand, which will
defeat Mario if he lands in it, and the ghost enemy Boo.

The Boo is an enemy that (with normal parameters) chases Mario if he is looking away
from it and is less than a certain distance away. Once Mario gets too far, the Boo moves
back to its original position. Unlike most enemies, jumping on a Boo does not kill it, but
instead sends it a short distance forward or backward, which we will use to help Mario cross
the quicksand. Some walls stop the Boo but it can go through certain walls that normal
Mario cannot go through, we call these Boo-only walls. The Boo is also unable to go through
doors. We also make use of one-way walls which Mario and the Boo can go through in one
direction but not the other.

For the setup, we use one Boo in Super Mario 64 DS and two Boos in Super Mario 64.
Performing a kick while in the air sends Mario a short distance up and can normally only be
performed once per jump. But Mario can kick after jumping on a Boo in Super Mario 64 DS
even if he already kicked, allowing him to jump on the same Boo. This is not true in Super
Mario 64, so jumping on a second Boo is necessary to stall long enough to jump on the first
Boo again.

FUN 2021

3:20 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

I Theorem 4.3. Collecting a Star in a Super Mario 64/Super Mario 64 DS course is
PSPACE-hard assuming no course size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door
(Theorem 2.4), where the target to reach is a Star. The simulation is shown in Figure 28.

In the setup below, Mario goes from port 1 to port 2 and opens the port 3 to port 4
traversal by going through the door on the bottom-left and hopping on the Boo(s) to the
top-left. Then Mario lets the Boo(s) chase him a little to turn the Boo(s), and hops on the
Boo(s) to push it into the top-right. Finally, Mario goes through the top-left door. Mario
cannot just jump to the other side because the distance is too far. He also cannot go into
the traverse path because of the Boo-only wall. The Boo(s) will try to go back to its home,
but cannot because it is stuck behind a 1-way wall and a regular wall. If Mario does not
move the Boo(s) to the top-right, it still cannot get back to its home because of a different
1-way wall, so Mario cannot leave the port 1 to port 2 traversal open.

Mario goes from port 3 to port 4 by going through the top-right door and hopping on
the Boo(s) to the bottom-right, then going through the bottom-right door. The Boo(s) will
go back to its original position at the bottom left on its own.

Mario cannot lure the Boo(s) away from the gadget because it is completely walled in
except for the doors, which the Boo(s) cannot go through. J

Ground

Quicksand

Door

1-Way Wall

Boo-Only Wall

Path

Boo

1

2 3

4

Wall

Figure 28 Simulation of a symmetric self-
closing door in Super Mario 64 DS. In Super
Mario 64, there are 2 Boos instead of 1. The
ground and quicksand are on the same vertical
level. The room is covered by a ceiling. The
hallways are too wide to wall jump across.

Ground

Sludge with Thin Water Above

Door

1-Way Wall

Path

Lily Pad

1

2 3

4

Wall

Slit for Lily Pad

Figure 29 Simulation of a symmetric self-closing
door in Super Mario Sunshine. The slits allow the
Lily Pad to cross without allowing bulky Mario to do
so. The hallways are too wide to wall jump across.

4.4 Super Mario Sunshine
Super Mario Sunshine is a 3D Mario game for the GameCube where Mario is falsely accused
of spreading graffiti and is forced to clean it up before he can leave. Like Super Mario 64,
this game includes one-way walls. This game features a new device, F.L.U.D.D., attached to
Mario’s back that allows him to spray water. Lily Pads float on water; the player can ride
a Lily Pad and cause it to move by spraying water in the opposite direction. Sludge is an
environmental hazard which kills Mario if he touches it. The general goal of a level is to
collect Shrine Sprites.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:21

I Theorem 4.4. Collecting a Shine Sprite in a Super Mario Sunshine level is PSPACE-hard
assuming no level size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door
(Theorem 2.4), where the target to collect is a Shine Sprite. The simulation of a symmetric
self-closing door is shown in Figure 29.

The thin water above the sludge prevents the Lily Pad from disintegrating, while preventing
Mario from crossing without using the Lily Pad. Mario goes from port 1 to port 2 and opens
the port 3 to port 4 traversal by crossing the 1-way wall and riding the Lily Pad across, then
moves the Lily Pad partially across the slit so it can be accessed from the other side. He
cannot leak to the section between port 3 and port 4 because the slits are too thin. The
sludge is too long to simply jump to the other side, so the Lily Pad is needed. Mario cannot
do anything from port 2 because the 1-way wall blocks him from going to port 1. Mario goes
from port 3 to port 4 in a similar manner. J

4.5 Super Mario Galaxy
Super Mario Galaxy is a 3D Mario game for the Wii where Mario goes to space. He encounters
alien creatures along the way and collects Power Stars to restore the power of a spaceship.
The game features downward gravity, upward gravity, sideways gravity, spherical gravity,
cubical gravity, tubular gravity, cylindrical gravity that allows infinite freefall, W-shaped
gravity, gravity that cannot make up its mind, and most importantly, controllable gravity.

Dark matter disintegrates Mario when he touches it, resulting in death. The Gravity
Switch changes the direction of gravity when spun and can be spun multiple times.

I Theorem 4.5. Collecting a Power Star in a Super Mario Galaxy galaxy is PSPACE-hard
assuming no galaxy size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door
(Theorem 2.4), where the target to collect is a Star. The simulation of a symmetric self-
closing door is shown in Figure 30.

The Gravity Switch in this construction switches gravity between down and up. Mario
goes from port 1 to port 2 by crossing the 1-way wall and hitting the Gravity Switch on his
way to the right. This is forced because of a pit of dark matter, and closes the port 1 to port
2 traversal because when gravity points up, attempting the traversal would land Mario on
dark matter. At the same time, it opens the port 3 to port 4 traversal. Mario cannot enter
port 2 and do anything useful because flipping the Gravity Switch means falling in the pit of
dark matter. Mario goes from port 3 to port 4 in a similar manner. J

Ground

Dark Matter

Gravity Area (starts pointing down)

1-Way Wall

Path

Gravity Switch

1

2

3

4

Figure 30 Simulation of a symmetric self-closing door in Super Mario Galaxy. This is a side view
and is essentially 2-dimensional.

FUN 2021

3:22 Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

4.6 Super Mario Odyssey
Super Mario Odyssey is a 3D Mario game for the Switch where Mario travels to different
kingdoms collecting Power Moons and eventually goes to the Moon. Mario has the ability
(via his hat Cappy) to capture certain enemies and objects to use their powers, but such
objects tend to reset position after being uncaptured, so we will not be using them here.

We make use of a Jaxi, poison, and timed platforms. A Jaxi is a statue lion that can
be ridden safely across poison, which is a hazard that kills Mario. A timed switch makes
some event happen for a specific amount of time. In our reduction, timed switch X makes
platform X appear for just long enough for Mario to make a traversal.

I Theorem 4.6. Collecting a Power Moon in a Super Mario Odyssey kingdom is PSPACE-
hard assuming no kingdom size limit.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door
(Theorem 2.4), where the target to reach is a Power Moon. The simulation of a symmetric
self-closing door is shown in Figure 31.

Mario goes from port 1 to port 2 by pressing timed switch A, riding the Jaxi to the right,
and traversing platform A. This opens the port 3 to port 4 traversal while closing the port 1
to port 2 traversal. Mario cannot go to port 3 because of the wide gap, or to port 4 because
platform B is gone. The Jaxi is required because the poison it is on is very wide. Mario
cannot do anything useful if he tries to enter from port 2 or port 4 because the platforms
would be gone. Mario goes from port 3 to port 4 in a similar manner. J

B A

A B

Ground

Poison Path

X Timed Platform X

X Timed Switch X

Jaxi

4 2

31

Figure 31 Simulation of a symmetric self-closing door in Super Mario Odyssey. This is a side
view and is essentially 2-dimensional. All strips of poison are way too wide for Mario to cross with
his various aerial skills, and the platforms with timed switches are too high to get to from below.

References
1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015. Originally
appeared at FUN 2014.

J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:23

2 Joshua Ani, Sualeh Asif, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, Jayson
Lynch, Sarah Scheffler, and Adam Suhl. PSPACE-completeness of pulling blocks to reach a
goal. In Abstracts from the 22nd Japan Conference on Discrete and Computational Geometry,
Graphs, and Games (JCDCGGG 2019), pages 31–32, Tokyo, Japan, September 2019.

3 Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph O’Rourke. Pushing
blocks is hard. Computational Geometry: Theory and Applications, 26(1):21–36, August 2003.

4 Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In Proceedings of the 9th International
Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21, La Maddalena, Italy, June
2018.

5 Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a general complexity
theory of motion planning: Characterizing which gadgets make games hard. In Proceedings
of the 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), pages
62:1–62:42, Seattle, January 2020. doi:10.4230/LIPIcs.ITCS.2020.62.

6 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is harder/easier
than we thought. In Proceedings of the 8th International Conference on Fun with Algorithms
(FUN 2016), pages 13:1–13:14, La Maddalena, Italy, June 2016.

7 Michal Forišek. Computational complexity of two-dimensional platform games. In Proceedings
of the 5th International Conference on Fun with Algorithms (FUN 2010), volume 6099 of
Lecture Notes in Computer Science, 2010. doi:10.1007/978-3-642-13122-6_22.

8 Alan Hazelden, Lee Shang Lun, and Allison Walker. Sokobond. https://www.sokobond.com/,
2014.

9 Tom C. van der Zanden and Hand L. Bodlaender. PSPACE-completeness of Bloxorz and of
games with 2-buttons. arXiv:1411.5951, 2014. URL: https://arXiv.org/abs/1411.5951.

10 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Com-
puting Systems, 54(4):595–621, 2014. Originally appeared at FUN 2012. doi:10.1007/
s00224-013-9497-5.

11 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science, 586:120–
134, 2015. Originally appeared at FUN 2014. doi:10.1016/j.tcs.2015.01.055.

FUN 2021

https://doi.org/10.4230/LIPIcs.ITCS.2020.62
https://doi.org/10.1007/978-3-642-13122-6_22
https://www.sokobond.com/
https://arXiv.org/abs/1411.5951
https://doi.org/10.1007/s00224-013-9497-5
https://doi.org/10.1007/s00224-013-9497-5
https://doi.org/10.1016/j.tcs.2015.01.055

Taming the Knight’s Tour:
Minimizing Turns and Crossings
Juan Jose Besa
University of California, Irvine, CA, USA
jbesavi@uci.edu

Timothy Johnson
University of California, Irvine, CA, USA
tujohnso@uci.edu

Nil Mamano
University of California, Irvine, CA, USA
nmamano@uci.edu

Martha C. Osegueda
University of California, Irvine, CA, USA
mosegued@uci.edu

Abstract
We introduce two new metrics of “simplicity” for knight’s tours: the number of turns and the
number of crossings. We give a novel algorithm that produces tours with 9.5n + O(1) turns and
13n + O(1) crossings on a n× n board, and we show lower bounds of (6− ε)n and 4n−O(1) on the
respective problems of minimizing these metrics. Hence, our algorithm achieves approximation ratios
of 19/12+o(1) and 13/4+o(1). We generalize our techniques to rectangular boards, high-dimensional
boards, symmetric tours, odd boards with a missing corner, and tours for (1, 4)-leapers. In doing so,
we show that these extensions also admit a constant approximation ratio on the minimum number
of turns, and on the number of crossings in most cases.

2012 ACM Subject Classification Human-centered computing → Graph drawings; Theory of com-
putation → Computational geometry; Mathematics of computing → Approximation algorithms

Keywords and phrases Graph Drawing, Chess, Hamiltonian Cycle, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.4

Related Version https://arxiv.org/abs/1904.02824

Supplementary Material https://nmamano.github.io/MinCrossingsKnightsTour/index.html

Funding The authors were supported by NSF Grant CCF-1616248 and NSF Grant 1815073.

1 Introduction

The game of chess is a fruitful source of mathematical puzzles. The puzzles often blend an
appealing aesthetic with interesting and deep combinatorial properties [32]. An old and
well-known problem is the knight’s tour problem. A knight’s tour in a generalized n ×m

board is a path through all nm cells such that any two consecutive cells are connected by a
“knight move” (Fig. 1). For a historic treatment of the problem, see [2]. A knight’s tour is
closed if the last cell in the path is one knight move away from the first one. Otherwise, it is
open. This paper focuses solely on closed tours, so henceforth we omit the distinction. The
knight’s tour problem is a special case of the Hamiltonian cycle problem, in which we find a
simple cycle that visits all the nodes for a specific class of graphs. These graphs are formed
by representing each cell on the board as a node and connecting cells a knight move apart.
Existing work focuses on the questions of existence, counting, and construction algorithms.

© Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5676-7011
mailto:jbesavi@uci.edu
mailto:tujohnso@uci.edu
https://orcid.org/0000-0003-0414-2885
mailto:nmamano@uci.edu
https://orcid.org/0000-0002-1077-1074
mailto:mosegued@uci.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.4
https://arxiv.org/abs/1904.02824
https://nmamano.github.io/MinCrossingsKnightsTour/index.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Taming the Knight’s Tour

Knight Moves

Figure 1 A knight moves two units on one axis and one on the other.

In general, the goal of existing algorithms is to find any knight’s tour. We propose two new
metrics that capture simplicity and structure in a knight’s tour. We associate each cell in
the board with a point (i, j) in the plane, representing the row and column respectively.

I Definition 1 (Turn). Given a knight’s tour, a turn is a triplet of consecutive cells with
non-colinear coordinates.

I Problem 1 (Minimum turn knight’s tour). Finding the knight’s tour with the smallest
number of turns for a given a rectangular n×m board.1

I Definition 2 (Crossing). Given a knight’s tour, a crossing occurs when the two line
segments corresponding to moves in the tour intersect. E.g. if {c1, c2} and {c3, c4} are two
distinct pairs of consecutive cells visited along the tour, a crossing happens if the open line
segments (c1, c2) and (c3, c4) intersect.

I Problem 2 (Minimum crossing knight’s tour). Finding the knight’s tour with the smallest
number of crossings for a given rectangular n×m board1

Knight’s tours are typically visualized by connecting consecutive cells by a line segment.
Turns and crossings make the sequence harder to follow. Minimizing crossings is a central
problem in graph drawing, the sub-field of graph theory concerned with the intelligible
visualization of graphs (e.g., see the survey in [13]). Problem 2 is the natural adaptation for
knight’s tours. Problem 1 asks for the (self-intersecting) polygon with the smallest number
of vertices that represents a valid knight’s tour.

1.1 Our contributions
We propose a novel algorithm for finding knight’s tours with the following features.

9.5n + O(1) turns and 13n + O(1) crossings on a n× n board.
A 19/12 + o(1) approximation factoron the minimum number of turns (Problem 1).
A 13/4 + o(1) approximation factor on the minimum number of crossings (Problem 2).
O(nm) run-time on a n×m board, i.e., linear to the number of cells, which is optimal.
The algorithm is fully parallelizable, it can be executed in O(1) time with O(nm)
processors in the CREW PRAM model. Since the cell at any given index in the tour
sequence (or, conversely, the index of a given cell) can be determined in constant time.

1 Assuming a knight’s tour exists for this board

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:3

It can be generalized to most typical variations of the problem: higher-dimensional cubical
boards, rotationally symmetric tours, tours in odd-sized boards that skip a corner cell,
and tours for giraffes, which move a cell in one dimension and four in another.
The algorithm can be simulated by hand with ease. This is of particular interest in the
context of recreational mathematics and mathematics outreach.

The paper is organized as follows. In Section 1.2, we give an overview of the literature on
the knight’s tour problem and its variants. We describe the algorithm in Section 2. We prove
the approximation ratios in Section 3. We describe how our algorithm extends to related
problems in Section 4. We conclude in Section 6.

The tours produced by the algorithm can be generated interactively for different board
dimensions at https://nmamano.github.io/MinCrossingsKnightsTour/index.html.

1.2 Related Work

Despite being over a thousand years old [32], the knight’s tour problem is still an active area
of research. We review the key questions considered in the literature.

Existence. In rectangular boards, a tour exists as long as one dimension is even and the
board size is large enough; no knight’s tour exists for dimensions 1× n, 2× n or 4× n, for
any n ≥ 1 and, additionally, none exist for dimensions 3× 6 or 3× 8 [29]. In three dimensions
or higher, the situation is similar: a tour exists only if at least one dimension is even and
large enough [9, 10, 11]. In the case of open knight’s tours, a tour exists in two dimensions if
both dimensions are at least 5 [7, 6].

Counting. The number of closed knight’s tours in an even-sized n × n board is at least
Ω(1.35n2) and at most 4n2 [20]. The exact number of knight’s tours in the standard 8× 8
board is 26, 534, 728, 821, 064 [23]. Furthermore algorithms for enumerating multiple [30] and
enumerating all [1] knight’s tours have also been studied.

Algorithms. Greedy algorithms have been popular in tour construction. Usually doing so
by selecting one step at a time according to a heuristic rule. Historically, greedy algorithms
have been popular. The idea is to construct the tour in order, one step at a time, according
to some heuristic. Warnsdorff’s rule and its refinements [27, 1, 31] work well in practice for
small boards, but do not scale to larger boards [25]. The basic idea is to choose the next
node with fewest continuations, which is also useful for the Hamiltonian cycle problem [27].

To our knowledge, all efficient algorithms for arbitrary board sizes before this paper
are based on a divide-and-conquer approach. The tour is solved for a finite set of small,
constant-size boards. Then, the board is covered by these smaller tours like a mosaic. The
small tours are connected into a single one by swapping a few knight moves. This can be
done in a bottom-up [29, 6, 9, 10, 16] or a top-down recursive [26, 21] fashion. This process
is simple and can be done in time linear on the number of cells and, like ours, are also highly
parallelizable [6, 26] since they are made of repeating patterns.

Divide-and-conquer is not suitable for finding tours with a small number of turns or
crossings. Since each base solution has constant size, a n× n board is covered by Θ(n2) of
them, and each one contains turns and crossings. Thus, the divide-and-conquer approach
necessarily results in Θ(n2) turns and crossings. In contrast, our algorithm has O(n).

FUN 2021

https://nmamano.github.io/MinCrossingsKnightsTour/index.html

4:4 Taming the Knight’s Tour

Extensions. The above questions have been considered in related settings. Extensions can
be classified into three categories, which may overlap:

Tours with special properties. Our work can be seen as searching for tours with
special properties. Magic knight’s tours are also in this category: tours such that the
indices of each cell in the tour form a magic square (see [3] for a survey).
The study of symmetry in knight’s tours dates back at least to 1917 [4]. Symmetric tours
under 90 degree rotations exist in n× n tours where n ≥ 6 and n is of the form 4k + 2
for some k [8]. Parberry extended the divide-and-conquer approach to produce tours
symmetric under 90 degree rotations [26]. Jelliss provided results on which rectangular
board sizes can have which kinds of symmetry [15].
Both of our proposed problems are new, but minimizing crossings is related to the
uncrossed knight’s tour problem, which asks to find the longest sequence of knight moves
without any crossings [34]. This strict constraint results in incomplete tours. This
problem has been further studied in two [14, 12] and three [19] dimensions.
Board variations. Besides higher dimensions, knight’s tours have been considered in
other boards, such as torus boards, where the top and bottom edges are connected, and
the left and right edges are also connected. Any rectangular torus board has a closed
tour [33]. Another option is to consider boards with odd width and height. Since boards
with an odd number of cells do not have tours, it is common to search for tours that skip
a specific cell, such as a corner cell [26].
Move variations. An (i, j)-leaper is a generalized knight that moves i cells in one
dimension and j in the other (the knight is a (1, 2)-leaper) [24]. Knuth studied the
existence of tours for general (i, j)-leapers in rectangular boards [18]. Tours for giraffes
((4, 1)-leapers) were provided in [8] using a divide-and-conquer approach. Chia and Ong [5]
study which board sizes admit generalized (a, b)-leaper tours. Kamčev [16] showed that
any board with sufficiently large and even size admits a (2, 3)-, (2, 5)-, and a (a, 1)-leaper
tour for any even a, and generalized this to any higher dimensions. Note that a and b are
required to be coprime and not both odd, or no tour can exist [16].

2 The Algorithm

Given that one of the dimensions must be even for a tour to exist, we assume, without loss
of generality, that the width w of the board is even, while the height h can be odd. We also
assume that w ≥ 16 and h ≥ 12. The construction still works for some smaller sizes, but
may require tweaks to its most general form described here.

Quartet moves. What makes the knight’s tour problem challenging is that knight jumps
leave “gaps”. Our first crucial observation is that a quartet of four knights arranged in a
square 2 × 2 formation can move “like a king”: they can move horizontally, vertically, or
diagonally without leaving any gaps (Figure 2).

Formation Moves

Straight moves Double straight moves Diagonal moves

Figure 2 Quartet of knights moving in unison leaving no unvisited squares. In a straight move,
the starting and ending position of the quartet overlap because two knights remain in place.

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:5

Algorithm 1 Knight’s tour algorithm for even width w ≥ 16 and height h ≥ 12.

1. Fill the corners of the board as follows:
Bottom-left: first junction in Figure 4.
Top-right: junction of height 5 + ((w/2 + h− 1) mod 4) in Figure 4 except the first one.
Bottom-right: Sequence (w/2 + 2) mod 4 in Figure 5.
Top-left: Sequence (3− h) mod 4 in Figure 5 rotated 180 degrees.
2. Connect the four corners using formation moves, by moving along diagonals from the
bottom-left corner to the top-right corner as in Figure 3. To transition between diagonals:
Vertical edges: use a double straight up move (Figure 2).
Horizontal edges: use Sequence 1 in Figure 5.

By using the “formation moves” depicted in Figure 2, four knights can easily cover the
board moving vertically and horizontally while remaining in formation. Of course, the goal
is to traverse the entire board in a single cycle, not four paths. We address this issue with
special structures placed in the bottom-left and top-right corners of the board, which we
call junctions, and which tie the paths together to create a single cycle. Note that using
only straight formation moves leads to tours with a large number of turns and crossings.
Fortunately, two consecutive diagonal moves in the same direction introduces no turns or
crossings, so our main idea is to use as many diagonal moves as possible. This led us to the
general pattern shown in Figure 3.

The full algorithm is given in Algorithm 1. The formation starts at a junction at the
bottom-left corner and ends at a junction at the top-right corner. To get from one to the other,
it zigzags along an odd number of parallel diagonals, alternating between downward-right
and upward-left directions. The junctions in Figure 4 have a height, which influences the
number of diagonals traversed by the formation.

At the bottom-left corner, we use a junction with height 5. At the top-right corner, we use
a junction with height between 5 and 8. Choosing the height as in Algorithm 1 guarantees
that, for any board dimensions, an odd number of diagonals fit between the two junctions.
Sequence 1 in Figure 5, which we call the heel, is used to transition between diagonals along
the horizontal edges of the board. The two non-junction corners require special sequences of
quartet moves, as depicted in Figure 5. Sequences 1, 2, 3, and 0 are used when the last heel
ends 0, 2, 4, and 6 columns away from the vertical edge, respectively. These variations and
the top-right junction are predictable because they cycle as the board dimensions grow, so in
Algorithm 1 we give expressions for them in terms of w and h.

2.1 Correctness
It is clear that the construction visits every cell, and that every node in the underlying graph
of knight moves has degree two. However, it remains to be argued that the construction is
actually a single closed cycle. For this, we need to consider the choice of junctions.

A junction is a pair of disjoint knight paths whose four endpoints are adjacent as in the
quartet formation. Thus, the bottom-left junction connects the knights into two pairs. Denote
the four knight positions in the formation by tl, tr, bl, br, where the first letter indicates
top/bottom and the second left/right. We consider the three possible positional matchings
with respect to these positions: horizontal matching H = (tl, tr), (bl, br), vertical matching
V = (tl, bl), (tr, br), and cross matching X = (tl, br), (tr, bl). Let M = {H, V, X} denote
the set of positional matchings. We are interested in the effect of formation moves on the

FUN 2021

4:6 Taming the Knight’s Tour

positional matching. A formation move does not change which knights are matched with
which, but a non-diagonal move changes their positions, and thus their matchings. For
instance, a horizontal matching becomes a cross matching after a straight move to the right.

30x30 Tour

Figure 3 Side by side comparison between the knight’s tour (left) and the underlying quartet
moves (right) in a 30 × 30 board. Arrows illustrate sequences of consecutive formation moves.
Starting from the bottom-left square of the board, the single knight’s tour follows the colored sections
in the order: red, green, yellow, purple, blue, orange, black, cyan, and back to red.

It is easy to see that a straight move upwards or downwards has the same effect on
the positional matching. Similarly for left and right straight moves. Thus, we classify the
formation moves in Figure 2 (excluding double straight moves, which are a composition
of two straight moves) into vertical straight moves l, horizontal straight moves ↔, and
diagonal moves ↔. Let S = {l,↔, ↔} denote the three types of quartet moves. We see
each move type s ∈ S as a function s :M→M (see Table 1). Note that the diagonal move
↔ is just the identity. Given a sequence of moves S = (s1, . . . , sk), where each si ∈ S, let

S(M) = s1 ◦ · · · ◦sk(M). The move types l,↔, ↔ seen as functions are, in fact, permutations
(Table 1). It follows that any sequence of formation moves permutes the positional matchings,
according to the composed permutation of each move in the sequence. There are six possible
permutations of the three positional matchings, three of which correspond to the “atomic”
formation moves ↔, l, and ↔. The other three permutations can be obtained by composing
atomic moves, for instance, with the compositions l↔,↔l, and l↔l (Table 1). Thus, any

Table 1 Result of applying each type
of formation move, as well as three com-
positions of sequences of moves, to each
formation matching.

↔ l ↔ l↔ ↔l l↔l
V V X V H X H

H H H X X V V

X X V H V H X

Table 2 Cayley table for the group of positional
matching permutations.

↔ l ↔ l↔ ↔l l↔l

↔ ↔ l ↔ l↔ ↔l l↔l
l l ↔ l↔ ↔ l↔l ↔l
↔ ↔ ↔l ↔ l↔l l l↔
l↔ l↔ l↔l l ↔l ↔ ↔
↔l ↔l ↔ l↔l ↔ l↔ l
l↔l l↔l l↔ ↔l l ↔ ↔

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:7

Junctions

Height 5 Height 6 Height 7 Height 8

Figure 4 Junctions used in our construction.

sequence of moves permutes the positional matchings in the same way as one of the sequences
in the set { ↔, l,↔, l↔,↔l, l↔l}. This is equivalent to saying that this set, under the
composition operation, is isomorphic to the symmetric group of degree three. Table 2 shows
the Cayley table of this group.

Let Tw,h be the sequence of formation moves that goes from the bottom-left junction to
the top-right one in Algorithm 1 in a w × h board.

I Lemma 3. For any even w ≥ 16 and any h ≥ 12, Tw,h(H) = H.

Proof. We show that the entire sequence of moves Tw,h is either neutral or equivalent to
single vertical move, depending on the board dimensions. We refer to a sequence of moves as
neutral when the knights have the same formation at the beginning and end. sAccording to
Table 1, this suffices to prove the lemma.

The sequence Tw,h consists mostly of diagonal moves, which are neutral. The transition
between diagonals along the vertical edges consist of two vertical moves, which are also
neutral (ll= ↔). The heel is also neutral, as it consists of the sequence ll↔↔l↔↔l
(omitting diagonal moves) which is again equivalent to ↔. This is easy to see by noting
that any two consecutive vertical or horizontal moves cancel out. It is depicted in detail in
Figure 6. Thus, Tw,h reduces to composing the sequences in the bottom-right and top-left
corners. As mentioned, Sequence 1 (the heel) is neutral. It is easy to see that the other
sequences (counting each part of Sequence 2 separately) is equivalent to l. Thus, we get that
Tw,h is simply the composition of zero to four vertical moves, depending on the width and
height of the board. This further simplifies to zero or one vertical moves. J

From these it is easy to see that the algorithm produces a correct tour, however we
proceed with a more detail proof.

I Theorem 4 (Correctness). Algorithm 1 outputs a valid knight’s tour in any board with even
width w ≥ 16 and with height h ≥ 12.

Proof. Clearly, the formation moves in our construction yield a set of disjoint cycles in the
underlying knight-move graph. We prove that after attaching them to the junctions they
actually form one cycle. Given a set of disjoint cycles in a graph, contracting a node in one
of the cycles is the process of removing it and connecting its two neighbors in the cycle.
Contracting a node in a cycle of length ≥ 3 does not change the number of cycles. Thus,
consider the remaining graph if we contract all the nodes except the four endpoints of the
top-right junction.

Non-junction Corners

Sequence 0Sequence 3Sequence 2Sequence 1

Figure 5 The four possible cases for the bottom-right corner.

FUN 2021

4:8 Taming the Knight’s Tour

Heel

Figure 6 Visualization of the heel: permutation of knights’ positions (in color) and its 32 crossings
(white disks).

Note that we use a horizontal matching in the bottom-left junction and a vertical matching
in the top-right junction. Contracting the non-endpoint nodes inside the top-right junction
leaves the two edges corresponding to the vertical matching. By Lemma 3, contracting the
nodes outside the top-right junction leaves the edges corresponding to a horizontal matching.
Thus, the resulting graph is a single cycle of four nodes. J

3 Lower Bounds and Approximation Ratios

In this section, we analyze the approximation ratio that our algorithm achieves for Problem 1
and Problem 2. For simplicity, we restrict the analysis to square boards. Furthermore, it is
worth noting that the way in which the input is encoded affects the complexity analysis of
the problem, we have included a thorough discussion of these in Appendix A

3.1 Number of Turns
All the turns in our construction happen near the edges. The four corners account for a
constant number of turns. The left and right edges have eight turns for each four rows. As it
can be seen in Figure 6, the heel has 22 turns, so the top and bottom edges have 22 turns
each for each eight columns. Therefore, the number of turns in our construction is bounded
by 2 8

4 n + 2 22
8 n + O(1) = 9.5n + O(1).

Lower bound. First, note that every cell next to an edge must contain a turn. This accounts
for 4n−4 turns. A simple argument, sketched in Appendix B, improves this to a 4.25n−O(1)
lower bound. Here we focus on the main result, a lower bound of (6− ε)n for any ε > 0. We
start with some intermediate results.

We associate each cell in the board with a point (i, j) in the plane, where i is the row
of the cell and j is the column. An edge cell only has four moves available. We call the
directions of these moves D1, D2, D3, and D4, in clockwise order. For an edge cell c, let ri(c),
with 1 ≤ i ≤ 4, denote the ray starting at c and in direction Di. That is, the ray that passes
through the cells reachable from c by moving along Di.

Let a and b be two cells along the left edge of the board, with a above b. The discussion
is symmetric for the other three edges. Given two intersecting rays r and r′, one starting
from a and one from b, let S(r, r′) denote the set of cells in the region of the board bounded
by r and r′: the set of cells below or on r and above or on r′. We define the crown of a and
b as the following set of cells (see Figure 7):

crown(a, b) = S(r2(a), r1(b)) ∪ S(r3(a), r2(b)) ∪ S(r4(a), r3(b)).

We can associate, with each edge cell c, the two maximal sequences of moves without
turns in the tour that have c as an endpoint. We call them the legs of c. We say that legs
begin at c and end at their other endpoint. We say two legs of different cells collide if they
end at the same cell. Let Ca,b denote the set of edge cells along the right edge between a

and b (a and b included). The following is easy to see.

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:9

Crown

a

b

c

crown(a, b)

leg of c

leg of c

D1

D2

D3

D4

Figure 7 Terminology for the lower bound. Note that c

is a clean cell (with respect to the crown of a and b) because
both of its legs escape it.

Leg Collisions

Figure 8 The black leg collides
would collide with all the red legs.

I Remark 5. Any collision between the legs of edge cells in Ca,b happens inside crown(a, b).
We say that a leg of a cell in Ca,b escapes the crown of a and b if it ends outside the

crown. We say an edge cell in Ca,b is clean, with respect to Ca,b, if both of its legs escape.
We use the following observation, to later obtain the lower bound and show that there is
only a constant number of clean cells inside a crown.
I Remark 6. Let m = |Ca,b| and k be the number of clean cells in Ca,b. The number of turns
inside crown(a, b) is at least m + (m− k)/2.

Proof. Each edge cell is one turn. Further, each of the m− k non-clean cells have a leg that
ends in a turn inside the crown. This turn may be because it collided with the leg of another
edge cell in the crown. Thus, there is at least one turn for each two non-clean edge cells. J

I Lemma 7. Let a, b be two cells along the left edge of the board, with a above b. There are
at most 122 clean cells inside crown(a, b).

Proof. First we show that there are at most 60 clean cells such that one of their legs goes in
direction D1. For the sake of contradiction, assume that there are at least 61. Then, there
are two, c and d, such that c is 60r rows above d, for some r ∈ N, r ≥ 1. The contradiction
follows from the fact that the other leg of c, which goes along D2, D3, or D4, would collide
with the leg of b along D1. This is because, for any l ≥ 1, the leg of b along D1 collides with
(see Figure 8):

any leg along D2 starting from a cell 3l rows above b,
any leg along D3 starting from a cell 5l rows above b, and
any leg along D4 starting from a cell 4l rows above b.

Since 60r is a multiple of 3, 4, and 5, no matter what direction the other leg of c goes, it
collides with the leg of d. As observed, this collision happens inside the crown. Thus, c and
d are not clean. By a symmetric argument, there are at most 60 clean cells such that one of
their legs goes in direction D4.

Finally, note that there can only be two clean cells with legs in D2 and D3. This is
because, by a similar argument, there cannot be two such cells an even distance of each other;
the leg along D3 of the top one would collide against the leg along D2 of the bottom one. J

I Corollary 8. Suppose that the crown of a and b has m ≥ 122 edge cells. Then, there are
at least (m− 122)/2 turns inside the crown at non-edge cells.

Now, consider the iterative process depicted in Figure 9, defined over the unit square.
The square is divided in four sectors along its main diagonals. Whereas earlier we used the
term “crown” to denote a set of cells, here we use it to denote the polygon with the shape of

FUN 2021

4:10 Taming the Knight’s Tour

Fractal

Figure 9 Each sector of the square shows
the process after a different number of iter-
ations: 1, 2, 3, and 4 iterations on the top,
right, bottom, and left sectors, respectively.

Fractal Ratio

0.4 0.36

1 1

Figure 10 Lower bounds on two ratios.
Left: the ratio between the gap between consecutive
crowns and the base of the maximum-size crown that
fits in the gap is > 0.4.
Right: the ratio between the gap between a crown
and a main diagonal and the base of the maximum-
size crown that fits in the gap is > 0.36.

a crown. On the first step, a maximum-size crown is placed on each sector. At step i > 1,
we place 2i−1 more crowns in each sector. They are maximum-size crowns, subject to being
disjoint from previous crowns, in each gap between previous crowns and between the crowns
closest to the corners and the main diagonals.

I Lemma 9. For any 1 > ε > 0, there exists an i ∈ N such that at least (1 − ε) of the
boundary of the unit square is inside a crown after i iterations of the process.

Proof. At each iteration, a constant fraction larger than 0.36 of the length on each side that
is not in a crown is added to a new crown (Figure 10). This gives rise to a series Ai for the
fraction of the side inside crowns after i iterations: A1 = 1/3, Ai+1 > Ai + 0.36(1−Ai) for
i > 1; this series converges to 1. J

I Theorem 10 (Lower bound). For any constant ε > 0, there is a sufficiently large n such
that any knight’s tour on a n× n board requires (6− ε)n turns.

Proof. We show a seemingly weaker form of the claim: that there is a sufficiently large n

such that any knight’s tour on a n× n board requires (6− 2ε)n− Cε turns, where Cε is a
constant that depends on ε but not on n. This weaker form is in fact equivalent because,
for sufficiently large n, Cε < εn, and hence (6− 2ε)n− Cε > (6− 3ε)n. Thus, the claim is
equivalent up to a multiplicative factor in ε, but note that it is a claim about arbitrarily
small ε, so it is not affected by a multiplicative factor loss.

Let i be the smallest number of iterations of the iterative process in Figure 9 such that at
least (1− ε) of the boundary of the unit square is inside crown shapes. The number i exists
by Lemma 9. Fix S to be the corresponding set of crown shapes, and r = |S|. Note that
r = 4(2i − 1) is a constant that depends only on ε. Now, consider a square n× n board with
the crown shapes in S overlaid in top of them. Let the board size n be such that the smallest
crown in S contains more than 122 edge cells. Then, by Corollary 8, adding up the turns at
non-edge cells over all the crowns in S, we get at least 4n(1− ε)/2− 61r turns. Adding the
4n−4 turns at edge cells, we get that the total number of turns is at least (6−2ε)n−61r−4.
To complete the proof, consider Cε = 61r + 4. J

I Corollary 11. Algorithm 1 achieves a 19/12 + o(1) approximation on the minimum number
of turns.

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:11

Proof. In a n× n board, let ALG(n) denote the number of turns in the tour produced by
Algorithm 1 and OPT (n) denote the minimum number of turns. Let ε > 0 be an arbitrarily
small constant. We show an n0 exists such that ∀n ≥ n0, ALG(n)/OPT (n) < 19/12 + ε. As
mentioned, for any even n ≥ 16, ALG(n) < 9.5n + c for some small constant c. In addition,
by Theorem 10, for sufficiently large n, OPT (n) > (6 − ε)n. Thus, ALG(n)/OPT (n) <

(9.5n + c)/(n(6− ε)) Furthermore, for large enough n, c/((6− ε)n) < ε/2, so

ALG(n)
OPT (n) <

9.5
6− ε

+ ε

2 = 19
12− 2ε

+ ε

2 <
19 + 6ε

12 + ε

2 = 19
12 + ε. J

3.2 Number of Crossings
Similarly to the case of turns, all the crossings in our construction happen near the edges.
The four corners account for a constant number of crossings. The left and right edges have
10 crossings for each four rows. The top and bottom edges have 32 crossings for each eight
columns (Figure 6). Therefore, the number of turns in our construction is bounded by
2 10

4 n + 2 32
8 n + O(1) = 13n + O(1).

I Lemma 12. Any knight’s tour on an n× n board has at least 4n−O(1) crossings.

Proof. Let T be an arbitrary knight’s tour on an n×n board. We show that T has n−O(1)
crossings involving knight moves incident to the cells along the left edge of the board. An
analogous argument holds for the three other edges of the board, which combined yield the
desired bound.

We partition the edge cells along the left-most column into sets of three consecutive cells,
which we call triplets (if n is not multiple of three, we ignore any remaining cells, as they
only account for a constant number of crossings). Two triplets are adjacent if they contain
adjacent cells. Each triplet has six associated knight moves in the tour T , two for each of its
cells. We call the choice of moves the configuration of the triplet. Since there are

(4
2
)

= 6
choices of moves for each cell, there are 63 = 216 possible configurations of each triplet.

Consider a weighted directed graph G with a node for each of the 216 possible triplet
configuration and an edge from every node to every node, including a loop from each node
to itself. The graph has weights on both vertices and edges. Given a node v, let C(v) denote
its associated configuration. The weight of v is the number of crossings between moves in
C(v). The weight of each edge v → u is the number of crossings between moves in C(v) and
moves in C(u) when C(v) is adjacent and above C(u).

Each path in G represents a choice of move configurations for a sequence of consecutive
triplets. Note that if two knight moves in T with endpoints in edge cells cross, the edges
cells containing the endpoints are either in the same triplet or in adjacent triplets. Thus, the
sum of the weights of the vertices and edges in the path equals the total number of crossings

Figure 11 The configuration pattern along the board’s edge with the minimum number of
crossings. Triplet configurations (solid) and their continuation (dashed) without extra crossings.

FUN 2021

4:12 Taming the Knight’s Tour

among all of these moves. Since G is finite, any sufficiently long path eventually repeats a
vertex. Given a cycle c, let w(c) be the sum of the weights of nodes and edges in c, divided
by the length of c. Let c∗ be the cycle in G minimizing w. Then, w(c∗) is a lower bound on
the number of crossings per triplet along to edge.

By examining G, we can see that w(c∗) = 3. Figure 11 shows an optimum cycle, which in
fact uses only one triplet configuration. The cycle minimizing w can be found using Karp’s
algorithm for finding the minimum mean weight cycle in directed graphs [17], which runs
in O(|V | · |E|) time in a graph with vertex set V and edge set E. However, this requires
modifying the graph G, as Karp’s algorithm is not suitable for graphs that also have node
weights. We transform G into a directed graph G′ with weights on only the edges and which
preserves the optimal solution, as follows. We double each node v in G into two nodes
vin, vout in G′. We also add an edge vin → vout in G′ with weight equal to the weight of v in
G. For each edge v → u in G, we add an edge vout → uin in G′. J

Since we only counted crossings between moves incident to the first column, a question
arises of whether the lower bound can be improved by considering configurations spanning
more columns (e.g., the two or three leftmost columns). The answer is negative for any
constant number of columns. Figure 11 shows that the edges can be extended to paths
that cover any fixed number of rows away from the edge without increasing the number of
crossings.

I Corollary 13. Algorithm 1 achieves a 13/4 + o(1) approximation on the minimum number
of crossings.

4 Extensions

The idea of using formation moves to cover the board and junctions to close the tour is quite
robust to variations of the problem. We show how this can be done in some of the most
popular generalizations of the problem.

A variant that we do not consider is torus boards (where opposite edges are connected).
The problem of finding tours with a small number of turns seems easier on a torus board,
because one is not forced to make a turn when reaching an edge. Nonetheless, in a square
n× n torus board, Ω(n) turns are still required, because making n consecutive moves in the
same direction brings the knight back to the starting position, so at least one turn is required
for each n visited cells. The tours for torus boards in [33] match this lower bound up to
constant factors, at least for some board dimensions (see the last section in [33]). Crossings
are not straightforward to define in torus boards.

4.1 High-dimensional boards
We extend our technique to three and higher dimensions. In d dimensions, a knight moves
by 1 and 2 cells along any two dimensions, and leaves the remaining coordinates unchanged.
A typical technique to extend a knight’s tour algorithm to three dimensions is the “layer-
by-layer” approach [32, 9, 10]: a 2D tour is reused on each level of the 3D board, adding
the minimal required modifications to connect them into a single tour. We also follow this
approach. (Watkins and Yulan [28] consider a generalizations of knight moves where the
third coordinate also has a positive offset, but this is not as common.) For illustration
purposes, we start with the 3D case, and later extend it to the general case. We require one
dimenson to be even and ≥ 16 and another dimension to be ≥ 12, which we assume w.l.o.g.
to be the first two. The rest can be any size. Note that at least one dimension must be even,
or no tour exists [11].

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:13

3D Corners

Figure 12 Corners where the knights stay in formation and end at specific positions.

The construction works as follows. The 2D construction is reused at each level. However,
there are only two actual junctions, one on the first layer, of height 5, and one on the last
layer, which may have any of the four heights in Figure 4. Every other junction is replaced by
a sequence of formation moves. At every layer except the last, the formation ends adjacent
to the corner using one of the sequences of moves in Figure 12 (note that we show sequences
for 4 different heights, thus guaranteeing that one shape fits for any board dimensions). The
layers are connected with a formation move one layer up and two cells to the side, as in
Figure 14. At every layer except the first, the formation starts with the rightmost sequence
of moves in Figure 12. A full example is illustrated in Figure 13.

Note that, since the sequence of moves between junctions is more involved than in two
dimensions, Lemma 3 may not hold. There is, however, an easy fix: if the entire sequence is
not a single cycle, replace the first junction with one that has a vertical matching (second
junction in Figure 4, rotate 180 degrees). This then makes a cycle.

If the number of dimensions is higher than three, simply observe that the same move
used between levels can also be used to jump to the next dimension; instead of changing by
1 the third coordinate, change the fourth. After the first such move, the formation will be at
the “top” of the second 3D board, which can be traversed downwards. This can be repeated
any number of times, and generalizes to any number of dimensions.

Note that in a nd board, Ω(nd−1) turns are needed, because there are nd cells and a turn
must be made after at most n/2 moves. Note that our construction has O(nd−1) turns, as it
consists of nd−2 iterations of the 2D tour. Thus, it achieves a constant approximation ratio
on the minimum number of turns. We do not know of any lower bound on the number of
crossings in higher dimensions.

4.2 Odd boards
We show how to construct a tour for a 2D board with odd dimensions which visits every cell
except a corner cell. This is used in the next section to construct a tour that is symmetric
under 90◦ rotations.

Let the board dimensions be w × h, where w > 16 and h > 12 are both odd. First,
we use Algorithm 1 to construct a (w − 1)× h tour which is missing the leftmost column.
Then, we extend our tour to cover this column, except the bottom cell, with the variations
of our construction depicted in 15. In particular, for the top-left corner, recall that we use
sequence (3− h) mod 4 in Figure 5. Here, the height h is odd, so we only need adaptations
for Sequences 2 and 0.

4.3 90 Degree Symmetry
In this section, we show how to construct a symmetric tour under 90 degree rotations. We
say a tour is symmetric under a given geometric operation if the tour looks the same when
the operation is applied to the board.

FUN 2021

4:14 Taming the Knight’s Tour

3D Construction

Layer 0 Layers 1, 3, 5, 7, . . . , 23

Layers 2, 4, 6, 8, . . . , 24 Layer 25

Figure 13 Quartet moves for a 3D tour in a 26× 26× 26 board. The quartet can move from the
blue circle at each layer to the orange circle in the next layer by a quartet move.

Figure 14 Formation move across layers. Each color shows the starting and ending position of
one of the knights.

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:15

Odd Adaptations

Sequence 0Sequence 2

Figure 15 Adaptations required to add a row to the left of the normal construction, with a
missing cell in the junction.

Symmetric Transformation

4
3

2
1

⇒

Figure 16 This transformation appears in [26]. Left: four tours missing a corner square and
containing a certain edge. The dashed lines represent the rest of the tour in each quadrant, which
cover every square except the dark square. Right: single tour that is symmetric under 90◦ rotations.
The numbers on the right side indicate the order in which each part of the tour is visited, showing
that the tour is indeed a single cycle.

As a side note, our construction is already nearly symmetric under 180◦ rotations. For
board dimensions such as 30 × 30 where opposite corners have the same shape, the only
asymmetry is in the internal wiring of the junctions. However, the construction cannot easily
be made fully symmetric. It follows from the argument in the proof of Lemma 3 that if the
two non-junction corners are equal, the entire sequence of formation moves from one junction
to the other is neutral. Thus, using the same junction in both corners, as required to have
symmetry, would result in two disjoint cycles.

Symmetric tours under 90◦ rotations exist only for square boards where the size n = 4k+2
is a multiple of two but not a multiple of four [8]. In [26], Parberry gives a construction
for knight’s tours missing a corner cell and then shows how to combine four such tours
into a single tour symmetric under 90◦ rotations. We follow the same approach to obtain
a symmetric tour with a number of turns and crossings linear on n, and thus constant
approximation ratios.

In our construction from Section 4.2, cell (0, 0) is missing, and edge e = {(0, 1), (2, 0)} is
present. This suffices to construct a symmetric tour. Divide the 2n×2n board into four equal
quadrants, each of which is now a square board with odd dimensions. Use the construction
for odd bords to fill each quadrant, rotated so that the missing cell is in the center. Finally,
connect all four tours as in Figure 16.

FUN 2021

4:16 Taming the Knight’s Tour

Giraffe Moves

Straight moves Diagonal moves

Figure 17 Formation of 16 giraffes moving together without leaving any unvisited squares.

5 Giraffe’s tour

A giraffe is a leaper characterized by the move (1, 4) instead of (1, 2). Giraffe’s tours are
known to exist on square boards of even size n ≥ 104 [16] and on square boards of size 2n

when n is odd and bigger than 4 [8]. Our result extends this to some rectangular sizes.
We adapt our techniques for finding giraffe’s tours with O(w + h) turns and crossings,

where w and h are the width and height of the board. We use a formation of 4× 4 giraffes.
Figure 17 shows the formation moves, Figure 18 shows the analogous of a heel to be used to
transition between diagonals, and Figure 19 shows the two junctions. Figure 20 shows how
these elements are combined to cover the board.

We restrict our construction to rectangular boards where w = 32k + 20, for some k ≥ 1,
and h = 8l+14, for some l ≥ 1 (extending the results to more boards would require additional
heel variations).

We start at the bottom-left junction as in the knight’s tour. We transition between
diagonals along the bottom edge with a giraffe heel, and along the top edge with a flipped
giraffe heel. We transition between diagonals along the left and right edges with four
consecutive upward moves. The junction has width 20 and each heel has width 32, so there
are k heels along the bottom and top edges. The junction has height 11 and the tip of
the heel has height 3, so there are l sequences of four upward moves along each side (see
Figure 20).

It is easy to see that the construction visits every cell. As in the case of knight’s tours,
for the result to be a valid giraffe’s tour it should be a cycle instead of a set of disjoint cycles.
Note that the matchings in the two junctions form a cycle. Thus, if the formation reaches
the top-right junction in the same matching as they left the bottom-left junction, the entire
construction is a single cycle (by an argument analogous to Theorem 4).

Giraffe Heel

Figure 18 A giraffe heel. The formation moves are shown with black arrows (grouping up to
four sequential straight moves together) The intermediate positions of the formation are marked by
rounded squares, showing that every cell is covered. Note that the tip of the heel fits tightly under
the next heel. The red line shows the path of one specific giraffe.

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:17

Giraffe Junctions

Bottom-left junction Top-right junction

M1 M2 M1 ∪M2

M1

M2

1

2
3

45

6 7

8
9

10

11

12
13

14
15

16

Cycle

Figure 19 Two giraffe junctions, their corresponding matchings, and the union of their matchings.
The bottom-left junction consists mostly of formation moves, whereas the top-right one was computed
via brute-force search. The cycle through the edges of the union is shown with the index of each
node.

Let H, F, and U denote the sequences of formation moves in the heel, in the flipped heel,
and the sequence of four upward moves, respectively. Let Tw,h denote the entire sequence of
moves from one junction to the other, where w = 32k + 20, for some k ≥ 1, and h = 8l + 14,
for some l ≥ 1. Note that Tw,h is a concatenation, in some order, of H k times, F k times,
and U 2l times (we can safely ignore diagonal moves, which do not change the coordinates of
the giraffes within the formation). Let M be the matching of the bottom-left junction. We
want to argue that, after all the moves in Tw,h, the giraffes are still in matching M , that is,
Tw,h(M) = M using the notation from Section 2.

We show that not only the giraffes arrive to the other junction in the same matching but,
in fact, they arrive in the same coordinates in the formation as they started. First, note that
U has the effect of flipping column 1 with 2 and column 3 with 4 in the formation. Perhaps
surprisingly, H and F have the same effect. This is tedious but can be checked for each

Giraffe Tour

Figure 20 The formation moves of a giraffe’s tour on a 52× 30 board.

FUN 2021

4:18 Taming the Knight’s Tour

giraffe (Figure 18 shows one in red). Therefore, Tw,h is equivalent to U 2(l + k) times in a
row. Note that after eight consecutive upward moves, or U twice, each giraffe ends where it
started. Thus, this is true of the entire tour.

6 Conclusions

We have introduced two new metrics of “simplicity” for knight’s tours: the number of
turns and the number of crossings. We provided an algorithm which is within a constant
factor of the minimum for both metrics. In doing so, we found that, in a n× n board, the
minimum number of turns and crossings is O(n). Prior techniques such as divide-and-conquer
necessarily result in Θ(n2) turns and crossings, so at the outset of this work it was unclear
whether o(n2) could be achieved at all.

The ideas of the algorithm, while simple, seem to be new in the literature, which is
interesting considering the history of the problem. Perhaps it was our a priori optimization
goal that led us in a new direction. The algorithm exhibits a number of positive traits. It is
simple, efficient to compute, parallelizable, and amenable to generalizations (see Section 4).
We conclude with some open questions:

Our tours have 9.5n + O(1) turns and 13n + O(1) crossings, and we showed respective
lower bounds of (6− ε)n and 4n−O(1). The main open question is closing or reducing
these gaps, as there may still be room for improvement in both directions. We conjecture
that the minimum number of turns is at least 8n.
Are there other properties of knight’s tours, besides turns and crossings, that might be
interesting to optimize?
Our method relies heavily on the topology of the knight-move graph. Thus, it is not
applicable to general Hamiltonian cycle problems. Are there other graph classes with a
similar enough structure that the ideas of formations and junctions can be useful?

References
1 Karla Alwan and Kelly Waters. Finding re-entrant knight’s tours on n-by-m boards. In

Proceedings of the 30th Annual Southeast Regional Conference, ACM-SE 30, pages 377–382,
New York, NY, USA, 1992. ACM. doi:10.1145/503720.503806.

2 W.W. Rouse Ball and H.S.M. Coxeter. Mathmatical Recreations & Essays: 12th Edition. Uni-
versity of Toronto Press, 1974. URL: http://www.jstor.org/stable/10.3138/j.ctt15jjcrn.

3 John D. Beasley. Magic knight’s tours. The College Mathematics Journal, 43(1):72–75, 2012.
URL: http://www.jstor.org/stable/10.4169/college.math.j.43.1.072.

4 Ernest Bergholt. Three memoirs on knight’s tours. The Games and Puzzles Journal, 2(18):327–
341, 2001.

5 G.L. Chia and Siew-Hui Ong. Generalized knight’s tours on rectangular chessboards. Discrete
Applied Mathematics, 150(1):80–98, 2005. doi:10.1016/j.dam.2004.11.008.

6 Axel Conrad, Tanja Hindrichs, Hussein Morsy, and Ingo Wegener. Solution of the knight’s
hamiltonian path problem on chessboards. Discrete Applied Mathematics, 50(2):125–134, 1994.
doi:10.1016/0166-218X(92)00170-Q.

7 Paul Cull and Jeffery De Curtins. Knight’s tour revisited. Fibonacci Quarterly, 16:276–285,
June 1978.

8 Italo J. Dejter. Equivalent conditions for euler’s problem on z4-hamilton cycles. Ars Combin-
atoria, 16–B:285–295, 1983.

9 Joe DeMaio. Which chessboards have a closed knight’s tour within the cube? the electronic
journal of combinatorics, 14(1):32, 2007.

10 Joe DeMaio and Mathew Bindia. Which chessboards have a closed knight’s tour within the
rectangular prism? the electronic journal of combinatorics, 18(1):14, 2011.

https://doi.org/10.1145/503720.503806
http://www.jstor.org/stable/10.3138/j.ctt15jjcrn
http://www.jstor.org/stable/10.4169/college.math.j.43.1.072
https://doi.org/10.1016/j.dam.2004.11.008
https://doi.org/10.1016/0166-218X(92)00170-Q

J. J. Besa, T. Johnson, N. Mamano, and M.C. Osegueda 4:19

11 Joshua Erde, Bruno Golénia, and Sylvain Golénia. The closed knight tour problem in higher
dimensions. the electronic journal of combinatorics, 19(4):9, 2012.

12 Alexander Fischer. New records in nonintersecting knight paths. The Games and Puzzles
Journal, 2006.

13 Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on visualization and computer
graphics, 6(1):24–43, 2000.

14 George P. Jelliss. Non-intersecting paths by leapers. The Games and Puzzles Journal,
2(17):305–310, 1999.

15 George P. Jelliss. Symmetry in knight’s tours. The Games and Puzzles Journal, 2(16):282–287,
1999.

16 Nina Kamčev. Generalised knight’s tours. the electronic journal of combinatorics, 21(1):32,
2011.

17 Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
mathematics, 23(3):309–311, 1978.

18 Donald E. Knuth. Leaper graphs. The Mathematical Gazette, 78(483):274–297, 1994. URL:
http://www.jstor.org/stable/3620202.

19 Awani Kumar. Non-crossing Knight’s Tour in 3-Dimension. ArXiv e-prints, March 2008.
arXiv:0803.4259.

20 Olaf Kyek, Ian Parberry, and Ingo Wegener. Bounds on the number of knight’s tours. Discrete
Applied Mathematics, 74(2):171–181, 1997. doi:10.1016/S0166-218X(96)00031-5.

21 Shun-Shii Lin and Chung-Liang Wei. Optimal algorithms for constructing knight’s tours
on arbitrary n×m chessboards. Discrete Applied Mathematics, 146(3):219–232, 2005. doi:
10.1016/j.dam.2004.11.002.

22 Stephen R. Mahaney. Sparse complete sets for np: Solution of a conjecture of berman and
hartmanis. Journal of Computer and System Sciences, 25(2):130–143, 1982. doi:10.1016/
0022-0000(82)90002-2.

23 Brendan D. McKay. Knight’s tours of an 8× 8 chessboard. Technical report, Australian
National University, Department of Computer Science, February 1997.

24 Crispin Nash-Williams. Abelian groups, graphs and generalized knights. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 55(3), pages 232–238. Cambridge
University Press, 1959.

25 Ian Parberry. Scalability of a neural network for the knight’s tour problem. Neurocomputing,
12(1):19–33, 1996. doi:10.1016/0925-2312(95)00027-5.

26 Ian Parberry. An efficient algorithm for the knight’s tour problem. Discrete Applied Mathem-
atics, 73(3):251–260, 1997.

27 Ira Pohl. A method for finding hamilton paths and knight’s tours. Commun. ACM, 10(7):446–
449, July 1967. doi:10.1145/363427.363463.

28 Yulan Qing and John J. Watkins. Knight’s tours for cubes and boxes. Congressus Numerantium,
January 2006.

29 Allen J. Schwenk. Which rectangular chessboards have a knight’s tour? Mathematics Magazine,
64(5):325–332, 1991.

30 Jefferey A. Shufelt and Hans J. Berliner. Generating knight’s tours without backtracking from
errors. Technical report, Carnegie-Mellon University, School of Computer Science, 1993.

31 Douglas Squirrel and Paul Cull. A warnsdorff-rule algorithm for knight’s tours on square
chessboards, 1996.

32 John J. Watkins. Across the Board: The Mathematics of Chessboard Problems. Princeton
Puzzlers. Princeton University Press; Reissue edition, 2012.

33 John J. Watkins and Rebecca L. Hoenigman. Knight’s tours on a torus. Mathematics Magazine,
70(3):175–184, 1997. doi:10.1080/0025570X.1997.11996528.

34 L. D. Yarbrough. Uncrossed knight’s tours. Journal of Recreational Mathematics, 1(3):140–142,
1969.

FUN 2021

http://www.jstor.org/stable/3620202
http://arxiv.org/abs/0803.4259
https://doi.org/10.1016/S0166-218X(96)00031-5
https://doi.org/10.1016/j.dam.2004.11.002
https://doi.org/10.1016/j.dam.2004.11.002
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1016/0925-2312(95)00027-5
https://doi.org/10.1145/363427.363463
https://doi.org/10.1080/0025570X.1997.11996528

4:20 Taming the Knight’s Tour

A Computational Complexity

Consider the following decision versions of the problems: is there a knight’s tour on an n× n

board with at most k turns (resp. crossings)? We do not know if these problems are in P.
Furthermore, it may depend on how the input is encoded. Technically, the input consists of
two numbers, n and k, which can be encoded in O(log n + log k) bits. However, it is more
natural to do the analysis as a function of the board size (or, equivalently, of the underlying
graph on which we are solving the Hamiltonian Cycle problem), that is, Θ(n2). It is plausible
that the optimal number of turns (resp. crossings) is a simple, arithmetic function of n. This
would be the case if the optimal tour follows a predictable pattern like our construction
(counting the number of turns or crossings achieved by our algorithm does not require finding
the tour). In this case, the problems are in P, regardless of the input’s encoding.

If the input is represented using Θ(n2) space, the problems are clearly in NP, as a tour
with k turns/crossings acts as a certificate of polynomial length. However, unless P = NP,
the problems are not NP-hard.

Consider the language {1n01k | a tour exists with at most k turns in an n× n board},
and analogously for crossings. These languages are sparse, meaning that, for any given word
length, there is a polynomial number of words of that length in the language. Mahaney’s
theorem states that if a sparse language is NP-complete, then P = NP [22]. This suggests
that the problems are in P, though technically they could also be NP-intermediate.

If the input is represented using O(log n + log k) bits, then the problems are in NEXP
because the “unary” versions above are in NP. Note that, in this setting, simply listing a
tour would require time exponential on the input size.

B Easy Lower Bound for Turns

A sketch for a simple proof providing a loose lower bound on the number of turns.

4.25 Lower Bound

Figure 21 A lower bound of 4.25n−O(1) on the number of turns required by any knight’s tour
on a n× n board can be seen as follows. Consider the cells in one of the two central columns (does
not matter which one), and in a row in the range (n/4, 3n/4). They are shown in red. These cells
have the property that every maximal sequence of knight moves without turns through them reaches
opposite facing edges. The maximal sequences of knight moves through the first and last red cells
are shown in dashed lines. Because n must be even, one of the two endpoints of each maximal
sequence through a red cell is not an edge cell. It follows that each red cell is part of a sequence of
knight’s moves that ends in a turn at a non-edge cell. Thus, there is at least one turn at a non-edge
cell for each pair of red cells. Since there are 0.5n red cells, we get the mentioned lower bound.

Cutting Bamboo down to Size
Davide Bilò
Department of Humanities and Social Sciences, University of Sassari, Italy
davide.bilo@uniss.it

Luciano Gualà
Department of Enterprise Engineering, University of Rome “Tor Vergata”, Italy
guala@mat.uniroma2.it

Stefano Leucci
Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy
stefano.leucci@univaq.it

Guido Proietti
Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy
Institute for System Analysis and Computer Science “Antonio Ruberti” (IASI CNR), Rome, Italy
guido.proietti@univaq.it

Giacomo Scornavacca
Department of Humanities and Social Sciences, University of Sassari, Italy
giacomo.scornavacca@graduate.univaq.it

Abstract
This paper studies the problem of programming a robotic panda gardener to keep a bamboo garden
from obstructing the view of the lake by your house.

The garden consists of n bamboo stalks with known daily growth rates and the gardener can cut
at most one bamboo per day. As a computer scientist, you found out that this problem has already
been formalized in [Gąsieniec et al., SOFSEM’17] as the Bamboo Garden Trimming (BGT) problem,
where the goal is that of computing a perpetual schedule (i.e., the sequence of bamboos to cut) for
the robotic gardener to follow in order to minimize the makespan, i.e., the maximum height ever
reached by a bamboo.

Two natural strategies are Reduce-Max and Reduce-Fastest(x). Reduce-Max trims the tallest
bamboo of the day, while Reduce-Fastest(x) trims the fastest growing bamboo among the ones
that are taller than x. It is known that Reduce-Max and Reduce-Fastest(x) achieve a makespan of
O(logn) and 4 for the best choice of x = 2, respectively. We prove the first constant upper bound of
9 for Reduce-Max and improve the one for Reduce-Fastest(x) to 3+

√
5

2 < 2.62 for x = 1 + 1√
5 .

Another critical aspect stems from the fact that your robotic gardener has a limited amount
of processing power and memory. It is then important for the algorithm to be able to quickly
determine the next bamboo to cut while requiring at most linear space. We formalize this aspect as
the problem of designing a Trimming Oracle data structure, and we provide three efficient Trimming
Oracles implementing different perpetual schedules, including those produced by Reduce-Max and
Reduce-Fastest(x).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases bamboo garden trimming, trimming oracles, approximation algorithms,
pinwheel scheduling

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.5

Supplementary Material An interactive implementation of the Trimming Oracles described in this
paper is available at https://www.isnphard.com/g/bamboo-garden-trimming/.

Funding Davide Bilò: This work was partially supported by the Research Grant FBS2016_BILO,
funded by “Fondazione di Sardegna” in 2016.
Giacomo Scornavacca: This work was partially supported by Research Grant FBS2016_BILO,
funded by “Fondazione di Sardegna” in 2016.

© Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3169-4300
mailto:davide.bilo@uniss.it
https://orcid.org/0000-0001-6976-5579
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0002-8848-7006
mailto:stefano.leucci@univaq.it
https://orcid.org/0000-0003-1009-5552
mailto:guido.proietti@univaq.it
https://orcid.org/0000-0001-5921-0692
mailto:giacomo.scornavacca@graduate.univaq.it
https://doi.org/10.4230/LIPIcs.FUN.2021.5
https://www.isnphard.com/g/bamboo-garden-trimming/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Cutting Bamboo down to Size

Acknowledgements The authors would like to thank Francesca Marmigi for the picture of the
robotic panda gardener in Figure 1. We are also grateful to an anonymous reviewer whose comments
allowed us to significantly simplify the analysis of Reduce-Max.

1 Introduction

You just bought a house by a lake. A bamboo garden grows outside the house and obstructs
the beautiful view of the lake. To solve the problem, you also bought a robotic panda
gardener which, once per day, can instantaneously trim a single bamboo. You have already
measured the growth rate of every bamboo in the garden, and you are now faced with
programming the gardener with a suitable schedule of bamboos to trim in order to keep the
view as clear as possible.

This problem is known as the Bamboo Garden Trimming (BGT) Problem [11] and can
be formalized as follows: the garden contains n bamboos b1, . . . , bn, where bamboo bi has a
known daily growth rate of hi > 0, with h1 ≥ . . . ≥ hn and

∑n
i=1 hi = 1. Initially, the height

of each bamboo is 0, and at the end of each day, the robotic gardener can trim at most one
bamboo to instantaneously reset its height to zero. The height of bamboo bi at the end
of day d ≥ 1 and before the gardener decides which bamboo to trim is equal to (d− d′)hi,
where d′ < d is the last day preceding d in which bi was trimmed (if bi was never trimmed
before day d, then d′ = 0). See Figure 1 for an example.

The main task in BGT is to design a perpetual trimming schedule that keeps the tallest
bamboo ever seen in the garden as short as possible. In the literature of scheduling problems,
this maximum height is called makespan.

A simple observation shows that the makespan must be at least 1 for every instance.
Indeed, for any ε > 0, a makespan of 1− ε would imply that the daily amount of bamboo
cut from the garden is at most 1− ε, while the overall daily growth rate of the garden is 1.
This is a contradiction. Furthermore, there are instances for which the makespan can be
made arbitrarily close to 2. Consider, for example, two bamboos b1, b2 with daily growth
rates h1 = 1− ε and h2 = ε, respectively. Clearly, when bamboo b2 must be cut, the height
of b1 becomes at least 2− 2ε. This implies that the best makespan one can hope for is 2.

Two natural strategies are known for the BGT problem, namely Reduce-Max and
Reduce-Fastest(x). The former consists of trimming the tallest bamboo at the end of
every day, while the latter cuts the bamboo with fastest growth rate among those having a
height of at least x. Experimental results show that Reduce-Max performs very well in prac-
tice as it seems to guarantee a makespan of 2 [2, 10]. However, the best known upper bound
to the makespan is 1 +Hn−1 = Θ(logn), where Hn−1 is the (n− 1)-th harmonic number [5].
Interestingly, this Θ(logn) bound also holds for the adversarial setting in which at every day
an adversary decides how to distribute the unit of growth among all the bamboos. In this
adversarial case such upper bound can be shown to be tight, while understanding whether
Reduce-Max achieves a constant makespan in the non-adversarial setting is a major open
problem [11, 10]. On the other hand, in [11] it is shown that Reduce-Fastest(x) guarantees
a makespan of 4 for x = 2. Furthermore, it is also conjectured that Reduce-Fastest(1)
guarantees a makespan of 2 [10].

In [11], the authors also provide a different algorithm guaranteeing a makespan of 2.
This is obtained by transforming the BGT problem instance into an instance of a related
scheduling problem called Pinwheel Scheduling, by suitably rounding the growth rates of
the bamboos. Then, a perpetual schedule for the Pinwheel Scheduling instance is computed

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:3

b2 b3 b4b1 b5 b2 b3 b4b1 b5

h1

h1

(a) (b)

Figure 1 (a) The bamboo garden at the end of a day, just before the robotic gardener trims
bamboo b1. (b) The bamboo garden at the end of the next day, before cutting a bamboo.

using existing algorithms [8, 13]. It turns out that this approach has a problematic aspect
since it is known that any perpetual schedule for the Pinwheel Scheduling instance can have
length Ω

(∏n
i=1

1
hi

)
in the worst case.

The above observation gives rise to the following complexity issue: Can a perpetual
schedule be efficiently implemented in general? Essentially, a solution consists of designing a
trimming oracle, namely a compact data structure that is able to quickly answer to the query
“What is the next bamboo to trim?”.

It is worth noticing that similar problems are discussed in [11], where the authors ask
for the design of trimming oracles that implement known BGT algorithms. For example,
they explicitly leave open the problem of designing an oracle implementing Reduce-Max with
query time of o(n).

Our results. Our contribution is twofold. In Section 2, we provide the following improved
analyses of Reduce-Max and Reduce-Fastest(x):

We show that Reduce-Max achieves a makespan of at most 9. This is the first constant
upper bound for this strategy and shows a separation between the static and the adversarial
setting for which the makespan is known to be Θ(logn).
We show that, for any x > 1, Reduce-Fastest(x) guarantees a makespan of at most
max

{
x+ x2

4(x−1) ,
1
2 + x+ x2

4(x− 1
2)

}
. For the best choice of x = 1 + 1√

5 , this results in a

makespan of 1 + φ = 3+
√

5
2 < 2.62, where φ is the golden ratio. Notice also that for x = 2

(the best choice of x according to the analysis of [11]) we obtain an upper bound of 19/6
which improves over the previously known upper bound of 4.

Then, in Section 3, we provide the following trimming oracles:
A trimming oracle implementing Reduce-Max whose query time is O(log2 n) in the worst-
case or O(logn) amortized. The size of the oracle is O(n) while the time needed to build
it is O(n logn). This answers the open problem given in [11].
A trimming oracle implementing Reduce-Fastest(x) with O(logn) worst-case query
time. This oracle has linear size and can be built in O(n logn) time.
A trimming oracle guaranteeing a makespan of 2. This oracle uses the rounding strategy
from [11] but it uses a different approach to compute a perpetual schedule. Our oracle
answers queries in O(logn) amortized time, requires O(n) space, and can be built in
O(n logn) time.

FUN 2021

5:4 Cutting Bamboo down to Size

This result favorably compares with the existing oracles achieving makespan 2 implicitly
obtained when the reduction of [11] is combined with the results in [13, 8] for the Pinwheel
Scheduling problem. Indeed, once the instance G of BGT has been transformed into an
instance P of Pinwheel Scheduling, any oracle implementing a feasible schedule for P is
an oracle for G with makespan 2. In [13], the authors show how to compute a schedule
for P of length L = Ω(

∏n
i=1

1
hi

), which results in an oracle with exponential building
time and constant query time. In [8], an oracle having query time of O(1) is claimed, but
attaining such a complexity requires the use of Θ(n) parallel processors and the ability
to perform arithmetic operations modulo L (whose binary representation may need Ω(n)
bits) in constant time.

An interactive implementation of our Trimming Oracles described above is available at
https://www.isnphard.com/g/bamboo-garden-trimming/.

Other related work. The BGT problem has been introduced in [11]. Besides the afore-
mentioned results, this paper also provides an algorithm achieving a makespan better than
2 for a subclass of instances with balanced growth rates; informally, an instance is said to
be balanced if at least a constant fraction of the overall daily growth is due to bamboos
b2, . . . , bn. The authors also introduce a generalization of the problem, named Continuous
BGT, where each bamboo bi grows continuously at a rate of hi per unit of time and is located
in a point of a metric space. The gardener can instantaneously cut a bamboo that lies in its
same location, but needs to move from one bamboo to the next at a constant speed. Notice
that this is a generalization of BGT problem since one can consider the trivial metric in
which all distances are 1 (and it is never convenient for the gardener to remain in the same
location).

Another generalization of the BGT problem called cup game can be equivalently formu-
lated as follows: each day the gardener can reduce the height of a bamboo by up to 1 + ε

units, for some constant parameter ε ≥ 0. If the growth rates can change each day and an
adversary distributes the daily unit of growth among the bamboos, then a (tight) makespan
of O(logn) can still be achieved. If the gardener’s algorithm is randomized and the adversary
is oblivious, i.e., it is aware of gardener’s algorithm but does not know the random bits
or the previously trimmed bamboos, then the makespan is O(m) with probability at least
1−O(2−2m), i.e., it is O(log logn) with high probability [4]. The generalization of the cup
game with multiple gardeners has been also addressed in [4, 15].

As we already mentioned, a problem closely related to BGT is the Pinwheel Scheduling
problem that received a lot of attention in the literature [7, 8, 13, 14, 16, 19].

The BGT problem and its generalizations also appeared in a variety of other applications,
ranging from deamortization, to buffer management in network switches, to quality of service
in real-time scheduling (see, e.g., [3, 12, 1] and the references therein).

2 New bounds on the makespan of known BGT algorithms

In this section we provide an improved analysis on the makespan guaranteed by the
Reduce-Fastest(x) strategy and the first analysis that upper bounds the makespan of
Reduce-Max by a constant. In the rest of this section, we say that a bamboo bi is trimmed
at day d to specify that the schedule computed using the heuristic chooses bi as the bamboo
that has to be trimmed at the end of day d.

https://www.isnphard.com/g/bamboo-garden-trimming/

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:5

2.1 The analysis for Reduce-Max

Here we analyze the heuristic Reduce-Max, that consists in trimming the tallest bamboo at
the end of each day (ties are broken arbitrarily).

I Theorem 1. Reduce-Max guarantees a makespan of 9.

Proof. We partition the bamboos into groups, that we call levels, according to their daily
growth rates. More precisely, we say that bamboo bi is of level j ≥ 1 if 1

2j ≤ hi < 1
2j−1 . Let

K be the level of bamboo bn and, for every j, with 1 ≤ j ≤ K, let Lj denote the set of all
the bamboos of level j.

For every 1 ≤ j ≤ K, let σ(j) be the maximum height ever reached by any bamboo of
level k ≥ j, with σ(K + 1) = 0 by definition. In order to bound the makespan, it suffices to
bound σ(1). Rather than doing this directly, we will instead show that for 1 ≤ j ≤ K, we
have

σ(j) ≤ max
{

3, σ(j + 1)
}

+ 3
j∑

k=1

|Lk|
2j . (1)

Let q ≤ K be the level with lowest index such that σ(q) ≤ 3 (if there is no such index, q = K).
For any j < q it holds max

{
3, σ(j + 1)

}
= σ(j + 1). As a consequence, the makespan is at

most

σ(1) ≤ 3 +
q∑
j=1

3
j∑

k=1

|Lk|
2j ≤ 3 + 3

K∑
j=1

j∑
k=1

|Lk|
2j . (2)

If bamboo bi is of level s, then the bamboo stalk contributes
∑K
j=s

1
2j <

2
2s ≤ 2hi to the sum

in (2). As
∑n
i=1 hi = 1 by definition, it follows that the makespan is bounded by

σ(1) ≤ 3 + 3
K∑
j=1

j∑
k=1

|Lk|
2j ≤ 3 + 6

n∑
i=1

hi = 9.

We now complete the proof by proving (1), which compares σ(j) and σ(j + 1) for all j.
Suppose that bamboo bi has level j, and that at the end of day d1 bamboo bi achieves the
maximum height ever reached by any bamboo of level j. Let d0 < d1 be the largest-numbered
day prior to d1 at the end of which either (a) a bamboo b` with level greater than j was
trimmed, or (b) a bamboo b` with height less than 3 was trimmed. Because the Reduce-Max
algorithm always trims the tallest bamboo, the height of bi at the end of day d0 is at most
the height of b` at the end of day d0, right before b` is trimmed. It follows that the height of
bi at the end of day d1, right before bi is trimmed, is at most hi(d1 − d0) greater than the
height of b` at the end of day d0, right before b` is trimmed. Since the height of b` at the
end of day d0 is at most max{3, σ(j + 1)}, it follows that

σ(j) ≤ max{3, σ(j + 1)}+ hi(d1 − d0) < max{3, σ(j + 1)}+ 2
2j (d1 − d0), (3)

where in the last inequality we use the fact that hi < 1
2j−1 . Now, in order to prove (1), it

suffices to show that d1−d0 ≤ 3
2
∑j
k=1 |Lk|. By the definition of d0, at any day t ∈ [d0 +1, d1]

a bamboo of height at least 3 and with level equal or smaller than j is trimmed. We call a
cut at day t ∈ [d0 + 1, d1] a repeated cut if, at day t, a bamboo that was already trimmed
at any day in [d0 + 1, t − 1] is trimmed again, and a first cut otherwise. Note that each

FUN 2021

5:6 Cutting Bamboo down to Size

repeated cut trims a bamboo whose growth occurred entirely during days [d0 + 1, t− 1] and
that the total growth of the forest in the interval interval [d0 + 1, d1] is d1 − d0. It means
that at most 1

3 of the cuts at day t ∈ [d0 + 1, d1] can be repeated cuts, since at the end of
each of these days a bamboo of height at least 3 is trimmed. On the other hand, the number
of first cuts is bounded by the number of distinct bamboos with levels less or equal to j,
i.e., by

∑j
k=1 |Lk|. It follows that the number of days in the window [d0 + 1, d1] satisfies

d1 − d0 ≤ 1
3 (d1 − d0) +

∑j
k=1 |Lk|, and thus d1 − d0 ≤ 3

2
∑j
k=1 |Lk| as desired. J

2.2 The analysis for Reduce-Fastest(x)
Here we provide an improved analysis of the makespan achieved by the Reduce-Fastest(x)
strategy. The heuristic Reduce-Fastest(x) consists in trimming, at the end of each day, the
bamboo with the fastest daily growth rate among those that have reached a height of at
least x (ties are broken in favour of the bamboo with the smallest index).

I Theorem 2. The makespan of Reduce-Fastest(x), for a constant x such that x > 1, is
upper bounded by max

{
x+ x2

4(x−1) ,
1
2 + x+ x2

4(x− 1
2)

}
.

Proof. Let M be the makespan of Reduce-Fastest(x) and let bi be one of the bamboos
such that the maximum height reached by bi is exactly M . Let [d0, d1] be an interval of
days such that bi reaches the makespan in d1 and d0 is the last day in which bi was trimmed
before d1 (d0 may also be equal to 0). Let δ the first day in [d0, d1] such that the height of bi
is at least x. For sake of simplicity we rename the interval [δ, d1] as [0, T], with T = d1 − δ.
Let N be the number of distinct bamboos that are trimmed in [0, T − 1].

We now give some definitions. Let the volume V of the garden be the overall growth of
the bamboo in the days of the interval [0, T − 1]. Since the garden grows by

∑n
i=1 hi = 1 per

day, we have V = T . Consider the cut of a bamboo bj on day d ∈ [0, T − 1]. If bj was cut at
least once in [0, d− 1] we say that the cut is a repeated cut otherwise we will say that the
cut is a first cut. The act of cutting bamboo bj on a day d ∈ [0, T − 1] with a repeated cut
removes an amount of volume that is equal to (d− d′)hj , where d′ is the last day of [0, d− 1]
in which bj has been cut, if this is a repeated cut, and d′ = 0 if this is a first cut. Finally,
the leftover volume of a bamboo bj is the overall growth of bj that happened during interval
[0, T − 1] and has not been cut by the end of day T − 1.

We will now bound the amount V ′ of volume V that is removed by repeated cuts in the
interval [0, T − 1]. Notice that, for each bamboo bj that is cut in the interval [0, T − 1], it
holds that hj ≥ hi. If bj is cut for its first time at day d (among the days in [0, T − 1]),
then the removed volume will be at least (d+ 1)hj ≥ (d+ 1)hi. Therefore, after all the N
bamboos of the interval [0, T − 1] have been cut at least once, the amount of volume removed
by first cuts will be at least

∑N
j=i jhi = N(N+1)

2 ·hi, since at most one bamboo is cut per day.
Moreover, if bj is cut for its last time at day T − 1− d (among the days in [0, T − 1]), bj will
have a height of dhi at the end of day T − 1. Finally, bamboo hi is never cut in the interval
[0, T − 1] and hence during the interval [0, T − 1] it grows by exactly Thi. This means that
the overall leftover volume will be at least

∑N
j=1(j − 1)hi + Thi = N(N−1)

2 · hi + Thi.
We can then write

V ′ ≤ V −
(
N(N + 1)

2 + N(N − 1)
2

)
· hi − Thi = V −N2hi − Thi = T (1− hi)−N2hi,

where the last equality follows from V = T .
Since in [0, T − 1] the bamboo bi has height at least x, each repeated cut removes at

least x units of volume from V ′. Therefore, the number N ′ of repeated cuts is at most

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:7

V ′

x ≤
(
T (1− hi)−N2hi

)
/x. We now use this upper bound on N ′ to derive an upper bound

to the time T :

T = N +N ′ ≤ N + T (1− hi)−N2hi
x

.

For T ′(N) = (Nx−N2hi)/(hi + x− 1), the above formula implies T ≤ T ′(N). If we fix
hi and x, T ′(N) is a concave downward parabola that attains its maximum in its vertex at
N = x/2hi. Thus:

T ≤ T ′(x/2hi) ≤
x2

2hi
− x2

4hi

hi + x− 1 = x2

4hi(hi + x− 1) .

Using this upper bound to T we now bound the overall growth of the bamboo bi, i.e., the
makespan M . At day d = 0, bi has height at most x+ hi by our choice of δ, and in the next
T days it grows by Thi. Hence:

M ≤ x+ hi + Thi < x+ hi + x2

4(hi + x− 1) . (4)

Let M ′(hi) = x+ hi + x2

4(hi+x−1) . The derivative w.r.t. hi of the above formula is

∂M ′

∂hi
= 1− x2/4(hi + x− 1)2 = 4(hi + x− 1)2 − x2

4(hi + x− 1)2 = (x+ 2hi − 2)(3x+ 2hi − 2)
4(hi + x− 1)2 .

The denominator is always positive, and the numerator is a concave upward parabola having
its two roots at hi = 1− 3x/2 and at hi = 1− x/2. Let us briefly restrict ourselves to the
case hi ≤ 1

2 and notice that, since x > 1, the first root is always negative, while the second
root is always smaller than 1

2 . It follows that the maximum of M ′(hi) is attained either at
hi = 0 or at hi = 1

2 . Substituting in Equation 4 we get:

M ≤ max
{
x+ x2

4(x− 1) , x+ 1
2 + x2

4(x− 1
2)

}
As far as the case hi > 1

2 is concerned, notice that it implies i = 1 (since if i ≥ 2 we
would have the contradiction

∑n
i=1 hi >

1
2 · i = 1) and hence bamboo b1 is trimmed as soon

as its height reaches at least x. The makespan M must then be less than x+ h1 < x+ 1,
which is always smaller than x+ 1

2 + x2

4(x− 1
2) > x+ 1

2 + 1
2 . J

I Corollary 3. The makespan of Reduce-Fastest(2) is at most 19/6 and the makespan of
Reduce-Fastest(1 + 1√

5) is at most 1 + φ < 2.62, where φ is the golden ratio.

3 Trimming oracles

This section is devoted to the design of trimming oracles. More precisely, we first design two
trimming oracles that implement Reduce-Fastest(x) and Reduce-Max, respectively. The
trimming oracle that implements Reduce-Fastest(x) has a O(logn) worst-case query time,
uses linear size and can be built in O(n logn) time. The trimming oracle that implements
Reduce-Max has a O(log2 n) worst-case query time or a O(logn) amortized query time, uses
linear space, and can be built in O(n logn) time. We conclude this section by designing
a novel trimming oracle that guarantees a makespan of 2 and has a O(logn) amortized
query time. The oracle uses linear size and can be built in O(n logn) time. For technical
convenience, in this section we index days starting from 0, so that at the end of day 0 the
gardener can already trim the first bamboo.

An interactive implementation of the Trimming Oracles described in this section is
available at https://www.isnphard.com/g/bamboo-garden-trimming/.

FUN 2021

https://www.isnphard.com/g/bamboo-garden-trimming/

5:8 Cutting Bamboo down to Size

3.1 A Trimming Oracle implementing Reduce-Fastest(x)
We now describe our trimming oracle implementing Reduce-Fastest(x). The idea is to keep
track, for each bamboo bi, of the next day di at which bi will be at least as tall as x. When
a query at a generic day D is performed, we will then return the bamboo bi with minimum
index i among the ones for which di ≥ D.

To this aim we will make use of a priority search tree [17] data structure T to dynamically
maintain a collection P = {(x1, y1), (x2, y2), . . . } of 2D points with distinct y coordinates in
{1, . . . , n} under insertions and deletions while supporting the following queries:
MinYInXRange(T, x0): report the minimum y-coordinate among those of the points (xi, yi)

for which xi ≤ x0, if any.
GetX(T, y): report the x-coordinate xi of the (at most one) point (xi, yi) for which yi = y,

if any.

All of the above operations on T require time O(log |P |), as long as all coordinates and
query parameters fit in O(1) words of memory.1

In our case, the points (xi, yi) will be the pairs (di, i) for i = 1, . . . , n. In such a way, a
MinYInXRange query with x0 = D will return exactly the index i of the bamboo bi to be
cut at the end of day D, if any. After cutting bi, we update T to account for the new day at
which the height bi will be at least x, i.e., we replace the old point (di, i) with (D+ dx/hie, i).
Unfortunately, since the trimming oracle is ought to be used perpetually, (the representations
of) both di and D will eventually require more than a constant number of memory words.

We solve this problem by dividing the days into contiguous intervals I0, I1, . . . of n days
each, where Ij = [nj, nj + 1, . . . , n(j + 1)− 1], and by using two priority search trees T1 and
T2 that are associated with the current and the next interval, respectively. This allows us to
measure days from the start of the current interval Ij , i.e., if D = nj + δ ∈ Ij , then we only
need to keep track of δ ∈ [0, . . . , n − 1]. In place of (di, i), we store the point (δi, i) in T1,
where δi = di − nj. In this way, the previous query with x0 = D will now correspond to a
query with x0 = δ.

Finally, we also ensure that at the end of the generic day D = nj + δ, T2 contains the
point (δ′i, i) for each di = n(j + 1) + δ′ and i = 1, . . . , δ + 1. This allows us to swap T2 for T1
when interval Ij ends.

Since bamboo bi reaches height x exactly dx/hie days after being cut, it follows that the
largest x-coordinate ever stored in T1 or T2 is at most n+ x/hn and we can then support
MinYInXRange queries in O(log(n)) time (where we are assuming that x, hn and thus x/hn
fit in a constant number of memory words).

The pseudocode of our trimming oracle is as given in Algorithm 1. The procedure Query()
is intended to be run every day. Consider a generic day δ of the current interval Ij . At this
time, T1 correctly encodes all the days at which the bamboos reached, or will reach, height at
least x when measured from the starting day of the current interval (i.e., from day nj), and
after all the cuts of the previous days have already been performed.2 The same information
concerning bamboos b1, . . . , bδ is replicated in T2 with respect to the starting time of the
next interval (i.e., (n+ 1)j). The procedure Query() accomplishes two tasks: (1) it computes

1 While this query is not described in [17], it can be easily implemented in O(log |P |) time using a
dictionary and the fact that y-coordinates are distinct.

2 Actually, if a bamboo bi reached height x before the beginning of the considered interval, we will store
the point (0, i) in place of (δi, i) with δi < 0. This still encodes the fact that it is possible to trim bi
from the very fist day of the interval and prevents δi from becoming arbitrarily small.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:9

T1

50 1 2 3 4 6 7 8

b1
b2
b3
b4
b5
b6

b1
b2
b3
b4
b5
b6

50 1 2 3 4 6 7 8

T2

δ δ

Figure 2 An example of the points contained in the priority search trees T1 and T2 for an instance
with 6 bamboos at the end of day δ = 4 of a generic interval Ij . We labeled the y-coordinate i with
bi since the unique point (di, i) having y-coordinate i represents the day at which bi reached/will
reach a height of at least x. Notice that the points corresponding to bamboos b1, b2, b3, and b4 are
already updated in T2, while b5 and b6 (shown in gray) will be updated by the days δ = 5 and δ = 6,
respectively. At the end of day δ = 6, all the points in T2 are updated and T1 can be safely swapped
with T2.

the bamboo bi to cut at the end of day δ of the current interval (if any) and it updates the
data structures T1 and T2 to account for the new height of bi; (2) it updates the information
concerning bδ+1 in T2. See Figure 2 for an example.

The following theorem summarizes the performances of our trimming oracle.

I Theorem 4. There is a Trimming Oracle implementing Reduce-Fastest(x) that uses
O(n) space, can be built in O(n logn) time, and can report the next bamboo to trim in O(logn)
worst-case time.

3.2 A Trimming Oracle implementing Reduce-Max

The idea is to maintain collection L of n lines `1, . . . , `n in which `i(d) = hid+ci is associated
with bamboo bi and represents its height at the end of day d. Initially ci = hi.

Determining the bamboo bi to trim at a generic day d then corresponds to finding the
index i that maximizes `i(d). After bamboo bi, previously of height H, has been cut, `i
needs to be updated to reflect the fact that bi has height 0 at time d, which corresponds to
decreasing ci by H.

The upper envelope UL of L is a function defined as UL(d) = max`∈L `(d). We make use
of an upper envelope data structure U that is able to maintain L under insertions, deletions
and lookups of named lines and supports the following query operation:
Upper(U, d) return a line ` ∈ L for which `(d) = UL(d).

Unfortunately, the trivial implementation of the trimming oracle suggested by the
above description encounters similar problems as the ones discussed in Section 3.1 for
Reduce-Fastest(x): the current day d and the coefficients ci will grow indefinitely, thus
affecting the computational complexity.

Once again, we solve this problem by using two copies U1, U2 of the previous upper
envelope data structure and by dividing the days into intervals I1, I2, . . . with Ij = [nj, nj +
1, . . . , n(j + 1)− 1]. At the beginning of the current day D = nj + δ ∈ Ij , U1 will contain all
lines `1, . . . , `n and the value of each `i(δ) will be exactly the height of bi. Moreover, at the
end of day D (i.e., after the highest bamboo of day D has been trimmed), U2 will contain a
line `′i for each i ≤ δ + 1 such that `′i(δ′) with δ′ ∈ [0, n− 1] is exactly the height reached by
bi on day n(j + 1) + δ′ if it is not trimmed on days nj + δ + 1, . . . , n(j + 1) + δ′ − 1. This

FUN 2021

5:10 Cutting Bamboo down to Size

Algorithm 1 Trimming Oracle for Reduce-Fastest(x).

1 Function Build():
2 δ ← 0;
3 T1, T2 ← Pointers to two empty priority search trees;
4 h1, . . . , hn ← Sort the growth rates of the n bamboo in nonincreasing order;
5 for i = 1 . . . , n do
6 Insert(T1, (dx/hie − 1, i))

7 Function Update(T, δi, i):
8 δ′i ← GetX(T, i);
9 if δ′i exists then Delete((δ′i, i));

10 Insert(T, (max{0, δi}, i));

11 Function Query():
// Cut fastest bamboo bi that reached height x by day δ

12 i← MinYInXRange(T1, δ);
13 if i exists then
14 Update(T1, δ + dx/hie, i) ;
15 Update(T2, δ + dx/hie − n, i) ;

// Make sure that bamboo bδ+1 is updated in T2

16 δδ+1 ← GetX(T1, δ + 1);
17 Update(T2, δδ+1 − n, δ + 1)

// Move to the next day and possibly to the next interval
18 δ ← (δ + 1) mod n;
19 if δ = 0 then Swap T1 and T2;
20 if i exists then return “Trim bamboo bi” else return “Do nothing”;

means that at the end of day nj + (n− 1), U2 correctly describes the heights of all bamboos
in the next interval Ij+1 as a function of δ′, and we can safely swap U1 with U2. See Figure 3
for an example.

The pseudocode of our trimming oracle is given in Algorithm 2. A technicality concerns
the initial construction of the set of lines in U1. Notice that this is not handled by the Build()
function, but we iteratively add `1, . . . , `n during the first n calls to Query() (i.e., during the
days of interval I0). We can safely do this since the Reduce-Max strategy ensures that at
time D ∈ I0 only bamboos in {b1, . . . , bD+1} can conceivably be trimmed. This is handled
by the test of line 9, which is only true for D ∈ I0 and will impact our amortized bounds, as
noted below.

The performances of our trimming oracle depend on the specific implementation of the
upper envelope data structure use. In [18], such a data structure guaranteeing a worst-case
time of O(log2 n) per operation is given, while a better amortized bound of O(logn) per
operation was obtained in [6].3 Moreover, from Theorem 1 we know that the makespan of
Reduce-Max is at most constant, implying that the maximum absolute value of a generic
coefficient ci is at most O(nhi) = O(n).

3 Actually, the authors of [18] and [6] design a dynamic data structure to maintain the convex hull of a
set of points in the plane. As explained in [6], point-line duality can be used to convert such a structure
into one maintaining the upper envelope of a set of linear functions.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:11

20 1 2 0 1 δ

b1

b2

b3

0 1 2 δ

b1

b2 b3

0 1 2

δ

b1

b3

0 1 2 0 1 2

b2

δ

b2 b3

0 1 2 0 1 2

b1

U1︷ ︸︸ ︷ U2︷ ︸︸ ︷ U1︷ ︸︸ ︷ U2︷ ︸︸ ︷

U1︷ ︸︸ ︷ U2︷ ︸︸ ︷ U1︷ ︸︸ ︷ U2︷ ︸︸ ︷
(a) (b)

(c) (d)

Figure 3 An example of the points contained in U1 and U2 for an instance with 3 bamboos, at
the beginning of day 2 of a generic interval Ij (a), at the end of day 2 of Ij but before moving to
Ij+1 (b), at beginning of day 0 of Ij+1 (c), and at the beginning of day 1 of Ij+1 (d).

The following theorem summarizes the time complexity of our trimming oracle.4

I Theorem 5. There is a Trimming Oracle implementing Reduce-Max that uses O(n) space,
can be built in O(n logn) time, and can report the next bamboo to trim in O(log2 n) worst-case
time, or O(logn) amortized time.

3.3 A Trimming Oracle achieving makespan 2
We now design a Trimming Oracle implementing a perpetual schedule that achieves a
makespan of at most 2.

We start by rounding the rates h1, . . . , hn down to the previous power of 1
2 as in [11],

i.e., we set h′i = 2blog2 hic. We will then provide a perpetual schedule for the rounded
instance achieving makespan at most 1 w.r.t. the new rates h′1, . . . , h′2. Since hi ≤ 2h′i, this
immediately results in a schedule having makespan at most 2 in the original instance.

Henceforth we assume the input instance is already such that each hi is a power of
1
2 . Moreover, we will also assume that

∑n
i=1 hi = 1. Indeed, if

∑n
i=1 hi < 1 then we can

artificially increase some of the growth rates to meet this condition. Clearly, any schedule
achieving makespan of most 1 for the transformed instance, also achieves makespan at most
1 in the non-transformed instance.

We transform the instance as follows: we iteratively consider the bamboos in nonincreasing
order of rates; when bi is considered we update hi to 2

⌊
log2

(
1−
∑

j 6=i
hj

)⌋
, i.e., to the highest

rate that is a power of 1
2 and still ensures that the sum of the growth rates is at most 1.

One can easily check that the above procedure yields an instance for which
∑n
i=1 hi = 1, as

otherwise
∑n
i=1 hi < 1 and 1−

∑n
i=1 hi ≥ hn, which is a contradiction since hn would have

been increased to 2hn. This requires O(n logn) time.

4 Due to lines 9 and 10, the complexity of a query operation is only amortized over the running time of
previous queries.

FUN 2021

5:12 Cutting Bamboo down to Size

Algorithm 2 Trimming Oracle for Reduce-Max.

1 Function Build():
2 δ ← 0;
3 T1, T2 ← Pointers to two empty upper envelope data structures;
4 h1, . . . , hn ← Sort the growth rates of the n bamboo in nonincreasing order;
5 Function Update(U, i, c):
6 Delete(U, `i);
7 Insert(U, `i(d) = hid+ c);

8 Function Query():
// Ensure that the line `δ+1 corresponding to bamboo bδ+1 is in U1

9 if there is no line named `δ+1 in U1 then
10 Insert(U1, `δ+1(d) = hδ+1d+ hδ+1);

// Cut highest bamboo bi at day δ

11 `i(d) = hid+ ci ← Upper(δ);
12 Update(U1, i,−δhi);
13 Update(U2, i, (n− δ)hi);

// Ensure that the line `δ+1 corresponding to bamboo bδ+1 is updated in U2

14 Let `δ+1(d) = hδ+1d+ cδ+1 be the line named `δ+1 in U1;
15 Update(U2, δ + 1, nhδ+1 + cδ+1);

// Move to the next day and possibly to the next interval
16 δ ← (δ + 1) mod n;
17 if δ = 0 then Swap U1 and U2;
18 return “Trim bamboo bi”;

In the rest of this section, we will design Trimming Oracles achieving a makespan of at
most 1 for instances where all his are powers of 1

2 and
∑n
i=1 hi = 1.

A Trimming Oracle for regular instances

Let us start by considering an even smaller subset of the former instances, namely the ones
in which bi has a growth rate of hi = 2−i, for i = 1, . . . , n− 1, and hn = hn−1 = 2−n+1. For
the sake of brevity we say that these instances are regular.5

It turns out that a schedule for regular instances can be easily obtained by exploiting a
connection between the index i of bamboo bi to be cut at a generic day D and the position
of the least significant 0 in the last n− 1 bits in the binary representation of D.

The schedule is as follows: if the last 0 in the binary representation of D appears in the
i-th least significant bit, with i < n, then bi is to be cut at the end of day D. Otherwise, if
the n− 1 least significant bits of D are all 1, bamboo bn is cut at day D.

In this way, the maximum number of days that elapses between any two consecutive cuts
of bamboo bi with i < n is Mi = 2i, while bn is cut every Mn = 2n−1 days. It is then easy
to see that, for each bamboo bi, hi ·Mi = 1, thus showing that the resulting makespan is 1
as desired (and this is tight since, in any schedule with bounded makespan, b1 grows for at
least 2 consecutive days). See Figure 4 for an example with n = 5.

5 Notice that, in any regular instance, the grow rates of the bamboos are completely specified by the
number n.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:13

0 0
0 0

0

0 01
1

0 1 1

1 0
0
0

01
1

1 1

1
1
1

b1
b2
b1
b3

b1
b2
b1
b4

0
1
2
3

4
5
6
7

D Trim(D)2 D Trim(D)2

Perpetual schedule: b1, b2, b1, b3, b1, b2, b1, b4, b1, b2, b1, b3, b1, b2, b1, b5 . . .

0
0
0
0

0
0
0
0

0 0
0 0

0

0 01
1

0 1 1

1 0
0
0

01
1

1 1

1
1
1

b1
b2
b1
b3

b1
b2
b1
b5

8
9
10
11

12
13
14
15

D Trim(D)2 D Trim(D)2

1
1
1
1

1
1
1
1

Figure 4 A perpetual schedule of a regular instance with 5 bamboos.

This above relation immediately suggests the implementation of a Trimming Oracle that
maintains the binary representation of D mod 2n−1. Since it is well known that a binary
counter with n bits can be incremented in O(1) amortized time [9, pp. 454–455], we can
state the following:

I Lemma 6. For the special case regular instances, there is a Trimming Oracle that uses
O(n) space, can be built in O(n) time, can be queried to report the next bamboo to cut in
O(1) amortized time, and achieves makespan 1.

A Trimming Oracle for non-regular instances
Here we show how to design a Trimming Oracle for non-regular instances by iteratively
transforming them into suitable regular instances. We will refer to the bamboos b1, . . . , bn as
real bamboos and will introduce the notion of virtual bamboos.

A virtual bamboo v represents a collection of (either real or virtual) bamboos whose
growth rates yield a regular instance when suitably scaled by a common factor. The growth
rate of v will be equal to the sum of the growth rates of the bamboos in its collection.

To see why this concept is useful, consider an example instance I with 6 bamboos b1, . . . , b6
with rates h1 = 1

2 , h2 = 1
8 , h3 = 1

8 , h4 = 1
8 , h5 = 1

16 , h6 = 1
16 . If we replace h4, h5, and h6

with a virtual bamboo v with growth rate h = 1
8 + 1

16 + 1
16 = 1

4 we obtain the related regular
instance I ′ in which the bamboos b1, v, b2, b3 have growth rates 1

2 ,
1
4 ,

1
8 , and

1
8 , respectively.

Notice also that the collection of bamboos associated with v is a regular instance Iv once all
the rates are multiplied by 1

h = 4. We can now build two Trimming Oracles O′ and Ov for
I ′ and Iv, respectively, by using Lemma 6. It turns out that O′ and Ov together allow us to
build an oracle Or for I as well, which can be represented as a tree (See Figure 5). In general,
our oracles O will consist of a tree TO whose leaves are the real bamboos b1, . . . , bn of the
input instance and in which each internal vertex u serves two purposes: (i) it represents
a virtual bamboo whose associated collection C contains the bamboos associated to the
children of u; and (ii) it serves as a Trimming Oracle Ou over the bamboos in C.6 In order
to query O we proceed as follows: initially we start with a pointer p to the root r of TO;
then, we iteratively check whether p points to a leaf ` or to an internal vertex u. In the
former case, we trim the real bamboo associated with `, otherwise we query the Trimming
Oracle Ou associated with u and we move p to the child of u corresponding to the (virtual
or real) bamboo returned by the query on Ou. Since all queries on internal vertices can be
performed in O(1) amortized time (see Lemma 6), the amortized time required to query O is
proportional to the height of TO. See Figure 5 for the schedule associated to our example
instance I.

6 The root of TO can be seen as a virtual bamboo with a growth rate of 1.

FUN 2021

5:14 Cutting Bamboo down to Size

b4 b5 b6

vb1 b2 b3
1
2

1
8

1
8

1
4

1
8

1
16

1

1
16

TO r

Schedule for Or: b1, v, b1, b2, b1, v, b1, b3

Schedule for Ov: b4, b5, b4, b6

Schedule for O: b1, b4, b1, b2, b1, b5, b1, b3, b1, b4, b1, b2, b1, b6, b1, b3

,. . .

,. . .

,. . .

Figure 5 The tree TO of the Trimming Oracle O for the instance with 6 bamboos b1, . . . , b6 with
rates h1 = 1

2 , h2 = 1
8 , h3 = 1

8 , h4 = 1
8 , h5 = 1

16 , and h6 = 1
16 . Bamboos b4, b5, and b6 have been

replaced by a virtual bamboo v (and a corresponding oracle Ov) with a virtual growth rate of 1
4 .

The root r represents both a virtual bamboo with growing rate 1 and the corresponding Trimming
Oracle Or for the regular instance consisting of b1, v, b2, and b3.

Before showing how to build the tree TO of our Trimming Oracle O, we prove that the
perpetual schedule obtained by querying O achieves a makespan of at most 1. At any point
in time, we say that the virtual height of a virtual bamboo v representing a collection C of
(real or virtual) bamboos is the maximum over the (real or virtual) heights of the bamboos
in C. The bound on the makespan follows by instantiating the following Lemma with b = r

and h = 1, and by noticing that: (i) the root r of TO is scheduled every day, and (ii) that
the maximum virtual height of r is exactly the makespan.

I Lemma 7. Let b be a (real or virtual) bamboo with growth rate h. If b is scheduled at least
once every 1

h days, then the maximum (real or virtual) height ever reached by b will be at
most 1.

Proof. The proof is by induction on the number η of nodes in the subtree rooted at the
vertex representing b in TO.

If η = 1 then b is a real bamboo and the claim is trivially true since the maximum height
reached by b can be at most h · 1

h = 1.
Suppose then that η ≥ 2 and that the claim holds up to η − 1. Bamboo b must be a

virtual bamboo representing some set C = {b′1, b′2, . . . , b′k} of (real or virtual) bamboos which
appear as children of b in TO and are such that: (i) for i = 1, . . . , k − 1, b′i has a growth rate
of h′i = h/2i, and (ii) b′k has a growth rate of h′k = h/2k−1.

Virtual bamboo b schedules the bamboos in C by using the oracle Ov of Lemma 6, on
the regular instance obtained by changing the rate of bamboo b′i from h′i to h′′i = h′i/h.

Let di (resp. d′i) be the maximum number of days between any two consecutive cuts of
bamboo b′i according to to the schedule produced by O (resp. Ov). We know that d′i · h′′i ≤ 1
(as otherwise the schedule of Ov would result in makespan larger than 1 on a regular instance,
contradicting Lemma 6), i.e., d′i ≤ 1

h′′
i
. Since, b is scheduled at least every 1/h days by

hypothesis, we have that di ≤ 1
h·h′′

i
= h

h·h′
i

= 1
h′

i
and hence, by inductive hypothesis, the

maximum height reached by b′i will be at most 1. J

We now describe an algorithm that constructs a tree TO of logarithmic height.
The algorithm employs a collection of sets S0, S1, . . . , where initially S0 = {b1, . . . , bn}

contains all the real bamboos of our input instance, and Si with i > 0 is obtained from
Si−1 by performing suitable merge operations over the bamboos in Si−1. A merge operation
on a collection C ⊆ Si−1 of bamboos, whose growth rates yield a regular instance when
multiplied by some common factor, consists of: updating Si−1 to Si−1 \ C, creating a new
virtual bamboo v representing C, and adding v to Si.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:15

The algorithm works in phases. At the generic phase i = 1, 2, . . . , it iteratively: (1) looks
for a bamboo b with the largest growth rate that can be involved in a merge operation and
(2) perform a merge operation on a maximal set C ⊆ Si−1 among the ones that contain b
(and on which a merge operation can be performed). The procedure is then repeated from
step (1) until no suitable bamboo b exists anymore. At this point we name Ri−1 the current
set Si−1, we add to Si all the bamboos in Ri−1, and we proceed to the next phase. The
algorithm terminates whenever the set Si constructed at the end of a phase contains a single
virtual bamboo r (of rate 1).

The sequence of merge operations implicitly defines a bottom-up construction of the
tree TO, where every merge operation creates a new internal vertex associated with its
corresponding virtual bamboo. The root of TO is r and the height of TO coincides with the
number of phases of the algorithm.

I Lemma 8. The algorithm terminates after at most O(logn) phases.

Proof. We first prove that the algorithm must eventually terminate. This is a direct
consequence of the fact that, at the beginning of any phase i, every set Si−1 containing 2 or
more bamboos, admits at least one merge operation. Indeed, since merge operations preserve
the sum of the growth rates, the overall sum of the rates of the bamboos in Si−1 must be 1.
Consider now a bamboo b ∈ Si−1 having the lowest growth rate h. Since all rates are powers
of 1

2 and must sum to 1, there must be at least one other bamboo b′ ∈ Si−1 \ {b} having rate
h, implying that merge operation can be performed on C = {b, b′}.

It remains to bound the number of phases. We prove by induction on i that any internal
vertex/virtual bamboo v of TO created at phase i has at least 2i leaves as descendants. The
base case i = 1 is trivial since the merge operation that created v must have involved at least
2 real bamboos.

Consider now the case i ≥ 2. We will show that v was created by a merge operation on a
collection C containing at least 2 bamboos v′, v′′ that were, in turn, created during phase
i− 1. Hence, by inductive hypothesis, the number of leaves that are descendants of v is the
sum of the number of leaves that are descendants of v′ and v′′, respectively, i.e., it is at least
2i−1 + 2i−1 = 2i.

Let C ⊆ Si−1 be the set of bamboos used in the merge operation that created v, and let h
be the smallest growth rate among the ones of the bamboos in C. Notice that, by definition
of merge operation, there must be 2 distinct bamboos v′, v′′ with rate h in C. We will now
show that v′ and v′′ were created during phase i− 1. We proceed by contradiction. If neither
of v′ and v′′ were created in phase of i− 1, then {v′, v′′} ⊆ Ri−2 which is impossible since
{v′, v′′} would have been a feasible merge operation in phase i− 2. Assume then that v′ was
not created in phase i − 1, while v′′ was created in phase i − 1, w.l.o.g. Then, v′ ∈ Ri−2,
while v′′ was obtained from a merge operation on a set C ′ ⊆ Si−2 performed in phase i− 1.
Since the growth rate of v′′ is h, the fastest growth rate among the ones of the bamboos
in C ′ must be h/2. Hence, the set C ′′ = {v′} ∪ C ′ was a feasible merge operation in phase
i− 1 when v′′ was created. This is a contradiction since C ′ ⊂ C ′′ was not a maximal set, as
required by the algorithm. J

Next Lemma bounds the computational complexity of constructing our oracle.

I Lemma 9. The Trimming Oracle O can be built in O(n logn) time.

Proof. It suffices to prove that every phase i of our algorithm can be implemented in O(n)
time, since from Lemma 8 the number of phases is O(logn).

FUN 2021

5:16 Cutting Bamboo down to Size

We maintain the set Si−1 as a doubly linked list Li−1 in which each node ` is associated
with a distinct growth rate h` attained by at least one bamboo in Si−1 and stores the set
H(`) of bamboos of Si−1 with grow rate h`. Nodes appear in decreasing order of h`. The
very first list L0 can be constructed in O(n logn) time by sorting the growth rates of the
bamboos in S0. We now show how to build Li in O(n) time.

The idea is to iteratively find two nodes `1, `2 of Li−1 such that: (i) `2 is not the head
of Li−1 and appears not earlier than `1; (ii) if `1 is not the head of Li−1, then selecting
one bamboo from the set H(`) of each node ` that appears before the predecessor `′1 of `1,
and two bamboos from the set H(`′1) yields the (maximal) set C corresponding the merge
operation that algorithm performs; and (iii) all the bamboos in the sets H(`) of the nodes
` that appear not earlier than `1 and before `2 in Li−1 will not participate in any merge
operation of phase i. We call the set of these bamboos D (notice that it is possible for `2 to
be equal to `1, in which case no such node ` exists and D = ∅).

To find `1 and `2 notice that `2 is the the last node of Li−1 for which any two consecutive
nodes preceding `2 correspond to consecutive rates7, while the predecessor `′1 of `1 is the last
node that appears before `2 and such that |H(`′1)| ≥ 2.

We now delete the bamboos in C ∪ D from their respective sets H(`) of Li−1, create
a new virtual bamboo v by a merge operation on C. Finally, delete from Li−1 all nodes `
whose set H(`) is now empty. We then repeat this procedure from the beginning until Li−1
is empty.

Concerning the time complexity, notice that finding `1 and `2 requires O(k) time, where
k is the number of nodes that precede `2 in Li−1. Moreover, all the other steps can be
implemented in O(k) time. Therefore, we are able delete k bamboos from Li−1 in O(k) time,
and hence the overall time complexity to delete all bamboos in Li−1 is O(n).

Finally, by keeping track of the sets D, of all the virtual bamboos v generated during the
iterations, and by using the fact that the rates of the virtual bamboos are monotonically
decreasing, it is also possible to build Li in O(n) time. J

I Lemma 10. The Trimming Oracle O uses O(n) space.

Proof. By Lemma 6 each internal vertex of TO maintains a Trimming Oracle with size
proportional to the number of its children, implying that the overall space required by O
is proportional to the number η of vertices of TO. Since every internal vertex in TO has at
least 2 children, we have that η = O(n). J

By combing Lemma 7, Lemma 8, Lemma 9, and Lemma 10, we can state the following
theorem that summarizes the result of this section:

I Theorem 11. There is a Trimming Oracle that achieves makespan 2, uses O(n) space,
can be built in O(n logn) time, and can report the next bamboo to trim in O(logn) amortized
time.

References
1 Micah Adler, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul W. Goldberg, and

Mike Paterson. A proportionate fair scheduling rule with good worst-case performance. In
Arnold L. Rosenberg and Friedhelm Meyer auf der Heide, editors, SPAA 2003: Proceedings of

7 For technical simplicity, when all consecutive nodes of Li−1 correspond to consecutive rates we allow `1
and/or `2 to point one position past the end of Li−1.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca 5:17

the Fifteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, June
7-9, 2003, San Diego, California, USA (part of FCRC 2003), pages 101–108. ACM, 2003.
doi:10.1145/777412.777430.

2 Sultan S. Alshamrani, Dariusz R. Kowalski, and Leszek Antoni Gasieniec. Efficient discovery
of malicious symptoms in clouds via monitoring virtual machines. In Yulei Wu, Geyong
Min, Nektarios Georgalas, Jia Hu, Luigi Atzori, Xiaolong Jin, Stephen A. Jarvis, Lei (Chris)
Liu, and Ramón Agüero Calvo, editors, 15th IEEE International Conference on Computer
and Information Technology, CIT 2015; 14th IEEE International Conference on Ubiquitous
Computing and Communications, IUCC 2015; 13th IEEE International Conference on Depend-
able, Autonomic and Secure Computing, DASC 2015; 13th IEEE International Conference
on Pervasive Intelligence and Computing, PICom 2015, Liverpool, United Kingdom, October
26-28, 2015, pages 1703–1710. IEEE, 2015. doi:10.1109/CIT/IUCC/DASC/PICOM.2015.257.

3 Michael A. Bender, Rathish Das, Martin Farach-Colton, Rob Johnson, and William Kuszmaul.
Flushing without cascades. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 650–669. SIAM, 2020. doi:10.1137/1.9781611975994.40.

4 Michael A. Bender, Martin Farach-Colton, and William Kuszmaul. Achieving optimal backlog
in multi-processor cup games. In Moses Charikar and Edith Cohen, editors, Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pages 1148–1157. ACM, 2019. doi:10.1145/3313276.3316342.

5 Marijke H. L. Bodlaender, Cor A. J. Hurkens, Vincent J. J. Kusters, Frank Staals, Gerhard J.
Woeginger, and Hans Zantema. Cinderella versus the wicked stepmother. In Jos C. M. Baeten,
Thomas Ball, and Frank S. de Boer, editors, Theoretical Computer Science - 7th IFIP TC
1/WG 2.2 International Conference, TCS 2012, Amsterdam, The Netherlands, September
26-28, 2012. Proceedings, volume 7604 of Lecture Notes in Computer Science, pages 57–71.
Springer, 2012. doi:10.1007/978-3-642-33475-7_5.

6 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC,
Canada, Proceedings, pages 617–626. IEEE Computer Society, 2002. doi:10.1109/SFCS.2002.
1181985.

7 Mee Yee Chan and Francis Y. L. Chin. General schedulers for the pinwheel problem based
on double-integer reduction. IEEE Trans. Computers, 41(6):755–768, 1992. doi:10.1109/12.
144627.

8 Mee Yee Chan and Francis Y. L. Chin. Schedulers for larger classes of pinwheel instances.
Algorithmica, 9(5):425–462, 1993. doi:10.1007/BF01187034.

9 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

10 Mattia D’Emidio, Gabriele Di Stefano, and Alfredo Navarra. Bamboo garden trimming
problem: Priority schedulings. Algorithms, 12(4):74, 2019. doi:10.3390/a12040074.

11 Leszek Gasieniec, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas, Jie Min, and Tomasz
Radzik. Bamboo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In Bernhard Steffen, Christel Baier, Mark van den Brand,
Johann Eder, Mike Hinchey, and Tiziana Margaria, editors, SOFSEM 2017: Theory and
Practice of Computer Science - 43rd International Conference on Current Trends in Theory
and Practice of Computer Science, Limerick, Ireland, January 16-20, 2017, Proceedings,
volume 10139 of Lecture Notes in Computer Science, pages 229–240. Springer, 2017. doi:
10.1007/978-3-319-51963-0_18.

12 Michael H. Goldwasser. A survey of buffer management policies for packet switches. SIGACT
News, 41(1):100–128, 2010. doi:10.1145/1753171.1753195.

13 R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: a real-time scheduling
problem. In [1989] Proceedings of the Twenty-Second Annual Hawaii International Conference

FUN 2021

http://dx.doi.org/10.1145/777412.777430
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.257
http://dx.doi.org/10.1137/1.9781611975994.40
http://dx.doi.org/10.1145/3313276.3316342
http://dx.doi.org/10.1007/978-3-642-33475-7_5
http://dx.doi.org/10.1109/SFCS.2002.1181985
http://dx.doi.org/10.1109/SFCS.2002.1181985
http://dx.doi.org/10.1109/12.144627
http://dx.doi.org/10.1109/12.144627
http://dx.doi.org/10.1007/BF01187034
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.3390/a12040074
http://dx.doi.org/10.1007/978-3-319-51963-0_18
http://dx.doi.org/10.1007/978-3-319-51963-0_18
http://dx.doi.org/10.1145/1753171.1753195

5:18 Cutting Bamboo down to Size

on System Sciences. Volume II: Software Track, volume 2, pages 693–702 vol.2, January 1989.
doi:10.1109/HICSS.1989.48075.

14 Robert Holte, Louis E. Rosier, Igor Tulchinsky, and Donald A. Varvel. Pinwheel schedul-
ing with two distinct numbers. Theor. Comput. Sci., 100(1):105–135, 1992. doi:10.1016/
0304-3975(92)90365-M.

15 William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1558–1577. SIAM, 2020.
doi:10.1137/1.9781611975994.96.

16 Shun-Shii Lin and Kwei-Jay Lin. A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica, 19(4):411–426, 1997. doi:10.1007/PL00009181.

17 Edward M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985. doi:
10.1137/0214021.

18 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

19 Theodore H. Romer and Louis E. Rosier. An algorithm reminiscent of euclidean-gcd computing
a function related to pinwheel scheduling. Algorithmica, 17(1):1–10, 1997. doi:10.1007/
BF02523234.

http://dx.doi.org/10.1109/HICSS.1989.48075
http://dx.doi.org/10.1016/0304-3975(92)90365-M
http://dx.doi.org/10.1016/0304-3975(92)90365-M
http://dx.doi.org/10.1137/1.9781611975994.96
http://dx.doi.org/10.1007/PL00009181
http://dx.doi.org/10.1137/0214021
http://dx.doi.org/10.1137/0214021
http://dx.doi.org/10.1016/0022-0000(81)90012-X
http://dx.doi.org/10.1007/BF02523234
http://dx.doi.org/10.1007/BF02523234

Finding Water on Poleless Using Melomaniac
Myopic Chameleon Robots
Quentin Bramas
University of Strasbourg, ICUBE, France
bramas@unistra.fr

Pascal Lafourcade
LIMOS, University Clermont Auvergne, Aubière, France
pascal.lafourcade@uca.fr

Stéphane Devismes
Université Grenoble Alpes, VERIMAG, France
Stephane.Devismes@univ-grenoble-alpes.fr

Abstract
In 2042, the exoplanet exploration program,1 launched in 2014 by NASA, finally discovers a new
exoplanet so-called Poleless, due to the fact that it is not subject to any magnetism. A new generation
of autonomous mobile robots, called M2C (for Melomaniac Myopic Chameleon), have been designed
to find water on Poleless. To address this problem, we investigate optimal (w.r.t., visibility range
and number of used colors) solutions to the infinite grid exploration problem (IGE) by a small
team of M2C robots. Our first result shows that minimizing the visibility range and the number
of used colors are two orthogonal issues: it is impossible to design a solution to the IGE problem
that is optimal w.r.t. both parameters simultaneously. Consequently, we address optimality of these
two criteria separately by proposing two algorithms; the former being optimal in terms of visibility
range, the latter being optimal in terms of number of used colors. It is worth noticing that these
two algorithms use a very small number of robots, respectively six and eight.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Luminous Robots, Grid, Infinite Exploration, Treasure Search Problem

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.6

Supplementary Material https://doi.org/10.5281/zenodo.3606387

Funding This study was partially supported by the French anr projects ANR-16-CE40-0023
(descartes) and ANR-16 CE25-0009-03 (estate).

1 Introduction

Poleless is a far-off exoplanet discovered in 2042 that is not subject to any magnetism. Hence,
all terrestrial compasses are ineffective on this planet. After the discovery of Poleless, the
National Aeronautics and Space Administration (NASA) has decided to launch a robotic
spacecraft mission toward it in order to evaluate the possibility of a future human presence.
For this purpose, they have designed a new generation of autonomous mobile robots called
M2C, for Melomaniac Myopic Chameleon. These robots are melomaniac: in order to
synchronously move and to easily coordinate their actions they continuously play and listen
the same melody. Of course, the choice of the right song was critical. After a huge campaign
of experiments, an international expert panel (notably including several Nobel prizes) has
selected the song “Heigh-ho” of the Seven Dwarfs.2 The M2C robots are also myopic, i.e.,

1 https://exoplanets.nasa.gov/
2 See https://www.youtube.com/watch?v=HI0x0KYChq4

© Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0612-5616
mailto:bramas@unistra.fr
https://orcid.org/0000-0002-4459-511X
mailto:pascal.lafourcade@uca.fr
https://orcid.org/0000-0002-8032-9732
mailto:Stephane.Devismes@univ-grenoble-alpes.fr
https://doi.org/10.4230/LIPIcs.FUN.2021.6
https://doi.org/10.5281/zenodo.3606387
https://exoplanets.nasa.gov/
https://www.youtube.com/watch?v=HI0x0KYChq4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

they are equipped with visibility sensors of typically small range. The choice of this feature
has been led by several concerns, mainly reducing both the manufacturing costs (still in
2042, NASA has to endure important cuts in its budget) and the energy consumption (of
course, no human intervention can be envisioned to recharge their batteries). Additionally,
the researchers thought to these two technologies (myopia and melomania) to make the
design of the robots as simple as possible. Indeed, simplicity usually implies more robustness
and allows to decrease the weight of robots by avoiding the use of fancy, heavy, and costly
components. Finally, the M2C robots are chameleons meaning that they have the ability to
change their color whenever they want. These colors are used for two main reasons:
1. robot intercommunication, since the colors are captured by the visibility sensor of others

robots in their surroundings, and
2. persistent memory; actually, colors are the only available persistent memory.
Notice since any modulation in the melody playing may cause an irreversible disynchronization,
robots can only use their colors to exchange information.

By analyzing the light spectrum of Poleless, researchers have established the presence
of water and a breathable atmosphere with high probability. However, in order to be sure
of these facts, an exploration mission is mandatory. Once robots will have landed on the
planet, it will be easy for them to test the chemical composition of the atmosphere. Now, to
confirm the presence of water, they will have to explore exhaustively the ground of Poleless.
Especially since the second important goal of the mission is to find an appropriate place,
near a water source, where a future human mission could land. Again, for cost issues, only a
typically small team of M2C robots can be used to achieve this task. Basically, they have to
coordinate together to explore the planet until (at least) one of them find water. Once it will
happen, the robot will both stop moving and singing (informing then the others of the task
completion so that they all stop in turn), and send a signal to Earth in order to be precisely
localized.

The exact size and the relief of Poleless is unknown, even if it seems to be quite flat.
Hence, the surface of Poleless is conveniently discretized as grid of unbounded size, where
nodes represent locations that can be sensed by robots and edges represent the possibility
for a robot to move from one location to another. Hence, the task to be solved by the team
of robots is the treasure search problem in a grid of unbounded size [11]. Now, this problem
is known to be equivalent to the Infinite Grid Exploration (IGE) problem [7], which requires
each node of an infinite grid to be visited within finite time by at least one robot.

We have decided to answer the NASA call for bids by designing new solutions to the IGE
problem that are well-suited to the NASA requirements. Notice, in particular, that despite
the scientific progress, physical boundaries are still in the agenda in 2042. Namely, the M2C
robots are opaque, i.e., a robot is able to see another robot if and only if no other robot
lies in the line segment joining them. Moreover, any solution to the IGE problem should
achieve exclusiveness [2], meaning that, in the grid, any two robots cannot simultaneously
occupy the same node nor traverse the same edge. Indeed, even if in 2042 holograms and
teleportation techniques are commonly used, they are still not mature enough to be used in
a long distance spacecraft mission.

1.1 Contribution

We address the NASA call for bids by investigating low-cost solutions to the IGE problem,
i.e., we try as much as possible to limit the necessary visibility range, the number of used
colors, and the size of the team.

Q. Bramas, P. Lafourcade, and S. Devismes 6:3

We first show that minimizing the visibility range and the number of used colors are two
orthogonal issues: it is impossible to design an algorithm solving the IGE problem that does
not use different colors and that assumes visibility range 1.

Hence, we address the optimality of these two criteria separately. Precisely, we provide
two algorithms for the IGE problem:
1. The first algorithm uses only six M2C robots with visibility range 1 and three colors.
2. The second algorithm uses only eight M2C robots with visibility range 2, yet no color (in

other word, it assumes oblivious anonymous robots).

1.2 Roadmap

In the next section, we define the model associated to M2C robots and Poleless. In Section 3,
we present our impossibility result. In Section 4, we describe our two algorithms. Section 5
is dedicated to related work. We conclude in the last section.

2 Preliminaries

As justified in the introduction, we model the ground of Poleless by an infinite grid with
vertex set in Z×Z, i.e., there is an edge between two nodes (i, j) and (k, l) if and only if the
Manhattan distance between those two nodes, i.e., |i− k|+ |j − l|, is one. The coordinates
are used for the analysis only, i.e., robots cannot access them.

We assume a team R of n > 0 M2C robots evolving on (nodes of) the grid. Recall that
M2C robots are melomaniac, i.e., they compute and move synchronously by continuously
singing Heigh-ho. Precisely, at each beat (or round), they all perform an atomic dance step
as follows. First, they look at their surroundings. Then, they compute a destination among
their current position and the four neighboring ones. Finally, they move to the computed
destination.

M2C robots are chameleons, i.e., they may change their color, which can be seen by other
robots in their surroundings. Let Cl be the set of possible colors. Recall that robots cannot
simultaneously occupy the same node nor traverse the same edge. In such a context, a node
is occupied when a robot is located at the node, otherwise it is empty. The state of a node is
either the color of the robot located at this node, if it is occupied, or ⊥ otherwise. When a
robot looks around, it can only see the states of the node that are within distance Φ ∈ N∗
from its position. Φ is called the visibility range of the robots. The value of Φ depends on
the quality (and so the price) of the robots’ lenses. If the visibility range is one, a robot sees
its own location and the four neighboring nodes of the grid. After looking around, a robot
computes the next destination based only on what it sees and on its own color. During the
compute phase, a robot may also decide to change its color.

2.1 Configurations

A configuration C is a set of pairs (p, c) where p ∈ Z × Z is an occupied node and c ∈ Cl
is the color of the robot located at p. A node p is empty if and only if ∀c, (p, c) /∈ C. We
sometimes just write the set of occupied nodes when the colors are clear from the context.
Also, by a slight abuse of notation, we sometimes partition the configuration into several
subsets C1, . . . , Ck and write C = {C1, . . . , Ck} instead of writing (C = C1 ∪ . . . ∪ Ck) ∧
(∀i 6= j, Ci ∩ Cj = ∅).

FUN 2021

6:4 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

2.2 Views

We denote by Gr the globally oriented view centered at Robot r, i.e., the subset of the
configuration containing the states of the nodes at distance at most Φ from r, translated
so that the coordinates of r is (0, 0). We use this globally oriented view in our analysis to
describe the movements of the robots: when we say “the robot moves Up”, it is according
to the globally oriented view. However, since M2C robots are designed to explore Poleless,
they do not have any compass and so, they have no access to the globally oriented view.
When a robot looks at its surroundings, it obtains a local view. To model the absence of
compass, we assume that any local view acquired by a robot r is the result of an arbitrary
indistinguishable transformation on Gr. The set IT of indistinguishable transformations
contains:
1. the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at r,
2. the mirroring (robots cannot distinguish between clockwise and counterclockwise), and
3. any combination of rotation and mirroring.
Moreover, since robots may obstruct visibility, the function that removes the state of a node
u if there is another robot between u and r is systematically applied to obtain the local view.
Here, we assume that robots are self-inconsistent, meaning that different transformations
may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is relative to
its local view f(Gr), which is the globally oriented view transformed by some f ∈ IT . So,
the actual movement of the robot in the globally oriented view is f−1(d). For example, if
d = Up but the robot sees the grid upside-down (f is the π-rotation), then the robot moves
Down = f−1(Up). In a configuration C, VC(i, j) denotes the globally oriented view of a
robot located at (i, j).

2.3 Algorithm

An algorithm A is a tuple (Cl, I, T) where Cl is the set of possible colors, I is the initial
configuration, and T is the transition function Views → {Idle,Up,Left, Down, Right} ×
Cl, where Views is the set of local views. When the robots are in Configuration C, the
configuration C ′ obtained after one round satisfies: for all ((i, j), c) ∈ C ′, there exists a
robot in C with color c′ ∈ Cl and a transformation f ∈ IT such that one of the following
conditions holds:

((i, j), c′) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c),
((i− 1, j), c′) ∈ C and f−1(T (f(VC(i− 1, j)))) = (Right, c),
((i+ 1, j), c′) ∈ C and f−1(T (f(VC(i+ 1, j)))) = (Left, c),
((i, j − 1), c′) ∈ C and f−1(T (f(VC(i, j − 1)))) = (Up, c), or
((i, j + 1), c′) ∈ C and f−1(T (f(VC(i, j + 1)))) = (Down, c).

We denote by C 7→ C ′ the fact that C ′ can be reached in one round from C (n.b., 7→ is
then a binary relation over configurations). An execution of Algorithm A is then a sequence
(Ci)i∈N of configurations such that C0 = I and ∀i ≥ 0, Ci 7→ Ci+1.

2.4 Poleless Exploration

An algorithm A solves the Poleless exploration if for every execution (Ci)i∈N of A and every
node (i, j) ∈ Z× Z of the grid, there exists t ∈ N such that (i, j) is occupied in Ct.

Q. Bramas, P. Lafourcade, and S. Devismes 6:5

V1 V ′1 V2 V ′2

R

R R R

R

R B

B

R R

Figure 1 Example of four views. V1 and V ′
1 are indistinguishable. Similarly, V2 and V ′

2 are
indistinguishable.

2.5 An Algorithm as a Set of Rules

We write an algorithm as a set of rules, where a rule is a triplet (V, d, c) ∈ V iews ×
{Idle,Up,Left, Down, Right} × Cl.

We say that an algorithm (Cl, I, T) includes the rule (V, d, c), if T (V) = (d, c). By
extension, the same rule applies to indistinguishable views, i.e., ∀f ∈ IT , T (f(V)) = (f(d), c).
Consequently, we forbid an algorithm to contain two rules (V, d, c) and (V ′, d′, c′) such that
V ′ = f(V) for some f ∈ IT .

As an illustrative example, consider local views given in Figure 1. A rule R can associate
View V1 with the direction Up. Since Up is relative to the view, it means for the robot “I
move towards the only robot I see”. View V ′1 is obtained by rotation from V1, so a robot
cannot distinguish V1 and V ′1 , so the same rule R applies in V ′1 and the robot moves Left
towards the only robot it sees. However, if in V1 a robot decides to move to the right
towards an empty node, then, since it does not distinguish its right from its left, the actual
destination between left and right will be decided according to the applied indistinguishable
transformation f ∈ IT . Similarly, Views V2 and V ′2 are indistinguishable for the robots (one
is the mirror of the other), so any rule that applies to V2 also applies to V ′2 , and conversely.
For example, if a robot decides to move towards its blue neighbor B in V2, it will also move
towards its blue neighbor in V ′2 .

2.6 Well-defined Algorithms

Recall that robots are assumed to be self-inconsistent. In this context, we say that an
algorithm (Cl, I, T) is well-defined if the global destination computed by a robot does not
depend on the applied indistinguishable transformation f , i.e., for every globally oriented
view V , and every transformation f ∈ IT , we have T (V) = f−1(T (f(V))). Every algorithms
we will propose will be well-defined. However, to be as general as possible, we will not make
such an assumption in our impossibility results. Finally, remark that a well-defined algorithm
has a unique execution.

2.7 Notations

~t(i,j)(C) denotes the translation of the configuration C of vector (i, j).

FUN 2021

6:6 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

3 Impossibility Result

3.1 The Fence Crossing Lemma
In order to explore Poleless, M2C robots regularly cross what we call fences. A fence L is
composed of two infinite adjacent vertical lines L = (l1, l2) with l1 = {(iL, j)|j ∈ Z} and
l2 = {(iL + 1, j)|j ∈ Z}, for some iL ∈ Z, such that each robot is initially located at some
coordinates (x0, y0) satisfying x0 < iL; see Figure 2. Informally, this means that a fence
is made of two infinite adjacent vertical lines that are initially at the right of all robot’s
positions.

We say that a set of robots have crossed a fence when they are all at the right of the
fence at a given time; see Figure 3. Notice that this does not mean that the robots always
stays on the right of the fence afterward.

Formally, we say that a set of robots S has crossed the fence L = (l1, l2) at Round t if
there exists t′ ≤ t such that every robot r ∈ S is located at some coordinates (x1, y1) with
x1 > iL + 1 at Round t′.

We say a set of robots S single-handed crosses the fence L between t and t′ if for every
robot r ∈ S, (1) r is located at some coordinates (x0, y0) satisfying x0 < iL at Round t (see
Figure 2); (2) r is located at some coordinates (x1, y1) with x1 > iL + 1 at Round t′ (see
Figure 3); and (3) only robots of S are within distance one of r between Round t and Round
t′.

We say that a set of robots S has single-handed crossed the fence L at Round t if
∃t′ < t′′ ≤ t such that S single-handed crosses the fence L = (l1, l2) between t′ and t′′.

To be more general, we now consider any algorithm, i.e., well-defined or not. We first
prove that if robots explore Poleless, then there is a fence that is single-handed crossed by
a subset of robots; see Lemma 1. This latter result will be used to show that, if robots
are anonymous and cannot change their color, the Poleless exploration is impossible under
visibility range 1, whatever the number of robots is; see Theorem 2.

fence
l1 l2

R

R

Figure 2 A team of robots in front of a fence.

fence
l1 l2

R

R

Figure 3 A team of robots has crossed a fence.

I Lemma 1 (The test of the fence). If n robots can explore Poleless, then in every execution
there exists a fence L and a subset of robots S such that S single-handed crosses L within a
finite number of rounds.

Proof. If n robots successfully explore Poleless, then any node is eventually visited by at
least a robot. So, we can choose a node u = (i, j) where i is arbitrarily large: u should
be visited within finite number of rounds despite an arbitrary number of fences have to be
crossed before. If there is an execution where no subset of robots single-handed crosses at
least one of them, then this means that each time a fence is crossed in the execution, some

Q. Bramas, P. Lafourcade, and S. Devismes 6:7

robots are not crossing and are left behind. If i is large enough (i > n), then there is not
enough robots to cross all the fences to reach u. Hence, a subset of robots single-handed
crosses a fence in a finite number of rounds. J

3.2 The Impossibility Result
With only one color and under visibility one, at each round there is at most six possible (local)
views since every node should contain at most one robot (by exclusiveness), see Figure 4.
One can see that any rule associated with view V0 and a non-idle movement is ambiguous,
i.e., the destination depends on the indistinguishable transformation applied to the view.
Indeed, the robot in V0 has no way to distinguish between the four neighboring nodes. The
same is true for V2, V ′2 , and V4. Now, as we do not require algorithms to be well-defined, an
algorithm may include some ambiguous rules. Actually, there are only two views that can
result in non-ambiguous non-idle movement: V1 where a robot sees only one robot around it
and V3 where a robot sees three robots around it. We denote by Rin

1 , resp. Rout
1 , the rule

that orders a robot with view V1 to move towards the neighboring robot, resp. away from
the neighboring robot. Similarly, we denote by Rin

3 , resp. Rout
3 , the rule that orders a robot

with view V3 to move towards the center robot, resp. towards the empty node; see Figure 5.
Note that, since Rin

1 and Rout
1 (resp. Rin

3 and Rout
3) are associated with the same view, they

cannot be part of the same algorithm.

V0 V1 V2 V ′2 V3 V4

R

R

R

R

R R

R

R

R

R

R R R

R

R R R

R

Figure 4 The possible views of a robot with visibility one and without colors.

Rin
1 Rout

1 Rin
3 Rout

3

R

R

R

R

R

R R R

R

R R R

Figure 5 Non-ambiguous and non-idle rules, with visibility one and no color.

I Theorem 2. There is no algorithm that solves the Poleless exploration problem with
single-color robots and assuming visibility range one.

Proof. Assume, by contradiction, that an algorithm A solves the Poleless exploration problem
with single-color robots and assuming visibility range one. We show the contradiction by
proving that using A, the robots fail the test of the fence (Lemma 1).

To that goal, we first construct an execution by choosing carefully which indistinguishable
function is applied to views that are associated with ambiguous rules. If a robot r has a view
V where an ambiguous rule applies we do the following:

FUN 2021

6:8 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

1. if V = V0, then we apply f such that the global destination is Left.
2. if V = V2, and the rule dictates the robot to move toward an empty node, then we apply

f such that the global destination is the unique empty node that is either Up or Down.
3. if V = V2, and the rule dictates the robot to move toward an occupied node, then we

apply f such that the global destination is the unique occupied node that is either Up or
Down.

4. if V = V ′2 , and the rule dictates the robot to move toward an empty node, then we apply
f such that the global destination is the unique empty node that is either Up or Left.

5. if V = V ′2 , and the rule dictates the robot to move toward an occupied node, then we
apply f such that the global destination is the unique occupied node that is either Up or
Left.

6. if V = V4, then we apply f such that the global destination is Left.
We will see that A cannot contain ambiguous rules for V1 and V3. By choosing those
indistinguishable transformations, we obtain a unique execution E. According to Lemma 1,
there exists a fence L = (l1, l2) and a subset of robots S such that S has single-handed
crossed L at time t.

By Definition, robots in S are initially located on the left of the fence. We define the
Round t1, resp. t2, as the last round, before t, when there is a robot of S on l1, resp. on l2.
Hence, we have, t1 < t2 < t.

Claim 1: A includes at least one out-rule, i.e., Rout
1 or Rout

3 .
Proof of the claim: The first robots that enter l1 move Right (in the global view)
towards empty nodes. Moreover, they do so using a non-ambiguous rule since the chosen
indistinguishable transformation forces any robot with such rules to move either Up,
Down or Left. Thus, A must include at least one out-rule, i.e., Rout

1 or Rout
3 .

Claim 2: A includes at least one in-rule, i.e., Rin
1 or Rin

3 .
Proof of the claim: At Round t2, all the robots on l2 move Right to complete the fence-
crossing. Again, they do so using a non-ambiguous rule since the chosen indistinguishable
transformation forces any robot with such rules to move either Up, Down or Left. Thus,
A must include at least one in-rule, i.e., Rin

1 or Rin
3 .

Claim 3: A includes Rules Rin
1 and Rout

3 , but neither Rin
3 nor Rout

1 .
Proof of the claim: Since an algorithm cannot have two rules based on the same view, A
either includes Rules Rin

1 and Rout
3 , or Rules Rin

3 and Rout
1 , by Claims 1 and 2. So, assume,

by contradiction, that A includes Rin
3 and Rout

1 , but neither Rin
1 , nor Rout

3 . At Round
t2, all robots on l2 (at least one) leave it. Again, in this case, these robots necessarily
execute a non-ambiguous rule: the only available rule is Rin

3 . Yet, this implies that there
is an infinite chain of robots on l2, which contradicts the fact that there is a finite number
of robots.

Using Claim 3 we can show the following Claim.
Claim 4: There are two adjacent robots ra and r′a (of S) on l2 at Round t1 + 1.

Proof of the claim:
At Round t1, let ra be any robot on l1. Then, ra leaves l1 towards l2. Again, ra should
execute a non-ambiguous rule at Round t1, i.e., Rin

1 , by Claim 3. So, ra moves towards a
robot rd. This implies that rd ∈ S is not idle at Round t1 since otherwise this would create
a collision, violating then exclusiveness. So, rd has only the three following possibilities
at Round t1: (a) rd executes Rin

1 or an ambiguous rule toward an occupied node, (b) rd

executes an ambiguous rule towards an empty node or (c) rd executes Rule Rout
3 . We

Q. Bramas, P. Lafourcade, and S. Devismes 6:9

now show that in all theses cases, we either obtain a contradiction, or we show that there
are two adjacent robots ra and r′a (of S) on l2 at Round t1 + 1.

fence
l1 l2

? ? ?

? ?

ra rd ?

? ?

Figure 6 Case (a), reaching a contra-
diction.

fence
l1 l2

? ? ?

?

ra rd ?

? ?

Figure 7 Case (b), ra and rd are
neighbors at Round t1 + 1.

In Case (a), illustrated in Figure 6, if Rin
1 is executed by rd, then ra and rd exchange

their positions, violating then exclusiveness, a contradiction. If an ambiguous rule
orders rd to move towards an occupied destination, then there is an indistinguishable
transformation that makes move rd to the Left. Hence, there is a possible execution
that behaves as E until Round t1 − 1, but where ra and rd exchange their positions
during Round t1, violating then exclusiveness, a contradiction.
In Case (b), illustrated in Figure 7, rd sees either V2 or V ′2 (the only ambiguous views
with at least one occupied neighbor and one empty neighbor). So rd has two neighbors,
one of which is ra. So, the chosen indistinguishable transformation makes it moves Up
or Down towards an empty node on l2 and becomes a neighbor of ra at Round t1 + 1.
So, by letting rd = r′a, we obtain that there are two adjacent robots ra and r′a (of S)
on l2 at Round t1 + 1.

fence
l1 l2

? ? ?

r′
a ?

ra rd ?

? ?

Figure 8 Case (c), ra and r′
a are

neighbors at Round t1 + 1.

fence
l1 l2

? ?

r′
a ?

ra ?

? ?

Figure 9 Robots ra and r′
a are stuck

on the fence.

In Case (c), illustrated in Figure 8, one of rd’s neighbor, denoted r′a, is also located on
l2. r′a cannot execute Rin

1 to move towards rd, otherwise it would create a collision
with ra, violating then exclusiveness. Also, r′a does not have a neighbor on l1 because
that would prevent ra from applying Rule Rin

1 . So, if Rout
3 applies to r′a, it moves

towards l1, contradicting the definition of t1. An ambiguous rule cannot apply to r′a
either. Indeed, if an ambiguous rule with an empty destination applies, the chosen

FUN 2021

6:10 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

indistinguishable transformation makes r′a moves towards l1 (and so violating the
definition of t1), and if an ambiguous rule with an occupied destination applies, then
there is an indistinguishable transformation that makes r′a move toward rd. So, again,
there is an execution that behaves as E until Round t1 − 1 but where both ra and
r′a move to the same position during Round t1, creating a collision with ra at Round
t1 + 1, a contradiction. Hence, r′a stays idle and r′a and ra are adjacent on l2 at Round
t1 + 1, and we are done.

From Claim 4, we have an execution where ra and r′a are adjacent on l2 at Round t1 + 1
(Figure 9). To conclude the proof, we show that if two robots are adjacent on l2 at Round t′
with t1 < t′ ≤ t2, then they are adjacent on l2 Round t′ + 1. This contradicts the fact all the
robots leave l2 at Round t2.

When ra and r′a are adjacent on l2 at time t′ (with ra below r′a), one can observe that Rout
3

cannot apply to any of them, nor any ambiguous rule with an empty destination, otherwise
the chosen transformation would make them move toward l1, violating the definition of t1.

Now either ra executes (i) Rin
1 , (ii) an ambiguous rule towards an occupied destination,

or (iii) stays idle. If ra executes Rin
1 or an ambiguous rule towards an occupied destination,

it moves UP towards r′a. r′a cannot stay idle (since otherwise it would create a collision),
and cannot execute Rin

1 , otherwise it would violates the exclusiveness, so it executes an
ambiguous rule toward an occupied destination and moves UP. At Round t′ + 1, ra and r′a
are still adjacent on l2. If ra stays idle, r′a cannot execute Rin

1 , otherwise it would create a
collision, nor an ambiguous rule towards an occupied destination, otherwise we can construct
a possible execution that behaves as E until Round t′, but where r′a moves towards ra to
create a collision, using the appropriate indistinguishable transformation. So r′a stays idle as
well. At Round t′ + 1, ra and r′a are still adjacent on l2.

This contradicts the fact that all the robots on l2 at Round t2 move Right. In the execution
E, fence L is never single-handed crossed, which contradicts our initial assumption. J

4 Algorithms

In this section, we give two algorithms, respectively called A1
(6,3) and A2

(8,1), for solving the
Poleless exploration. Algorithm A1

(6,3) (presented in Subsection 4.1) assumes visibility one
and uses six robots and three colors. Algorithm A2

(8,1) requires visibility two and uses eight
anonymous oblivious robots, i.e., indistinguishable robots. The animations of these two
algorithms are available in our complementary material [6]. The fact that the rules of these
algorithms are well-defined has been checked by the script that generated those animations.
This has been done by making sure that (1) the view of any rule cannot be transformed
into the view of another rule using mirroring, rotation, or a combination of the two, and (2)
for each rule, the global destination does not depend on the applied local indistinguishable
transformation.

4.1 Six Robots with Three Colors under Visibility Range One
The six robots are divided into two categories: the beacon robots and the moving group.
There are four beacon robots, each of those being B-colored in the following. The moving
group is made of two robots: one L-colored leader and one F -colored follower. However,
some robots change their role (by changing their color) along the execution.

Initially, all the robots are close together and organized as shown in Figure 10. The
beacons are used to delimit the area which has been already explored. The moving group
aims at reaching the beacons one by one. Each time the moving group reaches a beacon,

Q. Bramas, P. Lafourcade, and S. Devismes 6:11

smallest enclosing rectangle

B

L F B

B B

Figure 10 Initial configuration of Algorithm A1
(6,3).

robots make an adjustment. At the end of the adjustment, the new beacon position is in
the diagonal (two hops) of the previous one and the moving group has made a turn toward
the next beacon. This adjustment, in particular, allows to take the newly explored nodes
into account. The moving group then continues toward the next beacon, and so on. Each
time the moving group comes back to the first beacon, a so-called phase terminates: the
border of the area initially delimited by the four beacons is now fully visited, and the area
newly delimited by the beacons is bigger; see Figure 11 to visualize the increasing area that
is explored by the moving group.

Nodes visited in Phase 1

Nodes visited in Phase 2

Nodes visited in Phase 3

Node visited at Round 0

B

L F

B

B

B

Figure 11 Visited area after the first three phases for A1
(6,3). The positions of the robots at those

at the beginning of the second phase.

During an adjustment, the leader becomes the beacon, the beacon becomes the leader,
and after that, the new moving group travels toward the next beacon. Figure 15 shows the
sequence of moves of an adjustments occurring at the top-right beacon.

The moving group successfully performs a phase independently of the distance between
the beacons, so that infinitely many growing phases are achieved in sequence. The Poleless
exploration problem is then solved as any node of the grid is eventually included in the area
delimited by the beacons. Note that we use the same technique for the second algorithm.

The rules that allow the moving group to travel along a straight line are shown in
Figure 12. The rules to make an adjustment are shown in Figure 13. In order for the two
first rounds to work as expected, three more rules (Figure 14) are necessary. Those rules are
similar to the previous rules, but consider cases where more robots appear in view. This

FUN 2021

6:12 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

L

F

L

F

Figure 12 The two rules that make the moving group travel along a straight line.

B L

L

B L

F

B

Figure 13 The two rules that perform an adjustment.

actually occurs at the beginning of the algorithm only, when all the robots are close together.
For instance, the follower robot should move towards the leader, even if it sees beacon robots
around it.

I Theorem 3. Algorithm A1
(6,3) solves the Poleless exploration problem using six robots,

three colors and visibility range of one.

Proof. In the following we assume, w.l.o.g., that Node (0, 0) is the one where the bottom-
left-most beacon robot is located in the initial configuration; see Figure 10. Recall that these
global coordinates are used for the analysis only: robots cannot access those coordinates.

Using this coordinate system, the initial configuration is denoted C0 and is decomposed as
follow: C0 = {M0, C0

0 , C
0
1 , C

0
2 , C

0
3}, where M0 = {((0, 1), L), ((1, 1), F)}, C0

0 = {((0, 0), B)},
C0

1 = {((1, 0), B)}, C0
2 = {((2, 1), B)}, and C0

3 = {((1, 2), B)}. We define the configuration
Ci = {M i, Ci

0, C
i
1, C

i
2, C

i
3} in Phase i, where M i = ~t(−i,i)(M0), Ci

0 = ~t(−i,i)(C0
0), Ci

1 =
~t(−i,−i)(C0

1), Ci
2 = ~t(i,−i)(C0

2), and Ci
3 = ~t(i,i)(C0

3). Informally, the configuration in Phase i is
obtained by diagonally translating i times the positions of the beacons and the moving group
in the initial configuration. We now prove that starting from Configuration Ci, Configuration
Ci+1 is eventually reached. Since the initial configuration of our algorithm is C0, this implies
that every configuration Ci, for every i ≥ 0, is gradually reached. By doing so, the leader
robot visits all the edges of growing rectangles. The illustration of one cycle is presented in
Figure 16.

Assume we reach the first configuration Ci of Phase i at time t. Recall that
Ci = {((−i, i+ 1), L), ((1− i, i+ 1), F), Ci

0, C
i
1, C

i
2, C

i
3}. After one round, the configuration

is {((−i, i), L), ((−i, i+ 1), F), Ci+1
0 , Ci

1, C
i
2, C

i
3}.

B L

B

L
L

B F B

B

L

F B

Figure 14 The three rules similar the the previous rules, but used at the beginning of the
algorithm, when the robots close together.

Q. Bramas, P. Lafourcade, and S. Devismes 6:13

B

L

F

B L

F

BL
B

L F

Figure 15 Sequence of moves for an adjustment at the top left beacon robot.

adjustment in 1 round

2i rounds

adjustment in 1 round

2i+ 1 rounds
adjustment in 1 round

2i+ 1 rounds

adjustment in 1 round2i+ 2 rounds

B

L F

B

B

BL

F

LF

L

F

Figure 16 Visualization of one phase.

Then, the moving group travels along a straight line during 2i rounds until robot with
Color L sees the second beacon robot. Indeed, at time t+ 1, it is located at (−i, i) and the
second beacon robot is at (1− i,−i).

At time t+ 2i+ 1, when the robot with Color L sees the second beacon robot, the second
adjustment occurs. At time t+2i+2, the configuration is {((1−i,−i), L), ((−i,−i), F), Ci+1

0 ,

Ci+1
1 , Ci

2, C
i
3}. Then, the moving group travels during 2i+ 1 rounds until it reaches the third

beacon robot. Indeed, the robot with Color L is at (1 − i,−i) at time t + 2i + 2 and the
third beacon is at (2 + i, 1− i).

When the robot with color L sees the third beacon, the third adjustment occurs and the
reached configuration is {((2 + i, 1− i), L), ((2 + i,−i), F), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci
3}.

Then, the moving group travels during 2i+ 1 rounds until the robot with Color L sees
the fourth beacon robot. The last adjustment is performed to obtain the configuration
{((1 + i, 2 + i), L), ((2 + i, 2 + i), F), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci+1
3 }. Finally, after 2i + 2 rounds,

the moving group comes back to the first beacon robot and the configuration is exactly Ci+1

at time t+ 8i+ 5.

FUN 2021

6:14 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

Inductively, the robots start from configuration C0 and reach configuration Ci within
finite time, for any i ≥ 0. Also, Node (1, 1) is visited at Round 0, and the set Vi of nodes
visited by the robot with Color L between Phase i and i+1 contains the edges of the rectangle{
~t(−i,−i)(0, 0),~t(i,−i)(2, 0),~t(i,i)(2, 2),~t(−i,i)(0, 2)

}
; see Figure 11. Since {(1, 1)} ∪

⋃
i≥0 Vi =

Z× Z, Algorithm A1
(6,3) solves the Poleless exploration problem. J

4.2 Eight Anonymous Oblivious Robots under Visibility Two

Algorithm A2
(8,1) is based on principles similar to those used in Algorithm A1

(6,3): four beacon
robots delimit the visited area, and there is a moving group, this time made of four robots,
to travel from one beacon to another. The initial configuration of A2

(8,1) is described in
Figure 17. Since robots are anonymous, the only way to distinguish them is to use their
relative locations. Notice that, this time, beacon robots are always the same. To maintain
this property, we ensures that beacon robots are never adjacent to any other robot. Since
the visibility range is two, a beacon can see other robots and move before becoming their
neighbor.

R

R

R

R R R

R

R

Figure 17 Initial configuration I of A2
(8,1).

Observe that since the visibility range is two, the obstructed visibility can impact the
local view of a robot because a robot at distance one can hide a robot behind it at distance
two. So, the rules of A2

(8,1) should not depend on the states of the nodes that are hidden by
a robot. To make it clear, those nodes will be crossed out in the illustrations of our rules;
see, e.g., Figure 18.

R

R R R

R

R R R

R

R R

Figure 18 Rules to move along a straight line.

Q. Bramas, P. Lafourcade, and S. Devismes 6:15

The first three rules (see Figure 18) allow the moving group to move along a straight line.
The moving group always forms a spaceship shape where one robot is at the bow, one robot
is at the stern, and there is one robot on each side, adjacent to the stern. When in formation,
each robot knows whether it is at the bow, the stern, or at a side of the spaceship. However,
the robots on the side do not know on which side they are, since there is no common chirality.
The first rule orders the bow robot to move away from the other robots, the second rule
orders the stern robot to move towards the bow robot, and the third rule orders the side
robots to move to the same direction as the stern robot.

R

R

R R R

R

R

R R R

R

R

Figure 19 Rules to make the spaceship moving along a straight line when seeing the beacon, and
to make the beacon move away.

Then, when the moving group meets a beacon robot, an adjustment is made in two
rounds. The first round of the adjustment, robots execute the rules defined in Figure 19.
The first two rules order the moving group to act as if the beacon was not there i.e., they
continue to move in the same direction. The third rule orders the beacon to move away from
the bow robot. The beacon robot can distinguish the correct direction because it also sees
a side robot. In the second round of the adjustment, the two rules given in Figure 20 are
used. The first rule orders the bow robot to continue as usual (i.e., as if the beacon was not
here) and the second rule orders the side robot that sees the beacon robot in diagonal to
move towards the stern robot. After the execution of those rules, the spaceship shape is
preserved, but the bow robot has become a side robot, and this side robot has become the
bow robot. In the same round, the beacon robot executes the same rule as in the first round
of the adjustment (the third rule of Figure 19) to move away from the group. The view is
mirrored from the first round of the adjustment, so after the two rounds of the adjustment,
the beacon has moved diagonally.

The last rule given in Figure 21 is necessary to make moving as expected the side robot
that still sees the beacon robot right after an adjustment.

R R

R R R

R R

R R

Figure 20 The leader moves in straight line again to become a side follower, the side follower
that sees the beacon moves left (the beacon move away again using the same rule as before).

FUN 2021

6:16 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

R R

R R

Figure 21 The moving group moves away from the beacon. The side follower that still see the
beacon moves away from it.

I Theorem 4. Algorithm A2
(8,1) solves the exclusive Poleless exploration problem using eight

robots without color and visibility range of two.

Proof. The proof of this theorem is similar to the proof of Theorem 4: we decompose the
execution into phases, show by induction that each phase is eventually reached, and finally a
particular rectangle is visited during each phase.

We fix a global coordinate system, not accessible to the robots, where the initial con-
figuration, denoted by C0, is split as follows: C0 = {M0, C0

0 , C
0
1 , C

0
2 , C

0
3}, where M0 =

{(3, 2), (4, 2), (5, 2), (4, 3)}, C0
0 = {(5, 5)}, C0

1 = {(1, 6)}, C0
2 = {(0, 1)}, and C0

3 = {(5, 0)}.
We define the configuration Ci = {M i, Ci

0, C
i
1, C

i
2, C

i
3} in Phase i, where M i = ~t(i,i)(M0),

Ci
0 = ~t(i,i)(C0

0), Ci
1 = ~t(−i,i)(C0

1), Ci
2 = ~t(−i,−i)(C0

2), and Ci
3 = ~t(i,−i)(C0

3).
Here, Ci

0 contains the first beacon robot visited in Phase i, located at the upper right
corner of the configuration.

Assume we reach the first configuration Ci of Phase i at time t. Recall that Ci =
{(i+ 3, i+ 2), (i+ 4, i+ 2), (i+ 5, i+ 2), (i+ 4, i+ 3), Ci

0, C
i
1, C

i
2, C

i
3}. After three rounds,

the configuration is {(i+ 3, i+ 5), (i+ 4, i+ 4), (i+ 4, i+ 5), (i+ 4, i+ 6), Ci+1
0 , Ci

1, C
i
2, C

i
3}.

Then, the moving group has to travel along a straight line during 2i+ 1 rounds until the
bow robot sees the second beacon robot. Indeed, at time t+ 3, the bow robot is located at
(3 + i, 5 + i) and the second beacon robot is at (1− i, 6 + i).

At time t+2i+4, when the bow robot sees the second beacon robot, the second adjustment
occurs. At time t+ 2i+ 6, the configuration is {(1− i, i+ 4), (−i, i+ 5), (1− i, i+ 5), (2−
i, i+ 5), Ci+1

0 , Ci+1
1 , Ci

2, C
i
3}. Then, the moving group travels during 2i+ 2 rounds until it

reaches the third beacon robot. Indeed, the bow robot is at (1− i, 4 + i) at time t+ 2i+ 4
and the third beacon is at (−i, 1− i).

This continues until the configuration Ci+1 is reached.
Inductively, the robots start from configuration C0 and reach configuration Ci within

finite time, for any i ≥ 0. The set Vi of nodes visited between Phase i and i + 1 includes
the edges of the rectangle

{
~t(−i,−i)(0, 1),~t(i,−i)(5, 1),~t(i,i)(5, 5),~t(−i,i)(0, 5)

}
. Also, the set V0

contains the nodes inside rectangle {(0, 1), (5, 1), (5, 5), (0, 5)} as they are visited during the
first phase. Since

⋃
i≥0 Vi = Z×Z, our algorithm solves the Poleless exploration problem. J

5 Related Work

The robots we have considered are known as luminous robots in the literature. They have
been introduced by Peleg in [14]. In [8], the authors compare the computational power of
luminous robots with respect to the three main execution models: fully-synchronous, semi-

Q. Bramas, P. Lafourcade, and S. Devismes 6:17

synchronous, and asynchronous. Solutions for dedicated problems such as weak gathering or
mutual visibility have been respectively investigated in [12] and [13].

Exploration tasks have been first considered in the context of finite graphs. In this setting,
two main variants, respectively called the terminating and perpetual exploration, have been
considered. The terminating exploration requires every possible location to be eventually
visited by at least one robot, with the additional constraint that all robots stop moving after
task completion. In contrast, the perpetual exploration requires each location to be visited
infinitely often by all or a part of robots. In [9], authors solve terminating exploration of any
finite grid using few asynchronous anonymous oblivious robots, yet assuming unbounded
visibility range. The exclusive perpetual exploration of a finite grid is considered in the same
model in [3].

Various terminating problems have been investigated in infinite grids such as arbitrary
pattern formation [4], mutual visibility [1], and gathering [15, 10].

Emek et al. [11] have investigated the treasure search problem in an unbounded size grid [7].
They consider robots operating in two models: the semi-synchronous and synchronous ones.
However, they do not impose the exclusivity at all since their robots can only sense the states
of the robots located at the same node (in that sense, the visibility range is zero). Moreover,
in contrast with our work, they assume all robots agree on a global compass, i.e., they all
agree on the same directions North-South and East-West. They propose two algorithms
that respectively need three synchronous and four semi-synchronous robots. Moreover, they
exclude solutions for two robots.

In a followup paper [7], Brandt et al. extend the impossibility result of Emek et al.
by showing the impossibility of exploring an infinite grid with three semi-synchronous
deterministic robots that agree on a global compass.

In [5], we have investigated the IGE problem by a swarm of autonomous mobile luminous
synchronous robots. Those robots agree on a common chirality, but have no global compass,
while here we neither assumed a common chirality, nor a global compass. Precisely, we
show that using only three non-modifiable colors, six robots, with a visibility range one, are
necessary and sufficient to solve the IGE problem. We also show that using modifiable colors
with only five states, five such robots, with a visibility range one, are necessary and sufficient
to solve the IGE problem. Finally, assuming visibility range two, we provide an algorithm
that solves the IGE problem using only seven identical robots without light.

6 Conclusion

Thanks to our impossibility results, NASA has been convinced that our two algorithms
with Melomaniac Myopic Chameleon Robots are relevant to explore Poleless. Due to some
restrictions on the budget, they finally decided to use robots with only a visibility range
of one. Then, in 2048, the mission “Finding Water on Poleless” was a great success, and
fortunately thanks to our algorithm water was found on Poleless. Once this great news
has been known, NASA realizes that the time to send some humans to Poleless the water
might have change the place. Hence, they ask a different challenge to the community with
the perpetual exploration of Poleless, in order to regularly update information about water
localizations With this new challenge our roadmap is clear for the next months.

FUN 2021

6:18 Finding Water on Poleless Using Melomaniac Myopic Chameleon Robots

References
1 Ranendu Adhikary, Kaustav Bose, Manash Kumar Kundu, and Buddhadeb Sau. Mutual

visibility by asynchronous robots on infinite grid. In Algorithms for Sensor Systems - 14th
International Symposium on Algorithms and Experiments for Wireless Sensor Networks,
ALGOSENSORS 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers, pages
83–101, 2018.

2 Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. Anonymous graph
exploration without collision by mobile robots. Inf. Process. Lett., 109(2):98–103, 2008.
doi:10.1016/j.ipl.2008.08.011.

3 François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous
exclusive perpetual grid exploration without sense of direction. In Antonio Fernández Anta,
editor, Proceedings of International Conference on Principles of Distributed Systems (OPODIS
2011), number 7109 in Lecture Notes in Computer Science (LNCS), pages 251–265, Toulouse,
France, December 2011. Springer Berlin / Heidelberg. URL: http://www.springerlink.com/
content/9l3v424157681707/.

4 Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary
pattern formation on infinite grid by asynchronous oblivious robots. In WALCOM: Algorithms
and Computation - 13th International Conference, WALCOM 2019, Guwahati, India, February
27 - March 2, 2019, Proceedings, pages 354–366, 2019.

5 Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Infinite grid exploration by
disoriented robots. In Michele Flammini Keren Censor-Hillel, editor, Structural Information
and Communication Complexity - 26th International Colloquium, SIROCCO 2019, L’Aquila,
Italy, July 1-4, 2019, Proceedings, volume 11639 of Lecture Notes in Computer Science, pages
340–344. Springer, 2019. doi:10.1007/978-3-030-24922-9_25.

6 Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Poleless Exploration with
Melomaniac Myopic Chameleon Robots: The Animations, January 2020. doi:10.5281/
zenodo.3606387.

7 Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. A tight lower bound for semi-
synchronous collaborative grid exploration. In Ulrich Schmid and Josef Widder, editors,
32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA,
October 15-19, 2018, volume 121 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.DISC.2018.13.

8 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609(P1):171–184, January 2016.
doi:10.1016/j.tcs.2015.09.018.

9 Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien Tixeuil.
Terminating Exploration Of A Grid By An Optimal Number Of Asynchronous Oblivious
Robots. The Computer Journal, March 2020. doi:10.1093/comjnl/bxz166.

10 Durjoy Dutta, Tandrima Dey, and Sruti Gan Chaudhuri. Gathering multiple robots in a ring
and an infinite grid. In Distributed Computing and Internet Technology - 13th International
Conference, ICDCIT 2017, Bhubaneswar, India, January 13-16, 2017, Proceedings, pages
15–26, 2017.

11 Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How many
ants does it take to find the food? Theor. Comput. Sci., 608(P3):255–267, December 2015.
doi:10.1016/j.tcs.2015.05.054.

12 Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Federico Poloni, Nicola
Santoro, and Giovanni Viglietta. Mutual visibility by luminous robots without collisions. Inf.
Comput., 254:392–418, 2017. doi:10.1016/j.ic.2016.09.005.

13 Fukuhito Ooshita and Ajoy K. Datta. Brief announcement: Feasibility of weak gathering
in connected-over-time dynamic rings. In Stabilization, Safety, and Security of Distributed
Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018,
Proceedings, pages 393–397, 2018.

https://doi.org/10.1016/j.ipl.2008.08.011
http://www.springerlink.com/content/9l3v424157681707/
http://www.springerlink.com/content/9l3v424157681707/
https://doi.org/10.1007/978-3-030-24922-9_25
https://doi.org/10.5281/zenodo.3606387
https://doi.org/10.5281/zenodo.3606387
https://doi.org/10.4230/LIPIcs.DISC.2018.13
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1093/comjnl/bxz166
https://doi.org/10.1016/j.tcs.2015.05.054
https://doi.org/10.1016/j.ic.2016.09.005

Q. Bramas, P. Lafourcade, and S. Devismes 6:19

14 David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions
and challenges. In Proceedings of the 7th International Conference on Distributed Computing,
IWDC’05, pages 1–12, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11603771_1.

15 Gabriele Di Stefano and Alfredo Navarra. Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput., 254:377–391, 2017. doi:10.1016/j.ic.2016.09.
004.

FUN 2021

https://doi.org/10.1007/11603771_1
https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1016/j.ic.2016.09.004

1 × 1 Rush Hour with Fixed Blocks Is
PSPACE-Complete
Josh Brunner
Massachusetts Institute of Technology,
Cambridge, MA, USA
brunnerj@mit.edu

Lily Chung
Massachusetts Institute of Technology,
Cambridge, MA, USA
ikdc@mit.edu

Erik D. Demaine
Massachusetts Institute of Technology,
Cambridge, MA, USA
edemaine@mit.edu

Dylan Hendrickson
Massachusetts Institute of Technology,
Cambridge, MA, USA
dylanhen@mit.edu

Adam Hesterberg
Massachusetts Institute of Technology,
Cambridge, MA, USA
achester@mit.edu

Adam Suhl
Algorand, Boston, MA, USA

Avi Zeff
Massachusetts Institute of Technology,
Cambridge, MA, USA
avizeff@mit.edu

Abstract

Consider n2 − 1 unit-square blocks in an n× n square board, where each block is labeled as movable
horizontally (only), movable vertically (only), or immovable – a variation of Rush Hour with only
1× 1 cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block
can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color
oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether
a given block can be moved by one space, or when each block either is immovable or can move
both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and
Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical 1× 2
and horizontal 2× 1 movable blocks and 4-color Subway Shuffle.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases puzzles, sliding blocks, PSPACE-hardness

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.7

Related Version This paper is also available on arXiv at https://arXiv.org/abs/2003.09914.

Acknowledgements We thank the many colleagues over the years for their early collaborations in
trying to resolve the 1× 1 Rush Hour problem (when E. Demaine mentioned it to various groups
over the years): Timothy Abbott, Kunal Agrawal, Reid Barton, Punyashloka Biswal, Cy Chen,
Martin Demaine, Jeremy Fineman, Seth Gilbert, David Glasser, Flena Guisoresac, MohammadTaghi
Hajiaghayi, Nick Harvey, Takehiro Ito, Tali Kaufman, Charles Leiserson, Petar Maymounkov, Joseph
Mitchell, Edya Ladan Mozes, Krzysztof Onak, Mihai Pǎtraşcu, Guy Rothblum, Diane Souvaine,
Grant Wang, Oren Weimann, Zhong You (MIT, November 2005); Jeffrey Bosboom, Sarah Eisenstat,
Jayson Lynch, and Mikhail Rudoy (MIT 6.890, Fall 2014); and Joshua Ani, Erick Friis, Jonathan
Gabor, Josh Gruenstein, Linus Hamilton, Lior Hirschfeld, Jayson Lynch, John Strang, Julian
Wellman (MIT 6.892, Spring 2019, together with the present authors).

© Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam Suhl,
and Avi Zeff;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunnerj@mit.edu
mailto:ikdc@mit.edu
mailto:edemaine@mit.edu
mailto:dylanhen@mit.edu
mailto:achester@mit.edu
mailto:avizeff@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.7
https://arXiv.org/abs/2003.09914
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

1 Introduction

In a sliding block puzzle, the player moves blocks (typically rectangles) within a box
(often a rectangle) to achieve a desired configuration. Such puzzles date back to the 15
Puzzle, invented by Noyes Chapman in 1874 and popularized by Sam Loyd in 1891 [13],
where the blocks are unit squares. One of the first puzzles to use rectangular pieces is the
Pennant Puzzle by L. W. Hardy in 1909, popularized under the name Dad’s Puzzle from
1926, whose 10 pieces require a whopping 59 moves to solve [5]. In general, such puzzles
are PSPACE-complete to solve, even for 1 × 2 blocks in a square box [7, 8], which was the
original application for the hardness framework Nondeterministic Constraint Logic (NCL).
For unit-square pieces (as in the 15 Puzzle), such puzzles can be solved in polynomial time,
though finding a shortest solution is NP-complete [10, 3].

In the 1970s, two famous puzzle designers – Don Rubin in the USA and Nobuyuki “Nob”
Yoshigahara (1936–2004) in Japan – independently invented [9] a new type of sliding block
puzzle, where each block can move only horizontally or only vertically. The motivation is to
imagine each block as a car that can drive forward and reverse, but cannot turn; the goal is to
get one car (yours) to “escape” by reaching a particular edge of the board. The original forms
– Rubin’s “Parking Lot” [11] and Nob’s “Tokyo Parking” [15] – imagined a poor parking-lot
attendant trying to extract a car. Binary Arts (now ThinkFun) commercialized Nob’s 6 × 6
puzzles as Rush Hour in 1996, where a driver named Joe is “figuring things out on their
way to the American Dream” [16]. The physical game design led to a design patent [18] and
many variations by ThinkFun since [16].1 Computer implementations of the game at one
point led to a lawsuit against Apple and an app developer [9].

The complexity of Rush Hour was first analyzed by Flake and Baum in 2002 [4]. They
proved that the game is PSPACE-complete with the original piece types – 1 × 2 and 1 × 3
cars, which can move only in their long direction – when the goal is to move one car to
the edge of a square board. In 2005, Tromp and Cilibrasi [17] strengthened this result to
use just 1 × 2 cars (which again can move only in their long direction), using NCL. Hearn
and Demaine [8, 6] simplified this proof, and proved analogous results for triangular Rush
Hour, again using NCL. In 2016, Solovey and Halperin [14] proved that Rush Hour is also
PSPACE-complete with 2 × 2 cars and immovable 0 × 0 (point) obstacles.2 Unlike 1 × 2
cars, which have an obvious direction of travel (the long direction), 2 × 2 cars need to have a
specified direction, horizontal or vertical.

Back in 2002, Hearn, Demaine, and Tromp [7, 17]3 raised a curious open problem: might
1 × 1 cars suffice for PSPACE-completeness of Rush Hour? Like 2 × 2 cars, each 1 × 1 car
has a specified direction, horizontal or vertical. This 1 × 1 Rush Hour problem behaves
fundamentally differently: deciding whether a specified car can move at all is polynomial time
[7, 8, 17], whereas the analogous questions for 1 × 2 or 2 × 2 Rush Hour (or for 1 × 2 sliding
blocks) are PSPACE-complete [7, 8]. Tromp and Cilibrasi [17] exhaustively searched all 1 × 1
Rush Hour puzzles of a constant size, and found that the length of solutions grew rapidly,
suggesting exponential-length solutions; for example, the hardest 6 × 6 puzzle requires 732

1 Sadly, to our knowledge, Rush Hour the puzzle was not an inspiration for Rush Hour the 1998 buddy
cop film starring Jackie Chan and Chris Tucker.

2 Solovey and Halperin [14] state their result in terms of unit-square cars amidst polygonal obstacles, but
crucially allow the cars to be shifted by half of the square unit. Phrased as cars aligned on a unit grid,
these cars are effectively 2× 2.

3 The open problem was first stated in the ICALP 2002 version of [7], based on discussions with John
Tromp, as mentioned in [17], which is cited in the journal version of [7].

J. Brunner et al. 7:3

moves. They also suggested a variant where some cars cannot move at all (perhaps they
ran out of gas?), which we call fixed blocks by analogy with pushing block puzzles [2],4 as
potentially easier to prove hard.

In this paper, we settle the latter open problem by Tromp and Cilibrasi [17] by proving that
1×1 Rush Hour with fixed blocks is PSPACE-complete. This result is the culmination of many
efforts to try to resolve this problem since it was posed in 2005; see the Acknowledgments.

Our reduction starts from NCL, and reduces through another related puzzle game, Subway
Shuffle. In his 2006 thesis, Hearn [6, 8] introduced this type of puzzle as a generalization of
1 × 1 Rush Hour, again to help prove it hard. Subway Shuffle involves motion planning of
colored tokens on a graph with colored edges, where the player can repeatedly move a token
from one vertex along an incident edge of the same color to an empty vertex, and the goal
is to move a specified token to a specified vertex. Despite the generalization to graphs and
colored tracks, the complexity remained open until 2015, when De Biasi and Ophelders [1]
proved it PSPACE-complete by a reduction from NCL. Their proof works even when the
graph is planar and uses just four colors.

We use a variant on Subway Shuffle where the graph is directed, and tokens can travel
only along forward edges. In Section 3, we prove that directed Subway Shuffle is PSPACE-
complete even with planar graphs and just two colors, by a proof similar to that of De Biasi
and Ophelders [1]. In Section 4, we then show that this construction uses a limited enough
set of vertices that it can actually be embedded in the grid and simulated by 1 × 1 Rush
Hour, proving PSPACE-completeness of the latter with fixed blocks. We conclude with open
problems in Section 5.

2 Basics

First we precisely define the problems introduced above.

I Definition 2.1. In Rush Hour, we are given a square grid containing nonoverlapping
cars, which are rectangles with a specified orientation, either horizontal or vertical. A legal
move is to move a car one square in either direction along its orientation, provided that it
remains within the square and does not intersect another car. The goal is for a designated
special car to reach the left edge of the board. We also allow fixed blocks, which are spaces
cars cannot occupy.

I Definition 2.2. 1 × 1 Rush Hour is the special case of Rush Hour where each car is
1 × 1.

I Definition 2.3. In Subway Shuffle, we are given a planar undirected graph where each
edge is colored and some vertices contain a colored token. A legal move is to move a token
across an edge of the same color to an empty vertex. The goal is for a designated special
token to reach a designated target vertex.

I Definition 2.4. In oriented Subway Shuffle, we are given a planar directed graph where
each edge is colored and some vertices contain a colored token. A legal move is to move
a token across an edge of the same color, in the direction of the edge, to an empty vertex,
and then flip the direction of the edge. The goal is for a designated special token to reach a
designated target vertex.

4 Tromp and Cilibrasi [17] refer to 1 × 1 Rush Hour as “Unit (Size) Rush Hour” and the fixed-block
variant as “Walled Unit Rush Hour”.

FUN 2021

7:4 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

Figure 1 The valid Subway Shuffle vertices with degree 3. Every vertex with degree 1 or 2 is
valid.

I Lemma 2.5. Subway Shuffle, oriented Subway Shuffle, and Rush Hour are in PSPACE.

Proof. We can solve these problems in nondeterministic polynomial space by guessing each
move, and accepting when the special car or token reaches its goal. So all three problems are
contained in NPSPACE, and by Savitch’s theorem [12] they are in PSPACE. J

3 2-color Oriented Subway Shuffle is PSPACE-complete

In this section, we show that 2-color oriented Subway Shuffle is PSPACE-complete. To do
so, we reduce from nondeterministic constraint logic, which is PSPACE-complete [8]. Our
reduction is an adaption of the proof in [1] in which the gadgets use only two colors (instead
of four) and work in the oriented case.

We actually prove a slightly stronger result in Theorem 3.1: that 2-color oriented Subway
Shuffle is PSPACE-complete even with a restricted vertex set, and with a single unoccupied
vertex. A vertex is valid if it has degree at most 3, and has at most 2 edges of a single color
attached to it; these vertices are shown in Figure 1. Our proof of PSPACE-hardness will
only use valid vertices.

I Theorem 3.1. 2-color oriented Subway Shuffle with only valid vertices and exactly one
unoccupied vertex is PSPACE-complete.

Proof. Containment in PSPACE is given by Lemma 2.5. To show hardness, we reduce from
planar NCL with AND and protected OR vertices.

In constraint logic, a protected OR vertex is an OR vertex (one with three blue edges)
such that two edges, due to global constraints, cannot simultaneously point towards the
vertex. NCL is still PSPACE-complete when every OR vertex is protected [8]. Because of
this global constraint, there are only five possible states that a protected OR vertex can be
in. In particular, there are only four possible transitions between the states of a protected
OR vertex. Our OR gadget only allows these four transitions; in particular it does not allow
the transition between only the leftmost edge pointing inward and only the rightmost edge
pointing inward, which is the defining transition that a protected OR vertex does not have
compared to a normal OR vertex.

The Subway Shuffle instance we construct will have only a single empty vertex (other than
the target vertex), called the bubble, which moves around the graph opposite the motion of
tokens. Our vertex and edge gadgets work by having the bubble enter them, move around a
cycle, and then exit at the same vertex. The effect is that each edge in the cycle flips and
each token in the cycle moves across one edge, except that one token by the entrance moves
twice.

The general structure of the reduction is as follows. First, we choose any rooted spanning
tree on the dual graph of the constraint logic graph. This rooted spanning tree will determine
the path the bubble takes to get from one vertex or edge to another. For each edge and

J. Brunner et al. 7:5

vertex in the constraint logic graph, we will replace it with a subway shuffle gadget. The
constraint logic edges which are part of our spanning tree will have a path for the bubble to
cross through them. Each face of the CL graph has paths connecting vertex gadgets and
edge gadgets as necessary to allow the bubble to visit each gadget.

When playing the constructed Subway Shuffle instance, the bubble begins at the root
of the spanning tree. The bubble can move down the tree by crossing edge gadgets until
reaching a desired face. It then enters a vertex or edge gadget, goes around a cycle, and
exits. A sequence of moves of this form corresponds to flipping a constraint logic edge or
reconfiguring a vertex (that is, changing which constraint logic edge(s) are used to satisfy
that vertex and therefore are locked from being flipped away from it). The bubble can always
travel back up the spanning tree to the root, and from there visit any face and then any CL
vertex or edge.

Now we will describe the various gadgets that implement constraint logic in Subway
Shuffle. Many places in the gadget figures have an empty vertex attached to them; this
represents where the gadget is connected to the spanning tree. Entering through these
vertices is the only way the bubble can interact with a gadget.

The edge gadget is shown in Figure 2. The two vertices and edge at the bottom and top
of the edge gadget (in a gray box in the figure) are shared with the connecting vertex gadget.
The edge gadget consists of five interlocking cycles. The edge can be flipped by rotating each
of the five cycles in order, as shown in Figure 3. The bubble rotates a cycle by entering at
the appropriate white vertex, and then moving around the cycle, and finally exiting where it
entered.

If the edge is in the spanning tree, we include the rightmost vertex called the exit, which
allows the bubble to visit the edge gadget and pass through to face on the other side of the
edge. We place the edge gadget in the orientation so that the entrance is on the face closer
to the root of the spanning tree of the dual graph.

There are two kinds of edges in constraint logic: red and blue edges. The only difference
is that they have different weights for the constraint logic constraints. Blue edges are as
shown in Figure 2 (and can be rotated); red edges are the same gadget, but reflected.

Edge gadgets connect to vertex gadgets by sharing the two vertices and edge marked in a
gray box. In the edge gadget, when the vertex colors and edge direction are as shown in the
edge gadget figure, the edge is unlocked, which means that the bubble is free to flip the
direction of that edge. The vertex gadget’s colors take precedence for the shared edges and
vertices. When they do not match those shown in the edge gadget figure, we say the edge is
locked. When this happens, it becomes impossible for the bubble to rotate first cycle, and
thus prevents the bubble from flipping the edge. This mechanism is what allows the gadgets
to enforce the constraints of the vertices in the constraint logic graph. Edges are only ever
locked while pointing into a vertex because all of the constraints in constraint logic only give
lower bounds on the number of inward pointing edges. When an edge is pointing away from
a vertex, some of the cycles in the vertex will be impossible to rotate, preventing the bubble
from unlocking other edges.

The AND vertex gadget is shown in Figure 4. Whenever the bubble is not visiting the
vertex gadget, either the blue (weight 2) edge or both red (weight one) edges are locked to
point towards the vertex. If all three edges are pointing towards the vertex, the bubble can
visit the vertex gadget (at the top entrance) and go around the cycle to switch which edges
are locked. This implements the constraints on a NCL AND vertex.

Our protected OR vertex gadget is shown in Figure 5. The two protected edges are the
leftmost and rightmost edges, so we can assume that they never both point towards the vertex.
The gadget has three entrances. The gadget can be in five possible states corresponding

FUN 2021

7:6 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

vertex
gadget

vertex
gadget

(a)

vertex
gadget

vertex
gadget

(b)

vertex
gadget

vertex
gadget

(c)

vertex
gadget

vertex
gadget

(d)

Figure 2 The edge gadget for 2-color oriented Subway Shuffle, shown (a) directed down and
unlocked, (b) directed up and unlocked, (c) directed down after the bubble has passed through, and
(d) directed up after the bubble has passed through. This gadget is based on the edge gadget in [1].

to the five possible states of a CL protected OR. In each state, the edges which are locked
in correspond to the set of edges that are pointing inward in the corresponding state of a
CL protected OR. In the first state, the left edge is locked, and the other two are free. In
the second state, the middle edge is also locked. In the third state, only the middle edge is
locked. In the fourth state, both the middle and right edges are locked. Finally, in the fifth
state, only the right edge is locked. To get from one state to the next, the bubble rotates a
single cycle. The fives states and the transitions between them are shown in Figure 5. The
only transitions between states are to the next and previous states. To transition from one
state to the next, the bubble goes around the cycle indicated by the dotted edges.

Our last gadget is the win gadget, shown in Figure 6. It is placed attached to the edge
gadget corresponding to the target edge in the constraint logic instance, and allows the player
to win the Subway Shuffle instance when that edge can be flipped.

In the first state shown, the target edge is pointing away. If the bubble arrives at the win
gadget, it cannot accomplish anything. If the target edge is flipped so it now points toward
the win gadget, we will be in the second state. Then the bubble can enter the win gadget at
the top entrance and go around the indicated cycle, moving the special token one to the left.
Finally, the bubble can enter at the bottom entrance to move the special token across to the
target vertex.

To allow the bubble to reach every gadget, we connect the entrances and exits of gadgets
which are on the same face of the CL graph. This simply requires a tree connecting these
vertices for each face. Each face other than the root of the spanning tree has exactly one
edge exit on it; we orient the edges on that face to point towards this exit. The color of these

J. Brunner et al. 7:7

vertex
gadget

vertex
gadget

(a)

vertex
gadget

vertex
gadget

(b)

vertex
gadget

vertex
gadget

(c)

vertex
gadget

vertex
gadget

(d)

vertex
gadget

vertex
gadget

(e)

Figure 3 The five cycles that the bubble rotates to flip the orientation of an edge gadget. For
each cycle, the bubble enters at the white vertex, goes around the dotted cycle, and leaves where it
entered. Note that the colors and orientation of the edge and vertices that connect to the vertex
gadget will not always match what is shown in this figure. When they do not, we say the edge is
locked by the corresponding vertex gadget, and it is not possible to rotate the dotted cycle.

(a) All edges oriented in, with the blue
edge locked.

(b) All edges oriented in, with both red
edges locked.

Figure 4 The AND vertex gadget for 2-color oriented Subway Shuffle. This gadget is based on
the AND vertex gadget in [1].

edges does not matter, provided all vertices are valid and the token at the tail of an edge
is the same color. For the face which is the root of the spanning tree, the tree connecting
entrances has one vertex without a token, and the edges point towards it; this is where the
bubble starts.

FUN 2021

7:8 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

(a) State 1: The left edge is locked. The middle
edge is unlocked and pointing in. The right edge is
pointing out.

(b) State 2: The left and middle edges are locked.
The right edge is pointing out.

(c) State 3: The left edge is pointing out. The
middle edge is locked. The right edge is unlocked
and pointing in.

(d) State 4: The left edge is pointing out. The
middle and right edges are locked.

(e) State 5: The left and middle edges are pointing
out. The right edge is locked.

Figure 5 The five states of the protected OR vertex. The dotted edges show the cycle that is
rotated to transition to the next state. Note that each state is defined only by which edged are
locked in; the other unlocked edges can be either pointing in or out in each state.

Now we show how the gadgets prevent any moves other than the moves outlined above
that simulate the NCL instance. First we consider the edge gadget. It is easy to check that
while rotating any of the dotted cycles in an edge gadget, there are only two legal moves
other than continuing the cycle. The first one is leaving through the exit vertex during the
third cycle. This is equivalent to the bubble just using the throughway in the edge gadget to
reach the rest of the spanning tree after turning only the first two cycles. By Lemma 3.3,
this is never useful. The other legal move is while turning the first, fourth, or fifth cycle,
it is possible for the bubble to move into the connecting vertex gadget through the shared
vertices. We will show that nothing useful can be accomplished here when we consider the
vertex gadgets. Similarly, it will also be possible for the bubble to come from a vertex and
enter the edge gadget through the shared vertices. We show this is not useful in Lemma 3.2.

I Lemma 3.2. It is never useful for the bubble to enter an edge gadget directly from a vertex
gadget through the shared vertices.

J. Brunner et al. 7:9

(a) The locked win gadget. The bubble
cannot do anything here.

(b) The unlocked win gadget. Now that
the blue edge is pointing into the gadget,
the indicated cycle can be rotated.

Figure 6 The win gadget for 2-color oriented Subway Shuffle. The target edge starts pointing
away. If it is flipped, the bubble can enter the win gadget once at each entrance to move the (bottom
right) purple special token to the (bottom left, green) target vertex. This gadget is based on the
FINAL gadget in [1].

Proof. We need to check the up, down, up traversed, and down traversed configurations.
In most configurations, there are no legal moves to enter the edge gadget from the shared

vertices. The only configuration where this is possible is from the orange token on the top
left of the upward pointing edge gadget. From here, it can move through a path of three
tokens before it gets stuck. At that point, the only legal move is to undo the last three moves
and exit the same way it entered. J

I Lemma 3.3. It is never useful to turn some of the cycles in an edge gadget without turning
all of them.

Proof. If you turn some of the cycles, but not all of them, then both ends of the edge gadget
will be in the pointing outward configuration. For all of the vertex gadgets, there are no
transitions that require the outward pointing configuration, so the edge gadget being in this
configuration never lets you make a move that you could not make if you finished turning all
of the cycles in an edge gadget.

We also need to make sure that turning only some cycles, and then entering an edge
gadget from a vertex gadget (as in Lemma 3.2), does not allow you to do anything. If we
look at all of the partial edge configurations as shown in Figure 3, there is no way to access
anything from any of these configurations. We also need to check the configurations that
arise from partially rotating an edge and then traversing it. Since it is not possible to reach
the traverse paths from entering from a vertex gadget, these configurations also do not let
the bubble do anything else useful. J

Now we consider the AND gadget. Since the entire gadget is a single cycle, there is
nothing the bubble can do within the gadget while turning the cycle. While turning the
cycle, the bubble can try to enter an edge gadget through one of the shared vertices; however,
we have already shown that the this is never useful in Lemma 3.2.

FUN 2021

7:10 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

We also need to consider if the bubble enters the vertex gadget from an edge on one of
the shared vertices. It will never be able to move around the entire cycle because the orange
vertex at the top will not be accessible. The only other thing the bubble can do is try to
enter a different edge gadget, but we already showed this is not useful in Lemma 3.2.

Now we consider the OR gadget. First we look at each of the four cycles. While turning
the first cycle, the only legal move that is not continuing the cycle is moving the purple token
just to the right of the cycle. However, from here, the only moves lead to dead ends so there
is not anything useful for the bubble to do besides immediately return to the cycle. There
are no other legal moves while turning the second cycle. While rotating the third cycle, it
is possible for the bubble to reach the shared vertices of the leftmost edge gadget, but by
Lemma 3.2 this does not help. While rotating the fourth cycle, it is possible for the bubble
to reach the shared vertices of the rightmost edge gadget, but again this does not help.

Now we consider when the bubble enters the OR vertex gadget from an edge gadget
through one of the shared vertices. In the first state, there are no legal moves after entering
from the top or right edges. In the second state, from either the top or left edges it can
enter and traverse most of the gadget but cannot complete any loop and thus cannot make
progress by Lemma 3.4. In the third state, the bubble has no legal moves after entering
from the left or top edge. From the right edge it can traverse most of the gadget but cannot
complete any loops. From the fourth state, again, while the bubble can traverse most of the
gadget after entering from the top edge, it does not complete any loops so it has no effect.
In the fifth state, there are no legal moves after entering the vertex gadget.

I Lemma 3.4. If the bubble takes any path from any vertex to the same vertex which does
not complete a nontrivial loop, then the state of the Subway Shuffle instance must not have
changed.

Proof. If the bubble never completed a loop, then the only way for it to get back to where
it started is to take the same path in reverse. By the definition of Subway Shuffle moves,
this exactly undoes these moves returning the instance back to its original state. J

Finally, we check the win gadget. While using the win gadget, there are no legal moves
other than completing the one loop. There is only one edge connected to the win gadget. If
the bubble tries to enter the win gadget here, it cannot leave anywhere else or complete any
loops, so by Lemma 3.4 it must return with no effect.

Since the constraint logic graph is planar, the reduction yields a planar graph for 2-
color oriented Subway Shuffle. Since the constructed instance Subway Shuffle is winnable
exactly when the constraint logic instance is, and the reduction can clearly be done in
polynomial time, this shows 2-color oriented Subway Shuffle is PSPACE-hard. All of the
gadgets used, including the trees connected gadget entrances, use only valid vertices, so it is
still PSPACE-hard with only valid vertices. J

4 1 × 1 Rush Hour is PSPACE-complete

In this section, we show that 1 × 1 Rush Hour is PSPACE-complete by a reduction from
2-color oriented Subway Shuffle with only valid vertices and only a single empty vertex, which
was shown to be PSPACE-complete in the previous section. 1 × 1 Rush Hour is played on a
large square grid. We allow for fixed blocks, which are spaces marked impassable in the grid.

We will simulate Subway Shuffle vertices with individual cars at intersections, and edges
as paths of cars. In general, purple edges and vertices will be horizontal cars, and orange
edges and vertices will be vertical cars. Like in the Subway Shuffle, we will have a single
bubble which is a single empty space that moves around as cars move into that space.

J. Brunner et al. 7:11

Figure 7 A degree-4 Subway Shuffle vertex embedded in Rush Hour. Note that, while this is
not a valid Subway Shuffle vertex, all valid vertices are subsets of this vertex. Individual dashes
represent cars. A line of cars of one color represents a Subway Shuffle edge of that color. The center
boxed car represents the Subway Shuffle vertex.

Figure 8 A Rush Hour simulation of a Subway Shuffle edge. This is a purple edge which points
right.

We replace each vertex in our Subway Shuffle instance with a single car which is vertical
if there is an orange token there, and horizontal if a purple token is there. Orange edges
leading from a vertex attach to it as vertical rows of cars, and purple edges attach to a vertex
as horizontal rows of cars. A degree-4 vertex with a purple token is depicted in Figure 7.
Valid vertices can be embedded this way, with fixed blocks on the unused sides for lower
degree vertices.

A Subway Shuffle edge is simulated by a path of cars which can make right-angle turns,
allowing us to embed an arbitrary planar Subway Shuffle graph. The direction of a car at a
turn in an edge defines which way the Subway Shuffle edge is oriented. A purple edge which
points right is depicted in Figure 8. In order to maintain the directionality of edges, each
edge must be simulated by a path with at least one turn.

To make a move, suppose the bubble is currently at a vertex. To move a token in from
an adjacent vertex, a car from the connecting edge is moved in. Then cars from that edge
are all moved one space toward the initial vertex, until finally we can move the car in the
second vertex out. Note that this process reverses the orientation of the edge as desired.
If the edge was pointed in the correct direction, then this process will succeed; if the edge
is oriented in the wrong direction, then this process will fail when we try to turn a corner
in the edge. Similarly it is impossible to move a token along an edge of the opposite color,
because it will be unable to move out of its vertex. An example of a single Subway Shuffle
move where an orange token is moved up along an orange edge embedded in Rush Hour is
shown in Figure 9.

FUN 2021

7:12 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

(a) Before moving the orange
token up.

(b) After moving the orange to-
ken up.

Figure 9 Moving a single orange token in Subway Shuffle when simulated by Rush Hour in
Figure 8.

No other useful actions can be taken. If the bubble is not currently at a vertex, then
there are at most two possible moves. One of them would just be undoing the previous move,
and the other would be continuing the process of moving a token along an edge. When the
bubble is at a vertex, moving any adjacent car into the vertex is the same as starting the
process of moving a Subway Shuffle token along the corresponding edge.

The win condition of a Rush Hour instance is allowing the marked car to escape the grid.
The win gadget needs to be specified more precisely because Subway Shuffle tokens do not
correspond exactly to Rush Hour cars. Also, we want to make sure that everything can fit
within a grid so our win condition is actually located near the edge.

Our win gadget is depicted in Figure 10. The win condition is the circled car reaching
the star. The boxed cars represent Subway Shuffle vertices. In order to win, first the boxed
orange car directly in front of the circle car must leave by rotating this cycle. This represents
the marked token in the Subway Shuffle vertex moving to the middle vertex along the bottom
of the win gadget. Then, the leftmost orange line must be moved down one space, clearing
the way for the marked car to leave.

In Rush Hour, because winning requires a car leaving the grid, we must also take care to
make sure that the win gadget is at the boudary of our construction, and not somewhere
buried in the middle. To do this, we conisder the CL edge which is part of the win gadget.
Since the CL graph is planar, we can consider one of the faces that this edge is a part of, and
make this face the “outside” face. Now our win gadget is at the boundary, which is what we
needed.

5 Open Problems

In this paper, we have shown that 1 × 1 Rush Hour with fixed blocks is PSPACE-complete,
solving Tromp and Cilibrasi’s open problem [17]. It remains whether the assumption of fixed
blocks can be eliminated, and thereby solve the open problem of Hearn, Demaine, and Tromp
[7, 17]. We note that it is impossible to perfectly simulate a fixed block using Rush Hour
cars, since for any arrangement of cars in a region, there must be at least one point along the

J. Brunner et al. 7:13

Figure 10 The cycle of the subway shuffle win gadget embedded in Rush Hour. The goal is to
get the circled car to the star. The boxed cars are the vertices in the Subway Shuffle win gadget.
The two lines of purple cars extending upward are the purple edges of the connected edge gadget.
Everything inside the solid black line is part of the connecting edge gadget.

Figure 11 Let the gray area be accessible by the bubble. Then the boxed car is at the corner of
the boundary of the accessible region, and regardless of its orientation it must also be accessible by
the the bubble.

boundary of the region that, if it were empty, a car can exit the region. For a single bubble,
it gets worse than that. Let a space be accessible if the bubble can ever reach that space.
By Theorem 5.1, the accessible region is always a rectangle. Since we can ignore anything
inaccessible, we can just assume that everywhere in the entire Rush Hour grid is accessible.
Because the bubble can get everywhere, it seems impossible to modify the gadgets in our
proof in any simple way to constrain the bubble from wandering freely inside and between
the cycles in gadgets.

I Theorem 5.1. In any 1 × 1 Rush Hour instance with no fixed blocks with only a single
“bubble,” the set of accessible spaces is a rectangle.

Proof. The accessible region is clearly connected. If it is not a rectangle, there must be a
corner on the boundary of the accessible region where two accessible spaces are adjacent to
the same inaccessible space, as in Figure 11. Then regardless of its orientation, the car in
this inaccessible space must be able to move into one of these two accessible spaces, and thus
is also accessible. This is a contradiction, so the accessible region must be a rectangle. J

FUN 2021

7:14 1 × 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

References
1 Marzio De Biasi and Tim Ophelders. Subway Shuffle is PSPACE-complete.

Manuscript, February 2015. URL: http://www.nearly42.org/cstheory/
subway-shuffle-is-pspace-complete/.

2 Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2-F is PSPACE-complete.
In Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG 2002),
pages 31–35, Lethbridge, Alberta, Canada, August 12–14 2002.

3 Erik D. Demaine and Mikhail Rudoy. A simple proof that the (n2 − 1)-puzzle is hard.
Theoretical Computer Science, 732:80–84, July 2018.

4 Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”. Theoretical Computer Science, 270(1–2):895–911, 2002.

5 Martin Gardner. Sliding-block puzzles. In Martin Gardner’s Sixth Book of Mathematical
Diversions from Scientific American. W. H. Freeman and Company, 1971. Republished by
MAA, 2001.

6 Robert A. Hearn. Games, Puzzles, and Computation. PhD thesis, Massachusetts Institute of
Technology, 2006. URL: http://erikdemaine.org/theses/bhearn.pdf.

7 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1–2):72–96, October 2005. Originally appeared at ICALP 2002.

8 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. AK Peters/CRC
Press, 2009.

9 Patentarcade.com. Case update: Rubin v. Apple Inc. Blog post, 7 July 2011. URL:
http://patentarcade.com/2011/07/new-case-rubin-v-apple-inc.html.

10 Daniel Ratner and Manfred Warmuth. The (n2 − 1)-puzzle and related relocation problems.
Journal of Symbolic Computation, 10:111–137, 1990. URL: http://users.soe.ucsc.edu/
~manfred/pubs/J15.pdf.

11 Don Rubin. The Parking Lot. http://www.donrubin.com/parking_lot.html, 2012.
12 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

Journal of Computer and System Sciences, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

13 Jerry Slocum and Dic Sonneveld. The 15 Puzzle. Slocum Puzzle Foundation, 2006.
14 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.

The International Journal of Robotics Research, 35(14):1750–1759, November 2016. doi:
10.1177/0278364916672311.

15 James A. Storer. Tokyo Parking / Rush Hour. Jim Storer Puzzles Home Page, 2015. URL:
https://www.cs.brandeis.edu/~storer/JimPuzzles/ZPAGES/zzzTokyoParking.html.

16 ThinkFun. The evolution of ThinkFun’s Rush Hour. Blog post, February 2018. URL:
http://info.thinkfun.com/stem-education/the-evolution-of-thinkfuns-rush-hour.

17 John Tromp and Rudi Cilibrasi. Limits of Rush Hour Logic complexity. arXiv preprint
cs/0502068, 2005. URL: https://arXiv.org/abs/cs/0502068.

18 Stephen A. Wagner. Manipulable puzzle. U.S. Patent D395,468, June 1998. URL: https:
//patents.google.com/patent/USD395468S/en?oq=d395468.

http://www.nearly42.org/cstheory/subway-shuffle-is-pspace-complete/
http://www.nearly42.org/cstheory/subway-shuffle-is-pspace-complete/
http://erikdemaine.org/theses/bhearn.pdf
http://patentarcade.com/2011/07/new-case-rubin-v-apple-inc.html
http://users.soe.ucsc.edu/~manfred/pubs/J15.pdf
http://users.soe.ucsc.edu/~manfred/pubs/J15.pdf
http://www.donrubin.com/parking_lot.html
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1177/0278364916672311
https://www.cs.brandeis.edu/~storer/JimPuzzles/ZPAGES/zzzTokyoParking.html
http://info.thinkfun.com/stem-education/the-evolution-of-thinkfuns-rush-hour
https://arXiv.org/abs/cs/0502068
https://patents.google.com/patent/USD395468S/en?oq=d395468
https://patents.google.com/patent/USD395468S/en?oq=d395468

An Optimal Algorithm for Online Freeze-Tag
Josh Brunner
Massachusetts Institute of Technology, Cambridge, MA, USA
brunnerj@mit.edu

Julian Wellman
Massachusetts Institute of Technology, Cambridge, MA, USA
wellman@mit.edu

Abstract
In the freeze-tag problem, one active robot must wake up many frozen robots. The robots are
considered as points in a metric space, where active robots move at a constant rate and activate
other robots by visiting them. In the (time-dependent) online variant of the problem, each frozen
robot is not revealed until a specified time. Hammar, Nilsson, and Persson have shown that no
online algorithm can achieve a competitive ratio better than 7/3 for online freeze-tag, and posed
the question of whether an O(1)-competitive algorithm exists. We provide a (1 +

√
2)-competitive

algorithm for online time-dependent freeze-tag, and show that this is the best possible: there does
not exist an algorithm which achieves a lower competitive ratio on every metric space.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithm, competitive ratio, freeze-tag

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.8

Acknowledgements The generalization of the metric in Section 4 to the construction of Section 5
was inspired by a discussion with Yuan Yao. We thank David Karger and Aleksander Madry for
teaching the algorithms course where this project began, and for their useful feedback on a draft of
this paper. We also thank three peer editors, Leo Castro, Roberto Ortiz, and Tianyi Zeng for their
helpful comments on an early draft. Finally, we appreciate the helpful comments of the anonymous
reviewers of this paper.

1 Introduction

In the freeze-tag problem (FTP), there are n robots, represented by points in a metric space.
Each robot is either awake (active) or asleep (frozen), and initially only one is awake. The
goal is to get all the active robots to wake up all the asleep robots in the minimum possible
time. Only the active robots may move, and whenever they reach an asleep robot, that robot
wakes up and can now help wake up additional robots. All active robots move at the same
constant rate. A solution to the problem consists of a route which wakes up all of the robots,
and is optimal if it wakes up all the robots in the minimal possible time.

The freeze-tag problem can be interpreted as finding a minimum-depth directed spanning
tree on a set of points, where each vertex has out-degree at most two [1]. The first work
on the problem was done in this language, e.g. in [4], and was motivated by (for example)
the IP multicast problem, where a server needs to distribute information to a set of hosts.
The freeze-tag problem was introduced under this new name in [1], and finding an optimal
solution was shown to be NP-hard. Further work has mostly centered around approximation
algorithms such as in [2] and [6]. No PTAS for general metric spaces has been found, though
much progress has been made for Euclidean metrics in [5] and [7], finding a linear-time PTAS
in some cases. In [1] it is shown that even 5/3-approximation is NP-hard for general metrics
arising from weighted graphs, so assuming P 6= NP , no PTAS exists.

© Josh Brunner and Julian Wellman;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 8; pp. 8:1–8:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunnerj@mit.edu
mailto:wellman@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Online Freeze-Tag

In this paper, we focus on the online version of this problem, where the asleep robots, or
requests, are not known in advance. Each request is released at a certain time, before which
the location, time, or existence of the request is not known. The goal is still to minimize
the time when the last asleep robot is reached. This variant was named time-dependent
freeze-tag (TDFT) by Hammar, Nilsson, and Persson [3]. The online problem models the
schoolyard game of freeze-tag more closely, since one doesn’t know where or when the next
person will get tagged. We feel that it may also be more relevant for some applications,
where requests for information may be unpredictable.

Hammar, Nilsson, and Persson are concerned with the competitive ratio achieved by an
online algorithm, to model the worst-case performance. They show that no algorithm can
achieve a competitive ratio lower than 7/3, by giving a specific metric where this is not
possible [3, Theorem 5]. They ask whether there is any online algorithm that achieves a
constant competitive ratio. We will slightly improve their bound (through a generalized
construction) to show that no competitive ratio lower than 1 +

√
2 is possible, and give an

algorithm which achieves this ratio.

2 Setup and Results

Recall that a metric space M is a set equipped with a distance function d : M ×M → R
which is non-negative, symmetric, and satisfies the triangle inequality. Metric spaces induce
a topology generated by the open balls Bε(x) := {y ∈M : d(x, y) < ε}, for ε > 0 and x ∈M .
Examples of metric spaces include those arising graphs with weights satisfying the triangle
inequality, or, say, Euclidean spaces. For time-dependent freeze-tag, it only makes sense to
use a special class of metric spaces.

I Definition 2.1. A metric space (M,d) is strongly connected if for any two points x, y ∈M ,
there exists a continuous function f : [0, 1]→M with endpoints f(0) = x and f(1) = y, and
also for each z ∈ (0, 1), we have that d(x, f(z)) + d(f(z), y) = d(x, y).

Intuitively, a metric space is strongly connected if it is connected and for all x, y ∈M there
is a “shortest” path from x to y which is also a shortest path to each point along the path.
If a connected metric space (M,d) is not strongly connected, we can instead use the metric
space (M,d′), where for all x, y ∈M , we have

d′(x, y) := min
P :x→y

max
z∈P

d(x, z) + d(z, y).

The metric (M,d′) is strongly connected, because for every point z on the minimal path P
from x to y, the sum of its distances to x and y is at most d′(x, y). The paths P our robots can
take will be parameterized by the time t, and must satisfy |d(P (t), x)− d(P (t′), x)| ≤ |t− t′|
for all times t, t′ and points x ∈ M . In strongly connected metrics, the distance function
actually reflects the time required for a robot to move between points, which is why we make
this restriction.

An instance of the freeze-tag problem consists of a list of the n positions p0, . . . , pn−1
of the robots in a metric space M . The point p0 denotes the starting position of the one
active robot, while p1, . . . , pn−1 are the positions of the frozen robots. We refer to the robot
which began at position pi by ri. Solutions to the freeze-tag problem can be considered as
binary trees rooted at p0 which span the positions pi, where the edges represent robot paths.
Then the FTP is equivalent to finding the spanning binary tree rooted at p0 which has the
minimal possible weighted depth.

J. Brunner and J. Wellman 8:3

An instance of the online (time-dependent) problem consists of the same points pi, but
with associated release times ti. We assume that 0 = t0 ≤ t1 ≤ · · · ≤ tn. The offline (normal
FTP) problem is the special case where ti = 0 for all i. The robots are denoted ri = (pi, ti).
Time-dependent freeze tag necessarily takes place in a strongly connected metric space, so
that robots can take paths between any two points x, y, which take d(x, y) time to complete.
We do not really lose any generality by restricting to strongly connected spaces, because as
noted above any connected space can be modified to be strongly connected, and moreover, it
doesn’t make much sense to play freeze-tag on spaces which aren’t strongly connected in the
first place.

A solution to an instance of the TDFT problem consists of a collection of paths in the
metric space which unfreezes each robot, while an algorithm for TDFT gives a strategy which
says how to move the active robots in any instance of the problem, possibly depending on
the metric. An optimal solution to an instance consists of a optimal scheduling tree, which
unfreezes each robot no earlier than it is released, and minimizes the time which the last
robot is unfrozen. The problem of finding the optimal scheduling tree for a given input is
NP-hard [1], but it is at least computable. We seek to minimize the competitive ratio of
an algorithm A for time-dependent freeze-tag. For each instance σ for TDFT, there is an
associated time required for the optimal scheduling tree, denoted OPT (σ), and a time which
the algorithm’s solution takes, A(σ). We want to minimize the competitive ratio, defined to
be R := max

σ

A(σ)
OPT (σ) .

In [3], Hammar et. al. give an example of a metric space where no algorithm can achieve
a competitive ratio lower than 7/3 for the online time-dependent freeze-tag problem. They
pose the question of whether there is any algorithm which achieves a constant competitive
ratio in every metric space. We answer this question affirmatively, by giving an algorithm
which we will show achieves the best possible competitive ratio.

I Theorem 2.2. The algorithm described in Section 3 is (1 +
√

2)-competitive for the online
TDFT problem on every continuous metric space. Moreover, for every ε > 0, there exists a
continuous metric space where no deterministic algorithm is (1 +

√
2− ε)-competitive for the

online TDFT problem.

In Section 3 we describe our algorithm and show it is (1 +
√

2)-competitive. In Section 4,
we describe a metric space which is extremely similar to the one presented in [3], and use it
as an example of type of analysis we will do. While the lower bound derived in this section is
actually less than 7/3, it serves to motivate the framework for our more complicated analysis.
In Section 5 we generalize the construction, giving an infinite family of metrics (with the
metric in the previous section as a base case), and show that the metrics in this family give
lower bounds on the competitive ratio that can be arbitrarily close to (1 +

√
2), completing

the proof of Theorem 2.2.

3 (1 +
√

2)-Competitive Algorithm

The key idea of our algorithm is patience; we hope to have the robots wait near their
starting positions until all of the robots are released, at which point we can copy the optimal
scheduling tree. Ideally, we don’t move any robots until a time t such that the optimal
scheduling tree for the current input sequence would take time at most t/

√
2, at which point

we use this scheduling tree to wake up all of the robots, taking a total time of t(1 + 1√
2),

achieving the desired competitive ratio. Since we do not know the ultimate number of robots
which will be released, we cannot know when we truly need to start waking up robots, and so
the algorithm needs to be a little fancier. Let’s describe our algorithm more precisely now.

FUN 2021

8:4 Online Freeze-Tag

Let OPT (j) denote the minimum possible run time of a scheduling tree starting at p0
which wakes up all of the robots ri = (pi, ti) for i ≤ j, under the condition that robot ri is
not activated until at least time ti. Equivalently, OPT (j) is the time of the last unfreezing in
the optimal scheduling tree for the instance truncated at rj . Every time a robot is released,
we recompute the value OPT (j). While, as shown in [1], this computation may be NP-hard,
it is certainly still computable.

Our online algorithm always has a schedule in mind for waking up the swarm. At every
moment, all active robots follow the current schedule, by moving along the shortest paths
to their next destination (given by the condition that the metric is strongly connected),
at a rate of one distance unit per time unit. Every time tj when a robot rj is released,
we compute OPT (j) and then overwrite the current schedule with a new schedule (steps
described below), and start over from Step 1.
1. Send every active robot ri back to its starting position pi.
2. Wait until time t =

√
2 ·OPT (j).

3. Wake up the swarm in time OPT (j) by following an optimal schedule.
4. Send every robot ri back to its starting position pi, and wait there.
This algorithm appears to be (1 +

√
2)-competitive, since it should complete waking up the

swarm at time
√

2 ·OPT (j) +OPT (j) = (1 +
√

2) ·OPT (j). The main thing which remains
to be shown is that the algorithm always completes the first step before time t =

√
2 ·OPT (j).

I Lemma 1. Under the algorithm described, at any time T , each robot ri is at a distance at
most T

1+
√

2 from its starting position pi.

Proof. We note that it suffices to only consider times during Step 3, since at any other time
the robots are either at home or moving toward home.

Step 3 started at time at least
√

2 ·OPT (j), so if we have been in Step 3 for a duration
d, the current time is at least T ≥ d+

√
2 ·OPT (j). Step 3 takes a total of OPT (j) time, so

we also have OPT (j) ≥ d. Therefore T ≥ d+
√

2 · d, and so d ≤ T
1+
√

2 . Since robots move at
unit speed, if a robot has been moving for at most d time since the last time it was at its
starting position, it must be within d distance of its starting position. Since Step 3 always
begins with all robots at the starting position, it follows that each robot is always within
T

1+
√

2 of its starting position. J

We are now prepared to prove the first half of our main result.

I Theorem 3.1. The algorithm described is (1 +
√

2)-competitive under any metric for the
time-dependent online freeze-tag problem.

Proof. Let OPT be the time that an optimal schedule would need to wake up all of the
robots. Note that if the final request is released at a time t, then OPT ≥ t, since it is not
possible to satisfy a request before it is released. Therefore tj ≤ OPT for all j.

Consider the time
√

2 ·OPT . Since the last time we received a request was at the latest
at time OPT , we have not modified the schedule since then. Thus, we have had at least
(
√

2 − 1) · OPT = OPT
1+
√

2 time to complete Step 1 of the algorithm. By Lemma 1, at time
OPT , each robot is at most OPT

1+
√

2 away from its starting location. Thus, by time
√

2 ·OPT ,
Step 1 will have finished, and all the robots will be at their starting locations. Then Step 3
will begin at time

√
2 ·OPT , and take at most OPT time, for a total time of (1 +

√
2) ·OPT

for when the last robot is awakened. J

J. Brunner and J. Wellman 8:5

I Remark 3.2. Our algorithm balances staying close to home with having to wait before
executing an optimal schedule. Any algorithm for which Lemma 1 holds for a smaller constant
than 1

1+
√

2 will necessarily have a larger competitive ratio. If there were an algorithm with a
better competitive ratio, it seems that it must be willing to send a robot farther away, while
keeping others slightly closer. Our proof in the next two sections can be viewed as giving a
formal justification for why it isn’t viable to keep most of the robots closer to home.

One drawback of our algorithm is that computing OPT (j) takes an exponential amount
of time, and so it is not particularly efficient in that sense. One could use an approximation
algorithm for OPT (j), which would increase the competitive ratio by the approximation
factor. However, even 5/3-approximation is NP -hard, and the best known polynomial-time
algorithm for general metrics is only a (logn)-approximation [1], so more work will be required
for our algorithm to be executable efficiently.

4 Example Lower Bound Construction

In this section, we use a metric which is very similar to the metric described in [3] which gave
a lower bound of 7/3. This metric can give a lower bound on the optimal competitive ratio
of
√

33−1
2 ≈ 2.37228 . . . by optimizing Lemma 2, which would by itself be an improvement

on the 7/3 bound. We will present a simplified analysis which only gives a lower bound
of 3
√

2 − 2 ≈ 2.24264 . . ., but which aligns better with the methods in Section 5. The
complicated family of constructions there can be viewed as generalizing the metric used
here, and the analysis will follow a similar strategy. In fact, the metric in this section and
the lemmas proved will serve as the base case for an induction argument. We also will use
Lemma 4 as a framework for proving stronger bounds.

A lower bound of 2 is easily achieved by not revealing where a single frozen robot is until
a time equal to its distance from p0, adversarially placing it opposite whatever direction r0
had been moving before that time. To improve on this, Hammar et. al. [3] force two robots
to move in one direction, then travel all the way back the other way to unfreeze the final
robot. Roughly speaking, the improvement in our approach comes from forcing the robots to
move a little bit farther before turning back.

Our metric space M is formed by a weighted graph with 8 vertices. The origin p0 is
where the initial active robot starts, and there will be 7 other points p1, . . . , p7, which aren’t
necessarily starting points for robots. We place p1, . . . , p6 on edges at distance 1 from the
origin, while p7 is at a distance r := 1 +

√
2 from the origin. We also add edges of length one

connecting points (p1, p2), (p3, p4), and (p5, p6), forming three equilateral triangles with the
origin. The metric consists of all points along edges in this graph, with distances given by
shortest path between the points in the graph, and is pictured in the Figure 1 below.

The construction in [3] has exactly the same structure, but with different edge lengths.
Note that any connected undirected graph with weights satisfying the triangle inequality
naturally gives rise to a strongly connected metric space, with distances equal to the lengths
of the shortest paths in the graphs. The points in the metric include all points along the
edges of the graph.

We can now start describing a TDFT instance for this metric. First fix an algorithm
A on the metric M . Let r0 = (p0, 0) and also r1 = (p0, 0), so that we will have N := 2
active robots available from the start. Do not release any other robots until time 1. At
time t = 1, there must a triangle where neither of the robots are. Since the triangles are
all the same, without loss of generality we will assume that this is the triangle p0p3p4.
Then release one robot each at p3 and p4 at time t = 1. In summary, we define the input

FUN 2021

8:6 Online Freeze-Tag

p0

p1 p2

p3

p4

p5p6

p7

1 1

1

1

11

r = 1 +
√

2

1

1

1

Figure 1 The metric space M .

σA := (p0, 0), (p0, 0), (p3, 1), (p4, 1). Certainly the time A(σA) which the algorithm takes to
unfreeze both frozen robots is at least 2, since both robots are at least one away from both
frozen robots at t = 1. The following lemma will be key for our analysis.

I Lemma 2. For any online algorithm A on the metric M with input σA, we have either
A(σA) ≥ 3

√
2 − 2 =: R, or there is some time 1 +

√
2 ≥ t ≥ 2 such that all but at most

N − 2 := 0 robots are at a distance more than t(
√

2− 1) from p0, and closer to a frozen robot
than p0 is.

Proof. Suppose at every time t ∈ [2, 1 +
√

2] there is a robot within t(
√

2− 1) of the origin.
The earliest time that either of the initial requests can be satisfied is time 2. Without loss of
generality, let robot r0 satisfy the request at p3. At the point when r0 reaches p3, the only
way to finish before time t = 3 is if the request at p4 is satisfied by our other initial robot
r1. When r1 reaches p4, it is at a distance 1 from p0, which is greater than t(

√
2− 1) when

t < 1 +
√

2. Then the lemma will hold if r1 is closest to p0, so assume some robot goes back
towards p0 from p3 (assume it’s r0). The scenario right when r0 arrives at p3 at time t ≥ 2
is depicted in Figure 2.

Let T be the earliest time after reaching p3 that r0 can be within T (
√

2 − 1) of the
origin. At that time, r0 will be exactly 1 − T (

√
2 − 1) away from p3. Since it left p3 at

time at least 2, this means that it is also at most T − 2 away from p3. Thus, we have that
1− T (

√
2− 1) ≤ T − 2. Solving this for T gives that T ≥ 3

√
2

2 .
At this time, r1 must still be within T (1−

√
2) of the origin, since until T it was the only

robot available to satisfy our assumption that there is always some robot within t(1−
√

2) of
the origin.

After this time, however, now that r0 is sufficiently close to the origin, r1 can immediately
walk at full speed to p4. It will still take r1 at least 1− T (

√
2− 1) additional time to reach

p4, for a total time of:

T + 1− T (
√

2− 1) = 1 + T (2−
√

2) ≥ 1 + 3(
√

2− 1) = 3
√

2− 2 =: R

Thus, as long as there is always a robot within t(
√

2− 1) of the origin, it is not possible
to satisfy both requests before time R := 3

√
2− 2. J

J. Brunner and J. Wellman 8:7

p0

p3

p4

p7

1

1

1 +
√

2
1

Figure 2 Robots at time t = 2, where r1 is 2(
√

2− 1) away from p0.

We’ll need to verify some other simple but somewhat strange-looking facts.

I Lemma 3. There exists a schedule for the input σA on M which unfreezes all robots by
time t = 1, and another schedule where a single robot unfreezes every other robot by time
t = 2. Moreover, M has N − 1 := 1 additional edges of length 1 +

√
2 connected to p0, on

which none of the requests in σA occur.

Proof. The two robots could unfreeze both by going to p3 and p4 right away. One robot
could complete σA by first visiting p3, and then p4, taking 2 time units. Also, M has the
edge connecting p0 and p7 of length 1 +

√
2 that is not used by σA. J

Now, we can consider the two cases given by Lemma 2 to prove a lower bound.

I Lemma 4. Let R ≤ 1 +
√

2 be a real number, N ≥ 2 an integer. Suppose M is a metric
such that for any algorithm A, there exists an input σA with N robots at p0 at time t = 0, such
that Lemma 2 and Lemma 3 both hold. Then the competitive ratio of any online algorithm
on M is at most R.

Proof. Take any algorithm A on M and let σA be the input given by the hypotheses. By
Lemma 2, we know that either A takes at least R time on σA, or there exists some time
1 +
√

2 ≥ t ≥ 2 when only N − 2 robots are within t(
√

2− 1) of the origin. We will consider
each of these as separate cases.
Case 1: A takes at least R time to complete σA. For σA, we know from Lemma 3 that the

optimal scheduling tree finishes by time 1, so OPT (σA) ≤ 1. This gives a competitive
ratio of A(σA)

OPT (σA) ≥ R.
Case 2: There exists some time 2 ≤ t ≤ 1 +

√
2 when only N − 2 robots are closer than

t(
√

2− 1) to p0. Let p1, . . . , pn−1 be the endpoints other than p0 of the edges of M given
Lemma 3. Now, we modify σA to add the additional requests (pi · t(

√
2− 1), t), which

occur at time t along the edge from p0 to pi located at a distance of t away from p0,
for i = 1, 2, . . . , n − 1. Then the optimal schedule can complete in time t. It starts by
sending one robot to complete σA by time 2 using Lemma 3, and the other N − 1 robots
to complete the extra requests at time t ≥ 2.

For A, when the last request is released at time t, there are only N − 2 robots closer than
t(
√

2− 1) to p0. If there are any robots on the edges connecting p0 and pi for i = 1, . . . , n− 1,
then they are no closer than p0 is to a frozen robot, so by Lemma 2, they are counted among
the N − 2. Now, N − 2 robots cannot complete the additional requests in time less than 2t,

FUN 2021

8:8 Online Freeze-Tag

which is far too slow. Therefore some robot not among the N − 2 must unfreeze one of the
new robots. Combining the hypotheses of Lemmas 2 and 3, the shortest route this robot
can take goes through p0. This robot (and therefore A) must spend a total time of at least
t+ t(

√
2− 1) + t = t(1 +

√
2) total time to satisfy that request, giving a competitive ratio of

at least t(1+
√

2)
t = 1 +

√
2.

Since R ≤ 1 +
√

2, the competitive ratio for any algorithm A is not less than R. J

If we apply Lemma 4 to our particular metric M and σA, it proves that no competitive
ratio better than R := 3

√
2− 2 is possible. As said before, we could optimize the analysis in

this case to show a better bound, but since we will prove a tight bound in the next section,
we won’t bother. Since we have phrased Lemma 4 in such a general manner, it suffices to
construct metrics M where Lemma 3 holds and Lemma 2 can be proven for a smaller values
of R.

5 Tight Lower Bound

Let k be a non-negative integer. We will define a metric Mk with parameters Nk, a natural
number, and Tk, a rooted tree on Nk vertices that has depth k, both of which are a function
of k.

Let’s construct a weighted graph which will form our metric Mk. Let p1, p2, . . . , pNk−1 be
vertices of degree one connected to a vertex p0 by edges of length 1 +

√
2. Then make Nk + 1

copies of the tree Tk (to be described), rooted at vertices pNk
, pNk+1, . . . , p2Nk

. Finally,
connect all vertices in these trees to p0 by edges of length 1.

We will describe the tree Tk recursively. We will define Nk to always be the number of
vertices in the tree Tk, and so also achieve a recursive description of Nk. The tree T0 is
a single point, and T1 consists of two vertices connected by an edge of length one. Then
for k > 1, let Tk+1 be rooted at a vertex v0, with descendants v1, . . . , vNk

. All of the edges
connecting v0 and vi have length 1/2 For all i, let vi be the root of a copy of Tk with all edge
lengths halved. This completes the description of Tk and Nk, and so also Mk. A sketch of
the tree Tk can be seen in Figure 3. Observe that Nk+1 = N2

k + 1, that Tk has k + 1 layers
0, 1, . . . , k (where layer 0 is just the root), but that any path from the root to a leaf has
length exactly 1, for k ≥ 1. Also, note that M1 is exactly the metric used in the Section 4.

v0

v1 v2 v3 vNk−1

Nk−1

Tk−1Tk−1 Tk−1 Tk−1

1/2 1/2 1/2 1/2

Figure 3 The tree Tk, in terms of Tk−1.

J. Brunner and J. Wellman 8:9

Let’s define the input σA, for A an arbitrary online algorithm for the metric Mk. Suppose
there are Nk starting robots active at p0 at time 0, and no frozen robots. Observe the
positions of the robots at time t = 1. Then since there are Nk + 1 copies of Tk, at least one
tree will have no robots along any of the edges to any of the vertices in the tree. Without
loss of generality assume this is the tree rooted at pNk

. Then let σA be the input which
starts Nk robots active at p0 at time 0, and releases robots at time t = 1 at each node of the
tree rooted at pNk

. Namely, if a node of Tk has down-degree d, then release max(d− 1, 1)
frozen robots at that node. The only exception will be the root of Tk, which has down-degree
Nk−1, but σA releases Nk−1 frozen robots at the root instead of Nk−1 − 1 (this extra robot
will make the analysis slightly more clean). The idea behind this construction of σA is that
it provides just enough robots such that if the root were unfrozen, the robots could cascade
through the tree unfreezing everything in 1 unit time.

I Lemma 5. The number of frozen robots released by σA in layers 0, . . . , i− 1 of the tree is
equal to the number of nodes in layer i.

Proof. We use induction on i. For the base case i = 1, the number of frozen robots in layer
0 is just the number of frozen robots at the root, which by construction is Nk, which is also
the number of nodes in layer 1 of Tk.

Suppose the lemma holds for some i ≥ 1. In layer i, each node has down degree d and
d − 1 robots located at it (since i ≥ 1). Thus, the total number of nodes in layer i layer
plus the number of robots in layer i is equal to the number of nodes in layer i + 1. By
our inductive hypothesis, then, the total number of robots in layers 0, . . . , i is equal to the
number of nodes in layer i+ 1. J

We aim to prove versions of Lemmas 2 and 3 for Mk, for some real number Rk ∈ [2, 1 +
√

2]
depending on k. The previous section provides the base case k = 1, where R1 = 3

√
2− 2.

Also note that everything holds for k = 0, when the graph consists of three spokes, and
R0 = 2. In general, we will define Rk := 1 +

√
2 − (

√
2 − 1)k+1. One can check that this

matches R0 and R1. This formula has the important properties that Rk+1 −Rk < 2−(k+1)

and that lim
k→∞

Rk = 1 +
√

2, which are both clear. This definition isn’t just arbitrary though;
it arises as the amount of time it takes to bounce back and forth between Tk and the ball of
radius t(

√
2− 1) around p0.

I Lemma 6. Suppose that at all times t ∈ [Rk, Rk+1) there are at least Nk − 1 robots within
a distance t(

√
2− 1) of p0. Then there exist Nk− 1 robots that are unfrozen at time Rk which

do not unfreeze any robots at any time t ∈ [Rk, Rk+1].

Proof. A similar argument to what follows appeared within the proof of Lemma 2.
At time Rk, there exist at least Nk − 1 robots that are within Rk(

√
2− 1) of p0. If these

robots stay within t(
√

2 − 1) of p0, then they will never reach a frozen robot in this time
interval, since all frozen robots are at least one away from p0 and Rk+1 < 1+

√
2 = 1/(

√
2−1).

Then at some time t some robot that either was frozen at time Rk or unfroze another robot
must enter the ball of radius t(

√
2− 1), otherwise there will always be these Nk − 1 robots

that never unfreeze other robots. Now, since this robot entering the ball must have come
from a point at a distance 1 from p0, the minimal time x > 0 after Rk required such that
1− x ≤ (x+Rk)(

√
2− 1) is x = 1−Rk(

√
2−1)√

2 . Then, a robot exiting the ball has a distance x
remaining to reach a frozen robots, which therefore cannot occur until time at least Rk + 2x.

Now, it can be checked that in fact, Rk+1 = Rk +
√

2(1 − Rk(
√

2 − 1)) = Rk + 2x.
Therefore it is impossible to avoid having Nk − 1 robots never unfreeze a robot in this time
interval. J

FUN 2021

8:10 Online Freeze-Tag

I Lemma 7. Lemma 3 holds for the metric Mk with input σA and the integer Nk.

Proof. A schedule can unfreeze all the robots released in σA by time t = 1 by having each of
our starting Nk robots go directly from p0 to a different vertex of the tree rooted at pNk

. At
time 1, they will all arrive and wake up all of the robots.

We can also have a single robot unfreeze all of the robots by time t = 2. First, our one
robot moves to pNk

by time t = 1. Then, each of the newly unfrozen robots moves down the
tree to the root of some copy of Tk−1. There were Nk robots frozen at pNk

, so all of the Nk
roots can be reached by time t = 3/2. By induction, Tk−1 can be traversed by a single robot
in one time unit (the base case k = 1 is clear), but these copies of Tk−1 have edges of half
the length, so all of these robots can be traversed in half a time unit. Therefore the entire
tree can be visited by time t = 2.

Finally, the edge from p0 to the vertices p1, p2, . . . , pNk−1 give us Nk − 1 additional edges
of length 1 +

√
2 on which no requests from σA occur. J

It now remains to prove a sufficiently strong version of Lemma 2, so that we can use
Lemma 4. Call an unfrozen robot free at time t if it is more than t(

√
2− 1) away from p0.

In the context of Lemma 2, we are looking for a time t when all but possibly Nk − 2 robots
are free. It will be helpful to use this to constrain how many robots can be free by a certain
time.

I Lemma 8. Suppose A is an algorithm such that at any time under the input σA, there are
at least Nk − 1 robots which are not free. Then A cannot unfreeze as many robots as there
are nodes in layers 0, . . . , i before time Ri.

Proof. We use induction on i. The base case, i = 0, simply says that A cannot unfreeze
any robots before time 2. This is true because σA chooses to put all of the frozen robots
on a tree that no active robot is near. The nearest a robot could be at t = 1 is p0, which is
distance 1 away from any node of the tree.

Let xi be the number of nodes in layers 0, . . . , i. Suppose that our lemma holds for i− 1.
Then just before time Ri−1, there are at most xi−1 free robots, since of our initial Nk robots
at least Nk − 1 of them must be near p0 and not be free.

By Lemma 6, there must be Nk − 1 robots which were unfrozen before Ri−1 that never
unfreeze any robots between the times Ri−1 and Ri. In particular, without loss of generality
we will assume that these are the Nk − 1 robots that are required to stay near p0, so the
only robots we have available during this interval are the xi−1 free robots.

Since Ri −Ri−1 < 2−i, and every edge coming out of a node in one of layers 0, . . . , i− 1
has length at least 2−i, it is not possible for any free robot to fully traverse one of these edges
between times Ri and Ri−1. Thus, we can assume these edges don’t exist for bounding the
number of robots that can be woken up between times Ri and Ri−1. Ignoring these edges,
we have a bunch of subtrees in the bottom layers, each of which have a total of Nk−i robots
on them, and xi−1 single nodes in layers 0, . . . , i− 1 which each have at least Nk−i robots
frozen on them.

Each of our xi−1 robots can wake up at most all of the robots in either one subtree or one
single node. Since every node in layers 0, . . . , i− 1 has at least Nk−i robots at it, and each
of the subtrees has at most Nk−i robots in it, the number of robots that can be woken up is
maximized by sending a free robot to each of the nodes in layers 0, . . . , i− 1. By Lemma 5,
the total number of robots in these layers equal to the number of nodes in layer i. Thus,
we now have a total of xi free robots, so we cannot have more than xi free robots before
time Ri.

If we have xi free robots, then since we started with 1 free robot, we have unfrozen less
than xi robots by this point. J

J. Brunner and J. Wellman 8:11

I Corollary 1. Lemma 2 holds on the metric Mk with input σA, the integer Nk, and
Rk := 1 +

√
2− (

√
2− 1)k+1.

Proof. Suppose that at every time t ∈ [2, 1 +
√

2] there exists at least Nk − 1 robots at a
distance more than t(

√
2− 1) from p0, otherwise the result is immediate. Then we can apply

Lemma 8 with i = k to get that the number of robots unfrozen must not be more than there
are nodes in Tk (which is Nk) before time Rk. Now, the number of frozen robots released in
σA is more than the number of nodes in Tk, since each node has at least one frozen robot
but most have more. Therefore A(σ) ≥ Rk. J

Proof of Theorem 2.2.
First, Theorem 3.1 says that our algorithm is (1 +

√
2)-competitive.

Due to Corollary 1 and Lemma 7, we can use Lemma 4 on Mk, with input σA, integer Nk,
and Rk := 1 +

√
2− (

√
2− 1)k+1. Then any online algorithm on Mk achieves a competitive

ratio of at most Rk. Fix ε > 0. Since lim
k→∞

Rk = 1 +
√

2, choose k such that 1 +
√

2−Rk < ε.

Therefore no algorithm is (1 +
√

2− ε)-competitive on Mk. J

Our analysis required trees which have size exponential in 1/ε, since Nk is doubly
exponential in k and 1 +

√
2−Rk is singly exponential in k. Could there be an algorithm

that is on the order of (1 +
√

2−O(1
logn))-competitive, for metrics coming from weighted

graphs on at most n vertices?

References
1 Esther M Arkin, Michael A Bender, Sándor P Fekete, Joseph SB Mitchell, and Martin Skutella.

The freeze-tag problem: how to wake up a swarm of robots. Algorithmica, 46(2):193–221,
2006.

2 Esther M Arkin, Michael A Bender, and Dongdong Ge. Improved approximation algorithms
for the freeze-tag problem. In Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, pages 295–303. ACM, 2003.

3 Mikael Hammar, Bengt J Nilsson, and Mia Persson. The online freeze-tag problem. In Latin
American Symposium on Theoretical Informatics, pages 569–579. Springer, 2006.

4 Jochen Könemann, Asaf Levin, and Amitabh Sinha. Approximating the degree-bounded
minimum diameter spanning tree problem. Algorithmica, 41(2):117–129, 2005.

5 Zahra Moezkarimi and Alireza Bagheri. A PTAS for geometric 2-FTP. Information Processing
Letters, 114(12):670–675, 2014.

6 Marcelo O Sztainberg, Esther M Arkin, Michael A Bender, and Joseph SB Mitchell. Analysis
of heuristics for the freeze-tag problem. In Scandinavian Workshop on Algorithm Theory,
pages 270–279. Springer, 2002.

7 Ehsan Najafi Yazdi, Alireza Bagheri, Zahra Moezkarimi, and Hamidreza Keshavarz. An O(1)-
approximation algorithm for the 2-dimensional geometric freeze-tag problem. Information
Processing Letters, 115(6-8):618–622, 2015.

FUN 2021

Magic: The Gathering Is Turing Complete
Alex Churchill
Independent Researcher, UK
http://www.myhomepage.edu
alex.churchill@cantab.net

Stella Biderman
LucyLabys, Georgia Institute of Technology, Atlanta, GA, USA
Booz Allen Hamilton, Atlanta, USA
http://www.stellabiderman.com
stellabiderman@gatech.edu

Austin Herrick
Penn Wharton Budget Model, University of Pennsylvania, Philadelphia, PA, USA
aherrick@wharton.upenn.edu

Abstract
Magic: The Gathering is a popular and famously complicated trading card game about magical
combat. In this paper we show that optimal play in real-world Magic is at least as hard as the
Halting Problem. This provides a positive answer to the question “is there a real-world game where
perfect play is undecidable under the rules in which it is typically played?”, a question that has been
open for a decade [1, 9]. To do this, we present a methodology for embedding an arbitrary Turing
machine into a game of Magic such that the first player is guaranteed to win the game if and only if
the Turing machine halts. Our result applies to how real Magic is played, can be achieved using
standard-size tournament-legal decks, and does not rely on stochasticity or hidden information. Our
result is also highly unusual in that all moves of both players are forced in the construction. This
shows that even recognising who will win a game in which neither player has a non-trivial decision
to make for the rest of the game is undecidable. We conclude with a discussion of the implications
for a unified computational theory of games and remarks about the playability of such a board in a
tournament setting.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Turing machines, computability theory, Magic: the Gathering, two-player
games

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.9

Related Version A preprint of this paper is available at https://arxiv.org/abs/1904.09828.

Acknowledgements We are grateful to C-Y. Howe for help simplifying our Turing machine construc-
tion considerably and to Adam Yedidia and Edwin Thomson for conversations about the design and
construction of Turing machines.

1 Introduction

Magic: The Gathering (also known as Magic) is a popular trading card game owned by
Wizards of the Coast. Formally, it is a two-player zero-sum stochastic card game with
imperfect information, putting it in the same category as games like poker and hearts. Unlike
those games, players design their own custom decks out of a card-pool of over 20,000 unique
cards. Magic’s multifaceted strategy has made it a popular topic in artificial intelligence
research.

In this paper, we examine Magic: The Gathering from the point of view of algorithmic
game theory, looking at the computational complexity of evaluating who will win a game.
As most games have finite limits on their complexity (such as the size of a game board)

© Alex Churchill, Stella Biderman, and Austin Herrick;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.myhomepage.edu
mailto:alex.churchill@cantab.net
https://orcid.org/0000-0001-8228-1042
http://www.stellabiderman.com
mailto:stellabiderman@gatech.edu
mailto:aherrick@wharton.upenn.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.9
https://arxiv.org/abs/1904.09828
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Magic: The Gathering Is Turing Complete

most research in algorithmic game theory of real-world games has primarily looked at
generalisations of commonly played games rather than the real-world versions of the games.
A few real-world games have been found to have non-trivial complexity, including Dots-and-
Boxes, Jenga and Tetris [7]. We believe that no real-world game is known to be harder than
NP previous to this work.

Even when looking at generalised games, very few examples of undecidable games are
known. On an abstract level, the Team Computation Game [8] shows that some games can
be undecidable, if they are a particular kind of team game with imperfect information. The
authors also present an equivalent construction in their Constraint Logic framework that was
used by Coulombe and Lynch (2018) [6] to show that some video games, including Super
Smash Bros Melee and Mario Kart, have undecidable generalisations. Constraint Logic is a
highly successful and highly flexible framework for modelling games as computations.

The purpose of this paper is to present the first proof that a game, as it is actually played
in the world, can be undecidable. The core of this paper is the construction presented in
Section 4: a universal Turing machine embedded into a game of Magic: The Gathering. As
we can arrange for the victor of the game to be determined by the halting behaviour of the
Turing machine, this construction establishes the following theorem:

I Theorem 1. Determining the outcome of a game of Magic: The Gathering in which all
remaining moves are forced is undecidable.

1.1 Previous Work
Prior to this work, no undecidable real games were known to exist. Demaine and Hearn
(2009) [9] note that almost every real-world game is trivially decidable, as they produce game
trees with only computable paths. They further note that Rengo Kriegspiel1 is “a game
humans play that is not obviously decidable; we are not aware of any other such game.” It is
conjectured by Auger and Teytaud (2012) [1] that Rengo Kriegspiel is in fact undecidable,
and it is posed as an open problem to demonstrate any real game that is undecidable.

The approach of embedding a Turing machine inside a game directly is generally not
considered to be feasible for real-world games [9]. Although some open-world sandbox digital
games such as Minecraft and Dwarf Fortress can support the construction of Turing machines,
those machines have no strategic relevance and those games are deliberately designed to
support large-scale simulation. In contrast, leading formal theory of strategic games claims
that the unbounded memory required to simulate a Turing machine entirely in a game would
be a violation of the very nature of a game [8].

The computational complexity of Magic: The Gathering has been studied previously by
several authors. Our work is inspired by [4], in which it was shown that four-player Magic
can simulate a Turing machine under certain assumptions about player behaviour. In that
work, Churchill conjectures that these limitations can be removed and preliminary work along
those lines is discussed in [5]. The computational complexity of checking the legality of a
particular decision in Magic (blocking) is investigated in [3] and is found to be coNP-complete.
There have also been a number of papers investigating algorithmic and artificial intelligence
approaches to playing Magic, including Ward and Cowling (2009) [14], Cowling et al. (2012)
[15], and Esche (2018) [10]. Esche (2018) briefly considers the theoretical computational
complexity of Magic and states an open problem that has a positive answer only if Magic
end-games are decidable.

1 Rengo Kriegspiel is a combination of two variations on Go: Rengo, in which two players play on a team
alternating turns, and Shadow Go, in which players are only able to see their own moves.

A. Churchill, S. Biderman, and A. Herrick 9:3

1.2 Our Contribution
This paper completes the project started by Churchill (2012) [4] and continued by Churchill
et al. (2014) [5] of embedding a universal Turing machine in Magic: The Gathering such
that determining the outcome of the game is equivalent to determining the halting of the
Turing machine. This is the first result showing that there exists a real-world game for which
determining the winning strategy is non-computable, answering an open question of Demaine
and Hearn [9] and Auger and Teytaud [1] in the positive.

Our result is also a contribution to the existing literature on the computational complexity
of Magic: the Gathering [4, 3, 10]. Combined with Rice’s Theorem [12], it also answers
an open problem from Esche [10] in the negative by showing that the equivalence of two
strategies for playing Magic is undecidable.

This result raises important foundational questions about the nature of a game itself. As
we have already discussed, the leading formal theory of games holds that this construction is
unreasonable, if not impossible, and so a reconsideration of those assumptions is called for.
In section 5.1 we discuss additional foundational assumptions of Constraint Logic that Magic:
The Gathering violates, and present our interpretation of the implications for a unified theory
of games.

1.3 Overview
The paper is structured as follows. In Section 2 we provide background information on this
work, including previous work on Magic Turing machines. In Section 3 we present a sketch
of the construction and its key pieces. In Section 4 we provide the full construction of a
universal Turing machine embedded in a two-player game of Magic. In Section 5 we discuss
the game-theoretic and real-world implications of our result.

Appendix A provides a brief overview of the relevant rules to Magic for those who are
not familiar with the game.

2 Preliminaries

One initial challenge with Magic: The Gathering is the encoding of information. Some
cards ask players to choose a number. Although rules for how to specify a number are not
discussed in the Comprehensive Rules [16], convention is that players are allowed to specify
numbers in any way that both players can agree to. For example, you are allowed to choose
the number 2100 or dlog 177e. This presents an issue brought to our attention by Fortanely
[11]. Consider the following situation: both players control Lich, Transcendence, and
Laboratory Maniac. One player then casts Menacing Ogre. The net effect of this play
is the “Who Can Name the Bigger Number” game – whoever picks the biggest number wins
on the spot. If players are allowed to use sufficiently complicated (but well-defined) functions
to express their choices, identifying the next board state can be non-computable even given
the players’ choices [2]. To remedy this situation, we require that any numbers specified by a
player must be expressed in standard binary notation2.

We believe that with this restriction Magic: The Gathering is transition-computable,
meaning that the function that maps a board state and a move to the next board state is
computable3. However, it is unclear how to prove this beyond exhaustive analysis of the over
20,000 unique cards in the game. We leave that question open for future work:

2 Only integers exist in Magic. If a result would be a non-integer, it is rounded.
3 We avoid the term “computable game” which is more commonly used to mean that the game has a

computable winning strategy.

FUN 2021

9:4 Magic: The Gathering Is Turing Complete

I Conjecture 1. The function that takes a board state and a legal move and returns the next
board state in Magic: The Gathering is computable.
In this conjecture we say “a legal move” because it is also not obvious that checking to see
if a move is legal is computable. Chatterjee and Ibsen-Jensen [3] show that checking the
legality of a particular kind of game action in Magic: the Gathering is coNP-complete, but
the question has not been otherwise considered. Again, we leave this for future work:
I Conjecture 2. There does not exist an algorithm for checking the legality of a move in
Magic: The Gathering.

2.1 Previous Magic Turing Machines
In Churchill (2012) [4], the author presents a Magic: The Gathering end-game that embeds
a universal Turing machine. However, this work has a major issue from a computability
theory point of view: it’s not quite deterministic. At several points in the simulation, players
have the ability to stop the computation at any time by opting to decline to use effects that
say “may.” For example, Kazuul Warlord reads “Whenever Kazuul Warlord or another
Ally enters the battlefield under your control, you may put a +1/ + 1 counter on each Ally
you control.” Declining to use this ability will interfere with the Turing machine, either
causing it to stop or causing it to perform a different calculation from the one intended. The
construction as given in Churchill (2012)[4] works under the assumption that all players that
are given the option to do something actually do it, but as the author notes it fails without
this assumption. Attempts to correct this issue are discussed in Churchill et al. [5].

In this work, we solve this problem by reformulating the construction to exclusively use
cards with mandatory effects. We also substantially simplify the most complicated aspect of
the construction, the recording of the tape, and reduce the construction from one involving
four players to one involving two, and which only places constraints on one player’s deck,
matching the format in which Magic is most commonly played in the real world (two-player
duels). Like the previous work, we will embed Rogozhin’s (2, 18) universal Turing machine
[13].

3 An Overview of the Construction

In this section we give a big picture view of the Turing machine, with full details deferred to
the next section4. The two players in the game are named Alice and Bob.

To construct a Turing machine in Magic: The Gathering requires three main elements:
the tape which encodes the computation, the controller which determines what action to
take next based on the current state and the last read cell, and the read/write head which
interacts with the tape under the control of the controller.

3.1 The Tape
As the rules of Magic: The Gathering do not contain any concept of geometry or adjacency,
encoding the tape itself is tricky. Our solution is to have many creature tokens with carefully
controlled power and toughness, with each token’s power and toughness representing the
distance from the head of the Turing machine. The tape to the left of the Turing machine’s
current read head position is represented by a series of creature tokens which all have

4 A walkthrough of the construction

A. Churchill, S. Biderman, and A. Herrick 9:5

the game colour green, while the tape to the right is represented by white tokens. Our
distance-counting starts at 2, so there is one 2/2 token representing the space currently under
the head of the Turing machine; a green 3/3 token represents the tape space immediately to
the left of the Turing head, a green 4/4 is the space to the left of that, and so on. Rogozhin’s
universal Turing machine starts with the read head in the middle of the tape [13].

To represent the symbols on the tape, we use creature types. We choose 18 creature types
from the list of creature types in Magic to correspond to the 18 symbols in Rogozhin’s (2, 18)
UTM. We can choose these creature types to begin with successive letters of the alphabet:
Aetherborn, Basilisk, Cephalid, Demon, Elf, Faerie, Giant, Harpy, Illusion, Juggernaut,
Kavu, Leviathan, Myr, Noggle, Orc, Pegasus, Rhino, and Sliver. For example, a green 5/5
Aetherborn token represents that the 1st symbol is written on the 3rd cell to the left of the
head, and a white 10/10 Sliver represents that the 18th symbol is written on the 8th cell
to the right of the head. These tokens are all controlled by Bob, except the most recently
created token (the space the Turing head has just left) which is controlled by Alice.

3.2 The Controller

Control instructions in a Turing machine are represented by a table of conditional statements of
the form “if the machine is in state s, and the last read cell is symbol k, then do such-and-such.”
Many Magic cards have triggered abilities which can function like conditional statements.
The two we shall use are Rotlung Reanimator (“Whenever Rotlung Reanimator or
another Cleric dies, create a 2/2 black Zombie creature token”) and Xathrid Necromancer
(“Whenever Xathrid Necromancer or another Human creature you control dies, create a
tapped 2/2 black Zombie creature token”). We will use both, and the difference between
tapped and untapped creature tokens will contribute to the design of the Turing machine5.

Each Rotlung Reanimator6 needs to trigger from a different state being read – that
is, a different creature type dying – and needs to encode a different result. Fortunately,
Magic includes cards that can be used to edit the text of other cards. The card Artificial
Evolution is uniquely powerful for our purposes, as it reads “Change the text of target spell
or permanent by replacing all instances of one creature type with another. The new creature
type can’t be Wall. (This effect lasts indefinitely.)” So we create a large number of copies
of Rotlung Reanimator and edit each one. A similar card, Glamerdye, can be used to
modify the colour words within card text.

Thus, we edit a Rotlung Reanimator by casting two copies of Artificial Evolution re-
placing “Cleric” with “Aetherborn” and “Zombie” with “Sliver” and one copy of Glamerdye
to replace “black” with “white”, so that this Rotlung Reanimator now reads “Whenever
Rotlung Reanimator or another Aetherborn dies, create a 2/2 white Sliver creature token”7.
This Rotlung Reanimator now encodes the first rule of the q1 program of the (2, 18)
UTM: “When reading symbol 1 in state A, write symbol 18 and move left.” The Aetherborn
creature token represents symbol 1, the Sliver creature token represents symbol 18, and the
fact that the token is white leads to processing that will cause the head to move left.

We similarly have seventeen more Rotlung Reanimators encoding the rest of the q1
program from [13]. Between them they say:

5 See Appendix A.3 for information about tapping
6 For now we will speak about Rotlung Reanimator for simplicity. Some of these will in fact be

Xathrid Necromancers as explained in the next section.
7 Throughout this paper, card text that has been modified is written in italics.

FUN 2021

9:6 Magic: The Gathering Is Turing Complete

1. Whenever an Aetherborn dies, create a 2/2 white Sliver.
2. Whenever a Basilisk dies, create a 2/2 green Elf.

Whenever a . . . dies, create a 2/2 . . .

18. Whenever a Sliver dies, create a 2/2 green Cephalid.
See Table 2 in Appendix B for the full encoding of the program.

3.3 The Read/Write Head
The operation “read the current cell of the tape” is represented in-game by forcing Alice to
cast Infest (“All creatures get −2/−2 until end of turn.”), which causes the unique token
with 2 toughness to die. It had a colour (green or white) which is irrelevant, and a creature
type which corresponds to the symbol written on that cell. That creature type is noticed by
a Rotlung Reanimator, which has a triggered ability that is used to carry out the logic
encoded in the head of the Turing machine. It produces a new 2/2 token, containing the
information written to the cell that was just read.

The Turing machine then moves either left or right and modifies the tokens to keep the
tape in order by adding +1/ + 1 counters to all tokens on one side of the head and −1/−1
counters to all tokens on the other side. Moving left or right will be accomplished by casting
first Cleansing Beam (“Radiance – Cleansing Beam deals 2 damage to target creature and
each other creature that shares a colour with it.”) and then Soul Snuffers (“When Soul
Snuffers enters the battlefield, put a -1/-1 counter on each creature”).

3.4 Adding a Second State
Everything described so far outlines the operation of one state of the Turing machine.
However, our Turing machine requires two states. To accomplish this, we leverage phasing.
An object with phasing can “phase in” or “phase out”, and while it’s phased out, it’s treated
as though it doesn’t exist. We can grant phasing to our Rotlung Reanimators using the
enchantment Cloak of Invisibility (“Enchanted creature has phasing and can’t be blocked
except by Walls”) and create a second set of Rotlung Reanimators to encode the program
q2. This second set will also be granted phasing in this way, and the two programs will be
set to be in opposition, with one phased out and one phased in at every point in time. At
the moment we read the current cell, the set of Rotlung Reanimators that is phased in is
determined by which state we are in.

Objects with phasing phase in or out at the beginning of their controller’s turn, effectively
toggling between two states. Accordingly we will arrange for the turn cycle to last 4 turns
for each player when no state change occurs, but just 3 turns when we need to change state.

4 The Full Construction

Now we will provide the full construction of the Magic: The Gathering Turing machine and
walk through a computational step. The outline of one step of the computation is as follows
(Bob’s turns are omitted as nothing happens during them):
T1 Alice casts Infest. Turing processing occurs: a white or green token dies, a new white

or green token is created.
T2 Alice casts Cleansing Beam, putting two +1/ + 1 counters on the side of the tape we

are moving away from.
T3 If the Turing machine is remaining in the same state, Alice casts Coalition Victory. If

it is changing state, Alice casts Soul Snuffers, putting a −1/−1 counter on each creature.
T4 If the Turing machine is remaining in the same state, this is the point where Alice casts

Soul Snuffers. Otherwise, the next computational step begins.

A. Churchill, S. Biderman, and A. Herrick 9:7

After all four turns have passed, the Turing machine has finished processing for one step
of the computation and moves on to the next.

4.1 Beginning a Computational Step and Casting Spells

At the beginning of a computational step, it is Alice’s turn and she has the card Infest in
hand. Her library consists of the other cards she will cast during the computation (Cleansing
Beam, Coalition Victory, and Soul Snuffers, in that order). Bob’s hand and library
are both empty. The Turing machine is in its starting state and the tape has already been
initialised.

At the start of each of Alice’s turns, she has one card in hand. She’s forced to cast it
due to Bob controlling Wild Evocation, which reads “At the beginning of each player’s
upkeep, that player reveals a card at random from their hand. If it’s a land card, the player
puts it onto the battlefield. Otherwise, the player casts it without paying its mana cost if
able.” When the card resolves, it would normally be put into her graveyard, but Alice is
enchanted by Wheel of Sun and Moon (“Enchant player. If a card would be put into
enchanted player’s graveyard from anywhere, instead that card is revealed and put on the
bottom of that player’s library.”), which causes it to be placed at the bottom of her library
instead, allowing her to redraw it in the future and keeping the cards she needs to cast in
order. After her upkeep step, Alice proceeds to her draw step and draws the card that she
will cast next turn.

Alice has no choices throughout this process: she does control one land, but it remains
permanently tapped because of Choke (“Islands don’t untap during their controllers’ untap
steps”), so she is unable to cast any of the spells she draws except via Wild Evocation’s
ability. Neither player is able to attack because they both control a Blazing Archon
(“Creatures can’t attack you.”).

Bob has no cards in hand and controls Recycle, which reads (in part) “Skip your draw
step”. This prevents Bob from losing due to drawing from an empty library.

4.2 Reading the Current Cell

On the first turn of the cycle, Alice is forced to cast Infest (“All creatures get −2/−2 until
end of turn.”). This kills one creature: the tape token at the position of the current read
head, controlled by Bob. This will cause precisely one creature of Bob’s to trigger – either
a Rotlung Reanimator or a Xathrid Necromancer. Which precise one triggers is
based on that token’s creature type and the machine’s current state, corresponding to the
appropriate rule in the definition of the (2, 18) UTM. This Reanimator or Necromancer
will create a new 2/2 token to replace the one that died. The new token’s creature type
represents the symbol to be written to the current cell, and the new token’s colour indicates
the direction for the machine to move: white for left or green for right.

Alice controls Illusory Gains, an Aura which reads “You control enchanted creature.
Whenever a creature enters the battlefield under an opponent’s control, attach Illusory
Gains to that creature.” Each time one of Bob’s Rotlung Reanimators or Xathrid
Necromancers creates a new token, Illusory Gains triggers, granting Alice control of the
newest token on the tape, and reverting control of the previous token to Bob. So at any point
Bob controls all of the tape except for the most recently written symbol, which is controlled
by Alice.

FUN 2021

9:8 Magic: The Gathering Is Turing Complete

4.3 Moving Left or Right
If the new token is white, the Turing machine needs to move left. To do this we need to take
two actions: put a +1/ + 1 counter on all white creatures (move the tape away from white),
and put a −1/−1 counter on all green creatures (move the tape towards green). We rephrase
this instead as: put two +1/ + 1 counters on all white creatures, and put a −1/−1 counter on
all creatures.

On Alice’s second turn, she casts Cleansing Beam, which reads “Cleansing Beam deals
2 damage to target creature and each other creature that shares a colour with it.” Bob
controls Privileged Position (“Other permanents you control have hexproof. (They can’t
be the targets of spells or abilities your opponents control.)”) so none of Bob’s creatures
are a legal target. Alice controls some creatures other than the tape token, but they have
all been granted creature type Assembly-Worker by a hacked Olivia Voldaren, and Alice
controls a Steely Resolve naming Assembly-Worker (“Creatures of the chosen type have
shroud. (They can’t be the targets of spells or abilities.)”) This makes it so that the only
legal target for Cleansing Beam is the one tape token that Alice controls thanks to her
Illusory Gains.

Recall that this token is white if we’re moving left, or green if we’re moving right.
Cleansing Beam is about to deal 2 damage to each white creature if we’re moving left, or
to each green creature if we’re moving right. Alice and Bob each control a copy of Vigor (“If
damage would be dealt to another creature you control, prevent that damage. Put a +1/ + 1
counter on that creature for each 1 damage prevented this way.”), so Cleansing Beam ends
up putting two +1/ + 1 counters on either each white creature or each green creature.

On the last turn of the cycle, Alice casts Soul Snuffers, a 3/3 black creature which reads
“When Soul Snuffers enters the battlefield, put a −1/−1 counter on each creature.” There are
two copies of Dread of Night hacked to each say “Black creatures get −1/−1”, which mean
that the Soul Snuffers’ triggered ability will kill itself, as well as shrinking every other
creature. The creatures comprising the tape have now received either a single −1/−1 counter,
or two +1/ + 1 counters and a −1/−1 counter.

To ensure that the creatures providing the infrastructure (such asRotlung Reanimator)
aren’t killed by the succession of −1/−1 counters each computational step, we arrange that
they also have game colours green, white, red and black, using Prismatic Lace, “Target
permanent becomes the colour or colours of your choice. (This effect lasts indefinitely.)”
Accordingly, each cycle Cleansing Beam will put two +1/ + 1 counters on them, growing
them faster than the −1/−1 counters shrink them. This applies to each creature except Vigor
itself; to keep each player’s Vigor from dwindling, there is a Fungus Sliver hacked to read
“All Incarnation creatures have ‘Whenever this creature is dealt damage, put a +1/ + 1
counter on it.’ ”

4.4 Changing State
The instruction to change state is handled by replacing seven of Bob’s Rotlung Rean-
imators with Xathrid Necromancer. These two cards have very similar text, except
that Xathrid Necromancer only notices Bob’s creatures dying (this is not a problem, as
the active cell of the tape is always controlled by Bob), and that Xathrid Necromancer
creates its token tapped.

For example, when the q1 program (State A) sees symbol 1, it writes symbol 18, moves
left, and remains in state A. This is represented by a phasing Rotlung Reanimator under
Bob’s control saying “Whenever Rotlung Reanimator or another Aetherborn dies, create a
2/2 white Sliver creature token.”

A. Churchill, S. Biderman, and A. Herrick 9:9

By contrast, when the q1 program sees symbol 11, it writes symbol 12, moves left, and
changes to state B. This is represented by a phasing Xathrid Necromancer under Bob’s
control saying “Whenever Xathrid Necromancer or another Kavu creature you control dies,
create a tapped 2/2 white Leviathan creature token.”

In both cases this token is created under Bob’s control on turn T1, but Alice’s Illusory
Gains triggers and grants her control of it. In the case where it’s tapped, that means at
the beginning of turn T2, it will untap. This causes Alice’s Mesmeric Orb (“Whenever a
permanent becomes untapped, that permanent’s controller puts the top card of his or her
library into his or her graveyard.”) to trigger, and that ability to be put on the stack at the
same time as Bob’s Wild Evocation’s trigger (since no player receives priority during the
untap step). Alice is the active player, so Alice’s trigger is put on the stack first and then
Bob’s[16]. This ensures that the Wild Evocation trigger resolves, forcing Alice to cast and
resolve Cleansing Beam, before the Mesmeric Orb trigger resolves.

When the Mesmeric Orb trigger does resolve, it tries to put the Coalition Victory
from the top of Alice’s library into her graveyard. Wheel of Sun and Moon modifies
this event to put Coalition Victory onto the bottom of her library, just underneath the
Cleansing Beam that’s just resolved.

Once all these triggers are resolved, Alice proceeds to her draw step. When the state is
not changing, she will draw Coalition Victory at this point, but when the state is changing,
that card is skipped and she moves on to draw Soul Snuffers.

The net result of this is that the computation step is 3 turns long for each player when
the state is changing, but 4 turns long for each player when the state is not changing. In
the normal 4-turn operation, Bob’s phasing Reanimators and Necromancers will phase in
twice and phase out twice, and be in the same state on one cycle’s turn T1 as they were in
the previous cycle’s turn T1. But when changing state, they will have changed phase by the
next cycle’s turn T1, switching the Turing machine’s state.

4.5 Out of Tape
The Turing tape can be initialised to any desired length before starting processing. But it
is preferable to allow the machine to run on a simulated infinite tape: in other words, to
assume that any uninitialised tape space contains symbol 3 (the blank symbol in the (2, 18)
UTM), represented by creature type Cephalid. This is accomplished by having the ends
of the currently-initialised tape marked by two special tokens, one green Lhurgoyf and one
white Rat.

Suppose we’ve exhausted all the initialised tape to the left. This means that the casting
of Infest on turn T1 kills the Lhurgoyf rather than one of the normal tape types. This does
not directly trigger any of the normal Reanimators/Necromancers. Instead, Bob has another
Rotlung Reanimator hacked to read “Whenever Rotlung Reanimator or another Lhurgoyf
dies, create a 2/2 green Lhurgoyf creature token”, and Alice has a Rotlung Reanimator
hacked to read “Whenever Rotlung Reanimator or another Lhurgoyf dies, create a 2/2 black
Cephalid creature token.” Bob’s trigger will resolve first, then Alice’s.

First, Bob’s Reanimator trigger creates a new Lhurgoyf just to the left of the current
head. (Alice’s Illusory Gains triggers and gives her control of this new Lhurgoyf, but that
will soon change.) We have one copy of Shared Triumph set to Lhurgoyf (“Creatures of
the chosen type get +1/+1”) so this token arrives as a 3/3.

Second, Alice’s Reanimator trigger now creates a 2/2 black Cephalid under Alice’s control.
The same two copies of Dread of Night as before are giving all black creatures −2/−2, so
the black Cephalid will arrive as a 0/0 and immediately die.

FUN 2021

9:10 Magic: The Gathering Is Turing Complete

The death of this Cephalid triggers one of the regular Rotlung Reanimators of Bob’s
just as if a tape cell containing symbol 3 had been read: a new 2/2 token is created and
Illusory Gains moves to that new token. The green Lhurgoyf token serving as an end-of-tape
marker has been recreated one step over to the left.

The situation for the white Rat representing the right-hand end of the tape is exactly
equivalent. Bob has a Rotlung Reanimator hacked to read “Whenever Rotlung Rean-
imator or another Rat dies, create a 2/2 white Rat creature token”; Alice has a Rotlung
Reanimator hacked to read “Whenever Rotlung Reanimator or another Rat dies, create
a 2/2 black Cephalid creature token”; and we have another Shared Triumph set to Rat.
This algorithm would be a little more complex if reading symbol 3 could cause a state change
in the (2, 18) UTM, but thankfully it cannot.

4.6 Halting
We choose to encode halting as making Alice win the game. When the Turing machine
doesn’t change state, Alice casts the card Coalition Victory on her third turn. It reads
“You win the game if you control a land of each basic land type and a creature of each colour.”
This normally accomplishes nothing because she controls no blue creatures (Prismatic Lace
has been used to give her creatures of all the other colours). She does, however, control one
land, and also controls Prismatic Omen, which reads “Lands you control are every basic
land type in addition to their other types.”

When the halt symbol is read (symbol 17 in state A), the appropriate phasing Reanimator
of Bob’s reads “Whenever Rotlung Reanimator or another Rhino dies, create a 2/2 blue
Assassin creature token.” Alice’s Illusory Gains takes control of this Assassin token in the
usual way in turn T1. She now meets the condition for Coalition Victory when she casts
it on turn T3, and wins the game. As the token is created by a Rotlung Reanimator, it
will be untapped and so Alice will not be made to discard Coalition Victory.

If the encoded machine does not in fact halt then the game has entered an unbreakable
deterministic infinite loop, which is specified as a draw by rule 104.4b [16].

5 Discussion

The construction in the previous section establishes Theorem 1: determining the outcome
of a game of Magic: The Gathering in which all remaining moves are forced is undecidable.
As determining the existence of a winning move is no harder than optimal play, this also
establishes that optimal play in Magic is at least as hard as the halting problem.

The full complexity of optimal strategic play remains an open question, as do many other
computational aspects of Magic. For example, a player appears to have infinitely many
moves available to them from some board states of Magic. Whether or not there exists a
real-world game of Magic in which a player has infinitely many meaningfully different moves
available to them has the potential to impact the way we understand and model games as a
form of computation. As far as we are aware, no existing computational models of games
support games with infinitely many possible moves from a given board state.

5.1 Consequences for Computational Theories of Games
This construction establishes that Magic: The Gathering is the most computationally complex
real-world game known in the literature, but it also raises several foundational questions
about games as a form of computation. Some authors, such as Demaine and Hearn [8],

A. Churchill, S. Biderman, and A. Herrick 9:11

have sought a formal framework for modelling games that is strictly sub-Turing. Unlike the
open-world, non-strategic games in which Turing machines have been constructed before,
Magic: The Gathering is unambiguously a two-player strategic game like such models attempt
to represent. Therefore this result shows that any sub-Turing model is necessarily inadequate
to capture all strategic games. Quite the opposite: it seems likely that a super-Turing model
of games would be necessary to explain Magic. The naïve extensions of Demaine and Hearn’s
Constraint Logic to allow for unbounded memory appear to be meaningless, although it’s
possible that a clever approach would bring success.
I Open Problem 3. Does there exist a generalisation of Constraint Logic that explains the
computational complexity of Magic: The Gathering?

Although the Halting problem is reducible to our construction, the fact that even
evaluating a board is non-computable strongly suggests that the complexity of strategic play
is greater than that. In particular, we conjecture:
I Conjecture 4. Playing Magic: The Gathering optimally is at least as hard as ∅(ω).

Whether or not it is possible for there to be a real-world game whose computational
complexity is strictly harder than ∅(ω) is an interesting question on both a mathematical and
a philosophical level. If not, then this conjecture would imply that Magic: The Gathering is
as hard as it is possible for a real-world game to be.

5.2 Real-world Playability and Legality
While there are practical difficulties involved with correctly setting up the necessary board
state, such as running out of space on your table, a sufficiently tenacious player could set up
and execute this construction in a real-world tournament game of Magic: The Gathering.
An example 60-card deck that is capable of executing this construction on the first turn of
the game and which is legal in the competitive Legacy format can be seen in Table 3 in
Appendix B.

With the correct draw, the deck uses Ancient Tomb (“tap: Add two colorless mana to
your mana pool. Ancient Tomb deals 2 damage to you.”) and three Lotus Petals (“tap,
Sacrifice Lotus Petal: Add one mana of any color to your mana pool. Play this ability as
a mana source.”) to play Grim Monolith (“Grim Monolith does not untap during your
untap phase. T: Add three colorless mana to your mana pool. Play this ability as a mana
source.”) and Power Artifact (“Enchantment - Aura. Enchant artifact Enchanted artifact’s
activated abilities cost less to activate. This effect can’t reduce the amount of mana an
ability costs to activate to less than one mana.”) and generate unlimited colourless mana,
at which point Staff of Domination (“5, tap: Draw a card.”) draws the rest of the deck
and Gemstone Array (“2: Put a charge counter on Gemstone Array. Remove a charge
counter from Gemstone Array: Add one mana of any color.”) generates unlimited coloured
mana. The deck casts most of the permanents immediately, and uses Stolen Identity
(“Create a token that’s a copy of target artifact or creature.”) to make token copies of
them (using Memnarch (“1UU: Target permanent becomes an artifact in addition to its
other types.”) first on the enchantments like Cloak of Invisibility). The tape is initialised
with Riptide Replicator (“As Riptide Replicator enters the battlefield, choose a color
and a creature type. Riptide Replicator enters the battlefield with X charge counters on
it. 4, tap: Create an X/X creature token of the chosen color and type, where X is the
number of charge counters on Riptide Replicator.”) and Capsize (“Buyback 3 Return target
permanent to its owner’s hand.”), Reito Lanturn (“3: Put target card in a graveyard on
the bottom of its owner’s library”) allows repeated casting of the text-modification cards,

FUN 2021

9:12 Magic: The Gathering Is Turing Complete

Reality Ripple (“Target artifact, creature, or land phases out.”) sets the phase of the
Rotlung Reanimators and Donate (“Target player gains control of target permanent
you control.”) gives most permanents to Bob. Once the board is set up, Reito Lantern
is also used to get Alice’s library into the correct order. Finally, Steely Resolve (“As
Steely Resolve enters the battlefield, choose a creature type. Creatures of the chosen type
have shroud.”) is cast, and then Karn Liberated and Capsize are used to exile all setup
permanents and all cards from both players’ hands so that neither player can interact with
the operation of the Turing machine.

In addition to the Comprehensive Rules [16], play at sanctioned Magic: The Gathering
tournaments is also governed by the Tournament Rules [17]. Some of these rules, most
notably the ones involving slow play, may affect an individual’s ability to successfully execute
the combo due to concerns about the sheer amount of time it would take to manually move
the tokens around to simulate a computation on a Turing machine. This would not be a
concern for two agents with sufficiently high computational power, as the Tournament Rules
also provide a mechanism called “shortcuts” for players to skip carrying out laborious loops
if both players agree on the game state at the beginning and the end of the shortcut.

6 Conclusion

We have presented a methodology for embedding Rogozhin’s (2, 18) universal Turing machine
in a two-player game of Magic: The Gathering. Consequently, we have shown that identifying
the outcome of a game of Magic in which all moves are forced for the rest of the game is
undecidable. In addition to solving a decade-old outstanding open problem, in the process
of arriving at our result we showed that Magic: The Gathering does not fit assumptions
commonly made by computer scientists while modelling games. We conjecture that optimal
play in Magic is far harder than this result alone implies, and leave the true complexity of
Magic and the reconciliation of Magic with existing theories of games for future research.

References

1 David Auger and Oliver Teytaud. The frontier of decidability in partially observable recursive
games. International Journal of Foundations of Computer Science, 2012.

2 Stella Biderman and Bjørn Kjos-Hanssen. Non-comparable natural numbers. Theoretical
Computer Science Stack Exchange, 2018. URL: https://cstheory.stackexchange.com/q/
41384(version:2018-08-16).

3 Krishnendu Chatterjee and Rasmus Ibsen-Jensen. The complexity of deciding legality of a
single step of Magic: The Gathering. In 22nd European Conference on Artificial Intelligence,
2016.

4 Alex Churchill. Magic: The Gathering is Turing complete v5, 2012. URL: https://www.
toothycat.net/~hologram/Turing/.

5 Alex Churchill et al. Magic is Turing complete (the Turing machine combo), 2014. URL:
http://tinyurl.com/pv3n2lg.

6 Michael J. Coulombe and Jayson Lynch. Cooperating in video games? Impossible! Undecid-
ability of team multiplayer games. In 9th International Conference on Fun with Algorithms,
2018.

7 Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: algorithmic combin-
atorial game theory. In 26th Symp. on Mathematical Foundations in Computer Science, pages
18–32, 2001.

https://cstheory.stackexchange.com/q/41384 (version: 2018-08-16)
https://cstheory.stackexchange.com/q/41384 (version: 2018-08-16)
https://www.toothycat.net/~hologram/Turing/
https://www.toothycat.net/~hologram/Turing/
http://tinyurl.com/pv3n2lg

A. Churchill, S. Biderman, and A. Herrick 9:13

8 Erik D. Demaine and Robert A. Hearn. Constraint logic: A uniform framework for modeling
computation as games. In 2008 23rd Annual IEEE Conference on Computational Complexity,
pages 149–162, 2008.

9 Erik D. Demaine and Robert A. Hearn. Games, Puzzles, and Computation. CRC Press, 2009.
10 Alexander Esche. Mathematical Programming and Magic: The Gathering. PhD thesis, Northern

Illinois University, 2018.
11 Eugenio Fortanely. Personal communication, 2018.
12 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans. Amer.

Math. Soc., 74:358–366, 1953.
13 Yurii Rogozhin. Small universal Turing machines. Theoretical Computer Science, 168(2):215–

240, 1996.
14 Colin D. Ward and Peter I. Cowling. Monte Carlo search applied to card selection in Magic:

The Gathering. In CIG’09 Proceedings of the 5th international conference on Computational
Intelligence and Games, pages 9–16, 2009.

15 Colin D. Ward, Peter I. Cowling, and Edward J. Powley. Ensemble determinization in Monte
Carlo tree search for the imperfect information card game Magic: The Gathering. In IEEE
Transactions on Computational Intelligence and AI in Games, volume 4, 2012.

16 Wizards of the Coast. Magic: The Gathering comprehensive rules, August 2018. URL:
https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules.

17 Wizards of the Coast. Magic: The Gathering tournament rules, August 2018. URL: https:
//wpn.wizards.com/sites/wpn/files/attachements/mtg_mtr_21jan19_en.pdf.

A How to Play Magic: the Gathering

In this section we provide a brief overview of the game and its rules, with a focus on what is
necessary to understand the Turing machine construction. The full Magic: the Gathering
Comprehensive Rules document [16] is over 200 pages of text and detailing them falls outside
the purview of this paper.

A.1 An Introduction to Magic
Magic: the Gathering is a tabletop card game about magical combat. Each player brings
their own deck of cards that they’ve chosen, called their library. On a player’s turn, that
player plays cards to cast spells, summon creatures, and use abilities of cards they’ve already
played. When creatures die or when one-time effects are used, those cards are placed in a
discard pile called the graveyard. Each player begins with 20 life points and once they are
depleted that player loses the game; the main way of reducing the opponent’s life total is
to attack with creatures. A player can also lose the game if they attempt to draw from a
library with no cards remaining.

Cards have various types. Card types include:
1. Creature. Creature cards are permanents, which means they are played onto the table

(the battlefield) and remain in play. Creatures have two important statistics: their power,
representing how much damage they can deal in combat, and their toughness, representing
how much health they have or how far they are from dying. Standard notation for these
uses a slash: a 3/2 creature has 3 power and 2 toughness. If a creature’s toughness is
ever zero or less, that creature dies and is put into the graveyard.

2. Artifact and Enchantment. These are also permanents. They do not engage in combat
but have abilities that affect players or other permanents. Some enchantments are Auras:
these are attached to one other permanent or player and have an effect on that permanent
or player. There are minor differences between artifacts and enchantments but they are
not relevant to our construction.

FUN 2021

https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules
https://wpn.wizards.com/sites/wpn/files/attachements/mtg_mtr_21jan19_en.pdf
https://wpn.wizards.com/sites/wpn/files/attachements/mtg_mtr_21jan19_en.pdf

9:14 Magic: The Gathering Is Turing Complete

3. Instant and Sorcery. These are cards that have a one-time effect and are then immedi-
ately put into the graveyard. They may cause effects that last until the end of the turn
or which last indefinitely.

4. Land: Land cards remain on the battlefield. Usually they provide the resource known as
mana which is used to play other cards. In our construction we have one land card but
we ensure its controller cannot activate its ability.

Some cards have subtypes in addition to types. Aura is an example of a subtype of
enchantments. All creatures have subtypes called creature types such as Goblin or Wizard
that denote their race or class, and those creature types are used in various ways throughout
the construction, in particular to track the symbols written onto the Turing tape.

A.2 Tokens
Some effects can create tokens on the battlefield, which are also permanents. This is crucial
to the construction of a Turing tape potentially millions of cells long with a bounded number
of cards. Tokens may be creatures, generally with no abilities, or they may be copies of other
permanents such as enchantments or artifacts. Unless an effect specifies otherwise, tokens
are treated exactly like cards of the same type while they are on the battlefield.

Tokens can only exist on the battlefield – if they ever leave the battlefield they cease to
exist. If a creature token dies, it leaves the battlefield and goes to the graveyard (triggering
any effects that watch for those conditions such as Rotlung Reanimator’s). However, it
does not continue to exist in the graveyard.

A.3 Tapping
“Tapping” is a core mechanic in Magic: the gathering typically represented by turning a card
90 degrees. Being tapped is a binary state: a permanent is either tapped or untapped. At the
beginning of each player’s turn, the very first thing they do is untap all tapped permanents
that they control. While there are a variety of ways that permanents can become tapped
(some of which are used to set up the device), in the operation of the Magic Turing machine
permanents will never become tapped. Tokens will be created either in a tapped or in an
untapped state, and the difference between tapped and untapped tokens will control the
state of the Magic Turing machine by controlling phasing.

A.4 Editing Card Text and Types
The Turing machine construction is only possible because certain Magic cards allow modific-
ation of the text of other cards, to change colours or creature types. The card Artificial
Evolution reads “Change the text of target spell or permanent by replacing all instances
of one creature type with another. The new creature type can’t be Wall. (This effect lasts
indefinitely.)” This card is vital to the construction, more so than any other.

Also crucial is one of several cards such as Glamerdye which read “Change the text of
target spell or permanent by replacing all instances of one colour word with another”. Similarly,
we can change what colour a permanent is with Prismatic Lace (“Target permanent becomes
the colour or colours of your choice”).

For example, the card Rotlung Reanimator reads “Whenever Rotlung Reanimator or
another Cleric dies, create a 2/2 black Zombie creature token”. By casting two copies of
Artificial Evolution replacing “Cleric” with “Aetherborn” and “Zombie” with “Sliver”,
and one copy of Glamerdye to replace “black” with “white”, we can change Rotlung

A. Churchill, S. Biderman, and A. Herrick 9:15

Reanimator to read instead “Whenever Rotlung Reanimator or another Aetherborn dies,
create a 2/2 white Sliver creature token”. This allows us to use creature types to track
values throughout the computation, killing creature tokens with particular types and using
Rotlung Reanimator as a conditional logic gate.

It is useful to add extra creature types to some creatures without changing their text box:
this can be accomplished with Olivia Voldaren, who has the ability “Olivia Voldaren deals
1 damage to another target creature. That creature becomes a Vampire in addition to its
other types.” We use Artificial Evolution to change Olivia Voldaren to add the creature
type “Assembly-Worker” instead of “Vampire”: we will use the type Assembly-Worker to
denote infrastructure creatures which will be rendered untargetable by spells.

It should be noted that all these edits only persist for as long as the permanent remains
on the battlefield. If an edited permanent changes zone, such as going to the graveyard or
the library, these edits are lost. This means that for cards the machine plays from players’
hands, we cannot edit them; we need to work with their text as printed.

A.5 Abilities and the Stack
There are many different types of abilities that cards in Magic: the Gathering can have. The
rules surrounding using abilities get rather complicated, but are crucial to understanding
the mechanisms of the constructions in this paper. In this section, we restrict ourselves to
explaining the bare minimum required to understand the construction.

Our construction is primarily concerned with static abilities and triggered abilities. Static
abilities are abilities that are “always on” and modify the general rules of the game. For
example, Dread of Night reads “White creatures get −1/−1.” This is a static ability of
the Dread of Night permanent, affecting all white creatures and reducing their power and
toughness by 1 each.

Triggered abilities begin with one of the words “When”, “Whenever” or “At”. Rotlung
Reanimator has a triggered ability that reads “Whenever Rotlung Reanimator or another
Cleric dies, create a 2/2 black Zombie creature token.” Rotlung Reanimator is how we
will perform many of the functions of the Turing machine. It is a creature with two subtypes:
Zombie and Cleric.

Whenever a spell is cast or an ability is activated or triggered, it is first put in a holding
area known as the stack. When a spell or ability is on the stack, other players may add
additional spells or abilities to the stack before the effect resolves (takes effect). The stack in
Magic functions exactly like the data structure of the same name, with the spell or ability
put on the stack first being carried out last and the spell or ability put on the stack last
being carried out first.

The player whose turn it is is always first to get priority, which is permission to add new
spells or abilities to the stack, followed by the player whose turn it isn’t. Once both players
decide to not use their priority to put a spell or ability on the stack, the top effect on the
stack is popped and resolves.

Sometimes two triggered abilities will try to go on the stack at the same time. In this
case, the order is determined by Active Player, Nonactive Player (APNAP) order. The
active player is the one whose turn it is. Since this is the order the spells and abilities go on
the stack, they will resolve in the reverse order (so the nonactive player’s ability resolves
first). If both effects are controlled by the same player, that player must choose the order to
place them onto the stack. This poses a major limitation throughout the construction, as we
aim to eliminate all choices by the players, so we cannot allow a player to control two effects
that simultaneously trigger.

FUN 2021

9:16 Magic: The Gathering Is Turing Complete

Although it is likely possible to simulate a Turing machine using the stack directly, our
construction opts to take another tack.

A.6 Phasing
Phasing is an unusual ability some Magic: the Gathering cards have that is crucial to our
construction. It allows a creature to be treated as if it doesn’t exist – in particular, its
triggered abilities won’t trigger – but it stays on the battlefield, and so edits to its text by
Artificial Evolution remain. Permanents with phasing toggle between two states each time
their controller’s turn begins: at the very beginning of a player’s turn, all their phased-in
permanents with phasing “phase out” (temporarily cease to exist) and all their phased-out
permanents “phase in” (come back into existence).

A.7 Counters
There are many effects that can change the power and toughness of creatures. Some of these
are temporary and last until the end of turn, while others are permanent. Permanent changes
are denoted by counters placed on the creatures. In our construction, we will utilize +1/+1
and −1/−1 counters. +1/+1 counters increase the power and toughness of a creature each
by 1, while −1/−1 counters decrease them. Pairs of +1/+1 and −1/−1 counters on the same
creature cancel out.

A.8 The Structure of a Turn
Play in Magic: the Gathering consists of players alternately taking turns. Each turn is
divided into phases, with each phase divided into steps such as the upkeep step. Many cards
in Magic say something like “At the beginning of your upkeep...” or “At the beginning of
each player’s draw step...” At the beginning of each step and phase, the first thing done is
always to check for such abilities and put them on the stack. During each of these phases,
there is the option to cast spells and activate abilities, but some additionally have game
actions players are required to take after all relevant effects have resolved.

The first phase of each turn is the beginning phase, which consists of the untap step, the
upkeep step, and the draw step. During the untap step players first carry out any phasing
effects, and then untap all permanents they control. There are no game actions during the
upkeep step, and during the draw step the active player draws one card. Most of the action
of the Turing machine happens in the beginning phase.

The second phase is the first main phase, where the bulk of the play occurs during a
normal game, though nothing happens in the Turing machine. The third phase is the combat
phase, where combat occurs, but this is not used in our construction. We will also have
nothing relevant happen in the fourth phase (the second main phase) and only minimal
effects during the final end phase.

A. Churchill, S. Biderman, and A. Herrick 9:17

B Tables

Table 1 Game state when the (2, 18) UTM begins.

Card Controller Changed text / details
29 Rotlung Reanimator Bob See Table 2
7 Xathrid Necromancer Bob See Table 2
29 Cloak of Invisibility Alice attached to Rotlung Reanimator
7 Cloak of Invisibility Alice attached to Xathrid Necromancer
Wheel of Sun and Moon Alice attached to Alice
Illusory Gains Alice attached to latest tape token
Steely Resolve Alice Assembly-Worker
2 Dread of Night Alice Black
Fungus Sliver Alice Incarnation
Rotlung Reanimator Alice Lhurgoyf, black, Cephalid
Rotlung Reanimator Bob Lhurgoyf, green, Lhurgoyf
Shared Triumph Alice Lhurgoyf
Rotlung Reanimator Alice Rat, black, Cephalid
Rotlung Reanimator Bob Rat, white, Rat
Shared Triumph Alice Rat
Wild Evocation Bob None
Recycle Bob None
Privileged Position Bob None
Vigor Alice None
Vigor Bob None
Mesmeric Orb Alice None
Ancient Tomb Alice None
Prismatic Omen Alice None
Choke Alice None
Blazing Archon Alice None
Blazing Archon Bob None

FUN 2021

9:18 Magic: The Gathering Is Turing Complete

Table 2 Text of the Rotlung Reanimators and Xathrid Necromancers encoding the (2, 18) UTM.

Rogozhin’s program Card text
q1 1 c2 Lq1 Whenever an Aetherborn dies, create a 2/2 white Sliver
q1

−→1 ←−1 1 Rq1 Whenever a Basilisk dies, create a 2/2 green Elf
q1

←−1 c2 Lq1 Whenever a Cephalid dies, create a 2/2 white Sliver
q1

−→1 1 1 Rq1 Whenever a Demon dies, create a 2/2 green Aetherborn
q1

←−1 1
−→1 1 Lq1 Whenever an Elf dies, create a 2/2 white Demon

q1 b
←−
b Rq1 Whenever a Faerie dies, create a 2/2 green Harpy

q1
−→
b

←−
b 1 Rq1 Whenever a Giant dies, create a 2/2 green Juggernaut

q1
←−
b b Lq1 Whenever a Harpy dies, create a 2/2 white Faerie

q1
−→
b 1 b Rq1 Whenever an Illusion dies, create a 2/2 green Faerie

q1
←−
b 1

−→
b 1 Lq1 Whenever a Juggernaut dies, create a 2/2 white Illusion

q1 b2 b3 Lq2 Whenever a Kavu dies, create a tapped 2/2 white Leviathan
q1 b3

−→
b 1 Lq2 Whenever a Leviathan dies, create a tapped 2/2 white Illusion

q1 c
−→1 Lq2 Whenever a Myr dies, create a tapped 2/2 white Basilisk

q1
−→c ←−c Rq1 Whenever a Noggle dies, create a 2/2 green Orc

q1
←−c −→c 1 Lq1 Whenever an Orc dies, create a 2/2 white Pegasus

q1
−→c 1

←−c 1 Rq2 Whenever a Pegasus dies, create a tapped 2/2 green Rhino
q1

←−c 1 HALT Whenever a Rhino dies, create a 2/2 blue Assassin
q1 c2

←−1 Rq1 Whenever a Sliver dies, create a 2/2 green Cephalid

q2 1 ←−1 Rq2 Whenever an Aetherborn dies, create a 2/2 green Cephalid
q2

−→1 ←−1 Rq2 Whenever a Basilisk dies, create a 2/2 green Cephalid
q2

←−1 −→1 Lq2 Whenever a Cephalid dies, create a 2/2 white Basilisk
q2

−→1 1
←−1 1 Rq2 Whenever a Demon dies, create a 2/2 green Elf

q2
←−1 1 1 Lq2 Whenever an Elf dies, create a 2/2 white Aetherborn

q2 b b2 Rq1 Whenever a Faerie dies, create a tapped 2/2 green Kavu
q2

−→
b

←−
b Rq2 Whenever a Giant dies, create a 2/2 green Harpy

q2
←−
b

−→
b Lq2 Whenever a Harpy dies, create a 2/2 white Giant

q2
−→
b 1

←−
b 1 Rq2 Whenever an Illusion dies, create a 2/2 green Juggernaut

q2
←−
b 1

−→
b Lq2 Whenever a Juggernaut dies, create a 2/2 white Giant

q2 b2 b Rq1 Whenever a Kavu dies, create a tapped 2/2 green Faerie
q2 b3

←−
b 1 Rq2 Whenever a Leviathan dies, create a 2/2 green Juggernaut

q2 c ←−c Rq2 Whenever a Myr dies, create a 2/2 green Orc
q2

−→c ←−c Rq2 Whenever a Noggle dies, create a 2/2 green Orc
q2

←−c −→c Lq2 Whenever an Orc dies, create a 2/2 white Noggle
q2

−→c 1 c2 Rq2 Whenever a Pegasus dies, create a 2/2 green Sliver
q2

←−c 1 c2 Lq1 Whenever a Rhino dies, create a tapped 2/2 white Sliver
q2 c2 c Lq2 Whenever a Sliver dies, create a 2/2 white Myr

A. Churchill, S. Biderman, and A. Herrick 9:19

Table 3 60-Card Decklist to play the Turing machine in a Legacy tournament.

Card Purpose Card Purpose
4 Ancient Tomb Bootstrap 1 Rotlung Reanimator Logic processing
4 Lotus Petal Bootstrap 1 Cloak of Invisibility Logic processing
4 Grim Monolith Infinite mana device 1 Infest Logic processing
4 Power Artifact Infinite mana device 1 Cleansing Beam Logic processing
4 Gemstone Array Infinite mana device 1 Soul Snuffers Logic processing
4 Staff of Domination Draw rest of deck 1 Illusory Gains Logic processing
1 Memnarch Make token copies 1 Privileged Position Logic processing
1 Stolen Identity Make token copies 1 Steely Resolve Logic processing
1 Artificial Evolution Edit cards 1 Vigor Logic processing
1 Olivia Voldaren Edit cards 1 Fungus Sliver Logic processing
1 Glamerdye Edit cards 1 Dread of Night Logic processing
1 Prismatic Lace Edit cards 1 Wild Evocation Forced play device
1 Donate Edit card control 1 Wheel of Sun and Moon Forced play device
1 Reality Ripple Edit card phase 1 Shared Triumph Infinite tape device
1 Djinn Illuminatus Simplify setup 1 Xathrid Necromancer Change state
1 Reito Lantern Simplify setup 1 Mesmeric Orb Change state
1 Claws of Gix Simplify setup 1 Coalition Victory Halting device
1 Riptide Replicator Set up tape 1 Prismatic Omen Halting device
1 Capsize Set up tape 1 Choke Halting device
1 Karn Liberated Cleanup after setup 1 Recycle Remove choices
1 Fathom Feeder Cleanup after setup 1 Blazing Archon Remove choices

FUN 2021

Computational Fun with Sturdy and Flimsy
Numbers
Trevor Clokie
University of Waterloo, Canada
trevor.clokie@uwaterloo.ca

Thomas F. Lidbetter
University of Waterloo, Canada
finnlidbetter@gmail.com

Antonio J. Molina Lovett
University of Waterloo, Canada
antonio@amolina.ca

Jeffrey Shallit
University of Waterloo, Canada
shallit@uwaterloo.ca

Leon Witzman
University of Waterloo, Canada
lwitzman@uwaterloo.ca

Abstract
Following Stolarsky, we say that a natural number n is flimsy in base b if some positive multiple
of n has smaller digit sum in base b than n does; otherwise it is sturdy. We develop algorithmic
methods for the study of sturdy and flimsy numbers.

We provide some criteria for determining whether a number is sturdy. Focusing on the case
of base b = 2, we study the computational problem of checking whether a given number is sturdy,
giving several algorithms for the problem. We find two additional, previously unknown sturdy
primes. We develop a method for determining which numbers with a fixed number of 0’s in binary
are flimsy. Finally, we develop a method that allows us to estimate the number of k-flimsy numbers
with n bits, and we provide explicit results for k = 3 and k = 5. Our results demonstrate the utility
(and fun) of creating algorithms for number theory problems, based on methods of automata theory.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Dynamic programming

Keywords and phrases sturdy number, flimsy number, context-free grammar, finite automaton,
enumeration

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.10

Related Version The full paper is available at https://arxiv.org/abs/2002.02731.

Supplementary Material Implementations of our algorithms can be found in the GitHub repository
https://github.com/FinnLidbetter/sturdy-numbers.

Acknowledgements We would like to thank Kenneth Stolarsky and the referees for helpful comments.

1 Introduction

Let sb(n) denote the sum of the digits of n, when expressed in base b. Thus, for example,
s2(9) = 2. A number n is said to be k-flimsy in base b if there exists a positive integer k such
that sb(kn) < sb(n). Any such k, if one exists, is called a flimsy witness for n. If n is k-flimsy
for some k, it is said to be flimsy. If there is no such k, then n is said to be sturdy in base b.
For example, 7 is sturdy in base 2, while 13 is flimsy, because s2(13) = 3 > 2 = s2(5 · 13).
Thus 5 is a flimsy witness for 13. In this paper we examine the computational aspects of
sturdy and flimsy numbers.

© Trevor Clokie, Thomas F. Lidbetter, Antonio J. Molina Lovett, Jeffrey Shallit, and Leon Witzman;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:trevor.clokie@uwaterloo.ca
mailto:finnlidbetter@gmail.com
https://orcid.org/0000-0002-1890-9517
mailto:antonio@amolina.ca
https://orcid.org/0000-0003-1197-3820
mailto:shallit@uwaterloo.ca
mailto:lwitzman@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.FUN.2021.10
https://arxiv.org/abs/2002.02731
https://github.com/FinnLidbetter/sturdy-numbers
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Computational Fun with Sturdy and Flimsy Numbers

Sturdy and flimsy numbers were introduced by Stolarsky in 1980 [28]. For other papers
on the topic, see [25, 10, 8, 6].

Many of the sequences we discuss appear in the On-Line Encyclopedia of Integer Sequences
[27]. For example, the base-2 sturdy numbers form sequence A125121 in the OEIS, while
the base-2 sturdy primes form sequence A143027. The base-2 flimsy numbers form sequence
A005360, while the base-2 flimsy primes form sequence A330696. The base-10 sturdy numbers
form sequence A181862, while the base-10 sturdy primes form sequence A181863. Sequence
A086342 gives the value of mink≥1 s2(kn), while sequence A143069 gives argmink≥1 s2(kn) =
min{k : s2(kn) = mink≥1 s2(kn)}.

The goal of this paper is to examine the algorithmic aspects of sturdy and flimsy numbers.
The outline of the paper is as follows. In Section 2, we prove some basic properties of digit
sums of multiples. In Section 3, we give a criterion for determining if a number is flimsy, and
use it to find two previously unknown sturdy primes.

Next, we turn to algorithms for sturdy and flimsy numbers. A priori it is not immediately
clear that it is even decidable whether a given n is flimsy or sturdy. Indeed, in a recent paper
by Elsholtz [11], he asks, “How can one algorithmically find a “sparse” representation of a
multiple of p?”

More precisely, there are four computational problems worthy of study:
1. Given a positive integer n, decide whether it is sturdy in base b.
2. Compute swmb(n) := mink≥1 sb(kn). This is the smallest weight of a multiple; the

smallest digit sum of a multiple of n; if n is sturdy, then swmb(n) = sb(n).
3. Compute mswb(n) := argmink≥1 sb(kn). This is the minimum sum witness; the smallest

k such that kn achieves its minimum digit sum; if n is sturdy, then mswb(n) = 1.
4. Given that n is flimsy, determine mfwb(n) := min{k : sb(kn) < sb(n)}. This is the

minimal flimsy witness.
A table of these functions is given in Table 1. Here the column labeled “char” is F if the
number is flimsy and S if it is sturdy.

In Sections 4–7, we discuss algorithms to solve these problems. The fastest, based on
automata theory, shows that we can check whether a number n is sturdy in O(n) time.
Section 10 gives our computational results achieved with our algorithms.

In Section 11 we give an application of automata to help characterize the flimsy numbers
with a fixed number of 0’s.

Finally, in Section 12, we turn to estimating the number of k-flimsy numbers with n bits.
We use techniques from formal language theory to solve the problem.

2 Basic properties

In this section, we prove some of the basic properties of digit sums of multiples.
We start with some notation. For n ≥ 0, we define (n)b to be the base-b representation

of n, starting with the most significant digit. If x is a string, we define [x]b to be the integer
that x represents when interpreted in base b. If b is fixed, we define x to be the base-b
complement of x, that is, the string where each digit d in x is replaced by b− 1− d.

I Theorem 1. Let b ≥ 2 be an integer, and t be a positive divisor of b. Then for all integers
n, r ≥ 1, there exists a positive integer j such that sb(jn) = r if and only if there exists a
positive integer k such that sb(ktn) = r.

Proof. For one direction, take j = kt.
For the other direction, assume that there exists j ≥ 1 such that sb(jn) = r. Let k = bj/t.

Then sb(ktn) = sb(bjn) = sb(jn) = r. J

https://oeis.org/A125121
https://oeis.org/A143027
https://oeis.org/A005360
https://oeis.org/A330696
https://oeis.org/A181862
https://oeis.org/A181863
https://oeis.org/A086342
https://oeis.org/A143069

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:3

Table 1 Table of sturdy and flimsy numbers.

n char swm(n) msw(n) mfw(n) n char swm(n) msw(n) mfw(n)
3 S 2 1 - 5 S 2 1 -
7 S 3 1 - 9 S 2 1 -
11 F 2 3 3 13 F 2 5 5
15 S 4 1 - 17 S 2 1 -
19 F 2 27 27 21 S 3 1 -
23 F 3 3 3 25 F 2 41 41
27 F 2 19 3 29 F 2 565 5
31 S 5 1 - 33 S 2 1 -
35 S 3 1 - 37 F 2 7085 7085
39 F 3 7 7 41 F 2 25 25
43 F 2 3 3 45 S 4 1 -
47 F 3 11 3 49 S 3 1 -
51 S 4 1 - 53 F 2 1266205 5
55 F 3 7 3 57 F 2 9 9
59 F 2 9099507 3 61 F 2 17602325 5
63 S 6 1 - 65 S 2 1 -
67 F 2 128207979 128207979 69 S 3 1 -
71 F 3 119 119 73 S 3 1 -
75 S 4 1 - 77 F 3 5 5
79 F 3 13 7 81 F 2 1657009 1657009
83 F 2 26494256091 395 85 S 4 1 -
87 F 3 3 3 89 S 4 1 -
91 F 3 3 3 93 S 5 1 -
95 F 3 5519 3 97 F 2 172961 172961
99 F 2 331 11 101 F 2 11147523830125 365
103 F 3 5 5 105 S 4 1 -
107 F 2 84179432287299 3 109 F 2 2405 5
111 F 3 591 3 113 F 2 145 145
115 F 3 571 9 117 F 4 5 5
119 F 3 71 3 121 F 2 297758653049289 9
123 F 4 19 3 125 F 2 9007199254741 5
127 S 7 1 - 129 S 2 1 -

We now show that in order to compute swmb, it suffices to consider only those arguments
relatively prime to b.

I Corollary 2. Write the prime factorization of n as
∏

1≤i≤t p
ei
i , and define g =

∏
pi|b p

ei
i .

Then swmb(n) = swmb(n/g), and gcd(b, n/g) = 1.

Proof. Let p be any prime dividing both b and n. From Theorem 1, we see that swmb(n) =
swmb(n/p). By repeatedly applying this observation, and replacing n with n/p, we can
remove from n all primes dividing both b and n, while maintaining the same value of swmb.
At the end, the resulting n/g is relatively prime to b. J

I Theorem 3. There exists j ≥ 1 such that sb(jn) = t if and only if there exist t distinct
powers of b that sum to a multiple of n.

Proof. By Corollary 2, we may assume that n is coprime with b.
In such cases, b has finite order, say ν, modulo n. Suppose

∑ν−1
i=0 cib

i ≡ 0 (mod n) where
each ci ≥ 0 and

∑ν−1
i=0 ci = t. Then

∑ν−1
i=0

∑ci−1
j=0 bjν+i ≡ 0 (mod n), and this sum consists

of distinct powers of b. J

FUN 2021

10:4 Computational Fun with Sturdy and Flimsy Numbers

Empirical evidence suggests that if b = 2 and swmb(n) = t, then for all i ≥ 0, some
multiple of n has digit sum t + i. However, the analogous result is false for b = 3. For
example, swm3(13) = 3, but no multiple of 13 has digit sum 4. These observations are
explained in the following theorem.

I Theorem 4. Suppose j, n are positive integers such that sb(jn) = t. Then for all r ≥ 0,
there exists k ≥ 1 such that sb(kn) = t+ r(b− 1).

Proof. Assume sb(jn) = t for some t ≥ 1. Then from Theorem 3 we know that
∑t
i=1 b

mi ≡
0 (mod n) for some strictly increasing mi and (replacing j by bj if needed) we can assume
mt ≥ 1. Now replace the high-order bit bmt in this sum with the sum of b terms bν+mt−1 +
b2ν+mt−1 + · · · + b(b−1)ν+mt−1, where ν is the order of b, modulo n. This has the effect
removing 1 bit, while adding b additional bits, and each of the b new terms is congruent to
bmt−1 (mod n). So we have found another multiple of n with digit sum t+ b− 1. We can
repeat this transformation any number of times. J

I Remark 5. The result is optimal. Since b− 1 divides the digit sum of any multiple of b− 1,
there is no k ≥ 1 satisfying b− 1 < sb(k(b− 1)) < 2(b− 1).

3 Infinite classes of sturdy numbers

We first give a criterion for deciding whether a number is flimsy. This shows that Problem 1
on our list, determining whether a given positive integer is sturdy, is decidable.

I Theorem 6. Let n, b, j be positive integers, b ≥ 2 such that n divides bj − 1. Then n is
flimsy in base b if and only if sb(kn) < sb(n) for some k satisfying 1 ≤ k ≤ bj−1

n .

Proof. One direction is easy: if sb(kn) < sb(n) for some k, then n is flimsy in base b.
For the other direction, suppose n is flimsy, but sb(kn) ≥ sb(n) for all k with 1 ≤ k ≤ bj−1

n .
Let k′ be the smallest positive integer such that sb(k′n) < sb(n). By assumption k′n ≥ bj ,
and so we can write k′n = cbj + d for uniquely-determined c ≥ 1 and 0 ≤ d < bj . Since
bj ≡ 1 (mod n), it follows that cbj +d ≡ c+d ≡ 0 (mod n). Then c+d = fn < cbj +d = k′n

for some integer f with 1 ≤ f < k′. Thus sb(k′n) = sb(cbj + d) = sb(c) + sb(d) ≥ sb(c+ d) =
sb(fn) ≥ sb(n), achieving the desired contradiction. J

I Remark 7. Since j ≤ ϕ(n), this together with Theorem 1 shows that sturdiness is reduced
to a finite search. The result for b = 10 was observed by Phedotov [20].

We applied Theorem 6 to known prime factors of composite Mersenne numbers [29] and
found

57912614113275649087721 = 283 − 1
167

and

10350794431055162386718619237468234569 = 2131 − 1
263

as previously unknown sturdy primes in base 2.

I Corollary 8. If b, j are positive integers, with b ≥ 2, then bj−1
m is sturdy in base b for every

positive m dividing b− 1.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:5

Proof. Let k be an integer with 1 ≤ k ≤ m. Then we have

sb

(
k
bj − 1
m

)
= sb

(
k(b− 1)
m

j−1∑
i=0

bi

)
= kj

b− 1
m
≥ j b− 1

m
,

where we have used the fact that k ≤ m. The result now follows by Theorem 6. J

I Theorem 9. Let n be sturdy in base b ≥ 2, with n dividing bj − 1 for some j ≥ 1. Fix a
positive integer r, and define m = n

(
brj−1
bj−1

)
. Then m is sturdy in base b.

Proof. Let x = (n)b. Observe that m = [(x 0j−|x|)r−1 x]b, so sb(m) = rsb(n). If 1 ≤ k ≤
bj−1
n , then (km)b consists of r copies of (kn)b concatenated, separated by some number of

0’s. So sb(km) = rsb(kn) ≥ rsb(n) = sb(m). The result now follows by Theorem 6. J

We can now get a generalization of a theorem of Stolarsky [28, Thm. 2.1].

I Corollary 10. Let e, k, r ≥ 1, and b ≥ 2. Define n=[(1k 0(e−1)k)r−1 1k]b=
(
bk−1
b−1

)(
brek−1
bek−1

)
.

Then n is sturdy in base b.

Proof. Note that bk−1
b−1 is sturdy in base b by Corollary 8. Additionally, bk− 1 divides bek− 1.

The result now follows by Theorem 9. J

The next theorem gives another infinite class of sturdy numbers.

I Theorem 11. Fix b ≥ 2. Let n be a positive integer, and x be the base-b representation of
n. Then every integer with base-b representation of the form x (b− 1)i x, where i ≥ 0 and x
is the base-b complement of x, is sturdy in base b.

Proof. Suppose y = x (b− 1)i x for some i ≥ 0. Then [y]b + n = nb|x|+i + b|x|+i − 1. Then
[y]b = (n+1)(b|x|+i−1). Observe that sb(b|x|+i−1) = (|x|+i)(b−1) = sb([y]b). Furthermore,
b|x|+i − 1 is sturdy in base b by Corollary 8. Then for every positive integer k we have
sb(k[y]b) = sb(k(n+ 1)(b|x|+i − 1)) ≥ sb(b|x|+i − 1) = sb([y]b). J

I Corollary 12. Let b ≥ 2 be an integer, and m be a positive integer dividing b− 1. Then
(bn−1)2

m is sturdy in base b for all n ≥ 1.

Proof. Suppose m divides b− 1. Then we have

(bn − 1)2

m
= bn − 1

m
bn − bn − 1

m

= bn − 1
m

bn − bn + bn − bn − 1
m

=
(
bn − 1
m

− 1
)
bn + bn − bn − 1

m

=
(
bn − 1
m

− 1
)
bn + (bn − 1)−

(
bn − 1
m

− 1
)
,

which has base-b representation xx where x =
(
bn−1
m − 1

)
b
. Then by Theorem 11, (bn−1)2

m is
sturdy in base b. J

In the rest of this paper we are almost exclusively concerned with the case b = 2, and
so from now on we omit the subscripts on the functions msw, swm,mfw, and use the terms
flimsy or sturdy without further elaboration. In this case s2(n) equals the number of 1’s in
the binary representation of n, also known as the Hamming weight of n.

FUN 2021

10:6 Computational Fun with Sturdy and Flimsy Numbers

4 Algorithms when swm(n) is small

As we will see in Section 5, for general n we can determine whether n is sturdy in O(n) time.
We call this a linear-time algorithm.1 Therefore, it is of interest to see when this can be
improved.

If swm(n) is small, this fact can be verified efficiently in some cases. This is particularly
relevant in the case where n is prime because, according to a recent result of Elsholtz [11],
almost all primes p have swm(p) ≤ 7. Furthermore, we know from results of Hasse [14] and
Odoni [18] that a positive proportion of all primes satisfy swm(p) = 2; asymptotically, this
fraction is 17/24. For general n, however, the situation is different: the set of n for which
swm(n) = 2 has density 0; see the results of Moree in [21, Appendix B].

4.1 The case swm(n) = 2
If swm(n) = 2, then n ·msw(n) = 2k + 1 for some integer k ≥ 1. Hence n | 2k + 1, and so
−1 belongs to the subgroup generated by 2 (mod n). We can decide if −1 belongs to the
subgroup generated by 2 (mod n) by using an algorithm for the discrete logarithm problem.
For example, the baby-step giant-step algorithm can be used to find k such that 2k ≡ −1
(mod n), if such a k exists, with time complexity O(

√
n logn) [26]. If the factorization of n

is known, this running time can be substantially improved.

4.2 The case swm(n) = 3
If swm(n) = 3, then n ·msw(n) = 2k + 2` + 1 for some integers k > ` ≥ 1. It follows that
2k + 2` ≡ −1 (mod n), which means that we are dealing with a 2-SUM problem. This can be
solved in O(n logn) time using sorting and binary search. (Briefly, compute a table of powers
of 2, mod n; sort them in ascending order, and then for each power 2k use binary search to
see if there is an ` such that 2` ≡ −1− 2k (mod n).) Although this does not beat our O(n)
algorithm given below asymptotically, in many cases it will run more quickly because of the
simplicity of the operations. This is particularly true if the subgroup generated by 2 (mod n)
is small.

5 A dynamic programming algorithm

In this section we show how to check whether n is sturdy using dynamic programming.
By Corollary 2, we can restrict our attention to the case where n is odd. In this case,

the powers of two Pn = {2i : i ≥ 0} form a cyclic subgroup of (Z/(n))∗, the multiplicative
group of integers relatively prime to n. Define ν = ord2 n = |Pn|, the order of 2 in the group
(Z/(n))∗. Hence, to find a positive multiple of n whose binary expansion contains exactly k
1’s, it suffices to find an appropriate linear combination of k elements of Pn (counted with
repetition) that sums to 0 (mod n). More precisely, we need to find non-negative integers
a1, a2, . . . , ai and distinct elements e1, e2, . . . , ei ∈ Pn such that

a1e1 + · · ·+ aiei ≡ 0 (mod n)
a1 + a2 + · · ·+ ai = k,

1 Strictly speaking, the usage “linear-time” in the context of algorithms on integers would usually mean
an algorithm that runs in O(log n) time. But since no algorithm is this efficient, we stray from the
common usage for brevity.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:7

for integers k ≥ 1. This is the kind of problem that dynamic programming is well-suited for.
To restrict the amount of work required in a dynamic programming algorithm for this we
make use of the following lemma.

I Lemma 13. For an integer base b ≥ 2 let Pb,n = {bi mod n : i ∈ N} and suppose
that e1, e2, . . . , em are the distinct elements of Pb,n. If there exist non-negative integers
a1, a2, . . . , am such that a1e1+a2e2+· · ·+amem ≡ 0 (mod n) and a1+· · ·+am = k, then there
exist non-negative integers c1, c2, . . . , cm < b and l ≤ k such that c1e1 + c2e2 + · · ·+ cmem ≡
0 (mod n) and c1 + · · ·+ cm = l.

Proof. Suppose we have non-negative integers a1, a2, . . . , am such that a1e1 + a2e2 + · · ·+
amem ≡ 0 (mod n) and a1 + · · ·+am = k. If we have a1, a2, . . . , am < b then we are done. So
suppose that there is some i such that ai ≥ b. Let j be the integer such that bei ≡ ej (mod n).
Then we can take m∑

r=1,r 6=i,r 6=j
arer

+ (ai − b)ei + (aj + 1)ej ≡ 0 (mod n),

giving m∑
r=1,r 6=i,r 6=j

ar

+ (ai − b) + (aj + 1) = a1 + · · ·+ am − b+ 1 = k − b+ 1 < k.

Setting ai := ai − b and aj := aj + 1 and k := k − b+ 1, we can repeat this argument until
a1, . . . , am < b. J

Let us start with determining whether n is sturdy. It suffices to solve the problem of
the previous paragraph for 1 ≤ k < s2(n). The idea is that we will fill in the entries of a
3-dimensional boolean array x with the following meaning: the entry x[i, j, r] is true if and
only if the integer j has a representation as a sum of i ≥ 1 powers of 2, using as summands
only the first r elements of the set Pn without repetition. We fill in the array x in increasing
order of r.

For initialization, we set all elements of x to false, except that we set x[0, 0, r] to true
for 0 ≤ r ≤ ν.

To solve the remaining three problems, we need to record more information than just the
ability to represent j as a sum of powers of 2. The integer array y[i, j, r] is used to record
the smallest integer congruent to j (mod n) that is the sum of exactly i powers of 2 (without
repetition), using only the first r elements of the set Pn.

In the pseudocode that follows, the scope of loops is indicated by the indentation.

minrep(n) { assumes n odd and at least 3 }

sumd := sumdig(2,n); {sum of base-2 digits of n}

{make a table of powers of 2}
b := 1;
a := 0;
repeat

b := (2*b) mod n;
a := a+1;

FUN 2021

10:8 Computational Fun with Sturdy and Flimsy Numbers

until
b = 1;

ord2 := a; { the order of 2 mod n }
power2 := array[0..ord2-1] of integer;
for m := 0 to ord2-1 do

power2[m] := b;
b := (2*b) mod n;

{ the intent is that x[i,j,r] = true, if j (mod n) has a representation
as a sum of exactly i powers of 2, using only the first r elements of
power2 (without repetition), and false otherwise.
y[i,j,r] = smallest integer congruent to j (mod n)
representable by the sum of exactly i powers of 2,
using only the first r elements of power2 (without repetition) }

x := array[0..sumd-1, 0..n-1, 0..ord2] of boolean;
y := array[0..sumd-1, 0..n-1, 0..ord2] of integer;

{ initialize }

for r := 0 to ord2 do
for i := 1 to sumd-1 do

for j := 0 to n-1 do
x[i,j,r] := false;
y[i,j,r] := infinity;

x[0,0,r] := true;
y[0,0,r] := 0;

{ fill in table }

for r := 1 to ord2 do {consider summand 2^{r-1} mod p}
for j := 0 to n-1 do { check position j }

for i := 1 to sumd-1 do {fill in level i of the array}
x[i,j,r] := x[i,j,r-1];
y[i,j,r] := y[i,j,r-1];
{check if we can use 2^{r-1} }
if x[i-1, (j-power2[r-1]) mod n, r-1] then

x[i,j,r] := true;
y[i,j,r] := min(y[i,j,r],
y[i-1, (j-power2[r-1]) mod n, r-1] + 2^{r-1});

sturdy := true;
for i := 2 to sumd-1 do

sturdy := sturdy and x[i,0,ord2];

if (sturdy) then
print("swm(n) = ",sumd);
print("msw(n) = ",1);

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:9

else
i := 1;
while (not x[i,0,ord2]) do i := i+1;
print("swm(n) = ",i);
print("msw(n) = ",y[i,0,ord2]/n);
mfw := infinity;
while (i < sumd) do

mfw := min(mfw, y[i,0,ord2]);
i := i+1;

print("mfw(n) = ",mfw);

end;

Our dynamic programming algorithm has three nested loops, which gives a running time
of O(ν · n · s2(n)). Since ν = ordn 2 could be as large as n− 1, and s2(n) could be as big as
log2 n, this gives a worst-case running time of O(n2 logn), where we are measuring the run
time in terms of RAM operations on integers of size about n. This means that this algorithm
will only be feasible for integers smaller than about 107.

6 An algorithm based on finite automata

In this section we provide a different, much faster algorithm for checking sturdiness, based
on finite automata.

The idea is simple. It is easy to create a deterministic finite automaton (DFA) accepting
the binary representations of the positive integers divisible by n. Such an automaton has n
states [1] and exactly one final state. Next, we can easily construct a DFA At accepting those
strings starting with a 1 and having at most t ones. Using the standard “direct product”
construction [15, pp. 59–60], we can construct a DFA Mt of (t+2)n states for the intersection
of these two languages; it has exactly t+ 1 final states f0, f1, . . . , ft corresponding to positive
integers divisible by n with 0, 1, . . . , t 1’s respectively. Then some multiple of n has at
most t 1’s iff Mt accepts at least one string. We can test this condition (and even find the
lexicographically least string accepted) using breadth-first search to decide if some fi for
0 ≤ i ≤ t is reachable from the start state of Mt, in linear time in the size of M , so in
O((t+ 2)n) time.

By choosing t = s2(n)− 1 we can determine if n is sturdy in O(n logn) steps. Similarly,
by allowing the breadth-first search to run to completion and keeping track of the least string
in radix order used to reach each state, we can recover swm(n), msw(n), and mfw(n) by
examining each of the final states for whether or not they were visited in the search and
looking at the least string in radix order used in each case. More precisely, the value of
swm(n) is the least integer i such that final state fi in Mt is reached in the breadth-first
search, or s2(n) if no final state is reached. The value of msw(n) is the least string in radix
order used to reach fswm(n) interpreted as an integer and divided by n, or 1 if n is sturdy.
The value of mfw(n), if it is defined, is the least string in radix order among all such strings
used to reach a final state, interpreted as an integer and divided by n. To avoid needing
to store the representation of large integers, we instead store the exponents of the current
power of 2 and a pointer to the previous power. From this linked list we can reconstruct the
appropriate number.

FUN 2021

10:10 Computational Fun with Sturdy and Flimsy Numbers

I Theorem 14. We can decide whether n is sturdy O(n logn) steps. In the same time bound
we can compute swm(n) and msw(n). If n is flimsy, we can compute mfw(n) in the same
time bound.

This algorithm is practical for n up to about 1010. The main constraint is likely to be space
and not time.

7 Improving the automaton-based algorithm

With a small modification to this idea of using a breadth-first search on the graph defined
by automaton M , we can make further improvements to the time complexity. Consider
the deterministic finite automaton Mn accepting the binary representations of the positive
integers divisible by n. We then define a directed graph Gn with vertices given by the states
of Mn and directed, weighted edges given by the transitions of Mn where transitions on the
symbol 0 are given an edge weight of 0 in Gn and transitions on the symbol 1 are given
an edge weight of 1 in Gn. We augment Gn with one additional vertex, vs, with a single
outgoing edge of weight 1 to the vertex corresponding to the state reached when Mn reads
any input of the form 0∗1. If vf is the vertex corresponding to the accepting state in Mn,
then there is a path from vs to vf of weight k if and only if there is a non-zero multiple of
n with Hamming weight k. The shortest path problem on a graph G = (V,E) with edge
weights in {0, 1} can be solved in time O(|V | + |E|) using a variation of the breadth-first
search algorithm. In place of the queue used in a standard breadth-first search, we use a
double ended queue. We process a node by traversing incident edges of weight 0 and pushing
the nodes reached to the front of the queue if they have not been processed already. Edges
of weight 1 are also traversed, but the nodes reached are pushed to the back of the queue
provided that they have not been processed already. After a node has been processed, the
next node at the front of the queue is dequeued and processed if it has not been processed
already, otherwise it is just discarded. The depth of the search can be tracked as in a standard
breadth-first search. Thus we achieve the following improvement.

I Theorem 15. We can test if n is sturdy in O(n) steps.

From this approach we are still able to construct an example of a multiple of n achieving
the minimum Hamming weight over all multiples of n. It is simply a matter of maintaining
the path used in the breadth-first search algorithm finding the shortest path from vs to vf in
Gn. However, there is no guarantee that this is the least multiple of n with this property. To
find the least multiple we can use the linear-time algorithm to first determine the minimum
Hamming weight. For minimum Hamming weight k, we take the direct product of automaton
Mn accepting the base-2 representations of all multiples of n and the automaton accepting
all binary strings with exactly k 1’s. A breadth-first search on this product automaton gives
the least non-zero multiple of n with Hamming weight k. This second breadth-first search
has worst case time complexity O(n logn), giving overall complexity O(n logn) for finding
the least non-zero multiple of n having the minimum Hamming weight over all non-zero
multiples of n.

8 Another breadth-first search approach

We can take advantage of Lemma 13 to evaluate sturdiness and compute swm and msw using
a breadth-first search on a different graph structure. As before, to test the sturdiness of an
integer n ≥ 3, we construct an (n+ 1)-vertex graph with n of the vertices representing the

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:11

distinct residue classes modulo n, which we will refer to as [0], [1], . . . , [n− 1], and one special
vertex, v0, corresponding to the number 0. The graph contains a directed edge from vertex
[x] to vertex [y] if and only if x+ 2j ≡ y (mod n) for some integer j ≥ 0. Similarly, there
is an edge from v0 to [y] if and only if 2j ≡ y (mod n). Hence each vertex has out-degree
ν = ordn 2. The idea of this construction is to treat traversing an edge from [x] to [x+ 2j] as
choosing to use the jth power of 2 as a summand in a summation to a value congruent to 0
modulo n. Thus, to compute swm(n) we are looking for the length of the shortest path from
v0 to [0] and this can be found via a breadth-first search. Furthermore, by keeping track
of the smallest sum required to reach each state, we can also recover msw(n) from such a
breadth-first search. Rather than running the breadth-first search to completion, we can
terminate as soon as we reach a depth equal to s2(n), as we will know by then whether or
not n is sturdy.

With this approach we can take advantage of the structure of the graph to speed up
testing for sturdiness. If during the breadth first search we visit a node [x] such that [n− x]
has already been visited, then since the length of the shortest path from [x] to [0] is equal to
the length of the shortest path from v0 to [n− x] either we will know that n is not sturdy, or
that it is not necessary to continue searching from [x]. This greatly improves the efficiency
of the testing for sturdiness.

The complexity of this approach, for evaluating sturdiness, and computing swm(n) and
msw(n) is O(n2) since we are performing a breadth-first search on a graph with n+1 vertices
each with ν = O(n) outgoing edges. In practice this approach seems to perform much better
than our naive O(n2) upper bound would suggest, especially in testing for sturdiness, due to
the early exit conditions.

9 Running time comparison

To demonstrate how these algorithms behave in practice, we compiled timing information
for each of the approaches and each of the four functions of interest for consecutive integers
starting from 1. Each of the algorithms are implemented as described above. However,
before applying each algorithm the baby-step giant-step algorithm, as in Section 4.1, is used
to exit faster in those cases where swm(n) = 2. Running times for the mfw function with
the order_deg_bfs algorithm are not given because there does not seem to be a natural
approach for using this idea to evaluate mfw. The computations producing the given running
times were performed on macOS Catalina version 10.15.2 on a 2.3 GHz Intel Core i5 processor.
Implementations of our algorithms can be found in the GitHub repository

https://github.com/FinnLidbetter/sturdy-numbers.

Table 2 Running time in milliseconds for each of the algorithms to evaluate the functions for all
values of n (odd and even) between 1 and 2000 inclusive.

Algorithm is_sturdy swm msw mfw
dp 22836 2667063 5675228 5167556
aut 1042 1050 1473 1430

order_deg_bfs 322 1646 4339 —
bfs01 224 226 650 1416

In Tables 2 and 3, the algorithmic approaches are named according to the commands
used in the program-runner in the GitHub repository. Here, the dp algorithm refers to the
dynamic programming approach described in Section 5, the aut algorithm refers to the

FUN 2021

https://github.com/FinnLidbetter/sturdy-numbers

10:12 Computational Fun with Sturdy and Flimsy Numbers

automaton-based approach described in Section 6, the bfs01 algorithm refers to the improved
automaton-based approach described in Section 7, and the order_deg_bfs algorithm refers
to the alternative breadth-first search approach described in Section 8.

Table 3 Running time in milliseconds for the algorithms to evaluate the functions for all values
of n (odd and even) between 1 and 10000 inclusive. The dynamic programming algorithm was not
included because it was not feasible to evaluate the functions for all integers between 1 and 10000
with this approach.

Algorithm is_sturdy swm msw mfw
aut 31950 31990 42229 41747

order_deg_bfs 7378 164543 439794 —
bfs01 5209 5207 15515 41761

10 Computational results

Sequence A143027 in the OEIS [27] gives a list of the first few sturdy primes, namely,

2, 3, 5, 7, 17, 31, 73, 89, 127, 257, 1801, 2089, 8191, 65537, 131071,
178481, 262657, 524287, 2099863,

and mentions 616318177 as an additional sturdy prime, although it was not known if this was
the next sturdy prime to occur in the sequence. Using our methods, we checked all primes
p < 232. We confirmed the results in the OEIS and found that 616318177 and 2147483647
are the only remaining sturdy primes in that range.

We also computed frequency counts for the values of swm for odd n > 1, not just primes,
and they are given in Table 4.

11 Numbers with few 0’s

We can also use finite automata to determine when numbers with few 0’s are flimsy. More
precisely, for each pair of integers j, k we can build a DFA M2(j, k) accepting those (n)2 for
which (n)2 has j 0’s and (kn)2 has more than j + t 0’s, where t = |(kn)2| − |(n)2|. Such an
n is guaranteed to be flimsy. We can determine t by reading the input n, least significant
digit first, and computing (kn)2 on the fly, keeping track of the carries.

Let j be a fixed natural number. By choosing an appropriate set of flimsy witnesses
k (which can be guessed empirically), we can determine all flimsy numbers having exactly
j 0’s in their binary representation. We do this by computing the DFA’s M2(j, k) and
unioning them together to get a final automaton M ′j . We expect there to be a finite set
of “sporadic” sturdy exceptions, and (according to Theorem 11) an infinite set of sturdy
exceptions consisting of those numbers with binary representation of the form s1is, where
s begins with 1 and ends with 0. This expectation can then be verified by considering
the language accepted by M ′j ; the finite set of sturdy exceptions can be tested using our
algorithms previously discussed. The multipliers we used in constructing M ′j are the odd
numbers ≤ 2j+1 + 1.

https://oeis.org/A143027

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:13

Table 4 Counts of swm(n) for odd n > 1.

swm(n) n < 220 220 < n < 221 221 < n < 222 222 < n < 223

2 115931 107650 208333 403823
3 286681 294938 596522 1205753
4 83895 83958 168138 336448
5 19287 19242 38566 77071
6 9903 9892 19812 39635
7 4246 4265 8510 17023
8 2274 2269 4548 9104
9 1027 1030 2058 4119
10 529 527 1059 2118
11 256 257 514 1024
12 130 131 260 521
13 64 64 128 256
14 32 33 64 129
15 16 16 32 64
16 8 8 16 32
17 4 4 8 16
18 2 2 4 8
19 1 1 2 4
20 1 0 1 2
21 0 1 0 1
22 0 0 1 0
23 0 0 0 1

We also computed counts of odd sturdy numbers up to 10i for i = 1, 2, 3, 4, 5, 6, and they
are given below:

Table 5 Counts of sturdy numbers.

i Number of odd sturdy numbers < 10i

1 5
2 22
3 81
4 292
5 995
6 3438

With these ideas we can prove the following theorem.

I Theorem 16.
(a) Every integer with no 0’s is sturdy.
(b) Every odd integer with one 0 is flimsy, with the exception of 5 = [101]2, and is proven

flimsy by multiplier 3 or 5.
(c) Every odd integer with two 0’s is flimsy, with the exception of 51 and numbers of the

form 101i01, i ≥ 0, which are all sturdy.
(d) Every odd integer with three 0’s is flimsy, with the exception of 17, 85, 89, 455 and numbers

of the form 1001i011 or 1101i001, i ≥ 0, which are all sturdy.

FUN 2021

10:14 Computational Fun with Sturdy and Flimsy Numbers

(e) Every odd integer with four 0’s is flimsy, with the exception of 33, 69, 73, 153, 3855, and
numbers of the form 10001i0111, 11001i0011, 10101i0101, 11101i0001, i ≥ 0, which are
all sturdy.

(f) Every odd integer with five 0’s is flimsy, with the exception of 65, 133, 161, 267, 275, 1365,
31775, and numbers specified by Theorem 11.

(g) Every odd integer with six 0’s is flimsy, with the exception of 129, 259, 261, 273, 385, 525,
549, 561, 585, 645, 657, 705, 771, 777, 801, 1729, 1801, 2275, 3185, 11565, 13107, 258111, and
numbers specified by Theorem 11.

(h) Every odd integer with seven 0’s is flimsy, with the exception of 257, 515, 517, 529, 1035,
1065, 1105, 1155, 1157, 1185, 1285, 1545, 1665, 2077, 2201, 2325, 2449, 2573, 2697, 2821, 2945,
19065, 19275, 21845, 26985, 95325, 2080895, and numbers specified by Theorem 11.

(i) Every odd integer with eight 0’s is flimsy, with the exception of 513, 1027, 1029, 1057, 1281,
2055, 2085, 2089, 2097, 2115, 2145, 2193, 2313, 2337, 2563, 2565, 2625, 3075, 3105, 3585, 4123,
4185, 4371, 4389, 4433, 4619, 4675, 4681, 4867, 4929, 5187, 6169, 6417, 6665, 6913, 8253, 8505,
8525, 8645, 8757, 9009, 9261, 9513, 9765, 10017, 10269, 10465, 10521, 10773, 11025, 11277,
11529, 11781, 12033, 12483, 13505, 14497, 18631, 25623, 34695, 39321, 42405, 50115, 57825,
158875, 222425, 774333, 16711935, and numbers specified by Theorem 11.

(j) Every odd integer with nine 0’s is flimsy, with the exception of 1025, 2051, 2057, 2065, 2177,
3073, 4131, 4165, 4233, 4361, 4369, 4417, 4641, 5129, 5185, 6273, 8215, 8277, 8339, 8401, 8711,
8773, 8835, 8897, 10261, 10385, 10757, 10881, 12307, 12369, 12803, 12865, 14353, 14849,
16443, 16569, 16835, 16947, 17073, 17451, 17577, 17745, 17955, 18081, 18459, 18585, 18963,
19089, 19467, 19593, 19971, 20097, 24605, 24633, 25025, 25137, 25641, 26145, 26649, 26691,
27153, 27657, 28161, 28679, 32893, 33401, 33909, 34417, 34925, 35433, 35941, 36449, 36957,
37465, 37973, 38481, 38989, 39497, 40005, 40513, 41021, 41529, 41769, 42037, 42545, 43053,
43561, 44069, 44577, 45085, 45593, 46101, 46609, 47117, 47625, 48133, 48641, 178481,
285975, 349525, 413075, 476625, 1290555, 1806777, 1864135, 6242685, 133956095, and num-
bers specified by Theorem 11.

Based on this theorem, we make the following conjecture.

I Conjecture 17. Every number with j 0’s is flimsy, with exceptions of the form s1is,
i ≥ 0, where |s| = j and s begins with 1 and ends with 0, and only finitely many additional
exceptions.

12 The k-flimsy numbers via formal language theory

In this section we describe a new approach, based on formal language theory, for understanding
the distribution of the k-flimsy numbers. Recall these are the numbers

Fk = {n ≥ 1 : s2(kn) < s2(n)}.

The majority of the results in this section are about the case k = 3, although in principle our
technique can be applied to any odd k.

Kátai [16] studied the difference s2(3n)−s2(n), and proved that this quantity is essentially
normally distributed, in a certain sense. Stolarsky [28] conjectured that the natural density
of the k-flimsy numbers is 1/2 for all odd k. His conjecture was later proved by W. M.
Schmidt [25] and J. Schmid [24]. All these results use rather sophisticated tools of number
theory and probability.

In contrast, in this section we obtain rather detailed results on the distribution of 3-flimsy
numbers through a (more or less) purely mechanical approach based on formal language
theory. The main result of this section is the following:

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:15

I Theorem 18. The number of 3-flimsy numbers in the interval [2N−1, 2N) is

2N
(

1
4 − cN

−1/2 +O(N−3/2)
)
, (1)

where c = 7
√

6
24
√
π

.= 0.4030765.

Our method starts with a pushdown automaton (PDA) recognizing the k-flimsy numbers,
and by a series of steps, it is converted into an asymptotic series expansion for the number
of k-flimsy numbers with N bits. Previously, the basic approach has been used for a wide
variety of combinatorial enumerations; see, for example, [4, 5, 2, 3]. We have implemented
all the steps, and the flow of control is explained in the diagram below.

k

k

such that L(G’) = (F)
grammar G’
clean unambiguous

(in Maple)
Groebner bases

of equations
CFG to system

k

R
2k(F)k

k

to order r

nexpansion for [x]S(x)
asymptotic series

integer r algebraic eqn

satisfied by S(x)

integer k

by Bruno Salvy
Maple gdev pkg

in S, x, and
other variables

system of eqns

R
2

L(G) =

PDA
constructor

unambiguous
grammar G

such that
L(M) = (F)

PDA Mk

unambiguous

R
2kk

such that

CFG cleaner
(remove useless symbols)converter

PDA to CFG

We now explain briefly what each box in the diagram does, with more detailed explanation
to follow. For all undefined terms, see any textbook on automata theory or formal languages,
such as [15].

First, given an odd integer k ≥ 3, we build an unambiguous pushdown automaton (PDA)
Mk that recognizes the base-2 representation of elements of Fk; more precisely, Mk recognizes
the language (Fk)R2 . The length-N strings in (Fk)R2 are in 1-1 correspondence with the flimsy
numbers in the half-open interval [2N−1, 2N), so our goal is to estimate the cardinality of
(Fk)R2 ∩ {0, 1}N as precisely as possible.

Second, we convert Mk to an unambiguous context-free grammar Gk generating (Fk)R2 .
We simplify this context-free grammar by deleting useless symbols (those symbols that

do not participate in the derivation of any terminal string, or are not reachable from the
start variable), obtaining a new CFG G′k.

Third, we convert G′k to a system of equations in the variables of G′k. These variables
represent formal power series, with the property that the number of length-N strings generated
by a variable A is given by [xN]A(x), the coefficient of xN in the power series A(x).

Fourth, using Gröbner bases, we solve this system of equations, obtaining an algebraic
equation satisfied by the formal power series S(x), where S is the start variable of the
grammar G′k.

Finally, using Bruno Salvy’s gdev package, written in Maple, we can determine the
asymptotic behavior of [xN]S(x) using the saddle-point method (as discussed by, e.g.,
Flajolet and Sedgewick [12]). In principle, we can obtain as many terms as we wish of the
asymptotic expansion.

Theorem 18 now follows by performing each of these steps. The first four steps are done
with original code written by the first author in Python, and the last two steps are done
with Maple. The code for each step is available at

https://git.uwaterloo.ca/Flimsy/CFLpy.
We now give more complete details of some of the steps.

FUN 2021

https://git.uwaterloo.ca/Flimsy/CFLpy

10:16 Computational Fun with Sturdy and Flimsy Numbers

12.1 Constructing the PDA Mk

The general idea is as follows: we create a PDA accepting the base-2 representation of k-flimsy
numbers n. We use the stack of the PDA to record the absolute value of s2(n)− s2(kn), and
we use the state to record both the carry needed when multiplying input by k, and the sign
of s2(n)− s2(kn). We accept the input if the carry is 0, the sign of s2(n)− s2(kn) is positive,
and the stack has at least one counter.

Our PDA is assumed to begin its computation with a special symbol, Z, on top of the
stack, and if the input is accepted, to end its computation when the stack becomes empty.

The sketch above is not quite enough because of two technical issues. First, (a) in some
cases this approach requires reading extra leading zeroes (which, because we are representing
numbers starting with the least significant digit first, would be at the end of the input), in
order to guarantee that the carry for s2(kn) was taken into account and (b) we must have
that the leading bit of the input is 1, to avoid incorrectly counting smaller numbers as having
n bits.

To handle both these issues, we slightly modify the construction in several ways. First,
if the state has a minus sign, then the stack holds |y|1 − |x|1 X’s, where x is the input seen
so far and y is the |x| least significant bits of k(x)R2 . On the other hand, if the state has a
positive sign, then the stack holds |x|1 − |y|1 − 1 X’s.

Second, to simulate the needed leading zeroes required to handle the carry, without
actually reading them, we use a special series of log2 k states to pop X’s from the stack.

Finally, we have a special state used to empty the stack when acceptance is detected. The
total number of states is therefore at most 2k + log2 k. The resulting PDA M3 is depicted in
Figure 1.

One important property of our construction is that our PDA Mk is unambiguous. By
this we mean that every accepted word has exactly one accepting computational path.

12.2 Converting the PDA to a CFG

We can convert Mk to an equivalent context-free grammar Gk using a standard technique
called the “triple construction” [15, pp. 115–119]. This gives us a grammar Gk with O(k2)
variables and O(k3) productions.

Now we use the fact, proved in [13, Thm. 5.4.3, p. 151], that performing the triple
construction on an unambiguous PDA gives us an unambiguous grammar.

12.3 Cleaning the CFG

We can remove useless symbols from our grammar Gk by removing all variables that do not
derive a terminal string, then removing all productions containing these removed variables,
and then removing all variables and terminals that are not reachable from the start variable.
This is a standard procedure, and is described in greater detail in [15, pp. 88–90].

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:17

Figure 1 PDA M3.

Once this is complete, it may be found that there is a variable X that has only one
production X → α. If X is not the start variable, then it can be deleted from the set of
variables, and all instances of X in production rules can be replaced with α.

For example, when we convert our PDA M3, we get an unambiguous grammar G3;
cleaning G3 using this procedure gives us the following grammar G′3:

S → 1F | 0S A→ 1E | 0A
B → 1G | 0B C → 1H | 1 | 0C
D → 1I | 0D E → 1 | 0AJ
F → 1N | 0AK G→ 1LB | 0
H → 1M | 1LC | 1 I → 1M | 1LD | 1 | 0S
J → 1J | 0E K → 1K | 0F
L→ 1L | 0G M → 1M | 1 | 0H
N → 1N | 0I

FUN 2021

10:18 Computational Fun with Sturdy and Flimsy Numbers

12.4 Converting the CFG to a system of equations
This transformation was discussed in [9]. It suffices to replace, in each set of productions
A→ α1 | α2 | · · · | αi of a grammar G, each terminal symbol by the indeterminate x, each |
symbol by a plus sign, and the → with an equals sign. For a proof of correctness, see [17, 19].

Performing this transformation on G′3 gives us the following system of equations:

S = xF + xS A = xE + xA

B = xG+ xB C = xH + x+ xC

D = xI + xD E = x+ xAJ

F = xN + xAK G = xLB + x

H = xM + xLC + x I = xM + xLD + x+ xS

J = xJ + xE K = xK + xF

L = xL+ xG M = xM + x+ xH

N = xN + xI

12.5 Solving the system
We can now solve the resulting system of equations for S, obtaining an algebraic equation for
which S is the root. The main tool is Groebner bases, for which a helpful package already
exists in Maple.

Using the Maple code below, we find the following quadratic equation for S in the case
k = 3.

x(2x−1)2(x+1)(2x2−x+1)S(x)2+(2x−1)(x−1)2(x+1)(2x2−x+1)S(x)+x4(x2−x+1) = 0.

To use this code, you will first need to download the algolib package from http:
//algo.inria.fr/libraries/.

eqs := [-S + x*V_F + x*S,
-V_A + x*V_E + x*V_A,
-V_B + x*V_G + x*V_B,
-V_C + x*V_H + x + x*V_C,
-V_D + x*V_I + x*V_D,
-V_E + x + x*V_A*V_J,
-V_F + x*V_N + x*V_A*V_K,
-V_G + x*V_L*V_B + x,
-V_H + x*V_M + x*V_L*V_C + x,
-V_I + x*V_M + x*V_L*V_D + x + x*S,
-V_J + x*V_J + x*V_E,
-V_K + x*V_K + x*V_F,
-V_L + x*V_L + x*V_G,
-V_M + x*V_M + x + x*V_H,
-V_N + x*V_N + x*V_I]:
Groebner[Basis](eqs, lexdeg([V_A, V_B, V_C, V_D, V_E, V_F, V_G, V_H,
V_I, V_J, V_K, V_L, V_M, V_N], [S]));
algeq := %[1]:
map(series, [solve(algeq, S)], x);
f := solve(algeq,S);

http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:19

ps := f[1]:
assume(x, positive):
series(ps, x, 40);
libname:="<insert current directory path>",libname:
combine(equivalent(ps,x,n,5));

Solving this quadratic for S gives

S(x) =
−(x− 1)2(x + 1)(2x2 − x + 1) +

√
−(x− 1)(2x− 1)(2x2 − x + 1)(x3 + x2 − x + 1)2

2x(2x− 1)(x + 1)(2x2 − x + 1) .

Since the grammar G′3 is unambiguous, the formal power series S(x) is the census generating
function for the set (F3)R2 . In particular, this means that [xN]S(x) = |F3 ∩ [2N−1, 2N)|, or in
other words, the coefficient of xN in S(x) is the number k-flimsy numbers in [2N−1, 2N).

12.6 Asymptotic expansion of the coefficients of the power series
Finally, we use Flajolet-Sedgewick-style asymptotic analysis [12, §VII. 7.1] to determine
an asymptotic formula for the N ’th coefficient of the power series expansion for S(x).
Conveniently, there is a Maple package algolib, written by Bruno Salvy [23], to accomplish
this. When we run this on our formula for S(x), we get our desired result.

This completes our discussion of the proof of Theorem 18.
I Remark 19. We could easily determine more terms in the asymptotic expansion, if we
wanted, using the same ideas. For example, we can find that the number of 3-flimsy numbers
in the interval [2N−1, 2N) is

2N
(

1
4 −

√
6√
π

(
7
24N

−1/2 + 13
72N

−3/2 − 17
64N

−5/2 + 3365
13824N

−7/2 + · · ·
))

.

I Corollary 20. The number of 3-flimsy numbers < 2N is 2N−1 −O(2NN−1/2).

Proof. For any real number a > 0 we have

2NN−a ≤
∑

1≤n≤N
2nn−a ≤

∑
1≤n≤N/2

2nn−a +
∑

N/2<n≤N

2nn−a

≤
∑

1≤n≤N/2

2n + (N/2)−a
∑

N/2<n≤N

2n

≤ 2N/2+1 + (N/2)−a2N+1.

Summing (1) and applying the inequalities above gives the desired result. J

I Theorem 21. The number of 5-flimsy numbers in the interval [2N−1, 2N) is

2N
(

1
4 − cN

−1/2 +O(N−3/2)
)
, (2)

where c = 3
√

5
8
√
π

.= 0.473087348.

Proof. This is determined using the same method as the proof for Theorem 18. The details
will appear in the full paper. J

We can also use the same ideas to compute the distribution of flimsy numbers in other
bases. As an example we proved

FUN 2021

10:20 Computational Fun with Sturdy and Flimsy Numbers

I Theorem 22. The number of integers in the range [3N−1, 3N) that are 2-flimsy in base 3
is

3N
(

1
3 +

√
3√
π

(
−1

3N
−1/2 + 1

48N
−3/2 − 13

1536N
−5/2 − 65

24576N
−7/2 +O(N−9/2)

))
.

Proof. As before. We omit the details. J

13 The k-equal numbers via formal language theory

Another quantity of interest is the number of n for which s2(n) = s2(kn). We call such n
k-equal. By generalizing the approach used in Section 12, we can compute how many integers
n ∈ [2N−1, 2N) are k-equal.

In particular, we modify PDA Mk by changing the transitions to the END states. Whereas
Mk transitions to END when reading a 1 if following that 1 with sufficiently many zeros
would reach the state (+, 0), instead we want such an input to reach the state (−, 0) with no
counters on the stack. With this approach we can prove

I Theorem 23. The number of 3-equal numbers in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O(N−3/2)

)
, (3)

where c =
√

6
4
√
π

.= 0.345494149.

I Theorem 24. The number of 5-equal numbers in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O(N−3/2)

)
, (4)

where c =
√

5
4
√
π

.= 0.315391565.

The details will appear in the final paper.

14 Conclusions and open problems

We have shown that techniques from automata theory can be used to solve problems in
number theory. For other fun along these lines, see [7, 22].

It would be interesting to understand the distribution of values of msw(n) and mfw(n)
for n flimsy. We leave this as an open problem.

References
1 B. Alexeev. Minimal DFAs for testing divisibility. J. Comput. System Sci., 69:235–243, 2004.
2 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice

paths with forbidden patterns: enumerative aspects. In S. T. Klein et al., editors, LATA 2018,
volume 10792 of Lecture Notes in Computer Science, pages 195–206. Springer-Verlag, 2018.

3 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice
paths with forbidden patterns, the vectorial kernel method, and generating functions for
pushdown automata. Algorithmica, 82:386–428, 2020.

4 C. Banderier and M. Drmota. Coefficients of algebraic functions: formulae and asymptotics.
In FPSAC 2013, volume AS of DMTCS Proc., pages 1065–1076. DMTCS, 2013.

5 C. Banderier and M. Drmota. Formulae and asymptotics for coefficients of algebraic functions.
Combin. Prob. Comput., 24:1–53, 2015.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:21

6 B. Bašić. The existence of n-flimsy numbers in a given base. Ramanujan J., 43:359–369, 2017.
7 J. Bell, K. Hare, and J. Shallit. When is an automatic set an additive basis? Proc. Amer.

Math. Soc. Ser. B, 5:50–63, 2018.
8 L. H. Y. Chen, H.-K. Hwang, and V. Zacharovas. Distribution of the sum-of-digits function of

random integers: a survey. Prob. Surveys, 11:177–236, 2014.
9 N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In

P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems, pages
118–161. North Holland, Amsterdam, 1963.

10 C. Dartyge, F. Luca, and P. Stănică. On digit sums of multiples of an integer. J. Number
Theory, 129:2820–2830, 2009.

11 C. Elsholtz. Almost all primes have a multiple of small Hamming weight. Bull. Austral. Math.
Soc., 94:224–235, 2016.

12 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
13 M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
14 H. Hasse. Über die Dichte der Primzahlen p, für die einevorgegebene ganz rationale Zahl a 6= 0

von gerader bzw. ungerader Ordnung mod p ist. Math. Annalen, 166:19–23, 1966.
15 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.
16 I. Kátai. Change of the sum of digits by multiplication. Acta Sci. Math. (Szeged), 39:319–328,

1977.
17 W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, 1986.
18 R. W. K. Odoni. A conjecture of Krishnamurthy on decimal periods and some allied problems.

J. Number Theory, 13:303–319, 1981.
19 A. Panholzer. Gröbner bases and the defining polynomial of a context-free grammar generating

function. J. Automata, Languages, and Combinatorics, 10:79–97, 2005.
20 Pavel V. Phedotov. Sum of digits of a multiple of a given number (in Russian), 2002. Available

at http://digitsum.narod.ru/Index.htm.
21 V. Pless, P. Solé, and Z. Qian. Cyclic self-dual Z4-codes. Finite Fields Appl., 3:48–69, 1997.
22 A. Rajasekaran, J. Shallit, and T. Smith. Additive number theory via automata theory. Theor.

Comput. Sys., 64:542–567, 2020.
23 B. Salvy. gdev package of algolib version 17.0. Available at http://algo.inria.fr/

libraries/, 2013.
24 J. Schmid. The joint distribution of the binary digits of integer multiples. Acta Arith.,

43:391–415, 1984.
25 W. M. Schmidt. The joint distributions of the digits of certain integer s-tuples. In P. Erdős,

editor, Studies in Pure Mathematics to the Memory of Paul Turán, pages 605–622. Birkhäuser,
1983.

26 D. Shanks. Class number, a theory of factorization and genera. In Proc. Sympos. Pure Math.,
volume 20, pages 415–440, 1969.

27 N. J. A. Sloane et al. The on-line encyclopedia of integer sequences. Available at https:
//oeis.org, 2019.

28 K. B. Stolarsky. Integers whose multiples have anomalous digital frequencies. Acta Arith.,
38:117–128, 1980/81.

29 S. S. Wagstaff et al. The Cunningham project. Available at https://homes.cerias.purdue.
edu/~ssw/cun/index.html, 2019.

FUN 2021

http://digitsum.narod.ru/Index.htm
http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/
https://oeis.org
https://oeis.org
https://homes.cerias.purdue.edu/~ssw/cun/index.html
https://homes.cerias.purdue.edu/~ssw/cun/index.html

Efficient Algorithms for Battleship
Loïc Crombez
Université Clermont Auvergne, LIMOS, Aubière, France
https://fc.isima.fr/~lcrombez/
loic.crombez@uca.fr

Guilherme D. da Fonseca
Université Aix Marseille, LIS, France
https://pageperso.lis-lab.fr/guilherme.fonseca/
guilherme.fonseca@lis-lab.fr

Yan Gerard
Université Clermont Auvergne, LIMOS, Aubière, France
https://yangerard.wordpress.com/
yan.gerard@uca.fr

Abstract
We consider an algorithmic problem inspired by the Battleship game. In the variant of the problem
that we investigate, there is a unique ship of shape S ⊂ Z2 which has been translated in the lattice
Z2. We assume that a player has already hit the ship with a first shot and the goal is to sink the
ship using as few shots as possible, that is, by minimizing the number of missed shots. While the
player knows the shape S, which position of S has been hit is not known.

Given a shape S of n lattice points, the minimum number of misses that can be achieved in
the worst case by any algorithm is called the Battleship complexity of the shape S and denoted
c(S). We prove three bounds on c(S), each considering a different class of shapes. First, we have
c(S) ≤ n− 1 for arbitrary shapes and the bound is tight for parallelogram-free shapes. Second, we
provide an algorithm that shows that c(S) = O(log n) if S is an HV-convex polyomino. Third, we
provide an algorithm that shows that c(S) = O(log log n) if S is a digital convex set. This last result
is obtained through a novel discrete version of the Blaschke-Lebesgue inequality relating the area
and the width of any convex body.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Polyomino, digital geometry, decision tree, lattice, HV-convexity, convexity

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.11

Related Version https://arxiv.org/abs/2004.07354

Funding Loïc Crombez: This work has been sponsored by the French government research program
“Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).
Guilherme D. da Fonseca: This work is supported by the French ANR PRC grant ADDS (ANR-19-
CE48-0005) and the Brazilian CAPES-PrInt project number 88881.310248/2018-01.
Yan Gerard: This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).

1 Introduction

We consider a geometric problem inspired by the children’s game Battleship. The Wikipedia
description of the game is:

Battleship (also Battleships or Sea Battle) is a strategy type guessing game for two
players. It is played on ruled grids (paper or board) on which each player’s fleet of
ships (including battleships) are marked. The locations of the fleets are concealed
from the other player. Players alternate turns calling “shots” at the other player’s
ships, and the objective of the game is to destroy the opposing player’s fleet.

© Loïc Crombez, Guilherme D. da Fonseca, and Yan Gerard;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9542-5276
https://fc.isima.fr/~lcrombez/
mailto:loic.crombez@uca.fr
https://orcid.org/0000-0002-9807-028X
https://pageperso.lis-lab.fr/guilherme.fonseca/
mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-2664-0650
https://yangerard.wordpress.com/
mailto:yan.gerard@uca.fr
https://doi.org/10.4230/LIPIcs.FUN.2021.11
https://arxiv.org/abs/2004.07354
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Efficient Algorithms for Battleship

Figure 1 American and Portuguese paper game boards of Battleship.

After each shot, the player is informed if the shot has been a “hit” or a “miss”, but no
other information is given. In the original version the shapes of the ships are line segments of
different lengths. However different countries and commercial brands use a variety of shapes
for the ships (see Figure 1).

During the game, the strategy of a player (that we call Alice), is usually decomposed in
an alternate sequence of two steps:
1. Hit a new ship of the opponent (that we call Bob).
2. Sink that ship with a minimal number of misses and go back to the first step.

The first step is a hitting set problem and many interesting variations are possible. In
this paper, however, we consider the second step. The goal of the second step is to sink the
ship (which has already been hit once) with a minimal number of misses. During a real game,
the position of the new ship can be constrained by the positions of the other ships which
have been already discovered and the grid boundaries, but we consider a simpler case. The
fleet is composed of only one ship placed on an infinite grid using only integer translations.
In other words, its shape S is given and can only be translated in the lattice. We know,
however the coordinates of one grid cell of the ship.

The second modification to the rules that we make is to forbid rotations. This modification
simplifies the problem and since there are at most 4 possible rotations, the original problem
can be solved by considering each rotation separately (at the expense of a factor of 4).

As a toy example to motivate the problem, we consider the case in which the shape of
the ship is a horizontal line segment of length 4. Alice has already hit Bob’s ship, which she
knows is a horizontal line segment of length 4. However, Alice is clueless about which square
of the ship she has hit. In this case, Alice may progressively shoot to the right of the first hit
until she misses a shot. At this point, she knows the precise location of Bob’s ship and may
finish sinking it without missing any additional shot (if she has not already sunk the ship at
the fourth shot). In this case, Alice has a strategy that requires at most 1 missed shot.

We refer to the minimum number of misses that Alice needs to sink a ship of shape
S ⊂ Z2 as c(S). Notice that Alice knows the shape of S, but not which square she has
initially hit. We just showed that c(S) ≤ 1 if S is a horizontal (or vertical) line segment. But
what happens if the shape S of the ship is not a line segment?

The goal of this paper is to provide bounds to c(S) depending on properties of the shape
S. We prove the following results for a shape S of n points:

for arbitrary shapes, c(S) ≤ n− 1,
for parallelogram-free shapes, c(S) = n− 1,
for HV-convex polyominoes, c(S) = O(log n), and
for digital convex shapes, c(S) = O(log log n).

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:3

The remainder of the paper is organized as follows. Section 2 is devoted to formalize
our notation and to prove some simple results. In Section 3, we provide an algorithm with
O(log n) misses in the worst case for HV-convex polyominoes. In Section 4, we present an
algorithm with O(log log n) misses in the worst case for digital convex sets. We conclude the
paper with a presentation of several open problems and variations.

2 Preliminaries

In this section, we formalize our notation and prove some simple results. Before going further,
let us make the notations precise. The ship’s shape is the finite lattice set S ⊂ Z2 and its
number of points is n. The opponent translated the shape by an unknown vector −p ∈ Z2

obtaining a ship S − p. The vector p ∈ Z2 is the position of the ship. We say that a shot x

is a hit if x ∈ S − p and a miss otherwise. By assuming (without loss of generality) that
the first hit happens at the origin x = (0, 0), we know then that the position p of the ship
is a point in the shape S (that is, p ∈ S) but we do not know which point. In order to
determine the actual value of p, we are allowed to test the membership in S of points of
the form p + x and our goal is to determine p using as few failed membership tests (called
misses) as possible.

Given a shape S, we can model an algorithm to determine the position p by a binary
decision tree T . The children of each node correspond to the possible outcomes of the shot:
hit or miss. The leaves of the decision tree represent the nodes in which the position p of
the ship has been determined (they are not necessarily obtained after a hit). Since each leaf
corresponds to a different position p ∈ S of the ship, it follows that there are exactly n leaves.

The efficiency of the algorithm depends on the number of misses in the path going from
the root to a leaf corresponding to position p. This number of misses for a position p using
tree T is denoted mT (p). We omit the subscript T in mT (S) when the decision tree T is
clear from the context.

The complexity of the algorithm T is the maximum number of misses in a path going
from the root to a leaf, that is maxp∈S mT (p). Note that the complexity is generally not
equal to the height of the tree.

Given a shape S, we define the Battleship complexity c(S) as the worst-case complexity
considering all the decision trees T that determine the position a ship of shape S:

c(S) = min
T

max
p∈S

mT (p).

Next, we reuse the simple example of a horizontal line segment of length 4, to illustrate
our notation and framework. In this case, the shape S is the set of lattice points

S = {(0, 0), (1, 0), (2, 0), (3, 0)}.

An optimal algorithm for this shape has already been presented in the Introduction: after
the initial shot at x = (0, 0), we shoot at values x = (1, 0), (2, 0), . . . until a miss occurs. This
algorithm is modeled by the decision tree represented in Figure 2. The number of misses
m(x) of this algorithm is equal to 0 if p = (0, 0) and 1 otherwise, giving a maximum of 1,
which proves c(S) ≤ 1. It is easy to see that for any shape S with |S| > 1, c(S) ≥ 1. Hence,
the algorithm is optimal.

A decision tree for a more complex shape is presented in Figure 3. At each node of the
tree, let P be the corresponding set of possible positions. The set P is represented by gray
squares in the figure. The inclusion p ∈ S is the only information that we have about the

FUN 2021

11:4 Efficient Algorithms for Battleship

hit

x = (1, 0)

miss hit

x = (0, 0)

p = (3, 0)

m(3, 0) = 1
x = (2, 0)

miss hit
p = (2, 0)

m(2, 0) = 1
x = (3, 0)

miss hit
p = (1, 0)

m(1, 0) = 1

p = (0, 0)

m(0, 0) = 0

? ? ? ?

? ? ?

? ?

(0, 0)
possible
positionsposition

found

impossible
positions

shape S

hits
current
shot

miss

hits

Figure 2 Decision tree modeling an algorithm to sink the ship of horizontal shape S =
{(0, 0), (1, 0), (2, 0), (3, 0)}. The nodes correspond to the results of each. At each node, the set P of
the possible positions is represented by the gray squares in the small grid. The leaves are the nodes
where the ship position has been determined. The worst-case number of misses is 1.

position of the ship when we start the algorithm (at the root of the decision tree). Hence,
the set of possible positions at the root is P = S and P gets smaller at each new shot until
it is reduced to a singleton at the leaves of the tree. At each new shot, P is reduced in the
following way (we use S − x to denote a translation of the set S by vector x):

If x is a hit, then the set of possible positions for the child becomes P ← P ∩ (S − x).
If x is a miss, then the set of possible positions for the child becomes P ← P \ (S − x).

It is easy to see that whatever the set of possible positions P is, there always exists a shot
which allows us to split P in two non-empty subsets P \ (S − x) and P ∩ (S − x). Hence,
the number of elements in P strictly decreases as we move from a parent to a child and
m(S) ≤ n− 1 for all shapes S.

2.1 Connection with Classification Trees
Classification trees are decision trees involved for instance in data mining for identifying an
element p belonging to a discrete set called the source set and denoted S [9]. The element
p is identified through the outcomes of a sequence of tests, where the choice of the new
test depends on the previous outcomes. This dependency is modeled by a tree whose root
represents the initial test. More generally, any internal node is associated to a test T while
its children correspond to the possible outcomes of T . Given an unknown element p, the
algorithm to identify p starts from the root. At each node, it considers the associated test
and goes to the children node corresponding to the outcome of the test. The algorithm stops
when arriving at a leaf: the leaf provides the identity of the unknown element p.

The number of tests required to identify p is the level of the corresponding leaf. Then the
design of decision trees of small height is a well studied problem. This problem is known to be
NP-hard in general [7] (for minimizing the expected level of the leaves). The algorithm that
chooses the most balanced test at each node provides an O(log n)-approximation algorithm
and the problem admits no polynomial o(log(n))-approximation algorithms [1].

Decision trees have been used in computational geometry for different purposes, for
instance determining geometric models [3] or concept classes [2] in an image or more recently
for the k-sum problem [8]. As far as we know, the question of designing efficient strategies
for playing Battleship with different types of shapes has not been addressed.

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:5

(2,−1)

?

?

?

x = (0, 0)

hit

? ? ? ?

???

?

(0,−1)

miss hit
???

?

(−1,−1)

? ? ? ?

(1, 0)

? ? ?

(2, 0)
p = (3, 0)

m(3, 0) = 2

miss hit
p = (0, 1)

m(0, 1) = 1

p = (3, 1)

m(3, 1) = 1
(1,−1)

?

?

miss hit

miss hit

? ?

(3, 0)p = (2, 0)

m(3, 0) = 2

miss
hit miss hit

p = (1, 1)

m(1, 1) = 0

p = (1, 2)

m(1, 2) = 1

miss hit

p = (0, 0)

m(0, 0) = 1

p = (1, 0)

m(1, 0) = 2

S

Figure 3 A shape S ⊂ Z2 and an algorithm to sink the ship having this shape with
at most 2 misses. We follow the same graphic code as in Figure 2. This algorithm T has a worst
case complexity m(T) = 2. The worst-case complexity of this shape S is exactly m(S) = 2.

However, our problem possesses a fundamental difference in comparison to the classical
use of classification trees: the Battleship problem is not symmetric. The goal in Battleship
is to sink the ship with the minimal number of shots, but, since the number of hits to sink
a ship is always equal to n, the goal becomes to minimize the number of misses needed to
locate the position of the ship.

The simplest heuristic to design classification trees of small height is to choose at each
node the most balanced test possible. In our case, that would mean to choose a test such
that the number of elements in P ∩ (S − x) and P \ (S − x) are as similar as possible. As
our goal is to minimize the number of misses instead of the height, we believe that a good
heuristic strategy is to choose a shot such the number |P \ (S − x))| of possible positions in
case of a miss is as small as possible. However, we have not been able to prove any good
worst-case bounds for this heuristic.

2.2 Parallelogram-Free Shapes
We say that a set S is parallelogram-free if every pair of distinct points define a unique
difference vector (see Figure 4 for an example). In other words, S does not contain two
distinct pairs of distinct points s1 6= s2, s3 6= s4 such that s2 − s1 = s4 − s3. In this section,
we show that if S is parallelogram-free, then c(S) = n− 1.

I Theorem 1. If S is a parallelogram-free polyomino of n points, then c(S) = n− 1.

Proof. We have already showed that c(S) ≤ n − 1 for any shape. Next, we show that
c(S) ≥ n− 1 for a parallelogram-free shape S. To do this, we show that whenever we obtain
a hit in the tree, we have successfully determined the position p. Hence, the miss branch of
the tree contains all remaining points.

FUN 2021

11:6 Efficient Algorithms for Battleship

x = (0, 0)

hit

S

(0, 1)

? ?

?

?

?

?

miss

p = (0, 0)

m(0, 0) = 0
(0,−1)

? ?

?

?

?

miss
hit

p = (0, 1)

m(0, 1) = 1
(1, 1)

? ?

?

?

?

?

miss
hit

p = (1, 3)

m(1, 3) = 2
(1, 0)

? ?

?

?

?

?

miss
hit

p = (2, 4)

m(2, 4) = 3
(−1, 0)

? ?

?

?

?

?

miss hit
p = (3, 4)

m(3, 4) = 4

p = (5, 2)

m(5, 2) = 5

hit

Figure 4 A parallelogram-free shape S ⊂ Z2. In this case, all algorithms have isomorphic
decision trees.

At any node of the tree, the new set of positions after a hit by shooting x 6= (0, 0) is
defined by P ← P ∩ (S − x). Let us assume to obtain a contradiction that y and y′ are
distinct points in S ∩ (S − x) , then y = s− x and y′ = s′ − x with again s and s′ both in
S. It follows that x = y − s = y′ − s′. As x is not (0, 0) and due to the parallelogram-free
property, y = y′ which contradicts the assumption. J

3 HV-Convex Polyominoes

In this Section, we investigate the Battleship complexity for the class of lattice sets of Z2

which are 4-connected and HV-convex.

3.1 Definition and Properties
A 4-connected path is a sequence (x1, . . . , xk) of distinct points of Z2 such that the Euclidean
distance between xi and xi+1 is equal to 1 for i = 1, . . . , k − 1. A lattice set S ⊂ Z2 is
4-connected if for any pair of points x1, xk ∈ S, there exists at least one 4-connected path
(x1, . . . , xk) in S. The 4-connected finite lattice sets are called polyominoes (Figure 5).

HV-convexity is a notion of directional convexity. A lattice set S ⊂ Z2 is horizontally
(vertically) convex if the intersection of S with any row (column) is a set of consecutive
points. A lattice set which is horizontally and vertically convex is said to be HV-convex
(Figure 5).

We state two properties used in the following for proving the O(log n) bound on the
complexity of HV-convex polyominoes.

I Lemma 2. Let S be an HV-convex polyomino. If (x, y) and (x′, y′) are two different points
of S with x ≤ x′ and y ≤ y′, then either (x + 1, y) or (x, y + 1) is in S.

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:7

S1 : S2 : S3 : S4 :

Figure 5 Definition of HV-convex polyominoes. The set S1 is not 4-connected, hence not
a polyomino. The set S2 a polyomino but not horizontally convex. The set S3 is a polyomino but
not vertically convex. The set S4 is an HV-convex polyomino since it is 4-connected, horizontally
and vertically convex.

Proof. If x = x′ or y = y′, the result is a direct consequence of the horizontal vertical
convexities. We consider now the case x < x′ and y < y′. Let us assume that neither
(x + 1, y) nor (x, y + 1) are in S, to obtain a contradiction. It follows that the vertical ray
above (x, y) and the horizontal ray to the right of (x, y) do not contain any point of S. Then
there is no 4-connected path to connect (x, y) and (x′, y′). J

After this general lemma about HV-convex polyominoes, let us introduce more specific
material for our purpose, where we consider only the rows of fixed length ` (Figure 6): given
an HV-convex polyomino S and a fixed length ` ∈ Z+, let L be the number of rows of
length `. For i from 1 to L, we denote by ri the right endpoints of the i-th row of length `

ordered by y coordinate. It follows that for all i, we have (i) ri ∈ S, (ii) ri − (`, 0) 6∈ S, (iii)
ri − (`− 1, 0) ∈ S, and (iv) ri + (1, 0) 6∈ S.

I Lemma 3. Given an HV-convex polyomino S and a fixed length ` ∈ Z. The x-coordinate xi
of the right endpoints ri of the rows of length ` forms a monotonic sequence (either xi ≤ xi+1
for all i ∈ {1, . . . , L− 1} or xi ≥ xi+1 for all i ∈ {1, . . . , L− 1}, as in Figure 6(b)).

Proof. If the sequence of x-coordinates xi is not monotonic, then there exists a triplet of
indices i, i′ and i′′ with i < i′ < i′′ leading to a configuration which is neither xi ≤ xi′ ≤ xi′′

nor xi′′ ≤ xi′ ≤ xi. There are 4 remaining permutations that cannot happen in an HV-convex
polyomino. We show that it is not possible to have xi′ < xi ≤ xi′′ (see Figure 6(c)), the
other 3 cases being analogous. Suppose it is the case in order to reach a contradiction.

By definition, there is no point in S to the right of ri′ . Hence every 4-connected path
from ri to ri′ intersects the vertical ray going down from p′ = (xi′ + 1, 0). Let p be a point
in this intersection. Similarly, let p′′ be a point in the intersection of the path connecting ri′′

to ri′ that is in the ray going up from p′. All p, p′, and p′′ have the same y coordinate, but
p′ 6∈ S while p, p′′ are in S, which contradicts vertical convexity. J

3.2 Shooting Algorithm with O(log n) Misses
The previous lemmas allow us to develop an efficient algorithm for shapes that are HV-convex
polyominoes.

I Theorem 4. For any HV-convex polyomino S of n points, the Battleship complexity
c(S) = O(log n).

We notice that the result does not hold for either HV-convex lattice sets (HV-convexity
alone does not forbid arbitrarily large parallelogram-free lattice sets), or for arbitrary
polyominoes (we let the reader construct counter-examples as a tricky exercise).

FUN 2021

11:8 Efficient Algorithms for Battleship

(a) (b) (c)

xi′+1

ri′

p′

ri′′

ri

p′′

p

Figure 6 Monotonicity of the right endpoints coordinates for the rows of fixed length `

of an HV-convex polyomino (here, ` = 2). (a) Lemma 3 states that for any length, the sequence
of the x-coordinates of the right endpoints of the rows of a fixed length ` is monotonic (either
increasing or decreasing). (b) Compatible configurations. (c) Non-monoticity is not compatible with
the HV-convexity of a polyomino.

We prove the O(log n) bound of Theorem 4 by providing a shooting algorithm with at
most O(log n) misses for locating the position of the ship. We call it the staircase shooting
algorithm.

The Staircase Shooting Algorithm

The staircase shooting algorithm for HV-convex polyominoes works in two phases. The
first phase consists of two sequences of horizontal shots going away from the origin in both
horizontal directions. First we shoot at (k, 0) with an increasing k = 1, . . . , k+ until we
obtain a miss at k = k+. We proceed similarly in the negative direction until we obtain
a miss at k = k−. This way, we determine two values k− < 0 and k+ > 0 such that all
the shots (k, 0) with k− < k < k+ are hits while (k−, 0) and (k+, 0) are both misses. The
difference k+− k−+ 1 provides the length ` of the row of S containing the unknown position
p. We used 2 misses to obtain the value of ` and concluded the first phase.

We now present the decision tree of the remainder of our algorithm. At any node, the
set P corresponds to the set of possible positions. The number of rows of length ` in S is
denoted L. After the first phase, we know that the unknown position p belongs to one of
these L rows of length ` and we know the horizontal position is the k−-th point of the row.
Hence, at this point, we have |P | = L with at most one position in P for each row. The
positions are denoted pi for 1 ≤ i ≤ |P |, ordered by y-coordinates. It follows from Lemma 3
that the sequence of the x-coordinates of pi is either increasing or decreasing. We assume
without loss of generality that the sequence is increasing, the other case being analogous.
The problem is to further reduce the set P of possible positions. At any point, if |P | is at
most 2, then we distinguish the 2 possible positions with only 1 additional miss.

We now describe the second phase, assuming |P | ≥ 3. The sequence of hits follows a
monotone 4-connected path (s1, . . . , sJ) of J points of S with s0 = (k+− 1, 0) and shaped as
a staircase going up and to the right, that is either sj+1 = sj +(1, 0) or sj+1 = sj +(0, 1). For
each j, we have to choose sj+1 among the two possibilities. We proceed as in the heuristic

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:9

(2, 1)

S

miss hit

p = (9, 10)

m(9, 10) = 3

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

(2, 2)

?

?

?

?

?

?

?

?
1

number of positions
giving a miss
for this shot

miss hit

(3, 1)

miss

p = (9, 9)

m(9, 9) = 4

?

?

?

(3, 2)

2
0

?

?

?

?

?

hit

(3, 3)

same1
2

p = (4, 4)

m(4, 4) = 3

hit

· · ·

miss

(4, 3)
?

?

?

?

2 1

· · ·

hit

1

3
4

?

?

?

?

?

· · ·

miss

Figure 7 Second phase of the staircase algorithm on an HV-convex polyomino. Only part
of the tree is represented.

described in Section 2.1, choosing to shoot at the position x that minimizes the number of
positions pi ∈ P for which we would have a miss and let x′ denote the other choice. We now
consider the two possible outcomes after shooting at x.

The child node after a hit: At this new node, we have a new set of positions P (which
may or may not have been reduced), an unchanged number of misses, and a new node
sj+1 = x appended to the path.
The child node after a miss: In this case, the number of misses increased by 1 and we
cannot append x to the path, since x 6∈ S. We proceed with another shot at position
x′ set to the other possibility to build the staircase path. If x′ is also a miss, then we
determined that the position p is the top-most point of P namely p = p|P | (Claim 5).
However, if x′ is a hit, then we append sj+1 = x′ to the staircase path. In this case, we
will show that at least 1/3 of possible positions P have been discarded (Claim 6).

Proof of the Claims
We consider the conditions of the algorithm at a current node associated to a monotonous
staircase path (s1, . . . , sJ) with s1 = (k+ − 1, 0) such that all shots sj for j = 1, . . . , J

provided hits. The set of the possible positions is a set of |P | points p1, . . . , p|P | at the k−-th
position in rows of length `. The path s1, . . . , sJ being all hits, we know that for any possible
position pi and any shot sj of the path, the sum pi + sj is a point of S. We remind the
reader that the points pi are ordered by y-coordinates and that we have assumed without
loss of generality that their x-coordinates are increasing.

B Claim 5. We consider the two new possible shots sj + (1, 0) or sj + (0, 1). For all possible
positions pi with i < |P |, one of the two shots provides a hit. In other words, the unique
possible position for which we might obtain two misses is the top-most p|P |.

FUN 2021

11:10 Efficient Algorithms for Battleship

Figure 8 Digital convexity. The two lattice sets on the left are not digital convex while the
two on the right are, since there is no other lattice point in their convex hulls.

Proof. We have to prove that for any possible position pi with i < |P |, then either sj + (1, 0)
or sj + (0, 1) provides a hit. It means that either pi + sj + (1, 0) ∈ S or pi + sj + (0, 1) ∈ S.
This property is a direct consequence of Lemma 2, because pi + sj ∈ S, p|P | + sj ∈ S, and
p|P | + sj is in the northeast quadrant of pi + sj (namely the x and y-coordinates of pi + sj
are respectively lower than the ones of p|P | + sj). C

Claim 5 leads to a second claim under the assumption that |P | ≥ 3.

B Claim 6. At each current node with |P | ≥ 3, by choosing between sj + (1, 0) or sj + (0, 1)
the shot for which the number of possible positions (pi)1≤i≤I remains the largest, the number
of positions providing a miss is at most 2

3 |P |.

Proof. Let P(1,0) be the set of positions pi such that pi + sJ + (1, 0) ∈ S and let P(0,1) be the
set of of positions pi such that pi + sJ + (0, 1) ∈ S. Let n(1,0) = |P(1,0)| and n(0,1) = |P(0,1).
According to the claim 5, with the exception of the topmost possible position p|P |, all the
others give a hit for one of the two possible shots. Hence, we have n(1,0) + n(0,1) ≥ |P | − 1
and

max(n(1,0), n(0,1)) ≥
|P | − 1

2 ≥ |P |3 ,

since |P | ≥ 3. Then with the shot sJ + (1, 0) or sJ + (0, 1) corresponding to the maximum of
n(1,0), n(0,1), we have at least 1/3 of the possible positions giving a hit. C

Complexity Analysis
We need to count the number of misses that the staircase algorithm takes in the worst case.
The first phase of the staircase algorithm uses 2 misses. In the second phase, until the
number of possible positions falls under 3, each miss reduces the number of possible positions
by a factor of at most 2/3 of the previous value. Since the initial value of |P | is at most n,
the number of misses during this phase is at most k where k is the smallest integer verifying
(2/3)kn ≤ 3. It follows that k = O(log n). In the last step, we finish the computation with
at most 2 more misses.

4 Digital Convex Sets

A shape S ⊂ Z2 is digital convex if there exists a convex polygon K ⊂ R2 such that
S = K ∩ Z2. Digital convexity is a stronger property than HV-convexity, however it does
not imply 4-connectivity. We can test if a set S ⊂ Z2 is digital convex by verifying if
conv(S) ∩ Z2 = S (Figure 8), where conv(S) denotes the continuous convex hull of S. This
property is exploited in [6] to test digital convexity in linear time.

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:11

In this section, we investigate the Battleship complexity of digital convex sets. We choose
this family of lattice sets not only because it is one of the main classes of geometric shapes
but also because in a continuous variant of the problem, the Battleship complexity of the
convex sets is bounded by a constant. Determining if the same holds for the digital version
is an intriguing question. In Section 4.1, we prove a new version of the Blaschke-Lebesgue
inequality and in Section 4.2, we present an O(log log n) algorithm.

4.1 Discrete Blaschke-Lebesgue Inequality
Digital convex sets have inequalities relating the lattice diameter and the lattice width. First,
we recall their respective definitions. Let S be a digital convex set. Its lattice diameter d(S)
is the maximum number of points of S on a line, minus 1 (Figure 9). It follows that the
lattice diameter of a single point is 0. A Diophantine line is a line containing at least two
lattice points. Two Diophantine lines are consecutive if they are parallel to each other and
there is no lattice point between them. The lattice width w(S) of S is the minimum number
of consecutive Diophantine lines covering S, minus 1 (Figure 9). The lattice width of a single
point is again 0. More formally, the lattice width can be expressed as

w(S) = min
u∈Z2\{(0,0)}

max
a,b∈S

u · (b− a).

a

b

a

b
d(S) = 5 w(S) = 3

xy

a

b

d(S) = 4 w(S) = 4

a

b

x

y

Figure 9 Diameter and lattice width of two lattice sets. On the right, we show the quadri-
laterals xayb used in the proof of Lemma 8.

The continuous width of a convex body K is the minimum distance between two parallel
lines enclosing K and is denoted by width(K). The Blaschke-Lebesgue theorem states that
the area of a convex body K ⊂ R2 is at least π−

√
3

2 width(K)2. This lower bound is achieved
when K is the so called Reuleaux triangle. I. Bárány and Z. Füredi [4] provided the following
discrete version of the theorem.

I Lemma 7. For any digital convex set S, we have w(S) ≤ b 4
3 d(S)c+ 1 and for any fixed

diameter, this bound is best possible.

This inequality is not exactly an equivalent of the Blaschke-Lebesgue theorem since
a lower bound on the discrete diameter does not directly provide a lower bound on the
area. It remains a small gap to fill in order to obtain a more standard equivalent of the

FUN 2021

11:12 Efficient Algorithms for Battleship

Blaschke-Lebesgue theorem for digital convex sets. We provide a new discrete inequality
closer to the original Blaschke-Lebesgue theorem where the number of points of the lattice
set S plays the role of the area and the lattice width plays the role of the width.

I Lemma 8. For any digital convex set S of n points, we have n ≥ 3
8 w(S)2 − 1

2 w(S) + 3.

Proof. Let us denote a and b the pair of extreme points providing the diameter d(S). It
follows b− a = d(S)v where v is the vector in the direction b− a with coprime coordinates.
Let u be the rotation of v by π

2 . We consider the points x and y of S minimizing and
maximizing the dot product with u. By definition of the lattice width, u · (y − x) ≥ w(S) (i).
The four points x, a, y, and b define the convex quadrilateral xayb (Figure 9). Its area is
A = 1

2 |det(y − x, b− a)| = 1
2 |d(S)u · (x− y)|. With (i), we obtain A ≥ 1

2 d(S)w(S) (ii).
Pick’s theorem allows us to calculate the number of lattice points in the quadrilateral

xayb from its area. We recall the formula A = i + e
2 − 1 where i is the number of interior

points and e the number of points on the boundary of xayb. By denoting nxayb the number
of lattice points in the quadrilateral xayb, we have nxayb = i + e. Then Pick’s formula
provides nxayb = A + 1 + e

2 . The number of points on the boundary of the quadrilateral
being at least 4, we have nxayb ≥ A + 3. With the bound (ii) on the area A, we obtain
nxayb ≥ 1

2 d(S)w(S) + 3. As the set S is digital convex, it contains all the lattice points in
the quadrilateral xayb: n ≥ nxayb. Then we have n ≥ 1

2 d(S)w(S) + 3 (iii).
Lemma 7 provides the bound w(S) ≤ 4

3 d(S)+1 which can be rewritten d(S) ≥ 3
4 (w(S)−1).

With (iii), it gives n ≥ 3
8 w(S)2 − 1

2 w(S) + 3. J

We can write a similar bound which is easier to use as follows.

I Lemma 9. For any digital convex set S of n points, we have n ≥ 1
4 w(S)2.

Proof. We have 1
4 x2 ≤ 3

8 x2 − 1
2 x + 3 for any real x. Then we can rewrite Lemma 8 with

1
4 w(S)2 as new lower bound. We could even write n ≥ 1

4 w(S)2 + 2. J

Lemma 9 shows that the lattice width is bounded by the square root of the number of
points of a digital convex sets. This relation is the key point for proving the complexity of
the next algorithm.

4.2 Algorithm with O(log log n) Misses
In this section, we prove the following theorem.

I Theorem 10. For any digital convex set S of n points, the Battleship complexity c(S) =
O(log log n).

We call this algorithm the width shooting algorithm because it is mainly based on shots
in the direction given by the lattice width of the set of possible positions. Next, we describe
the algorithm.

Consider a node in the tree associated with a set P of possible positions. Initially P = S,
but as the algorithm progresses, positions will be removed from P . We compute the lattice
width w(P), which is achieved by a vector v ∈ Z2 with coprime coordinates. Then, we rotate
v by π

2 , obtaining a vector u that is parallel to w(P) + 1 lines covering the set P . Then, we
shoot in directions u and −u with shots of the form ku for positive and negative integer k

until we obtain misses at points k+u and k−u with hits in between. These two misses and
the previous hits lead to a new current node with a new set of possible positions that we
denote P ′.

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:13

We repeat this procedure from node to node until we obtain a set of possible positions
whose convex hull has fewer than 25 points. When we reach this value, then any shooting
algorithm can be used with at most 24 misses. Theorem 10 follows from the claim that this
algorithm has O(log log n) misses.

Convex Hull of the Possible Positions
The main procedure of the width shooting algorithm uses shots ku with k ∈ Z in direction u

until finding the two boundary points of the ship in this direction. After this sequence of
shots, due to the digital convexity of S, the new set of possible positions P ′ has the following
property.

B Claim 11. The convex hull of P ′ contains at most one point on each Diophantine line
parallel to u.

Proof. Let k+ ∈ Z+ and k− ∈ Z− be the first positive and negative integers for which the
shots ku give a miss (starting from k = 0). The difference k+ − k− − 1 is equal to the length
` of the intersection of the shape S and the Diophantine line p + ku for k ∈ Z. After the two
misses obtained with the shots k+u and k−u, the set P ′ of the possible positions satisfies (i)
(P ′ + k+u) ∩ S = ∅ and (ii) (P ′ + k−u) ∩ S = ∅.

As the previous shots are hits, we also have P ′ + (k+ − 1)u ⊂ S and P ′ + (k− + 1)u ⊂ S.
According to the digital convexity of S, it follows from the two last inclusion that the
convex hulls of these two sets are still included in S: conv(P ′ + (k+ − 1)u) ∩ Z2 ⊂ S and
conv(P ′ + (k− + 1)u) ∩ Z2 ⊂ S. With (i) and (ii), we obtain (P ′ + k+u) ∩ conv(P ′ + (k+ −
1)u) = ∅ and (P ′ + k−u) ∩ conv(P ′ + (k− + 1)u) = ∅. With translations, it leads to (iii)
(P ′ + u) ∩ conv(P ′) = ∅ and (iv) (P ′ − u) ∩ conv(P ′) = ∅.

To arrive at a contradiction, we assume that there exists a pair of distinct points in the
convex hull of P ′ and on the same Diophantine line parallel to u. In [4, 5], they show that a
segment in direction u, included in the convex hull of P ′ and of maximal length has a vertex
of the convex hull a ∈ P ′ as an endpoint. Hence, we have that a is a vertex of the convex
hull of P ′ and as the maximal length is at least ‖u‖, either a + u or a− u is in the convex
hull of P ′. It contradicts either (iii) or (iv). C

Complexity Analysis
We prove Theorem 10 by computing the worst case number of misses of the width shooting
algorithm. At the beginning, the set of the possible positions P is initialized as S. Its
convex hull contains no more than the n = |S| points of P . After the first step, according
to Claim 11, the convex hull of the new set of positions P ′ has no more than one point per
Diophantine line in the chosen direction u. It follows that the number of points of the convex
hull of P ′ is less or equal to the number of Diophantine lines covering P which is w(P) + 1
since we choose the direction u providing this value. We use now the bound of Lemma 9:
the inequality n ≥ w(S)2/4 leads to w(S) + 1 ≤ 2

√
n + 1. For n larger than 25, we have

2
√

n + 1 ≤ n3/4. It means that except if the number of possible positions falls under 25, the
convex hull of the new set of possible positions contains fewer than n3/4 lattice points.

By iterating k times the procedure (each time uses 2 misses), we have a set of possible
positions whose convex hull contains at most n(3/4)k points. The number of iterations k to
get to fewer than 25 points is hence O(log log n). Since each iteration has a constant number
of misses, the total number of misses is also O(log log n).

FUN 2021

11:14 Efficient Algorithms for Battleship

5 Conclusion and Open Problems

A simplified version of the children’s game Battleship leads to numerous nontrivial questions
and algorithms that we had a lot of fun to work on. We worked on the digital version of the
problem, which is directly connected to the actual game. However, a continuous variation
may also raise interesting questions.

Let S ⊂ R2 be a convex body. In the continuous version, instead of querying a point, the
player can shoot along a ray until finding a miss (ray-shooting queries). The information
that the player gets is the position of the boundary point of S on the ray. The problem
consists of recovering the unknown position p of S with a small number of shots and it can
be solved in the following manner. Let v denote the direction of a diameter of S. We shoot
in directions v and −v from the origin and determine with two queries the length of the line
segment in direction v that passes through the origin. Since the direction v is a diameter
direction, it is not possible to hit two parallel edges in the ray-shooting queries. Hence, there
are at most two points that can give the same two results from the ray shooting queries. A
third and last query is sufficient to distinguish these two points.

We conclude by listing several questions that remain open.

1. Given a finite shape S ⊂ Z2, what is the complexity to actually calculate its Battleship
complexity c(S)? Is the problem NP-complete as in the case of general minimal decision
trees?

2. We consider the greedy shooting heuristic choosing at each node the shot providing the
minimal number of misses. Does the heuristic provide an O(log n) approximation to the
minimum number of misses? Does there exist better approximation algorithms?

3. For the class of polyominoes that are not HV-convex, we can build examples showing
that the Battleship complexity is Ω(log n). However, there is still a big gap with the
upper bound of n− 1. Can this gap be reduced?

4. For the class of digital convex sets, we provide an algorithm with at most O(log log n)
misses but in practice, the largest Battleship complexity that we found with the heuristic
is only 3 as for continuous shapes. Is it possible that the Battleship complexity of the
digital convex sets is also bounded by a constant?

5. Are there some other interesting classes of lattices sets for which efficient shooting
algorithms can be found?

6. Lemma 8 states the inequality n ≥ 3
8 w(S)2 − 1

2 w(S) + 3 providing a lower bound on the
number of points n of a digital convex set S according to its lattice width w(S). This
discrete version of Blaschke-Lebesgue inequality is however not tight. What is the best
bound that can be achieved?

7. We defined the Battleship complexity in terms of the maximum number of misses. We
could define an average version of the complexity, in which the average of m(x) for x ∈ S

is considered instead. What can be said about the average complexity?
8. If we count the total number of shots, instead of the number of misses we can adapt

the algorithm from Section 4.2 to obtain an algorithm for digital convex shapes that
uses O(log n) shots and that is optimal. What is the complexity of this variation for
HV-convex polyominoes?

9. What is the complexity of the continuous version for different classes of shapes if both
rotations and translations are allowed? Is it still constant for convex shapes?

L. Crombez, G.D. da Fonseca, and Y. Gerard 11:15

References
1 Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. In 11th

Approximation, Randomization and Combinatorial Optimization, APPROX 2008, pages 1–9,
2008. doi:10.1007/978-3-540-85363-3_1.

2 Esther M. Arkin, Michael T. Goodrich, Joseph S. B. Mitchell, David M. Mount, Christine D.
Piatko, and Steven Skiena. Point probe decision trees for geometric concept classes. In
Third Workshop on Algorithms and Data Structures, WADS 1993, pages 95–106, 1993. doi:
10.1007/3-540-57155-8_239.

3 Esther M. Arkin, Henk Meijer, Joseph S. B. Mitchell, David Rappaport, and Steven Skiena.
Decision trees for geometric models. In Nineth Annual Symposium on Computational Geometry,
SoCG 1993, pages 369–378, 1993. doi:10.1145/160985.161167.

4 Imre Bárány and Zoltan Füredi. On the lattice diameter of a convex polygon. Discrete
Mathematics, 241(1):41–50, 2001. Selected Papers in honor of Helge Tverberg. doi:10.1016/
S0012-365X(01)00145-5.

5 Imre Bárány and Janos Pach. On the number of convex lattice polygons. Combinatorics,
Probability and Computing, 1(4):295–302, 1992. doi:10.1017/S0963548300000341.

6 Loïc Crombez, Guilherme D. da Fonseca, and Yan Gérard. Efficient algorithms to test digital
convexity. In International Conference on Discrete Geometry for Computer Imagery, DGCI
2019, pages 409–419, 2019. doi:10.1007/978-3-030-14085-4_32.

7 Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5(1):15–17, 1976. doi:10.1016/0020-0190(76)90095-8.

8 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-sum and related problems. Journal of the ACM, 66(3), 2019. doi:10.1145/3285953.

9 Lior Rokach and Oded Maimon. Data Mining With Decision Trees: Theory and Applications.
World Scientific Publishing Co., 2nd edition, 2014.

FUN 2021

http://dx.doi.org/10.1007/978-3-540-85363-3_1
http://dx.doi.org/10.1007/3-540-57155-8_239
http://dx.doi.org/10.1007/3-540-57155-8_239
http://dx.doi.org/10.1145/160985.161167
http://dx.doi.org/10.1016/S0012-365X(01)00145-5
http://dx.doi.org/10.1016/S0012-365X(01)00145-5
http://dx.doi.org/10.1017/S0963548300000341
http://dx.doi.org/10.1007/978-3-030-14085-4_32
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1145/3285953

A Phase Transition in Minesweeper
Ross Dempsey
Joseph Henry Laboratories, Princeton University, NJ, USA
sdempsey@princeton.edu

Charles Guinn
Joseph Henry Laboratories, Princeton University, NJ, USA
cguinn@princeton.edu

Abstract
We study the average-case complexity of the classic Minesweeper game in which players deduce the
locations of mines on a two-dimensional lattice. Playing Minesweeper is known to be co-NP-complete.
We show empirically that Minesweeper exhibits a phase transition analogous to the well-studied SAT
phase transition. Above the critical mine density it becomes almost impossible to play Minesweeper
by logical inference. We use a reduction to Boolean unsatisfiability to characterize the hardness of
Minesweeper instances, and show that the hardness peaks at the phase transition. Furthermore,
we demonstrate algorithmic barriers at the phase transition for polynomial-time approaches to
Minesweeper inference. Finally, we comment on expectations for the asymptotic behavior of the
phase transition.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Complexity of Games, Minesweeper

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.12

Acknowledgements The authors would like to thank Dumitru Caligaru and Katherine Xiang for
interesting conversations and correspondence related to this project. We are also grateful to Anton
Belov and Joao Marques-Silva for their open source GMUS extractor MUSer2.

1 Introduction

Minesweeper is a single-player game originally released by Microsoft as part of the Windows
3.1 operating system. Players are presented with a rectangular lattice of covered squares,
and behind some of these squares lie mines. The object of the game is to uncover all empty
squares while never uncovering a mine. Players deduce the locations of mines from numbers
on the empty squares which indicate how many mines lie adjacent.

Minesweeper is famous as a mode of mindless procrastination. On the television show
The Office, Jim Halpert quips “those mines aren’t going to sweep themselves” in reference to
his boredom. This popular sentiment would seem to be at odds with complexity-theoretic
studies of Minesweeper. In Section 2 we review earlier results which show that playing
Minesweeper by logical inference is co-NP-complete [12], and deciding whether a Minesweeper
board is consistent with some assignment of mine squares is NP-complete [10], or even
Turing-complete for an infinite board size [9].

This discrepancy is remedied by classic results on phase transitions in NP-complete
problems. While NP-complete problems are widely believed to be exponentially hard in
the worst case, they can be much easier in typical cases. As a representative example, for
random k-SAT with n literals and c clauses, it is found empirically that the probability p(n, c)
of a formula being satisfiable drops sharply to zero when the ratio ` = c/n reaches a certain
threshold [8]. In fact, Friedgut’s theorem [7, 6] implies the existence of a function `∗(n) such
that for any ε > 0, as n→∞

p (n, (1− ε)`∗(n)n)→ 1, p (n, (1 + ε)`∗(n))→ 0. (1)

It is suspected that `∗(n) converges to a limiting critical value.
© Ross Dempsey and Charles Guinn;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 12; pp. 12:1–12:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0881-8814
mailto:sdempsey@princeton.edu
https://orcid.org/0000-0002-5337-5821
mailto:cguinn@princeton.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Minesweeper Phase Transition

This phase transition is closely associated with the average-case complexity of SAT, or
NP-complete problems more generally. Backtracking-based search algorithms for solving SAT
require the largest number of branches for ` near `∗ [8], and a similar increase in hardness at
the phase transition is observed in other constraint satisfaction problems [1]. As long as ` is
sufficiently separated from `∗, SAT can be solved relatively quickly in average cases.

In this paper, we present evidence for a similar phase transition in Minesweeper by
showing empirically that the number of mines which can be flagged by an inference-based
solver rapidly declines near a critical mine density. Furthermore, in Section 3 we define a
metric for the hardness of Minesweeper instances and show that this metric peaks at the
transition point. In Section 4, we discuss a simple family of polynomial-time algorithms and
show that the hardness metric we employ represents a natural barrier for these algorithms.
Finally, in Section 5, we comment on expectations for the asymptotic behavior of the phase
transition.

2 Worst-Case Complexity: CONSISTENCY and INFERENCE

We begin with some definitions. Throughout this paper, when we refer to Minesweeper we
mean the classic Windows game instantiated on an N ×N square lattice. The rules of the
game are as follows.

I Definition 1. A Minesweeper board with size N and mine density ρ is an N×N array with
bN2ρc sites occupied by mines, and the remainder of sites empty or “safe.” A Minesweeper
instance is a Minesweeper board with a subset of its sites uncovered. All the uncovered sites
are labeled by the number of neighboring sites (including diagonal neighbors, and including
wrap-around neighbors for sites on the edge) which contain mines. A move consists of one of
the following:

Revealing a covered site. This results in loss of the game if the site contains a mine.
Otherwise, the site is uncovered and its number of neighboring mines is revealed. If this
number is zero, all neighboring sites are revealed for the player automatically.
Flagging a covered site. This is a bookkeeping tool for sites which are known to contain
mines.

The game is won when all empty sites are uncovered.

When attempting to make inferences about the covered squares, it is helpful to adjust the
labels of uncovered squares by subtracting the mines already accounted for with flags. We
thus define the following [2]:

I Definition 2. The effective label of a Minesweeper site its is label minus its number of
flagged neighbors.

Two decision problems related to Minesweeper have been investigated in the past. The
first, historically speaking, is CONSISTENCY [10]. The CONSISTENCY problem asks whether a
given Minesweeper instance could be realized by some assignment of mines to the covered
squares. Figure 1b shows an example of an inconsistent instance which could never arise in
an actual game of Minesweeper.

Clearly CONSISTENCY belongs to NP by reduction to SAT. We represent each covered site
by a Boolean variable which is true if and only if the site contains a mine. Each site with at
least one covered neighbor defines a Boolean constraint. The instance is consistent if and
only if the conjunction of all these constraints forms a satisfiable formula [10].

R. Dempsey and C. Guinn 12:3

2 3 2
A

2 3 2

1 1
1 1
1 1

(a) A consistent Minesweeper instance. The square
marked A must contain a mine.

2 3 2
A

1 2 1

1 1
1 1
1 1

(b) An inconsistent Minesweeper instance. The
uncovered sites above the flags imply ¬A, while
those below the flags imply A.

Figure 1

In fact, CONSISTENCY is NP-complete. This is shown by reduction from SAT, via the
implementation of logic gates as Minesweeper configurations which logically link the Boolean
variables stored at the covered sites. For example, an AND gate would be constructed by
setting up a Minesweeper instance with two covered sites a and b, and a third covered site c,
with labels on the uncovered sites which together imply that c contains a mine only if both a
and b contain mines. Detailed constructions of such an AND gate as well as a NOT gate are
known [10], and with these components any Boolean circuit can be built. One can construct
arbitrarily complex circuits on an infinite Minesweeper board, and so CONSISTENCY on an
infinite board is Turing-complete [9].

As the authors of [12] note, solving CONSISTENCY is not directly relevant to a Minesweeper
player, who is promised a consistent configuration. Instead, the Minesweeper player is tasked
with deciding whether there exists a covered square which can be inferred to contain a mine,
or to not contain a mine. We call this problem INFERENCE.

There is a simple reduction from INFERENCE to the complement of CONSISTENCY. Given
a Minesweeper instance, we iterate over all the covered sites and tentatively assume they
are either empty or contain mines. For each of these tentative assignments, we consult
a CONSISTENCY oracle; if the oracle ever tells us we have an inconsistent board, then our
tentative assignment is incorrect and we make the opposite inference. Since CONSISTENCY is
in NP, this reduction shows that INFERENCE is in co-NP. Moreover, by reduction from UNSAT,
it has been shown that INFERENCE is co-NP-complete [12].

3 Phase Transition

If P 6= NP, the results of Sec. 2 imply that no polynomial-time algorithm can decide
INFERENCE for all instances. Nonetheless, specific instances of Minesweeper may yield to
a polynomial-time approach, and experience suggests that this is the case for sufficiently
low mine density. By contrast, at sufficiently high mine density, we expect to encounter
configurations like that in Figure 2 where no inference is possible.

For intermediate densities, then, Minesweeper must go from being easily solvable by
inference to rarely solvable by inference. This claim is simple to test empirically. We start
with Minesweeper boards with a single site guaranteed to the player to be labeled zero,
in order to remove uncertainty arising from the first move [2]. We use the reduction from
INFERENCE to UNSAT outlined in the previous section to play Minesweeper, deducing an empty
or mined site at each step until either the game is won or no more inferences are possible.
Our algorithm is outlined as follows.
1. Start by uncovering the guaranteed 0-labeled site.
2. Collect all covered squares bordering uncovered squares into a list frontier_outer, and

all uncovered squares bordering covered squares into a list frontier_inner.

FUN 2021

12:4 Minesweeper Phase Transition

1 1 1

1 1 1

1
1
1

1
1
1

1 1 1

1 1 1

1
1
1

1
1
1

2 2

2 2
4

1 1 1

1 1 1

1
1
1

1
1
1

3 3

3 3

1 1 1

1 1 1

1
1
1

1
1
1

1
1 1

11

1
1

1

2

1 1 1

1 1 1

1
1
1

1
1
1

1
1 1

1
2

1

1
1

1

Figure 2 No inference is possible in the Minesweeper instance in the bottom panel, since the
instance could have arisen from any of the boards shown above (among others), and for each covered
site there is a consistent configuration in which it contains a mine and another in which it is empty.
Note that we are not employing periodic boundary conditions here; alternatively, this grid should be
thought of as part of a large Minesweeper instance.

3. Assign a Boolean variable to each site in frontier_outer.
4. From each site i in frontier_inner, construct a Boolean constraint Fi, and transform

it into conjunctive normal form (CNF). For example, if a site has effective label 1 and
borders two covered sites assigned to variables xβ and xγ in the previous step, then we
have

(¬xβ ∧ xγ) ∨ (xβ ∧ ¬xγ), (2)

which can be written in CNF as

Fi = (xβ ∨ xγ) ∧ (¬xβ ∨ ¬xγ). (3)

5. Let F =
∧
i∈I Fi, with I an index set for frontier_inner, be the conjunction of all

the formulas constructed in the previous step. For every site in frontier_outer, with
Boolean variable xβ , test F ∧ xβ for satisfiability. If it is unsatisfiable, then this site must
not have a mine, so reveal it. If it is satisfiable, then test F ∧ ¬xβ for satisfiability. If it
is unsatisfiable, then this site must have a mine, so flag it.

6. If all mines are flagged, or if no inferences are found, conclude. Otherwise, return to step
2.

In Figure 3, we show the results of these tests. For grids of sizes N = 20, 40, and 80, we
plot the empirical fraction α of mines flagged by inference. We find that α rapidly declines
to 0 roughly in the interval 0.2 < ρ < 0.3, and the decline is steeper at higher values of N .

We would also like to determine how difficult it is to solve the Minesweeper inference
problem at various mine densities. We use an algorithm-agnostic metric derived from the
reduction to UNSAT. As described in the steps above, we construct a Boolean formula Fi from
every labeled site in the inner frontier. We then test the conjunction of all these formulas,
together with one tentative assumption:∧

i∈I
Fi ∧ xβ , or

∧
i∈I

Fi ∧ ¬xβ , (4)

where β is the index of a covered site on the outer frontier and I indexes the inner frontier.
If one of these formulas is unsatisfiable, then we have proved by contradiction the presence

R. Dempsey and C. Guinn 12:5

Figure 3 Averaged results and standard errors of 300 Minesweeper games at each mine density
for each grid size N = 20, 40 and 80 are shown. In black, we plot the expected fraction α of mines
flagged by the INFERENCE solver as a function of the mine density ρ. In green, we plot the expected
maximum size of the grouped minimal unsatisfiable (GMUS) cores encountered in the reduction to
SAT. This is a measure of the hardness of Minesweeper as a function of ρ, and roughly indicates the
number of labeled sites one needs to look at in order to make inferences.

or absence of a mine. In this case we can extract the grouped minimal unsatisfiable (GMUS)
core, a subset S ∈ I for which

∧
i∈S Fi ∧ xβ is unsatisfiable, but for every proper subset

S′ (S the formula
∧
i∈S′ Fi ∧ xβ is satisfiable (or the equivalent with ¬xβ in place of xβ).

As a measure of hardness we use C = |S|, the number of labeled sites one needs to look at in
order to make the inference about the presence or absence of a mine at site β.

Figure 3 shows the average value of the maximum GMUS core size encountered during
the Minesweeper games as a function of the mine density. This is computed using the
open-source MUSer2 library [3]. The core size is strongly peaked in the vicinity of the phase
transition, and the peak core size grows with the size of the lattice. This indicates that
playing Minesweeper near the critical mine density requires looking at large patches of
the board to make inferences. Furthermore, we clearly see the easy-hard-easy pattern first
suggested in [4].

4 Algorithmic Barriers

In Section 3 we showed that the maximum GMUS core size encountered during the course of a
Minesweeper game peaks at the phase transition. This suggests that the hardest Minesweeper
instances arise at the critical mine density. As another test of this hypothesis, we present
a family of polynomial-time approaches to INFERENCE. These algorithms partially solve
INFERENCE, in the sense that they can identify some but not all inferences, and never make an
invalid inference; there are false negatives, but no false positives. We show that they perform
well below the critical mine density, but fail to find a significant proportion of inferences at
or near the critical density.

FUN 2021

12:6 Minesweeper Phase Transition

Figure 4 The performance of the SAT solver is compared to the polynomial-time k-set search
algorithm on a board of size N = 40. The SAT solver finds the theoretical maximum fraction of
mines which can be flagged by inference. The k-set search approach performs comparably until the
phase transition at 0.2 < ρ < 0.3, at which point the SAT solver clearly outperforms k-set search,
and moreover the polynomial-time algorithms are stratified by k.

Our algorithms are a generalization of the “naïve single-point” algorithm in [2]. In the
naïve single-point approach, only two types of inferences can be made:

If the effective label of a site is 0, then any of its covered neighbors can be inferred to be
safe.
If the effective label of a site is equal to its number of covered neighbors, then any of its
covered neighbors can be inferred to be mines.

These sorts of inferences are possible precisely when C = 1, i.e., when the SAT solver need
only use a single labeled site to make an inference.

The naïve single-point algorithm has O (ninner) complexity on a single Minesweeper
instance, where ninner is the size of the inner frontier. We employ a natural generalization
with O

(
nkinner

)
complexity, which we call k-set search. We label the sites of the outer frontier

by j = 1, . . . , nouter, and assign to each site i = 1, . . . , ninner in the inner frontier a vector

aij =
{

1 if i borders j
0 otherwise

, (5)

and denote the effective label of site i with ei. In this notation, the constraint provided by a
site in the inner frontier is

nouter∑
j=1

aijxj = ei. (6)

We then iterate over all combinations of up to k of these vectors, with replacement, denoted
by index sets {i1, . . . , ik}. For each such combination, we consider all the linear combinations

R. Dempsey and C. Guinn 12:7

of constraints,

k∑
`=1

(−1)b`

nouter∑
j=1

ai`jxj =
k∑
`=1

(−1)b` ei` , (7)

with b` = 0, 1. If the right hand side is equal to either the minimum or maximum value of
the left hand side, then we can infer the value of any of the variables appearing on the left
hand side with a nonzero coefficient.

It is simple to see that any inference made by k-set search could also be made by a SAT
solver limited to a GMUS core size C ≤ k. The converse is almost true: if the GMUS core
has size k, k-set search will only fail if the inference comes from a linear combination of
constraints with coefficients other than ±1, which is rare. We thus expect that k-set search
will perform well up until the point where the core size reaches k. Figure 3 shows that the
core size is peaked around the phase transition, so in practice we expect that k-set search will
perform significantly less well than a full SAT solver in the vicinity of the phase transition.

Figure 4 confirms this claim. We plot the average fraction α of mines flagged by 1-, 2-,
and 3-set search, compared to the performance of the SAT solver. As we expect, all algorithms
perform roughly equally at low ρ, and then stratify by k in the vicinity of the phase transition.
In the interval 0.2 < ρ < 0.3, a Minesweeper player would benefit substantially from using
(k + 1)-set search over k-set search.

5 Asymptotic Behavior

Naturally, one of the key questions regarding the Minesweeper phase transition is its asymp-
totic behavior. Our empirical studies strongly suggest some kind of phase transition, loosely
speaking, as N →∞. The question is whether this transition is sharp. Let α(N, ρ) denote
the expected fraction of mines which can be flagged by inference on a board of size N with
mine density ρ, as in Figure 3. Following [7], we say the Minesweeper transition is coarse if
there exists some constant C > 0 such that, for all ρ,

lim
N→∞

∣∣∣∣ρdα(N, ρ)
dρ

∣∣∣∣ ≤ C. (8)

Otherwise, we say the transition is sharp.
For several reasons, it is difficult to directly address the question of whether Minesweeper

has a sharp phase transition. First, the distribution of Minesweeper instances is quite
complicated. Although it is simple to define a uniformly random distribution of Minesweeper
boards, the Minesweeper instances which arise during game-play depend on a player’s
strategy.

Even if we restrict to the case of the perfectly logical player who operates by solving
UNSAT, the frontiers which arise depend on the geometry of the percolation clusters formed
by the mines and the sites with nonzero labels. The probability of a given site having either
a mine or a nonzero label is

P (mine or nonzero) = 1− P (zero) = 1− (1− ρ)9. (9)

Setting this equal to the threshold value of p ≈ 0.59 for site percolation on a 2D square lattice
[13], we find ρ ≈ 0.1. However, we are not justified in making such a direct comparison to
the standard percolation problem, because nearby sites in Minesweeper are correlated. To
address this, we perform Monte Carlo simulations of the formation of percolation clusters in

FUN 2021

12:8 Minesweeper Phase Transition

Figure 5 The average cluster sizes appearing in the standard percolation problem (right) for a
range of values of the site probability, and in the sites with mines or nonzero labels in Minesweeper
(left) for a range of values of the mine density. The vertical line on the right shows the threshold
probabiilty for percolation.

Minesweeper. Figure 5 shows the average cluster size savg, defined as in [5], of the clusters
which form on Minesweeper boards compared to those in standard percolation theory. The
behavior at ρ ≈ 0.1 shows that our calculation gives roughly the correct location of the
percolation threshold for Minesweeper.

The geometry of the percolation clusters in the vicinity of the Minesweeper percolation
threshold is related to that of the clusters in standard percolation theory with independent
sites. This follows from the general principle of universality: the “microscopic” details of a
system do not affect bulk properties at the critical point. More precisely, renormalization
group methods show that if correlations between sites fall off faster than r−d, then the
correlations are irrelevant at the critical point as long as dν > 2, where ν is the critical
exponent for correlation length [11]. The correlations in Minesweeper have finite range,
so they decay faster than any power law, and hence we can ignore the correlations when
considering the geometry of the frontier near the percolation threshold. It is well-known that
percolation clusters exhibit complex fractal geometry near the percolation threshold [14],
and so this complexity should carry over to random Minesweeper instances.

All this is simply to argue that randomMinesweeper instances sample in a very complicated
way from the space of possible INFERENCE problems. There are thus two questions of separate
import. First we should ask if INFERENCE itself, or some generalization of it, has a sharp
phase transition with respect to some parametrized distribution of instances. If this is
answered in the affirmative, then the next question is whether Minesweeper itself samples
from the space of INFERENCE problems in such a way as to lead to a phase transition with
respect to the mine density ρ.

It seems likely that INFERENCE itself exhibits a phase transition. To see this, we consider
a space of problems which contains INFERENCE as a special case, and for which it is much
simpler to define random instances. We start by noting that (5) defines the incidence matrix
of a hypergraph where vertices correspond to covered sites in the outer frontier and hyperedges
correspond to labeled sites in the inner frontier. Each hyperedge can be assigned the effective
label of its corresponding site, and then INFERENCE becomes the following question: if each
vertex must be assigned a value 0 or 1, such that the sum of vertices in each hyperedge is
equal to its label, is the value of any vertex constrained to be either 0 or 1?

R. Dempsey and C. Guinn 12:9

The natural generalization is to replace the hypergraph defined by (5) with an arbitrary
hypergraph, and the effective labels with an integer label between 0 and |e| on each hyperedge
e. We may define a probability measure µ on hypergraphs for which hyperedges of size m
appear independently with probability pm.

The presence of a sharp phase transition in properties of graphs or hypergraphs can
be shown using Friedgut’s theorem [6]. Roughly speaking, this theorem establishes that
any property of hypergraphs which does not exhibit a sharp phase transition must be
approximable by a local property. We will not prove the existence of a sharp phase transition
for inference on random hypergraphs, but intuitively, it is clear that the inference property
should not be locally approximable. Inferences can arise from large sets of hyperedges in
myriad ways; we cannot expect to account for almost all inferences by checking for a finite
set of sub-hypergraphs. Indeed, the k-set search algorithm of Section 4 effectively checks
for a finite set of sub-hypergraphs, and for any fixed k we do not expect this algorithm to
perform well for sufficiently large N . These considerations suggest that inference on random
hypergraphs has a sharp phase transition at some hyperedge probability p∗(N).

Returning to the question of the Minesweeper phase transition, some simple estimates
suggest that even if inference on random hypergraphs does have a sharp phase transition,
the behavior of the Minesweeper phase transition depends on details which are difficult
to ascertain. The distribution of hypergraphs which appear in the inference problems in
Minesweeper is certainly a complicated function of the mine density, and even for fixed mine
density, overlapping hyperedges are not independent of one another. Thus, throughout a
game of Minesweeper, the INFERENCE problems encountered by a player are sampled from
distributions of hypergraph inference problems with a range of parameters.

As a simple phenomenological model of this behavior, assume that the INFERENCE
problems which appear during a game of Minesweeper are sampled using some parameter p,
and that there is a sharp threshold at p = p∗(N) above which inferences become possible.
Furthermore, assume the parameter p is itself drawn from some distribution f(p;N, ρ). The
game of Minesweeper will continue until the random value of p falls below p∗(N). On each
turn, this happens with probability

P (N, ρ) =
∫ p∗(N)

0
f(p;N, ρ) dp. (10)

The expected fraction of mines flagged then scales as the number of turns played, so

α(N, ρ) ∼ 1
N

T (N,ρ)∑
n=0

n(1− P (N, ρ))nP (N, ρ) ∼ (1− P (N, ρ))T (N,ρ), (11)

where T (N, ρ) is the expected number of turns required to complete the game if all mines
are flagged. As ρ is increased, we expect P to increase, since under-constrained inference
problems like the one in Figure 2 are more likely to appear. Thus, (11) reproduces the
sigmoidal behavior evident in Figure 3.

As N is taken to infinity, the shape of α(N, ρ) depends on the exact limiting behavior
of P (N, ρ) and T (N, ρ), which in turn depend on the detailed statistics of Minesweeper
instances. It may approach either a discontinuous function, corresponding to a sharp phase
transition, or some curve which interpolates between α = 1 and α = 0 over a finite range of
mine densities, giving a coarse phase transition.

Despite this uncertainty in the asymptotic behavior, our empirical results show that the
phase transition in Minesweeper at finite N is closely associated with the appearance of
hard INFERENCE problems. We can thus understand a great deal about the average-case
complexity of Minesweeper by thinking in terms of its phase transition.

FUN 2021

12:10 Minesweeper Phase Transition

References
1 Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions.

2008 49th Annual IEEE Symposium on Foundations of Computer Science, October 2008.
doi:10.1109/focs.2008.11.

2 David J Becerra. Algorithmic approaches to playing Minesweeper. Master’s thesis, Harvard
University, 2015.

3 Anton Belov and Joao Marques-Silva. MUSer2: an efficient MUS extractor, system description.
JSAT, 2012.

4 Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’91, page 331–337, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

5 Kim Christensen. Percolation theory. Imperial College London, 1, 2002.
6 Ehud Friedgut. Hunting for sharp thresholds. Random Structures & Algorithms, 26(1-2):37–51,

2005.
7 Ehud Friedgut, Jean Bourgain, et al. Sharp thresholds of graph properties, and the k-SAT

problem. Journal of the American Mathematical Society, 12(4):1017–1054, 1999.
8 Ian P. Gent and Toby Walsh. The SAT phase transition. In ECAI, 1994.
9 R. Kaye. Infinite versions of Minesweeper are Turing complete. URL: http://web.mat.bham.

ac.uk/R.W.Kaye/minesw/infmsw.pdf.
10 R. Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22:9–15, 2000.
11 Abbas Ali Saberi. Recent advances in percolation theory and its applications. Physics Reports,

578:1–32, May 2015. doi:10.1016/j.physrep.2015.03.003.
12 Allan Scott, Ulrike Stege, and Iris van Rooij. Minesweeper may not be NP-complete but is

hard nonetheless. The Mathematical Intelligencer, 33:5–17, 2011.
13 Dietrich Stauffer and Ammon Aharony. Introduction to percolation theory. Taylor & Francis,

1994.
14 Yakov M. Strelniker, Shlomo Havlin, and Armin Bunde. Fractals and percolation. In Robert A.

Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 3847–3858. Springer
New York, New York, NY, 2009. doi:10.1007/978-0-387-30440-3_227.

https://doi.org/10.1109/focs.2008.11
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1007/978-0-387-30440-3_227

On the Treewidth of Hanoi Graphs
David Eppstein
University of California, Irvine, CA, USA
eppstein@uci.edu

Daniel Frishberg
University of California, Irvine, CA, USA
dfrishbe@uci.edu

William Maxwell
Oregon State University, Corvallis, OR, USA
maxwellw@oregonstate.edu

Abstract
The objective of the well-known Towers of Hanoi puzzle is to move a set of disks one at a time
from one of a set of pegs to another, while keeping the disks sorted on each peg. We propose an
adversarial variation in which the first player forbids a set of states in the puzzle, and the second
player must then convert one randomly-selected state to another without passing through forbidden
states. Analyzing this version raises the question of the treewidth of Hanoi graphs. We find this
number exactly for three-peg puzzles and provide nearly-tight asymptotic bounds for larger numbers
of pegs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Hanoi graph, Treewidth, Graph separators, Kneser graph, Vertex expansion,
Haven, Tensor product

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.13

Related Version A full version of the paper is available at https://arxiv.org/abs/2005.00179.

Funding This research was supported in part by NSF grants CCF-1618301, CCF-1616248, and
CCF-1617951.

Acknowledgements Some of the results in the section on three-peg Hanoi graphs were previously
announced on a web forum [7].

1 Introduction

The Towers of Hanoi puzzle is very well known (for a comprehensive treatment see [10]), but
it loses its fun once its player learns the strategy. It has some number n of disks of distinct
sizes, each with a central hole allowing it to be stacked on any of three pegs. The disks start
all stacked on a single peg, sorted from largest at the bottom to smallest at the top. They
must be moved one at a time until they are all on another peg, while at all times keeping the
disks in sorted order on each peg. The optimal strategy is easy to follow: alternate between
moving the smallest disk to a peg that was not its previous location, and moving another
disk (the only one that can be moved). Once one learns how to do this, and that the strategy
takes 2n − 1 moves to execute [18], it becomes tedious rather than fun.

The puzzle can be modified in several ways to make it more of an intellectual challenge
and less of an exercise in not losing one’s place. One of the most commonly studied variations
involves using some number p of pegs that may be larger than three. Of course, one can
ignore the extra pegs, but using them allows shorter solutions. An optimal solution for
four pegs was given by Bousch in 2014 [5], but the best solution for larger numbers of pegs
remains open. The Frame–Stewart algorithm solves these cases, but it is not known if it is

© David Eppstein, Daniel Frishberg, and William Maxwell;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
https://orcid.org/0000-0002-1861-5439
mailto:dfrishbe@uci.edu
mailto:maxwellw@oregonstate.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.13
https://arxiv.org/abs/2005.00179
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On the Treewidth of Hanoi Graphs

optimal [20]. The length of an optimal solution, for starting and ending positions of the disks
chosen to make this solution as long as possible, can be modeled graph-theoretically using a
graph called the Hanoi graph, which we denote Hn

p . This graph is formed by constructing a
vertex for each configuration of the game, and connecting two vertices with an edge when
their configurations are connected by one legal move. The number of moves between the two
farthest-apart positions is then the diameter of this graph. For three pegs, the diameter of
Hn

3 is 2n − 1 (the traditional starting and ending positions are the farthest apart) but for
p > 3 the diameter of Hn

p is unknown [13].
In this paper, we consider a different way of making the puzzle more difficult, by making

it adversarial. In our version of the game, the first of two players selects a predetermined
number of forbidden positions, that the second player cannot pass through. Then, the second
player must solve a puzzle using the remaining positions. If that were all, then the first player
could win by forbidding only a very small number of positions, the p− 1 positions one move
away from the start position. To make the first player work harder, after the first player
chooses the forbidden positions, we choose the start and end position randomly from among
the positions in the game. We ask: How many positions must the first player forbid, in order
to make this a fair game, one where both players have equal chances of being able to win?

We can model this problem graph-theoretically, as asking for the smallest number of
vertices to remove from a Hanoi graph in order for the number of pairs of remaining vertices
belonging within the same component as each other to be half the total number of pairs
of vertices. The answer to the problem lies between the minimum size of a balanced vertex
separator (Lemma 2) and (up to a constant factor of three) the minimum order of a recursive
balanced vertex separator ; the latter is equivalent, up to constant factors, to asking for the
treewidth of Hn

p . (Technically, the treewidth can be larger than the recursive separator order
by a logarithmic factor when this order is constant, but both are within constant factors of
each other when the order is polynomial.) Treewidth is of interest to computer scientists as
many NP-hard graph problems become fixed-parameter tractable on graphs with bounded
treewidth [4].

1.1 New results and prior work

We conjecture that the treewidth of Hn
p is Θ((p− 2)n). For p > 3 this bound is exponential,

and we make progress towards this conjecture by proving that the treewidth is within a
polynomial factor of this bound. More precisely we show an asymptotic upper bound of
O((p− 2)n) and an asymptotic lower bound of Ω(n−(p−1)/2 · (p− 2)n). We increase the lower
bound to Ω(2n

n) when p = 4. Moreover, we find the exact (constant) treewidth of Hn
3 and

of the closely-related Sierpínski graphs. Our results provide an answer to our motivating
question on sizes of forbidden sets of positions, up to polynomial factors for four or more
pegs and exactly for three pegs.

As a byproduct of our proof techniques, we observe a nearly linear asymptotic lower
bound on the treewidth of the Kneser graph (Corollary 25). Harvey and Wood [12] showed a
previous exact result for the treewidth of Kn(n, k) when n is at least quadratic in k. Another
byproduct of our proof techniques gives a new lower bound on the treewidth of the tensor
product G×H of two graphs G and H, when H is not bipartite. Eppstein and Havvaei [8]
gave an upper bound on the treewidth of G×H; Brevšar and Spacapan [6] gave an analogous
lower bound for edge connectivity; Kozawa et al. [14] gave lower bounds for the treewidth of
the strong product and Cartesian product of graphs.

D. Eppstein, D. Frishberg, and W. Maxwell 13:3

2 Preliminaries

2.1 Hanoi graphs
Label the n disks of the Towers of Hanoi, in order of increasing size, as d1, . . . , dn. If disks
di and dj are on the same peg, and i < j, then dj is constrained to be below di. A legal
move in the game consists of moving the top (smallest) disk on some peg A to another peg
B, while preserving the constraint. At the beginning of the game, all n disks are on the first
peg. The objective of the game is to obtain, through some sequence of legal moves, a state
in which all n disks are on the last peg. Let p be the number of pegs. Traditionally, p = 3.

Formally, a configuration of the p-peg, n-disk Towers of Hanoi game is an n-tuple
(p1, p2, . . . , pn) where pi ∈ {1, 2, . . . , p}, describing the peg for each disk di. We say two
configurations (p1, p2, . . . , pn) and (p′1, p′2, . . . , p′n) are compatible if a move from one config-
uration to the other is allowed. This happens exactly when the two configurations differ only
in the value of a single coefficient pi, for which di is the smallest disk having either of the
two differing values. We call a configuration with each disk on the same peg a perfect state.
The Hanoi graph Hn

p is a graph whose vertices are the configurations of the n-disk, p-peg
Towers of Hanoi game, with an edge for each compatible pair of configurations. It has pn
vertices and 1

2
(
p
2
)
(pn − (p− 2)n) edges [1].

2.2 Recursive balanced separators, treewidth, and havens
In this section we give a brief discussion of the concepts of recursive balanced separators,
treewidth, and havens. Given a graph G = (V,E) a vertex separator is a subset X ⊆ V

such that G \X consists of two disjoint sets of vertices A and B with A ∪B = V \X and
for all a ∈ A, b ∈ B there is no edge (a, b) in the graph G \X. Further, given a constant
c with 1

2 ≤ c < 1, we call X a balanced vertex separator if (1 − c)|V | ≤ |A| ≤ |V |
2 and

|V |
2 ≤ |B| ≤ c|V |. When this holds we call X a c-separator. We say that G has a recursive

balanced separator of order s, where s : N→ N is a nondecreasing function, whenever either
|V | ≤ 1, or we can find a balanced separator of size s(|V |) for G, and the resulting subgraphs
A and B have recursive balanced separators of order s respectively. We abuse notation and
refer to s(|V |) as s(G).

A tree decomposition of a graph G is a tree T whose nodes are sets of vertices in G called
bags, such that the following conditions hold.

If two vertices are adjacent, then they share at least one bag.
If a vertex v is in two bags A and B, then v is in every bag on the path from A to B in T .
Every vertex in V (G) is in some bag.

The width of a tree decomposition T is one less than the maximum size of a bag in T . The
treewidth of a graph G, denoted tw(G), is the minimum width over all tree decompositions
of G. The bags in the tree decomposition T induce vertex separators in G. Moreover, we
can use the tree decomposition to find a recursive balanced separator for G. Hence, the
treewidth of G is a measure of the minimum order of a recursive balanced separator for
G. The following folklore lemma relates the order of a recursive balanced separator to the
treewidth of a graph; see [9] and [17, Lemma 6.6].

I Lemma 1. Let G be an N -vertex graph. If t = tw(G), then with respect to every constant
1
2 ≤ c < 1, G has a recursive balanced separator of order s(N ′) = t+ 1 for all 1 ≤ N ′ ≤ N .
On the other hand, if G has a recursive balanced separator of order t, where t = Ω(Nd) for
some constant d > 0, then G has treewidth O(t).

FUN 2021

13:4 On the Treewidth of Hanoi Graphs

Returning to our motivating game, in which one player forbids the use of a designated
set of states in the state space of a puzzle and the other player attempts to connect two
randomly chosen states by a path, we see that a fair number of states to forbid is controlled
by the size of a recursive balanced separator. We formalize this in the following lemma:

I Lemma 2. Given a graph G, let f(G) be the minimum number of vertices that can be
removed from f so that, if two random vertices of G are chosen, the probability that they are
not removed and have a path between them is at most 1/2. Let c = 1/

√
2, and let r(G) be

the minimum size of a c-separator (not necessarily recursive) for G. Let s be the minimum
order of a recursive c-separator for G. Then r(G) ≤ f(G) ≤ 3s(G).

Proof. If we remove a vertex set X with |X| = f(G), leaving probability less than 1/2 that
two randomly-chosen vertices from G are connected, then the remaining subgraph cannot
contain any connected component larger than |V (G)|/

√
2. If it contains any connected

component of size at least |V (G)|/2, then f separates that subgraph from the remaining
vertices, and otherwise the remaining small subgraphs can be combined to give a separation
between two subgraphs whose largest size is at most 2|V (G)|/3, better than c. Therefore,
r(G) ≤ f(G).

To show that f(G) ≤ 3s(G), find a recursive c-separator for G of order s; the separator
X has the following three separators as subsets: a c-separator X for G resulting in two
separated subgraphs, and c-separators Y and Z for each of the two separated subgraphs.
|X|+ |Y |+ |Z| ≤ 3s(G). Removing X ∪Y ∪Z from G partitions the rest of G into subgraphs
of size at most |V (G)|/2. No matter which of these subgraphs one of the randomly chosen
two vertices belongs to, the probability that the other vertex belongs to the same component
will be at most 1/2. J

Some of our results will bound the treewidth of graphs using havens, a mathematical
formalization of an escape strategy for a robber in cop-and-robber pursuit-evasion games.
In these games, a set of cops and a single robber are moving around on a given graph G.
Initially the robber is placed at any vertex of the graphs, and none of the cops has been
placed. In any move of the game, one of the cops can be removed from the graph, or a cop
that has already been removed can be placed on any vertex of the graph. However, before
the cop is placed, the robber (knowing where the cop will be placed) is allowed to move
along any path in the graph that is free of other cops. The goal of the cops is to place a cop
on the same vertex as the robber while simultaneously blocking all escape routes from that
vertex, and the goal of the robber is to evade the cops forever. In these games, a haven of
order k describes a strategy by which the robber can perpetually evade k cops, by specifying
where the robber should move for each possible move by the cops. It is defined as a function
φ, mapping each set of vertices X ⊆ V with |X| ≤ k to a nonempty connected component in
G \X, such that whenever X1 ⊆ X2, φ(X2) ⊆ φ(X1). A robber following this strategy will
move to any vertex of φ(X), where X denotes the set of vertices to be occupied by the cops
at the end of the move. The mathematical properties of havens ensure that the robber can
always reach one of these vertices by a cop-free path.

Returning again to our adversarial version of the Towers of Hanoi puzzle, the cops-and-
robber game is equivalent to a game in which the first player attempts to pin the second
player to a state from which no legal move to any non-forbidden state is possible. The
placement (or removal) of a cop is equivalent to the first player designating (or de-designating)
a state as forbidden; an evasion strategy for a robber is equivalent to the existence of a legal
move for the second player.

The existence of a haven in G yields a lower bound on the treewidth of G via the following
lemma.

D. Eppstein, D. Frishberg, and W. Maxwell 13:5

I Lemma 3 (Seymour and Thomas [19]). A graph G has a haven of order greater than or
equal to k if and only if tw(G) ≥ k − 1.

3 Three pegs

In this section we show that tw(Hn
3) ≤ 4 for all n ≥ 1. We prove this by relating the

three-peg Towers of Hanoi game and the Sierpínski triangle graphs, which we denote Sn. Sn
has treewidth at least 3 for all n, as it contains a triangle, and (Lemma 4) it equals 4 for
n > 4. Additionally, each Sierpínski triangle graph contains a smaller three-peg Hanoi graph
as a minor, and vice versa. From this it will follow that tw(Hn

3) = 4 for all sufficiently large
n. For completeness we include a more detailed proof of the bounds on tw(Sn).

We define the Sierpínski triangle graphs, along with a planar embedding of them, in-
ductively. The planar embedding will allow us to see the geometric similarity between
the Sierpínski graphs and the three-peg Hanoi graphs. The first Sierpínski triangle, S1, is
isomorphic to K3 with a planar embedding of an equilateral triangle with unit length sides.
The vertices of the triangle coincide with the vertices of K3.

Inductively, we assume Sn−1 has a planar embedding whose outer face is embedded
geometrically as an equilateral triangle. We label the vertices on the outer face of the triangle
v`, vr, vt which are the left, right, and top vertices, respectively. To construct Sn from Sn−1
we take three copies of Sn−1 labeled SLn−1, S

R
n−1, S

T
n−1 for the left, right, and top triangles

and make the following vertex identifications.
1. Identify v` in SRn−1 with vr in SLn−1, and call the resulting vertex v`r.
2. Identify vt in SLn−1 with v` in STn−1, and call the resulting vertex v`t.
3. Identify vt in SRn−1 with vr in STn−1, and call the resulting vertex vrt.

The resulting graph has a planar embedding whose outer face can again be embedded as
a subdivided equilateral triangle. In Sn the left, right, and top vertices of the outer face are
contained in SLn−1, S

R
n−1, and STn−1 respectively. As before we denote them as v`, vr, and vt.

Note that we can recursively decompose Sn into a triangle and a trapezoid, from which the
trapezoid further decomposes into two additional triangles. (Here, we only consider trapezoids
whose long side is horizontal.) This recursive decomposition leads to the construction of a
tree decomposition of Sn. The six distinguished vertices v`, vr, vt, v`r, v`t, and vrt define the
bags of the tree decomposition at each level. The set {vt, v`t, vrt, v`, vr} lies on the perimeter
of a triangle in this decomposition. We call a bag in the tree decomposition consisting of
these vertices a triangular bag. On the other hand, the set {v`t, vrt, v`, v`r, vr} lies on the
perimeter of a trapezoid in the decomposition. We call a bag in the tree decomposition
consisting of these vertices a trapezoidal bag. With this definition we are now ready give a
proof of the fact that tw(Sn) = 4 for all n > 4.

I Lemma 4. The treewidth of Sn is equal to 4 for all n > 4.

Proof. To prove the upper bound we construct a tree decomposition of Sn out of the
triangular and trapezoidal bags defined above. We take the triangular bag in Sn to be
the root of the tree decomposition, and recursively decompose Sn into its triangular and
trapezoidal subgraphs. A bag at depth k is either a triangular or trapezoidal bag from an Sn−k
subgraph. The children of a trapezoidal bag at depth k are the triangular bags corresponding
to the two copies of Sk−1 that make up the trapezoid. The children of a triangular bag at
depth k are a trapezoidal and a triangular bag corresponding to the decomposition of Sk
into a trapezoid and triangle. Every edge of Sn is contained in some triangle or trapezoid,
and every triangle and trapezoid appear as a bag in the tree decomposition. For any vertex

FUN 2021

13:6 On the Treewidth of Hanoi Graphs

Figure 1 The Sierpínski graphs S2 and S3.

v in Sn if v ∈ B1, B2 where B1 and B2 are distinct bags there are two cases to consider. If
B1 is an ancestor of B2 then v, by the construction of the bags, must be in every triangular
or trapezoidal bag lying in between them. If there is no ancestry relationship, then v must
lie in the intersection of the shapes defined by B1 and B2. Hence, there is some triangle
or trapezoid containing both B1 and B2 which is their least common ancestor in the tree
decomposition. See Figure 2 for an illustration on S3.

To prove the lower bound it is sufficient to show that Sn contains a subdivision of the
octahedron graph when n > 4. The octahedron graph is a forbidden minor for treewidth 3
graphs [2]. See Figure 3 for an illustration. J

Figure 2 S3 along with its tree decomposition.

Next we give an inductive construction of the Hanoi graph Hn
3 with 3 pegs and n disks.

This construction is almost identical to that of Sn, but instead of identifying vertices we
connect the three copies of Hn−1

3 with three edges. Recall that the vertices of Hn
3 are

configurations representing the game state, that is a vertex is an element of {1, 2, 3}n. We

D. Eppstein, D. Frishberg, and W. Maxwell 13:7

Figure 3 The graph S5 with a subdivision of the octahedral graph highlighted in red.

define H1
3 to be K3 with the same planar embedding as in the case of the Sierpínski triangle

and denote the vertices as the 1-tuples (1), (2), (3). The cyclic ordering of the vertices does
not affect our construction.

By induction we assume Hn−1
3 has a planar embedding whose outer face is an equilateral

triangle such that the corners of the triangle are the configurations corresponding with the
perfect states, and we denote these vertices p1, p2, p3. For i ∈ {1, 2, 3} let Hi be the graph
isomorphic to Hn−1

3 with the vertex set V (Hn−1
3)× {i}. We construct Hn

3 out of the three
Hi’s and add the following edges.

1. Add an edge between (p1, 2) and (p1, 3) and denote it e`r.
2. Add an edge between (p2, 1) and (p2, 3) and denote it ert.
3. Add an edge between (p3, 1) and (p3, 2) and denote it e`t.

We call these three edges the boundary edges. The boundary edges represent the legal
moves obtained by moving the largest disk. It is clear from the construction that the resulting
graph embeds into the plane as an equilateral triangle with the perfect states at the corners
of the triangle. See Figure 4.

Figure 4 The Hanoi graphs H2
3 and H3

3 . We label the boundary edges such that their index
coincides with their corresponding vertex in the Sierpínski triangle.

FUN 2021

13:8 On the Treewidth of Hanoi Graphs

I Theorem 5. tw(Hn
3) = 4 for all n > 4.

Proof. To prove the lower bound we contract the boundary edges of Hn
3 to create an

Sn-minor. Hence, 4 = tw(Sn) ≤ tw(Hn
3) for n > 4.

To get the inequality tw(Hn
3) ≤ 4 we inductively construct an Hn

3 -minor of Sn+1 as
follows. For the base case we can easily find a copy of K3 in S2. Let G1, G2, G3 be the three
Sn subgraphs used to construct Sn+1 and let vi,j be the vertex shared by Gi and Gj . By the
inductive hypothesis we assume each Gi contains an Hn−1

3 -minor which we denote by Hi.
We construct an Hn

3 -minor in Sn+1 by connecting the corresponding perfect states of Hi and
Hj via a path containing vi,j for each i 6= j. These paths can be chosen to be vertex-disjoint,
which proves the theorem. See Figure 5 for an illustration. J

Figure 5 S3 with an H2
3 minor highlighted in red.

The three-peg case is simple enough that we can analyze our forbidden-state version of
the puzzle directly. If two states are forbidden, the only way to separate the remaining states
is to separate one recursive subgraph of the same type from the rest of the graph. In terms
of the original puzzle, the two forbidden states can be described by choosing a peg and a
number k and forbidding the two states where the largest k disks are on the chosen peg
and the remaining n− k disks are all on the same peg as each other (one of the other two
pegs). The probability of a connection between two randomly-chosen states is maximized
for k = 1, for which, for large n, the probability of a path between two randomly-chosen
vertices becomes approximately (2/3)2 + (1/3)2 = 5/9. On the other hand, if three states are
forbidden, it becomes possible to separate the state space into three equally-sized subgraphs
by forbidding three of the six states in which the largest disk can move. For this selection,
the probability of a path between two randomly-chosen vertices becomes 3(1/3)2 = 1/3.

4 More pegs

We conjecture that the treewidth of the Hanoi graph Hn
p is Θ((p − 2)n). By Lemma 1

the same bound would automatically apply to the recursive balanced separator orders of
these graphs; by Lemma 2, this would imply an upper bound on the number of states to
forbid to make the adversarial version of the Hanoi puzzle fair (f(G) in Lemma 2). In this
section we make progress towards this conjecture by proving the asymptotic upper bound
tw(Hn

p) = O((p− 2)n) and the asymptotic lower bound tw(Hn
p) = Ω(n−(p−1)/2 · (p− 2)n).

We obtain the lower bound by proving that every balanced separator of Hn
p (recursive or

otherwise) is of this asymptotic order. This lower bound then applies to f(G) in Lemma 2.
Our bounds are almost tight, off only by the factor Θ(n(p−1)/2). We begin by proving the
asymptotic upper bound, which we do by constructing a recursive balanced separator of the
required order and applying Lemma 1.

I Theorem 6. For any fixed p ≥ 3 and n ≥ 1, tw(Hn
p) = O((p− 2)n).

D. Eppstein, D. Frishberg, and W. Maxwell 13:9

Proof. We can recursively decompose Hn
p into p vertex-disjoint copies of Hn−1

p by considering
the subgraphs induced by fixing the position of the largest disk in the configurations. We
call a vertex a boundary vertex if in its configuration there is at least one peg occupied by no
disks and the largest disk shares its peg with no other disks. These are the configurations in
which the largest disk is free to move. The endpoints of edges between the Hn−1

p subgraphs
in our decomposition are the boundary vertices.

We compute the order of our recursive balanced separator by counting the number of
boundary vertices. This is the number of ways to distribute n− 1 disks across p− 2 pegs,
hence the size of the separator is

(
p
2
)
(p − 2)n−1. Our choice of separator splits Hn

p into
p subgraphs of size 1

p |V (Hn
p)|. By grouping the Hn−1

p subgraphs into two vertex sets, we
obtain a c-separator where c ∈ { dp/2e

p , dp/2e+1
p , . . . , p−1

p } depending on our choice of vertex
sets. Each subgraph can then be recursively decomposed in a similar way, and the number
of vertices required in each recursive decomposition at level i is equal to

(
p
2
)
(p− 2)n−i. The

theorem follows directly from Lemma 1. J

To prove the asymptotic lower bound we construct a new graph related to Hn
p whose

treewidth is easier to compute. We can specify the positions of a subset of disks in a Hanoi
puzzle by a mapping ρ : [n] → [p] ∪ {∞}, where a finite value of ρ(i) specifies the peg
containing disk di and an infinite value means that disk di is allowed to be placed on any
peg that does not also contain a specified disk. We define the pegset induced by ρ to be the
states consistent with this specification. More formally, a vertex v = (p1, p2, . . . , pn) is in the
pegset induced by ρ if and only if :
1. for all k ∈ [n], if ρ(k) 6=∞ then ρ(k) = pk, and
2. for all k, l ∈ [n], if ρ(k) =∞ 6= ρ(l), then pk 6= pl.

If ρ(k) 6= ∞ we call dk frozen by ρ; further, if a peg pk is in the image of ρ we call pk
frozen by ρ as well. Intuitively, a pegset is the result of freezing a set of disks onto a set of
pegs and playing a Hanoi puzzle using only the remaining unfrozen disks and pegs. We are
interested in pegsets that meet two additional properties:
3. exactly p− 3 elements of [p] have a non-empty inverse under ρ, and
4. for j ∈ [p] either |ρ−1(j)| = bn−1

p−2 c or |ρ
−1(j)| = 0.

We call such pegsets regular pegsets. Note that, because we still have three pegs unfrozen, and
because the three-peg Hanoi graphs are connected, each regular pegset describes a connected
subgraph of the Hanoi graph.

To make our analysis cleaner we assume that n ≡ 1 mod (p− 2), hence properties 3 and
4 imply that there are precisely n−1

p−2 + 1 unfrozen disks in a regular pegset. Note that this
restriction on n does not change the overall asymptotic analysis for other values of n, as
we can still lower-bound the treewidth for other n by rounding n down to a value with this
restricted form.

Let Inp denote the graph whose vertices are the regular pegsets of Hn
p where two vertices

share an edge if and only if the intersection of their corresponding pegsets is non-empty. We
call Inp the pegset intersection graph of Hn

p . We characterize the adjacency condition in terms
of frozen disks and pegs in Lemma 7.

I Lemma 7. Two regular pegsets u and v are adjacent in Inp if and only if the following
criteria are satisfied:
1. if a disk is frozen by both u and v, then both u and v freeze it to the same peg,
2. u and v each freeze exactly one peg unfrozen by the other,
3. if a disk is frozen by u but not by v, then the peg it is frozen on is not frozen by v, and
4. if a disk is frozen by v but not by u, then the peg it is frozen on is not frozen by u.

FUN 2021

13:10 On the Treewidth of Hanoi Graphs

Proof. If u and v are adjacent in Inp then there exists some vertex w = (w1, w2, . . . , wn)
contained in both pegsets. By the definition of a regular pegset both u and v freeze n−1

p−2
disks evenly across p− 3 pegs and leave n−1

p−2 + 1 disks unfrozen. We will now show that each
of the four claims follows from the adjacency of u and v.

1. Suppose for a contradiction that a disk di is frozen to different pegs by u and v; then
no configuration in u can equal a configuration in v since they differ at the ith component.

2. If u and v freeze the same set of pegs then a configuration in u cannot equal a
configuration in v since they will differ on the components corresponding to frozen disks.
Now, assume u freezes more than one peg left unfrozen by v. A vertex w in the intersection
of u and v would have a configuration that matches both u and v on their frozen disks, but
the total number of disks frozen by u and v is at least (p− 1) · n−1

p−2 ; then w has more than n
disks, contradicting the fact that w is a valid configuration.

3. Let u freeze the disk di onto the peg pk and assume v does not freeze di. If v also
freezes pk then v must freeze n−1

p−2 disks onto pk while leaving di unfrozen, hence there is no
configuration in v that places di onto pk.

4. Identical to 3.
We are now ready to prove the converse. Let u and v be pegsets in Inp such that conditions

1 through 4 hold. Conditions 1 and 2 tell us that the configurations of u and v coincide
with one another for (p− 4) · n−1

p−2 disks evenly distributed across p− 4 pegs. The remaining
2 · n−1

p−2 disks are left unfrozen by either u or v; call the set of these disks U . Conditions 3 and
4 ensure that we can choose a peg that is frozen by either u or v, but not both, and place
n−1
p−2 of the disks in U onto this peg which yields a configuration shared by both u and v. J

As a consequence of Lemma 7 we can describe how to traverse an edge from a pegset u
to a pegset v in Inp by freezing and unfreezing disks. We place n−1

p−2 of the disks left unfrozen
by u onto the peg frozen by v but left unfrozen by u. Then, we take the peg frozen by u and
left unfrozen by v and unfreeze every disk on it.

The asymptotic lower bound on tw(Hn
p) will be derived from an asymptotic lower bound

on tw(Inp). To compute the treewidth of Inp we first need to prove that it is vertex-transitive
and compute its diameter.

I Lemma 8. Inp is vertex-transitive.

Proof. We define a family of automorphisms φi,j which swap the roles of di and dj in some
pegset. The lemma follows from the fact that we can transform a pegset u to any other
pegset v by a sequence of swap operations. For any pegset u we define the image of u under
φi,j to be

φi,j(u)(k) =

u(i) k = j

u(j) k = i

u(k) otherwise
.

Let u and v be adjacent pegsets in Inp . By Uu and Uv we denote the sets of disks left unfrozen
by u and v, respectively. By Lemma 7 there are pegs pu and pv such that u freezes disks
onto pu but not pv, and v freezes disk onto pv but not pu. Further, traversing the edge
from u to v is equivalent to placing n−1

p−2 disks from Uu onto pk and treating the disks frozen
to pu as unfrozen. If u and v are adjacent then φi,j(u) and φi,j(v) are also adjacent, since
swapping the labels of two disks does not affect the traversal process. If φi,j(u) and φi,j(v)
are adjacent then so are u and v, by the above and the fact that φi,j = φ−1

i,j . J

D. Eppstein, D. Frishberg, and W. Maxwell 13:11

I Lemma 9. The diameter of Inp is Θ(n).

Proof. Let u and v be pegsets in Inp . Let k = n−1
p−2 . If u and v do not freeze the same set of

pegs, we can, by freezing and unfreezing disks, walk along a path in Inp of length depending
only on p, to a configuration that does freeze the same set of pegs as v, and continue with
the process below. Therefore, assume u and v do freeze the same set of pegs, and label this
set of pegs in increasing order by index as Q = {q1, q2, . . . , qp−3}. For i = 1, . . . , p− 3, let Ui
be the set of disks frozen on qi by u, and let Vi be the set frozen on qi by v.

For all i = 1, . . . , p− 3, we iteratively transform u into v, one peg at a time. For a given
peg qi, the process for transforming Ui into Vi is as follows. There are three cases:
1. There exists some disk d ∈ Vi \ Ui that is unfrozen by u,
2. There exists some disk d ∈ Vi \ Ui that is frozen on some other peg by u,
3. or Ui = Vi.

In case 1, unfreeze qi, then freeze an arbitrary peg ql /∈ Q, to obtain a new pegset w
adjacent to the current pegset. Since each pegset leaves n−1

p−2 + 1 disks unfrozen, let the new
pegset freeze onto ql all but one of the disks unfrozen by u. Let the omitted disk, d, be one
in Vi that is unfrozen by u. Choose some d′ ∈ Ui \ Vi (one exists since |Ui| = |Vi|), then
unfreeze ql; freeze onto qi the set (Ui \ {d′}) ∪ {d}, to obtain a new adjacent pegset where d′
is replaced by d.

Repeat this process until case 1 no longer applies, i.e. until every remaining d ∈ Vi \Ui is
frozen by u. Then (case 2) consider some such d. u does not freeze d on a peg qr to which
this process has already been applied, since all such pegs now agree with v. Therefore, u
freezes d on some peg qs to which the process has not yet been applied. Unfreeze qs and
freeze an arbitrary unfrozen peg ql to obtain the next pegset in the process; when doing
so, some unfrozen disk d′′ remains unfrozen. Then again freeze qs, but omit d and instead
freeze d′′ onto qs. d is now unfrozen, and we proceed as in case 1. Repeat case 2 until case 3
applies.

Repeating the overall process for every peg gives a path from u to v of length O(n). J

Lemmas 8 and 9 allow us to apply the following lemma due to Babai and Szegedy to
obtain a lower bound of Ω(1

nV (|Inp |)) on the vertex expansion of Inp .

I Definition 10. The vertex expansion of a graph G is equal to

min
S⊆V (G):1≤|S|≤ 1

2

|∂S|
|S|

,

where ∂S is the union of the neighborhoods, in G \ S, of vertices in S.

I Lemma 11 (Babai and Szegedy [3]). Let G be a vertex-transitive graph. Then the vertex
expansion of G is Ω(1/d), where d is the diameter of G.

I Lemma 12. The treewidth of Inp is Ω(1
n |V (Inp)|).

Proof. By applying Lemmas 8, 9, and 11, along with the definition of vertex expansion, we
have |∂S| = Ω(|S|n) for all S ⊆ V (Inp) with 0 ≤ |S| ≤ |V (In

p)|
2 , which implies that the size of

any balanced vertex separator of Inp is bounded from below by Ω(|V (In
p)|
n). It follows that the

treewidth of Inp is also bounded from below by Ω(|V (In
p)|
n). J

We now count the number of pegsets in V (Inp).

I Lemma 13. The number of regular pegsets in Inp is Θ(n−(p−3)/2 · (p− 2)n).

FUN 2021

13:12 On the Treewidth of Hanoi Graphs

Proof. There are
(
p
p−3
)
ways to choose the frozen pegs. Each pegset divides the disks into

p − 2 sets of (almost) equal size and there are n!
(n

p−2)!)p−2 ways to choose the sets. This is
because there are n! ways to order the disks, but we only care about the ordering of the p− 2
partitions of the disks, hence we divide by

(
n
p−2 !

)p−2
. (Asymptotically, we may assume

n ≡ 0 mod p− 2.) In total there are
(
p
p−3
)
· n!

((n
p−2)!)p−2 pegsets. Since p is fixed, we apply

Stirling’s approximation to n!
((n

p−2)!)p−2 to obtain the result. J

By applying Lemmas 12 and 13 we obtain the following corollary.

I Corollary 14. tw(Inp) = Ω(n−(p−1)/2 · (p− 2)n).

Next we show how to obtain a lower bound of tw(Hn
p) from Corollary 14. Since we have

a lower bound on the treewidth of Inp , Lemma 3 guarantees the existence of a haven of a
useful order. The idea behind Lemma 15 is to take a haven of order Ω(n−(p−1)/2 · (p− 2)n)
in Inp and modify it to create a haven of the same order in Hn

p .

I Lemma 15. tw(Hn
p) = Ω(tw(Inp)).

Proof. Let k = tw(Inp) + 1 = Ω(n−(p−1)/2 · (p− 2)n). By Lemma 3, Inp has a haven of order
k. Call this haven φ. Recall that a haven describes an evasion strategy for a robber in a
cops-and-robbers game. Intuitively, if a robber can evade the cops in Inp , the same robber
can also evade the cops in Hn

p by playing only on states that belong to pegsets of Inp and
by paying attention only to which of those pegsets are occupied by at least one cop. We
formalize this strategy below by constructing a haven for Hn

p from φ. Because a cop moving
in Hn

p may simultaneously occupy a constant number of pegsets in Inp , the order of the haven
we construct is a constant factor smaller than that of φ.

Every vertex in Inp corresponds to a pegset; every pegset corresponds to a set of configur-
ations in the Towers of Hanoi game. Each of these configurations corresponds to a vertex
in Hn

p . Define the function f : P(V (Hn
p)) → P(V (Inp)), where for X ⊆ V (Hn

p), f(X) is
the set of vertices in Inp whose corresponding pegsets contain configurations in X. Define
g : P(V (Inp))→ P(V (Hn

p)), such that for X ′ ⊆ V (Inp), g(X ′) is the set of all configurations
belonging to pegsets in X ′. Let g(X ′) = ∅ if X ′ = ∅.

Define ψ : P(V (Hn
p))→ P(V (Hn

p)), such that ψ(X) is the connected component contain-
ing g(φ(f(X))). To show that ψ is a haven, it suffices to show that:
1. for all X ⊆ V (Hn

p), ψ(X) is well-defined—i.e. g(φ(f(X))) is connected and nonempty
whenever φ(f(X)) is nonempty,

2. for Z ⊆ V (Hn
p), ψ(Z) ⊆ ψ(X) whenever X ⊆ Z, and

3. |X| = Ω(f(X)).

For (1), to see that g(φ(f(X))) is connected in Hn
p \X, consider any pair of configurations

u, v ∈ g(φ(f(X))). u and v belong to pegsets a and b (respectively) in φ(f(X)). a has a
path P to b in φ(f(X)), since φ(f(X)) is connected. Every vertex (pegset) w in this path
corresponds to the set W ′ = g(w) ⊆ g(φ(f(X))) of all configurations belonging to the pegset
w. W ′ ∩X = ∅, or else by the definition of f , w would be in f(X), contradicting the fact
that w ∈ φ(f(X)). Furthermore, W ′ is connected, since it is isomorphic to Hd

3 (where
d < n). Also, every edge (w1, w2) in P corresponds to a vertex w′ ∈ g(φ(f(X))) belonging to
W ′1 = g(w1) and W ′2 = g(w2). Therefore, u has a path to v in Hn

p \X, obtained by traversing
an Hd

3 copy W ′ for every vertex w ∈ P , and moving between Hd
3 copies W ′ and W ′′ that

intersect at a vertex in g(φ(f(X))) for every edge in P .

D. Eppstein, D. Frishberg, and W. Maxwell 13:13

For (2), if X ⊆ Z ⊆ V (Hn
p), then f(X) ⊆ f(Z). Since φ is a haven, φ(f(Z)) ⊆ φ(f(X)).

Therefore, g(φ(f(Z))) ⊆ g(φ(f(X))), and both g(φ(f(Z))) and g(φ(f(X))) are connected.
If φ(f(Z)) = ∅, then ψ(X) = ∅, and (2) is true. Therefore, suppose φ(f(Z)) 6= ∅. Suppose
for a contradiction that ψ(Z) 6⊆ ψ(X). Let u be a vertex in ψ(Z) ∩ ψ(X) (this intersection
is nontrivial since it includes g(φ(f(Z)))), and let v be a vertex in ψ(Z) \ ψ(X). Suppose
(u, v) ∈ E(Hn

p). (Such a pair must exist because ψ(Z) is connected.) Since X ⊆ Z,

u, v ∈ ψ(Z) ⊆ V (Hn
p) \ Z ⊆ V (Hn

p) \X.

However, since v /∈ ψ(X), this contradicts that ψ(X) is a connected component in Hn
p \X.

(3) follows from the fact that |f(X)| ≤ (p− 2)|X|, since every vertex belongs to at most
p− 2 regular pegsets. J

We have now proven the second theorem of the section.

I Theorem 16. For any fixed p ≥ 4, tw(Hn
p) = Ω(n−(p−1)/2 · (p− 2)n).

In Appendix A we prove a lower bound on the treewidth of four-peg Hanoi graphs that,
while still separated by a polynomial factor from the upper bound, is tighter than the one
above.

5 Conclusion

Theorem 16 and Theorem 17, together with Theorem 5 and Theorem 6, give nearly tight
asymptotic bounds on the number of states, in the adversarial version of the Towers of Hanoi
game we proposed in the introduction, that the first player must forbid in order to ensure
better than even odds of defeating the second player. This raises additional questions. First,
suppose the first player forbids enough states to separate the graph in a balanced way, but
the second player is fortunate enough to have starting and ending positions in the same
connected component. What is the optimal strategy for the second player, and how many
moves will this strategy take? Must this strategy be formulated in graph-theoretic terms, or
is there an algorithm that consists of moving the disks in an intuitive way?

Theorem 17 (in Appendix A) improves the lower bound of Theorem 16 when p = 4; one
question would be to see whether the technique in the proof of Theorem 17 could be adapted
to deal more generally with the structure of pegset intersection graphs when p ≥ 4, yielding
a bound of Ω((p−2)n

n) in general when p ≥ 4. However, this still would not eliminate the
asymptotic gap between our upper and lower bounds.

To this end, Corollary 25 gives a lower bound on the treewidth of the Kneser graph that
is new when 2k + 1 ≤ n ≤ 3k − 1. Can this lower bound be tightened? Harvey and Wood
[12] showed that in this case (when 2k + 1 ≤ n ≤ 3k − 1),

tw(Kn(n, k)) <
(
n− 1
k

)
− 1.

Since
(
n−1
k

)
= Θ(

(
n
k

)
) when 2k + 1 ≤ n ≤ 3k − 1, this upper bound does not imply sublinear

treewidth. However, if in fact the treewidth is sublinear, and can be used to obtain a
sublinear vertex separator in Ds(n) (defined in Appendix A), then combined with a proof of
asymptotic tightness in Lemma 31 and Lemma 35, this would imply that tw(Hn

4) is o(2n),
proving that the upper bound in Theorem 6 is not tight. This would be surprising, as the
family of separators given in Theorem 6 seems intuitively to target the “weakest” parts of
the graph.

FUN 2021

13:14 On the Treewidth of Hanoi Graphs

Another possible line of further research is whether the bound given in Lemma 33 is tight
for the tensor product, and what can be said about other graph products. As stated in the
introduction, Kozawa et al. [14] gave lower bounds for the Cartesian and strong products.
Since the strong product of a graph has the same vertices as and a superset of the edges
of the tensor product, our lower bound in Lemma 33 for the tensor product’s treewidth
immediately gives a lower bound on the treewidth of the strong product. However, Kozawa et
al. [14] gave a stronger lower bound for the strong product. One question would be whether
a comparable improvement over our bound can be proven for the tensor product.

References
1 Danielle Arett and Suzanne Dorée. Coloring and counting on the tower of Hanoi graphs.

Mathematics Magazine, 83(3):200–209, 2010. doi:10.4169/002557010x494841.
2 Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. Forbidden minors characteriza-

tion of partial 3-trees. Discrete Mathematics, 80(1):1–19, 1990. doi:10.1016/0012-365X(90)
90292-P.

3 László Babai and Mario Szegedy. Local expansion of symmetrical graphs. Combinatorics,
Probability and Computing, 1(1):1–11, 1992. doi:10.1017/S0963548300000031.

4 Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion
of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages 196–227.
Springer, 2012. doi:10.1007/978-3-642-30891-8_12.

5 Thierry Bousch. La quatrième tour de Hanoï. Bulletin of the Belgian Mathematical Soci-
ety – Simon Stevin, 21(5):895–912, 2014. URL: http://projecteuclid.org/euclid.bbms/
1420071861.

6 Boštjan Brešar and Simon Špacapan. On the connectivity of the direct product of graphs.
The Australasian Journal of Combinatorics, 41:45–56, 2008. URL: https://ajc.maths.uq.
edu.au/pdf/41/ajc_v41_p045.pdf.

7 David Eppstein. Treewidth of deep Sierpiński sieve graph. Theoretical Computer Science
Stack Exchange. URL: https://cstheory.stackexchange.com/q/36542.

8 David Eppstein and Elham Havvaei. Parameterized leaf power recognition via embedding
into graph products. In Christophe Paul and Michal Pilipczuk, editors, 13th International
Symposium on Parameterized and Exact Computation (IPEC 2018), volume 115 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2018.16.

9 Jeff Erickson. Computational topology: Treewidth. Lecture Notes, 2009. URL: http:
//jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf.

10 Andreas M. Hinz et al. The Tower of Hanoi —Myths and Maths. Birkhäuser Basel, 2013.
11 Peter Frankl. A new short proof for the Kruskal–Katona theorem. Discrete Mathematics,

48(2–3):327–329, 1984. doi:10.1016/0012-365X(84)90193-6.
12 Daniel J. Harvey and David R. Wood. Treewidth of the Kneser Graph and the Erdős–Ko–Rado

theorem. Electronic Journal of Combinatorics, 21(1):P1.48, 2014. doi:10.37236/3971.
13 Wilfried Imrich, Sandi Klavžar, and Douglas F. Rall. Topics in Graph Theory: Graphs and

Their Cartesian Product. A K Peters, 2008.
14 Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki. Lower bounds for treewidth of product

graphs. Discrete Applied Mathematics, 162(C):251–258, January 2014.
15 L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial

Theory, Series A, 25(3):319–324, 1978. doi:10.1016/0097-3165(78)90022-5.
16 L. Lovász. Combinatorial Problems and Exercises. AMS/Chelsea publication. North-Holland

Publishing Company, 1993.

https://doi.org/10.4169/002557010x494841
https://doi.org/10.1016/0012-365X(90)90292-P
https://doi.org/10.1016/0012-365X(90)90292-P
https://doi.org/10.1017/S0963548300000031
https://doi.org/10.1007/978-3-642-30891-8_12
http://projecteuclid.org/euclid.bbms/1420071861
http://projecteuclid.org/euclid.bbms/1420071861
https://ajc.maths.uq.edu.au/pdf/41/ajc_v41_p045.pdf
https://ajc.maths.uq.edu.au/pdf/41/ajc_v41_p045.pdf
https://cstheory.stackexchange.com/q/36542
https://doi.org/10.4230/LIPIcs.IPEC.2018.16
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
https://doi.org/10.1016/0012-365X(84)90193-6
https://doi.org/10.37236/3971
https://doi.org/10.1016/0097-3165(78)90022-5

D. Eppstein, D. Frishberg, and W. Maxwell 13:15

17 J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, volume 28
of Algorithms and Combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.

18 Miodrag S. Petković. Famous Puzzles of Great Mathematicians. American Mathematical
Society, 2009.

19 Paul D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

20 B. M. Stewart and J. S. Frame. Problem 3918 and solution. The American Mathematical
Monthly, 48(3):216–219, 1941. doi:10.2307/2304268.

21 Mario Valencia-Pabon and Juan-Carlos Vera. On the diameter of Kneser graphs. Discrete
Mathematics, 305(1–3):383–385, 2005. doi:10.1016/j.disc.2005.10.001.

A Four pegs

Theorems 6 and 16, together, give upper and lower bounds that differ by a polynomial factor
in the number of disks of the Towers of Hanoi puzzle. Compared to the overall exponential
size of the bound, this is a small gap, and it is tempting to try to close it further. The proof
of Theorem 16 identifies the pegset intersection graph (Inp) as a hard part of the graph to
separate, and leverages the vertex-transitive structure of this graph.

However, there are many configurations in the game that are ignored by focusing on the
Inp graph: namely, all configurations where the numbers of disks on the pegs are arbitrary,
i.e., not constrained to be equal to b n

p−2c for p− 3 of the pegs. We broaden our analysis of
pegsets to prove the main result of this section:

I Theorem 17. tw(Hn
4) = Ω(2n

n).

We begin by generalizing the pegset intersection graph beyond regular pegsets.

I Definition 18. Let Gn4 be a graph whose vertices are the pegsets of Hn
4 that freeze only one

peg and that freeze at most bn−1
2 c disks onto that peg. In this graph, let vertices u and v be

adjacent whenever the pegsets u and v freeze mutually disjoint sets of disks, and freeze them
onto separate pegs.

Clearly In4 is an induced subgraph of Gn4 . We prove our improved bound by analyzing the
relationship between Gn4 and the Kneser graph.

I Definition 19 (Lovasz [15]). Let [n] = {1, . . . , n} be an indexing of the objects in an
arbitrary set. The Kneser graph, denoted Kn(n, k), is the graph whose vertices correspond to
the k-element subsets of [n], and whose edges are the pairs of vertices whose corresponding
subsets are disjoint.

We restrict our attention to Kneser graphs that are connected, namely the graphs Kn(n, k)
where n ≥ 2k + 1.

The condition on disjoint subsets in the definition of Kneser graphs is analogous to
the condition on disjoint subsets of pegs in the definition of Gn4 . (In fact, for any given
k ≤ bn−1

2 c, the pegsets that freeze exactly k disks induce as a subgraph of Gn4 the tensor
product of Kn(n, k) with a 4-clique—see Definition 32.) However, Gn4 also includes a separate
condition, of having different frozen pegs. An additional complication is that Gn4 allows sets
of different sizes rather than only considering sets of a single size k. To account for all set
sizes appropriately, we introduce a generalization of the Kneser graph:

I Definition 20. Let the disjoint subset graph, denoted Ds(n, r), be the graph whose vertices
are identified with the subsets s ⊆ [n] with |s| ≤ r, and whose edges are the pairs of vertices
whose corresponding subsets are disjoint.

FUN 2021

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.2307/2304268
https://doi.org/10.1016/j.disc.2005.10.001

13:16 On the Treewidth of Hanoi Graphs

For convenience, we let Ds(n) = Ds(n, n−1
2). Clearly |V (Ds(n))| ≈ 2n−1. Then V (Gn4)

consists of four copies of V (Ds(n)), with pegsets u and v connected iff they are in different
copies and they share an edge in Ds(n). In Lemma 21 we bound the treewidth of Ds(n),
after which we will use the relationship between Gn4 and Ds(n) to prove Theorem 17.

I Lemma 21. tw(Ds(n)) = Ω(2n

n).

We defer the formal proof of Lemma 21 to later but outline a proof sketch below. The
idea of the proof is to observe that Ds(n) consists of n−1

2 Kneser graph “slices.” We make
observations analogous to those leading to Corollary 14: Kneser graphs are vertex-transitive
(Remark 24) and have diameter O(n) (Lemma 22), implying that for all 0 ≤ k ≤ n−1

2 ,
tw(Kn(n, k)) = Ω(1

n |V (Kn(n, k))|) (Corollary 25). Since

|V (Ds(n))| =
n−1

2∑
k=0
|V (Kn(n, k))|,

Lemma 21 then follows if we can, intuitively, show that the Kneser slices are hard to separate
from one another. We formalize this notion and show that it is true for most of the slices.
The argument relies on the subset definitions of the Kneser graphs’ vertices, and makes use
of the Kruskal–Katona Theorem (Corollary 29).

We prove that given a balanced vertex separator X for Ds(n), either:
1. X contains a large number of the vertices in Ds(n) (at least an Ω(1

n) factor), or
2. after removing X from Ds(n), there is still a large connected component in Ds(n), leading

to a contradiction.

In the second case, we derive the contradiction as follows: we observe that after removing
X from Ds(n), if case (1) does not hold, then most of the vertices of Ds(n) lie in Kneser
slices that have large connected components, since their intersection with X contains too few
vertices for a balanced separator. Call this set of Kneser slices Kconn(X). We prove that
every pair of subgraphs Gk = Kn(n, k) and Gl = Kn(n, l) in Kconn(X) have large connected
components Ak and Al that share an edge. Therefore, these large connected components,
together, form a large connected component in Ds(n) \X, from which we derive the desired
contradiction.

Finally, we use our lower bound on the treewidth of Ds(n) to derive a lower bound on
the treewidth of Gn4 , and in turn on the treewidth of Hn

4 . We obtain the former by proving
a more general claim about the treewidth of the tensor product of two graphs, and the latter
by a proof analogous to that of Lemma 15.

We begin by showing the required lower bound on the treewidth of the Kneser graph.
We use the following result of Valencia-Pabon and Vera:

I Lemma 22 (Valencia-Pabon and Vera [21]). If 1 ≤ k ≤ bn−1
2 c, then the diameter of

Kn(n, k) is d k−1
n−2k e+ 1.

I Remark 23. When k ≤ n−1
2 , the diameter in Lemma 22 is O(n).

The following fact about Kneser graphs is well known; it also follows from a straightforward
adaptation of the proof of Lemma 8.
I Remark 24. All Kneser graphs are vertex-transitive.

Combining Lemmas 11 and 22 with Remarks 23 and 24, and observing the relationship
between vertex expansion, balanced separators, and treewidth (as we did in the proof of
Lemma 12), gives the following corollary:

D. Eppstein, D. Frishberg, and W. Maxwell 13:17

I Corollary 25. For all k such that 1 ≤ k ≤ n−1
2 , tw(Kn(n, k)) = Ω(1

n |V (Kn(n, k))|), and
for every constant c, the minimum size of a c-separator in Kn(n, k) is Ω(1

n |V (Kn(n, k))|).

Before turning to the interfaces between the Kneser slices, we establish a threshold value
such that most of the vertices of Ds(n) lie in Kn(n, k) slices with values of k exceeding this
threshold. Restricting our attention (in Lemma 27) to these slices will allow us to prove the
mutual connectedness of the large connected components in case (2).

I Lemma 26. For every constant β with 1
2 < β < 1, there exists a constant ε such that

lim
n→∞

∑n
2
k= n

2−ε
√
n
|V (Kn(n, k))|

|V (Ds(n))| ≥ β.

Proof. Let B(n, p) denote the binomial distribution parameterized with probability p. The
standard deviation of B(n, 1

2) is
√
n

2 . If f is the probability mass function of B(n, 1
2), then

f(k) = 1
2n

(
n
k

)
.

Let X be a random variable distributed according to B(n, p).
By Chebyshev’s inequality,

Pr[|X − n

2 | ≥ ε
√
n] ≤ 1

4ε2 .

Setting ε = 1
2
√

1−β
, so that β = 1− 1

4ε2 , yields the desired result, since

n
2∑

k= n
2−ε
√
n

(
n

k

)
= 1

2

n
2 +ε
√
n∑

k= n
2−ε
√
n

(
n

k

)
= 2n−1 · Pr[|X − n

2 | ≤ ε
√
n] ≥ 2n−1(1− 1

4ε2),

and since |V (Ds(n))| = 2n−1. J

In Lemma 30 we will prove the existence of the large connected component from which
the contradiction is derived in case (2) of the discussion following the statement of Lemma 21.
To do so, we will use the following lemma:

I Lemma 27. Let ε > 0 be fixed. Suppose n−1
2 − ε

√
n ≤ l < k ≤ n−1

2 , and let Ak and Al be
subsets, respectively, of the vertices in the Kn(n, k) and Kn(n, l) subgraphs of Ds(n). Suppose
further that |Ak| ≥ d|V (Kn(n, k))| and |Al| ≥ d|V (Kn(n, l))|, where d > 1

2 is a constant.
Then, if n is sufficiently large, Ak and Al share an edge.

The proof of Lemma 27 uses the Kruskal–Katona Theorem (Corollary 29), which provides
a lower bound, given a collection F of k-element subsets of [n], on the number of l-element
subsets of [n] that are subsets of sets in F . The following formulation of the Kruskal-Katona
theorem is due to Lovász (Frankl gave a short proof):

I Theorem 28 (Kruskal–Katona Theorem [11],[16]). Let F be a family of k-element subsets
of [n], and let E be the set of all k−1-element subsets of sets in F . Then whenever |F| ≥

(
m
k

)
,

|E| ≥
(
m
k−1
)
.

Applying induction on l = k − 1, . . . , 1 to Theorem 28 implies the following corollary:

I Corollary 29. Let F be a family of k-element subsets of [n], and let E be the set of all
l-element subsets of sets in F , where 1 ≤ l < k. Then whenever |F| ≥

(
m
k

)
, |E| ≥

(
m
l

)
.

FUN 2021

13:18 On the Treewidth of Hanoi Graphs

Using Corollary 29, we prove Lemma 27:

Proof of Lemma 27. For every v ∈ V (Ds(n)), view v as the k-size subset with which it is
identified, and let v be the set complement of v.

Let Bk = {v | v ∈ Ak}. Define a function δl mapping vertices in Kn(n, k) to their
neighborhoods in Kn(n, l): for all v ∈ V (Kn(n, k)), let δl(v) = {w ∈ V (Kn(n, l)) | (v, w) ∈
E(Ds(n))}.

Extend the domain of δl to sets of vertices in Kn(n, k): for all Z ⊆ V (Kn(n, k)), let
δl(Z) =

⋃
v∈Z δl(v).

Clearly, a vertex u ∈ Kn(n, l) is in δl(Ak) iff there exists some w ∈ Bk such that, viewing
the vertices in their combinatorial sense, u ⊆ w.

I.e., δl(Ak) consists precisely of the vertices that are identified with subsets of vertices in
Bk. Since

|Bk| = |Ak| >
1
2 |Kn(n, k)| = 1

2

(
n

k

)
≥
(
n− 1
n− k

)
,

Corollary 29 implies that

|δl(Ak)| ≥
(
n− 1
l

)
≥ (1

2 − o(1))
(
n

l

)
− 1 ≥ (1

2 − o(1))|V (Kn(n, l))| − 1.

In the above inequalities we use the (easily verified) fact that whenever n−1
2 −ε

√
n ≤ i ≤ n−1

2 ,(
n− 1
i

)
≥ (1

2 − o(1))
(
n

i

)
− 1,

and(
n− 1
n− i

)
≤ 1

2

(
n

i

)
.

Since by assumption |Al| ≥ d|V (Kn(n, l))| with d > 1
2 , this implies that for sufficiently

large n, δl(Ak) ∩ Al 6= ∅. That is, some vertex in Ak shares an edge with some vertex in
Al. J

We are ready to formalize case (2) (Lemma 30) in the discussion following the statement
of Lemma 21.

I Lemma 30. Let X be a vertex separator for Ds(n). Let 1
2 < c < 1 and ε > 0 be constants.

Let

Kbig = {Kn(n, k)|n− 1
2 − ε

√
n ≤ k ≤ n− 1

2 }

be the largest ε
√
n Kneser subgraphs of Ds(n). Let

Kconn(X) = {Kn(n, k) ∈ Kbig|
|X ∩ V (Kn(n, k))|
|V (Kn(n, k))| < f(n)},

where f is any function such that f(n) = O(1
n).

Then if n is sufficiently large, for all Kn(n, k) ∈ Kconn(X), Kn(n, k) \X has a connected
component Ak of size at least c(1 − O(1

n))|V (Kn(n, k))|, and for all l 6= k, if Kn(n, l) ∈
Kconn(X), then Ak and Al share an edge.

D. Eppstein, D. Frishberg, and W. Maxwell 13:19

Proof. By Corollary 25, for all Kn(n, k) ∈ Kconn(X), the minimum c-separator size for
Kn(n, k) is Ω(1

n |V (Kn(n, k))|), which by assumption is more than the vertices of X that
lie in Kn(n, k) —at least when n is sufficiently large. This implies that Ak is of the stated
size. For the second part of the claim, consider any Ak, Al pair. Ak and Al are connected
by Lemma 27, since c(1−O(1

n)) ≥ d for every constant d such that c ≥ d > 1
2 . The lemma

follows. J

We are now ready to prove Lemma 21. We choose numerical values instead of symbols
for some of the constants that appear in the proof to make the argument more intuitive,
although there are other values that work.

Proof of Lemma 21. Choose any constant 1
2 < c < 4

7 . Let X be a c-separator for Ds(n).
We will show that either X contains many vertices from large Kneser slices (those in

Ksep(X), which we define below), or most (more than a factor of c) of the vertices of Ds(n)\X
lie in a large connected component, so that X is not a c-separator.

Let Kbig be the set of Kn(n, k) subgraphs with n−1
2 − ε

√
n ≤ k ≤ n−1

2 , where ε is chosen
so that |V (Kbig)|

|V (Ds(n))| ≥
8
9 . (We choose 8

9 to make the argument work for c < 4
7 .) Let

Ksep(X) = {Kn(n, k) ∈ Kbig|
|X ∩Kn(n, k)|
|Kn(n, k)| ≥ f(n)},

where f(n) = Θ(1
n) is the lower bound given by Corollary 25 on the minimum 5

7 -separator
size for Kn(n, k) ∈ Kbig. (We choose 5

7 because it produces the desired result for c < 4
7 .)

Let Kconn(X) = Kbig \Ksep(X). There are two cases:
1. |V (Ksep(X))|

|V (Kbig)| ≥
1

10 .
2. |V (Kconn(X))|

|V (Kbig)| > 9
10 .

(We choose 1
10 and 9

10 , again to make the argument work for c < 4
7 .)

In case 1, since Ksep(X) is defined so that |X∩V (Ksep(X))|
|V (Ksep(X))| ≥ f(n),

|X ∩Ksep(X)|
|V (Ds(n))| ≥ |V (Ksep(X))|

|V (Kbig)|
· |V (Kbig)|
|V (Ds(n))| · f(n) ≥ 1

10 ·
8
9 · f(n) = Ω(f(n)) = Ω(1

n
).

In this case we are done.
In case 2, Lemma 30 implies that there exists a connected component Ak in every

Kn(n, k) ⊆ Kconn(X) of size at least (5
7 −O(1

n))|V (Kn(n, k))|, and that every pair Ak and
Al are mutually connected. This implies that Ds(n) \X has a connected component A such
that

|V (A)|
|V (Ds(n))| ≥ (5

7 −O(1
n

)) |V (Kconn(X))|
|V (Ds(n))| ≥ (5

7 −O(1
n

))(9
10)(|V (Kbig)|

|V (Ds(n))|

≥ (5
7 −O(1

n
))(9

10)(8
9) > 4

7 > c.

This contradicts the assumption that X is a c-separator for Ds(n). J

To show that tw(Hn
4) = Ω(tw(Ds(n)), we first show that the treewidth of the generalized

pegset intersection graph Gn4 defined earlier is at least that of Ds(n), then that tw(Hn
4) =

Ω(tw(Gn4)). Both of these are accomplished via haven mappings (Lemmas 31 and 35) of a
similar flavor to Lemma 15.

I Lemma 31. tw(Gn4) = Ω(tw(Ds(n))).

FUN 2021

13:20 On the Treewidth of Hanoi Graphs

We prove Lemma 31 as a special case of a more general claim, Lemma 33, about the
treewidth of the tensor product of graphs:

I Definition 32. The tensor product of graphs G and H, denoted G×H, is the graph whose
vertex set is the Cartesian product V (G)× V (H), and whose edges are the pairs of (u1, v1)
and (u2, v2) whose first and second components share edges in E(G) and E(H) respectively,
i.e.

{((u1, v1), (u2, v2)) | u1, u2 ∈ V (G), v1, v2 ∈ V (H), (u1, u2) ∈ E(G), (v1, v2) ∈ E(G)}.

We prove the following:

I Lemma 33. Let G and H be connected graphs, and suppose that H is not bipartite. Then

tw(G×H) ≥ tw(G).

To prove Lemma 33, we first define an association between the vertices of G and those of
J = G×H.

I Definition 34. Given the tensor product J = G×H of graphs G and H, define f : V (J)→
V (G) so that for all (u, v) ∈ V (J),

f((u, v)) = u.

Define g : V (G)→ P(V (J)) so that for all u ∈ V (G),

g(u) = f−1(u) = {(u, v) | v ∈ V (H)}.

We use this definition to prove Lemma 33. The proof is similar in spirit to the proof of
Lemma 15:

Proof of Lemma 33. For the lower bound tw(G×H) ≥ tw(G), by Lemma 3, G has a haven
φ of order k = tw(G) + 1. We construct a haven ψ in J = G×H of order k′ ≥ k, from which
the lemma follows. To define ψ, we extend the domains of f and g to sets of vertices in the
natural way. That is, for every X ⊆ V (J), let f(X) be the image of all vertices in X under
f . For every Y ∈ V (G), let g(Y) be the union of the images under g of all vertices in Y .

For all X ⊆ V (J), let ψ(X) be the connected component in J \X containing g(φ(f(X))).
(Let ψ(∅) = ∅.) It suffices to show that:
1. Y ′ = g(Y) is a nonempty connected component in J \ X whenever Y is a nonempty

connected component in G \ f(X),
2. for all X ⊆ Z ⊆ V (J), ψ(Z) ⊆ ψ(X), and
3. for all X ⊆ V (J), |f(X)| ≤ |X|.

For (1), suppose Y is a connected component in G \ f(X) for some X ⊆ V (J). Let
Y ′ = g(Y). If |Y | > 1, then consider any edge (u,w) ∈ Y . Then for every pair of vertices
v, x ∈ V (H), the vertices (u, v) and (w, x) are connected by a path P ′ in Y ′. To construct
this path, consider any walk P along a sequence of vertices (v, z1, z2, . . . , zl, x) of odd length
in H from v to x. Such a walk must exist since H is not bipartite, i.e. contains an odd cycle.
Construct the corresponding path P ′ in Y ′ by alternating between copies of u and copies of
w. That is, let

P ′ = ((u, v), (w, z1), (u, z2), (w, z3), . . . , (w, zl−1), (u, zl), (w, x)).

Since such a path exists for every edge (u, v) ∈ Y , and Y is connected, Y ′ is also connected.

D. Eppstein, D. Frishberg, and W. Maxwell 13:21

We deal with the degenerate case |Y | = 1 by letting Y ′ be a single copy (u, v) of the
vertex u ∈ Y , and obtain ψ by extending this copy to a connected component.

For (2), it follows from the definition of f and the fact that φ is a haven, that φ(f(Z)) ⊆
φ(f(X)). ψ merely extends φ(f(Z)) and φ(f(X)) to connected components in J \ Z and
J \X respectively. The connected component B in J \X containing φ(f(Z)) is the same as
the connected component in J \X containing φ(f(X)), since both φ(f(Z)) and φ(f(X)) are
connected and one is a subset of the other. Furthermore, since X ⊆ Z, J \ Z ⊆ J \X, so
removing the additional vertices in Z \X from B cannot result in a connected component
with vertices missing from B. That is, the connected component ψ(Z) in J \ Z containing
φ(f(Z)) is a subset of the connected component ψ(X) in J \X containing φ(f(X)).

(3) is immediate from the definition of f . J

Lemma 31 immediately follows from Lemma 33 and the fact that Gn4 is isomorphic to
Ds(n)×K4.

I Lemma 35. tw(Hn
4) = Ω(tw(Gn4)).

Proof. Construct a haven mapping analogous to the mapping in Lemma 15. In Lemma 15
we defined f and g as, respectively, mapping sets of configurations to the regular pegsets to
which they belong, and mapping sets of regular pegsets to the unions of their configurations.
Extend the codomain of f and the domain of g, beyond regular pegsets, to the set of all
pegsets in Gn4 . The rest of the argument is similar to the proof of Lemma 15. Again we need
to check the following conditions:
1. for all X ⊆ V (Hn

p), ψ(X) is well-defined—i.e. g(φ(f(X))) is connected and nonempty
whenever φ(f(X)) is nonempty,

2. for Z ⊆ V (Hn
p), ψ(Z) ⊆ ψ(X) whenever X ⊆ Z, and

3. |X| = Ω(f(X)).

(3) is easy since every configuration belongs to at most four pegsets. The reasoning for
(1) is identical to that in the proof of Lemma 15. For (2), the reasoning is also the same. J

Theorem 17 follows from Lemma 21, Lemma 31, and Lemma 35.

FUN 2021

An Open Pouring Problem
Fabian Frei
Department of Computer Science, ETH Zürich, Switzerland
fabian.frei@inf.ethz.ch

Peter Rossmanith
Department of Computer Science, RWTH Aachen, Germany
rossmani@cs.rwth-aachen.de

David Wehner
Department of Computer Science, ETH Zürich, Switzerland
david.wehner@inf.ethz.ch

Abstract
We analyze a little riddle that has challenged mathematicians for half a century.

Imagine three clubs catering to people with some niche interest. Everyone willing to join a club
has done so and nobody new will pick up this eccentric hobby for the foreseeable future, thus the
mutually exclusive clubs compete for a common constituency. Members are highly invested in their
chosen club; only a targeted campaign plus prolonged personal persuasion can convince them to
consider switching. Even then, they will never be enticed into a bigger group as they naturally pride
themselves in avoiding the mainstream. Therefore each club occasionally starts a campaign against a
larger competitor and sends its own members out on a recommendation program. Each will win one
person over; the small club can thus effectively double its own numbers at the larger one’s expense.

Is there always a risk for one club to wind up with zero members, forcing it out of business? If
so, how many campaign cycles will this take?

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains; Theory of computation → Representations of games and their complexity

Keywords and phrases Pitcher Pouring Problem, Water Jug Riddle, Water Bucket Problem, Vessel
Puzzle, Complexity, Die Hard

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.14

Acknowledgements We would like to thank the anonymous reviewers who carefully read this paper
for their detailed feedback.

1 The Same Old Pouring Problem Again1

Almost anyone who is even remotely fond of logical puzzles and many others have heard of
and even solved the following problem:

Given two pitchers of three and five ounces capacity and an infinite water supply, can
you precisely measure four ounces?

This already popular pitcher-pouring problem has gained increased prominence when it was
featured in the third installment of the Die Hard movie series, released in 1995. The two
protagonists John and Zeus are forced to figure out the solution to the problem within five
minutes to defuse a bomb. Frantically discussing the problem in detail, they eventually
succeed and prevent the explosion with mere seconds left, as expected.

1 Please patiently pardon particularly peculiar pour puns.

© Fabian Frei, Peter Rossmanith, and David Wehner;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 14; pp. 14:1–14:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@inf.ethz.ch
mailto:rossmani@cs.rwth-aachen.de
mailto:david.wehner@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.FUN.2021.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 An Open Pouring Problem

An outpouring of papers discussing different aspects of the problem ensued – considering
the natural generalization to arbitrary capacities of the two pitchers, of course. It also has
become somewhat of a pet problem in Artificial Intelligence [8, 6]. The focus was often
on didactical aspects of the problem as the solution is rather simple from a mathematical
standpoint: The number of liters that can be measured using two given pitchers are exactly
the greatest common divisor of the two capacities and its multiples. The complexity of the
problem – that is, the number of steps required to solve all instances of the problem with
a given total capacity – was first considered and immediately shown to be linear directly
following the movie release in 1995 as well [5].

Fortunately, there is a far more challenging pouring problem that is still open.

2 Our Problem: Significantly Less Pouring

The fifth problem of the fifth All-Union round of the Soviet Mathematics Olympiad, held in
Riga in 1971, reads as follows:

В три сосуда налито по целому числу литров воды. В любой сосуд разрешается перелить
столько воды, сколько в нем уже содержится, из любого другого сосуда. Докажите,
что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды
достаточно велики: каждый может вместить всю имеющуюся воду.) [7]

An integer number of liters of water has been poured into each of three vessels. It is
allowed to pour into each vessel as much water as it already contains from an arbitrary
other vessel. Prove that several such pourings can empty one of the vessels. (The
vessels are sufficiently large: Each one can contain the entire available water.)

Two small clarifications might be in order. First, each of the three vessels may contain a
different natural number of liters of course; the puzzle would be trivial otherwise. Second, it
is only implicit that we can never pour water out of a vessel that contains less water than
the receiving one. See Figure 1 for an illustrating example with a simple instance and its
optimal solution.

The exam designer clearly made an effort to keep the task from being too abstract by
casting it into this vessel form. Nevertheless, coming up with a way to perform such magical
pouring steps that allow us to double a vessel’s content – without additional materials that
would render the entire enterprise obsolete – seems to be the hardest challenge here by far.

However, even when freeing ourselves from the pour setting, it remains a tough task to
find any natural situation where the described situation might arise. While we gave it our
best try in the abstract, the issue is usually skirted altogether, as we will see.

The puzzle made an honoring appearance as the final task in the 54th iteration of the
William Lowell Putnam Mathematical Competition. The organizers of the most prestigious
mathematical competition worldwide opted for a purely abstract description:

Let S be a set of three, not necessarily distinct, positive integers. Show that one can
transform S into a set containing 0 by a finite number of applications of the following
rule: Select two of the three integers, say x and y, where x ≤ y and replace them with
2x and y − x. [1]

Two decades later, when the time-proven problem was presented as a challenge to IBM
researchers, their puzzlemaster embedded it in a contrived betting game [2]. Most recently,
the task took yet another, now overtly magical guise in Germany’s 38th National Computer
Science Competition [3]. This time around, the participants were not asked to solve the
problem mathematically, but had to write a program solving it optimally instead.

F. Frei, P. Rossmanith, and D. Wehner 14:3

Now, this problem was not only foisted upon defenseless exam takers; it has also been
included into a carefully curated anthology of mathematical riddles aimed at every avid
enigma aficionado [10, 9, 11]. In “Mathematical Puzzles: A Connoisseur’s Collection,” the
puzzle-pondering professor Peter Winkler, a well-respected mathematician and computer
scientist, presents the problem in its original form with three water buckets. He goes on
to describe his solution to the problem, which might well have been the intended one. His
approach guarantees that an initial configuration with n liters in total can be turned into
one with an empty bucket in at most O(n2) steps.

This result was independently improved upon by two persons with whom Peter Winkler
had been sharing the puzzle, Svante Janson from Uppsala University and Garth Payne from
Pennsylvania State University. They both described an algorithm that can empty one of the
buckets in at most O(n log n) steps. Winkler concludes: “As far as I know, no one knows
even approximately how many steps are required for this problem.” [9]

The German translation of the book, published in 2008, adds an optimistic conjecture by
Michael H. Albert that the minimal number of steps is far lower, namely Θ((log n)2).

3 Our Contribution

In this section, we first improve in Subsection 3.2 the known upper bound from the linearithmic
O(n · log n) down to O((log n)2), matching Albert’s conjecture. In Subsection 3.2, we then
go on to give experimental evidence that, on the one hand, exhibits the very peculiar and
mathematically interesting behavior of this problem and, on the other hand, strongly suggests
that even Albert’s conjecture is too pessimistic still: The required number of steps is far
more likely to be Θ(log n), which we posit as our improved conjecture. In Subsection 3.3,
we prove a lower bound that not only matches our conjecture asymptotically but in fact
perfectly fits the experimental data for infinitely many n that we analyze more closely in
Subsection 3.4. Note that our results leave open a good gap of a single logarithmic factor,
lest Winkler’s puzzling problem be spoiled entirely for the reader.

We briefly restate the problem in the notation that will be used in our proofs.

Let (a, b, c) ∈ N3 be a triple of nonnegative integers. We are allowed to perform the
following modification step on any triple: Pick from it any two numbers x and y such
that x ≤ y and then replace them by 2x and y − x, respectively.
For any n ∈ N, denote by N(n) the minimum number of such steps that allows us to
transform any given triple (a, b, c) ∈ N3 satisfying a+ b+ c = n into a triple containing
a zero. Prove good upper and lower bounds on N(n).

3.1 Upper Bound
We directly state and then prove our upper bound.

I Theorem 1. The optimal number of steps required to solve any instance with a total liter
count of n is bounded by N(n) ≤ (log n)2.2

Proof. We describe an algorithm that transforms any given configuration (a, b, c) ∈ N3

into one containing a zero in at most (log n)2 steps, where n = a + b + c. Our algorithm
works in rounds. We may assume without loss of generality that every round starts with

2 Throughout this paper, log denotes the logarithm to base 2.

FUN 2021

14:4 An Open Pouring Problem

(a) Initial Configuration. (b) One pouring later. (c) Problem solved.

Figure 1 Optimal solution for the initial instance (2, 5, 4). The total number of liters is n = 11,
the required number of pouring steps is N(n) = 2.

a configuration (a, b, c) that is ordered such that 0 < a ≤ b ≤ c. In every round, it will
transform the configuration (a, b, c) into a new configuration (a′, b′, c′) satisfying a′ ≤ a/2,
using a series of at most log n + 1 steps. As any configuration in ascending order, the initial
configuration satisfies a ≤ n/3. It is thus guaranteed that after at most log n − 1 rounds
we reach a configuration whose smallest number is at most n/3 · 21−log n = 2/3, which just
means it is zero, as required. We note that Svante’s algorithm as described by Winkler [9]
is structured in rounds as well. Instead of halving the number a in each round, it only
guarantees a decrease by at least 1, however. This crucial difference allows us to improve the
upper bound from O(n · log n) to O((log n)2).

We now describe a single round that starts with a configuration (a, b, c) satisfying
0 < a ≤ b ≤ c. Let r := b/a be the ratio between the two smallest numbers. We round this
ratio both ways and denote the resulting integers by p := brc and q := dre. Let pk . . . p0
and q` . . . q0 be the minimal binary representations of p and q, respectively; that is, we
have p0, . . . , pk−1, q0, . . . q`−1 ∈ {0, 1} and pk = q` = 1 for k = blog pc and ` = blog qc with∑k

i=0 pi2i = p and
∑`

i=0 qi2i = q. Note that 0 ≤ b−pa < a and 0 ≤ qa− b < a. This implies
that min{b− pa, qa− b} ≤ a/2 since (b− pa) + (qa− b) = (q− p)a ≤ a. We can thus consider
the following two, potentially overlapping cases.

Case 1: Assume first that b− pa ≤ a/2. In this case we perform k + 1 steps for i = 0, . . . , k

that will always double what was initially the smallest number a in the triple. To do this,
the algorithm has to subtract first a, then 2a, and generally 2ia from one of the other two
numbers in the triple. We use p to decide which one: If pi = 1, we subtract 2ia from the
second number, which initially is b; otherwise we have pi = 0 and subtract from the third
number, which is c initially. After performing these k + 1 steps, the second number and
third number will be b−

∑k
i=0 pi2ia = b− pa ≤ a/2 and c−

∑k
i=0(1− pi)2ia, respectively.

We have to prove that both the b and c of the initial configuration are sufficiently large
so as to never become negative and thus make all steps in this round valid. For b, we can
simply use our general observation b− pa ≥ 0. For c, we have

c−
k∑

i=0
(1− pi)2ia = c−

k−1∑
i=0

(1− pi)2ia = c−
(k−1∑

i=0
2i −

k−1∑
i=0

pi2i

)
a ≥ c− 2ka ≥ 0,

where the last inequality follows from k = blog pc and a ≤ c. We conclude that this
round is feasible and results in a triple whose smallest number is at most b− pa ≤ a/2, as
required. The number of steps in this round is exactly k + 1 = blog pc+ 1 ≤ blog qc+ 1.

F. Frei, P. Rossmanith, and D. Wehner 14:5

Case 2: We now assume qa− b < a/2. In this case, we first perform the following ` steps for
i = 0, . . . , `− 1: We always double the first number a in the triple, as we did in the first
case, but now we will be subtracting the necessary amount from the second number, the
initial b, if qi = 1 and from the third number, the initial c, if qi = 0. After these ` steps, the
first number of the resulting triple will be 2`a, the second one b−

∑`−1
i=0 qi2ia = b−(q−2`)a

and the third one c−
∑`−1

i=0(1− qi)2ia. Again, we have to prove that these ` steps are in
fact possible by showing that b and c are large enough. This is the case because, on the
one hand, we have q ≤ p + 1 and thus b− (q − 2`)a ≥ b− (q − 20)a ≥ b− pa ≥ 0 and, on
the other hand, we have

c−
`−1∑
i=0

(1− qi)2ia ≥ c−
`−1∑
i=0

2ia = b− (2` − 1)a ≥ b− (q − 1)a ≥ b− pa ≥ 0.

We now perform the last, (` + 1)st step of this round. It doubles the second number
b− (q−2`)a = b−qa+2`a and subtracts the corresponding amount from the first number,
which currently is 2`a. This step is valid since 2`a− (b− qa + 2`a) = qa− b ≥ 0. The
round ends with this step and the first number of the triple is now qa− b < a/2. The
number of steps in this round is precisely ` + 1 = blog qc+ 1.

We have shown for both cases how to perform a valid round of at most blog qc + 1 ≤
blog(n/1)c+1 ≤ 1+log n steps that result in a triple whose smallest number is at most ba/2c.
As already mentioned, it now suffices to iterate this entire process for at most (log n) − 1
rounds and we end up with a final configuration whose smallest number is 0. The total
number of steps over all rounds is thus at most (log(n)− 1) · (log(n) + 1) ≤ (log n)2, which
proves the theorem. J

3.2 Experimental Evidence

Figure 2 For any blue point, the ordinate indicates the minimum number of pouring steps
required in the worst case for a starting configuration (a, b, c) with n = a + b + c, where n is given by
the abscissa. The green line shows for each n the average of the 85 blue points (n− 42, . . . , n + 42).
The red line plots our lower bound derived in Subsection 3.3.

FUN 2021

14:6 An Open Pouring Problem

Table 1 All smallest hard instances for the listed minimum number of steps, that is, all worst-case
instances for the smallest n yielding a new step number N(n) for n up to 2020. The values of n are
also found as sequence A256001 in the online encyclopedia of integer sequences [4].

N(n) n = a + b + c (a, b, c)
1 3 (1, 1, 1)
2 6 (1, 2, 3)
3 11 (1, 4, 6)
4 15 (4, 5, 6), (3, 4, 8), (2, 5, 8)
5 23 (3, 8, 12)
6 27 (5, 9, 13)
7 45 (4, 15, 26)
8 81 (8, 27, 46)
9 105 (27, 35, 43), (8, 35, 62), (8, 27, 70)

10 195 (57, 65, 73), (8, 78, 109), (4, 78, 113), (8, 73, 114),
(8, 65, 122), (4, 66, 125), (8, 57, 130), (4, 33, 158)

11 329 (4, 130, 195)
12 597 (175, 199, 223)
13 885 (101, 295, 489)
14 1425 (206, 475, 744)

In order to develop a proper intuition of the behavior of the step complexity N(n), we wrote
a program that calculates N(n) for any given n. It does so by exhaustive enumeration of all
instances and then trying out all feasible solutions. We show our findings in Figure 2. The
blue points plot N(n), the step number required for a worst-case triple whose numbers sum
up to n, against this total for n from 0 up to 2020.

Across the entire spectrum, we observe erratic jumps up and down. The values where
these jumps occur do not seem to follow any discernible pattern, however. Despite their best
efforts, the authors were indeed unable to detect any stable structure, except for a small
detail that we will discuss later on.

From a global perspective, taking a step back and squinting a little bit, a clear consistent
picture emerges out of the confusing micro-behavior: The bulk of the values clearly follows
a logarithmic line; we can approximate it by the green line, which plots the average value
of N(n) across the interval [n− 42, n + 42]. The oscillations of the blue points around the
imagined center of gravity begin very small, but grow in amplitude with increasing n. The
plotted pairs (n, N) where the amplitude first increases over the previous threshold are
the following: From (15, 4) to (16, 3), from (26, 4) to (27, 6), from (105, 9) to (112, 6), and
from (885, 12) to (896, 8). The gaps from one threshold to the next appear to be growing
exponentially, but again the data is too noisy to deduce any rule.

Another point of interest might be the first values for n at which N(n) spikes up to a
new height for the first time. In order to describe the optimal monotone upper bound for
this problem, we would need to understand these values. However, they do not exhibit any
clear pattern either, besides an approximately exponential growth. The values of n up to
2020 for which N(n) reaches a previously unattained value and the corresponding worst-case
instances are displayed in Table 1.

Once more, neither an underlying nor an overarching pattern was to be found, neither in
the instances themselves nor in the optimal solutions’ step sequences.

F. Frei, P. Rossmanith, and D. Wehner 14:7

To address the complementary question about the optimal monotone lower bound, we
should at least know what the largest values n keeping N(n) at any fixed value are. Seeing
how we have been pouring out all the intractabilities of our problem on the reader, it might
be surprising that we can in fact give a quite concise answer to this last question: For any
` ∈ N \ {0}, the largest n to yield N(n) = ` is n = 5 · 2` and the instance(⌊

5
3 · 2

`

⌋
− 1,

⌊
5
3 · 2

`

⌉
,

⌈
5
3 · 2

`

⌉
+ 1
)

,

where by bxe we denote x rounded to the nearest integer, emerged as the corresponding
unique worst-case instance. We will investigate these instances closer in Subsection 3.4.

3.3 Lower Bound
We finally prove our lower bound and show how well it matches our experimental data.

I Theorem 2. The number of steps for solving a worst-case instance with a total liter count
of n is at least dlog((n + 1)/5)e = Ω(log n).

Proof. Let t := n
3 and consider the following configuration (a, b, c) depending on the remainder

of n modulo 3:

(a, b, c) =

(t− 1, t, t + 1), if t− btc = 0 , i. e., n ≡ 0 (mod 3)
(t− 4

3 , t− 1
3 , t + 5

3), if t− btc = 1
3 , i. e., n ≡ 1 (mod 3)

(t− 5
3 , t + 1

3 , t + 4
3), if t− btc = 2

3 , i. e., n ≡ 2 (mod 3).

We can write this down in general as (t+d1, t+d2, t+d3) with d1 < d2 < d3. After one step,
we have either (2t+2d1, d2−d1, t+d3) or (2t+2d1, t+d2, d3−d1) or (t+d1, 2t+2d2, d3−d2).

By re-ordering, all of these configurations can be written as (x1, t + y1, 2t + z1). We
will generally write the configuration after i steps as (xi, t + yi, 2t + zi). Let ui, vi, and
wi be the absolute values of xi, yi, and zi in ascending order, that is, we always have
{ui, vi, wi} = {|xi|, |yi|, |zi|} and ui ≤ vi ≤ wi. For i = 1, we can directly verify that
wi ≤ 5/3 · 2 and vi ≤ 5/3 · 2− 1/3. In general, we observe that the largest absolute value
after step i, namely wi, can be at most double of what the previously largest absolute value
was; we have wi ≤ 2wi−1. Moreover, the second largest absolute value vi can be at most the
sum of the two largest absolute values in the preceding step; we have vi ≤ vi−1 + wi−1. By
induction, we therefore obtain ui ≤ vi ≤ wi ≤ 5/3 · 2i and vi ≤ 5/3 · 2i− 1/3 for the absolute
values after the ith step. It immediately follows that

vi + wi ≤ 5/3 · 2i+1 − 1/3. (1)

Clearly, as long as vi + wi < t, no two of the three numbers can add up to t and thus a,
b, c cannot be equal. However, the only way to reach a configuration that contains a zero
is from a configuration with two equal numbers. Thus, vi + wi ≥ t = n/3 is a necessary
condition for (xi, t + yi, 2t + zi), the configuration after step i, to contain two equal numbers.
Using the bound (1) derived above, we conclude that this condition will not be met as long
as the following two equivalent inequalities remain true:

5
3 · 2

i+1 − 1
3 <

n

3 ⇐⇒ i + 1 < log n + 1
5 .

Consequently, any step number k that affords us just a chance of ending up with two equal
numbers has to satisfy k + 1 ≥ log((n + 1)/5). The number of steps k being an integer, we
can improve this to k ≥ dlog((n + 1)/5)e − 1. Only after at least k steps we might have

FUN 2021

14:8 An Open Pouring Problem

two equal number appearing in our configuration. One additional step involving these two
numbers is then required to produce a zero. Therefore, the minimum number of steps is at
least dlog((n + 1)/5)e = Ω(log n). J

We would now like to present evidence that this bound is in fact optimal for infinitely
many values of n in the following section.

3.4 Solving Hard Instances Optimally
We complement the lower bound derived in Subsection 3.3 with an analysis of all instances
of the form(⌊

5
3 · 2

`

⌋
− 1,

⌊
5
3 · 2

`

⌉
,

⌈
5
3 · 2

`

⌉
+ 1
)

,

where n = 5 · 2` for any natural number `.
For these instances, our lower bound evaluates to

⌈
log(2` + 1/5)

⌉
= ` + 1. (Note that

these instances have the form (t− 4/3, t− 1/3, t + 5/3) and (t− 5/3, t + 1/3, t + 4/3) for even
and odd `, respectively.) We will now show that ` + 1 steps are indeed sufficient for solving
these instances.

For ` = 0 and ` = 1, N(n) ≥ ` + 1 is easily verified by checking all possibilities. Now let
` ≥ 2 and n = 5 · 2`.

Case 1: Assume that ` is odd. Let k = (`− 3)/2. Using binary representation, we can now
represent the numbers in our hard instance (a, b, c) as

a = 11(01)k002,

b = 11(01)k012, and
c = 11(01)k112.

It is easy to check that these numbers sum up to n = 101(0)`
2. We start by trans-

ferring from the last number to the middle one, yielding (a, 2b, c − b) = (a, 2b, 2) =
(11(01)k002, 11(01)k010, 102). We then alternately subtract the last number from the
second and the first, beginning with the second, for 2k + 2 steps in total. Finally, we
subtract the last number from the first one again. The first number will then be zero
after a total of 1 + (2k + 2) + 1 = 2k + 4 = ` + 1 steps.

Case 2: Assume that ` is even. Let k = (`− 4)/2. Using binary representation again, we
have

a = 11(01)k0012,

b = 11(01)k0112, and
c = 11(01)k1002.

Now, we first go from (a, b, c) to (2a, b−a, c) = (2a, 2, c) = (11(01)k00102), 102, 11(01)k1002).
We then subtract the middle number from the first and then from the last. Now we begin
to subtract the middle number alternately from the last and the first, beginning with
the last, for 2k + 1 steps in total. Finally, we subtract once more the middle number
from the last number. This will result in the last number becoming zero after a total of
1 + 2 + (2k + 1) + 1 = 2k + 5 = ` + 1 steps.

We have thus shown log(2n/5) to be the optimal bound for infinitely many hard instances.

F. Frei, P. Rossmanith, and D. Wehner 14:9

4 L’Art Pour l’Art

We hope to have sparked in the reader an unquenchable enthusiasm for the presented pouring-
pot problem, prompting a perplexing pot-pourri of pertinent papers and perceptive proofs
from our prodigious puzzle partners.

References
1 URL: https://kskedlaya.org/putnam-archive/1993.pdf.
2 URL: https://www.research.ibm.com/haifa/ponderthis/challenges/May2015.html.
3 URL: https://bwinf.de/fileadmin/bundeswettbewerb/38/BwInf38-Aufgabenblatt.pdf.
4 URL: https://oeis.org/A256001.
5 Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Measuring with jugs. Theor. Comput.

Sci., 282(2):259–270, 2002.
6 Yiu-Kwong Man. A non-heuristic approach to the general two water jugs problem. Theor.

Comput. Sci., (10):904–908, 2013.
7 Николай Борисович Васильев (Nikolaj Borisovich Vasil’ev) and АлександрАлександрович Егоров

(Aleksandr Aleksandrovich Egorov). Задачи всесоюзных математических олимпиад (Zadachi
Vsesojuznyh Matematicheskih Olimpiad, Problems of the All-Union Mathematical Olympiads).
Наука (Nauka), 1988.

8 Glânffrwd P. Thomas. The water jugs problem: Solutions from artificial intelligence and
mathematical viewpoints. Mathematics in School, 24(5):34–37, 1995.

9 Peter Winkler. Mathematical Puzzles: A Connoisseur’s Collection. A K Peters, 2004.
10 Peter Winkler. Five algorithmic puzzles. In Tribute to a Mathemagician, pages 109–118.

A K Peters, 2005.
11 Peter Winkler. Mathematische Rätsel für Liebhaber. Springer, 2008.

FUN 2021

https://kskedlaya.org/putnam-archive/1993.pdf
https://www.research.ibm.com/haifa/ponderthis/challenges/May2015.html
https://bwinf.de/fileadmin/bundeswettbewerb/38/BwInf38-Aufgabenblatt.pdf
https://oeis.org/A256001

Multi-Robot Motion Planning of k-Colored Discs
Is PSPACE-Hard
Thomas Brocken
TU Eindhoven, The Netherlands
t.brocken@student.tue.nl

G. Wessel van der Heijden
TU Eindhoven, The Netherlands
g.w.v.d.heijden@student.tue.nl

Irina Kostitsyna
TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Lloyd E. Lo-Wong
TU Eindhoven, The Netherlands
l.e.lo-wong@student.tue.nl

Remco J. A. Surtel
TU Eindhoven, The Netherlands
r.j.a.surtel@student.tue.nl

Abstract
In the problem of multi-robot motion planning, a group of robots, placed in a polygonal domain
with obstacles, must be moved from their starting positions to a set of target positions. We consider
the specific case of unlabeled disc robots of two different sizes. That is, within one class of robots,
where a class is given by the robots’ size, any robot can be moved to any of the corresponding target
positions. We prove that the decision problem of whether there exists a schedule moving the robots
to the target positions is PSPACE-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Disc-robot motion planning, algorithmic complexity, PSPACE-hard

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.15

1 Introduction

Due to a wide range of applications, the multi-robot motion planning problem has received a
great amount of attention in the theoretical computer science community in recent years. In
the most general setting, the problem can be phrased in the following way: given a set of
robots placed in a polygonal domain, find a schedule to move the robots from their initial
locations to some specified target locations without collisions. From the point of view of
identifying which robots move to which target positions, we can distinguish between labeled
and unlabeled robot motion planning. Labeled motion planning is the most studied and,
possibly, is a more natural variant of the problem. In it the robots have unique IDs, and
each robot has a specifically assigned target location. In this paper, however, we are more
interested in unlabeled robot motion planning, where the robots are indistinguishable from
one another, and each robot can move to any of the specified target locations. A classic
example of a motivating application for this problem is a swarm of robots operating in a
warehouse, where it does not matter which of the robots arrives to pick up an item to be
transported. Generalizing the notions of labeled and unlabeled motion planning, Solovey
and Halperin [6] introduce the k-color robot motion planning problem, where given are k
classes of robots and k sets of target positions. Within each class the robots are unlabeled,

© Thomas Brocken, G. Wessel van der Heijden, Irina Kostitsyna, Lloyd E. Lo-Wong, and Remco J. A.
Surtel;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.brocken@student.tue.nl
mailto:g.w.v.d.heijden@student.tue.nl
mailto:i.kostitsyna@tue.nl
mailto:l.e.lo-wong@student.tue.nl
mailto:r.j.a.surtel@student.tue.nl
https://doi.org/10.4230/LIPIcs.FUN.2021.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

Figure 1 An example of a Sliding Block puzzle. The goal is to take the 2× 2 green square outside
the box through the exit on the bottom (through which only the green square can slide).

and each robot may move to any location in the corresponding set of target positions. When
k = n the problem becomes the standard labeled version of the robot motion planning, and
when k = 1 it is the unlabeled version.

In this paper we consider the k-color Disc-Robot Motion Planning problem, k-DRMP,
where classes of robots differ only by their radii. We show that the problem of deciding
whether a particular target location can be reached by a robot from the corresponding class
is PSPACE-hard. Our results imply that a version of the Sliding Block game with round
pieces can make for a fun and interesting puzzle.

Related work. We start with a brief overview of the known algorithmic results for the disc
robot motion planning problem. For unlabeled unit disc robots inside a simple polygon,
Adler et al. [1] develop a polynomial-time algorithm to solve the problem under an additional
requirement that the distance between any two points from the union of the starting and
target locations is at least 4. For unlabeled unit disc robots inside a polygonal domain with
obstacles, Solovey et al. [8] show how to find a solution close to optimal in polynomial time.
In addition to the same requirement on the separation between the starting/target positions,
they require the minimum distance between a robot location and an obstacle to be at least√

5.
In contrast, for a set of disc robots of possibly different radii in a simple polygon, it is

NP-hard to decide whether a target location can be reached by any robot [9].
A wider range of hardness results exists for rectangular or square-shaped robots. Many of

these are inspired by Sliding Block puzzles, a family of popular games where different shapes
are densely packed in a rectangular grid box with little room for movement, and the goal is
to free a specific target block and move it outside of the box by sliding the pieces around.
Figure 1 shows an example of a puzzle where the blocks are rectangles of integer side length.

One of the earliest results is due to Hopcroft et al. [5], where they show that it is
PSPACE-hard to decide whether a given set of rectangular robots enclosed in a rectangular
domain can be reconfigured into a particular target configuration. Flake and Baum [3]
showed that solving the Rush Hour puzzle on an n× n grid is PSPACE-complete. Rush
Hour is a type of a sliding-block puzzle, where the blocks, called cars, are rectangles of
width 1 and of length either 2 or 3, and the cars are only allowed to move parallel to their
longer side. To prove the hardness of the Rush Hour puzzle, Flake and Baum develop a
new specialized model of computation based on “Generalized Rush Hour” logic. They show
how to simulate a Finite Turing Machine with circuits built on this logic, which settles the
complexity of the problem.

Inspired by Flake and Baum’s construction, Hearn and Demaine [4] develop a Non-
deterministic Constraint Logic (NCL) framework which has proven to be invaluable in
showing hardness results for many problems, based on puzzles and otherwise. To showcase

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:3

the power of the NCL, they use it to prove PSPACE-completeness of a number of puzzles,
including the Sliding Block, even when all blocks are small (in particular, of size 1× 2), the
classic Rush Hour (for cars of length 2 and 3), and others. Tromp and Cilibrasi [10] used the
NCL framework to show that Rush Hour is PSPACE-complete even for the cars of length 2
alone. Finally, using NCL, Solovey and Halperin [7] prove that unlabeled multi-robot motion
planning for unit square robots moving amidst polygonal obstacles is PSPACE-hard.

Contribution. The contrast between the abundance of hardness results for rectangular and
square robots and a few results, negative as well as positive, for disc robots, suggests that
the complexity of the problem greatly depends on the shape of the robots, even when the
difference between the shapes is seemingly insignificant. Establishing the complexity of
multi-robot motion planning of unit disc robots has been an open problem for quite some
time. In this paper we show the first PSPACE-hardness result for motion planning of disc
robots. In particular, we show that the 2-color multi-robot motion planning problem for disc
robots with radii 1/2 or 1 in a polygonal domain is PSPACE-hard by a reduction from the
NCL. In contrast, the NP-hardness construction of [9] uses discs of very different sizes with
a large ratio between the largest and the smallest disc.

The rest of the paper is structured in the following way. In Section 2 we introduce a formal
problem statement and overview the NCL. In Section 3 we show the hardness reduction. We
start with describing the gadgets in Section 3.1, and prove their correctness in Section 3.2.
Finally, in Section 3.3 we state our main results.

2 Problem statement and preliminaries

In this section we start with a few definitions, and we state the k-color Disc-Robot Motion
Planning (k-DRMP) problem more formally.

Let P be a polygonal domain in the plane. By D(p, r) we denote a disc of radius r
centered at a point p. A point p ∈ P is a valid position for a disc robot with radius r > 0, if
D(p, r) is fully contained in P . A set of points S = {p1, . . . , pn} ⊂ P is a valid configuration
for a set of robots with radius r if (1) pi is a valid position for a robot of radius r for all
1 ≤ i ≤ n, and (2) discs D(pi, r) and D(pj , r) do not intersect in their interior, that is, if
|pi − pj | ≥ 2r, for all 1 ≤ i < j ≤ n.

For k distinct positive radii {r1, r2, . . . , rk} and k positive integers {n1, n2, . . . , nk}, denote
a k-configuration to be a set of k configuration-radius pairs S = {(Si, ri) : |Si| = ni}. A
k-configuration is valid if each Si is a valid configuration for disc robots of radius ri, and
for all i < j, all x ∈ Si and all y ∈ Sj , the discs of respective radii centered at x and y do
not intersect in their interior, that is, |x − y| ≥ ri + rj . We will refer to the set of robots
with the same radius as a class of robots. Thus, each Si specifies a configuration of a class of
robots with radius ri.

We say that a set of n disc robots with radius r can be reconfigured from a valid
configuration S into a valid configuration T , if |S| = |T | = n, and there exist n paths
{π1, π2, . . . , πn}, where each path πi : [0, 1] → R2 is a continuous curve, such that their
starting points form the set S (i.e.,

⋃
i

πi(0) = S), their final points form the set T , (i.e.,⋃
i

πi(1) = T), and at any moment in time t ∈ [0, 1], the set of points {π1(t), π2(t), . . . , πn(t)}

forms a valid configuration for the given value of r.
Analogously, we say that k classes of robots can be reconfigured from a valid k-configuration

S = {S1, S2, . . . , Sk} into a valid k-configuration T = {T1, T2, . . . , Tk}, if |Si| = |Ti| for all
i, and there exist a set of paths which reconfigure each Si into Ti, such that no two robots
overlap at any moment in time.

FUN 2021

15:4 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

Drawing inspiration from Hearn and Demaine [4] and Solovey and Halperin [7], we define
a few variants of the k-DRMP problem.
Multi-to-multi k-DRMP Given k classes of robots and two valid k-configurations S and T ,

decide whether the robots can be reconfigured from S to T .
Multi-to-single k-DRMP Given k classes of robots, a valid k-configuration S, and a target

position t ∈ P , decide whether there exists a valid k-configuration T with t ∈ Ti for some
Ti ∈ T , such that the robots can be reconfigured from S to T .

Multi-to-single-in-class k-DRMP Given k classes of robots with distinct radii {r1, . . . , rk},
some 1 ≤ i ≤ k, a valid k-configuration S, and a target position t ∈ P , decide whether
there exists a valid k-configuration T with t ∈ Ti, where Ti ∈ T is the target configuration
for the robots with radius ri, such that the robots can be reconfigured from S to T .

Intuitively, the multi-to-multi problem can be interpreted as follows: Let k-configurations
S and T represent the start and target positions respectively for the k classes of robots. Can
the robots move from S to T without any collisions? In this paper we will prove that this,
and the other two variants of the k-DRMP problem, are PSPACE-hard. Note, that it is
possible to define more variants of the k-DRMP problem by varying which starting or target
positions might be fixed, possibly with a fixed matching on them, with specified robot radii,
or in any other way along these lines. Many of them can be shown PSPACE-hard with a
slight modification to our reduction.

2.1 Nondeterministic constraint logic

We will now briefly introduce the nondeterministic constraint logic (NCL). Hearn and
Demaine [4] define an NCL machine as a weighted graph G = (V,E), with nonnegative
integer weights on the edges, and with integer minimum in-flow constraints on the nodes. A
state of the NCL machine is an assignment of directions onto the edges of G. A state is valid
if for every node the total weight of incoming edges is at least the value of the minimum
in-flow constraint of that node.

Consider a valid state of the NCL machine, and some edge e = (u, v) ∈ E directed from u

to v. We can perform an edge flip by reassigning the orientation of e from v to u, as long as
the state after the flip remains valid, that is, the in-flow constraint of u is still satisfied. The
edge flip operation describes possible transitions between the states of the NCL machine.

Hearn and Demaine [4] show that, even for very restricted versions of the NCL machine,
it is PSPACE-complete to decide whether there exists a sequence of valid edge flips which
transforms one valid state into another. In particular, the PSPACE-completeness holds for
the following four decision problems on an NCL machine which is (1) defined on a simple
planar graph G = (V,E), (2) has edge weights either 1 or 2, (3) has the minimum in-flow
constraint 2 on all nodes, and (4) has nodes of types AND or protected OR (which we describe
later). The decision problems are:
State-to-state Given two states σ1 and σ2, decide whether there exists a valid sequence of

edge flips that transforms σ1 into σ2.
State-to-edge Given a state σ1 and an edge e ∈ E, decide whether there exists a state σ2

such that e has the opposite orientations in σ1 and σ2, and there exists a valid sequence
of edge flips that transforms σ1 into σ2.

Edge-to-edge Given two edges e1 and e2 with specific orientations, decide whether there
exist two states σ1 and σ2 with e1 and e2 of prescribed orientation respectively, and there
exists a valid sequence of edge flips that transforms σ1 into σ2.

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:5

in1 in2

out

in1 in2

out

Figure 2 Two types of nodes. Edges with weight 1 are shown in red and edges with weight 2 are
shown in blue. Left: An AND node. The minimum in-flow requirement of the vertex is 2. Edge
out can be directed outwards only if both in1 and in2 are directed inwards, if the minimum in-flow
constraint were to be maintained. Right: A protected OR node. Edge out can be directed outwards
if either in1 and in2 is directed inwards. In a protected OR it is not possible for both in-edges to be
directed inwards simultaneously.

Edge-to-state (symmetric to state-to-edge) Given an edge e ∈ E and a state σ2, decide
whether there exists a state σ1 such that e has the opposite orientations in σ1 and σ2,
and there exists a valid sequence of edge flips that transforms σ1 into σ2.

The two types of nodes, the AND and the protected OR, are both degree three nodes
with the following properties (refer to Figure 2). The AND node has two incident edges
of weight 1, and one incident edge of weight 2. Thus, to satisfy the in-flow constraint, the
weight-2 edge can be directed outwards only if both weight-1 edges are directed inwards. All
incident edges of an OR node have weight 2. Thus, an edge can be directed outwards if at
least one other incident edges is directed inwards. In a protected OR node two incident edges
are labeled as input, and one as output. The “protected” property forbids the two input
edges to be directed inwards at the same time. In many cases, including ours, this restriction
simplifies reductions.

I Theorem 1 (Theorem 11 [4]). State-to-edge, edge-to-state, state-to-state, and edge-to-edge
are PSPACE-complete, even when the constraint graph is simple, planar, and only has nodes
of types AND and protected OR.

3 From NCL to 2-DRMP

In this section we will prove that the k-DRMP problem is PSPACE-hard for k classes of
unlabeled disc robots moving amidst obstacles constructed out of line segments and circular
arcs, even if k = 2. We reduce from the NCL problem, for a given constraint graph G

we construct a 2-DRMP instance that emulates the NCL machine built on G. Then, by
considering the state-to-edge and state-to-state versions of the NCL problem we will show
that the three variants of the 2-DRMP problem defined in Section 2 are PSPACE-hard.

Consider an instance of a constraint graph G = (V,E) with AND- and protected OR-
nodes, and consider its orthogonal drawing on a square grid, with the nodes having integer
coordinates, and edges having at most one bend [2] (refer to Figure 3 for an example). We
will construct an instance of the 2-DRMP problem such that it is equivalent to the NCL
problem on G.

Similarly to the constructions in [3, 4, 7], we create a grid-like environment (refer to
Figure 4): square cells of size 18×18 are separated with walls of width 1. The cells correspond
to the nodes of G or to the edges passing through grid points. If there is an edge in G

passing between two adjacent cells, there is an opening of width 2 in the middle of the wall

FUN 2021

15:6 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

v1 v2

v3 v4 v5 v6

v7 v8

Figure 3 Orthogonal drawing of a constraint
graph G. Edges with weight 1 are shown in red,
while edges with weight 2 are shown in blue.
Nodes v5, v6, and v8 are AND-nodes, and nodes
v1, v2, v3, v4 and v7 are protected OR-nodes.

Figure 4 The grid-environment to be filled
with gadgets, corresponding to graph G shown
in Figure 3. Square cells either correspond to
the nodes of G, or grid points that edges pass
through.

mu

mv

mu

mv

Figure 5 Two terminal positions of an edge robot. Left: edge directed from u to v. Right: edge
directed from v to u.

separating the two cells. In each cell we construct free space (by filling its complement with
obstacles) and densely place two classes of disc robots with radii 1/2 and 1 to emulate the
nodes and the edges of G. The details of the three types of gadgets are described in the
following section.

3.1 Gadgets
The three types of gadgets needed to emulate an NCL machine are AND gadgets, protected
OR gadgets, and connector gadgets. Before we describe the specifics of each of the gadgets,
we introduce a few building components which will appear in all of them.

Edge robot. Every gadget has two or three length-2 openings in the middle of the wall
edges surrounding the square cell of the gadget. Next to each opening a radius-1 edge robot
is placed (shown in green in the figures), which is shared by the two adjacent gadgets, and
which may go back and forth through the opening. The construction of the gadgets is such
that only the edge robots can enter and leave their corresponding gadgets. The rest of
the robots, called internal robots, will always remain within their gadget. Edge robots are
restricted in their movement by obstacles either as depicted in Figure 5 or by an obstacle
as depicted in Figure 6. Consider an opening between two gadgets corresponding to some
edge (u, v) ∈ E. Denote by mu and mv the two midpoints on the longer edges of the 1× 2
rectangle forming the opening, respectively closer to the gadgets corresponding to u and
v (refer to Figure 5). We will call these points terminal positions of the edge robot. With
respect to a given gadget, we will distinguish between an inside terminal position and an
outside terminal position of an edge robot. The terminal positions of the edge robot will
correspond to the orientation of the edge (u, v) in G: the robot centered at mu corresponds

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:7

out

in2

Figure 6 Nudges at an edge robot. The slight narrowing in the free space does not let the interior
violet disc to travel more than a unit distance to the left.

Figure 7 Two configurations of a parallel
component.

Figure 8 Two configurations of a perpen-
dicular component.

to the edge directed from u to v (Figure 5 (left)), and the robot centered at mv corresponds
to the edge directed from v to u (Figure 5 (right)). Intermediate positions of the robot do
not define a specific orientation of the edge, and may correspond to any direction. Thus, the
positions of the edge robots, if they are all in terminal positions, will fully describe a state of
an NCL machine.

Parallel and perpendicular components. The two constructions shown in Figures 7 and 8
are called a parallel component and a perpendicular component respectively. The parallel
component consists of free space formed by two parallel 2× 3 rectangles (outlined with a
dashed line) overlapping in a corner 1 × 1 square. Place two radius-1 discs (violet in the
figure) and a radius-(1/2) disc (yellow in the figure) in the resulting free space. For each
2× 3 rectangle consider two points placed at a unit distance from three of the four sides of
the rectangle. These points are the terminal positions for the two radius-1 discs. Finally, the
short unit-length boundary edges of the free space are rounded (replaced with radius-2 arcs
centered at the further terminal positions) so that the radius-(1/2) disc touches a radius-1
disc when moving into a corner of a rectangle.

The perpendicular component consists of two perpendicular 2× 3 rectangles (in dashed)
overlapping in a corner 1× 1 square. Similarly, place two radius-1 discs and a radius-(1/2)
disc in the free space, and consider the four terminal positions for the radius-1 discs. Again,
the short unit length boundary edges are replaced with radius-2 arcs centered at the further
terminal positions.

The parallel and perpendicular components are designed for propagating a signal of the
position of an edge robot. In Section 3.2 we will show the following property of a chain
of parallel and perpendicular configurations. Let C be a chain of at least 1 parallel and 1
perpendicular configuration, possibly extended with aligned radius-1 discs (for example, as
the one used in the connector gadget shown in Figure 11 (right)). Let A∗ be the first radius-1
robot in C, and B∗ be the last radius-1 robot in C. Let t1 and t2 be the terminal positions
of A∗, and t3 and t4 be the terminal positions of B∗, such that t1, t2, t3, and t4 appear in
order along C. Then the following lemma holds.

FUN 2021

15:8 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

in2in1

out
out

in2

in1

Figure 9 AND-gadgets representing AND nodes. Edge robot out can move inside if and only if
both edge robots in1 and in2 are outside.

out

in2in1 in1

out

in2

Figure 10 The protected OR-gadgets representing protected OR vertices. Robot out can move
inside if and only if either in1 or in2 is outside. In this figure, in2 has moved out allowing robot out

to move in.
out

in

in

out

Figure 11 Connector gadgets representing connector vertices. Robot out can move inside only if
robot in is outside and vice versa.

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:9

I Lemma 2. Robot A∗ can move to its terminal position t2 only if B∗ is in its terminal
position t4. Similarly, B∗ can move to its terminal position t3 only if A∗ is in its terminal
position t1.

Using this lemma we will use a sequence of at least 2 parallel and perpendicular components
to force the edge robots to be located at one of their terminal positions. We are now ready
to show the construction of the gadgets.

AND gadgets. There are two versions of the AND gadget (up to mirror symmetry and
rotation by 90◦, 180◦, or 270◦), shown in Figure 9. Also refer to Figure 17. They are designed
in such a way that the edge robot out can only be moved to the inside terminal position if
edge robots in1 and in2 are both moved to their outside terminal positions. Indeed, the edge
robot out can move to the inside terminal position only if the two yellow discs of radius 1/2
below it move to the left and to the right, respectively. These yellow discs can move left and
right only if both radius-1 violet discs touching them move down, which by Lemma 2 can
happen only if both edge robots in1 and in2 move to their outside terminal positions. In
Section 3.2 we will prove the following lemma.

I Lemma 3. In the AND gadgets, the edge robot “out” can be moved to the inside terminal
position only if the edge robots “in1” and “in2” are both moved to (or beyond) their outside
terminal positions. The edge robot “in1” (“in2”) can be moved to its inside terminal position
only if the edge robot “out” is moved to (or beyond) its outside terminal position.

Protected OR gadgets. Similarly to the AND gadgets, there are two versions of the
protected OR gadget shown in Figure 10. Also refer to Figure 18. The protected OR gadgets
are designed in such a way that the edge robot out can move to the inside terminal position
of the gadget if and only if either in1 or in2 move to their outside terminal positions. Indeed,
the edge disc out can move to the inside terminal position only if the yellow discs of radius
1/2 below it move to the left or to the right. These yellow discs can move left or right only if
at least one of the adjacent radius-1 violet discs moves one unit down, which by Lemma 2
can happen only if both edge robots in1 and in2 move to their outside terminal positions. In
Section 3.3 we will prove that the “protected” property of this gadget is preserved. That is,
we will show a correspondence between a valid reconfiguration of the robots and a sequence
of edge flips in the graph G, such that no two input edges of a protected OR in G are both
directed inwards at the same time. In Section 3.2 we will prove the following lemma.

I Lemma 4. In the protected OR gadgets, the edge robot “out” can be moved to the inside
terminal position only if at least one of the edge robots “in1” and “in2” is moved to (or
beyond) their outside terminal positions. The edge robot “in1” (“in2”) can be moved to its
inside terminal position only if the edge robot “out” is moved to (or beyond) its outside
terminal position.

Connector gadgets. Our last type of gadget, the connector gadget, is shown in Figure 11.
The two versions of the connector gadget represent a corner piece of an edge (Figure 11
(left)) and a straight piece of an edge (Figure 11 (right)). The connector gadgets consist of
a chain of parallel and/or perpendicular components, possibly extended by a sequence of
aligned unit discs. The following lemma follows directly from Lemma 2.

I Lemma 5. In the connector gadget, an edge robot can only be moved to its inside terminal
position if the other edge robot is moved to (or beyond) its outside terminal position.

FUN 2021

15:10 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

Figure 12 An instance of k-DRMP built for the NCL constraint graph G from Figure 3.

Using the three described types of gadgets, we now build a complete 2-DRMP instance
corresponding to the NCL machine on a constraint graph G. We fill the cells of the grid-like
environment, dual to an orthogonal drawing of G, with the AND, protected OR, and connector
gadgets. Figure 12 shows an example of a 2-DRMP instance constructed for the constraint
graph from Figure 3. The construction of the 2-DRMP instance, and Lemmas 3, 4, and 5,
imply the main results of this paper, which we formally prove in the next section.

I Theorem 6. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving amidst obstacles
constructed out of line segments and circular arcs.

Finally, we argue that the circular arcs in the construction can be approximated with
circumscribed polygonal chains without changing the validity of the reduction.

I Theorem 7. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving in a polygonal
environment.

3.2 Correctness of the gadgets
We now prove that the gadgets described in the previous section indeed correspond to their
respective nodes in a constraint graph. Let us first take a closer look at the parallel and
perpendicular components that make up our gadgets.

Properties of parallel and perpendicular components. Figure 13 shows a detailed design
of the parallel (left) and perpendicular (right) components. Discs A and B have radius 1,
disc C has radius 1/2, and the dashed circles have radius 2. These configurations can be
mirrored and rotated by 90◦, 180◦ and 270◦. We will chain the components to enforce the
terminal positions of the edge robots. The red arrows indicate movement of the unit discs in
the sketched situation. The dashed circles indicate the circular segments of the boundary of
the free space. The white dots indicate terminal positions of A and B.

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:11

A

B

a d

C

b

c

t1t2

(a) Perpendicular component.

t′1t′2

c′

b′

a′

d′

C ′
B′

A′

(b) Parallel component.

Figure 13 Detailed design of the perpendicular (a) and parallel (b) components which are present
in every gadget. The two possible components of corner situations inside a gadget.

A

B

a d
C

(a) Small disc on the corner and on the same
axis as B.

a d

B

C
A

(b) Small disc on the corner and on the same
axis as A.

Figure 14 Perpendicular movement with the discs shifted.

We first look at the definition of the perpendicular component as shown in Figure 13
(left). Let point a be at (0, 0). Then points b = (−1, 1), c = (

√
3−2,−1), and d = (1, 2−

√
3).

Points t1 = (−1, 0) and t2 = (−2, 0) are terminal positions of disc A. Indeed, by construction
the center of disc A must lie on the closed segment t1t2. In the configuration of the discs
depicted in the figure, disc A is centered at t1, disc B is centered at (0, 2), and disc C is
centered at (0.5, 2−

√
2). The circular segments ac and ad are arcs of 30◦ of radius-2 circles

centered at t2 and (0, 2) respectively.
Now we define the parallel component as shown in Figure 13 (right). Let point a′ be at

(0, 0). Then b′ = (1,−1), c′ = (
√

3− 1,−2), and d′ = (2−
√

3, 1). Points t′1 = (0,−1) and
t′2 = (−1,−1) are terminal positions of disc A′. In the example depicted in the figure, disc
A′ is centered at t′1, disc B′ is centered at (2, 0), and disc C ′ is centered at (2 −

√
2, 0.5).

The circular segments b′c′ and a′d′ are arcs of 30◦ of the radius-2 circles centered at t′2 and
(2, 0) respectively.

I Lemma 8. In the perpendicular component, disc B can not move down before disc A has
moved by distance of at least

√
2− 1 from t1 towards t2.

FUN 2021

15:12 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

C ′a′

d′

B′

A′

(a) Small disc on the corner and on the same
axis as B.

a′

d′

C ′

B′

A′

(b) Small disc on the corner and on the same
axis as A

.

Figure 15 Perpendicular movement with the discs shifted.

Proof. Consider the perpendicular configuration depicted in Figure 13a. Since the arc ad
belongs to a circle of radius 2, B can not move before the x-coordinate of the center of C is
smaller than the x-coordinate of a. When the x-coordinate of the center of C is equal to
the x-coordinate of a, B is still in its topmost position, but A must have moved by at least√

2− 1 from t1 to prevent overlap with C (see Figure 14a). J

I Lemma 9. In the parallel component, disc B′ can not move left before disc A′ has moved
by a distance at least

√
5

2 −
1
2 from t′1 towards t′2.

Proof. Consider the parallel configuration depicted in Figure 13b. Since the arc a′d′ belongs
to a circle of radius 2, B′ can not move before the y-coordinate of C ′ becomes smaller than
the y-coordinate of a′. When the y-coordinate of C ′ is equal to the y-coordinate of a′, B′ has
not been able to move yet, but A′ must have moved by at least

√
5

2 −
1
2 to prevent overlap

with C ′ (see Figure 15a). J

Proof of Lemma 2. The proof directly follows from Lemmas 8 and 9. Consider, as an
example a chain of a perpendicular and a parallel component as depicted in Figure 16. By
Lemma 9, disc B′ can only move away from its terminal position t′2 when the radius-(1/2)
disc C ′ moves left beyond point a′. Thus, disc B has to move down by at least

√
5

2 −
1
2

before B′ can move. However, if disc B moves 2−
√

2 or more, by Lemma 8, A must be in
the terminal position t2. As 2−

√
2 <

√
5

2 −
1
2 , we have that either disc B′ must be in its

terminal position t′2, or disc A must be in its terminal position t2. If the chain of parallel
and perpendicular components is longer, the extremal positions of the radius-1 discs beyond
either A or B′ are enforced. Thus, if there is a perpendicular and a parallel component in
the chain, the lemma holds. J

Correctness of connector gadgets. The correctness of the connector gadgets follows im-
mediately from Lemma 2.

Proof of Lemma 5. As the connector gadgets consist of chains containing a parallel and a
perpendicular component, by Lemma 2, the current lemma holds. J

Correctness of AND gadgets. The AND gadgets, as shown in Figure 9, use two small disc
robots with a radius of 1/2. They have a specific layout of the obstacles, which enable the
functionality of the gadgets. A close-up view of this layout can be seen in Figure 17. Disc

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:13

a

B/A′

C
A

C ′

B′

a′

Figure 16 A parallel and a perpendicular component chained. If disc C is horizontally aligned
with a, and disc C′ is vertically aligned with a′, then disc B must overlap either C or C′.

out

in2in1

a a′
b

c d d′ c′

b′
C

A

C ′

B B′

in2in1

out

a a′
b

c d d′ c′

b′B B′A

C C ′

Figure 17 A close-up view of the functionality of the AND gadgets, the full gadgets can be seen
in Figure 9.

robots B and B′ can move along the arc a′a which lies on a circle of radius 2. This means
that A can not move as long as either disc B or disc B′ is on the arc a′a. Arcs cd, c′d′, bc,
and b′c′ lie on circles of radius 1. Thus discs C and C ′ tightly fit along the respective arcs bc
and b′c′. Points c and c′ are terminal position of the discs B and B′. Indeed, they cannot
move further than c (or c′), otherwise they would overlap with disc C (or C ′). Thus, discs B
and B′ cannot both fit in the free space above C or in the free space above C ′. Therefore,
both discs C and C ′ must move down to enable disc A to move down. If A is able to reach
the arc aa′, the discs B and B′ should have x-coordinates at most a − 1/2 and at least
a′ + 1/2 respectively. Then, discs C and C ′ must move down by at least distance 0.8539. A
similar argument to the one in Lemmas 8 and 9 will force the radius-1 discs to be moved to
their terminal positions in the direction away from A.

Proof of Lemma 3. In Figure 17 the AND gadget is depicted in more detail. Since the
construction is similar to the connector gadget, we know by Lemma 5 that discs C and C ′
from Figure 17 can only move when the input edge robots are in their terminal configurations.
By the described construction above, disc A can only move if both C and C ′ have moved
down. Since C and C ′ can only move when the inputs are in a terminal configuration, the
edge robot out can only move when both edge robots in1 and in2 are in their outside terminal
configuration. J

FUN 2021

15:14 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

C

out

a

A

B B′

C

b c d

a′

out

a

A
B B′

C

b c d

a′

Figure 18 A close-up view of the functionality of the protected OR gadget, the full gadget can be
seen in Figure 10.

Correctness of protected OR gadgets. The protected OR gadgets, as shown in Figure 10,
use two small disc robots with a radius of 1/2, just like the AND gadgets. However, unlike in
the AND gadgets, the protected OR gadgets have a different layout of the obstacles, which
changes the functionality of the gadgets. A close-up view of this layout can be seen in
Figure 18. Disc robots B and B′ can move along the arc a′a which lies on a circle of radius
2. As long as B or B′ lies on this arc, disc A can not move. Disc C might move down, which
makes space for discs B and B′ to move above C. The arc bc lies on a circle of radius 1.
Discs B and B′ have a radius of 1/2, so they tightly fit along arc bc when C has made space.
Since the arc cd lies on a circle of radius 2, both B and B′ fit above C. When both B and B′
have moved into one of the sides, A can move down such that the edge disc can move inside
the gadget. In our construction we forbid the two robots B and B′ to separate and move
into the free space pockets above the two different radius-1 discs. We can do so because, as
we will argue later, for any valid reconfiguration of robots that separates the discs, there will
be an equivalent reconfiguration which keeps the discs always together.

Proof of Lemma 4. The proof directly follows from Lemma 2. J

Observe that, after putting all the gadgets together, all edge robots have a limited set of
movements and that inner gadget robots remain in their gadgets.

I Observation 10. Each edge robot can be in at most two distinct terminal configurations.

3.3 Reduction
We are now ready to prove our main results.

I Theorem 6. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving amidst obstacles
constructed out of line segments and circular arcs.

Proof. For a given NCL machine built on a constraint graph G, consider the corresponding
instance of the k-DRMP problem constructed as described above. Furthermore, consider a
state σ of the NCL machine, and a corresponding 2-configuration S. The positions of the edge
robots in S correspond to the orientation of the respective edges of G in σ. By Lemmas 3, 4,
and 5, if an edge e ∈ G cannot be flipped, the corresponding inner-gadget radius-1 robots
are forced to be in one of their terminal positions, and cannot move. If, however, e can be
flipped, some of the corresponding radius-1 robots are able to move between their terminal

T. Brocken, G.W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15:15

positions (refer to Figure 12 for an example). By Lemmas 3, 4, and 5, a flip of the edge e is
valid if and only if the corresponding edge robot can move to the opposite terminal position.

Consider the first problem, the multi-to-multi k-DRMP. We will show that it is PSPACE-
hard by a reduction from the state-to-state NCL problem. Recall that the state-to-state
NCL problem asks whether for a given constraint graph G and for two valid states σ1 and
σ2 of the NCL machine, σ1 can be transformed into σ2 with edge-flip operations. From S
and T we construct two 2-configurations S ′ and T ′, such that all the edge robots are in the
same positions as in S and T , all inner radius-1 and radius-(1/2) robots are shifted to their
terminal positions consistent with the orientation of the corresponding edges in G. We claim
that σ1 can be transformed into σ2 with edge-flip operations if and only if the robots can be
reconfigured from S ′ to T ′.

Assume that there is a sequence of edge flips transforming σ1 into σ2. For each flip, by
Lemmas 3, 4, and 5, we can reconfigure the robots of the k-DRMP instance in correspondence
to the changes of orientations of the flipped edges.

It remains to show that if the robots of the k-DRMP instance can be reconfigured from
S ′ to T ′, then there is a valid edge-flip sequence transforming σ1 into σ2. Consider the
reconfiguration over time, and extract the order in which the edge robots reach one of their
terminal configurations. If two edge robots are both in some intermediate positions between
their terminal locations, then these edge robots can move independently from one another.
We can modify the reconfiguration schedule such that at each moment in time only one edge
robot can be located at an intermediate position between its terminal positions.

We still need to argue that we can preserve the “protected” property of the protected OR
gadgets. Suppose that in the process of reconfiguration, at some moment, two input edge
robots are moved to the outside terminal positions. If one of them, say in1, reverts before the
robot out moves to its inner terminal position, then we simply ignore the move of in1 (and
the robots in the chain from in1 to out) outside. Let robot out move to the inner terminal
position. Consider the positions of the discs B and B′ (recall Figure 18). If they both are
located above one radius-1 disc in the chain from in1 to out, then we can change the schedule
to stop in2 from moving to the outside terminal position. If B and B′ are separated, then
we can modify the schedule to move B and B′ into the same free-space pocket, and stop
the other input edge robot from moving outside. In all cases, we can modify the schedule to
prevent both input edge robots to be in their outside terminal positions. Thus, we have a
reconfiguration schedule which preserves the “protected” property of the protected OR nodes,
and has edge robots move between their terminal positions one at a time.

The order in which the edge robots move between their terminal positions gives the order
of valid edge flips in G. Indeed, by Lemmas 3, 4, and 5, if an edge robot, corresponding to
some edge e = (u, v) ∈ G, can move, the in-flow property of the two corresponding nodes u
and v in G is satisfied by the edges other than e. Thus, the multi-to-multi k-DRMP problem
is PSPACE-hard.

Now, consider the multi-to-single and multi-to-single-in-class versions of the k-DRMP
problem. By a reduction from state-to-edge NCL problem, we show that these two problems
are PSPACE-hard. The argument follows the same lines as for the multi-to-multi case,
except that instead of the target 2-configuration T , we are given a target location for a robot.
We will select the edge robot corresponding to the edge to be flipped in the NCL problem,
and specify a proper terminal positions as the target location for the robot. J

Remark. Note, that we can remove the use of circular arcs in our construction. Consider a
small fixed value ε > 0. There exists a value d(ε) > 0, such that, if we replace the arcs in the
construction with circumscribed polygonal chains with edge length at most d, the edge robots

FUN 2021

15:16 Multi-Robot Motion Planning of k-Colored Discs Is PSPACE-Hard

will be bound to ε-neighborhoods of the terminal positions. Indeed, for small enough ε,
Lemmas 3, 4, and 5 will still hold, with modified statements considering the ε-neighborhoods
of the terminal positions instead of simply the terminal positions. Thus, the following result
holds.

I Theorem 7. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving in a polygonal
environment.

4 Conclusion

In this paper we have shown that the three variants of the disc-robot motion planning
problem are PSPACE-hard, even for two classes of unlabeled disc robots with two different
radii, moving in a polygonal environment. This is a first step towards settling the complexity
of unlabeled unit disc robot motion planning. Our gadgets do not seem to generalize to a
single class of robots. The complexity of unlabeled unit disc robot motion planning remains
an interesting open problem.

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. IEEE Transactions on Automation Science
and Engineering, 12(4):1309–1317, 2015. doi:10.1109/TASE.2015.2470096.

2 Tiziana Calamoneri and Rossella Petreschi. An efficient orthogonal grid drawing algorithm for
cubic graphs. In International Computing and Combinatorics Conference (COCOON), LNCS,
volume 959, pages 31–40. 1995. doi:10.1007/BFb0030817.

3 Gary W. Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”. Theoretical Computer Science, 270(1-2):895–911, 2002.
doi:10.1016/S0304-3975(01)00173-6.

4 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1-2):72–96, 2005.

5 John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”. The
International Journal of Robotics Research, 3(4):76–88, 1984.

6 Kiril Solovey and Dan Halperin. k-Color multi-robot motion planning. The International
Journal of Robotics Research, 33(1):82–97, 2014. doi:10.1177/0278364913506268.

7 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.
The International Journal of Robotics Research, 35(14):1750–1759, 2016.

8 Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion planning for unlabeled discs
with optimality guarantees. In Robotics: Science and Systems XI. Robotics: Science and
Systems Foundation, 2015. doi:10.15607/RSS.2015.XI.011.

9 Paul Spirakis and Chee K. Yap. Strong NP-hardness of moving many discs. Information
Processing Letters, 19(1):55–59, 1984.

10 John Tromp and Rudi Cilibrasi. Limits of rush hour logic complexity. Manuscript, 2005. URL:
http://arxiv.org/abs/cs/0502068.

https://doi.org/10.1109/TASE.2015.2470096
https://doi.org/10.1007/BFb0030817
https://doi.org/10.1016/S0304-3975(01)00173-6
https://doi.org/10.1177/0278364913506268
https://doi.org/10.15607/RSS.2015.XI.011
http://arxiv.org/abs/cs/0502068

Efficient Algorithm for Multiplication of Numbers
in Zeckendorf Representation
Tomasz Idziaszek
Independent Researcher, Poland
http://algonotes.com
tomasz@algonotes.com

Abstract
In the Zeckendorf representation an integer is expressed as a sum of Fibonacci numbers in which
no two are consecutive. We show O(n log n) algorithm for multiplication of two n-digit numbers in
Zeckendorf representation.

For this purpose we investigate a relationship between the numeral system using Zeckendorf
representations and the golden ratio numeral system. We also show O(n) algorithms for converting
numbers between these systems.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Fibonacci numbers, Zeckendorf representation, multiplication algorithm,
Fast Fourier Transform, golden ratio numeral system, Lucas numbers

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.16

1 Introduction

Zeckendorf [12] showed that each non-negative integer has a unique representation as a sum of
Fibonacci numbers in which no two consecutive Fibonacci numbers occur. This observation
leads to a numeral system. One of its applications is in self-delimiting codes [2], but we can
research this system for its own sake as a mathematical curiosity.

A natural question for a numeral system is how can we perform arithmetic operations
on numbers in such a system, and how fast can we do it. It was shown that addition and
subtraction of n-digit numbers in the Zeckendorf system can be performed in O(n) time [1],
so as fast as in the binary system.

But multiplication seems to be much harder. It is straightforward to directly utilize
addition and construct a grade-school-like O(n2) multiplication algorithm for the Zeckendorf
system, but so far no one presented a faster method. However, for the binary system we
can devise O(n logn) algorithms [9], by observing that multiplication can be reduced to
a convolution (which can be calculated using the Fast Fourier Transform) followed by a
normalization phase (carry propagation).

The purpose of this paper is to present O(n logn) algorithm for multiplication of two
n-digit numbers in the Zeckendorf system. The main idea is to reduce it to a convolution
followed by a certain normalization phase. The normalization phase can be reduced to
O(logn) additions.

For convolution to work, we use the fact that the Zeckendorf system is closely related to
a non-integer positional numeral system that uses the golden ratio as its base. Since this
system is positional, convolution can be performed exactly the same as in the binary system.

We complete the algorithm by showing O(n) time procedures for converting between the
Zeckendorf system and the golden ratio numeral system.

© Tomasz Idziaszek;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 16; pp. 16:1–16:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://algonotes.com
mailto:tomasz@algonotes.com
https://doi.org/10.4230/LIPIcs.FUN.2021.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

2 Preliminaries

Fibonacci numbers and Zeckendorf representation. The sequence of Fibonacci numbers
is defined as follows (see also Table 1 in the appendix):

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. (1)

Note that this definition works for all integers n (even negative ones). In particular we have

F−n = (−1)n+1Fn. (2)

We can express non-negative integers as weighted sums of Fibonacci numbers. A sequence
of integer weights ai with only a finite number of non-zero weights represents number

x =
∑

i

aiFi.

Zeckendorf [12, 6] showed that under the following conditions such a representation (called
the Zeckendorf representation) is unique:
(Z1) Each ai is either 0 or 1.
(Z2) There are no adjacent non-zero weights, thus ai+1ai = 0 for all i.
(Z3) ai = 0 for i < 2.

See Table 2 for the Zeckendorf representations of numbers from 1 to 30. Note that we
write sequences of weights in such a way that the most significant weight is on the left.

There are several ways of showing that every number has a Zeckendorf representation,
but it is fruitful for us to recall a proof from [8]. For a given non-negative integer x we can
start from a trivial representation with only one non-zero weight a2 = x, since F2 = 1. This
representation violates condition (Z1). The idea is to transform the representation in a series
of steps, where every step locally changes weights, but the represented value stays the same.
At the end we would like to obtain a representation that satisfies all three conditions. We
call such a series of steps a normalization procedure.

Following [8] we show here one example of such a procedure, although not efficient (later
in Theorem 2 we show an efficient normalization procedure.) We keep an invariant that
condition (Z3) is always satisfied, but conditions (Z1) and (Z2) might be not. Every time
condition (Z2) is not satisfied, we find the left-most pair of adjacent non-zero weights and
apply the following transformation on it:

0x̄ȳ → 1xy, (3)

where x̄ = x+1. The soundness of this transformation follows directly from the recurrence (1),
and it never leads to violation of condition (Z3).

If only condition (Z1) is not satisfied, we apply the following transformation on the
left-most weight greater than 1:

0¯̄x0y → 1x0ȳ. (4)

The soundness follows from the following equality valid for all integers n:

2Fn = Fn + (Fn−1 + Fn−2) = Fn+1 + Fn−2. (5)

The transformation may violate condition (Z3), but only when fixing weight a2, thus it
increases weight a0 then. But this weight is multiplied by F0 = 0 anyway, so we can safely
set it back to 0.

T. Idziaszek 16:3

Every time we apply transformations (3)–(4), the sum
∑

i 2iai increases, so since every
integer has a finite number of representations with non-negative weights, the process termin-
ates.

The uniqueness of Zeckendorf representation follows from a counting argument (see [6]).

The golden ratio numeral system. Binet’s formula provides a closed-form solution for
Fibonacci numbers and shows a relationship between them and the golden ratio ϕ = 1+

√
5

2 :

Fn = ϕn − (−ϕ)−n

√
5

. (6)

In fact, another numeral system closely related to Fibonacci numbers is a positional
numeral system using the golden ratio as the base [3, 7]. In this system a sequence of integer
weights ci represents number

x =
∑

i

ciϕ
i.

This representation is unique (and we call it the base-ϕ representation; see also Table 2)
if it satisfies conditions (Z1) and (Z2). To prove that every non-negative integer has a base-ϕ
representation, observe that ϕi satisfies the same recurrence as Fibonacci numbers Fi, namely

ϕn = ϕn−1 + ϕn−2.

It means that transformations (3)–(4) also work for base-ϕ representations, and starting from
a trivial representation (with one non-zero weight c0 = x, since ϕ0 = 1) we can use almost
the same normalization procedure as before to obtain a representation satisfying conditions
(Z1) and (Z2). This time, however, we do not make fixes for condition (Z3), thus non-zero
weights can occur also for negative indices.

Addition and subtraction algorithms. Arithmetic operations on Zeckendorf representations
were discussed in [5, 4, 10] but authors of these papers either did not analyze time complexity
of their algorithms or they provided very weak bounds. The optimal linear-time bounds for
addition and subtraction algorithms were given in [1], and we recall them here, since they
are needed for the multiplication algorithm presented in this paper.

I Theorem 1. There are O(n) algorithms for addition and subtraction of two n-digit numbers
in Zeckendorf representation and in base-ϕ representation.

Proof. We present here only a method behind the algorithms; the full algorithms with the
proofs can be found in [1]. The addition algorithm starts by independently adding weights
from corresponding positions in the Zeckendorf (or base-ϕ) representations, obtaining a
sequence of weights from set {0, 1, 2}. This sequence can violate condition (Z2) by having
consecutive 1s and/or condition (Z1) by having 2s (but only adjacent to 0s). Since we need
to normalize the sequence, we could apply the transformations (3)–(4), but this would be
inefficient. To perform normalization procedure in O(n) we need to be more careful. Let r
be the position of the right-most non-zero weight in the sequence.

We move a 4-position-wide window from left to right, applying the following transforma-
tions were applicable:

020x→ 100x̄, 030x→ 110x̄, 021x→ 110x, 012x→ 101x,

FUN 2021

16:4 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

where x ∈ {0, 1, 2} and x̄ = x+ 1. These transformations may introduce additional weight 3,
but at the end all 3s as well as 2s are removed, restoring condition (Z1). Then we move
a 3-position-wide window from left to right and apply transformation 011 → 100, which
removes groups of consecutive 1s that are longer than two positions. Finally, we move
the same window from right to left, removing remaining adjacent 1s and fully restoring
condition (Z2).

That finishes normalization procedure for base-ϕ representations. Note that in the output
sequence the right-most non-zero weight is at position not smaller than r − 2.

For Zeckendorf representations we must take some additional local step to fix condi-
tion (Z3), but its a technical detail.

For subtraction we run a similar algorithm, but now weights are from set {−1, 0, 1}, and
there are no consecutive 1s nor consecutive −1s. We move a 4-position-wide window from
left to right with transformations:

x00→ x̄11, x1̄0→ x̄01, x1̄1→ x̄02, x01̄→ x̄10,

where x ∈ {1, 2}, x̄ = x − 1 and 1̄ = −1. The transformations keep a positive weight in
the window and use it to cancel any −1s. They may introduce additional 2s, but these are
adjacent only to 0s. So at the end we can finish the algorithm by performing normalization
procedure for addition algorithm. J

The subtraction algorithm can be used to prove the uniqueness of the base-ϕ representa-
tions. Suppose that we have two different sequences of weights ci and c′i that satisfy conditions
(Z1) and (Z2), and they represent the same value x. Assume that ci is lexicographically
larger than c′i. If we subtract c′i from ci, we get a non-zero sequence of weights satisfying
conditions (Z1)–(Z2) that represents value 0. That is impossible, since all ϕi are positive.

3 Multiplication Algorithms

Several multiplication algorithms for Zeckendorf representation were discussed in [1], but the
authors did not find any algorithm with time complexity better than O(n2). They posed
this as a “challenging open problem”.

The idea of the algorithm presented in this paper is that since base-ϕ is a positional
numeral system, the multiplication in this system can be reduced to a convolution after which
we need to do a normalization phase. Such a convolution can be calculated in O(n logn)
time using the Fast Fourier Transform [9].

Let sequences cj and c′j be the base-ϕ representations of numbers x and x′. As a result
of the convolution we obtain a sequence of non-negative weights Ci such that

Ci =
∑

j

cjc
′
i−j ,

and the sum
∑

i Ciϕ
i is equal to the product x · x′. The weights Ci can be up to O(n).

Linear-time normalization procedures used in addition and subtraction algorithms utilised
the fact that weights were of constant size. However, we can devise an efficient normalization
procedure for arbitrary weights:

I Theorem 2. There is O(n logM) algorithm that, given a sequence of n integer weights
from range [0,M], normalizes it so it satisfy conditions (Z1) and (Z2).

T. Idziaszek 16:5

Proof. Each weight is a number of m = blogMc + 1 bits. We create m binary sequences
x0, x1, . . . , xm−1: each number in sequence xi equals to the i-th bit of the corresponding
number in the original sequence. We initialize the answer to be a sequence of 0s.

Then we performm phases. In phase i (for i = m−1, . . . , 1, 0) we multiply the answer by 2
(by executing addition algorithm in O(n) time) and then we add to the answer sequence xi

(again by executing addition algorithm). J

Using the above theorem directly, we get a normalization procedure for base-ϕ repres-
entation that works in O(n logn) time and completes the multiplication algorithm for the
golden ratio system.

The idea for a multiplication algorithm for Zeckendorf representation is to convert both
numbers into base-ϕ representation, perform multiplication in base-ϕ, and then convert the
result back to Zeckendorf representation. In the next section we show that such conversions
are possible in O(n) time, thus we get the theorem:

I Theorem 3. There are O(n logn) algorithms for multiplication of two n-digit numbers in
Zeckendorf representation and in base-ϕ representation.

4 Conversions Between Representations

Compare the proofs that every number x has the Zeckendorf and the base-ϕ representation.
In both of them we started with a trivial representation (a2 = x and c0 = x, respectively),
and we performed a certain normalization procedure.

Now imagine that we start from α2 = x (like in the proof for Zeckendorf representation)
and we perform the normalization procedure that ignores condition (Z3) (like in the proof for
base-ϕ representation). We get a sequence of weights αi that satisfies conditions (Z1)–(Z2)
and represents number x =

∑
i αiFi. But exactly the same procedure applied to initial

condition c0 = x produces the base-ϕ representation x =
∑

i ciϕ
i. Therefore αi = ci−2 for

all integers i.
Thus the weights of the base-ϕ representation shifted by two places and applied to

Fibonacci numbers yield the same value:∑
i

ciϕ
i = x =

∑
i

ci−2Fi.

Thanks to that property conversion from base-ϕ to Zeckendorf is easy:

I Theorem 4. There is O(n) algorithm for converting an n-digit number in base-ϕ repres-
entation to Zeckendorf representation.

Proof. We have the base-ϕ representation x =
∑

i ciϕ
i. For easier notation denote αi = ci−2.

We create four sequences that partition the weights into four parts: for positive indices, for
indices close to the origin, for odd negative indices, and for even negative indices:

xpos =
∑
i≥2

αiFi, xodd =
∑

i≥2, i odd
α−iFi,

xorig = α1α−1F3 + [α1 6= α−1]F2, xeven =
∑

i≥2, i even
α−iFi.

Since sequence αi satisfies conditions (Z1)–(Z2), the above sequences are the Zeckendorf
representations of numbers xpos, xorig, xodd, and xeven. Moreover, from (2) we know that
Fibonacci numbers of negative indices −i are equal to their positive counterparts but with

FUN 2021

16:6 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

changed sign if i is even, thus x = xpos + xorig + xodd − xeven. Thus we can calculate
the Zeckendorf representation of x using the addition algorithm twice and the subtraction
algorithm once. J

The representation αi has been investigated by Zeckendorf who called it a “generalized
Fibonacci numeration” [11].

For conversion from Zeckendorf to base-ϕ we can look at Table 2 that contains the base-ϕ
representations for small integers and observe that certain representations have simple forms,
e.g. there are some that contain only two 1s. Moreover, if we allow weights of −1 (we call it
relaxed base-ϕ representation) we can get simple representations for some more numbers (see
Table 3).

These numbers that happen to have simple forms are called Lucas numbers Ln, and are
defined as follows (see also Table 1):

Ln = Fn+1 + Fn−1.

In particular we have the following relationship between Lucas numbers and the golden
ratio, that is easy to check using Binet’s formula:

Ln = ϕn + (−1)nϕ−n. (7)

Thus it looks like, as Fibonacci numbers were the simplest building blocks of Zeckendorf
representations, we could use Lucas numbers as simple building blocks of relaxed base-ϕ
representations. Thus we can try to express integers using weighted sums of Lucas numbers;
a sequence of integer weights bi represents number

x =
∑

i

biLi.

Each non-negative integer can be represented as a weighted sum of Lucas numbers, and this
representation is unique (thus we call it the Lucas representation, see [6] and Table 2) if it
satisfies conditions (Z1), (Z2) and a slightly modified version of condition (Z3):
(Z3′) ai = 0 for i < 0, and a2a0 = 0.

Such a representation can be obtained almost greedily from the Zeckendorf representation:

I Theorem 5. There is O(n) algorithm for converting an n-digit number in Zeckendorf
representation to Lucas representation.

Proof. We have the Zeckendorf representation x =
∑

i aiFi. Like in the proof of Theorem 1,
we move a 4-position-wide window from left to right over sequence ai and apply the following
transformations were applicable:

100x→ 011x, 101x→ 00̄0x, 1100→ 00̄01, 1101→ 011̄0, 1110→ 01̄00,

where x ∈ {0, 1}. A bar over a digit at position i means that we must increment weight bi

by one. This way we are zeroing sequence ai, and at the same time constructing the Lucas
representation bi, keeping the sum

∑
i(aiFi +biLi) unchanged. We keep the invariant that all

the time sequence ai satisfies conditions (Z1)–(Z2), except the left-most group of consecutive
1s, which can be of length up to 3. Thanks to that every transformation applied replaces the
left-most 1 with 0.

We stop after the transformation over positions 3 through 0. Then we finish by applying
one of the following transformations over positions 2 through 0:

110→ 000̄, 100→ 00̄0, 010→ 00̄0, 001→ 000.

T. Idziaszek 16:7

Each weight bi can be incremented at most twice (if it is incremented twice, then one
increment is due to transformation 1101→ 011̄0 followed by transformation 1100→ 00̄01).
Moreover, careful examination of the transformations shows that no two adjacent weights
are incremented. Also, there is at most one increment over positions 2 through 0, thus the
last three weights are in set {000, 001, 010, 100}.

Thus we have sequence bi of weights from set {0, 1, 2}, and 2s are adjacent to 0s on both
sides. Since Lucas numbers also satisfy recurrence Ln = Ln−1 + Ln−2, we can perform the
same normalization procedure as in addition algorithm for base-ϕ representation, which
would help us restore conditions (Z1) and (Z2). However, this procedure could introduce
some non-zero weights br−1 and br−2, where r is the index of the right-most non-zero weight
in bi; so we must be careful here.

If the last three weights are 000 or 100, we are safe, since r ≥ 2. For the last three weights
being 001 or 010 we decrement weight br to zero, perform the normalization procedure, and
increment br back.

For 001 case we end up either with 0101 (which is safe) or with 011 (which we replace
with 100 and perform the normalization once again).

For 010 case we end up either with 0110 (which we replace with 1000 and perform the
normalization once again) or with 020 (which we replace with 001).

This restores conditions (Z1) and (Z2). If condition (Z3′) is not satisfied, the representation
ends in x0101. We can replace it with x1010 and if x = 1 we run a 3-position-wide window
from right to left with transformation 011→ 100. J

Finally, we show conversion from Lucas to base-ϕ. Conversion from Zeckendorf to base-ϕ
goes through an intermediate step of the Lucas representation.

I Theorem 6. There is O(n) algorithm for converting an n-digit number in Lucas repres-
entation to base-ϕ representation.

Proof. From the Lucas representation x =
∑

i biLi we can directly obtain a sequence of
weights ci in a relaxed base-ϕ representation, by using (7):

ci =

bi i > 0,
2b0 i = 0,
(−1)ib−i i < 0.

If c0 = 0, all weights are from set {−1, 0, 1}, so we can normalize this sequence by perform-
ing the normalization procedure just like in subtraction algorithm for base-ϕ representation.
Otherwise c0 = 2, and first we zero this weight, perform the subtraction normalization,
then increment c1 and c−2 by one and perform the normalization procedure like in addition
algorithm. J

5 Alternative Explanation

It turns out that we can invent the multiplication algorithm presented in this paper without
using terminology of the golden ratio numeral system, and staying only in the realm of
Fibonacci numbers. In fact this was the way it was invented by the author of this paper.
Since the obtained results are the same, and we simply change the language used, this section
present only the essence of this approach.

FUN 2021

16:8 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

The idea is to begin with the observation that starting from trivial representation α2 = x

and performing normalization procedure that ignores condition (Z3) gives us a sequence αi

satisfying conditions (Z1)–(Z2) and representing number

x =
∑

i

αiFi.

But if we start exactly the same procedure from an initial condition α′m = x, which represents
number xFm, we get an equation

xFm =
∑

i

α′iFi =
∑

i

αi+2Fi+m. (8)

The equation captures an important property that shifting sequence αi results in multiplying
the represented value by consecutive Fibonacci numbers. In positional systems (like the
binary or the golden ratio system) an analogous property states that shifting a sequence of
digits results in multiplying the represented value by the base (2 or ϕ, respectively).

This “shiftable” property is enough for convolution to work:

x · x′ = x
(∑

i

a′iFi

)
=
∑

i

a′ixFi
(8)=
∑

i

a′i

(∑
j

αj+2Fj+i

)
=
∑

i

(∑
j

a′i−jαj+2

)
Fi.

Thus it is enough to convert one of the arguments to a “shiftable” representation αi, and
perform convolution to obtain weights Ai =

∑
j a
′
i−jαj+2 of a “shiftable” representation of

the product.
For conversion part we observe that the representations αi of Lucas numbers are particu-

larly simple, which results from the following equivalent of equation (7) that holds for any
integers n and m:

LnFm = Fm+n + (−1)nFm−n.

References
1 Connor Ahlbach, Jeremy Usatine, Christiane Frougny, and Nicholas Pippenger. Efficient

algorithms for Zeckendorf arithmetic. The Fibonacci Quarterly, 51(3):249–255, 2013.
2 Alberto Apostolico and Aviezri S. Fraenkel. Robust transmission of unbounded strings using

Fibonacci representations. IEEE Transactions on Information Theory, 33(2):238–245, 1987.
3 George Bergman. A number system with an irrational base. Mathematics Magazine, 31(2):98–

110, 1957.
4 Peter Fenwick. Zeckendorf integer arithmetic. Fibonacci Quarterly, 41:405–413, 2003.
5 H.T. Freitag and G.M. Phillips. Elements of Zeckendorf Arithmetic, pages 129–132. Springer

Netherlands, Dordrecht, 1998.
6 Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Houghton Mifflin Company, 1969.
7 Donald E. Knuth. The Art of Computer Programming, volume 1. Addison–Wesley, 1968.
8 Donald E. Knuth. Fibonacci multiplication. Applied Mathematics Letters, 1(2):III–VI, 1988.
9 Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen. Computing,

7:281–292, 1971.
10 Garry J. Tee. Russian peasant multiplication and Egyptian division in Zeckendorf arithmetic.

Australian Mathematical Society Gazette, 30(5):267–276, 2003.
11 Edouard Zeckendorf. A generalized Fibonacci numeration. The Fibonacci Quarterly, 10(4):365–

372, 1972.
12 Edouard Zeckendorf. Représentation des nombres naturels par une somme de nombres de

Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41:179–182, 1972.

T. Idziaszek 16:9

Table 1 Fibonacci and Lucas numbers.

n 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8
Fn 21 13 8 5 3 2 1 1 0 1 −1 2 −3 5 −8 13 −21
Ln 47 29 18 11 7 4 3 1 2

Table 2 Zeckendorf, base-ϕ, and Lucas representations.

n Zeckendorf base-ϕ Lucas
1 100 1. 10
2 1000 10.01 1
3 10000 100.01 100
4 10100 101.01 1000
5 100000 1000.1001 1010
6 100100 1010.0001 1001
7 101000 10000.0001 10000
8 1000000 10001.0001 10010
9 1000100 10010.0101 10001

10 1001000 10100.0101 10100
11 1010000 10101.0101 100000
12 1010100 100000.101001 100010
13 10000000 100010.001001 100001
14 10000100 100100.001001 100100
15 10001000 100101.001001 101000
16 10010000 101000.100001 101010
17 10010100 101010.000001 101001
18 10100000 1000000.000001 1000000
19 10100100 1000001.000001 1000010
20 10101000 1000010.010001 1000001
21 100000000 1000100.010001 1000100
22 100000100 1000101.010001 1001000
23 100001000 1001000.100101 1001010
24 100010000 1001010.000101 1001001
25 100010100 1010000.000101 1010000
26 100100000 1010001.000101 1010010
27 100100100 1010010.010101 1010001
28 100101000 1010100.010101 1010100
29 101000000 1010101.010101 10000000
30 101000100 10000000.10101001 10000010

Table 3 Base-ϕ representations of Lucas numbers and their simple forms in relaxed base-ϕ.

n base-ϕ relaxed base-ϕ
1 1. 10.1̄
3 100.01 100.01
4 101.01 1000.001̄
7 10000.0001 10000.0001

11 10101.0101 100000.00001̄
18 1000000.000001 1000000.000001
29 1010101.010101 10000000.0000001̄

FUN 2021

Foundations for Actively Secure
Card-Based Cryptography
Alexander Koch
Karlsruhe Institute of Technology (KIT), Germany
alexander.koch@kit.edu

Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

Abstract
Card-based cryptography, as first proposed by den Boer [4], enables secure multiparty computation
using only a deck of playing cards. Many protocols as of yet come with an “honest-but-curious”
disclaimer. However, modern cryptography aims to provide security also in the presence of active
attackers that deviate from the protocol description. In the few places where authors argue for
the active security of their protocols, this is done ad-hoc and restricted to the concrete operations
needed, often using additional physical tools, such as envelopes or sliding cover boxes. This paper
provides the first systematic approach to active security in card-based protocols.

The main technical contribution concerns shuffling operations. A shuffle randomly permutes the
cards according to a well-defined distribution but hides the chosen permutation from the players.
We show how the large and natural class of uniform closed shuffles, which are shuffles that select a
permutation uniformly at random from a permutation group, can be implemented using only a linear
number of helping cards. This ensures that any protocol in the model of Mizuki and Shizuya [17] can
be realized in an actively secure fashion, as long as it is secure in this abstract model and restricted
to uniform closed shuffles. Uniform closed shuffles are already sufficient for securely computing any
circuit [19]. In the process, we develop a more concrete model for card-based cryptographic protocols
with two players, which we believe to be of independent interest.

2012 ACM Subject Classification Security and privacy→ Information-theoretic techniques; Security
and privacy → Usability in security and privacy; Theory of computation → Models of computation

Keywords and phrases Card-Based Protocols, Card Shuffling, Secure Multiparty Computation,
Active Security, Cryptography without Computers

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.17

Related Version A full version is available at [10], https://eprint.iacr.org/2017/423.

Acknowledgements We would like to thank the anonymous reviewers for helpful comments.

1 Introduction

The elegant “five-card trick” of den Boer [4] allows two players – here called Alice and Bob –
to compute a logical AND of two private bits, using five playing cards. For instance, if the
bit of a player encodes whether they have romantic interest for the other player, the protocol
will result in a “yes”-output if and only if there is mutual interest, sparing a party with an
unrequited crush the embarrassment of having this information revealed.

More generally, using a deck of playing cards (usually with symbols ♥, ♣), Alice and Bob
can jointly compute an arbitrary Boolean function on multiple secret inputs such that neither
player learns anything about the input, except, possibly, what can be learned from looking
at the output. One distinctive feature is that these protocols do not need a computer, which
makes their security tangible. For this reason, they have become popular for introducing
secure multiparty computation in lectures and to non-experts.

© Alexander Koch and Stefan Walzer;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3510-9669
mailto:alexander.koch@kit.edu
https://orcid.org/0000-0002-6477-0106
mailto:stefan.walzer@tu-ilmenau.de
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://eprint.iacr.org/2017/423
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Foundations for Actively Secure Card-Based Cryptography

The key operations that introduce randomness in a controlled manner are shuffles. A
shuffle operation causes a sequence of cards to be rearranged according to random permutation
such that observers cannot tell which permutation was chosen. The formal computational
model of Mizuki and Shizuya [17] permits shuffles with arbitrary distributions on permutations.
The model is useful when showing impossibility results and lower bounds on cards, cf. [12],
but it seems unlikely that all shuffle operations permitted in the model have a convincing
real world implementation. This spawned some formal protocols with apparently good
parameters, but unclear real-world implementations, especially if active security is a concern
[12, Sect. 7]. There is to this day still no positive account of what shuffles can be done with
playing cards beyond the justification of individual protocols, and even then, most make
“honest-but-curious” assumptions, with no guarantees when one of the players deviates from
the protocol. In several places in the literature, e.g. [2, Sect. 8] and [12, Sect. 9], the need for
achieve actively secure shuffles and protocols has been recognized.

Our Contribution

As security guarantees in the physical world are harder to formalize than in the digital
domain1, we introduce a suitable notion of active security. It is slightly non-standard in
that we exclude attackers that are too strong. For instance, there is no possible defense
against attackers that can arbitrarily turn over cards, cf. Section 6 for a discussion. Moreover,
we show how any card-based protocol (in the model of [17]) that is restricted to uniform
closed shuffles can be transformed into an actively secure protocol that increases the number
of cards only by a constant factor. Uniform closed shuffles, namely those that rearrange
the cards according to a uniform distribution on a permutation group, have already been
identified in [12, Sect. 8] as a natural class of operations. More importantly, they suffice to
compute any function2.

Along the way, we define a new model for card-based cryptography, which we call two-
player protocols. These, in turn, use permutation protocols that allow Alice to apply a π ∈ Π
of her choosing to a sequence of face-down cards, such that Bob learns nothing about her
choice. We believe this to be of independent interest, e.g. as an approach to formalize
protocols such as the 3-card AND protocol in [13] that does not fit into the model of Mizuki
and Shizuya.

The idea of using “private permutations” as base operations instead of shuffles was first
mentioned in [12, Sect. 8]. Independently from our work, these operations are used in [23] to
more efficiently perform an instance of the millionaires problem with cards and in [22] for
the case of a three-input voting protocol. To formalize security correctly however, we have
to distinguish between private permutation in the role of introducing uncertainty, and those
which should serve as input (and need special protection), which we discuss in Section 8.
There, we also discuss active attacks against two majority protocols from the literature, that
have their inputs given by the users’s choice of permutation.

1 See also https://xkcd.com/538/ for a humorous illustration of this fact.
2 Almost all existing Mizuki–Shizuya protocols, e.g. [3, 4, 6, 15, 14, 16, 19, 18, 25, 24, 31, 1], use only

these. This list contains protocols for AND and COPY, hence allowing arbitrary circuits. More general
shuffles appear in [2, 12, 29] for the purpose of using less cards. For example, for committed-format
AND, restricting to uniform closed shuffles needs exactly one additional card, both in the case of finite
runtime and Las Vegas protocols, as shown in [19, 12, 1, 7, 8].

https://xkcd.com/538/

A. Koch and S. Walzer 17:3

Related Work

The feasibility of general secure multiparty computation with cards was shown in [4, 3, 24, 31].
Since then, researchers proposed a wide range of protocols with different objectives and
parameters. One line of research has been to minimize the number of cards used in protocols.
In this regard, [19, 16, 12, 28, 7, 1] try to minimize the number of cards for AND, XOR
or bit copy protocols, achieving, for instance, the minimum number of four cards for AND
protocols both in committed3 and non-committed format.

With respect to shuffles, all early protocols relied solely on a uniform random cut, which
is a shuffle causing a cyclic shift on a pile of cards with uniformly random offset. Niemi and
Renvall [24, Sect. 3] and den Boer [4] plausibly argue that random cuts can be performed by
repeatedly cutting a pile of cards in quick succession, as players are unable to keep track.
Other shuffles were justified, including “dihedral group” shuffles [24], [31, Sect. 7], random
bisection cuts [19, 32] and unequal division shuffles [2, 28, 27].

Other works have investigated the question of active attacks, albeit with a different focus.
Mizuki and Shizuya [18] address active security against adversaries who deviate from the
input encoding, e.g. giving input (♥,♥) instead of (♥,♣). We describe in Section 8 how
our results subsume this, using a separate input phase. Moreover, they stress the necessity
of non-symmetric backs to avoid marking cards by rotating them. Finally, using a secret
sharing-like mechanism, they specify how to avoid security breaches by scuff marks on the
backs of the cards. [30] describe a method against injection attacks in their model using
polarizing plates. Independently, [32] give an implementation of the special case of random
bisection cuts, including experiments showing the real-world security of the shuffle.

Besides short ad-hoc discussions of the shuffle security, we believe that this is an exhaustive
list of all investigations into active security so far. In particular, the issue of ensuring that
only permutations allowed in the protocol description can be performed during a shuffle has
not been addressed for non-trivial cases. Due to our constructions spanning multiple layers
of abstractions as depicted in Figure 1, we are able to solve this by giving a transformation
of passively secure protocols into an actively secure ones, under certain conditions.

2 Preliminaries

Permutations. A permutation of a set X = {1, . . . , n} for some n ∈ N, is a bijective map
π : X → X. The set Sn of all permutations of {1, . . . , n} is called symmetric group. It has
group structure with the identity map id as neutral element and composition (◦) as group
operation. We apply a permutation π of X to a set S ⊆ X by writing π(S) := {π(s) | s ∈ S}.
We say that π respects S if π(S) = S. In that case, π also respects the complement X \S and
we can define the restriction of π to S as the permutation τ with domain S and τ(s) = π(s)
for all s ∈ S. For elements x1, . . . , xk the cycle (x1 x2 . . . xk) denotes the cyclic permutation
π with π(xi) = xi+1 for 1 ≤ i < k and π(xk) = x1 and π(x) = x for all x not occurring in
the cycle. If several cycles act on pairwise disjoint sets, we write them next to one another
to denote their composition. For instance (1 2)(3 4 5) denotes a permutation with mappings
{1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 5, 5 7→ 3}. Every permutation can be written in such a cycle
decomposition.

3 In a committed-format protocol, input and output bits are encoded by the order of two face-down
cards (a “commitment”) that hides the value and hence, may be used as intermediary input to another
protocol without looking at it, while those not in committed format reveal the output and are hence
unsuitable for larger circuits.

FUN 2021

17:4 Foundations for Actively Secure Card-Based Cryptography

R
ea
l
W
or
ld

–
A
ct
u
al

P
la
ye
rs

T
w
o
P
la
ye
r
M
o
d
el

–
Id
ea
li
ze
d
P
la
ye
rs

M
iz
u
k
i–
S
h
iz
u
ya

M
o
d
el

(n
o

p
la

y
er

s)

Chosen Pile Cut

k = !
k

k = ?

Special Case: Chosen Cut

k = !

k

k = ?

Uniform Cut

k = ?

k

k = ?

Assumption: Cuts imperfectly observable

Players lose track of repeated cuts.

Tool: Deck with red backs

J♠,♦, . . . ,♦K

(Formal) Action: Chosen Pile Cut

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Permutation Protocol: Generalized Coupled Rotation

See Figure 6. Special Case: Two piles

Helping Deck

J♠,♠,♠,♦, . . . ,♦K

Helping Deck

J♠,♦, . . . ,♦K

Action: Chosen Generalized Coupled Rotation

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Special Case: Two piles

k1 = k2 = !

k1 k2

k1
!
= k2

Action: Chosen Permutation from Closed Π

π = ! π
!∈ Π

Other Actions

turn: reveal cards
perm: public permutation
result: output

Model: Two Player Protocol

Actions: privatePerm, perm, turn, result

Notion: Active Security

Permutation sets implemented, player
knowledge independent of in-/output.

Security-respecting Implementation (see Proposition 2)

Model: Uniform Closed MS Protocol

Actions: shuffle, perm, turn, result

Notion: Security

Execution path independent of
in-/output.

Action: Uniform Closed Shuffle

π ∈ Π
(random)

requires

uses uses

informally justified by

uses

uses

uses

formally implemented by

decomposes into

may use

may use

may use

has

has

A uniform cut (p. 6) rotates
a pile of cards by a uniformly
random value unknown to Al-
ice and Bob. From this we
build chosen cuts (p. 6) leav-
ing a pile rotated by a value
chosen by Alice but unknown
to Bob. When generalized to
chosen pile cuts (p. 7) and for-
malized, we obtain a chosen
pile cut action that rotates a
sequence of equally-sized piles
by a value k chosen by Alice.
Bob remains oblivious of that
value but he can be sure that
the cards are not rearranged
in any other way. In particu-
lar he knows that each pile is
rotated by the same amount,
even if Alice is dishonest.
With the help of a permuta-
tion protocol (p. 8) this is ex-
tended to the case where piles
may have different sizes. This
yields chosen coupled rotations
(p. 8) in the case of two piles
and chosen generalized coupled
rotations (p. 10) in the case of
more than two piles.
These are powerful enough to
build arbitrary chosen permu-
tations from a closed permuta-
tion set (p. 10). In that setting,
Alice may choose any permuta-
tion π from a group of permu-
tations Π. Bob will not learn
π but can be sure that no per-
mutation outside the set Π is
performed.
A two player protocol (p. 11)
may make use of these chosen
closed permutation actions as
well as the other actions turn,
perm and result.
Uniform closed Mizuki–
Shizuya (MS) protocols (p. 16)
are a large natural subset of
protocols as formalized by
Mizuki and Shizuya. Our
main result is that for any
such protocol there is a two
player protocol computing the
same function that is actively
secure (p. 14) if the original
protocol is secure (p. 13).
This security-respecting im-
plementation (p. 15) replaces
each uniform closed shuffle
with two corresponding chosen
closed permutations.
Active security is bought with
helping cards needed in several
places; intuitively to prove the
legitimacy of Alice’s actions to
Bob.

Figure 1 Overview of the content of this paper. The images of Alice and Bob are adapted from
xkcd (by Randall Munroe), which is licensed as CC-BY-NC-2.5.

https://creativecommons.org/licenses/by-nc/2.5/

A. Koch and S. Walzer 17:5

By a conjugate of a permutation π ∈ Sn we mean any permutation of the form π′ :=
τ−1 ◦π ◦ τ where τ ∈ Sn. For a set Π ⊆ Sn of permutations and τ ∈ Sn the set τ−1 ◦Π ◦ τ :=
{τ−1 ◦π ◦ τ | π ∈ Π} is a conjugate of Π. Given an arbitrary sequence of objects Γ =
(Γ[1], . . . ,Γ[n]) and a permutation π ∈ Sn then applying π to Γ yields the sequence π(Γ) =
(Γ[π−1(1)],Γ[π−1(2)], . . . ,Γ[π−1(n)]). Intuitively, the object in position i is transported to
position π(i).

Sets and Groups. If g1, g2, . . . , gk ∈ G are group elements, 〈g1, . . . , gk〉 is the smallest
subgroup of G containing g1, . . . , gk and called the subgroup generated by {g1, . . . , gk}. For
g ∈ G the order of g is ord(g) = |〈g〉| = min{k ≥ 1 | gk = id}. In the following, a group is
implicitly also the set of its elements.

Multisets and Decks. J♦,♦,♦,♠,♠K is the multiset containing three copies of ♦ and two
copies of ♠, also written as J3 ·♦, 2 ·♠K. If such a multiset represents cards, it is called a deck.
All cards are implicitly assumed to have the same back, unless stated otherwise. Cards can
lie face-up or face-down. When face-down, all cards are indistinguishable (unless they have
different backs). When face-up, cards with the same symbol are indistinguishable. Throughout
this paper, cards are always face-down with the exception of during a turn operation. To
simplify the protocol specification, we immediately turn the card(s) face-down again. Unions
of multisets are denoted by ∪, disjoint unions are denoted by +, e.g. J♦,♠,♠K∪J♦,♥,♠,♣K =
J♦,♥,♠,♠,♣K whereas J♦,♠,♠K + J♦,♥,♠,♣K = J♦,♦,♥,♠,♠,♠,♣K.

3 Implementing Cuts and Pile Cuts with Choice

We are interested in procedures that, for a given set Π ⊆ Sn of permutations, allow Alice
to apply a π ∈ Π of her choosing to a sequence of face-down cards, such that Bob learns
nothing about her choice, but is certain that Alice did not choose π 6∈ Π. Also, no player
learns anything about the face-down cards if the other player is honest.

In this case we say Π has an actively secure implementation with choice, or is implemented
for short.

Example: Bisection Cut with Envelopes

Mizuki and Sone [19] make use of the following procedure on six cards: The cards in positions
1, 2 and 3 are stacked and put in one envelope and the cards in position 4, 5 and 6 are put
into another. Behind her back, Alice then swaps the envelopes or leaves them as they are –
her choice. Unpacking yields either the original sequence or the sequence 4, 5, 6, 1, 2, 3. The
bisection cut Π = {id, (1 4)(2 5)(3 6)} is therefore implemented (with active security and
choice) using two indistinguishable envelopes.

The envelopes ensure that the two groups of cards stay together and their ordering is
preserved. The idea is that opening the envelopes behind her back would be impractical and
noisy, so even if Alice is malicious, she is limited to the intended options. For a model of
secure envelopes, cf. [20, 21].

Example: Unequal Division Shuffle

A bisection cut on n cards can be interpreted as “either do nothing or rotate the sequence by
n/2 positions”. Generalizing this, we now want to “either do nothing or rotate the sequence
by l positions” for some 0 < l < n, i.e. implement Πl = {id, (1 2 . . . n)l}. In [28, 29] a

FUN 2021

17:6 Foundations for Actively Secure Card-Based Cryptography

corresponding mechanism is described using two card cases with sliding covers. The card
cases behave like envelopes but are heavy enough to mask inequalities in weight caused by
different numbers of cards, and support joining the content of two card cases – for details
refer to their paper (or Appendix D in the full version [10]).

While we are very fond of such creative ideas, in this paper we implement card-based
protocols using only one tool: additional cards.

3.1 Cutting the Cards
By the cut on n cards we mean the permutation set Π = 〈(1 . . . n)〉. Alice would cut a pile
of n cards by taking the top-most k cards (for some 0 < k < n) from the top of the pile,
setting them aside and then placing the remaining n− k cards on top. In this form, Alice
can only approximately pick k while allowing Bob to approximately observe k. Implementing
Π requires fixing both problems.

Uniform Cut

As an intermediate goal we implement a uniform cut on n cards, i.e. we perform a permutation
(1 2 . . . n)k for 0 ≤ k < n chosen uniformly at random and unknown to the players. As
proposed in [4], this is done by repeatedly cutting the pile in quick succession until both
players lost track of what happened. More formally, under reasonable assumptions, the
state of the pile is described by a Markov chain that converges quickly to an almost uniform
distribution after a finite number of steps.

Arguably, if the pile is too small, say two cards, the number of cards taken during each
cut is perfectly observable. In that case, we put a sufficiently large number c of cards with
different backs behind each card, repeatedly cut this larger pile and remove the auxiliary
cards afterwards. Note that [32] found it to work well in practice even for n = 2 and c = 3.4
We shall not explore this further and use uniform cuts as a primitive in our protocols.

Uniform Cut with Alternating Backs

Later we apply the uniform cut procedure to piles of n · (`+ 1) cards with n cards of red
back, each preceded by ` cards of blue back. From a “uniform cut” on such a pile, we expect
a cut by 0 ≤ k < n · (`+ 1) where bk/(`+ 1)c is uniformly distributed in {0, ..., n− 1} and
independent of the observable part k mod (`+ 1). We leave it to the reader to verify that
the iterated cuts still work under the same assumptions.

Chosen Cut

We now show how to implement Π = 〈(1 . . . n)〉 with active security and choice. Say Alice
wants to rotate the pile of n cards by exactly k positions for a secret 0 ≤ k < n. We propose
the process illustrated in Figure 2.

Alice is handed the helping deck J♠, (n−1) · ♦K with red backs and secretly rearranges
these cards in her hand, putting ♠ in position k. The helping cards are put face-down on the
table and interleaved with the pile to be cut (each blue card followed by a red card). The ♠
is now to the right of the card that was the k-th card in the beginning. To obscure Alice’s
choice of k, we perform a uniform cut on all cards as described previously. The red helping

4 If not satisfied, the reader may accept some variant of Berry’s turntable, cf. [33].

A. Koch and S. Walzer 17:7

Example (n = 5, k = 4) General Description

c1 c2 c3 c4 c5

c1 ♦ c2 ♦ c3 ♦ c4 ♠ c5 ♦

y

Alice inserts helping cards, puts ♠ right of ck.

♦ c4 ♠ c5 ♦ c1 ♦ c2 ♦ c3

y

A uniform cut is performed.

♦ ♠ ♦ ♦ ♦
c4 c5 c1 c2 c3

y

The helping cards are revealed.

♠ ♦ ♦ ♦ ♦
c5 c1 c2 c3 c4

y

The ♠ is rotated to the front.

c5 c1 c2 c3 c4

y

The helping cards are discarded.

Figure 2 Alice cuts a pile of n cards, here (c1, . . . , c5), with back at position k with a helping
deck of n helping cards J♠, 4 · ♦K with back . In this illustration we annotated face-down cards
with the symbol they contain.

π : τ :

Figure 3 Rotating a sequence of four piles of three cards each by one position (left) is described
by a permutation π with three cycles of length 4. Alternatively, we can think of π as π = τ3 where
τ is the cyclic permutation of length 12 (right).

cards are then turned over. Rotating the sequence so as to put ♠ in front, and removing the
helping cards afterward leaves the cards in the desired configuration. Bob is clueless about k
since he only observes the position of ♠ after the cut, which is independent of the position
of ♠ before the cut (which encodes k).

Chosen Pile Cut

Chosen cuts can be generalized in an interesting way. Given n piles of ` cards each and
0 ≤ k < n, Alice wants to rotate the sequence of piles by exactly k positions, meaning the
i-th pile will end up where pile i+ k has been (modulo n). Again, k must remain hidden
from Bob and he, on the other hand, wants to be certain that Alice does not tamper with
the piles in any other than the stated way. Note that this is equivalent to cutting a pile of
n` cards where only cutting by multiples of ` is allowed, see Figure 3. In that interpretation,
the i-th pile is made up of the cards in positions (i− 1)`+ 1, . . . , i`.

We apply the same procedure as before with n helping cards, except this time, instead
of a single blue card we have ` blue cards (a pile) before each of the n gaps that Alice may
fill with her red deck J♠, (n−1) · ♦K. Now the special ♠-card marks the end of the k-th pile
and is (after a uniform cut) rotated to the beginning of the sequence, ensuring that after
removing the helping cards again we end up having rotated the n · ` cards by a multiple
of ` as desired. Note that, uniform (non-chosen) pile cuts have been proposed in [6] as
“pile-scramble shuffles”, with an implementation using rubber bands, clips or envelopes.

FUN 2021

17:8 Foundations for Actively Secure Card-Based Cryptography

Summary

If Π = 〈(1 2 . . . n · `)`〉 for n, ` ∈ N , then Π is implemented with active security and choice
using the helping deck J♠, (n−1) · ♦K. For ` = 1 it is called a cut, for ` > 1 a pile cut. We
use the same name for conjugates of Π, i.e. if cards are relabeled. Any subset ∅ 6= Π′ ⊂ Π
of a (pile) cut is also implemented: Alice places ♠ only in some positions, the others are
publicly filled with ♦.

4 Permutation Protocols for Arbitrary Groups

We introduce a formal concept that allows to compose simple procedures to implement more
complicated permutation sets.

I Definition 1. A permutation protocol P = (n,H,Γ, A) is given by a number n of object
cards, a deck of helping cards H with initial arrangement Γ: {n+ 1, . . . , n+ |H|} → H, and
a sequence A of actions where each action can be either

(privatePerm,Π) for Π ⊆ Sn+|H| implemented with active security and choice, and re-
specting {1, . . . , n} (i.e. ∀π ∈ Π: π({1, . . . , n}) = {1, . . . , n}), or
(check, p, o) for a position p of a helping card (i.e. n < p ≤ n + |H|) and an expected
outcome o ∈ H.

Indeed, consider the following procedure: We start with n object cards lying on a table
(positions 1, . . . , n). We place the sequence Γ next to it, at positions n+ 1, . . . , n+ |H|, and
go through the actions of P. Whenever the action (privatePerm,Πi) is encountered, we use
the procedure Pi implementing Πi to let Alice apply a permutation on the current sequence.
When an action (check, p, o) is encountered, the p-th card is revealed. If its symbol is o, Bob
continues, otherwise he aborts, declaring Alice as dishonest. In the end, the helping cards are
removed, yielding a permuted sequence of object cards. (All permutations respect {1, . . . , n},
hence, the helping and the object cards remain separated).

We are interested in the set comp(P) ⊆ Sn+|H| of permutations compatible with P.
If there are k privatePerm actions with permutations sets Π1, . . . ,Πk and πi ∈ Πi, then
πk ◦ . . . ◦π1 is compatible with P if each check succeeds, meaning if (check, p, o) happens after
the i-th privatePerm action (and before the i+ 1st, if i < k) then Γ[(πi ◦ . . . ◦π1)−1(p)] = o.
We argue that this implements Π′ = comp(P)|{1,...,n} using H (and, possibly, helping cards
to implement Πi).

Alice can freely pick any π′ ∈ Π′; using an appropriate decomposition, all checks will
succeed. In this case, Bob knows that the performed permutation is from Π′. No player
learns anything about the object cards (only helping cards are turned) and conditioned on
Alice being honest, the outcome of the checks is determined, so Bob learns nothing about π′.

Coupled Rotations

Let ϕ = (1 2 . . . s), ψ = (s+1 s+2 . . . s+t), and assume s < t. For π = ψ ◦ϕ = ϕ ◦ψ
we call Π = {πk | 0 ≤ k < s} the coupled rotation with parameters s and t. Note that
Π is not a group since πs 6∈ Π. We aim to implement Π. We make use of a helping deck
J♠, (t−1) · ♦K available in positions H = {h0, h1, . . . , ht−1} with ♠ at position h0. Then
define ϕ̂ := ϕ ◦(h0 . . . hs−1) and ψ̂ := ψ ◦(h0 . . . ht−1)−1 and consider the permutation
protocol P in Figure 5 (left), and Figure 4 for illustration. The idea here is that Alice may
choose k and k′ and perform ϕ̂k and ψ̂k′ to the sequence. However, k is “recorded” in the

A. Koch and S. Walzer 17:9

Example (s = 3, t = 8, k = k′ = 2) General Description

A: a0 a1 a2

H: ♦ ♦ ♦ ♦ ♦H: ♠ ♦ ♦

B: b0 b1 b2 b3 b4 b5 b6 b7

The sequences A and H (first s
cards) are rotated to the right by
the same value k ∈ {0, 1, . . . , s− 1}
chosen by Alice.

(This is a pile cut.)
A: a1 a2 a0

H: ♦ ♦ ♦ ♦ ♦H: ♦ ♦ ♠

B: b0 b1 b2 b3 b4 b5 b6 b7
H is rearranged to represent −k
(mod t): cards i, j ∈ {0, . . . , t − 1}
are swapped iff i+ j ≡ 0 (mod t).

(This does not leak k.)A: a1 a2 a0

H: ♦ ♦ ♦ ♦ ♦ ♦ ♠ ♦

B: b0 b1 b2 b3 b4 b5 b6 b7

H and B are rotated to the right
by k′ ∈ {0, 1, . . . , t − 1} chosen by
Alice. If Alice is honest she must
choose k = k′.

(This is a pile cut.)
A: a1 a2 a0

H: ♠ ♦ ♦ ♦ ♦ ♦ ♦ ♦

B: b6 b7 b0 b1 b2 b3 b4 b5

The first card of H is revealed. A
♠ occurs iff Alice was honest.

Figure 4 The sequence A of length s and B of length t are to be rotated by the same value k
chosen privately by Alice. A helping sequence ensures that the same value is used. All cards are
face-down, except for the highlighted card in the last step. The dotted lines indicate that cards
are belonging to the same pile in a pile cut, i.e. they maintain their relative position during the
cut. The rearrangement of the helping cards is useful in this visualization (so that H and B can be
rotated in the same direction) but is not reflected in the formal description.

configuration of a helping sequence and −k′ is “added” on top. A check ensures that the
helping sequence is in its original configuration, implying k = k′ as required. Note that 〈ϕ̂〉
and 〈ψ̂〉 are pile cuts, which we already know how to implement. In total, we implemented

comp(P) = {ψ̂k
′
◦ ϕ̂k : 0 ≤ k < s, 0 ≤ k′ < t,Γ[(ψ̂k

′
◦ ϕ̂k)−1(h0)] = ♠}|{1,...,n}

= {ψ̂k
′
◦ ϕ̂k : 0 ≤ k < s, 0 ≤ k′ < t, k′ = k}|{1,...,n}

= {ψk ◦ϕk : 0 ≤ k < s}|{1,...,n} = Π.

Products, Conjugates and Syntactic Sugar

The protocol in Figure 5 (middle) implements Π2 ◦Π1 using Π1 and Π2, showing that if
Π1 is implemented using H1 and Π2 is implemented using H2, then Π2 ◦Π1 is implemented
using H1 ∪H2. As a corollary, if Π is implemented using H then so is any conjugate Π′ =
{π−1} ◦Π ◦{π}. Figure 5 (right) uses (perm, π) instead of (privatePerm, {π}) to emphasize
that such deterministic actions can be carried out publicly.

FUN 2021

17:10 Foundations for Actively Secure Card-Based Cryptography

privatePerm, 〈ϕ̂〉

privatePerm, 〈ψ̂〉

check, h0,♠

privatePerm,Π1

privatePerm,Π2

perm, π

privatePerm,Π

perm, π−1

Figure 5 Protocols implementing a coupled rotation (left), the product of two permutation sets
(middle) and the conjugation of a permutation set (right).

Generalized Coupled Rotations

We generalize the idea of a coupled rotation to more than two sequences. Let π ∈ Sn
with cycle decomposition π = ϕ0 ◦ · · · ◦ϕ` for ` ≥ 2 and increasingly ordered cycle lengths
t0 ≤ t1 ≤ t2 ≤ . . . ≤ t`. We aim to implement Π = {πk | 0 ≤ k < t0} using t` + 2 · t0 helping
cards, originally available in the following positions which we label as shown.

♠
m0

♦
m1

♦
mt`−1

♠
x0

♦
x1

♦
xt0−1

♠
s0

♦
s1

♦
st0−1

. . .

. . .

. . .

. . .

. . .

. . .

main temp store

We think of the three areas as “registers” containing values indicated by the position of ♠
(initially 0). The registers have associated rotations:

ψtemp := (x0 . . . xt0−1), ψstore := (s0 . . . st0−1), ψi := (m0 . . . mti−1).

The protocol’s idea is that Alice performs ϕk0
0 ◦ · · · ◦ϕ

k`

` and checks will ensure k0 = k1 =
. . . = k`. To this end, k0 is recorded in the store register (we use 〈ϕ0 ◦ψstore〉). Then,
for each round i ∈ {1, 2 . . . , ` − 1} the value k0 is cloned into the main register by first
swapping it to the temp register and then moving it to the store and main register using
ψcopy := ψ−1

temp ◦ψstore ◦ψ0. The cloned copy of k0 in main is consumed when forcing Alice to
do ϕ̂ik0 where ϕ̂i := ϕi ◦ψ−1

i . The last round is similar. Using the following two swappings,
the protocol is formally given in Figure 6.

πstore↔tmp := (s0 x0) . . . (st0−1 xt0−1), πstore↔main := (s0 m0) . . . (st0−1 mt0−1).

We now check that this implements the generalized coupled rotation Π using the helping
cards J3 · ♠, (t`+2t0−3) · ♦K, cf. Appendix A in the full version [10]. The main ingredient is
the loop invariant:

If π ∈ Sn+2t0+t` is compatible with the actions until after the i-th execution of the
loop and S is the starting sequence then there exists k ∈ {0, . . . , t0 − 1} such that:
π|{1,...,n} = ϕki ◦ . . . ◦ϕk1 ◦ϕk0 ,
in π(S) all registers contain 0 except for store, which contains k.

We remark that by introducing additional check steps, any subset of a generalized coupled
rotation can be implemented as well.

Subgroups of Sn

Generalized coupled rotations are sufficient for:

A. Koch and S. Walzer 17:11

ch
o
o
se

k
clo

n
e
sav

ed
k

i-th
cy
cle

la
st

cy
cle

privatePerm, 〈ϕ0 ◦ψstore〉

perm, πstore↔tmp

privatePerm, 〈ψcopy〉

check, x0,♠

privatePerm, 〈ϕ̂i〉

check,m0,♠

perm, πstore↔main

privatePerm, 〈ϕ̂`〉

check,m0,♠

for
i∈
{1,...,`−

1}

Figure 6 Protocol to implement a generalized coupled rotation with ` + 1 cycles of length
t0, t1, . . . , t`. Notation is explained in the text.

I Proposition 2. Any subgroup Π of Sn can be implemented with active security and choice
using only the helping deck J3 · ♠, (n − 3) · ♦K for (generalized) coupled rotations and the
helping deck J♠, (n−1) · ♦K for (pile) cuts.

Proof. Note that Π =
∏
π∈Π〈π〉, i.e. Π can be written as the product of cyclic subgroups.

Moreover, any cyclic subgroup can be written as 〈π〉 = {π0, . . . , πk−1}`, where k is the length
of the shortest cycle in the cycle decomposition of π and ` = dord(π)/(k − 1)e. Hence, Π can
be written as the product of rotations and (generalized) coupled rotations, each of which
are implemented with the required helping decks. Using the implementation of products
(page 9), we are done. J

A simple decomposition of Π into products of previously implemented permutation sets is
desirable to keep the permutation protocol simple. We do not consider this here and merely
state that |Π| is an upper bound on the number of terms.

5 Computational Model with Two Players

In the following, two players jointly manipulate a sequence of cards to compute a (possibly
randomized) function, i.e. they transform an input sequence into an output sequence. Both
have incomplete information about the execution and the goal is to compute with no player
learning anything about input or output5.

Two Player Protocols

A two player protocol is a tuple (D, U,Q,A) where D is a deck, U is a set of input sequences,
Q is a (possibly infinite, computable) rooted tree with labels on some edges, and A : V (Q)→
Action is an action function that assigns to each vertex an action which can be perm, turn,

5 An explanation of our security notions follows in Section 6.

FUN 2021

17:12 Foundations for Actively Secure Card-Based Cryptography

privatePerm, 1, {id, (1 2)(3 4)},U(·)

privatePerm, 2, {id, (1 2)(3 4)},U(·)

turn, {1, 2}turn, {1, 2}

result, 3 result, 4

♣♥♥♣

v1:

v2:

v3:

v4: v5:

D = J3 · ♣, 2 · ♥K,

U = {(♣,♥,♣,♣),
(♣,♥,♥,♣),
(♥,♣,♣,♣),
(♥,♣,♥,♣)},

Q,A : as shown on the left

Figure 7 A protocol example in the two player model, with possible execution trace: (I =
(♥,♣,♥,♣), O = (♥), T1 = (id), T2 = ((1 2)(3 4)),W = (v1, v2, v3, v5)). This is an actively secure
implementation of the AND protocol in [14, Sect. 3.2]. The first two cards encode an input a as
(♣,♥) =̂ 0, (♥,♣) =̂ 1, the third card encodes an input b as ♣ =̂ 0, ♥ =̂ 1. This encoding is also
used for output a ∧ b.

result, and privatePerm, with parameters as explained below. All input sequences have the
same length n and are formed by cards from D. Vertices with a perm or privatePerm action
have exactly one child, vertices with a result action have no children, and those with a turn
action have one child for each possible sequence of symbols the turned cards might conceal,
and the edge to that child is annotated with that sequence.

When a protocol is executed on an input sequence I ∈ U , we start with the face-down
sequence Γ = I at the root of Q and empty permutation traces T1 and T2 for players 1 and 2,
respectively. Execution proceeds along a descending path in Q and for each vertex v that is
encountered, the action A(v) is executed on the current sequence of cards:
(perm, π) for a permutation π ∈ Sn. This replaces the current sequence Γ by the permuted

sequence π(Γ). Execution proceeds at the unique child of v.
(turn, T) for some set T ⊆ {1, . . . , n}. For T = {t1 < t2 < . . . < tk}, the cards

Γ[t1], . . . ,Γ[tk] are turned face-up, revealing their symbols. The vertex v must have
an outgoing edge labeled (Γ[t1], . . . ,Γ[tk]). Execution proceeds at the corresponding child
after the cards are all turned face-down again.

(privatePerm, p,Π,F(·)) for a player p ∈ {1, 2}, a permutation set Π ⊆ Sn and F being
a parameterized distribution on Π. Formally, F is a function that maps the current
permutation trace Tp of player p to a distribution F(Tp) on Π. If F(Tp) is the uniform
distribution on Π for each Tp we denote this as U(·). Player p picks a permutation π ∈ Π.
The current sequence Γ is replaced by the permuted sequence π(Γ) and π is appended to
the player’s permutation trace Tp. If player p is honest she picks π according to F(Tp).
Execution proceeds at the unique child of v.

(result, p1, . . ., pk) for distinct positions p1, . . . , pk ∈ {1, . . . , n}. Execution terminates with
output O = (Γ[p1], . . . ,Γ[pk]) encoded by face-down cards.

The execution yields an execution trace (I,O, T1, T2,W), containing input, output, permu-
tation traces of the players and the descending path W in Q that was taken, cf. Figure 7.
The output of non-terminating protocols is O = ⊥. Note that we will use permutation
protocols from Section 4 in the privatePerm steps, however we use them as black boxes. In
particular, the actions specific to permutation protocols (e.g. check) are not part of two
player protocols. We say P is implemented using a helping deck H if each permutation
set of a privatePerm action is implemented using H (as in Section 3). The way we define
it, existence, implementability and security of a protocol are separate issues. Security is
discussed next.

A. Koch and S. Walzer 17:13

6 Passive and Active Security

Intuitively, an implemented protocol is (information-theoretically) secure if no player can
derive any statistical information about input or output from the choices and observations
they make during the execution of the protocol. So the first question is, what information
does a player obtain, say Alice, that could potentially be relevant? At first we consider the
setting where both players are honest. Surely, Alice knows the public information W , i.e. the
execution path of the protocol run, in which the sequence of actions and their parameters
are implicit. For each action along W she may have obtained additional information during
its execution. To get a complete picture, we go through all types of actions:

turn actions reveal some card symbols. However, as each outcome corresponds to a unique
child vertex where execution continues, this information is already implicit in W .
perm actions are deterministic and reveal no information. The same is true for result
actions. Note that they only indicate the position of the output, not reveal it.
For privatePerm actions, the observations that can be made depend on the implementation.
If the protocols are implemented in our sense (see Section 3) and Alice is the active player
then Alice learns nothing of relevance except her own choice of permutation (which is
recorded in her permutation trace) and, since Alice is honest, Bob learns nothing at all.

So the only potentially relevant information player p has with regards to input and output is
W and Tp. Therefore it is adequate to define:

I Definition 3 (Passive Security). A two player protocol P = (D, U,Q,A) is secure against
passive attackers if for any random variable I ∈ U the following holds: If (I,O, T1, T2,W)
is the execution trace when executing P with honest players on input I, then (I,O) is
independent of (Tp,W) for both p ∈ {1, 2}.

Delegated Computation

Passive security implies that if a player has no prior knowledge about in- or output, executing
the protocol leaves her in this oblivious state. In particular, by following the protocol the
players implement what we call an oblivious delegated computation where the computation is
performed on secret data (provided by a third party), and the output is not revealed to the
executers.

Note that this setting differs from the standard multiparty computation setting, where
players provide part of the input and usually the output is sent to the players in non-
committed (non-hiding) form, i.e., learned by the players. In this case, security means that
the players learn nothing except what can be deduced from the facts they are permitted
to know. It is important to understand that our definition is still adequate for such cases,
as any protocol that is secure in the delegated computation setting is also secure if players
have (partial) information about input and output. The formal reason is the basic fact that
for any event E relating only to (I,O), i.e., E is independent of (Tp,W), conditioning the
probability space on E will retain the independence of (I,O) and (Tp,W).

Moreover, protocols secure in the delegated setting are flexibly applicable in different
contexts, making it a very suitable framework. For example, non-delegateable (non-committed
input format) protocols which can only be performed by players knowing the input (cf.
[13, 23, 22]) cannot be transferred to the delegated setting and are hence unsuitable for
use with hidden intermediate results from previous computations. Hence, we protect the
output and do not assume knowledge of the inputs. This is a natural setting for card-based
cryptography, as all committed-format protocols in the literature achieve this notion, it
ensures that the protocols can be used in larger protocols, and it is at least as secure as the
other notions, due to the information-theoretic setting.

FUN 2021

17:14 Foundations for Actively Secure Card-Based Cryptography

The above definition of passive security is sufficient if players can be trusted to properly
execute the protocol. In that case any privatePerm action can directly be performed by the
specified player while the other player looks away. Of course, our main concern here is the
situation where looking away is not an option.

Permutation Security and Active Security

To argue about security in the presence of a malicious player, we must first discuss what such
a player may do. Doing this rigorously would require to closely model the physical world,
which allows for different threats than in the usual cryptographic settings. We certainly
have to assume physical restrictions, as otherwise we cannot achieve anything.6 For example,
as our security relies on the possibility of keeping face-down cards, we must assume that
an attacker does not resort to certain radical means that immediately and unambiguously
identify her as an attacker. (However, note that we can protect against such active attackers
which turn over cards by the generic “private circuit” compiler due to Ishai, Sahai, and
Wagner [5].) Hence, we can assume that she does not interfere with the correct execution of
perm and turn actions, nor does she, in open violation of the protocol, spontaneously seize or
turn over some of the cards or mark them in any way.

On the other hand we can plausibly argue that certain mechanisms are sufficient to
counter attacks other than those that our paper is concerned with. We may argue that the
cards could be put into envelopes, and any attempt to reveal its contents contrary to the
protocol will be countered by the cautious other players jumping in to physically abort the
protocol in that case.

Concerning an operation (privatePerm,Alice,Π,F(·)) with implemented Π, there is by
definition of implemented permutation set no possibility for Alice to perform a permutation
π 6∈ Π. If she causes a permutation protocol to fail, Bob aborts the execution before any
sensitive information is revealed. Otherwise, Alice is limited to disrespecting F(·). This is
captured as follows:

I Definition 4. Let P = (D, U,Q,A) be a two player protocol.
(i) A permutation attack ξ on P as player p ∈ {1, 2} specifies for each vertex v ∈ V (Q)

with an action of the form A(v) = (privatePerm, p,Π,F(·)), a permutation ξ(v) ∈ Π.
Replacing such F(·) with the (point) distributions that always choose ξ(v), yields the
attacked protocol Pξ.

(ii) An attack ξ is unsuccessful if the following holds. Whenever I ∈ U is a random
variable denoting an input and (I,O, T1, T2,W) and (I,Oξ, T ξ1 , T

ξ
2 ,W

ξ) are the resulting
execution traces of P and Pξ, then for any values i, o, w:

Pr[W ξ=w] > 0 =⇒ Pr[(I,Oξ)=(i, o) |W ξ=w] = Pr[(I,O)=(i, o)]. (?)

(iii) We say P is secure against permutation attacks if each permutation attack on P is
unsuccessful.

In light of our discussion above we finally define:

I Definition 5. A two player protocol P = (D, U,Q,A) has an actively secure implementation
if each permutation set Π occurring in a privatePerm action is implemented and P is secure
against permutation attacks.

6 We do not get ultimately strong guarantees for the physical actions such as in quantum cryptography,
where, if (a subset of) quantum theory is true, no adversary can predict a randomness source, no matter
what she does physically.

A. Koch and S. Walzer 17:15

Intuitively, a protocol has permutation security if: No matter what permutations a player
chooses (∀ξ), and no matter what the turn actions end up revealing (∀W ξ), the best guess
for the in- and output (distribution of (I,Oξ), given W ξ) is no different from what he would
have said, had he not been involved in the computation at all (distribution of (I,O)). We
make a few remarks.

Passively secure protocols terminate almost surely, otherwise O = ⊥ can be recognized
from an infinite path W . For similar reasons, a permutation attacker can never cause a
protocol with permutation security to run forever.7

In our definition, permutation attackers are deterministic without loss of generality.
Intuitively, if an attacker learns nothing no matter what ξ she chooses, then choosing ξ
randomly is just a fancy way of determining in what way she is going to learn nothing.
For similar reasons, permutation security implies passive security, since playing honestly
is just a weighted mixture of “pure” permutation attacks.
We cannot say anything if both players are dishonest or if they share their execution
traces with one another. We also cannot guarantee that player learns nothing if the other
player is dishonest.

Permutation Security from Passive Security

There is an important special case in which the powers of a permutation attacker turn
out to be ineffective, namely if the distributions F(Tp) never assign zero probability to a
permutation.

I Proposition 6. Let P = (D, U,Q,A) be a passively secure two player protocol where for
each action of form (privatePerm, p,Π,F(·)) and each permutation trace Tp of player p, F(Tp)
has support Π8. If for each attack ξ the attacked protocol Pξ terminates with probability 19,
then P is secure against permutation attacks.

Proof. Consider an attack ξ on P as player p ∈ {1, 2}, let I ∈ U be any random variable
denoting an input and (I,O, T1, T2,W) and (I,Oξ, T ξ1 , T

ξ
2 ,W

ξ) be the execution traces of P
and Pξ. Let w be any path in Q with Pr[W ξ = w] > 0 and t the permutation trace that ξ
prescribes for player p along w (whenever W ξ = w, then T ξp = t). For any i, o we have:

Pr[(I,Oξ) = (i, o) |W ξ = w] = Pr[(I,Oξ) = (i, o) | (T ξp ,W ξ) = (t, w)]
= Pr[(I,O) = (i, o) | (Tp ,W) = (t, w)]
= Pr[(I,O) = (i, o)].

From the first to the second line, note that firstly, since w is finite, the sequence t of choices
is finite as well, so, using the assumption that supp(F(Tp)) = Π in all cases, there is some
positive probability that an honest player behaves exactly like the attacker with respect to
this finite sequence of choices. Therefore, the conditional probability in the second line is
well defined. Secondly, the attacked protocol and the original protocol behave alike once we
fix the behavior of player p so we have the stated equality. From the second to the third line
we use the passive security of P. J

7 Protocols that almost surely output ⊥ are a pathological exception.
8 Otherwise, active attackers may pick π ∈ Π which honest players never choose.
9 this excludes a pathological case

FUN 2021

17:16 Foundations for Actively Secure Card-Based Cryptography

7 Implementing Mizuki–Shizuya Protocols

In [17], Mizuki and Shizuya’s self-proclaimed goal was to define a “computational model
which captures what can possibly be done with playing cards”. Hence, any secure real-world
procedure to compute something with playing cards can be formalized as a secure protocol
in their model.10 The other direction is not so clear. Given a secure protocol in the model,
can it be implemented in the real world? We believe the answer is probably “no” (or, at
least, not clearly “yes”). However, our work of identifying implementable actions in the two
player model implies that a very natural subset of actions in Mizuki and Shizuya’s model
is implementable, even with active security: uniform closed shuffles (see below). Note that
these shuffles already allow for securely computing any circuit [19].

Mizuki–Shizuya Protocols

We modify Mizuki and Shizuya’s model slightly: instead of state machine semantics we
stick to a tree of actions as in the two player model. This is an equivalent way of defining
protocols, cf. [7, Sects. 3 and 4].

A Mizuki–Shizuya protocol is a tuple P = (D, U,Q,A) similar to a two player protocol.
The actions perm, result and turn are available as before, but instead of privatePerm actions
there are shuffle actions of the form (shuffle,Π,F) where Π is a set of permutations and F
is a probability distribution on Π. Executing a protocol works as before, but there are no
separate permutation traces for players (there are no players at all), instead there is a single
permutation trace T . The actions perm, turn and result work as before. When an operation
(shuffle,Π,F) is encountered, a permutation π ∈ Π is chosen according to F (independent
from previous choices). This permutation π is applied to the current sequence of cards
without anyone learning π and appended to the permutation trace T .

For any input I ∈ U , an execution of a protocol is described by the execution trace
(I,O, T ,W) where O is the output (O = ⊥ if it did not terminate), T the permutation trace
and W the path of the execution in Q. It is assumed that only W is observed, suggesting
the following security notion:

I Definition 7 (Security of Mizuki–Shizuya Protocols). A Mizuki–Shizuya protocol P is secure
if for each random variable I ∈ U and resulting execution trace (I,O, T ,W) of the protocol,
(I,O) is independent from W .

Implementing Uniform Closed Mizuki–Shizuya Protocols

We call a shuffle (shuffe,Π,F) uniform if F is the uniform distribution on Π, and closed if Π
is a group. We call a Mizuki–Shizuya protocol uniform closed if each of its shuffle actions is
uniform and closed. We are ready to state our main theorem.

I Main Theorem. Let P = (D, U,Q,A) be a secure uniform closed Mizuki–Shizuya protocol.
Then there is a two player protocol P̂ = (D, U, Q̂, Â) with actively secure implementation
computing the same (possibly randomized) function as P.

Moreover, the implementation of P̂ uses as helping deck only J3 · ♠, (n − 3) · ♦K for
(generalized) coupled rotations and J♠, (n−1) ·♦K for chosen (pile) cuts. Here, n is the length
of the input sequences.

10Excluding the use case of non-committed input protocols from [13] and [23], where the input is provided
by a choice of privatePerm operations by a player, requiring input awareness/knowledge.

A. Koch and S. Walzer 17:17

We sketch the proof here and give the formal proof in Appendix B in the full version [10]. Each
uniform closed shuffle (shuffle,Π,U) of P is replaced by two actions (privatePerm, p,Π,U) for
p ∈ {1, 2}. For π2 ◦π1 to be uniformly random in Π, it suffices if π1 or π2 is chosen uniformly
random in Π (while the other is known). Therefore, the joint permutation applied to the
sequence after both privatePerm actions looks uniformly random to both players. Hence,
they learn nothing from the execution of P̂ that they would not have also learned from
executing P . Since P is secure, P̂ is passively secure and by Proposition 6 also secure against
permutation attacks. Moreover, by Proposition 2 all Π are implemented using the stated
helping decks, so P̂ has an actively secure implementation.

8 Active Input Security

In Section 6 we have argued that results for the delegated computation setting are also
applicable when players have (partial) knowledge of the input and we narrowed our focus
accordingly. In this section we take a second look at protocols where players provide the
input themselves. In some cases, this allows for simpler protocols with fewer cards, but it
also brings about specific issues regarding active security.

We do not attempt a formal definition of active security in this setting, leaving this open
for future work. To simplify notation, we restrict the presentation to cases with two possible
inputs for each player, denoted by 0 and 1.

Warm Up: Inputs in Standard Encoding

The standard encoding of binary inputs uses the card sequence ♣♥ to represent 0 and ♥♣
to represent 1. When expected to provide an input in this format, a malicious player could
provide marked cards or cards with altogether different symbols. Mizuki and Shizuya [18]
give special attention to detecting the inputs ♣♣ and ♥♥ that a malicious player might
provide when given several copies of otherwise uncompromised cards.

A simple solution is to place, for each player, the sequence ♣♥ on the table and give the
player the opportunity to swap the cards with no other player noticing. This is a chosen
cut and has an actively secure implementation as discussed in Section 3.1, though, arguably,
simpler procedures exist for this special case. After all players have provided their inputs, an
ordinary protocol expecting inputs in standard format is started.

Input by Permutation

We now turn to protocols that request the inputs of the players sequentially, and by performing
a permutation on the cards. In one case, we even require players to provide their input more
than once.

We capture this with an additional formal action of the form (inputPerm, p, π0, π1). When
it is encountered, player p should permute the current card sequence using the permutation
π0, if his input is 0, and using π1, if his input is 1. His choice should stay hidden from the
other players. Note that [9, Sect. 12.9] specifies a more general form of this action (not
limited to inputs of one bit), as well as a more general form of the corresponding state
diagrams (see below). Here, we chose to use a simplified version for ease of exposition.

Considered in isolation, the action is essentially identical to (privatePerm, p, {π0, π1}),
however, its role in the surrounding protocol and its relation to security notions is fundamen-
tally different: In the case of inputPerm, the player’s choice corresponds to her input and
may affect the output, while in the case of privatePerm, the choice is (in a secure protocol)
independent of input and output and may be (indirectly) leaked in subsequent actions.

FUN 2021

17:18 Foundations for Actively Secure Card-Based Cryptography

♣♣♥ X??

♣♣♥ X0?

♣♥♣ X1?

(inputPerm, 1, id, (2 3))

♣♣♥ X00 +X01

♣♥♣ X10

♥♣♣ X11

(inputPerm, 2, id, (1 2))

(result, 1)

X

♣♥ X??

♣♥ X0?

♥♣ X1?

(inputPerm, 1, id, (1 2))

♣♥ X00 +X11

♥♣ X01 +X10

(inputPerm, 2, id, (1 2))

(result, 1, 2)

X

Figure 8 On the left, we show the state diagram of a three-card AND protocol [13, Sect. 3.2]
with inputs provided by players. The result operation indicates that the first card is the output.
Here, ♥ stands for 1 and ♣ for 0. On the right is the state diagram of a two-card XOR protocol of
[22] in a similar spirit but the output is in standard format.

During a protocol execution, let the input trace Ip of a player p be the sequence of
permutations performed by p during her inputPerm actions encountered so far. To simplify
some diagrams in the following, we write ? for the empty input trace and 0 or 1 for non-empty
input traces of players that have (so far) always chosen the permutation corresponding to
the same input, i.e., have always chosen π0 or always π1.

Two Simple Examples: AND and XOR

We consider two very simple protocols for computing AND and XOR from [13, Sect. 3.2] and
[22], respectively, shown in Figure 8. The AND protocol starts with the sequence ♣♣♥. The
first player is expected to perform id or (2 3) if his input is 0 or 1, respectively. The second
player acts similarly, but on the first two cards. In total, the ♥ is moved to the first position
if and only if both players choose the permutation corresponding to input 1. The card in the
first position therefore encodes the AND of the two player’s input bits. Active security can
be achieved since inputPerm actions correspond to chosen cuts. The XOR protocol is even
simpler and easily generalizes to more than two players.

The shown state diagrams are adapted from [12]. Roughly speaking, each state shows
which combination of input traces give rise to which card sequence. For the purposes of this
section, an intuitive understanding is sufficient. For instance, in the initial state of the AND
protocol in Figure 8, the card sequence is ♣♣♥ and the input traces of both players are
empty, i.e. they are () = ?. This is represented by X??. In the second state the input trace of
player 1 could be 0 = (id) or 1 = ((2 3)) while the second player’s input trace is still empty.
The two possibilities are represented by X0? and X1? and are given next to the corresponding
possibilities for the card sequence. In the last state, we see that two possibilities for the
input traces may lead to the same card sequence. That card sequence is correspondingly
annotated with the sum of the two possibilities.

Majority Protocols and Two Types of Attacks

The majority function with an odd number of bits as input computes the value (0 or 1) that
makes up at least half of the inputs. Recently, Nakai et al. [22] proposed a protocol for
computing the majority of three bits using four cards with non-standard input and output
format. For comparison, note that among protocols where inputs and outputs are given in
standard format, the known protocol using the fewest cards for three-input majority is [26]

A. Koch and S. Walzer 17:19

with eight cards. In our terminology the protocol is given as the left state diagram of Figure 9.
The authors plausibly claim security in the honest-but-curious setting. It is, however, unclear
how active security could be achieved due to the permutation set {π0 = (2 3), π1 = (3 4)}
in the inputPerm action of player 2. We cannot think of a simple mechanism that allows
the player to perform π0 and π1 but prevents him from doing id or (2 4), and possibly also
(2 3 4) and (2 4 3).11

On the right of Figure 9, we depict the state diagram in the case where player 2 can
(illegally) perform id or (2 4) without being detected. In this attack scenario, player 2 can,
e.g., force the result to be 0 via applying id, when both other player’s inputs are 1.

♥♣♣♥ X???

♥♣♣♥ X0??

♣♥♣♥ X1??

(inputPerm, 1, id, (1 2))

♥♣♣♥ X00?

♥♣♥♣ X01?

♣♣♥♥ X10?

♣♥♥♣ X11?

(inputPerm, 2, (2 3), (3 4))

♥♣♣♥ X000 +X001

♥♣♥♣ X010

♣♣♥♥ X100

♣♥♥♣ X110 +X111

♥♥♣♣ X011

♣♥♣♥ X101

(inputPerm, 3, id, (2 3))

(result, 2)

X

♥♣♣♥ X???

♥♣♣♥ X0??

♣♥♣♥ X1??

(inputPerm, 1, id, (1 2))

♥♣♣♥ X00? +X0(id)?

♥♣♥♣ X01?

♣♣♥♥ X10?

♣♥♥♣ X11?

♥♥♣♣ X0((2 4))?

♣♥♣♥ X1((2 4))? +X1(id)?

(inputPerm, 2, (2 3), (3 4))

♥♣♣♥ X000 +X001 +X0(id)0 +X0(id)1

♥♣♥♣ X010 +X0((2 4))1

♣♣♥♥ X100 +X1((2 4))1 +X1(id)1

♣♥♥♣ X110 +X111

♥♥♣♣ X011 +X0((2 4))0

♣♥♣♥ X101 +X1((2 4))0 +X1(id)0

(inputPerm, 3, id, (2 3))

(result, 2)

X

Figure 9 State diagram of the three-inputs majority protocol from [22] on the left. The second
card encodes the result with ♥ standing for 1 and ♣ for 0. On the right we track the same protocol
when player 2 is an active attacker who can illegally perform id or (2 4) during his inputPerm action.

In Figure 10 we give an alternative four-card majority protocol, which is conceptually
very simple – similar to the AND protocol we saw before. Here each player cyclically rotates
the so-far relevant cards by one for input 1 and does nothing otherwise. If the majority of the
players did input 1, then the ♥ is in the first two positions. A shuffle of these two cards then
conceals which one it was. The protocol has the advantage of only using inputPerm operations
that are simple to implement with active security. The output is, however, encoded in an
unusual way with ♣♣ representing 0 and ♥♣ and ♣♥ both representing 1. Note that there
is a straightforward generalisation of the protocol to more than three inputs.

Finally, consider the three-card three-input majority protocol from [34] in Figure 11. All
permutation sets {π0, π1} of inputPerm actions can arguably be implemented with active
security. However, since players 1 and 2 each have two inputPerm actions assigned to them,
these players could choose their permutations incoherently, for instance, π0 in the first
inputPerm action and π1 in the second. In the state diagram we have tracked this possible

11We can implement any inputPerm action if the two permutations are encoded as in [11], and a sort
protocol is used to apply a chosen one of the two to the sequence of cards. For the present case this
would, however, require at least 6 helping cards.

FUN 2021

17:20 Foundations for Actively Secure Card-Based Cryptography

♣♣♣♥ X???

♣♣♣♥ X0??

♣♣♥♣ X1??

(inputPerm, 1, id, (3 4))

♣♣♣♥ X00?

♣♣♥♣ X10? +X01?

♣♥♣♣ X11?

(inputPerm, 2, id, (2 4 3))

♣♣♣♥ X000

♣♣♥♣ X100 +X010 +X001

♣♥♣♣ X110 +X101 +X011

♥♣♣♣ X111

(inputPerm, 3, id, (1 4 3 2))

♣♣♣♥ X000

♣♣♥♣ X100 +X010 +X001

♣♥♣♣ 1/2(X110 +X101 +X011 +X111)
♥♣♣♣ 1/2(X110 +X101 +X011 +X111)

(shuffle, 〈(1 2)〉)

(result, 1, 2)

X

Figure 10 State diagram of a three-inputs majority protocol. The idea is that players rotate the
sequence by one, if their input is 1, or do nothing otherwise. In the end, if more than one player
rotated, a heart ends up in the first or second position. An additional shuffle obscures which of both
is the case. The first two cards encode the output with ♥♣ and ♣♥ standing for 1, while ♣♣ stands
for 0.

attack for player 1, assuming the other players are honest. The occurrence of X(id,id)00 at the
outcome ♥♣♣ indicates that an output of 0 can occur even though players 2 and 3 have
both input 0 if player 1 (illegally) chooses the identity permutation in both his inputPerm
actions. It seems unlikely that there is a meaningful defense against such an attack that does
not substantially alter the protocol.

The case of 3-bit majority protocols shows that the question of how many cards are
required does not have a straightforward answer as it depends on the desired input and
output formats, the security requirements, and, if active security is desired also on whether
or not helping cards are counted that might be used in the implementation of the inputPerm
operations.

9 Conclusion

Central to our notion of active security is the concept of a permutation set implemented with
active security and choice, indicating that a player Alice can choose to perform a permutation
from the set while Bob can know that Alice did not cheat, but nothing else. We argued that
cuts and pile cuts have such an implementation and we used permutation protocols to build
more sophisticated procedures handling any group of permutations. Moreover, we defined
security for Mizuki–Shizuya protocols, active and passive security for our own two player
protocols and showed how secure Mizuki–Shizuya protocols using only uniform closed shuffles
can be transformed into actively secure two player protocols. This is a solid foundation for
actively secure card-based cryptography.

A. Koch and S. Walzer 17:21

♣♣♥ X???

♣♣♥ X0??

♣♥♣ X1??

(inputPerm, 1, id, (2 3))

♣♣♥ X00?

♣♥♣ X10? +X01?

♥♣♣ X11?

(inputPerm, 2, id, (1 3 2))

♣♣♥ X001 +X100 +X010

♣♥♣ X101 +X011 +X000

♥♣♣ X111 +X110

(inputPerm, 3, (2 3), id)

♣♣♥ X010 +X001 +X100

♣♥♣ X011

♥♣♣ X111 +X110 +X101 +X000

(inputPerm, 2, (1 2), id)

♣♣♥ X100 +X010 +X001 +X(id,id)10 +X(id,id)01 +X((2 3),(1 2))00

♣♥♣ X000 +X(id,id)11 +X((2 3),(1 2))11 +X((2 3),(1 2))10 +X((2 3),(1 2))01

♥♣♣ X111 +X110 +X101 +X011 +X(id,id)00

(inputPerm, 1, (1 2), id)

(result, 1)

X

Figure 11 State diagram of the three-inputs majority protocol from [34]. We track the case that
player 1 is an active attacker who may make incoherent choices during his two inputPerm actions.

Finally, we discuss protocols where input is given by the players via choosing a permutation,
including a corresponding adaptation of the state tree formalism, and present active attacks
on two majority protocols from the literature.

Open Problems

Some card-minimal protocols, e.g. the general k-ary boolean function protocol of [12], use
non-closed shuffles, with no evidence yet that this is necessary. As we have determined that
uniform closed shuffles are a natural shuffle class, which can be done actively secure, it is
interesting to find card-minimal protocols using only uniform closed shuffles.

Another natural problem is to implement more general shuffles, and even to characterize
the shuffles which are possible with (a linear number of) helping cards, and the assumption of
the security of a uniform random cut. To give one non-trivial example, we show in Appendix
D in the full version [10] how any subset of a cut can be implemented.

References

1 Yuta Abe, Yu ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Five-card and protocol in
committed format using only practical shuffles. In Keita Emura, Jae Hong Seo, and Yohei
Watanabe, editors, APKC@AsiaCCS 2018, pages 3–8. ACM, 2018. doi:10.1145/3197507.
3197510.

2 Eddie Cheung, Chris Hawthorne, and Patrick Lee. CS 758 project: Secure computation with
playing cards, 2013. URL: https://cdchawthorne.com/writings/secure_playing_cards.
pdf.

FUN 2021

https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1145/3197507.3197510
https://cdchawthorne.com/writings/secure_playing_cards.pdf
https://cdchawthorne.com/writings/secure_playing_cards.pdf

17:22 Foundations for Actively Secure Card-Based Cryptography

3 Claude Crépeau and Joe Kilian. Discreet solitary games. In Douglas R. Stinson, edi-
tor, CRYPTO ’93, volume 773 of LNCS, pages 319–330. Springer, 1993. doi:10.1007/
3-540-48329-2_27.

4 Bert den Boer. More efficient match-making and satisfiability: The five card trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT ’89, volume 434 of LNCS,
pages 208–217. Springer, 1989. doi:10.1007/3-540-46885-4_23.

5 Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481.
Springer, 2003. doi:10.1007/978-3-540-45146-4_27.

6 Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols for generating
a hidden random permutation without fixed points. In Cristian S. Calude and Michael J.
Dinneen, editors, UCNC 2015, volume 9252 of LNCS, pages 215–226. Springer, 2015. doi:
10.1007/978-3-319-21819-9_16.

7 Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu ichi Hayashi, Takaaki
Mizuki, and Hideaki Sone. The minimum number of cards in practical card-based protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, volume 10626 of LNCS,
pages 126–155. Springer, 2017. doi:10.1007/978-3-319-70700-6_5.

8 Alexander Koch. The landscape of optimal card-based protocols. IACR Cryptology ePrint
Archive, 2018. Report 2018/951. URL: https://eprint.iacr.org/2018/951.

9 Alexander Koch. Cryptographic Protocols from Physical Assumptions. PhD thesis, Karlsruhe
Institute of Technology (KIT), 2019. doi:10.5445/IR/1000097756.

10 Alexander Koch and Stefan Walzer. Foundations for actively secure card-based cryptography.
IACR Cryptology ePrint Archive, 2017. Report 2017/423. URL: https://eprint.iacr.org/
2017/423.

11 Alexander Koch and Stefan Walzer. Private function evaluation with cards. IACR Cryptology
ePrint Archive, 2018. Report 2018/1113. URL: https://eprint.iacr.org/2018/1113.

12 Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based cryptographic protocols using
a minimal number of cards. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
volume 9452 of LNCS, pages 783–807. Springer, 2015. doi:10.1007/978-3-662-48797-6_32.

13 Antonio Marcedone, Zikai Wen, and Elaine Shi. Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, 2015. Report 2015/1031. URL: https://eprint.iacr.org/2015/
1031.

14 Takaaki Mizuki. Card-based protocols for securely computing the conjunction of multiple
variables. Theoretical Computer Science, 622:34–44, 2016. doi:10.1016/j.tcs.2016.01.039.

15 Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone. Voting with a logarithmic number
of cards. In Giancarlo Mauri, Alberto Dennunzio, Luca Manzoni, and Antonio E. Porreca,
editors, UCNC 2013, volume 7956 of LNCS, pages 162–173. Springer, 2013. doi:10.1007/
978-3-642-39074-6_16.

16 Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card trick can be done
with four cards. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 598–606. Springer, 2012. doi:10.1007/978-3-642-34961-4_36.

17 Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security, 13(1):15–23, 2014.
doi:10.1007/s10207-013-0219-4.

18 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, FUN 2014, volume 8496 of LNCS, pages
313–324. Springer, 2014. doi:10.1007/978-3-319-07890-8_27.

19 Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card secure XOR. In Xiaotie
Deng, John E. Hopcroft, and Jinyun Xue, editors, FAW 2009, volume 5598 of LNCS, pages
358–369. Springer, 2009. doi:10.1007/978-3-642-02270-8_36.

https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/951
https://doi.org/10.5445/IR/1000097756
https://eprint.iacr.org/2017/423
https://eprint.iacr.org/2017/423
https://eprint.iacr.org/2018/1113
https://doi.org/10.1007/978-3-662-48797-6_32
https://eprint.iacr.org/2015/1031
https://eprint.iacr.org/2015/1031
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-642-02270-8_36

A. Koch and S. Walzer 17:23

20 Tal Moran and Moni Naor. Polling with physical envelopes: A rigorous analysis of a human-
centric protocol. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
88–108. Springer, 2006. doi:10.1007/11761679_7.

21 Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. Theoretical
Computer Science, 411(10):1283–1310, 2010. doi:10.1016/j.tcs.2009.10.023.

22 Takeshi Nakai, Satoshi Shirouchi, Mitsugu Iwamoto, and Kazuo Ohta. Four cards are
sufficient for a card-based three-input voting protocol utilizing private permutations. In
Junji Shikata, editor, ICITS 2017, volume 10681 of LNCS, pages 153–165. Springer, 2017.
doi:10.1007/978-3-319-72089-0_9.

23 Takeshi Nakai, Yuuki Tokushige, Yuto Misawa, Mitsugu Iwamoto, and Kazuo Ohta. Efficient
card-based cryptographic protocols for millionaires’ problem utilizing private permutations.
In Sara Foresti and Giuseppe Persiano, editors, CANS 2016, volume 10052 of LNCS, pages
500–517, 2016. doi:10.1007/978-3-319-48965-0_30.

24 Valtteri Niemi and Ari Renvall. Secure multiparty computations without computers. Theoretical
Computer Science, 191(1-2):173–183, 1998. doi:10.1016/S0304-3975(97)00107-2.

25 Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Card-based protocols for
any boolean function. In Rahul Jain, Sanjay Jain, and Frank Stephan, editors, TAMC 2015,
volume 9076 of LNCS, pages 110–121. Springer, 2015. doi:10.1007/978-3-319-17142-5_11.

26 Takuya Nishida, Takaaki Mizuki, and Hideaki Sone. Securely computing the three-input
majority function with eight cards. In Adrian Horia Dediu, Carlos Martín-Vide, Bianca Truthe,
and Miguel A. Vega-Rodríguez, editors, TPNC 2013, volume 8273 of LNCS, pages 193–204.
Springer, 2013. doi:10.1007/978-3-642-45008-2_16.

27 Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. An implementation
of non-uniform shuffle for secure multi-party computation. In AsiaPKC 2016, pages 49–55.
ACM, 2016. doi:10.1145/2898420.2898425.

28 Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Five-card secure computations using unequal division shuffle. In Adrian Horia Dediu, Luis
Magdalena, and Carlos Martín-Vide, editors, TPNC 2015, volume 9477 of LNCS, pages
109–120. Springer, 2015. doi:10.1007/978-3-319-26841-5_9.

29 Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Card-based protocols using unequal division shuffles. Soft Computing, 22(2):361–371, 2018.
doi:10.1007/s00500-017-2858-2.

30 Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Secure multi-party computation using
polarizing cards. In Keisuke Tanaka and Yuji Suga, editors, IWSEC 2015, volume 9241 of
LNCS, pages 281–297. Springer, 2015. doi:10.1007/978-3-319-22425-1_17.

31 Anton Stiglic. Computations with a deck of cards. Theoretical Computer Science, 259(1-2):671–
678, 2001. doi:10.1016/S0304-3975(00)00409-6.

32 Itaru Ueda, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
How to implement a random bisection cut. In Carlos Martín-Vide, Takaaki Mizuki,
and Miguel A. Vega-Rodríguez, editors, TPNC 2016, pages 58–69. Springer, 2016. doi:
10.1007/978-3-319-49001-4_5.

33 Tom Verhoeff. The zero-knowledge match maker, 2014. URL: https://www.win.tue.nl/
~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf.

34 Yohei Watanabe, Yoshihisa Kuroki, Shinnosuke Suzuki, Yuta Koga, Mitsugu Iwamoto, and
Kazuo Ohta. Card-based majority voting protocols with three inputs using three cards. In
International Symposium on Information Theory and Its Applications, ISITA 2018, pages
218–222. IEEE, 2018. doi:10.23919/ISITA.2018.8664324.

FUN 2021

https://doi.org/10.1007/11761679_7
https://doi.org/10.1016/j.tcs.2009.10.023
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1145/2898420.2898425
https://doi.org/10.1007/978-3-319-26841-5_9
https://doi.org/10.1007/s00500-017-2858-2
https://doi.org/10.1007/978-3-319-22425-1_17
https://doi.org/10.1016/S0304-3975(00)00409-6
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://doi.org/10.23919/ISITA.2018.8664324

Hyperbolic Minesweeper Is in P
Eryk Kopczyński
Institute of Informatics, University of Warsaw, Poland
http://www.mimuw.edu.pl/~erykk/
erykk@mimuw.edu.pl

Abstract
We show that, while Minesweeper is NP-complete, its hyperbolic variant is in P. Our proof does not
rely on the rules of Minesweeper, but is valid for any puzzle based on satisfying local constraints on
a graph embedded in the hyperbolic plane.

2012 ACM Subject Classification Theory of computation → Representations of games and their
complexity; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Minesweeper

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.18

1 Introduction

(a) graphical mode, bitruncated tessellation.

1

1

1

1

21
1

1

1
2

2 1
1

1
.

.

3
2

2
.

.

.

.

.

.

.

1
1

1
22

..
..

.

.
.

.
.

.

1

1

2

1

1

1

1
1

1
1

1
1

2
1 2

1
. . 1 1 1 . .

. .
. .

.

. .
.

.
.

. .
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
2

3
1

1
2

2
1

2

1
11

..
...

..
.....

..
...

..
.

.
.

..
.

.
.

.
.

.

.
.

.

.
.

.
.

.

.

.

.

1

.

.

.

.

1

1

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.
.

.
.

.

.
.

.
.

.

.
. .

.
.

.
. .

.
.

.
. .

.
. .

. .
.

. .
. . .

. .
. . .

. .
. . .

.
. . .

. .
. . .

. .
.

. . .

. .
. . .

. .
. .

.

. .
.

. .
. .

.

. .
.

.
.

. .
.

.
.

. .
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
..

.
.

.
..

.
..

..
.

..
..

.
..

...
..

.....
.....

.....
...

..
...

..
...

..
.

..
..

.
..

.

.
.

..
.

.
.

..
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
. .

.
.

.
.

.
.

. .
.

.

.
. .

.
.

.
. .

.
. .

.
.

.
. .

.
.

.
. .

.
. .

. .
.

. .
.

. .
. .

.
. .

. .
.

. .
.

. .
. .

.
. .

. . .
. .

. . .
. .

.
. .

. . .
. .

. . .
. .

. . .
. . .

. .
. . .

. .
. . .

. . .
. .

. . .
. .

. . .
.

. . .
. .

. . .
. .

. . .
.

. . .
. .

. . .

. .
. . .

. . .

. .
. . .

. .
. . .

. .
.

. .
. .

.

. .
. . .

. .
.

. .
. .

.

. .
.

.
.

. .
.

. .
. .

.

. .
.

.
.

. .
.

. .
.

.
.

. .
.

.
.

. .
.

.
.

.

.
.

. .
.

.
.

. .
.

.
.

.

.
.

. .
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

..
.

.
.

.
.

.
..

.
.

.
..

.
.

.
..

.
..

.
.

.
..

.
..

..
.

..
.

.
.

..
.

..
..

.
..

..
.

..
...

..
...

.....
...

..
...

.....
.....

...
.....

.....
.....

...
.....

.....
...

..
...

.....
...

..
...

..
...

...
..

...
..

.
..

..
.

..
..

.
..

.
..

..
.

..
.

.
.

..
.

.
.

..
.

..
.

.
.

..
.

.
.

..
.

.
.

.

.
.

..
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) text mode, regular tessellation.

Figure 1 Hyperbolic Minesweeper [7]. In (a), the default settings are used (bitruncated order-3
heptagonal tessellation, numbers of adjacent mines are color-coded; some of the mines that the
players is sure of are marked red). In (b) we play on an order-3 heptagonal tessellation, and numbers
are shown.

Minesweeper is a popular game included with many computer systems; it also exists in
the puzzle form. In the puzzle form, every cell in a square grid either contains a number or
is empty. The goal of the puzzle is to assign mines to the empty squares in such a way that
every number n is adjacent (orthogonally or diagonally) to exactly n mines.

This puzzle is a well-known example of a NP-complete problem [6]. Its popularity has also
spawned many variants played on different grids, from changing the tessellation of the plane,
to changing the number of dimensions (six-dimensional implementations of Minesweeper
exist) to changing the underlying geometry.

© Eryk Kopczyński;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 18; pp. 18:1–18:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5588-1181
http://www.mimuw.edu.pl/~erykk/
mailto:erykk@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.FUN.2021.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Hyperbolic Minesweeper Is in P

In this paper we will be playing Minesweeper on a tessellation of the hyperbolic plane.
Minefield, a land based on hyperbolic Minesweeper is available in HyperRogue [7]; this
implementation differs from the standard Minesweeper in multiple ways, e.g., by being played
on an infinite board, however, the basic idea is the same. Another implementation is Warped
Mines for iOS [14], which has the same rules as the usual Minesweeper except the board,
which is a bounded subset of the order-3 heptagonal tiling of the hyperbolic plane.

From the point of view of a computer scientist, the most important distinctive property of
hyperbolic geometry is exponential growth: the area of a circle of radius r grows exponentially
with r. It is also more difficult to understand than Euclidean geometry. While these properties
often cause computational geometry problems to be more difficult, it also gives hyperbolic
geometry applications in data visualization [8, 10] and data analysis [11].

In this paper we show that hyperbolic geometry makes Minesweeper easier: the hyperbolic
variant of Minesweeper is in P. Our proof will not rely on the specific rules of Minesweeper
nor work with any specific tessellation of the hyperbolic plane; instead, it will work with any
puzzle based on satisfying local constraints, on any graph that naturally embeds into the
hyperbolic plane.

2 Hyperbolic Geometry

We denote the hyperbolic plane with H2. Since this paper requires only the basic under-
standing of hyperbolic geometry, we will not include the formal definition; see [2], or [7]
for an intuitive introduction. Figures 1 and 2 shows the hyperbolic plane in the Poincaré
disk model, which is a projection which represents angles faithfully, but not the distances:
the scale gets smaller and smaller as we get closer to the circle bounding the model. In
particular, all the heptagons in Figure 1b are the same size, all the heptagons in Figure
1a are the same size, and all the hexagons in Figure 1a are the same size. We denote the
distance between two points x, y ∈ H2 by δ(x, y). The set of points in distance at most r
from x is denoted with B(x, r). The area of B(x, r) is 2π(cosh r − 1), which we denote with
area(r). The perimeter of B(x, r) is 2π sinh r, which we denote with peri(r). Note that both
area and peri grow exponentially: area(r) = Θ(er) and peri(r) = Θ(er).

0

1
1

1

1 1

1

1

11
2

1

1

2

1

1
2

1
1 2 1

1

2
1

1

2

1

1
2

11211
21

21
1

2
1

1

2

1

2

1

1

2

1

1
2

1
2

1
1 2

1 1 2 1 2 1 1

2 1
1

2
1

2
1

1

2
1

1

2

1

2
1

1

2
1

12
12

112
1121211

211
21

21
1

2
1

21
1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1
2

1
2

1

1
2

1
2

1
1

2
1

1 2
1 2

1
1 2

1 1 2 1 2
1 1

2 1 2 1 1
2 1

1

2 1
2 1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2
1

1

2

1
2

1
1

2
1

12
1

2
1

12
12

112
112

12
112

11212
11

21211
211

21
211

211
21

21
1

21
21

1
21

1

2
1

21
1

2
1

21
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1
2

1

2

1

1
2

1
2

1

1
2

1
1

2

1
2

1
1

2

1
2

1
1

2
1

1 2
1

2
1

1 2
1

1 2
1 2

1
1 2

1 2
1

1 2
1 1 2

1 2
1 1 2

1 1 2 1 2
1 1 2 1 2

1 1 2 1 1
2 1 2 1 1

2 1 2 1 1
2 1 1

2 1
2 1 1

2 1
1

2 1
2 1

1

2 1
2 1

1

2 1
1

2
1

2 1
1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2
1

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

1

2

1

2
1

1
2

1
2

1
1

2
1

1
2

1
2

1
1

2
1

12
1

2
1

12
1

2
1

12
1

12
12

1
12

12

Figure 2 Exponential growth in the hyperbolic plane.

E. Kopczyński 18:3

We include Figure 2 as a simple introduction to the structure of the hyperbolic plane
and its exponential growth. This is the order-3 heptagonal tessellation [9]. The numbers
correspond to the number of adjacent tiles which are closer to the center tile. This tessellation
can be constructed as follows. We construct a tree of tiles: the central tile has seven children
of type 1; each tile of tile 1 has two children of type 1, and one child of type 2; each tile of
tile 2 has one child of type 1 and one child of type 2. To produce the actual tessellation, we
also connect adjacent tiles on the same level, and to the leftmost child of the tile on the right.
The hyperbolic plane can be seen as a continuous version of the graph obtained using this
construction. Since every tile has at least two children, there are exponentially many tiles in
r steps from the central tile.

3 Hyperbolic Graph

We need a suitable definition of a hyperbolic graph. The obvious definition, obtained by
changing “plane” to “hyperbolic plane” in the definition of a planar graph, is equivalent to
the definition of the planar graph (the plane and the hyperbolic plane are homeomorphic).
Another definition found in literature is the notion of Gromov δ-hyperbolic graph [1]; this
definition is based on the observation that, in the hyperbolic plane, triangles are thin, i.e.,
for any three vertices a, b, c, every point on any shortest path from a to c must be in
distance at most δ from either the shortest path from a to b, or the shortest path from b to
c. The parameter δ measures tree-likeness of the graph (it can be easily seen that trees are
0-hyperbolic). However, this definition is not suitable for us, because every graph G becomes
2-hyperbolic when we add a vertex v∗ connected to every v ∈ V (G); our main result is not
true for such graphs. We propose the following definition:

I Definition 1. A (r, d)-hyperbolic graph is a graph G = (V,E) such that there exists an
embedding m : V → H2 such that:

for v1 6= v2, δ(m(v1),m(v2)) > r,
for {v1, v2} ∈ E, δ(m(v1),m(v2)) < d,
if we draw every edge {v1, v2} ∈ E as a straight line segment between m(v1) and m(v2),
these edges do not cross, nor they get closer to vertices other than v1 or v2 than r/2.

Intuitively, r/2 is the radius of every vertex; this parameter bounds the density of our
graph embedding. The parameter d gives the maximum distance between two vertices
connected with an edge.

This definition includes finite subsets of all regular and semiregular hyperbolic tessellations
(such as the ones shown in Figure 1). We denote N(v) to be the neighborhood of v ∈ V , i.e.,
{v} ∪ {w ∈ V : {v, w} ∈ E}. (Our proof also works with neighborhoods of larger radius.)

Remark. All (r, d)-hyperbolic graphs have degree bounded by a constant (for fixed r, d).
Indeed, let v ∈ V . For every w ∈ N(v), the circles B(w, r

2) are disjoint, and they fit in
B(v, d+ r

2). Therefore, |N | ≤ area(d+ r
2)/area(r

2).

4 Hyperbolic Local Constraint Satisfaction Problem

Below we state our main result.

I Theorem 2. Fix the set of colors K and the parameters (r, d). The following problem
(Hyperbolic Local Constraint Satisfaction Problem, HLCSP) can be solved in polynomial time:

INPUT:
a (r, d)-hyperbolic graph G = (V,E);
for every vertex v ∈ V , m(v), a subset of KN(v).

FUN 2021

18:4 Hyperbolic Minesweeper Is in P

OUTPUT: Is there a coloring c : V → K such that for every v ∈ V , c|N(v) ∈ m(v)?

HLCSP generalizes hyperbolic minesweeper. We have two colors (no mine and mine),
and for every v ∈ V containing a number k, the constraint m(v) says that v contains no
mine itself, and exactly k vertices in N(v) contain a mine.

To prove Theorem 2, it is enough to prove that the following problem (HECSP) is in P.

I Theorem 3. HLCSP reduces to the Hyperbolic Edge Constraint Satisfaction Problem
(HECSP) given as follows:

INPUT:
a (r, d)-hyperbolic graph G = (V,E);
for every edge e ∈ E, m(e), a subset of Ke.

OUTPUT: Is there a coloring c : V → K such that for every e ∈ E, c|e ∈ m(e)?
(Note: this reduction changes the set of admissible colors K.)

Proof. Let (G,m) be the instance of HLCSP. We will be coloring V using colors K ′ =
{1, . . . , k}, where k is the greatest number of elements of m(v) (since (r, d)-hyperbolic graphs
have bounded degree and K is fixed, k is also bounded). Enumerate every elements of m(v)
with one color from K ′. For e = {v1, v2} ∈ E, m(e) is the set of all colorings c : {v1, v2} → K

which are consistent, i.e., k1 denotes c1 ∈ m(v1) and k2 denotes c2 ∈ m(v2), and c1 equals c2
on all the vertices in N(v1) ∩N(v2). J

5 Proof of Theorem 2

We will be using the following result [12, 3]:

I Theorem 4. Given a planar graph G = (V,E) and a number t, it is possible to either find
a t× t grid as a minor of G, or produce a tree decomposition of G of width ≤ 5t− 6, in time
O(n2 log(n)), where n = |V |.

I Definition 5. A tree decomposition of width w of a graph G = (V,E) is (VT , ET , X)
where (VT , ET) is a tree, and X : VT → P (V) is a mapping which assigns a subset of V of
cardinality at most w + 1 to every vertex in VT , such that:

For every v ∈ V , the set of vertices b ∈ VT such that v ∈ Xb is connected,
For every e ∈ E, there exists a b ∈ VT such that e ⊆ Xb.

We can assume that our tree is rooted in r ∈ VT . For b ∈ VT , let X+
b be the union of Xb′

for all b′ which are descendants of b.

I Lemma 6. Without loss of generality we can assume that every b ∈ VT falls into one of
the following cases:

b is a leaf and |Xb| = 1,
b has a single child b′ and Xb′ = Xb ∪ {v},
b has a single child b′ and Xb′ = Xb − {v},
b has two children b1 and b2, Xb = Xb1 = Xb2 , and X+

b1
−Xb and X+

b2
−Xb are non-empty

and disjoint.

I Theorem 7. If a (r, d)-hyperbolic graph G contains a t × t grid as a minor, then t =
O(log(V (G)).

E. Kopczyński 18:5

Proof. Without loss of generality we can assume t = 2k + 1. Such a t× t grid contains k
cycles around the center of the grid. Let vc ∈ V be the vertex corresponding to this center.
We have k cycles C1, . . . , Ck in the graph V , each of which surrounds vc and the preceding
cycles. We use the following lemma:

I Lemma 8. Every point in the drawing of cycle Ci is in distance Ω(i) from v. (The drawing
is the polygon obtained as a union of the edges embedded in H2.)

Therefore, |Ci| ≥ peri(Ω(i))/d. Since peri grows exponentially, we get k = O log(|V |). J

Proof of Lemma 8. We will show that if every point in the drawing of Ci is in distance
at least x from v, then every point in the drawing of Ci+1 is in distance x+ c from v. By
induction, this is enough to prove Lemma 8.

Figure 3 shows what happens for an Euclidean graph. (We define Euclidean graph just
like hyperbolic graph except the differing underlying geometry.) In this picture, the drawing
of Ci is a hexagon; cycle Ci has six vertices around vc. For each of these seven vertices the
exclusion zone of radius r/2 around it is shown (in green). It is clear from the picture (and
the definition of Euclidean graph) that no point in the drawing of Ci+1 may fall into the
gray/green region. All points in distance ≤ r/2 from Ci fall in the gray/green region, thus
our claim is true for c = h = r/2.

In the hyperbolic plane the situation is slightly different. Because parallel lines work
differently in the hyperbolic plane (they “diverge”), we have c = h < r/2, where h depends
on r and d (we have h = Θ(re−d) for large values of d). Still, our claim holds with c > 0. J

I Corollary 9. Given a planar graph G = (V,E), it is possible to find a tree decomposition
of width O(log |V |) in polynomial time.

Proof. From Theorem 7 choose t = O(log |V |) such that G does not contain a k × k grid.
From Theorem 4, it is possible to find a tree decomposition of width 5t− 6 = O(log |V |). J

I Corollary 10. HECSP (and thus HLCSP) can be solved in polynomial time.

Proof. From Corollary 9 we can find a tree decomposition (VT , ET , B) of width w =
O(log |V |). Then we use Dynamic Programming over (VT , ET). For every b ∈ VT , we
compute s(w), the set of all possible colorings c : Xb ∈ K such that there exists a coloring
c : X+

b which extends c and which satisfies all the constraints on edges in X+
b . This can be

computed straightforwardly in every case from Lemma 6. The whole algorithm works in
O(|V | · |K|w), which is polynomial in |V |. J

vc

h

Figure 3 Cycles around vc.

FUN 2021

18:6 Hyperbolic Minesweeper Is in P

(a) two yellow. (b) one group. (c) two groups. (d) four groups.

Figure 4 Random colorings satisfying various constraints. Since the degree of our polynomial is
quite high, these pictures took about a minute to make. Some cells have been removed from the full
disk to reduce the treewidth.

6 Conclusion

We have shown that Minesweeper on hyperbolic tessellations can be solved in polynomial
time. Our method is general: it works for any (r, d)-hyperbolic graph, and for any problem
based on satisfying local constraints. Other than solving puzzles, this may be applied to
procedural content generation. For example, the Wave Function Collapse (WFC) algorithm
[4, 5] is used in procedurally generated games to procedurally generate maps satisfying
local constraints (e.g., a mountain should not appear close to ocean, or roads should not
branch nor end abruptly). In general finding out whether such constraints can be satisfied is
NP-complete (although this does not happen in typical PCG applications). Our algorithm
can be adjusted to count the number of satisfying colorings, and to produce one of them,
randomly chosen (Figure 4).

Our results do not generalize to the three-dimensional hyperbolic space H3. This is because
the Euclidean plane can be isometrically embedded in the three-dimensional hyperbolic space
H3 as a horosphere. Minesweeper played on a tiling which tessellates such a horosphere into
squares is NP-complete.

HyperRogue also lets the player play Minesweeper in bounded hyperbolic manifolds, such
as the Klein quartic or other Hurwitz manifolds. Hurwitz manifolds are quotient spaces of
H2 which can be tiled with regular heptagons with angles 120◦ (see Figure 1b), and that
are maximally symmetric, i.e., there exists an isometry of the Hurwitz manifold M into
itself which map any heptagon with any orientation into any heptagon with any orientation.
Tessellations of quotient space are no longer planar, thus Theorem 4 nor our proof of Theorem
7 is no longer valid in quotient spaces of H2. Therefore, the complexity of Minesweeper
on such manifolds does not follow from our results. There are less symmetric hyperbolic
manifolds into which the Euclidean square grid, or even higher-dimensional Euclidean grids,
can be embedded [13], and thus Minesweeper on them is NP-complete; however, highly
symmetric manifolds have a more restricted structure.

References
1 Sergio Bermudo, José M. Rodríguez, José M. Sigarreta, and Jean-Marie Vilaire. Gromov

hyperbolic graphs. Discrete Mathematics, 313(15):1575–1585, 2013. doi:10.1016/j.disc.
2013.04.009.

2 James W. Cannon, William J. Floyd, Richard Kenyon, Walter, and R. Parry. Hyperbolic
geometry. In In Flavors of geometry, pages 59–115. University Press, 1997. Available online at
http://www.msri.org/communications/books/Book31/files/cannon.pdf.

https://doi.org/10.1016/j.disc.2013.04.009
https://doi.org/10.1016/j.disc.2013.04.009
http://www.msri.org/communications/books/Book31/files/cannon.pdf

E. Kopczyński 18:7

3 Alexander Grigoriev. Tree-width and large grid minors in planar graphs. Discrete Mathematics
& Theoretical Computer Science, 13:13–20, January 2011.

4 Maxim Gumin. WaveFunctionCollapse, 2017. URL: https://github.com/mxgmn/
WaveFunctionCollapse.

5 Isaac Karth and Adam M. Smith. WaveFunctionCollapse is Constraint Solving in the Wild. In
Proceedings of the 12th International Conference on the Foundations of Digital Games, FDG
’17, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3102071.
3110566.

6 Richard Kaye. Minesweeper is np-complete. The Mathematical Intelligencer, 22(2):9–15,
March 2000. doi:10.1007/BF03025367.

7 Eryk Kopczyński, Dorota Celińska, and Marek Čtrnáct. Hyperrogue: Playing with hyperbolic
geometry. In David Swart and Carlo H. Séquin and Kristóf Fenyvesi, editor, Proceedings of
Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, pages 9–16, Phoenix,
Arizona, 2017. Tessellations Publishing. Available online at http://archive.bridgesmathart.
org/2017/bridges2017-9.pdf.

8 John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’95, pages 401–408, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co. doi:10.1145/223904.223956.

9 Maurice Margenstern. Pentagrid and heptagrid: the fibonacci technique and group theory.
Journal of Automata, Languages and Combinatorics, 19(1-4):201–212, 2014. doi:10.25596/
jalc-2014-201.

10 Tamara Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Computer Graphics
and Applications, 18(4):18–23, 1998. doi:10.1109/38.689657.

11 Fragkiskos Papadopoulos, Maksim Kitsak, M. Angeles Serrano, Marian Boguñá, and Dmitri
Krioukov. Popularity versus Similarity in Growing Networks. Nature, 489:537–540, September
2012.

12 N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal of
Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

13 Zeno Rogue. HyperRogue: Experiments with Geometry, 2020. URL: http://www.roguetemple.
com/z/hyper/geoms.php.

14 Sci-Tech Binary Ltd. Co. Warped mines, 2019. URL: https://apps.apple.com/br/app/
hypersweeper/id1450066199.

FUN 2021

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1007/BF03025367
http://archive.bridgesmathart.org/2017/bridges2017-9.pdf
http://archive.bridgesmathart.org/2017/bridges2017-9.pdf
https://doi.org/10.1145/223904.223956
https://doi.org/10.25596/jalc-2014-201
https://doi.org/10.25596/jalc-2014-201
https://doi.org/10.1109/38.689657
https://doi.org/10.1006/jctb.1994.1073
http://www.roguetemple.com/z/hyper/geoms.php
http://www.roguetemple.com/z/hyper/geoms.php
https://apps.apple.com/br/app/hypersweeper/id1450066199
https://apps.apple.com/br/app/hypersweeper/id1450066199

Train Tracks with Gaps
William Kuszmaul
Massachusetts Institute of Technology, CSAIL, Cambrige, MA, USA
kuszmaul@mit.edu

Abstract
We identify a tradeoff curve between the number of wheels on a train car, and the amount of track
that must be installed in order to ensure that the train car is supported by the track at all times.
The goal is to build an elevated track that covers some large distance `, but that consists primarily
of gaps, so that the total amount of feet of train track that is actually installed is only a small
fraction of `. In order so that the train track can support the train at all points, the requirement is
that as the train drives across the track, at least one set of wheels from the rear quarter and at least
one set of wheels from the front quarter of the train must be touching the track at all times.

We show that, if a train car has n sets of wheels evenly spaced apart in its rear and n sets of
wheels evenly spaced apart in its front, then it is possible to build a train track that supports the
train car but uses only Θ(`/n) feet of track. We then consider what happens if the wheels on the
train car are not evenly spaced (and may even be configured adversarially). We show that for any
configuration of the train car, with n wheels in each of the front and rear quarters of the car, it is
possible to build a track that supports the car for distance ` and uses only O

(
` log n

n

)
feet of track.

Additionally, we show that there exist configurations of the train car for which this tradeoff curve
is asymptotically optimal. Both the upper and lower bounds are achieved via applications of the
probabilistic method.

The algorithms and lower bounds in this paper provide simple illustrative examples of many of
the core techniques in probabilistic combinatorics and randomized algorithms. These include the
probabilistic method with alterations, the use of McDiarmid’s inequality within the probabilistic
method, the algorithmic Lovász Local Lemma, the min-hash technique, and the method of conditional
probabilities.

2012 ACM Subject Classification Theory of computation

Keywords and phrases probabilistic method, algorithms, trains, Lovász Local Lemma, McDiarmid’s
Inequality

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.19

Funding Funded by a Fannie and John Hertz Fellowship and an NSF GRFP fellowship. Research
also was sponsored by the United States Air Force Research Laboratory and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Acknowledgements The author would like to thank Michael A. Bender, Bradley C. Kuszmaul, and
Charles E. Leiserson for several useful conversations about train tracks. The author would also like
to thank Jake Hillard for offering his engineering expertise, and observing that train tracks with an
asymptotically small number of pillars would likely encounter practical difficulties in the real world.

A Gap in the Track
A few years ago, while traveling on a train, and on only a few hours of sleep, I was staring
out the window. The train crossed a bridge over a road, and the ground was momentarily
replaced by a steep drop. Startled, my sleep-deprived mind briefly wondered whether there
was still a track underneath us. Of course there is, I thought to myself. Without a track, the
train car would have fallen into the gap.

© William Kuszmaul;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 19; pp. 19:1–19:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kuszmaul@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Train Tracks with Gaps

Ah, no so fast! responded the latent mathematician inside me. If the train car had more
than two sets of wheels, then perhaps it could cross the bridgeless gap without falling in. It
was true.

Consider, for example, a train with four sets of wheels: one set in the rear, one set in the
front, and one set in each of the first and third quartiles.

As long as the gap in the track is less than the distance between any pair of wheels, then
at least three sets of wheels will touch track at all times. Assuming that the center of mass of
the train is in the middle half of the train, it follows that the train does not fall into the gap.

In fact, continued the latent mathematician, what if we have n sets of wheels? Maybe we
can build a mono-rail using an asymptotically small amount of track.

That’s a stupid idea, responded I. Gaps in train track are not something to optimize.
But I was sleep deprived, so I did it anyway.

The Basic Observation: More Wheels Means Less Track

Consider a train car with 2n sets of wheels. Half the sets are evenly dispersed across the
first quarter of the train car, and half the sets are evenly dispersed across the final quarter.
The train can safely drive down the track as long as at least one set of wheels from each side
of the train car is touching track at all times. The train car looks something like this:

n wheels n wheels

Want to build a monorail, but you’re short on track? No problem! You can get away
with filling in only an O(1/n) fraction of the track:

W. Kuszmaul 19:3

Every fourth of a train length, we place a piece of track whose length is a 1
4n fraction of

the length of the train car. We get asymptotic cost savings!
To see that this is the best we can do, suppose that the fraction of track that is filled in

is less than 1
n , and for symmetry sake suppose the track is circular (i.e., the end of the track

loops back to the start). If we place the train at a random position in the circular track,
then each wheel has a less than 1

n chance of touching track. By a union bound, it follows
that the probability of any wheel in the rear quarter of the train touching the track is less
than 1. Thus no matter how the track is placed, if the total fraction of track that is filled in
is less than 1

n , then there is some position at which the train falls through.

Paper Outline

The rest of the paper considers the situation in which the wheels on the train car are placed
unevenly (and possibly even adversarially!) in each of the front and rear quarters of the
car. Section 1 describes the problem in more detail, and shows that for any configuration of
the train car, with n wheels in each of the front and rear quarters of the car, it is possible
to efficiently build a track that supports the car for distance ` and uses only O

(
` log n

n

)
feet of track. Section 2 then establishes a matching lower bound, showing that there exist
configurations of the train car for which Ω

(
` log n

n

)
feet of track are required. Both the upper

and lower bounds are achieved via applications of the probabilistic method.
The train-track problem serves as a veritable playground for applying many of the core

techniques from probabilistic combinatorics and randomized algorithms to a simple and
fun problem. Section 3 give three alternative algorithms for achieving the upper bound of
O
(

` log n
n

)
, each of which builds on a different technique.

Combined, the algorithms and lower bounds in this paper give simple illustrative examples
of the algorithmic Lovász Local Lemma, the min-hash technique, the method of conditional
probabilities, the probabilistic method with alterations, and the use of McDiarmid’s inequality
within the probabilistic method.

1 Train Cars with Arbitrary Wheel Arrangements

Consider a train car that has n wheels in its rear quarter and n wheels in its front quarter,
but suppose that the wheels aren’t evenly spaced. For example, maybe the rear of the car
looks something like this:

FUN 2021

19:4 Train Tracks with Gaps

Rear Quarter of Train Car

Can we still fill in an asymptotically small fraction of the track in a way that will allow
the train car to drive down the track? In other words, can we place down a small amount of
track in a way so that, as the train drives down it there is always at least one wheel from
each of the front and rear quarters of the train touching track? It turns out that, via a simple
application of the probabilistic method with alterations, we can.

To formalize the situation, let’s focus just on the first quarter of the train. (In particular,
up to a constant factor in the amount of train track that we install, we can consider the
two quarters of the train separately.) Suppose this portion of the train is f feet long, and
assume that each of the n sets of wheels resides at a distinct integer offset from the rear of
the train. Our goal is to build a train track that is ` feet long. We build the train track out
of pillars that are each 1 foot long and are each placed at integer positions on the track.
We are required to put down the pillars in a way so that, as the train drives down the track,
at least one wheel from the rear quarter is always touching the track (i.e., touching some
pillar). We want to use as little track as possible, with the best we could hope for being a
total of `

n pillars.
As a reminder, there are three variables: the number of wheels n (in the quarter of the

train car that we’re considering), the length f of one quarter of the train car, and the length
` of the train track. In general, we have n ≤ f ≤ `. Note that, although n and f could
reasonably be close to one another (e.g., f = 2n), we also want to be able to handle cases
where n � f . This allows for the train car to be configured in truly strange ways – for
example, the positions of the wheels could even form a geometric series:

Rear Quarter of Train Car

1.1 A Randomized Algorithm for Building Track
Our algorithm is a simple example of the probabilistic method with alterations. In particular,
we begin by randomly constructing a track that uses only a small number of pillars, and
then we show that this track can be slightly altered in order to support the rear of the train
car at every point.

W. Kuszmaul 19:5

We begin by installing each pillar randomly with probability ln n
n . Even though this

strategy has nothing to do with the structure of where the wheels are on the train, it already
does remarkably well. In particular, if we place the train at some given position on the track,
then there are n different pillar positions that could potentially hold up the rear quarter.
Each of these pillars positions has a ln n

n probability of having a pillar installed. It follows
that, for a given position on the track, the rear quarter of the train has a(

1− ln n

n

)n

probability of falling through the track. Taking advantage of the identity
(
1− 1

k

)k ≤ 1
e ,

which holds for any k ≥ 1, it follows that the wheels fall through the track with probability
at most,

1
eln n

= 1
n

.

In other words, out of all the places we can place the train on the track, only a 1
n -fraction

of them will be problematic (in expectation). To fix this, we can just install one additional
pillar to remedy each of these problematic positions. The result is a train track that fully
supports the rear quarter of our train, and that uses only

(1+ln n
n

)
` total feet of track, in

expectation.
Of course, this isn’t quite as good as we did when the wheels were evenly spaced out (we

are a roughly ln n factor worse). But it’s still pretty amazing! No matter how the wheels
are distributed across each quarter of the train car, we can get away with installing only a
O
(ln n

n

)
fraction of the track!

The algorithm and analysis described above can be summarized in the following theorem:

I Theorem 1.1. Consider a 4f-foot long train car, and suppose that the rear quarter of a
train car contains n sets of wheels, each of which resides at a distinct integer distance from
the rear of the car. In time O(`n), one can construct an `-foot long train track with the
following two properties: (1) as the train car drives down the track at least one set of wheels
from the rear of the car is always touching track; and (2) the track consists of 1-foot pillars,
with the total expected number of pillars being at most O

(
` ln n

n

)
.

2 A Matching Lower Bound

In this section we show that using O
(
` ln n

n

)
pillars is optimal for some configurations of

the train car. We are again going to use the probabilistic method, but this time in a more
sophisticated way.

We continue to focus only on the rear quarter of the train car, which is f feet long. We
set f = 2n, and we construct the rear quarter of the train car by placing n wheels at integer
positions in the set {1, 2, . . . , 2n}. We will then consider a track of length ` = 2f , and show
that Ω(log n) pillars are necessary in order to support the rear quarter of the train car at all
positions on the track. Recall that each pillar is one foot wide and is placed at an integer
offset on the track.

Let C be the set of wheel-positions in the rear quarter of the train car. We choose C

by placing a wheel at each position in {1, 2, . . . , 2n} independently with probability 1
2 . This

means that C has n wheels in expectation, but may not actually have exactly n wheels. The
important thing to note is that, with at least 50% probability, C has n or more wheels.

FUN 2021

19:6 Train Tracks with Gaps

Now consider a track layout given by a subset T of {1, 2, . . . , 4n}, and satisfying |T | = ln n
4 .

Whereas C is a random variable, T is a fixed set.
Define XC,T to be the event that, for every possible position of the rear quarter of the

train on the track, at least one wheel from the rear quarter of the train is supported by track.
From the perspective of the train car, XC,T is a good event. Formally, XC,T occurs if for
every offset k ∈ {0, 1, . . . , 2n}, we have (k + C) ∩ T 6= ∅.12

The key to proving the desired lower bound is to show that the probability of XC,T

occurring is very small, namely that Pr[XC,T] < 1
2(4n

(ln n)/4)
. Because T is a ln n

4 -element subset

of {1, 2, . . . , 4n}, there are at most
(4n

(ln n)/4
)
possibilities for T . Taking a union bound over

all of these possibilities implies that

Pr[XC,T for any T] <
1
2 .

On the other hand, we know that the number of wheels |C| is less than n with probability at
most 1/2. By a union bound, the probability that either |C| has fewer than n wheels or that
XC,T holds for some T is less than 1. It follows that there must exist a car C with n or more
wheels for which no track T of size smaller than (ln n)/4 satisfies XC,T . In fact, with slightly
more careful bookkeeping, one can show that an even stronger property is true: almost all
choices of how to place n wheels in C require a track of size larger than (ln n)/4 to support
the car.

To complete the lower bound, the challenge becomes to show that Pr[XC,T] is very small.
That is, for a given choice of track T containing (ln n)/4 pillars, the probability that T

supports the rear-quarter of the train car C is small.
Rather than examine the event XC,T directly, we instead examine a related quantity.

Define YC,T to be the number of positions k ∈ {0, 1, . . . , 2n} for which (k + C) ∩ T = ∅ (i.e.,
the number of positions in which the rear quarter of the car, given by C, falls through the
track T).

The relationship between XC,T and YC,T is that XC,T occurs only if YC,T = 0. Our
approach to completing the analysis will be to first show that E[YC,T] is relatively large, and
then to show that the probability of YC,T deviating substantially from its expected value is
small. This, in turn, implies that Pr[YC,T = 0] is small, completing the analysis. In other
words, the problem of proving that there exists a train-car configuration requiring a large
amount of track is reduced to the problem of proving a concentration inequality on the
random variable YC,T .

For each position k ∈ {0, 1, . . . , 2n}, the set T − k consists of (ln n)/4 elements. Since
each of these elements is contained in C with probability 1/2, the probability that C avoids
all of the elements in T − k is given by,

1
2(ln n)/4 = 1

n1/4 .

Summing over the values of k, it follows that the expected number of positions k in which
(C + k) ∩ T = ∅ is

E[YC,T] = 2n · 1
n1/4 > n3/4.

1 Recall that the rear quarter of the train car is length 2n, and that the train track is length ` = 4n. We
only wish to consider offsets k such that the rear quarter of the train car still sits entirely on potential
track. That is, we wish to consider k such that (k + {1, 2, . . . , 2n}) ⊆ {1, 2, . . . , 4n}, meaning that the
values of k that we care about are k ∈ {0, 1, . . . , 2n}.

2 For an integer r and a set S, we use r + S to denote the set {s + r | s ∈ S}.

W. Kuszmaul 19:7

The final step of the analysis is to prove a concentration inequality on YC,T . Standard
Chernoff bounds do not apply here because YC,T is not a sum of independent indicator
random variables. Instead, we employ a more powerful tool, namely McDiarmid’s Inequality:

I Theorem 2.1 (McDiarmid ’89 [8]). Let A1, . . . , Am be independent random variables over
an arbitrary probability space. Let F be a function mapping (A1, . . . , Am) to R, and suppose
F satisfies,

sup
a1,a2,...,am,ai

|F (a1, a2, . . . , ai−1, ai, ai+1, . . . , am)−F (a1, a2, . . . , ai−1, ai, ai+1, . . . , am)| ≤ R,

for all 1 ≤ i ≤ m. That is, if A1, A2, . . . , Ai−1, Ai+1, . . . , Am are fixed, then the value of
Ai can affect the value of F (A1, . . . , Am) by at most R; this is known as the Lipschitz
Condition. Then for all S > 0,

Pr[|F (A1, . . . , Am)− E[F (A1, . . . , Am)]| ≥ R · S] ≤ 2e−2S2/m.

To apply McDiarmid’s Inequality to our situation, recall that YC,T is defined to be the
number of positions in the track T that the rear quarter of the car, given by C, falls though.
Whereas the track T is fixed, each of the 2n possible wheels in C is picked with probability
1/2. Define the indicator random variables A1, A2, . . . , A2n so that Ai indicates whether
i ∈ C. As required by McDiarmid’s Inequality, the Ai’s are independent of one-another, and
YC,T is a function of the Ai’s.

Now we show that the Lipschitz condition holds with R = (ln n)/4. Recall that the track
T consists of only (ln n)/4 pillars. Out of the 2n possible wheels i that C could contain,
each of those wheels i is only relevant (to the car’s stability) when the car is k feet down the
track for some k that places wheel i on top of a pillar. Since there are only (ln n)/4 pillars,
each wheel i is only relevant to the train car’s stability for (ln n)/4 positions k on the track.
In other words, for a given wheel position i ∈ {1, 2, . . . , 2n}, there are only (ln n)/4 values
of k ∈ {0, 1, . . . , 2n} for which (C + k) ∩ T can possibly contain i. As a result, each Ai can
only affect the value of YC,T by at most (ln n)/4, meaning that the Lipschitz condition holds
with R = (ln n)/4.

Applying McDiarmid’s Inequality, we get that

Pr[n3/4 − YC,T > n5/8 · (ln n)/4] ≤ 2e−n1/4
.

When n is large, this probability is much smaller than 1
2(4n

(ln n)/4)
. It follows that Pr[XC,T] =

Pr[YC,T = 0] < 1
2(4n

(ln n)/4)
. Summing over all possible options for the track T , the probability

that any of them support the train car C is therefore less than 1/2. It follows that some
train car C with n or more wheels fails to be supported by any track T consisting of (ln n)/4
or fewer pillars. This completes the lower bound, and establishes the following theorem.

I Theorem 2.2. There exists a set of wheel positions C ⊆ {1, 2, . . . , 2n} such that |C| ≥ n,
and such that in order for a track T ⊆ {1, 2, . . . , 4n} to support the set of wheels at every
position (meaning that (C + k) ∩ T 6= ∅ for each k ∈ {0, . . . , 2n}) the track T must have size
Ω
(ln n

n

)
.

3 Three Algorithms for Building Track

In this section, we revisit the problem of constructing a train track that uses O
(

` ln n
n

)
feet

of track, and present three alternative algorithms for this problem, each of which gives the
same guarantees as the algorithm in Section 1.

FUN 2021

19:8 Train Tracks with Gaps

We continue to assume that the wheels of the train car are at integer positions, and we
focus only on the n wheels in the rear quarter of the train car. We use C to denote the set
of positions of wheels, meaning that C is an n-element subset of {1, . . . , f}. Our goal is to
construct a set of pillars T ⊆ {1, 2, . . . , `} such that for each k ∈ {0, 1, . . . , ` − f}, the set
(C + k) ∩ T is non-empty. As was the case in Section 1, we want an algorithm that runs in
expected time O(n`) and produces a set T with expected size O

(
` ln n

n

)
.

Each of the three algorithms applies a different core technique from the overlap of
probabilistic combinatorics and randomized algorithms:

A Deterministic Algorithm (Section 3.1). The first algorithm uses the method of
conditional probabilities to derandomize the algorithm given in Section 1.
An Application of the Algorithmic Lovász Local Lemma (Section 3.2) The
second algorithm uses the algorithmic version of the Lovász Local Lemma due to Moser
and Tardos [9].
An Application of the Min-Hash Technique (Section 3.3) The final algorithm uses
a variant of the min-hash technique, which has previously found important applications
in locality sensitive hashing and string alignment [2–4,6, 7, 10].

3.1 A Deterministic Algorithm
In this section, we use the method of conditional probabilities [1] in order to design a
deterministic algorithm for the train-track problem.

The basic idea behind the method of conditional probabilities is as follows. Suppose
X1, . . . , X` are independent real-valued random variables, and that F : R` → R is an objective
function that we wish to minimize. We are given that E[F (X1, . . . , X`)] ≤ R for some value
R, and we wish to find values of x1, . . . , x` ∈ R for which F (x1, . . . , x`) ≤ R. The method
of conditional probabilities takes an iterative approach. Suppose we already have values of
x1, . . . , xk such that

E[F (x1, . . . , xk, Xk+1, . . . , X`)] ≤ R.

Then there must exist some value xk+1 such that

E[F (x1, . . . , xk, xk+1, Xk+2, . . . , X`)] ≤ R. (1)

The key challenge in applying the method of conditional probabilities is to design an objective
function F that both captures the problem at hand, but that also allows for one to efficiently
determine which value of xk+1 satisfies (1). This, in turn, allows for one to iteratively
determine values for all of x1, . . . , x` such that F (x1, . . . , x`) ≤ R.

In order to apply the method of conditional probabilities to the train-track problem,
we define X1, . . . , X` to be zero-one random variables, each of which takes value 1 with
probability ln n

n . Given values x1, . . . , x` for random variables X1, . . . , X`, we can construct
a train track T by first setting T1 = {i | xi = 1}, and then defining T to be T1 with one
additional pillar for each position k in which the train wheels C fall through the track
T1. Since our goal is to minimize the size of T , we define our objective function to be
F (x1, . . . , x`) = |T |.

In Section 1, we showed that E[F (X1, . . . , X`)] ≤ (1 + ln n)/n. Suppose that we have
values x1, . . . , xk ∈ {0, 1} such that

E[F (x1, . . . , xk, Xk+1, . . . , X`)] ≤ (1 + ln n)/n. (2)

W. Kuszmaul 19:9

Moreover, suppose that we maintain values p0, . . . , p`−f such that each pi denotes the
probability that the set of wheels (C+i) fall through the track T = {j | xj = 1}∪{j | Xj = 1}.
This means that we can compute E[F (x1, . . . , xk, Xk+1, . . . , X`)] as∣∣∣{i | xi = 1}

∣∣∣+ ln n

n
(`− k) +

∑
i

pi. (3)

The first two terms represent E[|T1|], and the third term represents E[|T \ T1|].
Given values of x1, . . . , xk such that (2) holds, we wish to find a value of xk+1 ∈ {0, 1}

so that (2) will hold for k + 1. If we set xk+1 = 1, then this has the effect of increasing the
expected initial size of |T1| by 1− ln n

n , and of zeroing out any pi’s for which k+1 ∈ (C +i). On
the other hand, if we set xk+1 = 0, then this has the effect of decreasing the expected initial
size of |T1| by ln n

n and replacing each pi for which k + 1 ∈ (C + i) with pi

1−(ln n)/n . It follows
that in time O(n), one can update (3) in order to determine E[F (x1, . . . , xk+1, Xk+2, . . . , X`)]
for each of the two possible values of xk+1. By selecting the value that minimizes the expected
objective function, we can guarantee that

E[F (x1, . . . , xk+1, Xk+2, . . . , X`)] ≤
1 + ln n

n
.

Continuing like this, we can find values of x1, . . . , x` such that F (x1, . . . , x`) ≤ (1 + ln n)/n

in time O(`n). Using these x1, . . . , x` to construct the track T results in a track that uses at
most (1 + ln n)/n pillars, as desired.

3.2 An Application of the Algorithmic Lovász Local Lemma
Given a large collection of unlikely events E1, . . . , Em, such that each event Ei is related to
only a small number of other events Ej , the Lovász Local Lemma is a technique for showing
that there exists a way for all m events to mutually not occur. In one of its most basic forms,
the Lovász Local Lemma can be stated as follows:

I Theorem 3.1 (Lovász and Erdös ’73 [5]). Suppose X1, . . . , Xs are independent random
variables, possibly over different probability spaces. Let E1, . . . , Em be events such that each
Ei is determined by some subset of the Xj’s – that is, there exists an index set Ii ⊆ [s] such
that Ei is determined by the outcome of the Xj’s for which j ∈ Ii. Say that two events Ei

and Ej depend on each other if Ii ∩ Ij 6= ∅. Let p be such that Pr[Ei] ≤ p for each i, and
let d be such that each Ei depends on at most d different Ej’s (including Ei). If pde ≤ 1,
where e is the universal constant, then there is a positive probability that none of the events
E1, . . . , Em occur.

The algorithmic version of the Lovász Local Lemma gives an efficient algorithm for
constructing values of X1, . . . , Xs in order to ensure that none of the events E1, . . . , Em

occur.

I Theorem 3.2 (Moser and Tardos ’10 [9]). Suppose that the conditions from Theorem 3.1
hold. Consider the following algorithm for choosing values of X1, . . . , Xs: First independently
sample each of X1, . . . , Xs from its defining probability distribution; then, as long as their
exists at least one event Ei that holds, pick such an event Ei and resample the Xj ’s for each
j ∈ Ii. Each time that the Xj’s are resampled for some event Ei, we call the resamplings a
phase of the algorithm. The algorithm terminates once the Xi’s have been assigned values
that result in no events Ei occurring.

The above algorithm, known as the fix-it algorithm, terminates in finite expected time,
and the expected number of phases is at most n/d.

FUN 2021

19:10 Train Tracks with Gaps

In order to apply the Algorithmic Lovász Local Lemma to our problem, we define
X1, . . . , X` to be independent zero-one random variables, each taking value 1 with probability
1+2 ln n

n . Each Xi is the indicator variable for whether we include pillar i in the train track.
We then define events E0, . . . , E`−f so that Ei is the event that the rear-quarter of the train
car falls through the track at position i. That is, Ei occurs if (C + i) ∩ {j | Xj = 1} = ∅.

Each event Ei depends on only n different Xj ’s, and each Xj is relevant to only n different
Ek’s. It follows that each event Ei depends on at most n2 other Ek’s (including Ei). This
means that we can apply the Algorithmic Lovász Local Lemma with d = n2.

In order for a given event Ei to occur, there are n different pillars that all must fail to
appear in the track. The probability of this happening is

Pr[Ei] =
(

1− 1 + 2 ln n

n

)n

<
1

e1+2 ln n
≤ 1

en2 .

Using d = n2 an p = 1
en2 , we can apply the Lovász Local Lemma in order to conclude

that there exists a choice of pillars X1, . . . , X` so that the wheels in C are supported along
the entire track. This alone is not a useful observation since, of course, setting X1, . . . , X`

all to 1 would trivially support the wheels in C at all points. On the other hand, if we apply
the algorithmic version of the Lovász Local Lemma, then get an additional fact: that the
fix-it algorithm terminates after only O(`/n2) phases in expectation.

Since each phase resamples only n different Xi’s, the resamples contribute at most O(`/n)
pillars in expectation. On the other hand, the initial configuration of the Xi’s contributes at
most (1 + 2 ln n)/n pillars in expectation. It follows that, at the end of the fix-it algorithm,
the resulting track configuration will use at most (2 + 2 ln n)/n pillars in expectation. A
careful implementation of the fix-it algorithm will run in expected time O(`n), as desired.

3.3 An Application of Min-Hash
Given a collection of sets S, Min-Hashing is a technique for randomly sampling one element
for each set S ∈ S. The technique works by first hashing each element s of each set S in S
to a random real number h(s) ∈ (0, 1). For each set S ∈ S, one then samples the element
s ∈ S with minimum hash h(s).

The Min-Hashing technique plays important roles in both Locality Sensitive Hashing [2,3,7]
and string-alignment algorithms [4,6,10]. The key property of Min-Hashing is that if two
sets S1, S2 ∈ S are similar to one-another, then their min-hash is likely to be the same. And
more generally, if an element s is the minimum-hashed element in one set S ∈ S, then s is
likely to also be the minimum-hashed element in other sets.

In our application of Min-Hashing, we need not actually use hash functions. Instead, we
assign random real numbers r1, . . . , r` ∈ (0, 1) to each of the ` possible track pillars. For
each possible offset k ∈ {0, 1, 2, . . . , `− f}, define the set Sk = (C + k) to be the positions
that the wheels in C take when the train car is k feet down the track. We construct a train
track T by adding the pillar argmins∈Sk

rs for each set Sk. That is, for each position that
the train could sit in the track, we look at all possible pillars that could hold the rear-quarter
of the train up, and we include in our track the pillar with the minimum assigned random
value rs. We say that this pillar s is sampled from Sk.

By construction, the set of pillars T is guaranteed to support the wheels C at every
position. What is less clear is whether |T | will be small. Here is where we take advantage of
the properties of Min-Hashing, and the fact that many of the sets Sk sample the same pillars
as one another.

W. Kuszmaul 19:11

The key observation is that almost all of the pillars s that are sampled have small random
values rs. Consider, in particular, the probability that for a given set Sk, we sample a pillar
s for which rs > (ln n)/n. This means that all n pillars in Sk were assigned random values
larger than (ln n)/n, which happens with probability at most,(

1− ln n

n

)n

≤ 1
eln n

= 1
n

.

It follows that, out of the `− f samplings that occur, the expected number of pillars s

for which rs > (ln n)/n that are sampled is at most (` − f)/n ≤ `/n. On the other hand,
even if every pillar s for which rs ≤ (ln n)/n is sampled, the expected number of them is at
most `(ln n)/n. The total number of sampled pillars, and thus the size of T , is therefore at
most `(1 + ln n)/n, in expectation. This completes the analysis of the algorithm.

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
2 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.

Compression and Complexity of Sequences 1997 (Cat. No. 97TB100171), pages 21–29. IEEE,
1997.

3 Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. Journal of Computer and System Sciences, 60(3):630–659, 2000.

4 Moses Charikar, Ofir Geri, Michael P Kim, and William Kuszmaul. On estimating edit
distance: Alignment, dimension reduction, and embeddings. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

5 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Colloquia Mathematics Societatis Janos Bolai 10. Infinite and Finite
Sets, Keszthely (Hungary). Citeseer, 1973.

6 William Kuszmaul. Efficiently approximating edit distance between pseudorandom strings. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1165–1180. Society for Industrial and Applied Mathematics, 2019.

7 Mark S Manasse. On the efficient determination of most near neighbors: horseshoes, hand
grenades, web search and other situations when close is close enough. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 4(4):1–88, 2012.

8 Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–
188, 1989.

9 Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
Journal of the ACM (JACM), 57(2):11, 2010.

10 Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
using minhash. Genome biology, 17(1):132, 2016.

FUN 2021

Card-Based ZKP Protocols for Takuzu and Juosan
Daiki Miyahara
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, Japan
daiki.miyahara.q4@dc.tohoku.ac.jp

Léo Robert
University Clermont Auvergne, LIMOS,
CNRS UMR (6158), Aubière, France
leo.robert@uca.fr

Pascal Lafourcade
University Clermont Auvergne, LIMOS,
CNRS UMR (6158), Aubière, France
pascal.lafourcade@uca.fr

So Takeshige
School of Engineering, Tohoku University,
Sendai, Japan
so.takeshige.q1@dc.tohoku.ac.jp

Takaaki Mizuki
Cyberscience Center, Tohoku University,
Sendai, Japan
tm-paper+zerotate@g-mail.tohoku-university.jp

Kazumasa Shinagawa
Graduate School of Informatics and Engineer-
ing, The University of Electro-Communications,
Tokyo, Japan
National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, Japan
shinagawakazumasa@uec.ac.jp

Atsuki Nagao
Department of Information Science,
Ochanomizu University, Tokyo, Japan
a-nagao@is.ocha.ac.jp

Hideaki Sone
Cyberscience Center, Tohoku University,
Sendai, Japan

Abstract
Takuzu and Juosan are logical Nikoli games in the spirit of Sudoku. In Takuzu, a grid must be
filled with 0’s and 1’s under specific constraints. In Juosan, the grid must be filled with vertical
and horizontal dashes with specific constraints. We give physical algorithms using cards to realize
zero-knowledge proofs for those games. The goal is to allow a player to show that he/she has the
solution without revealing it. Previous work on Takuzu showed a protocol with multiple instances
needed. We propose two improvements: only one instance needed and a soundness proof. We also
propose a similar proof for Juosan game.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Zero-knowledge proof, Card-based cryptography, Takuzu, Juosan

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.20

Funding Daiki Miyahara: This work was supported by JSPS KAKENHI Grant Number JP19J21153.
Léo Robert: This work was partially supported by the French project ANR-18-CE39-0019 (MobiS5).
Pascal Lafourcade: This work was partially supported by the project ANR-18-CE39-0019 (MobiS5).
Takaaki Mizuki: This work was supported by JSPS KAKENHI Grant Number JP17K00001.
Kazumasa Shinagawa: This work was supported by JSPS KAKENHI Grant Number JP17J01169.

Acknowledgements We thank the anonymous referees, whose comments have helped us to improve
the presentation of the paper. In particular, Protocol 1 for Takuzu presented in Section 3.2.1 is
based on the fruitful comments given by one referee.

1 Introduction

James Bond and Q decide to spend most of their holidays on the Spiaggia Praia beach
(located at Isola di Favignana, Sicily, Italy). Before swimming in the sea, they like to play

© Daiki Miyahara, Léo Robert, Pascal Lafourcade, So Takeshige, Takaaki Mizuki,
Kazumasa Shinagawa, Atsuki Nagao, and Hideaki Sone;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 20; pp. 20:1–20:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5818-8937
mailto:daiki.miyahara.q4@dc.tohoku.ac.jp
https://orcid.org/0000-0002-9638-3143
mailto:leo.robert@uca.fr
https://orcid.org/0000-0002-4459-511X
mailto:pascal.lafourcade@uca.fr
mailto:so.takeshige.q1@dc.tohoku.ac.jp
https://orcid.org/0000-0002-8698-1043
mailto:tm-paper+zerotate@g-mail.tohoku-university.jp
https://orcid.org/0000-0002-5219-1975
mailto:shinagawakazumasa@uec.ac.jp
https://orcid.org/0000-0002-1370-5240
mailto:a-nagao@is.ocha.ac.jp
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Card-Based ZKP Protocols for Takuzu and Juosan

with logical games. James Bond is a specialist of Takuzu. Takuzu is a puzzle invented by
Frank Coussement and Peter De Schepper in 20091. It was also called Binero, Bineiro,
Binary Puzzle, Brain Snacks or Zernero. Figure 1 contains a simple Takuzu grid and its
solution. Q is an expert of Juosan, which was published by Nikoli2. Figure 2 contains a
Juosan grid and its solution.

Each one proposes his favorite game to the other as a challenge. Both are competitive,
and each challenge ends to be so hard that the other cannot solve it. James Bond immediately
supposes that something is wrong and asks Q a proof that the grid has a solution. Of course,
Q thinks the same way about Bond’s challenge. Since they are both suspicious, they want to
prove that there is a solution without giving any information about the solution.

In cryptography, the process, which allows a party to prove that it has a data without
leaking any information on this data, is called Zero-Knowledge Proof (ZKP).

More formally, a ZKP is a protocol which enables a prover P to convince that it has a
solution s of a problem to a verifier V . This proof cannot leak any information on s. The
protocol must observe three properties.

Completeness: If P knows s then it can convince V .
Soundness: If P does not know s, it can convince V with only a negligible probability.
Zero-Knowledge: V learns nothing about s. This can be formalized by showing that
the outputs of a simulator and outputs of the real protocol follow the same probability
distribution.

The concept of interactive ZKP was introduced by Goldwasser et al. [12]. Then it was
shown that for any NP complete problem there exists an interactive ZKP protocol [11]. There
is also an extension showing that every provable statement can be proved in zero-knowledge [2].

There exist protocols where the prover and the verifier do not need to interact. Such
protocols are called non-interactive ZKP [4]. For a complete background on ZKP’s, see [18].

Usually ZKP protocols are executed by computers, yet, our aim is to design a solution
for Bond and Q’s dilemma using physical objects such as cards, since on the Spiaggia Praia
beach they do not want to use their computers. We first recall the rules of these two games
before presenting our contributions.

Takuzu’s Rules

The goal of Takuzu is to fill a rectangular grid of even size with 0’s and 1’s. An initial Takuzu
grid already contains a few filled cases. A grid is solved when it is full (i.e., no empty cases)
and respects the following constraints.
1. Equality Rule: Each row/column contains exactly the same number of 1’s and 0’s.
2. Uniqueness Rule: Each row (column) is unique among all rows (columns).
3. Adjacent Rule: In each row and each column there can be no more than two same

numbers adjacent to each other; for example 110010 is possible, but 110001 is impossible.

The problem of solving a Takuzu grid was proven to be NP complete in [3, 34].

Juosan’s Rules

A Juosan grid is divided into territories by bold lines, where a territory is possibly associated
with a number. The goal is to fill in all cells with a vertical (|) or horizontal (–) dash such

1 https://en.wikipedia.org/wiki/Takuzu
2 http://www.nikoli.co.jp/en/puzzles/juosan.html

https://en.wikipedia.org/wiki/Takuzu
http://www.nikoli.co.jp/en/puzzles/juosan.html

D. Miyahara et al. 20:3

0 0 1 1 0 1 0 1 0

0 0 1 1 0 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1 1 0

1 0 1 1 0 1 0 0 1

0 0 1 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1 0

1 1 0 1 1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1 0 1

Figure 1 Example of a 8× 8 Takuzu challenge, and its solution. We can verify that each row and
column is unique, contains the same number of 0’s and 1’s, and there are never three consecutive 1’s
or 0’s.

3 1

3 3 3

.
4

4

3 1

3 3 3

4

4

Figure 2 Example of a Juosan challenge, and its solution from Nikoli website.

that the following three constraints are satisfied.

1. Room Rule: The number in every territory equals the number of either vertical or
horizontal dashes in it (in some cases, there may be equal numbers of both). Territories
with no number may have any number of vertical dashes and horizontal dashes.

2. Adjacent (horizontal) Rule: Horizontal dashes can extend more than three cells
horizontally but no more than two cells vertically.

3. Adjacent (vertical) Rule: Vertical dashes can extend more than three cells vertically
but no more than two cells horizontally.

In 2018, the problem of solving a Juosan grid was proven to be NP complete in [16].

Contributions

We have the two main following contributions.
1. We propose better ZKP protocols for Takuzu which improve upon the approach given

in [5]. The latter used several instances of the protocol while ours use only one instance.
We also improve the soundness of the proof in the sense that if the prover does not have
a solution, he convinces the verifier with null probability.

2. We also propose an adapted version of this technique to Juosan. Again, only one instance
of the protocol is run for proving to V that if P does not know the solution, then P

convinces V with probability 0. We also propose an optimized version of the Adjacent
Verification which aims to show validity of four consecutive commitments.

FUN 2021

20:4 Card-Based ZKP Protocols for Takuzu and Juosan

Related Work

There are works on implementing cryptographic protocols using physical objects, as in [23]
for example, or in [9] where a physical secure auction protocol was proposed. Other
implementations have been studied using cards in [8], polarizing plates [32], polygon cards [31],
a standard deck of playing cards [20], using a PEZ dispenser [1], using a dial lock [21], using
a 15 puzzle [22], or using a tamper-evident seals [25, 26, 27].

In FUN’18, the authors of [29] revisited the ZKP for Sudoku proposed by Gradwohl et
al. in FUN’07 [13]. This is a clear progress in the construction of ZKP since the technique
proposed in this paper uses specific protocols to perform zero-knowledge proof for Sudoku.
Indeed, those protocols use a normal deck of playing cards and have no soundness error with
a reasonable number of playing cards. The original technique for Sudoku was extended for
Hanje [7]. ZKP’s for several other puzzles have been studied such as Akari [5], Takuzu [5],
Kakuro [5, 19], KenKen [5], Makaro [6], Norinori [10], and Slitherlink [17].

There is a ZKP proof for Takuzu puzzle [5] (recall in Section 2), but we propose an
enhanced version using only one instance of the protocol to convince the verifier. The previous
proof is decomposed into several cases to avoid leak of information toward the solution. This
implies the need of rerunning the protocol several times for completely convincing V that
P has the solution. The construction of the protocol leads to have a negligible probability
that the prover P does not know the solution. Our proof is designed in such a way that only
one instance is run leading to a complete soundness of the proof (i.e., if P does not have
the solution, the probability of convincing V is null). We show that this technique can be
adapted to Juosan game which has not been studied before. The detailed security proof for
our ZKP protocols for Takuzu is given in Section 3.4 and for Juosan in Section 4.4.

Outline: In Section 2, we present an existing ZKP protocol for Takuzu. In Section 3,
we improve the ZKP protocol for Takuzu. In Section 4, we present our ZKP protocol for
Juosan. In the last section we conclude.

2 The Existing ZKP Protocol for Takuzu

We give a ZKP proof using physical objects. The goal is to show that the prover P (aka
James Bond) can prove to the verifier V (aka Q) that he knows a solution of a given Takuzu
grid. The material used for the proof include two printed grids on a sheet of paper, a piece
of paper, an envelope and two kinds of cards: cards with a 0 or a 1 printed on them.

There are two phases in this protocol, the Setup which generates the permutations used
for the second phase called the verification.

Let G be the n× n initial Takuzu grid and S the matrix relative to the solution known
by P (including the initial cells).

Setup. The prover P chooses uniformly at random two permutations: πR for the rows, and
πC for the columns. He writes the two permutations on a paper and place the latter into an
envelope E. Then he computes S′ = πR(πC(S)). Finally, P places cards face down on the
second grid according to S′. We denote the configuration of these cards by the matrix S̃′

Verification. The verifier V picks c randomly among {0, 1, 2, 3}.
If c = 0: This case corresponds to P proving that the solution is the one of the initial grid.

V computes G′ = πR(πC(G)) with the permutations found in the envelope E. Then V
determines the cells of G′ corresponding to the initial cells of G. Finally, V checks if
the revealed cards are the same as the one revealed in the second grid (that are placed
according to S̃′).

D. Miyahara et al. 20:5

If c = 1: This case corresponds to P proving that adjacent rule holds.
V permutes (face down) the cards of S̃′ to obtain S̃ = π−1

c (π−1
R (S̃′)) using the permutations

in E. Then, V picks d randomly among {0, 1} and e randomly among {1, 2, 3}.
If d = 0: For each row, V sets x = bn−e

3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 · i+
2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith, the
jth and the kth cards of the row.

If d = 1: For each column, V sets x = bn−e
3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 ·

i+ 2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith,
the jth and the kth cards of the column.

Then, V gives the triplets to P . For each deck, P removes one of the two identical cards.
Then P reveals the cards to V , who accepts only if he sees two different cards.

If c = 2: This case corresponds to P proving that uniqueness rule holds.
For this, V picks randomly one row or one column. V reveals all the cards of his chosen
row (or column). For each of the n − 1 other rows (or columns) the verifier picks the
cards where a 0 appears in the revealed rows (or column). At this step, V does not reveal
those cards. Each one of these n− 1 sets of cards is shuffled by the shuffle functionality
and given back to the prover. P reveals one card per set that is a 1. Thus each one of
the other n− 1 rows (or columns) are different from the revealed row, since the initial
row (or column) has a 0 where the other column (or row) has a 1. If there are several 1’s
in a deck, the prover randomly chooses which one to reveal.

If c = 3: This case corresponds to P proving that the equality rule holds.
The verifier V picks d randomly among {0, 1}.
If d = 0, for each row, V takes all the cards in the row and keep them face down. Then V
gathers the cards in order to shuffle those n decks. We assume that the verifier has access
to a shuffle functionality which is essentially an indistinguishable shuffle of face down
cards. Note that this action could be done by a trusted third party (M for instance) but
not by P or V (since they could cheat and modify the cards).
Finally, V checks that each deck contains exactly the same number of 1’s and 0’s.
If d = 1, the same process is done except that V picks columns instead of rows.

To have the best security guarantees, the verifier should choose his challenges c, d, etc. such
that each combination of challenges at the end has the same probability. This protocol
is repeated k times where k is a chosen security parameter. Note that the ZKP is again
polynomial in the size of the grid.

3 Our improved ZKP Protocols for Takuzu

In this section, we propose two ZKP protocols for Takuzu; our protocols are simple and have
no soundness error. Remember that the goal is to show the prover P (aka James Bond) can
prove to the verifier V (aka Q) that P knows a solution of a given Takuzu grid.

Our protocols use black cards ♣ , red cards ♥ , and number cards 1 2 · · · 6 whose
backs ? are all identical. In the sequel, we use the following encoding rule:

♣ ♥ = 0, ♥ ♣ = 1. (1)

That is, black-to-red represents 0 and red-to-black represents 1. We call two face-down cards
that correspond to a bit x ∈ {0, 1} according to the above encoding rule (1) a commitment
to x, and we write it as ? ?︸ ︷︷ ︸

x

. Roughly, our improved ZKP protocols for Takuzu proceed as

follows.

FUN 2021

20:6 Card-Based ZKP Protocols for Takuzu and Juosan

Table 1 The exact values of |tkz(n)| when n is up to ten.

n |tkz(n)|
4 6
6 14
8 34
10 84

Setup phase: The prover P places a commitment to each cell according to the solution.
Verification phases: The verifier V verifies that the placement of the commitments satisfies

all the constraints.

To present the complete description of our protocols in Section 3.2, we show some
preliminaries in Section 3.1. In Section 3.3, we show that there is a trade-off between our
two protocols and compare them.

3.1 Preliminaries

In this subsection, we introduce some notations and two subprotocols, which will be used to
present our constructions in Section 3.2.

3.1.1 Possible Sequences

For an even number n, we denote by tkz(n) the set of all binary sequences satisfying the
Uniqueness and Equality rules of Takuzu, that is, tkz(n) := {w ∈ {0, 1}n | w contains exactly
n/2 0’s and no three consecutive digits}. For example, tkz(4) = {0011, 1100, 0101, 1010, 0110,
1001}. The size of tkz(n) can be computed as Table 1. The size |tkz(n)| is known in the
On-line Encyclopedia of Integer Sequences (OIES) as “the number of paths from (0, 0) to
(n, n) avoiding 3 or more consecutive east steps and 3 or more consecutive north steps.3” We
can also show that tkz(n) = O((3+

√
5

2)nn−
1
2).

3.1.2 Basic Shuffles

Pile-scramble shuffle [15]. This is the following shuffling operation: Given a sequence
of m piles, each of which consists of the same number of face-down cards, denoted by
?︸︷︷︸
p1

?︸︷︷︸
p2

· · · ?︸︷︷︸
pm

, applying a pile-scramble shuffle (denoted by [· |. . .| ·]) results in

[
?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · · ∣∣∣ ?︸︷︷︸
pm

]
→ ?︸︷︷︸

pr−1(1)

?︸︷︷︸
pr−1(2)

· · · ?︸︷︷︸
pr−1(m)

, where r ∈ Sm is a uniformly

distributed random permutation and Sm denotes the symmetric group of degree m. To
implement a pile-scramble shuffle, we use physical cases that can store a pile of cards, such
as boxes and envelopes; a player (or players) randomly shuffle them until nobody traces the
order of the piles.

3 https://oeis.org/A177790

https://oeis.org/A177790

D. Miyahara et al. 20:7

Pile-shifting shuffle. A pile-shifting shuffle (or a pile-shifting scramble [28]) is to cyclically
shuffle piles of cards. That is, given m piles, applying a pile-shifting shuffle (denoted by
〈· |. . .| ·〉) results in

〈
?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · · ∣∣∣ ?︸︷︷︸
pm

〉
→ ?︸︷︷︸

ps+1

?︸︷︷︸
ps+2

· · · ?︸︷︷︸
ps+m

, where s is uniformly

and randomly chosen from Z/mZ. To implement a pile-shifting shuffle, we use similar
materials as a pile-scramble shuffle; a player (or players) cyclically shuffle them by hand until
nobody traces the offset.

3.1.3 Mizuki–Sone AND (OR) Protocol
Given two commitments to a, b ∈ {0, 1} (along with additional two cards ♣ ♥), the Mizuki–
Sone AND protocol [24] outputs a commitment to a∧b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
a∧b

.

Note that the output commitment can be used for another protocol. The protocol proceeds
as follows.
1. Rearrange the sequence as follows:

1
?

2
?

3
?

4
?

5
?

6
? →

1
?

3
?

4
?

2
?

5
?

6
? .

2. Apply a random bisection cut:
[

? ? ? | ? ? ?
]
→ ? ? ? ? ? ? . A random

bisection cut is a special case of a pile-scramble shuffle; it bisects a sequence of cards and
then shuffles the two halves.

3. Reveal the first and fourth cards in the sequence. Then, the output commitment can be
obtained as follows: ♣ ? ? ♥ ? ?︸ ︷︷ ︸

a∧b

or ♥ ? ?︸ ︷︷ ︸
a∧b

♣ ? ? .

Note that by De Morgan’s laws we can have the Mizuki–Sone OR protocol that produces
a commitment to a ∨ b given two commitments to a and b.

3.1.4 Mizuki–Sone XOR protocol
Given two commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR protocol [24] outputs a
commitment to a⊕ b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

. The protocol proceeds as follows.

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .

2. Apply a random bisection cut to the sequence:
[

? ? | ? ?
]
→ ? ? ? ? .

3. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .

4. Reveal the first and second cards in the sequence. Then, the output commitment can be
obtained as follows: ♣ ♥ ? ?︸ ︷︷ ︸

a⊕b

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

.

3.1.5 Six-Card Trick
Given three commitments to a, b, c ∈ {0, 1}, the six-card trick [30]4 outputs 1 if a = b = c

and 0 otherwise: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ · · · →

{
1 if a = b = c,

0 otherwise.
That is, we can know only whether the values of given three commitments are the same

or not by using the six-card trick. We use it in our construction to verify the Adjacent rule.

4 The protocol had been invented independently by Heather, Schneider, and Teague [14].

FUN 2021

20:8 Card-Based ZKP Protocols for Takuzu and Juosan

The protocol proceeds as follows.

1. Rearrange the sequences as follows:
1
?

2
?

3
?

4
?

5
?

6
? →

1
?

6
?

3
?

2
?

5
?

4
? .

2. Apply a random cut (which is denoted by 〈· · · 〉) to the sequence:
〈

? ? ? ? ? ?
〉
→

? ? ? ? ? ? . A random cut is a special case of a pile-shifting shuffle; it cyclically
shuffles a sequence of cards. Note that a random cut can be implemented easily with
human hands [33].

3. Reveal the sequence.
a. If the resulting sequence is ♣ ♥ ♣ ♥ ♣ ♥ (apart from cyclic shifts), the output is 1,

i.e., a = b = c holds.
b. If the resulting sequence is ♣ ♣ ♣ ♥ ♥ ♥ (apart from cyclic shifts), the output is 0,

i.e., a = b = c does not hold.

3.1.6 Input-Preserving Function Evaluation Technique
As seen in Section 3.1.5, we can know whether the equality of three input commitments
holds although the input commitments are destroyed after executing the six-card trick. The
input-preserving function evaluation technique enables us to obtain input commitments again
after some function evaluation (such as the equality) by using some number cards.

Let us first explain the input-preserving six-card trick as follows.
1. Place a number card below each card, and then turn them over:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ ?
1

?
2

?
3

?
4

?
5

?
6
→ ?

?
?
?

?
?

?
?

?
?

?
?
.

2. Rearrange the sequences as follow:
1
?
?

2
?
?

3
?
?

4
?
?

5
?
?

6
?
?
→

1
?
?

6
?
?

3
?
?

2
?
?

5
?
?

4
?
?
.

3. Apply a pile-shifting shuffle to the sequences:〈
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

〉
→

?
?

?
?

?
?

?
?

?
?

?
?
.

4. Reveal the cards of all sequences except for the number cards; then, we obtain the output
as shown in Step 3 in Section 3.1.5.

5. Turn over the face-up cards and apply a pile-scramble shuffle to the sequences:[
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

]
→

?
?

?
?

?
?

?
?

?
?

?
?
.

6. Reveal the number cards and rearrange the sequence of piles so that the revealed number
cards become in ascending order; then, we have restored input commitments to a, b, and
c. The following is an example case:

? ? ? ? ? ?
? ? ? ? ? ?

→
? ? ? ? ? ?
3 1 5 4 6 2

→
? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

1 2 3 4 5 6
.

More formally, assume that we have a protocol to evaluate some function with m input
piles of cards. Then, the input-preserving function evaluation technique enables us to obtain
m input piles again after some function evaluation by using m number cards:

? ? · · · ?
1 2 · · · m

→ · · · → some function evaluation → · · · → ? ? · · · ? .

D. Miyahara et al. 20:9

This proceeds as follows.
1. Attach a corresponding number card to each of m input piles:

? ? · · · ?
1 2 · · · m

→ · · · →
? ? · · · ?
? ? · · · ?

.

Together with the added number cards, execute a designated protocol to evaluate some
function.
2. Apply a pile-scramble shuffle to the sequence of piles:[

?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ · · ·
∣∣∣∣∣ ?

?

]
→

? ? · · · ?
? ? · · · ?

.

3. Reveal only the number cards. Then, rearrange the sequence of piles so that the revealed
number cards become in ascending order to obtain m input piles.

3.2 Our Constructions
We are now ready to present the full description of our ZKP protocols for Takuzu, namely
Protocols 1 and 2.

3.2.1 Protocol 1: Verifying Each Constraint Separately
Given a Takuzu puzzle instance of n × n grid, Protocol 1 verifies that all the constraints,
namely the Equality, Uniqueness, and Adjacent rules, are satisfied separately.

Setup phase. Remember the encoding rule (1). The prover P places a commitment on
each cell according to the solution (which is kind of a (0,1)-matrix).

Adjacent Verification phase. In this phase, V verifies that the Adjacent rule is satisfied.
For this, V repeats the following for every three consecutive commitments in rows and
columns.
1. Attach the corresponding number card to each of the six cards:

? ? ? ? ? ? → ? ?
1 2

? ?
3 4

? ?
5 6

→ ? ?
? ?

? ?
? ?

? ?
? ?

.

2. Perform the input-preserving six-card trick shown in Section 3.1.6 to prove that the three
commitments are not all 0s and 1s. If the six-card trick outputs 1, V rejects it.

Uniqueness Verification phase. In this phase, V verifies that the Uniqueness rule is satisfied.
V repeats the following for every pair of rows (and columns), each of which consists of n
commitments. Considering such a pair, let a1, a2, . . . , an ∈ {0, 1} denote the values of
commitments placed on the first row (in the pair) and b1, b2, . . . , bn ∈ {0, 1} denote those of
commitments on the second row.
1. V attaches the corresponding number card to each of the 4n cards.
2. V applies the “input-preserving” Mizuki–Sone XOR protocol obtained by Sections 3.1.4

and 3.1.6 to the commitments to ai and bi to produce a commitment to ai ⊕ bi for every
i, 1 ≤ i ≤ n. Note that V will return the 4n cards to their original positions after the
next step.

FUN 2021

20:10 Card-Based ZKP Protocols for Takuzu and Juosan

3. V uses the “input-preserving” Mizuki–Sone OR protocol obtained by Sections 3.1.3
and 3.1.65 exactly n− 1 times to reveal the value of

∨n
j=1(aj ⊕ bj). If it is 0, it means

ai = bi for every i, and hence, V rejects it.

Equality Verification phase. In this phase, V verifies that the Equality rule is satisfied.
1. For every row, V repeats the following.

a. V attaches the corresponding number card to each of the 2n cards.
b. V applies a pile scramble shuffle.
c. V reveals the resulting n commitments. If the number of commitments to 0 is not

equal to that of commitments to 1, V rejects it.
d. Similar to the input-preserving function evaluation technique shown in Section 3.1.6,

V returns the n commitments to their original positions.
2. For every column, V follows the same steps except for Steps (a) and (d). Since the n

commitments will not be used after this phase, V does not need to return them to their
original positions.

This protocol uses n2 black cards, the same number of red cards, and 4n number cards
(recall that we have an n× n Takuzu grid). The numbers of required shuffles are 4n(n− 2)
in the Adjacent Verification phase, 2n2(n− 1) in the Uniqueness Verification phase, and 3n
in the Equality Verification phase.

3.2.2 Protocol 2: Verifying All the Constraints Simultaneously

Protocol 2 verifies that all the constraints are satisfied simultaneously using helping cards
that will be placed in the Setup phase. When displaying a figure, we are given a 4×4 Takuzu
grid as an example.

Setup phase. The prover P places a commitment to each cell according to the solution.
In addition, to show that all the constraints are satisfied, P arranges face-down sequences
corresponding to all the sequences in tkz(n) except for those in the solution (for both row
and column):

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

,

where a black card ♣ corresponds to 0 and a red card ♥ corresponds to 1 in any helping
sequence for the row, and ♥ corresponds to 0 and ♣ corresponds to 1 in any helping
sequence for the column. As shown in Table 1, the number of such helping sequences is two
in each direction in this case of 4× 4 grid.

5 For the two additional cards, we can make use of any two revealed cards appearing in the previous step
without opening the number cards.

D. Miyahara et al. 20:11

Verification phase. In this phase, V verifies all the constraints, namely the Equality,
Uniqueness, and Adjacent rules by revealing the commitments along with the helping
sequences after applying a pile-scramble shuffle. Note that V can also verify that the
commitments placed by P in the Setup phase form the valid ones according to the encoding
rule (1) (e.g., not ♣ ♣ or ♥ ♥).
1. For all the rows, take the left card of each commitment to make n sequences (along with

the helping sequences for the rows).

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

→

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

→

?
?
?
?
?
?

.

2. Apply a pile-scramble shuffle to the sequence of piles.
3. Reveal the cards of all sequences. If there are either (i) a sequence whose number of black

cards is not the same as that of red cards, (ii) two identical sequences, or (iii) a sequence
containing more than two consecutive 0s or 1s, then V rejects it.

4. For all the columns, take the right card of each commitment to make n sequences (along
with the helping sequences for the columns).

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

→

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

.

Then, the same is done.

This protocol uses n · |tkz(n)| black cards and the same number of red cards when we have
an n× n Takuzu grid. See Table 1 again for the value of |tkz(n)|. The number of required
shuffles is two.

3.3 Comparison
Let us compare the two protocols for Takuzu presented in the previous subsection. Table 2
summarizes the numbers of required cards and shuffles for the protocols.

Table 2 The numbers of required cards and shuffles for Protocols 1 and 2 when we have an n×n

Takuzu grid such that n is up to eight.

#Cards #Shuffles
n = 4 n = 6 n = 8 n = 4 n = 6 n = 8

Protocol 1 48 96 160 140 474 1112
Protocol 2 48 168 544 2 2 2

According to this table, there is a trade-off between the numbers of required cards and
shuffles, i.e., Protocol 1 presented in Section 3.2.1 needs a less number of cards but needs

FUN 2021

20:12 Card-Based ZKP Protocols for Takuzu and Juosan

a more number of shuffles than Protocol 2 presented in Section 3.2.2. Both protocols are
reasonable, and hence, P and V may choose their favorite one. Let us stress that pencil
puzzles are usually played on a board of small size, say n = 8, and also that players enjoying
a puzzle normally do not use computers to solve it.

3.4 Security Proofs for Takuzu
We prove the security of our construction. We consider a shuffle functionality which is an
indistinguishable shuffle of face down cards. The first part is dedicated to give proofs of
protocol 1 while the second part is dedicated to prove the security for protocol 2.

3.4.1 Security Proofs of Protocol 1
Takuzu Completeness

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .

Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase
described in subsection 3.2.1. Then we show that P is able to perform the proof for the
three phases: (AV) adjacent verification phase, (UV) uniqueness and verification phase, and
equality verification phase (EV).

Since S is a solution of G, S is a valid grid respecting all the constraints. If S respects
the adjacent rule so the six-card trick outputs 0 in all cases. Indeed, if the number are all
equals then the rearranging step (step 1 of the six-card trick) has the same output than the
input. For example, consider the sequence 101 which is rearrange as:

1
♥

2
♣

3
♣

4
♥

5
♥

6
♣ →

1
♥

6
♣

3
♣

2
♣

5
♥

4
♥ .

The random cut will keep the pattern, up to a cyclic shift. The same result holds for
other possible sequences (there are 6 of them).

We conclude that S succeeds the AV challenge.
We show that S passes the UV challenge. The verification is done toward each possible

pair of row (and column) of the grid. Consider two rows where ai denote the values of
commitments on the first row and bi the values for the second row. Since S is a solution
those two rows are different, meaning that there exists at least a value j for which aj 6= bj .
This implies that aj = bj ⊕ 1 (recall that ∀i = 1 . . . n we have ai, bi ∈ {0, 1}) meaning that
aj ⊕ bj = 1. Thus the disjunction of all the possible ai ⊕ bi will output 1 (since at least on of
its term is equal to 1). Repeating this process for each possible pair of rows and columns
leads to always output 1 in step 3 of the UV.

Lastly, we show that S succeeds the EV challenge. Since it is a solution there is the same
number of 0 and 1 in each row and column. When shuffling the cards, only the their order is
modified but not their value thus the equality property still holds.

We conclude that P convinces V for AV, UV and EV phases. J

Takuzu Soundness

We show that if P does not provide a solution of a given Takuzu grid then he is not able to
convince V with probability 1.

Proof. Suppose that P does not know the solution, we want to show that V will detect it
during, at least, one verification phase.

D. Miyahara et al. 20:13

First, notice that if P places a commitment that respects all the Takuzu rules then it
is a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we
consider three possible cases corresponding to each rule that is not respected:

If the adjacent rule is not respected, then there exists three consecutive commitments
that have the same value (either 0 or 1). Without loss of generality, let consider that
those values are all 0’s. Thus the the rearrange step is:

1
♣

2
♥

3
♣

4
♥

5
♣

6
♥ →

1
♣

6
♥

3
♣

2
♥

5
♣

4
♥ .

Thus a random cut will keep this alternating pattern. (Note that the same result holds
with all 1 but black cards are replaced by red cards and vice-versa.) Hence, the six-card
trick outputs 1 so V rejects P ’s commitments.
If the uniqueness rule is not respected, then at least two rows or two columns are identical.
Thus, for all i = 1 . . . n, we have ai = bi =⇒ aj ⊕ bj = 0. This implies that the
disjunction of all those terms is equal to 0 so V rejects it.
If the equality rule is not respected, then there exists a row or column where the number
of 0 is not equal to the number of 1. W.l.o.g., consider a row with n

2 +1 0-commitment and
n
2 − 1 1-commitment. When applying a pile scramble shuffle the 0-commitment remains
0-commitment, and 1-commitment still remains 1-commitment so V will notice that there
is n

2 + 1 0-commitment and n
2 − 1 1-commitment. Finally, V won’t be convinced. J

Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. The idea of the proof is described in [13]. Proving zero-knowledge implies to describe
an efficient simulator which is an algorithm that simulates any interaction between a cheating
verifier and a real prover. The simulator has no access to the correct solution but it has an
advantage over the prover: when the cards are shuffled, the simulator can swap the decks
with different ones. We thus show how to construct a simulator for each challenge:

Adjacent Verification challenge: The simulator chooses randomly S such that three con-
secutive cells never contain the same number. Note that the uniqueness and equality
rule may not hold. Then it simulates the interaction between the prover and the verifier.
For each three vertically (or horizontally) consecutive commitments, the six-card trick
outputs 0 (there are exactly two identical number).

Uniqueness Verification challenge: When the verifier checks for pair of rows or columns,
the simulator picks cards to form distinct rows or columns (for example, during the
Mizuki-Sone XOR shuffle phase).

Equality Verification challenge: During the pile scramble shuffle, the simulator places n
2

0-commitment and n
2 1-commitment in a random order. J

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.

3.4.2 Security Proofs of Protocol 2
Completeness

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .

FUN 2021

20:14 Card-Based ZKP Protocols for Takuzu and Juosan

Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase
described in subsection 3.2.2. Then we show that P is able to perform the proof for the
verification phase.

Since S is a solution of G, S is a valid grid respecting all the constraints. Indeed S

respects the adjacent rule so each three consecutive commitments cannot be all the same.
Thus the left cards of each commitment cannot be the same (recall our encoding 1). The other
rules can be verified using the same process since each left card (or right) fully determine the
value of a commitment. Indeed, if the left card is ♣ the the commitment corresponds to the
value 0 and if the left card is ♥ then it corresponds to a 1-commitment. We conclude, that
if P ’s commitment corresponds to the solution of G then all the constraints can be verified
by V when revealing the commitments. J

Soundness

We show that if P does not provide a solution of a given Takuzu grid then he is not able to
convince V with probability 1.

Proof. Suppose that P does not know the solution, we want to show that V will detect it
during the verification phase.

First, notice that if P places a commitment that respects all the Takuzu rules then it
is a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we
consider three possible cases corresponding to each rule that is not respected:

If the adjacent rule is not respected, then there exists three consecutive commitments
that have the same value (either 0 or 1). Since the order of the cards is kept (only the
pile are shuffled), V can detect when three consecutive cards are identical.
If the uniqueness rule is not respected, then at least two rows or two columns are identical.
Again, V will detect it since all the left (right) cards are revealed and that left (right)
cards fully determine a commitment value.
If the equality rule is not respected, then there exists a row or column where the number
of 0 is not equal to the number of 1. As seen in the previous case, V won’t be convinced
since the number of 0 does not correspond to the number 1. J

Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. The idea is the same as for protocol 1. We show how to construct a simulator for the
challenge. During the pile-scramble phase, the simulator replaces each pile with a sequence
of tkz(n). Thus the set of those sequence verifies the rules. J

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.

4 Our ZKP Protocol for Juosan

In this section, applying the ideas shown in Section 3, we construct a ZKP protocol for
Juosan, which allows the prover P (aka Q) to convince the verifier V (aka James Bond) that
he really knows a solution.

D. Miyahara et al. 20:15

4.1 Subprotocol: Five-Card Trick
We introduce the five-card trick [8] in this subsection, which is used in our construction to
verify Rules 2 and 3.

Given two commitments to a, b ∈ {0, 1} (along with a red card ♥), the five-card trick [8]
outputs a ∧ b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

♥ → · · · → a ∧ b . The protocol proceeds as follows.

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
?

5
? →

2
?

1
?

5
?

3
?

4
? .

2. Apply a random cut to the sequence:
〈

? ? ? ? ?
〉
→ ? ? ? ? ? .

3. Reveal the sequence. If the resulting sequence is:
a. ♣ ♣ ♥ ♥ ♥ (apart from cyclic shifts), the output is a ∧ b = 1.
b. ♥ ♣ ♥ ♣ ♥ (apart from cyclic shifts), the output is a ∧ b = 0.

4.2 Our Construction
We are now ready to present the full description of our ZKP protocol for Juosan. Let us
consider that we are given a 5× 5 Juosan grid as an example.

Our construction consists of three phases, the Setup phase, Adjacent Verification phase,
and Room Verification phase.

Setup phase. Regarding a vertical dash (|) as 0 and a horizontal dash (—) as 1, the prover
P places a commitment to each cell according to the solution:

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

.

Adjacent Verification phase. In this phase, V repeats applications of the Mizuki–Sone
AND protocol [24] and five-card trick [8] enhanced by the input-preserving function evaluation
technique to verify that the Adjacent condition is satisfied. Note that V can also verify
that the commitments placed by P in the Setup phase form the valid ones according to the
encoding rule (1).
1. Let us verify that there are no three consecutive horizontal dashes in any column. The

fact that three horizontal dashes are not consecutive to the vertical means that there is
at least one vertical dash among them. Therefore, it suffices to confirm the AND value of
of the corresponding three commitments is false because a vertical dash is encoded as 0
and a horizontal dash as 1.
Let a, b, c ∈ {0, 1} be the values of commitments on three consecutive cells in a column.
First, for commitments to a and b, perform the Mizuki–Sone AND protocol described in
Section 3.1.3. Then, a commitment to a ∧ b is obtained.

2. Perform the five-card trick described in Section 4.1 for the commitments to a ∧ b and c.
If the five-card trick outputs 1, V rejects it.

3. Restore commitments to a, b, and c by the input-preserving function evaluation technique
described in Section 3.1.6.

4. The same is done for rows. In this case, let the encoding be reversed.

FUN 2021

20:16 Card-Based ZKP Protocols for Takuzu and Juosan

Room Verification phase. In this phase, V verifies the Room rule by revealing the com-
mitments after applying pile-scramble shuffles.
1. Apply a pile-scramble shuffle to all commitments in a territory with a number:

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

→
[

? ?
∣∣ ? ?

∣∣ ? ?
]
→ ? ? ? ? ? ? .

2. Take all the left cards and all the right cards of these commitments to make two piles.
Then, apply a pile-scramble shuffle to the two piles:

? ? ? ? ? ? →
? ? ?

? ? ?
→

?
?
→

[
?
∣∣ ?

]
→

? ? ?
? ? ?

.

3. Reveal all the cards of the piles. If the number of black cards or red cards is not the
same as the number written on the territory, V rejects it. For example, in the case of a
3-cell territory with a number “3,” each of the following two types of card groups should

appear with a probability of 1/2:
♥ ♥ ♥
♣ ♣ ♣

,
♣ ♣ ♣
♥ ♥ ♥

, where the order of cards in the

card set does not matter.
4. The same is done for all other numbered territories.

The numbers of required shuffles are 3(m(n− 2) + n(m− 2)) in the Adjacent Verification
phase and k in the Room Verification phase when we have an m × n Juosan grid and k

territories. This protocol uses mn+ 1 black cards, the same number of red cards, and eight
number cards.

4.3 Optimized Adjacent Verification for Juosan
In the original Adjacent Verification phase of our protocol for Juosan presented in Section 4.2,
the AND value a ∧ b ∧ c for a, b, c ∈ {0, 1} is securely computed to show the validity of three
consecutive commitments. We present an optimization technique to show the validity of four
consecutive commitments as follows.

1. Let a, b, c, d ∈ {0, 1} be commitments of four consecutive cells in a column. First, for
commitments to b and c, perform the Mizuki–Sone AND protocol described in Section 3.1.3.
Then, a commitment to b ∧ c is obtained.

2. Let x1 = b∧ c, x2 = a, and c3 = d. By slightly modifying the Mizuki–Sone AND protocol,
the following protocol is obtained:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♥ ? ?︸ ︷︷ ︸
x3

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
x1∧x2

? ?︸ ︷︷ ︸
x1∧x3

.

Note that this uses one random bisection cut only. Then, two commitments of x1 ∧ x2 =
a ∧ b ∧ c and x1 ∧ x3 = b ∧ c ∧ d are obtained.

3. Open the commitments of a ∧ b ∧ c and b ∧ c ∧ d. If they are not (0, 0), V rejects it.
4. Obtain the commitments to a, b, c, and d by the input-preserving function evaluation

technique described in Section 3.1.6.

D. Miyahara et al. 20:17

4.4 Security Proofs for Juosan
We prove the security of our construction. We consider a shuffle functionality which is an
indistinguishable shuffle of face down cards.

Juosan Completeness

We show that if P knows a solution of a given Takuzu grid then it is able to convince V .

Proof. Suppose that P knows a solution S of the initial grid G and runs the setup phase
described in Section 4. Then we show that P is able to perform the proof for the two phases:
adjacent verification phase (AV) and room verification phase (RV).

Since S is a solution of the grid G, we show that S is a valid grid respecting all the
constraints.

We first consider the adjacent verification. Let us take an example, the other cases (here
8 possible cases) are done the same way. We consider the case of horizontal dashes in a
column for verifying the adjacent (horizontal) rule. We need to show that the AND value of
these commitments is not equal to 1. Note that if we inverse the encoding rule (♥ ♣ = 0
and ♣ ♥ = 1) we can verify that no three consecutive vertical dashes are placed in a given
row.

We consider the 101-commitment: ♥ ♣ ♣ ♥ ♥ ♣ .
First we take the first four cards and apply the Mizuki-Sone AND protocol:
1
♥

2
♣

3
♣

4
♥

5
♥

6
♣ →

1
♥

3
♣

4
♥

2
♣

5
♥

6
♣ .

Then the random cut will output two possible combinations:
1
♥

3
♣

4
♥

2
♣

5
♥

6
♣ or

2
♣

5
♥

6
♣

1
♥

3
♣

4
♥ .

Both cases has output ♣ ♥ which is simply 0.
Note that if we replace the second commitment by 1 (which is encoded as ♥ ♣) then after

the random cut we have the two possible outputs:
1
♥

3
♥

4
♣

2
♣

5
♥

6
♣ or

2
♣

5
♥

6
♣

1
♥

3
♥

4
♣ .

The output is ♥ ♣ which is simply 1 (and this corresponds with the expected value).
Next, we compute the five-card trick for input ♣ ♥ ♥ ♣ ♥ .
The rearrange step outputs ♥ ♣ ♥ ♥ ♣ which is the same pattern of alternating figure

meaning that a ∧ b = 0. Note that a random cut will not modify the shape of the pattern.
The same process is applied to all other commitments so we can conclude that S respects

the adjacent verification for horizontal and vertical dashes. Hence S succeeds the AV
challenge.

Note that we can verify the adjacent rule by looking at three consecutives cells and the
next three consecutives cells (that is cells a, b, c and then cells b, c, d) or directly apply the
optimized adjacent verification in Section 4.3.

S also succeeds the room verification. Indeed, we make two piles corresponding to left
cards of each commitment and right cards of each commitment. Thus each vertical dash
(encoded as ♣ ♥) adds a card ♣ in a pile and a card ♥ in the other pile. Hence, a pile
represents the number of vertical dashes while the other represents the number of horizontal
dashes (but those two piles are indistinguishable). It remains to count the number of cards
that forms the majority to deduce if the room rule is achieved. Finally S is a correct solution
for RV challenge.

We conclude that P convinces V for AV phase and for RV phase. J

FUN 2021

20:18 Card-Based ZKP Protocols for Takuzu and Juosan

Juosan Soundness

We show that if P does not provide a solution of a given Juosan grid then it is not able to
convince V .

Proof. Suppose that P is able to convince V meaning that P can provide S which succeeds
AV challenge and RV challenge. We want to show that P knows a solution to Juosan grid G.

During the input phase, P places a commitment.
Since P is able to perform the proof of AV challenge and RV challenge we have: initial

cells are the same as in S, horizontal bars are not arranged three times in a column, vertical
bars are not arranged three times in a row, and a room has correct numbers of vertical or
horizontal bars corresponding to its number.

We deduce that S is a solution of G (since each rule is respected). Hence if P does not
provide a solution of G then it fails the proof for at least one challenge. Since those two
phases are perform during the proof, P receives two challenges (AV and RV) out of two
possibilities.

Hence, if P gives a wrong grid then at least one of those two challenges will fail.
Thus P cannot convince V with a wrong proposition. J

Juosan Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. We follow the same process as for the zero-knowledge of Takuzu protocol. We thus
show how to construct a simulator for each challenge:

Adjacent Verification challenge: The simulator chooses randomly S. Before the final output
of the five-card trick, the simulator always chooses a deck for which red and black cards
are alternated. Thus the output is always 0 meaning that the Adjacent Verification
challenge succeed. Since S was chosen randomly then simulated proofs and real proofs
are indistinguishable.

Room Verification challenge: When the verifier checks for vertical direction, the simulator
looks at the room number to form the corresponding number with red cards (or black
ones) for each piles. This step is done the same way for all rooms. Since each row
(or column) are different from one to another, the simulated proofs and real proofs are
indistinguishable. J

We conclude that our protocol for Juosan is complete, soundness and zero-knowledge.

5 Conclusion

In this paper we improved the existing interactive zero-knowledge proof for Takuzu. Our
protocols use a reasonable number of cards and shuffles, implying that they are easy to
implement by humans. Our protocols are designed in such a way that the proof is completely
sound meaning that a prover P convinces the verifier V with probability 1 if P has a solution.
We also proposed an adapted version of this protocol for the Juosan puzzle which had never
been proposed before. An interesting puzzle, called Suguru, can also be studied with this
technique.

D. Miyahara et al. 20:19

References
1 József Balogh, János A. Csirik, Yuval Ishai, and Eyal Kushilevitz. Private computation using

a PEZ dispenser. Theor. Comput. Sci., 306(1-3):69–84, 2003.
2 Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali,

and Phillip Rogaway. Everything provable is provable in zero-knowledge. In Advances in
Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes in Computer
Science, pages 37–56. Springer, 1988. doi:10.1007/0-387-34799-2_4.

3 Marzio De Biasi. Binary puzzle is NP-complete, July 2012. URL: http://www.nearly42.org/
vdisk/cstheory/binaryp.pdf.

4 Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, page 103–112, New York, NY, USA, 1988. Association for Computing Machinery.
doi:10.1145/62212.62222.

5 Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade. Physical zero-
knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In Erik D. Demaine and Fabrizio
Grandoni, editors, 8th International Conference on Fun with Algorithms, FUN 2016, June
8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.8.

6 Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade, Daiki Miyahara,
Takaaki Mizuki, Atsuki Nagao, Tatsuya Sasaki, Kazumasa Shinagawa, and Hideaki Sone.
Physical zero-knowledge proof for Makaro. In SSS 2018 - 20th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, volume 11201 of Lecture Notes in
Computer Science, pages 111–125, Tokyo, Japan, November 2018. Springer. doi:10.1007/
978-3-030-03232-6_8.

7 Yu-Feng Chien and Wing-Kai Hon. Cryptographic and physical zero-knowledge proof: From
Sudoku to Nonogram. In Paolo Boldi and Luisa Gargano, editors, Fun with Algorithms 2010,
volume 6099 of LNCS, pages 102–112. Springer, 2010.

8 Bert den Boer. More efficient match-making and satisfiability the five card trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology — EUROCRYPT
’89, pages 208–217, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

9 Jannik Dreier, Hugo Jonker, and Pascal Lafourcade. Secure auctions without cryptography.
In Fun with Algorithms, 7th International Conference, FUN’14, pages 158–170, 2014. doi:
10.1007/978-3-319-07890-8_14.

10 Jean Guillaume Dumas, Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya Sasaki,
and Hideaki Sone. Interactive physical zero-knowledge proof for Norinori. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11653 LNCS:166–177, 2019. doi:10.1007/978-3-030-26176-4_14.

11 Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology, 9(3):167–189, 1996. doi:10.1007/s001459900010.

12 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. Knowledge complexity of interactive proof-
systems. Conference Proceedings of the Annual ACM Symposium on Theory of Computing,
pages 291–304, 1985. doi:10.1145/3335741.3335750.

13 Ronen Gradwohl, Moni Naor, Benny Pinkas, and Guy N. Rothblum. Cryptographic and
physical zero-knowledge proof systems for solutions of Sudoku puzzles. In Proceedings of
the 4th International Conference on Fun with Algorithms, FUN’07, pages 166–182, Berlin,
Heidelberg, 2007. Springer-Verlag.

14 James Heather, Steve A. Schneider, and Vanessa Teague. Cryptographic protocols with
everyday objects. Formal Aspects of Computing, 26:37–62, 2013.

15 Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols for generating
a hidden random permutation without fixed points. In Cristian S. Calude and Michael J.
Dinneen, editors, UCNC 2015, volume 9252 of LNCS, pages 215–226. Springer, 2015.

FUN 2021

https://doi.org/10.1007/0-387-34799-2_4
http://www.nearly42.org/vdisk/cstheory/binaryp.pdf
http://www.nearly42.org/vdisk/cstheory/binaryp.pdf
https://doi.org/10.1145/62212.62222
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-319-07890-8_14
https://doi.org/10.1007/978-3-319-07890-8_14
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/s001459900010
https://doi.org/10.1145/3335741.3335750

20:20 Card-Based ZKP Protocols for Takuzu and Juosan

16 Chuzo Iwamoto and Tatsuaki Ibusuki. Kurotto and Juosan are NP-complete. In The 21st
Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCG3
2018), pages 46–48, Ateneo de Manila University, Philippines, September 2018.

17 Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya Sasaki, and Hideaki Sone. A
physical ZKP for Slitherlink: How to perform physical topology-preserving computation. In
Swee-Huay Heng and Javier Lopez, editors, Information Security Practice and Experience,
pages 135–151, Cham, 2019. Springer International Publishing.

18 Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

19 Daiki Miyahara, Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-based physical
zero-knowledge proof for Kakuro. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E102.A(9):1072–1078, 2019. doi:10.1587/transfun.
E102.A.1072.

20 Takaaki Mizuki. Efficient and secure multiparty computations using a standard deck of
playing cards. In Cryptology and Network Security, pages 484–499, November 2016. doi:
10.1007/978-3-319-48965-0_29.

21 Takaaki Mizuki, Yoshinori Kugimoto, and Hideaki Sone. Secure multiparty computations using
a dial lock. In Jin-yi Cai, S. Barry Cooper, and Hong Zhu, editors, Theory and Applications of
Models of Computation, 4th International Conference, TAMC 2007, Shanghai, China, volume
4484 of LNCS, pages 499–510. Springer, May 2007. doi:10.1007/978-3-540-72504-6_45.

22 Takaaki Mizuki, Yoshinori Kugimoto, and Hideaki Sone. Secure multiparty computa-
tions using the 15 puzzle. In Andreas W. M. Dress, Yinfeng Xu, and Binhai Zhu, ed-
itors, Combinatorial Optimization and Applications, First International Conference, CO-
COA 2007, Xi’an, China, volume 4616 of LNCS, pages 255–266. Springer, August 2007.
doi:10.1007/978-3-540-73556-4_28.

23 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Fun with
Algorithms, 7th International Conference, FUN’14, pages 313–324, 2014. doi:10.1007/
978-3-319-07890-8_27.

24 Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card secure XOR. In
Xiaotie Deng, John E. Hopcroft, and Jinyun Xue, editors, Frontiers in Algorithmics, Third
International Workshop, FAW 2009, Hefei, China, June 20-23, 2009. Proceedings, volume
5598 of LNCS, pages 358–369. Springer, 2009.

25 Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. In Luís
Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP 2005, volume 3580 of LNCS, pages 285–297. Springer, 2005.

26 Tal Moran and Moni Naor. Polling with physical envelopes: A rigorous analysis of a human-
centric protocol. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, volume 4004 of LNCS, pages 88–108. Springer,
2006. doi:10.1007/11761679_7.

27 Tal Moran and Moni Naor. Split-ballot voting: everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur., 13:246–255, 2010. doi:10.1145/1315245.1315277.

28 Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Pile-shifting scramble
for card-based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101(9):1494–
1502, 2018.

29 Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-based zero-knowledge proof for
Sudoku. In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th
International Conference on Fun with Algorithms, FUN 2018, June 13-15, 2018, La Maddalena,
Italy, volume 100 of LIPIcs, pages 29:1–29:10. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.FUN.2018.29.

https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/11761679_7
https://doi.org/10.1145/1315245.1315277
https://doi.org/10.4230/LIPIcs.FUN.2018.29

D. Miyahara et al. 20:21

30 Kazumasa Shinagawa and Takaaki Mizuki. The six-card trick: Secure computation of three-
input equality. In Kwangsu Lee, editor, Information Security and Cryptology – ICISC 2018,
volume 11396 of LNCS, pages 123–131, Cham, 2019. Springer.

31 Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Multi-party computation with small
shuffle complexity using regular polygon cards. In Man Ho Au and Atsuko Miyaji, editors,
Provable Security - 9th International Conference, ProvSec 2015, Kanazawa, Japan, November
24-26, 2015, Proceedings, volume 9451 of LNCS, pages 127–146. Springer, 2015. doi:10.1007/
978-3-319-26059-4_7.

32 Kazumasa Shinagawa and Koji Nuida. A single shuffle is enough for secure card-based
computation of any circuit. IACR Cryptology ePrint Archive, pages 1–19, 2019.

33 Itaru Ueda, Daiki Miyahara, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki
Sone. Secure implementations of a random bisection cut. International Journal of Information
Security, 19:445–452, August 2019. doi:10.1007/s10207-019-00463-w.

34 Putranto Hadi Utomo and Ruud Pellikaan. Binary puzzles as an erasure decoding problem.
In Proceedings of the 36th WIC Symposium on Information Theory in the Benelux, pages
129–134, 2015. URL: www.win.tue.nl/~ruudp/paper/72.pdf.

FUN 2021

https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/s10207-019-00463-w
www.win.tue.nl/~ruudp/paper/72.pdf

Speeding up Networks Mining via Neighborhood
Diversity
Gennaro Cordasco
Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italy
gennaro.cordasco@unicampania.it

Luisa Gargano
Dipartimento di Informatica, Università di Salerno, Fisciano, Italy
lgargano@unisa.it

Adele A. Rescigno
Dipartimento di Informatica, Università di Salerno, Fisciano, Italy
arescigno@unisa.it

Abstract
Parameterized complexity was classically used to efficiently solve NP-hard problems for small values
of a fixed parameter. Then it has also been used as a tool to speed up algorithms for tractable
problems. Following this line of research, we design algorithms parameterized by neighborhood
diversity (nd) for several graph theoretic problems in P (e.g., Maximum Matching, Triangle counting
and listing, Girth and Global minimum vertex cut). Such problems are known to admit algorithms
parameterized by modular-width (mw) and consequently – being the nd a “special case” of mw – by
nd. However, the proposed novel algorithms allow to improve the computational complexity from a
time O(f(mw) · n + m) – where n and m denote, respectively, the number of vertices and edges in
the input graph – which is multiplicative in n to a time O(g(nd) + n + m) which is additive only in
the size of the input.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized Complexity, Neighborhood Diversity, Maximum Matching,
Triangle Counting, Girth, Global minimum vertex cut

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.21

1 Introduction

A large online marketplace Grove is about to design a novel marketing strategy exploiting the
data available thanks to their largely adopted premium program Grove-FUN. The CEO of
Grove realized that customers’ activities, reactions, and interactions on Grove-FUN can be
used to perform predictive analysis on marketing, which increases both customer satisfaction
and company returns. Indeed, the predictive analysis can be used to devise:

Personalized recommendation system. For example, when a user adds a comic to his/her
online shopping cart, similar comics purchased by other customers or other products
purchased by customers having some similarity with the user can be recommended.
Anticipatory Shipping Model for predicting the products customers are going to purchase,
when and where they might need the products. According to the analysis, the items are
pushed to a local distribution center or warehouse so they will be ready for shipping
once a customer orders them. This approach increases product sales and profit margins
because it reduces delivery time and overall expenses.
Price optimization. Prices are set according to customer activities, item preferences, order
history, and other factors.

© Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9148-9769
mailto:gennaro.cordasco@unicampania.it
https://orcid.org/0000-0003-3459-1075
mailto:lgargano@unisa.it
https://orcid.org/0000-0001-9124-610X
mailto:arescigno@unisa.it
https://doi.org/10.4230/LIPIcs.FUN.2021.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Speeding up Networks Mining via Neighborhood Diversity

Viral marketing strategies. Sales of a new product can be improved by taking advantage
of the human tendency to conform [5] by means of a viral marketing campaign based on
targeted discounts [10].

The Grove Marketing Analysts realized that the data available on the premium program
Grove-FUN can be easily modeled as a networked structure in terms of nodes (customers)
and edges, or links (friendship or interactions) that connect them. This approach enables
them to study the data through the use of networks and graph theory [16]. Several classical
graph theory algorithms gained popularity in social network analysis. For instance, Triangle
counting is used to detect communities and measure the cohesiveness of those communities,
Maximum matching can be used to devise matching market strategies, the betweenness
centrality is used to individuate influential vertices and their importance. Unfortunately, the
Grove-FUN network is very large, with millions of customers and billions of edges. It is often
prohibitively expensive to perform network analysis using standard algorithms on very large
networks.

Fortunately, the clever Grove analysts have observed that the structure of Grove-FUN
relationships follows the rules of social relationships. For instance, it is possible to observe
how the connections are balanced between staying within a well identified community (where
everybody knows each other) and cutting across communities. Such a specific structure of
the network suggests a different way of thinking about standard algorithms in terms of their
dense communities, and the ways in which they interact with each other.

On the basis of this observation, the following mathematical model was put forward. The
network of customers is represented by a graph G = (V,E), where V is the set of customers,
and there is an edge between two customers if they reviewed the same product. Then the
analysts were able to compress the network (keeping most of the information described by the
original network) – exploiting the neighborhood diversity approach, introduced by Lampis
in [32] – grouping similar nodes. A new graph H, called the type graph of G, characterized
by a smaller number of nodes (each representing a group of customers) is generated in linear
time and, starting from it, analysts have started having FUN redesigning and speeding up
some classical algorithms such as maximum matching, triangle counting, girth, and global
minimum vertex cut to use the graph H solving problems defined on G.

2 The hardness in P context

Algorithmic research aims to determine the best possible running time algorithms for
computational problems. A first goal toward the classification of the problems according
to their complexity was achieved by the NP-completeness theory, whose goal is to identify
problems that are unlikely to be solved in polynomial time. However, there are still many
intensively studied problems in P for which the worst-case running time of the best current
algorithm is not known to be optimal. Namely, many important problems have classical
algorithms running in Õ(nk) time1 for some constant k, and this running time has not been
significantly improved upon, in spite on many years of intensive research.

Recently, the Hardness in P tool for determine a hierarchy of the complexity of polynomial-
time solvable problems has been introduced [37]. The key starting point here is the conjecture
that there are problems that do not admit algorithms that perform significantly better than
the already known ones. In particular, it has been conjectured that there is no O(n2−ε) time
algorithm for 3-SUM and no O(n3−ε) time algorithm for All-Pairs Shortest Paths. Moreover,

1 The Õ(f) notation ignores factors of log(f)

G. Cordasco, L. Gargano, and A. A. Rescigno 21:3

the Hardness in P theory is based on the Strong Exponential Time Hypothesis (SETH):
There is no c < 2 such that k-SAT can be solved in time O(cn) for each fixed k. This
conjecture is used to obtain lower bounds to the complexity of some problems in P, in the
sense that the existence of a faster algorithm for one of these problems implies the existence
of a faster algorithm for one of the fundamental problems mentioned above. Recent work in
the area can be found in [1, 2, 9, 22, 38].

On the positive side, efforts have been made to improve algorithms for problems in P
on some restricted classes of graphs. In particular, parameterized algorithms have been
recently proposed as a tool to speed up algorithms for problems in P [12]. Parameterized
complexity was classically used to efficiently solve NP-hard problems for small values of a
fixed parameter [14, 36]. Formally, a parameterized problem with input size n and parameter
t is called fixed parameter tractable (FPT) if it can be solved in time f(t) · nc, where f is a
function only depending on t and c is a constant.

Unfortunately there are several parameters whose computation is an NP-hard problem
itself. As an example computing treewidth, rankwidth, and vertex cover are all NP-hard
problems– even though they are computable in FPT time when their respective parameters
are bounded. Moreover, the parameterized complexity of computing the clique-width of a
graph is still an open problem [13]. On the contrary, modular-width [21] and neighborhood
diversity [32] are two recently introduced parameters that are computable in linear time
O(m) on a graph with m edges [3, 7, 11, 12, 15, 18, 19, 21, 24, 25, 32].

2.1 Our results
In this paper we design algorithms parameterized by neighborhood diversity for well studied
tractable problems. Namely, we consider the maximum matching, triangle counting, girth,
and global minimum vertex cut problems. Such problems are known to admit algorithms
parameterized, among other parameters, by modular-width (mw) of the input graph. This
implies, being the neighborhood diversity (nd) a “special case” of modular width (i.e.,
mw ≤ nd)[21], that the same algorithm can be used with respect to nd. However, for
a graph with n nodes and m edges the proposed novel algorithms allow to improve the
computational complexity from a time O(f(mw) · n+m), which is multiplicative in n [12] to
a time O(g(nd) + n+m) which is only additive in the size of the input.

3 Neighborhood diversity

Given a graph G = (V,E), two nodes u, v ∈ V have the same type iff N(v)\{u} = N(u)\{v}.
The neighborhood diversity of a graph G, introduced by Lampis in [32] and denoted by nd(G),
is the minimum number t of sets in a partition V1, V2, . . . , Vt, of the node set V , such that
all the nodes in Vi have the same type, for i = 1, . . . , t. In the following we use nd, instead of
nd(G), when the graph G is clear from the context. The family V = {V1, V2, . . . , Vt} is called
the type partition of G.

Let G = (V,E) be a graph with type partition V = {V1, V2, . . . , Vt}. By definition, each
Vi induces either a clique or an independent set in G. Whenever Vi ∈ V is a singleton, we
consider it as inducing an independent set, so any Vi inducing a clique has |Vi| ≥ 2. For each
Vi, Vj ∈ V, we get that either each node in Vi is a neighbor of each node in Vj or no node in
Vi has a neighbor in Vj .

Starting from a graph G and its type partition V = {V1, . . . , Vt}, we can see each element
of V as a vertex of a new graph H, called the type graph of G, with V (H) = {1, 2, . . . , t} and
E(H) = {(x, y) | x 6= y, there is a complete bipartite graph between Vx and Vy in G, }

∪ {(x, x) | |Vx| ≥ 2 and Vx and induces a clique in G}.
Determining nd(G) and the corresponding type partition, can be done in time O(n+m) [32].

FUN 2021

21:4 Speeding up Networks Mining via Neighborhood Diversity

4 Maximum matching

A matching in a graph is a set of edges with pairwise disjoint end vertices. The maximum
matching (mm) problem consists in computing a matching of maximum size.

maximum matching can be solved in polynomial time by Edmond’s algorithm [17].
A simple implementation of such an algorithm requires time O(n4), however Micali and
Vazirani showed how to implement Edmond’s algorithm in time O(m

√
n) [34].

maximum matching is considered fundamental to the study of fixed-parameter algorithm
for problems in P [26, 33]. In particular Mertzios et al. designed new algorithms to solve
maximum matching in O(ρO(1)(n+m)) time for various graph parameters ρ [33]. Coudert
et al. gave a O(ρ4n+m) time algorithms for solving MM, when parameterized by either the
modular-width or the P4-sparseness of the graph [12]. Recently, Kratsch et al. improved this
last result to O(mw2 log mw · n+m)[31].

In the following we present an algorithm parameterized by neighborhood diversity for
solving the maximum matching of a graph G = (V,E). Our algorithm will use the solution
of a generalization of mm, namely the maximum b-matching problem [20].

Let b : V → Z+ be a function on the vertices of G (where G may have also self-loops), a
b-matching for G is a function x : E → Z+ such that for each u ∈ V∑

v: u 6=v∧(u,v)∈E

x(u, v) + 2x(u, u) ≤ b(u). (1)

The value x(u, v) represents the multiplicity of the edge (u, v), that is how many times the
edge (u, v) is used by the matching. Note that if b(u) = 1, for each u ∈ V , then the function
x becomes a classical matching for G.
A maximum b-matching for G is a function x for which

∑
(u,v)∈E x(u, v) is maximum. In the

following we will call by |x| =
∑

(u,v)∈E x(u, v) the size of the b-matching x.
Gabow showed how to find a maximum b-matching in time O(min{b(V), n logn} (m+n logn)),
where b(V) =

∑
v∈V b(v) [20].

4.1 The algorithm
We describe now the proposed algorithm.
1. Let V = {V1, . . . , Vt} and H = (V (H), E(H)) be the type partition and the type graph

of G, respectively. Define the function bH : V (H)→ Z+ such that bH(i) = |Vi|.
2. Use Gabow’s algorithm to find a maximum bH -matching for H, let it be xH : E → Z+.
3. Construct the desired maximum matching M for G using xH .
We show now how to implement the above step 3. To this aim, we first notice that (1) implies∑

j
i6=j∧(i,j)∈E

xH(i, j) + 2xH(i, i) ≤ bH(i) for each i ∈ V (H)

xH(i, j) ≤ min{bH(i), bH(j)} for each (i, j) ∈ E(H)

Fix any i ∈ V (H) and let j1, j2, . . . , ja(i) be the neighbors of i in H such that xH(i, j`) > 0,
for ` = 1, . . . , a(i). Recalling that xH(i, j) represents the multiplicity of the edge (i, j) in the
matching and bH(i) = |Vi|, we select

s(i) =
∑

j
i6=j∧(i,j)∈E(H)

xH(i, j) + 2xH(i, i) =
a(i)∑
`=1

xH(i, j`) + 2xH(i, i)

G. Cordasco, L. Gargano, and A. A. Rescigno 21:5

vertices in Vi and partition them into a(i) + 1 sets, Si,j1 , Si,j2 , . . . , Si,ja(i) , Ci such that

|Ci| =
{

2 xH(i, i) if Vi induces a clique,
0 otherwise,

and |Si,j`
| = xH(i, j`) for ` = 1, . . . , a(i).

A matching M for G can be now obtained as

M =

 ⋃
(i,j)∈E(H)

i6=j

Mi,j

⋃
 ⋃

i∈V (H)
Vi is a clique

Mi

 , (2)

where
Mi,j is a perfect matchings connecting the vertices in Si,j with the vertices in Sj,i (recall
that |Si,j | = |Sj,i| = xH(i, j));
Mi is a perfect matchings connecting xH(i, i) pairs of vertices in Ci, if Vi induces a
clique, and Mi = ∅ otherwise.

I Fact 1. The size of the matching M equals that of the bH-matching in H, that is,
|M | = |xH |.

Proof. By definition |xH | =
∑

(i,j)∈E(H) xH(i, j) =
∑

(i,j)∈E(H)
i6=j

|Mi,j | +
∑
i∈V (H) |Mi| =

|M |. J

The following result implies the desired optimality of the matching in (2).

I Lemma 1. If xH is a maximum bH-matching for H then M is a maximum matching
for G.

Proof. Assume by contradiction that there exists a matching M ′ for G such that |M ′| > |M |.
Let y(i, j) be the number of edges in M ′ connecting one vertex in Vi to a vertex in Vj , for
i, j ∈ V (H) (clearly, y(i, j) = 0 if (i, j) /∈ E(H)). Recalling that M ′ is a matching and,
therefore, each vertex in Vi can be the end vertex of only one edge in M ′, we have that∑

j: i 6=j∧(i,j)∈E(H)

y(i, j) + 2y(i, i) ≤ |Vi| = bH(i).

By (1), y is a bH -matching for H. Moreover, its existence contradicts optimality of xH , since

|y| =
∑

(i,j)∈E(H)

y(i, j) = |M ′| > |M | = |xH |. J

Running time. Considering that bH(V (H)) =
∑
i∈V (H) bH(i) =

∑
i∈V (H) |Vi| = n and

that |E(H)| ≤ nd2, we have that the algorithm due to Gabow [20] for computing a maximum
bH -matching for H requires time O(min{bH(V (H)), nd log nd} · (nd log nd + |E(H)|)) =
O(min{n, nd log nd} · nd2).

Summarizing, we have shown the following result.

I Theorem 2. For any graph G = (V,E), the maximum matching problem can be solved in
time O(nd3 log nd + n+m).

We stress that the above algorithm can be generalized to get a maximum b-matching of G.
Hence, we can obtain a linear-time kernelization for b-matching (a linear-time algorithm to
compress the input into a small input of size f(nd)).

FUN 2021

21:6 Speeding up Networks Mining via Neighborhood Diversity

5 Cycles

Finding and counting simple cycles in graphs is a classical well studied problem [4]. In
particular, triangle detection, counting and/or enumeration problems have applications in
many areas, such as spam detection over complex network analysis [6, 35] and bioinformatics
[39]. An extensive annotated list of applications can be found in Kolountzakis et al. [29].

Establishing whether there exists a triangle in a general graph is conjectured not to be
solvable in time O(n3−ε), for ε > 0, with a combinatorial algorithm [38]. Furthermore, in [2]
it is also conjectured that triangle counting is not solvable in time O(nω−ε), for ε > 0,
with ω being the exponent for fast matrix multiplication2. The fastest known algorithm for
triangle counting in general graphs relies on fast matrix multiplication and runs in time
O(nω) [4]. Coudert et al. [12] presented a fast algorithm parameterized by the clique-width
cw of the graph running in time O(cw2(n+m)). Bentert et al. [8] have studied the problem
under various parameters including feedback edge number, distance to d-degenerate graphs,
and clique-width. They also presented an algorithm for triangle listing in a graph
parameterized by the clique-width, running in time O(cw2 · n+ n2 + #T) where #T denotes
the number of triangles in G.

With respect to general cycles in a graph, the girth problem asks to determine the size
of the smallest cycle in a given graph. By an old result of Itai and Rodeh [28], if the girth is
even, it is possible to determine it in time O(n2). If, otherwise, the graph has odd girth then
any algorithm would have to be able to detect if the graph has a triangle, requiring time
O(nω). Itai and Rodeh also showed that any algorithm that can find a triangle in dense
graphs can also compute the girth, so obtaining an O(nω) time girth algorithm. However, in
case of sparse graphs the best running time for the girth is in general O(nm). In [12] was
presented a parameterized algorithms that solve the girth problem in time O(ρ2(n+m))
where ρ is either the modular-width or the split-width.

5.1 Triangle counting and listing
Given a graph G = (V,E), triangle counting problem asks to determine the number of
triangles in G. We present an algorithm that solves the triangle counting problem, then
we extend it to solve the triangle listing problem.

Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph. We count the triangles in G by computing three values
−ai: The number of triangles with all the three vertices in Vi; for i ∈ V (H).
−bi: The number of triangles with exactly two vertices in Vi; for i ∈ V (H).
−c: The number of triangles with each vertex in a different set of the type partition.

It is immediate to see that ai = bi = 0 whenever Vi induces an independent set in G.
If, otherwise, Vi induces a clique in G then each subset of Vi containing three vertices is
a triangle. Furthermore, for each neighbor j of i in H, each pair of vertices in Vi forms a
triangle with any vertex in Vj . Hence, for i ∈ V (H)

ai =
{(|Vi|

3
)

if Vi induces a clique and |Vi| ≥ 3,
0 otherwise.

(3)

2 It is known that 2 ≤ ω < 2.3728639 due to Le Gall [23].

G. Cordasco, L. Gargano, and A. A. Rescigno 21:7

bi =
{(|Vi|

2
)∑

j:(i,j)∈E(H) |Vj | if Vi induces a clique and |Vi| ≥ 2
0 otherwise.

(4)

To compute c we have to count the number of triangles with each vertex in a distinct set of the
type partition. Hence, for each triangle in H involving for instance the vertices i, j, k ∈ V (H)
we have |Vi||Vj ||Vk| triangles in G

c =
∑
|Vi||Vj ||Vk|, (5)

where the sum is over all i, j, h ∈ V (H) forming a triangle in H.
We use a result due to Kratsch et al.[31] to compute c in (5). We present it in terms of

the type partition of G.

I Lemma 3. [31] Let G = (V,E) be a graph with type partition V1, V2, . . . , Vt and type graph
H. Consider the weight function w : E(H) → R+ with w(i, j) =

√
|Vi||Vj |. Let A be the

weighted adjacency matrix of H with respect to w. Then, the number of triangles in G with
each vertex in a different set of the type partition is

c =
∑

i,j∈V (H)

1
3(A2 ◦A)i,j (6)

where A◦B denotes the Hadamard product of the matrices A and B, i.e., (A◦B)i,j = Ai,jBi,j .

By (3), (4) and (6), we have that the number of triangles in G is

∑
i∈V (H):

Vi induces a clique

|Vi|≥3

(
|Vi|
3

)
+

∑
i∈V (H):

Vi induces a clique

|Vi|≥2

(|Vi|
2

) ∑
j:(i,j)∈E(H)

|Vj |

+
∑

i,j∈V (H)

1
3(A2◦A)i,j (7)

Running time. The first two terms of (7) can be computed in time O(|E(H)|) ≤ O(nd2).
The time to evaluate the last term depends on the time to compute the matrix A2 ◦ A.
The best algorithm to compute the matrix multiplication A2 requires time O(ndω). Finally,
multiplying each element of A2 with the correspondent element in A and summing up all
the obtained values takes time O(nd2).

I Theorem 4. The triangle counting problem can be solved in time O(ndω + n+m).

By exploiting the above algorithm and (7) we can easily obtain an algorithm that lists all
the triangles of G and so solving the triangle listing problem.

I Theorem 5. For any graph G = (V,E), the triangle listing problem can be solved in
time O(ndω + n+m+ #T), where #T denotes the number of triangles in G.

5.2 Girth

We present an algorithm that finds the girth µ(G) of any connected graph G.

FUN 2021

21:8 Speeding up Networks Mining via Neighborhood Diversity

Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph.

One can obtain the girth of G by distinguishing the following cases:
1. If there exists i ∈ V (H) such that |Vi| ≥ 2 and Vi induces a clique then µ(G) = 3.
2. If Cases 1. does not hold then compute the girth of H (h = µ(H)):

If either there exist two neighbors i, j ∈ V (H), with |Vi| ≥ 2 and |Vj | ≥ 2
or there exists a vertex i ∈ V (H) with |Vi| ≥ 2 having at least two neighbors

then µ(G) = min{4, h}.
Otherwise, µ(G) = h.

The algorithm first checks if there is a triangle involving an edge connecting two nodes in
the same type set. Indeed, if there exists at least a type set Vi inducing a clique (recall that
|Vi| ≥ 2 in this case) then any two vertices in Vi with any neighbor inside or outside Vi form
a triangle (recall that G is connected). If this is the case the algorithm returns µ(G) = 3.

Otherwise, we know that all the type sets V1, V2, . . . , Vt induce independent sets. In this
case, any cycle in G must involve only edges between pairs of type sets, and so edges of H.
The algorithm computes the girth h of H. Then if there is a cycle of length 4 involving two
nodes in the same type set, the algorithm returns the value min{4, h}. Cycles of length 4
are identified by the following conditions. If there exist (i, j) ∈ E(H), with |Vi| ≥ 2 and
|Vj | ≥ 2, then any two vertices in Vi and any two vertices in Vj induces a cycle of length 4 in
G. Analogously, if there exists a vertex i ∈ V (H) with |Vi| ≥ 2 having at least two neighbors,
say j, h ∈ V (H), then a vertex in Vj together with a vertex in Vh and any two vertices in Vi
induce a cycle of length 4 in G.

If none of the above cases holds, then we know that for each i ∈ V (H), such that |Vi| ≥ 2,
i has only one neighbor j such that |Vj | = 1. Hence, no vertex in Vi may be a vertex of a
cycle. Therefore, there is a cycle of length ` in G iff there is a cycle of length ` in H. Hence,
µ(G) = µ(H) and the girth of G is obtained by computing the girth of H.

Running time. The worst case in the algorithm is the calculus of the girth of H. Hence,
the running time of the algorithm is O(ndω + n+m).

I Theorem 6. For any graph G = (V,E), the girth problem can be solved in time O(ndω +
n+m).

6 Global minimum vertex cut

In this section we consider the global minimum vertex cut problem, a generalization to
vertex capacities of the vertex connectivity of a graph.

Given a graph G = (V,E), a set X ⊆ V is a vertex cut of G if G−X is disconnected. It is
then possible to partition V (G)−X into two non empty sets AX and BX where each vertex
in AX has only neighbors in AX ∪X and, each vertex in BX has only neighbors in BX ∪X.
We call the pair (AX , BX) the disconnected partition of G−X. Given a capacity function
c : V → R+ on the vertices of G, a vertex cut X of minimum capacity c(X) =

∑
u∈X c(u) is

said the global minimum vertex cut of G. The global minimum vertex cut problem asks
to find the global minimum vertex cut of G given a capacity function c.

As highlighted in [31], the global minimum vertex cut in G can be obtained by solving a
global edge capacitated cut in a directed graph using standard reductions between flow/cut
variants. By using the result of Hao et al.[27], it can be done in time O(n3 logn). Kratsch
et al.[30, 31] presented an algorithm parameterized by the modular width mw that solves
the global minimum vertex cut problem in time O(mw2 log mw · n + m). We present here
an algorithm parameterized by the neighborhood diversity that solves the problem in time
O(nd3 log nd + n+m).

G. Cordasco, L. Gargano, and A. A. Rescigno 21:9

Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph. Consider the capacity function cH : V (H)→ R+ of the type graph H
defined as cH(i) =

∑
u∈Vi

c(u). The algorithm first finds the global minimum vertex cut XH

of H with capacities cH , and then returns X =
⋃
i∈XH

Vi.

We will prove that the set X returned by the algorithm is a global minimum vertex cut of
G with capacity c. To this aim, we first characterize a global minimum vertex cut in terms
of the type partition of G.

I Lemma 7. Let G = (V,E) be a graph with type partition V1, V2, . . . , Vt. Let c : V → R+

be the capacity function of G and let X be any global minimum vertex cut of G with capacity
c.
a) For each disconnected partition AX , BX of G−X, any vertex u ∈ X must have at least a

neighbor in AX and at least a neighbor in BX .
b) For each i = 1, . . . , t, either Vi ⊆ X or Vi ∩X = ∅.
c) There exists a disconnected partition AX , BX of G − X such that either Vi ⊆ AX or

Vi ∩AX = ∅ (resp. either Vi ⊆ BX or Vi ∩BX = ∅), i = 1, . . . , t.

Proof. To prove a) we proceed by contradiction and assume that there exists a vertex u ∈ X
that has only neighbors in X ∪AX (resp. in X ∪BX). In this case X −{u} is a global vertex
cut whose capacity is less than that of X, and this contradicts the minimum capacity of X.

The proof of b) is again by contradiction. Suppose that there exists a vertex u ∈ X ∩ Vi
and a vertex v ∈ Vi −X. W.l.o.g., suppose that v ∈ AX . Since u, v ∈ Vi, they share the
same neighborhood and by a) vertex u must have at least a neighbor in BX . Hence, also
v must have at least a neighbor in BX , thus contradicting the assumption that G −X is
disconnected.

Finally, we prove c). Let AX , BX be any disconnected partition of G − X and let
u ∈ AX ∩ Vi (and Vi 6⊆ AX). By b) no vertex in Vi is in X. We have only to consider the
possibility that BX ∩ Vi 6= ∅. This is not possible if Vi induces a clique in G since otherwise
AX and BX should be connected by at least one edge. In case Vi induces an independent set
in G, we can move each vertex in BX ∩ Vi from BX to AX obtaining again a disconnected
partition of G−X. Hence, AX ∪ (BX ∩Vi) and BX −Vi is a disconnected partition of G−X.
This proves that it is possible to find a disconnected partition of G−X satisfying c). J

I Theorem 8. The set X returned by the algorithm is a global minimum vertex cut with
capacity c.

Proof. We first prove that X is a vertex cut of G, that is we prove that G−X is disconnected.
By the fact that XH is a global minimum vertex cut of H with capacity cH , we can find
a disconnected partition AH , BH of H −XH and so we have that each i ∈ AH has all its
neighbors in AH∪XH and, each j ∈ BH has all its neighbors in BH∪XH . By the construction
of X in the algorithm, i.e., X =

⋃
i∈XH

Vi, we can pinpoint the sets A =
⋃
i∈AH

Vi and
B =

⋃
i∈BH

Vi, that are a partition of V (G) − X. Now, we prove that there is no edge
between vertices of A and B. Fix u ∈ A. Since u ∈ Vi for some i ∈ AH and using the fact
that AH and BH are a disconnected partition of H −XH and so u cannot be neighbor of
any vertex in same set Vj for j ∈ BH , we have that vertex u has all its neighbors in A ∪X.
In the same way we can prove that each v ∈ B has all its neighbors in B ∪X. This proves
that A,B is a disconnected partition of G−X.

Finally, we prove that X has minimum capacity, so completing the proof. By contradiction
suppose there exists a global minimum vertex cut Y with c(Y) < c(X). By b) in Lemma 7 we
can define the set YH = {i ∈ V (H) | Vi ⊆ Y }. Let AY and BY be the disconnected partition

FUN 2021

21:10 Speeding up Networks Mining via Neighborhood Diversity

of G − Y for which c) in Lemma 7 holds. Hence, if we define A = {i ∈ V (H) | Vi ⊆ AY }
and B = {j ∈ V (H) | Vj ⊆ BY }, then each i ∈ A has all its neighbors in A ∪ YH , and each
j ∈ B has all its neighbors in B ∪ YH proving that YH is a vertex cut of H. Furthermore,

c(YH) =
∑
i∈YH

cH(i) =
∑
i∈YH

∑
u∈Vi

c(u) =
∑
u∈Y

c(u) = c(Y)

< c(X) =
∑
u∈X

c(u) =
∑
i∈XH

∑
u∈Vi

c(u) =
∑
i∈XH

cH(i)

= c(XH),

which contradicts the assumption that XH is a global minimum vertex cut of H respect to
the capacity function cH . J

Running time. The running time of our algorithm strongly depends on the time to compute
the global minimum vertex cut XH of H with capacities cH . By using the best known
algorithm to evaluate the global minimum vertex cut, we have that XH can be computed in
time O(nd3 log nd).

I Theorem 9. For any graph G = (V,E) and capacity function c : V → R+, the global
minimum vertex cut problem can be solved in time O(nd3 log nd + n+m).

References
1 A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences between graph centrality

problems, apsp and diameter. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
1681–1697, 2015.

2 A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In IEEE Symposium on Foundations of Computer Science (FOCS’14). IEEE,
434–443, 2014.

3 F. N. Abu-Khzam, S. Li, C. Markarian, F. Meyer auf der Heide, and P. Podlipyan. Modular-
Width: An Auxiliary Parameter for Parameterized Parallel Complexity. In Frontiers in
Algorithmics, FAW 2017, LNCS 10336, 2017.

4 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3): 209–223, 1997.

5 S. E. Asch. Studies of independence and conformity: A minority of one against a unanimous
majority. Psychological Monographs, 70, 1956.

6 L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient algorithms for large-scale local
triangle counting. ACM Trans. Knowl. Discov. Data 4 (3), 2010.

7 R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan. Metric Dimension of
Bounded Width Graphs. Mathematical Foundations of Computer Science (MFCS ’15), LNCS
923, 2015.

8 M. Bentert, T. Fluschnik, A. Nichterlein, and R. Niedermeier. Parameterized aspects of
triangle enumeration. Journal of Computer and System Sciences, 103, 61–77, 2019.

9 M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some quadratic-
time solvable problems. Electronic Notes in Theoretical Computer Science, 322:51–67, 2016.

10 G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro. Optimizing spread of influence
in social networks via partial incentives. In 22nd International Colloquium on Structural
Information and Communication Complexity, SIROCCO 2015. LNCS 9439, 119–134, 2015.

11 G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro. Evangelism in social networks:
Algorithms and complexity. Networks 71(4): 346–357, 2018.

12 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes
of bounded clique-width graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’18), 2765–2784, 2018.

G. Cordasco, L. Gargano, and A. A. Rescigno 21:11

13 M. Doucha and J. Kratochvíl. Cluster Vertex Deletion: A Parameterization between Vertex
Cover and Clique-Width. MFCS 2012, 348–359, 2012.

14 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 2012.
15 P. Dvorák, D. Knop, and T. Toufar. Target Set Selection in Dense Graph Classes. In

arXiv:1610.07530, 2016.
16 D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly

Connected World. Cambridge University Press, ISBN:0521195330, 2010.
17 J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,

1965.
18 J. Fiala, T. Gavenciak, D. Knop, M. Koutecky, and J. Kratochvíl. Fixed parameter complexity

of distance constrained labeling and uniform channel assignment problems. In arXiv:1507.00640,
2015.

19 F. V. Fomin, M. Liedloff, P. Montealegre, and I. Todinca. Algorithms Parameterized by Vertex
Cover and Modular Width, through Potential Maximal Cliques. In Ravi R., Gørtz I.L. (eds)
Algorithm Theory – SWAT 2014, LNCS vol 8503, Springer, 2014.

20 H. N. Gabow. Data structures for weighted matching and extensions to b-matching and
f -factors. ACM Transactions on Algorithms, Vol. 14 (3), Article 39, 2018.

21 J. Gajarský, M. Lampis, and S. Ordyniak. Parameterized Algorithms for Modular-Width. In
Gutin G., Szeider S. (eds) Parameterized and Exact Computation, IPEC 2013, LNCS 8246,
2013.

22 A. Gajentaan and M. H. Overmars. On a class of o(n2) problems in computational geometry.
Computational Geometry, 5(3):165–185, 1995.

23 F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic ComputationJuly, ISSAC ’14, 296–303,
2014.

24 R. Ganian. Using neighborhood diversity to solve hard problems. In arXiv:1201.3091, 2012.
25 L. Gargano and A.A. Rescigno. Complexity of conflict-free colorings of graphs. Theoretical

Computer Science, 566, 39–49, 2015.
26 A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial fixed-parameter

algorithms: A case study for longest path on interval graphs. Theoretical Computer Science,
689: 67–95, 2017.

27 J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a directed graph. J.
Algorithms, 17(3):424–446, 1994.

28 A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7(4):413–423, 1978.

29 M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle counting
in large graphs via degree-based vertex partitioning. Internet Math. 8 (1–2), 161–185, 2012.

30 D. Kratsch and J. P. Spinrad. Between o(nm) and o(nα). SIAM Journal on Computing,
36(2):310–325, 2006.

31 S. Kratsch and F. Nelles. Efficient and adaptive parameterized algorithms on modular
decompositions. In arXiv:1804.10173, 2018.

32 M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37,
2012.

33 G. B. Mertzios, A. Nichterlein, , and R. Niedermeier. The power of linear-time data reduction
for maximum matching. In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science (MFCS’17), 83, 46:1–46:14, 2017.

34 S. Micali and V. V. Vazirani. An o(sqrt(|V |)|E|) algorithm for finding maximum matching in
general graphs. In 21st Annual Symposium on Foundations of Computer Science, 17–27, 1980.

35 M. E. J. Newman. The structure and function of complex networks. SIAM Rev. 45 (2),
167–256, 2003.

36 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

FUN 2021

21:12 Speeding up Networks Mining via Neighborhood Diversity

37 V. V. Williams. Hardness of easy problems: Basing hardness on popular conjectures such
as the strong exponential time hypothesis (invited talk). In International Symposium on
Parameterized and Exact Computation (IPEC), 16–28, 2015.

38 V. V. Williams and R. R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In IEEE Symposium on Foundations of Computer Science (FOCS), 645–654, 2010.

39 Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs
within networks. In Proceedings of the 28th International Conference on Data Engineering,
ICDE ’12, IEEE Computer Society, 1049–1060, 2012.

Physical Zero-Knowledge Proof for Numberlink
Suthee Ruangwises
Department of Mathematical and Computing Science, Tokyo Institute of Technology, Japan
ruangwises.s.aa@m.titech.ac.jp

Toshiya Itoh
Department of Mathematical and Computing Science, Tokyo Institute of Technology, Japan
titoh@c.titech.ac.jp

Abstract
Numberlink is a logic puzzle for which the player has to connect all pairs of cells with the same
numbers by non-crossing paths in a rectangular grid. In this paper, we propose a physical protocol of
zero-knowledge proof for Numberlink using a deck of cards, which allows a player to physically show
that he/she knows a solution without revealing it. In particular, we develop a physical protocol to
count the number of elements in a list that are equal to a given secret value without revealing that
value, the positions of elements in the list that are equal to it, or the value of any other element in
the list. Our protocol can also be applied to verify the existence of vertex-disjoint paths connecting
all given pairs of endpoints in any undirected graph.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Theory
of computation → Cryptographic protocols

Keywords and phrases Zero-knowledge proof, Card-based cryptography, Numberlink, Puzzles,
Games

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.22

1 Introduction

Numberlink is a logic puzzle introduced by a Japanese company Nikoli famous for developing
many popular puzzles including Sudoku, Akari, Makaro, and Norinori. The puzzle has
become increasingly popular and a large number of Numberlink mobile apps with different
names and slightly different variants of rule have been developed [8].

A Numberlink puzzle consists of a rectangular grid with some cells containing a number.
Each number appears exactly twice in the grid. The goal of this puzzle is to connect every
pair of the same numbers by a path that can go from a cell to its horizontally or vertically
adjacent cell. Paths cannot cross or share a cell with one another. In the official rule [16], it
is not required that all cells in the grid have to be covered by paths. However, a puzzle is
generally considered to be well-designed if it has a unique solution, and all cells are covered
by paths in that solution.

4

3 1 3

2 4

2 1

4

3 1 3

2 4

2 1

Figure 1 An example of a Numberlink puzzle (left) and its solution (right).

© Suthee Ruangwises and Toshiya Itoh;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 22; pp. 22:1–22:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2820-1301
mailto:ruangwises.s.aa@m.titech.ac.jp
https://orcid.org/0000-0002-1149-7046
mailto:titoh@c.titech.ac.jp
https://doi.org/10.4230/LIPIcs.FUN.2021.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Physical Zero-Knowledge Proof for Numberlink

Suppose that Anna, an expert in Numberlink, created a difficult Numberlink puzzle and
challenged her friend Brian to solve it. Unluckily, after several tries Brian could not solve her
puzzle. He then claimed that the puzzle has no solution and refused to try it anymore. How
can Anna convince bad-luck Brian that her puzzle actually has a solution without revealing
it to him (which would render the challenge pointless)?

1.1 Zero-Knowledge Proof
A zero-knowledge proof is an interactive proof between a prover P and a verifier V , with
both given an instance x of a computational problem. Only P knows a solution w of x, and
the computational power of V is limited so that he/she cannot obtain w from x. P wants
to convince V that he/she knows w without revealing any information about w to V . A
zero-knowledge proof must satisfies the following three properties.
1. Completeness: If P knows w, then P is able to convince V with high probability (in

this paper, we are interested in the perfect completeness property where the probability
to convince V is one).

2. Soundness: If P does not know w, then P is not able to convince V , except with a
small probability called soundness error (in this paper, we are interested in the perfect
soundness property where the soundness error is zero).

3. Zero-Knowledge: V cannot obtain any information about w, i.e. there exists a
probabilistic polynomial time algorithm S (called the simulator) that does not know w,
and the outputs of S follow the same probability distribution as the outputs of the real
protocol.

The concept of zero-knowledge proof was first introduced by Goldwasser et al. [7], and it
was proved by Goldreich et al. [6] that a zero-knowledge proof exists for any NP problem.
Because Numberlink has been proved to be NP-complete [1, 13, 14], it is possible to construct
a cryptographic zero-knowledge proof for Numberlink. However, such construction requires
cryptographic primitives and is not intuitive or practical.

Instead, we are interested in constructing a physical protocol of zero-knowledge proof
using a deck of playing cards. The benefit of such protocols is that they use only a small
deck of cards which can be found in everyday life and do not require computers. Moreover,
these intuitive protocols are easy to understand and verify the security and correctness, even
for non-experts, and thus can be used as examples for didactic purpose.

1.2 Related Work
In 2007, Gradwohl et al. [9] developed the first physical protocols of zero-knowledge proof for
Sudoku. Each of their several variants of the protocol either uses special scratch-off cards or
has a non-zero soundness error. Later, Sasaki et al. [17] improved the protocol for Sudoku to
achieve perfect soundness without using special cards. Besides Sudoku, physical protocols of
zero-knowledge proof for other logic puzzles have been developed as well, including Nonogram
[4], Akari [2], Takuzu [2], Kakuro [2, 15], KenKen [2], Makaro [3], and Norinori [5].

These protocols of zero-knowledge proof employ methods to physically verify specific
functions. For example, the protocol for Sudoku [9] shows how to verify the presence of all
numbers in a list without revealing their order, the protocol for Makaro [3] shows how to
verify that a number is the largest one in a list without revealing any value in the list, and
the protocol for Norinori [5] shows how to verify the presence of a given number in a list
without revealing its position or any other value in the list.

S. Ruangwises and T. Itoh 22:3

1.3 Our Contribution
In this paper, we propose a physical protocol of zero-knowledge proof with perfect complete-
ness and perfect soundness for Numberlink using a deck of cards. More importantly, we also
extend the set of functions that are known to be physically verifiable.

By developing the protocol for Numberlink, we show in particular how to count the
number of elements in a list that are equal to a given secret value without revealing that value,
the positions of elements in the list that are equal to it, or the value of any other element in
the list. Also, by transforming a graph problem into this element-counting problem, we show
how to verify the existence of vertex-disjoint paths connecting all given pairs of endpoints in
any undirected graph.

2 Preliminaries

2.1 Numberlink Board
Suppose that a Numberlink grid has size m×n, and has k pairs of numbers 1, 2, ..., k written
on it. We call two cells in the grid adjacent if they are horizontally or vertically adjacent. Cells
with a number written on them are called terminal cells; other cells are called non-terminal
cells.

A path in a valid solution of a Numberlink puzzle is a sequence of cells (c1, c2, ..., ct) where
c1 and ct are terminal cells with the same numbers written on them and all other cells are
non-terminal cells, with ci being adjacent to ci+1 for every i = 1, 2, ..., t− 1. Also, a path
(c1, c2, ..., ct) is called simple if there is no i, j such that j > i + 1 and ci is adjacent to cj .

A Numberlink puzzle is called well-designed if it has a unique solution, and all cells are
covered by paths in that solution. Observe that if a puzzle is well-designed, then every
path in its solution must be simple (otherwise if we have a non-simple path (c1, c2, ..., ct)
with ci being adjacent to cj where j > i + 1, then we can replace it with a shorter path
(c1, c2, ...ci, cj , cj+1..., ct), thus creating an alternative solution).

2.2 Cards
In our protocol, we use two types of cards: encoding cards and marking cards. An encoding
card has either ♣ or ♥ on the front side, while a marking card has a positive integer on the
front side. All cards have an identical back side.

Define Ey(x) to be a sequence of y encoding cards, with all cards being ♣ except the
x-th card from the left being ♥ . For example, E3(1) is ♥ ♣ ♣ and E4(3) is ♣ ♣ ♥ ♣ . We
use Ey(x) to encode a number x in the situation where the maximum possible number is at
most y.

2.3 Matrix
Suppose we have a numbers x1, x2, ..., xa, with each of them being at most b. Each number
xi is encoded by a sequence of cards Eb(xi). We construct a matrix D(a, b) of cards by the
following procedures.

First, create an a × b matrix of face-down encoding cards, with the i-th topmost row
being Eb(xi). Then, on top of the topmost row of the matrix, place face-down marking cards
1, 2, ..., b from left to right in this order. We call this new row Row 0. Also, to the left of the
leftmost column of the matrix, place face-down marking cards 2, 3, ..., a from top to bottom

FUN 2021

22:4 Physical Zero-Knowledge Proof for Numberlink

? ? ? ? ? ? E6(x5)
? ? ? ? ? ? E6(x4)
? ? ? ? ? ? E6(x3)
? ? ? ? ? ? E6(x2)
? ? ? ? ? ? E6(x1)

1 2 3 4 5 6 (actually face-down)

5
4
3
2

(actually face-down)
5
4
3
2
1

0

Row

0 1 2 3 4 5 6
Column

Figure 2 An example of a matrix D(5, 6).

in this order (starting at Row 2). We call this new column Column 0. As a result, D(a, b)
becomes an incomplete (a + 1)× (b + 1) matrix with two cards at the top-left corner removed
(see Figure 2).

We will then introduce the operations that will be applied to the matrix D(a, b).

2.4 Double-Scramble Shuffle

A double-scramble shuffle is an extension of a pile-scramble shuffle first developed by Ishikawa
et al. [12]. In the pile-scramble shuffle, we shuffle only the columns of the matrix by a
random permutation; in the double-scramble shuffle, we shuffle both the selected rows and
selected columns of the matrix by random permutations.

The formal procedures of the double-scramble shuffle are as follows.
1. Uniformly select a permutation p = (p2, p3, ..., pa) of (2, 3, ..., a) at random. p must be

unknown to the verifier.
2. Secretly rearrange Rows 2, 3, ..., a by a permutation p, i.e. move Row i to Row pi for

every i = 2, 3, ..., a.
3. Uniformly select a permutation q = (q1, q2, ..., qb) of (1, 2, ..., b) at random. q must be

unknown to the verifier.
4. Secretly rearrange Columns 1, 2, ..., b by a permutation q, i.e. move Column j to Column

qj for every j = 1, 2, ..., b.

Observe that the double-scramble shuffle makes the order of x2, x3, ..., xa indifferent to
the verifier. It also hides the actual value of each xi, but preserves the number of rows that
encode the same value as Row 1.

I Remark 1. In real world, the prover P can perform the double-scramble shuffle by the
following procedures. In Step 2, P publicly puts the cards in each row into an envelope and
seal it. Then, P rearranges the envelopes by a permutation p without the verifier V observing.
Finally, P publicly opens each envelope and put the cards in it back into a corresponding
row. By doing this, V can ensure that P has only made row-wise swaps (and not arbitrary
exchanges of cards) without knowing the permutation p. The same goes for column-wise
swaps in Step 4.

S. Ruangwises and T. Itoh 22:5

2.5 Rearrangement Protocol
A rearrangement protocol was implicitly used in some previous work on card-based protocols
[3, 10, 11, 17]. The sole purpose of this protocol is to revert the cards (after we perform
some operations on them) back to their original positions so that we can reuse the cards
without revealing them.

The formal procedures of the rearrangement protocol are as follows.
1. Apply the double-scramble shuffle to the matrix.
2. Publicly turn over all marking cards in Column 0. Suppose the opened cards are

p2, p3, ..., pa from top to bottom in this order.
3. Publicly rearrange Rows 2, 3, ..., a by a permutation p = (p2, p3, ..., pa), i.e. move Row i

to Row pi for every i = 2, 3, ..., a.
4. Publicly turn over all marking cards in Row 0. Suppose the opened cards are q1, q2, ..., qb

from left to right in this order.
5. Publicly rearrange Columns 1, 2, ..., b by a permutation q = (q1, q2, ..., qb), i.e. move

Column j to Column qj for every j = 1, 2, ..., b.

Note that since we first apply the double-scramble shuffle at Step 1, the order of Rows
2, 3, ..., a and the order of Columns 1, 2, ..., b are uniformly distributed among all possible
permutations. Therefore, revealing marking cards in Steps 2 and 4 does not leak any
information about the cards.

3 Our Main Protocol

3.1 Well-Designed Puzzles
For simplicity, we first consider a special case where the puzzle is well-designed.

Recall that a Numberlink grid has size m × n, and has k pairs of numbers 1, 2, ..., k

written on it. In the solution, for each path joining two terminal cells with a number x, we
write a number x on every cell that the path passes through (see Figure 3). Since this is a
well-designed puzzle, every path is simple and every cell has a number on it.

3 3 3 4 4

3 1 3 4 3

2 1 3 4 3

2 1 3 3 3

2 1 1 1 1

Figure 3 Transformation of the solution of the puzzle in Figure 1, with gray cells being terminal
cells.

The intuition of our protocol is that the prover P will try to convince the verifier V that
1. every terminal cell has exactly one adjacent cell with the same number, and
2. every non-terminal cell has exactly two adjacent cells with the same number.

First, for each terminal cell with a number x, P publicly puts a sequence of cards Ek(x)
on it. Then, for each non-terminal cell with a number x, P secretly puts a sequence of cards
Ek(x) on it.

FUN 2021

22:6 Physical Zero-Knowledge Proof for Numberlink

The verification phase for each terminal cell c works as follows.
1. Publicly construct a matrix of cards in the following way: put the sequence on c into

Row 1, then put the sequence on each adjacent cell to c in any order into each of the next
four (or three, or two, if c is on the edge or at the corner) rows. Finally, put the number
cards to complete the matrix D(5, k) (or D(4, k), or D(3, k), for the edge or corner case).

2. Apply the double-scramble shuffle to the matrix.
3. Publicly turn over all encoding cards in Row 1. Locate the position of a ♥ . Suppose it

is at Column j.
4. Publicly turn over all other encoding cards in Column j. If there is exactly one ♥ besides

the one in Row 1, then the protocol continues; otherwise V rejects and the protocol
terminates.

5. Apply the rearrangement protocol to the matrix to revert the cards to their original
positions, and publicly put the cards back to their corresponding cells.

The verification phase for each non-terminal cell works exactly the same as that for a
terminal cell, except that in Step 4, V has to verify that there are exactly two (instead of
one) ♥ s in Column j besides the one in Row 1.

P performs the verification phase for every cell in the grid. If every cell passes the
verification, then V accepts.

In total, our protocol in the setting of a well-designed puzzle uses kmn encoding cards
and k + 4 marking cards.

I Remark 2. Note that in this protocol, P can convince V that the solution he/she has is
valid, but cannot convince V that the puzzle is well-designed or that all cells are covered by
paths in his/her solution (see Figure 4).

1

1

2

2

3

3

1 2 1 1 1

1 2 1 3 1

1 2 1 3 1

1 2 1 3 1

1 2 1 1 1

Figure 4 In a puzzle that is not well-designed, the prover P knows a solution that does not
cover all cells (left), but it is possible for P to run this protocol with a non-solution (right) and get
accepted.

3.2 General Puzzles
Now we consider a general case where the puzzle may not be well-designed, and the paths
in our solution may not cover all cells. We can still apply a protocol similar to the one for
well-designed puzzles, but with some additional tricks employed.

First, if our solution contains a non-simple path (c1, c2, ..., ct) with ci being adjacent to
cj where j > i + 1, then we replace it with a shorter path (c1, c2, ...ci, cj , cj+1..., ct). We
repeatedly perform this until every path in the solution becomes simple.

S. Ruangwises and T. Itoh 22:7

We put a number on each cell that is covered by a path the same way as in the well-
designed setting. Then, for each cell in the i-th row and j-th column that is not covered by
any path, we put a number k + 1 on it if i + j is even and put a number k + 2 on it if i + j is
odd (see Figure 5). Note that by filling the numbers this way, each cell not covered by any
path will have no adjacent cell with the same number.

2

1

2

1

3 4 3 4 2

4 3 1 3 2

3 4 1 4 2

4 3 1 3 4

3 4 1 4 3

Figure 5 An example of a solution of a puzzle that is not well-designed (left), and the way we
put numbers on the grid (right).

The intuition of our protocol in this setting is that the prover P will try to convince the
verifier V that
1. every terminal cell has exactly one adjacent cell with the same number, and
2. every non-terminal cell either has a number k + 1 or k + 2, or has exactly two adjacent

cells with the same number.

Since the maximum number on the grid is at most k + 2 in this setting, we always use
Ek+2(x) instead of Ek(x) to encode a number x. For each terminal cell with a number x,
P publicly puts a sequence of cards Ek+2(x) on it. Then, for each non-terminal cell with a
number x, P secretly puts a sequence of cards Ek+2(x) on it.

For each terminal cell, the verification phase works exactly the same as in the well-designed
setting (except the width of the matrix will be k + 2 instead of k). For each non-terminal cell,
we add four additional rows, two encoding the number k + 1 and two encoding the number
k + 2, to the bottom of the matrix. The formal steps for verifying each non-terminal cell c

are as follows.
1. Publicly construct a matrix of cards in the following way: put the sequence on c into

Row 1, then put the sequence on each adjacent cell to c into each of the next four (or
three, or two, if c is on the edge or at the corner) rows in any order. Then, put the
sequences Ek+2(k + 1), Ek+2(k + 1), Ek+2(k + 2), and Ek+2(k + 2) into each of the next
four rows in any order. Finally, put the number cards to complete the matrix D(9, k + 2)
(or D(8, k + 2), or D(7, k + 2), for the edge or corner case).

2. Apply the double-scramble shuffle to the matrix.
3. Publicly turn over all encoding cards in Row 1. Locate the position of a ♥ . Suppose it

is at Column j.
4. Publicly turn over all other encoding cards in Column j. If there are exactly two ♥ s

besides the one in Row 1, then the protocol continues; otherwise V rejects and the
protocol terminates.

5. Apply the rearrangement protocol to the matrix to revert the cards to their original
positions, and publicly put the cards back to their corresponding cells.

In total, our protocol in the setting of a general puzzle uses (k + 2)(mn + 4) encoding
cards and k + 10 marking cards.

FUN 2021

22:8 Physical Zero-Knowledge Proof for Numberlink

4 Proof of Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge properties of
our protocol. We will consider only the protocol in a general setting as it can be used for all
Numberlink instances.

I Lemma 3 (Perfect Completeness). If P knows a solution of the Numberlink puzzle, then V

always accepts.

Proof. Suppose that P knows a solution that contains only simple paths, and fills numbers
on the grid according to that solution.

Consider each terminal cell c with a number x ≤ k. There must be a path (c1, c2, ..., ct)
starting at c1 = c and ending at ct, the other terminal cell with the same number x. Since
each cell in the grid either belongs to some path or has a number k + 1 or k + 2 on it, the
set of all cells having a number x is exactly {c1, c2, ..., ct}. We know that c2 is adjacent
to c and has a number x on it. Moreover, since the path is simple, there cannot be an
index i > 2 such that ci is adjacent to c. Therefore, c has exactly one adjacent cell with
the same number. Since the double-scramble shuffle preserves the number of rows that
encode a value equal to that of Row 1, the verification phase for c will pass.
Consider each non-terminal cell c with a number x ≤ k. There must be a path (c1, c2, ..., ct)
joining two terminal cells with a number x. As previously shown, the set of all cells
having a number x is exactly {c1, c2, ..., ct}, so we have c = ci for some index i where
1 < i < t. We know that ci−1 and ci+1 are adjacent to c and have a number x on them.
Moreover, since the path is simple, there cannot be an index j other than i− 1 and i + 1
such that cj is adjacent to c. Therefore, c has exactly two adjacent cells with the same
number. Since the double-scramble shuffle preserves the number of rows that encode a
value equal to that of Row 1, the verification phase for c will pass.
Consider each non-terminal cell c with a number x = k + 1 or k + 2. Recall that by the
way we put numbers on the cells not covered by any path, c has no adjacent cell with
the same number. However, in the verification phase of c, we add four additional rows,
two encoding k + 1 and two encoding k + 2, to the matrix. Therefore, there will be two
rows that encode a value equal to that of Row 1, hence the verification phase for c will
pass. J

I Lemma 4 (Perfect Soundness). If P does not know a solution of the Numberlink puzzle,
then V always rejects.

Proof. We will prove the contrapositive of this statement. Suppose that V accepts, meaning
that the verification phase passes for every cell.

Consider each number x ≤ k. We know that there are two terminal cells with the number
x. Consider one of them, called c1. We know from the verification phase that c1 has exactly
one adjacent cell, called c2, with a number x. For each i ≥ 2, if ci is a terminal cell, then there
exists a path (c1, c2, ..., ci) connecting the two terminal cells with the number x. Otherwise
if ci is a non-terminal cell, then we know from the verification phase that ci has exactly two
adjacent cells with the number x, one of them being ci−1. We then inductively move to
consider the other cell, called ci+1, in the same manner. Since the path is simple, ci+1 must
be different from any cj with j ≤ i. Therefore, we must eventually reach the other terminal
cell, implying that there exists a path connecting the two terminal cells with the number x.
Since this is true for every number x ≤ k, there exists a path joining every pair of terminal
cells with the same numbers in P ’s solution, which means P must know a valid solution. J

S. Ruangwises and T. Itoh 22:9

I Lemma 5 (Zero-Knowledge). During the verification phase, V learns nothing about P ’s
solution of the Numberlink puzzle.

Proof. To prove the zero-knowledge property, it is sufficient to prove that all distributions
of the values that appear when we turn over cards can be simulated without knowing P ’s
solution.

Consider the verification phase of a cell c with a matrix D(a, k + 2) of cards (a ∈ {3, 4, 5}
for a terminal cell and a ∈ {7, 8, 9} for a non-terminal cell). There are two steps in the
verification phase where we turn over cards.

In the step where we turn over all encoding cards in Row 1, the order of Columns
1, 2, ..., k + 2 is uniformly distributed among all possible permutations due to the double-
scramble shuffle, hence the ♥ has an equal probability to appear at each of the k+2 positions.
Therefore, this step can be simulated without knowing the solution.

After that, we locate the position of the ♥ in Row 1 to be at Column j, and then
turn over all other encoding cards in Column j. The order of Rows 2, 3, ..., a is uniformly
distributed among all possible permutations due to the double-scramble shuffle, hence all
(one or two) ♥ s have an equal probability to appear at each of the a−1 positions. Therefore,
this step can be simulated without knowing the solution. J

5 Applications

Besides the Numberlink puzzle, our technique of transforming a graph problem into an
element-counting problem can be applied to verify the existence of vertex-disjoint paths
connecting k given pairs of endpoints in any undirected graph G.

In this setting, a path (v1, v2, ..., vt) is called simple if there is no i, j such that j > i + 1
and vi is adjacent to vj . Similarly to the original protocol for Numberlink, if our solution
contains a non-simple path (v1, v2, ..., vt) with vi being adjacent to vj where j > i + 1, then
we replace it with a shorter path (v1, v2, ...vi, vj , vj+1..., vt). We repeatedly perform this until
every path in the solution becomes simple.

Suppose that the maximum degree of a vertex in G is d. We can inductively color the
vertices of G with at most d + 1 colors in linear time such that no adjacent vertices have the
same color. Similarly to the protocol for Numberlink, for each path connecting the x-th given
pair of endpoints, we put a number x on every vertex on that path. For each vertex v not
covered by any path, we put a number k + i on v if it has the i-th color in our (d + 1)-coloring
of G. By putting the numbers this way, each vertex not covered by any path will have no
neighbor with the same number.

Let T be the set of vertices that appear in the list of k given pairs of endpoints. The
intuition of our protocol is that the prover P will try to convince the verifier V that
1. every vertex in T has exactly one adjacent vertex with the same number, and
2. every vertex not in T either has a number greater than k, or has exactly two adjacent

vertices with the same number.

Since the maximum number on the vertices is at most k + d + 1, we use Ek+d+1(x) to
encode a number x. For each vertex v ∈ T with a number x, P publicly puts a sequence
of cards Ek+d+1(x) on v. Then, for each vertex v /∈ T with a number x, P secretly puts a
sequence of cards Ek+d+1(x) on v.

The verification phase works in the same manner as in the protocol for Numberlink in a
general setting. For a vertex v ∈ T , P puts the sequence on v into the first row, and the
sequence on each of v’s neighbors into each of the next (at most) d rows of the matrix. The

FUN 2021

22:10 Physical Zero-Knowledge Proof for Numberlink

verifier V has to verify that there is exactly one ♥ in the same column as the ♥ in Row 1.
For a vertex v /∈ T , P does the same but also puts 2(d + 1) additional rows to the matrix,
with two of them encoding each of the numbers k + 1, k + 2, ..., k + d + 1. V then has to
verify that there are exactly two ♥ s in the same column as the ♥ in Row 1.

In total, this protocol uses (k + d + 1)(|VG| + 2d + 2) encoding cards and k + 4d + 3
marking cards, where VG is the set of vertices of G.

6 Future Work

We developed a physical protocol of zero-knowledge proof for Numberlink using Θ(kmn) cards.
A challenging future work involving Numberlink is to develop a protocol of zero-knowledge
proof that requires asymptotically fewer number of cards, or the one that can convince the
verifier that the prover’s solution contains paths that cover all cells (which is apparently a
requirement in a variant of rule used in some newly developed mobile apps).

Other possible future work includes developing protocols of zero-knowledge proof for
other logic puzzles, as well as exploring the method to physically verify other interesting
functions.

References
1 A. Adcock, E.D. Demaine, M.L. Demaine, M.P. O’Brien, F. Reidl, F.S. Villaamil, and B.D.

Sullivan. Zig-Zag Numberlink is NP-complete. Journal of Information Processing, 23(3):239–
245, 2015. doi:10.2197/ipsjjip.23.239.

2 X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade. Physical zero-knowledge proofs for
Akari, Takuzu, Kakuro and KenKen. In Proceedings of the 8th International Conference on
Fun with Algorithms (FUN), pages 8:1–8:20, 2016. doi:10.4230/LIPIcs.FUN.2016.8.

3 X. Bultel, J. Dreier, J.-G. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki, A. Nagao, T. Sasaki,
K. Shinagawa, and H. Sone. Physical zero-knowledge proof for Makaro. In Proceedings of the
20th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), pages 111–125, 2018. doi:10.1007/978-3-030-03232-6_8.

4 Y.-F. Chien and W.-K. Hon. Cryptographic and physical zero-knowledge proof: From Sudoku
to Nonogram. In Proceedings of the 5th International Conference on Fun with Algorithms
(FUN), pages 102–112, 2010. doi:10.1007/978-3-642-13122-6_12.

5 J.-G. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki, T. Sasaki, and H. Sone. Inter-
active physical zero-knowledge proof for Norinori. In Proceedings of the 25th Interna-
tional Computing and Combinatorics Conference (COCOON), pages 166–177, 2019. doi:
10.1007/978-3-030-26176-4_14.

6 O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design. Journal of the ACM, 38(3):691–729, 1991.
doi:10.1145/116825.116852.

7 S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989. doi:10.1137/0218012.

8 Google Play: Numberlink. https://play.google.com/store/search?q=Numberlink.
9 R. Gradwohl, M. Naor, B. Pinkas, and G.N. Rothblum. Cryptographic and physical

zero-knowledge proof systems for solutions of Sudoku puzzles. In Proceedings of the
4th International Conference on Fun with Algorithms (FUN), pages 166–182, 2007. doi:
10.1007/978-3-540-72914-3_16.

10 Y. Hashimoto, K. Shinagawa, K. Nuida, M. Inamura, and G. Hanaoka. Secure grouping protocol
using a deck of cards. In Proceedings of the 10th International Conference on Information
Theoretic Security (ICITS), pages 135–152, 2017. doi:10.1007/978-3-319-72089-0_8.

https://doi.org/10.2197/ipsjjip.23.239
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1145/116825.116852
https://doi.org/10.1137/0218012
https://play.google.com/store/search?q=Numberlink
https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-319-72089-0_8

S. Ruangwises and T. Itoh 22:11

11 T. Ibaraki and Y. Manabe. A more efficient card-based protocol for generating a random
permutation without fixed points. In Proceedings of the 3rd International Conference on
Mathematics and Computers in Sciences and Industry (MCSI), pages 252–257, 2016. doi:
10.1109/MCSI.2016.054.

12 R. Ishikawa, E. Chida, and T. Mizuki. Efficient card-based protocols for generating a hidden
random permutation without fixed points. In Proceedings of the 14th International Conference
on Unconventional Computation and Natural Computation (UCNC), pages 215–226, 2015.
doi:10.1007/978-3-319-21819-9_16.

13 K. Kotsuma and Y. Takenaga. NP-completeness and enumeration of Number Link puzzle.
IEICE Technical Report, 109(465):1–7, 2010.

14 J.F. Lynch. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, 5(3):31–36, 1975. doi:10.1145/1061425.1061430.

15 D. Miyahara, T. Sasaki, T. Mizuki, and H. Sone. Card-based physical zero-knowledge proof for
Kakuro. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E102.A(9):1072–1078, 2019. doi:10.1587/transfun.E102.A.1072.

16 Nikoli: Numberlink. https://www.nikoli.co.jp/en/puzzles/numberlink.html.
17 T. Sasaki, T. Mizuki, and H. Sone. Card-based zero-knowledge proof for Sudoku. In Proceedings

of the 9th International Conference on Fun with Algorithms (FUN), pages 29:1–29:10, 2018.
doi:10.4230/LIPIcs.FUN.2018.29.

FUN 2021

https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1587/transfun.E102.A.1072
https://www.nikoli.co.jp/en/puzzles/numberlink.html
https://doi.org/10.4230/LIPIcs.FUN.2018.29

The Computational Complexity of Evil Hangman
Jérémy Barbay
Department of Computer Science, University of Chile, Santiago, Chile
http://barbay.cl
jeremy@barbay.cl

Bernardo Subercaseaux
Department of Computer Science, University of Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
bsuberca@dcc.uchile.cl

Abstract
The game of Hangman is a classical asymmetric two player game in which one player, the setter,
chooses a secret word from a language, that the other player, the guesser, tries to discover through
single letter matching queries, answered by all occurrences of this letter if any. In the Evil Hangman
variant, the setter can change the secret word during the game, as long as the new choice is consistent
with the information already given to the guesser. We show that a greedy strategy for Evil Hangman
can perform arbitrarily far from optimal, and most importantly, that playing optimally as an Evil
Hangman setter is computationally difficult. The latter result holds even assuming perfect knowledge
of the language, for several classes of languages, ranging from Finite to Turing Computable. The
proofs are based on reductions to Dominating Set on 3-regular graphs and to the Membership
problem, combinatorial problems already known to be computationally hard.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Complexity classes

Keywords and phrases combinatorial game theory, computational complexity, decidability, hangman

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.23

Acknowledgements We want to thank Robinson Castro, who first introduced us to this problem.
We also thank Nicolás Sanhueza-Matamala, Alex Meiburg and the anonymous reviewers for their
insightful comments and discussion.

1 Introduction

The Hangman’s game is a classical asymmetric two player game, where one player, denoted
as the setter keeps a secret word w, that the other player, denoted as the guesser, needs
to guess. The game starts with both players agreeing on a maximum number of guesses d,
and the setter communicating to the guesser an integer k, the length of the word w. Then,
in every turn the guesser makes a query with a single letter s, and the setter reveals every
appearance of s in w, if any. A query s is said to have failed if there are no occurrences of s
in w. The game ends either when w is fully revealed, in which case we say the guesser won,
or when the guesser has made more than d failed queries, in which case we say the setter
won the game.

The Evil Hangman variant is a little twist to the game that has been widely used as
a programming assignment [11]. In this variant, the setter can change the secret word as
often as she wants during the game, as long as at the end she’s able to reveal a word that is
consistent with all the answers given thus far to the guesser’s queries. In the programming
assignment [11], students are given the task of implementing what we call the GreedyCheater,
an evil setter that decides to answer each query with the heuristic of keeping the dictionary
of consistent words to reveal at the end as big as possible.

© Jérémy Barbay and Bernardo Subercaseaux;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3392-8353
http://barbay.cl
mailto:jeremy@barbay.cl
https://orcid.org/0000-0003-2295-1299
mailto:bsuberca@dcc.uchile.cl
https://doi.org/10.4230/LIPIcs.FUN.2021.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 The Computational Complexity of Evil Hangman

A natural question is whether the algorithm GreedyCheater is the best one can do when
trying to maximize the number of guesses a guesser requires to discover the secret word,
and if it is not, then what would be the best strategy to maximize the number of
questions required to guess a word in a Evil Hangman game. Such questions can be
asked in various contexts, such as when the language from which the words are chosen and
guessed is a natural one (i.e. a finite set of words of fixed length k), or as when the language
is defined more formally (e.g. through a Turing machine, the language being projected to a
finite set of words of fixed length k).

We formalize such various contexts of the Hangman and Evil Hangman game, and
the related computational problems, in Section 2. As a preliminary result, we show that
the number of guesses generated by the GreedyCheater strategy is not only sub-optimal
on some trivial examples, but that it can be arbitrarily worse than the optimal strategy on
an infinite family of scenarios (in Section 3). Our main result is about finding an optimal
strategy for the game of Evil Hangman: while it is clear that there is an exponential
time minimax strategy for playing optimally as an evil setter (see Equation 2), we prove (in
Section 4) that such a running time is essentially optimal in the worst case, as the problem
of deciding for a given set L of words and a maximal number d of guesses whether there is a
strategy forcing more than d failed guesses, is coNP-hard (and hence, deciding if there is
a winnning stategy for the guesser is NP-hard). Pushing further such results, we prove (in
Section 5) that playing optimally is PSPACE-complete when the game is played over the
language defined by a Context Sensitive Grammar, and undecidable when played over the
language defined by a Turing Machine. We conclude in Section 6 with a discussion of other
minor results and potential open directions for further research.

Throughout this paper, we consider the problem in the context of a perfect guesser, with
perfect knowledge of the language.

2 Preliminaries

Before stating our results, we describe more formally the original Hangman game (Section
2.1), the Evil Hangman variant (Section 2.2), and a formalization of how to measure the
quality of strategies for the Evil Hangman variant (Section 2.3).

2.1 Hangman
The game starts with a word length, k, and a parameter d stating the number of failed
guesses allowed, being agreed upon between the players. A game of Hangman is played
over an alphabet Σ initially set to [1..σ] and a (potentially infinite) language L projected
to words of length k on the remaining alphabet by intersecting it with Σk. The alphabet
will be progressively reduced during the game to capture the fact that symbols which have
already been guessed should not be part of the game anymore. We will use an extra symbol,
not present in Σ that denotes a letter not yet revealed. Players often use an underscore (_)
for this, but we will use the symbol ⊥ instead, for better readability.

As the game goes by turns, we can define the state of the game in terms of which letters
have been discarded, and what action is taken, on the i-th turn (turns are 1-indexed). The
game starts with the setter revealing M0 = ⊥k, which represents what the guesser knows
about the word at that point. Then, on the i-th turn, the guesser makes a query with the
symbol si, and the setter replies with the mask Mi, which is equal to Mi−1 except possibly
for some occurrences of the ⊥ symbol, that have been changed to si. Figure 1a presents an
example of a traditional game of Hangman.

J. Barbay and B. Subercaseaux 23:3

1. w = fun

2. M0 = ⊥⊥⊥
3. s1 = e

4. M1 = ⊥⊥⊥
5. s2 = n

6. M2 = ⊥⊥n
7. s3 = a

8. M3 = ⊥⊥n
9. s4 = u

10. M4 = ⊥un
11. s5 = f

12. M5 = fun

(a) Traditional Hangman (guesser wins). Note
that s1 and s3 are failed guesses.

1. w0 = run

2. M0 = ⊥⊥⊥
3. s1 = u

4. w1 = run =⇒ M1 = ⊥u⊥
5. s2 = n

6. w2 = run =⇒ M2 = ⊥un
7. s3 = r

8. w3 = pun =⇒ M3 = ⊥un
9. s4 = p

10. w4 = sun =⇒ M4 = ⊥un
11. s5 = s

12. w5 = fun =⇒ M5 = ⊥un

(b) Evil Hangman (setter wins). Note that
s3, s4 and s5 are failed guesses.

Figure 1 Example games of Hangman (k = 3, d = 3) over the Latin lowercase alphabet and
using English as a language.

We define as well the operations a⊕ b to be the result of replacing every ⊥ character in a
by its corresponding character in b, and (a∩ b)i to be ai if ai = bi, and ⊥ otherwise. Now we
state that given a secret word w, we can computeMi after a guess si asMi+1 = Mi⊕(w∩ski).

It is also helpful to define Bi as the indices in Mi that have the symbol ⊥, as this is the
set that the setter can choose a subset from when answering a query. We use as well the
notation sB , with s being a symbol and B a subset of [1..k], where k is implicit, to describe
the word w of size k such that wi = s if i ∈ B and wi = ⊥ otherwise. Finally, for a language
L and a mask M , we abbreviate the set {w ∈ L |M � w} as F(L,M).

2.2 Evil Hangman
In the evil version of the game, the setter can choose to change the secret word, even every
turn, as long as the new choice is consistent with the answers given so far. We say that wi is
the secret word before the setter reveals Mi. Figure 1b presents an example of a an Evil
Hangman game.

In order to define what the required consistency exactly means, we define a relation �,
such that for two words a and b of length k

a � b ⇐⇒ (ai = ⊥) ∨ (ai = bi), for all i ∈ {1, . . . , k}

Intuitively, we say that b is consistent with a, as the only differences they can have are
positions where a had not been revealed yet. We can now state our consistency restrictions
as follows:
1. wi ∈ L
2. Mi � wi
3. wij 6∈ {s1, ..., si−1},∀j ∈ Bi

The first rule requires the partial secret words to be part of the language, the second one
requires that partial secret words do not differ with the exposed mask, and the third one
requires that the symbols not yet revealed to the guesser do not match any of the previous
guesses. The latter is simply captured by the (dynamic) alphabet Σ, which contains only the
remaining possible guesses.

FUN 2021

23:4 The Computational Complexity of Evil Hangman

2.3 Evaluation of Evil Hangman strategies
An evil setter strategy, over a language L, is a function AL that takes a mask Mi, a guess
si and returns AL(Mi, si) = Mi+1 a new mask, such that Mi � Mi+1, and there exists
w ∈ L such that Mi+1 � w. We define the function W to measure how good a particular
situation is for the setter. A situation is a tuple (M,Σ) where M is a word mask and Σ is the
remaining alphabet (letters that have not been guessed so far). We define W (M,Σ, AL) for
an adversarial setter AL as the minimum number of failed guesses that any player would have
to do in order to reveal a full word, starting from M over the alphabet Σ. We can formalize
the function W inductively as follows, where we use the Iverson bracket notation [13], namely,
for any predicate P , the expression JP K equals 1 if P is true and 0 otherwise:

W (M,Σ, AL) =

0 if M ∈ L

min
s∈Σ

{
W

AL(M, s),
Σ \ {s},

AF(L,AL(M,s))

+ JAL(M, s) = MK
}

otherwise
(1)

We define OPT as an adversary such that W (M,Σ, OPT) is maximum for every M

and Σ. Noting BM the set of indices of a word M containing ⊥ allows us to state OPT
explicitly as a recursive formula:

OPTL(M, s,Σ) = max
B⊆BM

F(L,M⊕sB)6=∅

{
JB = ∅K + min

s′∈Σ

{
OPTF(L,M⊕sB)

(
M ⊕ sB , s′,Σ \ {s}

)}}
(2)

We will refer to this optimal adversary in the next section, when showing that the greedy
algorithm’s competitive ratio is not bounded by a constant, and thus that such an algorithm
can perform arbitrarily bad on an infinite family of instances.

3 The greedy cheater

Algorithm 1 presents a pseudo code for the algorithm GreedyCheater, a pretty intuitive and
efficient algorithm for the setter, that is often given as a programming assignment [11] in
colleges across the US. The idea is to answer every query in such a way that the number of
words remaining in the dictionary that are consistent with the answer is maximized.

Not only is the GreedyCheater algorithm not optimal, it can be arbitrarily bad, which
we formalize in the following theorem, and illustrate with an example in Figure 2.

I Theorem 1. GreedyCheater is not c-competitive in terms of W . That is, there are no
constants c > 0 and b such that c ·W (M,Σ, GreedyCheater)+b ≥W (M,Σ, OPTL) for every
possible language L and situation (M,Σ).

Proof. We describe how to build an adversarial dictionary D of size n = 2m+ 1, where
m + 1 words start with the symbol α, and have only symbols β and γ in the other
positions (both β and γ must be present) and
the remaining m words are of the form ηk for symbols η 6∈ {α, β, γ}.

Note that this requires k ≥ 1 + lg(m+ 1) and σ ≥ m+ 3, to ensure that we can actually
build the first m+ 1 different words with combinations of β and γ and the last m words with
different symbols. This poses no problem, as such k and σ exist for every m, and thus we
can build bad instances of arbitrary size.

J. Barbay and B. Subercaseaux 23:5

Algorithm 1 Pseudo code for the GreedyCheater algorithm.

Input: a mask Mi−1, a guess si and a dictionary D
Output: the mask Mi

1 bestMaskSize← 0
2 bestMask ← NIL

3 for B ∈ 2Bi−1 do
4 thisMask ←Mi−1 ⊕ sBi
5 thisMaskSize← |F(D, thisMask)|
6 if thisMaskSize > bestMaskSize then
7 bestMaskSize← thisMaskSize

8 bestMask ← thisMask

9 return bestMask

D

abbc
abcb
abcc
dddd
eeee

Guesser
asks for ’a’

abbc
abcb
abcc

dddd
eeee

}

The guesser
can win with
no loss

A failed
guess can
be forced

GreedyCheater

a ⊥⊥
⊥

OPT, takes1 life

⊥⊥⊥⊥

Figure 2 Example of an adversarial dictionary D of size n = 5 over the alphabet {a, b, c, d, e}
against the GreedyCheater algorithm, with word length k = 4.

Now, upon the guess α, the greedy algorithm will answer α⊥k−1 (as m+ 1 words start
with it, as opposed to the m that do not have it), and then after guessing β and γ the guesser
will find the word with loss 0.

On the other hand, an optimal Evil Hangman algorithm would reply with ⊥k to the
original guess, and then on any guess with a symbol in Σ \ {α, β, γ} except for the last one,
it would reply with the same mask taking a life from the guesser. Such a strategy makes the
guesser lose on the symbol α and at least m− 1 other symbols, giving a total loss of m. This
concludes the proof. J

The GreedyCheater algorithm can be efficiently implemented. But given that it can
perform arbitrarily far from the optimum, a natural question is whether there is an efficient
algorithm that achieves optimality, which we explore in the next section.

4 Hardness of Finding an Optimal Evil Adversary

Consider the decision problem of whether the setter can win the game against any possible
guesser. We restrict our analysis to finite languages in this section, and explore generalized
languages (languages that are higher up in the Chomsky hierarchy) in Section 5.

FUN 2021

23:6 The Computational Complexity of Evil Hangman

Our main computational problem is, given a finite language L of words of length k on an
alphabet of size σ, to decide if an evil Hangman setter has a winning strategy, where winning
is defined with respect to the number d of failed guesses that the guesser is allowed:

Evil Hangman

Given a finite language L, where every word has some fixed size k, and an integer
d, decide whether it is possible for a cheating setter to play in such a way that no

guesser can get the secret word without making at least d failed guesses.

We prove the difficulty of Evil Hangman through a reduction to the problem of
Minimum Dominating Vertex Set in 3-regular graphs, by taking such a graph and
encoding it as a language. Intuitively, we will build an alphabet by associating a different
symbol to each vertex of the graph, and the language will be constructed by associating a
word to each vertex. Each symbol will be present in the word of its corresponding vertex
and neighbors. Therefore, each time the setter answers a guesser’s query negatively (which
corresponds to a vertex in the graph), the words associated to its associated vertex and
its neighborhood are discarded from the possibles words to reveal at the end, and we can
interpret this as discarding that vertex and its neighborhood from the graph. As long as there
is a non-discarded vertex in the graph, the setter can claim that the encoding of such a vertex
is the secret word. This relates the number of nodes, and their respective neighborhoods,
that are enough to cover the entire graph (Minimum Dominating Vertex Set) and the
amount of failed guesses a setter can force (Evil Hangman). The relationship between
the two problems is however inverted, the existence of a small dominating set will allow the
guesser to quickly discard many options and thus will constrain the victory of our protagonist,
the setter. This idea leads therefore to a proof of coNP-hardness.

I Theorem 2. Evil Hangman is coNP-hard, even when restricted to languages with words
of length 4.

Proof. Given a graph G = (V,E) and a positive integer d, let (G, d) be an instance of the
3-Regular Dominating Set problem (defined formally below)

Theorem 5 proves that 3-Regular Dominating Set is NP-hard.
Lemma 9 describes how to compute a language L that properly encodes G in polynomial
time. The alphabet size σ of L corresponds to the number of labels in V .
Lemma 10 proves that if (G, d) is a positive instance of 3-Regular Dominating Set,
then (L, d) is a negative instance of Evil Hangman; while
Lemma 11 proves (by contradiction) that if (L, d) is a positive instance of Evil Hangman,
then (G, d) is a negative instance of 3-Regular Dominating Set.

The combination of Lemmas 10 and 11 proves that (G, d) is a positive instance of 3-Regular
Dominating Set if and only if (L, d) is a negative instance of Evil Hangman, which permits
to deduce the coNP-hardness of Evil Hangman from the NP-hardness of 3-Regular
Dominating Set (from Theorem 5) J

In order to ensure that the language only contains words of a fixed length, we consider
only the restricted class of graphs where the degree of every node is fixed:

I Definition 3 (k-Regular Graph). A graph G = (V,E) is k-regular if and only if every vertex
v in V has exactly k neighbors.

J. Barbay and B. Subercaseaux 23:7

c d

a b

(a) The graph G to encode.

1. wa = abcd
2. wb = bacd
3. wc = cabd
4. wd = dabc

(b) An encoding of G.

1. wa = abcd
2. wb = badc
3. wc = cdba
4. wd = dcab

(c) A proper encoding of G.

Figure 3 Example of encodings for K4.

The main combinatorial problem required for our results is that of

I Definition 4 (Dominating Vertex Set). Given a graph G = (V,E), a set of vertices D ⊆ V
is dominating if and only if every node in V is either a member of D or has a neighbor in D.

The problem we will reduce from is a restricted version of Minimum Dominating
Vertex Set.

3-Regular Dominating Set

Given a 3-regular graph G and an integer d, decide whether the size γ(G) of the
minimum dominating set is at most d.

The problem of Minimum Dominating Vertex Set has been intensively studied since
the 1970s, and its NP-hardness is known for several classes of graphs (Planar, Perfect,
Bipartite, Chordal, Split, etc) [1]. Our reduction is based on a result by Kikuno et al. [8],
that shows NP-completeness for 3-regular planar graphs. This stronger result implies of
course hardness for the broader class of 3-regular graphs, which is essential to our reduction.

I Theorem 5 (Kikuno et al. [8]). 3-Regular Dominating Set is NP-hard

In order to reduce from this problem, we start by showing a proper way to encode a
3-regular graph as a language.

I Definition 6 (Vertex Encoding). Let G = (V,E) be a 3-regular graph, where every vertex
of V is labeled with a symbol from an alphabet Σ. We say that a word of Σ4 is a vertex
encoding of a node v ∈ V if its first symbol is the label of v followed by the labels of its three
neighbors.

Now, by putting together an encoding of every vertex of a graph, we get a graph encoding
as a language.

I Definition 7 (Language Encoding a Graph). Given a graph G = (V,E) whose vertices
are labeled with symbols of an alphabet Σ, we say a language L ⊆ Σ4 encodes G if L =
{w1, w2, . . . , w|V |} where wi is a vertex encoding of the i-th node.

An example of such an encoding is presented in Figure 3b. Because vertex encodings can
have the neighbors of the represented vertex in any order, there are (3!)|V | possible language
encodings for a given 3-regular graph G = (V,E), and they present different combinatorial

FUN 2021

23:8 The Computational Complexity of Evil Hangman

c d

a b

(a) The graph G to encode.

c d

a b

(b) Its associated digraph D.
d−

c−

b−

a−

d+

c+

b+

a+

(c) Associated bipartite graph
B, with a perfect matching.

d−

c−

b−

a−

d+

c+

b+

a+

(d) A second perfect matching.

d−

c−

b−

a−

d+

c+

b+

a+

(e) Third perfect matching.

c d

a b

(f) A proper edge coloring of D
based on the matchings.

Figure 4 Illustration for the proof of Lemma 9 on K4. Note that the encoding resulting of
subfigure (f) corresponds to the one presented in Figure 3c.

properties. We describe a deterministic way to encode input graphs that permits to identify
any word just by knowing of a single letter in it, so that no two words can have the same
symbol on the same position. This property greatly simplifies the proof of the reduction in
Lemma 11.

I Definition 8 (Proper Graph Encoding). An encoding L of a graph G = (V,E) is said to
be proper if for every vertex v ∈ V , and every position p in {1, 2, 3, 4}, there is exactly one
word in which the label of vertex v appears in the pth position.

In Figure 3c we present an example of a proper encoding. We now prove a key lemma in
our reduction: the fact that we can compute a proper encoding of any 3-regular graph in
time polynomial in the number of vertices of G.

I Lemma 9. Every 3-regular graph G admits a proper encoding, and such an encoding can
be computed in polynomial time.

Proof. Let G = (V,E) be a 3-regular graph, we start by considering the digraph D = (V ′, E′)
associated to G where V ′ = V and E′ contains the pairs (u, v) and (v, u) if there was an
edge between nodes u and v in G. We claim that if there exists a way to color edges in D
with {red, blue, green} such that every vertex has (i) incoming edges of each different
color, and (ii) outgoing edges of each different color, then we can produce a proper encoding
based on that. Here’s how to do it: if vertex u has a red outgoing edge to v, a green outgoing
edge to w and a blue outgoing edge to x, then we can encode it as uvwx. Note that the
color of an edge u→ v determines in which position is v going to appear in the encoding of
u, and therefore condition (i) over v ensures that the label of v appears in every position,
while condition (ii) over u ensures that no more than one vertex is assigned position p on the
encoding of u.

J. Barbay and B. Subercaseaux 23:9

In order to find such an edge coloring, we create the undirected bipartite graph B =
(V ′′, E′′), where for every vertex v ∈ V , we put two vertices v+ and v− in V ′′, and for every
edge (u, v) in E′ we put the edges (u+, v−) and (u−, v+). The partition of B is then, of
course, the set of vertices (·)+ and the set of vertices (·)−. Note that B is also a 3-regular
graph, as every vertex v with neighbors u,w and x in the original graph, it is associated vertex
u+ is connected with v−, w− and x− in B, and u− will be connected to u+, w+ and x+.

As a direct consequence of Hall’s Marriage Theorem [5], every regular bipartite graph has
a perfect matching. Such a perfect matching can be computed in polynomial time using for
example the Hopcroft-Karp algorithm [6]. Let M be the set of edges of a perfect matching
computed that way. We can color every edge in M with red. Now, if we remove from E′′ all
the edges of M , the bipartite graph is 2-regular, as each node has lost exactly one neighbor.
By using Hall’s theorem again, we can get a new perfect matching M ′, whose edges we
color with blue. If we now remove all the edges of M ′′, we get a 1-regular graph, which is
itself a perfect matching, and whose edges we color with green. This is enough to get the
required coloring in the graph D, just by coloring every edge (u, v) with the same color of
the edge (u−, v+). J

The final step of the proof of Theorem 2 consists in proving that (G, d) is a positive
instance of 3-Regular Dominating Set if and only if (L, d) is a negative instance of Evil
Hangman. Lemma 10 proves the forward direction of the statement:

I Lemma 10. Let G be a 3-regular graph, and L be the language built from G as described
in Lemma 9, and let d be an arbitrary integer. If (G, d) is a positive instance of 3-Regular
Dominating Set, then (L, d) is a negative instance of Evil Hangman.

Proof. Let’s assume (G, d) is a positive instance of the 3-Regular Dominating Set
problem. This means that there is a dominating set for G of size at most d. Let Γ ==
{v1, v2, . . . , vγ(G)} be such a dominating set. Then, if the guesser makes the sequence of
queries `(v1), `(v2), . . . , `(vγ(G)), where `(v) corresponds to the label of vertex v, the setter
is forced to answer positively at least one of those queries, as otherwise there would be no
possible word for her to reveal at the end. Thus far, the guesser has made at most d − 1
failed queries. As the encoding of the graph G into the language L is proper, a single guess
answered positively is enough to uniquely determine the secret word, and therefore the
guesser can win the game without making any more failed guesses, implying that the instance
(L, d) is negative for Evil Hangman. J

Lemma 11 proves (by contradiction) the reverse direction:

I Lemma 11. Let G be a 3-regular graph, and L be the language built from G as described
in Lemma 9, and let d be an arbitrary integer. If (L, d) is a negative instance of Evil
Hangman, then (G, d) is a positive instance of 3-Regular Dominating Set.

Proof. We will show the contrapositive statement, namely, that if (G, d) is a negative instance
of 3-Regular Dominating Set then (L, d) is a positive instance of Evil Hangman. Let’s
assume that (G, d) is a negative instance, and thus, d vertices are not enough to dominate
the graph. This would mean that for any set D of d vertices, there is at least one vertex vD
which is not dominated by D. Consider then that the guesser makes a sequence of d queries,
whose associated vertices form the set D′. Then, rejecting all those d queries and revealing
w(vD′) as the secret word is a guaranteed strategy for the setter, meaning that (L, d) is a
positive instance of Evil Hangman. J

FUN 2021

23:10 The Computational Complexity of Evil Hangman

This concludes the proof of the coNP-hardness of Evil Hangman when L is a finite
language. We explore its computational complexity for more general types of languages in
the next section.

5 Generalized Languages

A natural generalization of the Evil Hangman problem is to consider its complexity when
played over broader classes of languages, such as Regular, Context Free or Turing computable
languages over an alphabet Σ, projected to words of length k by intersection with Σk. The
lower bound of Theorem 2 (where the language is finite) can be extended to prove hardness
for the cases where the language is defined by a Regular Expression (or, respectively, a
Context Free Grammar or a Turing Machine) by observing that a dictionary of n words of
length k can be encoded in a Regular Expression (or respectively, a Context Free Grammar
or a Turing Machine) of size (nk)O(1), and thus we can construct hard instances for such
problems by using the same construction used to prove Theorem 2.

In this section we give a result for classes of languages whose associated machines are
strong enough to simulate other machines within their class. Namely, that when the game
is played over languages of such classes, the Evil Hangman decision problem is at least
as hard as deciding membership of a word in the language. This implies undecidability for
Turing computable languages (given as Turing Machines, abbreviated as TM) and PSPACE-
completeness for Context Sensitive Languages [10] (given as their equivalent Linear Bounded
Automata [9], abbreviated as LBA). The proofs of hardness are thus based on reductions to
the membership problem, stated below.

Membership

Given an encoding of a machine (or language) C belonging to a class C, and a word
w, decide whether w ∈ L(C)

We consider first a restricted class of languages among Turing Computable languages:

I Definition 12 (Universal Simulation Languages). Let C be a class of machines, we say that
C allows universal simulation if, given a machine C, it is possible to construct in polynomial
time a machine C ′ that accepts exactly the language {α, β} if (C,w) ∈Membership(C) and
{α} otherwise.

We can now state the key lemma used to prove undecidability of Evil Hangman(TM)
and PSPACE-completeness for Evil Hangman(LBA).

I Lemma 13. Let C be a class of machines (languages) allowing universal simulation. Then,
there is a polynomial time reduction problem from Membership(C) to Evil Hangman(C),
that is, Evil Hangman but over a language L defined by an element of C.

Proof. Consider and an arbitrary element C ∈ C. Because of the universal simulation
property, we can construct a machine C ′ with the behavior specified in Definition 12. Now
consider k = 1 and the instance (L(C ′), d = 1). We can see that is a positive instance of
Evil Hangman if and only if C accepts on β, as if the C accepts β the dictionary has size 2
and can force a failed guess, but if C rejects β, the dictionary will have size 1 and thus it is
not possible to force a failed guess. J

J. Barbay and B. Subercaseaux 23:11

We have now the machinery required to easily prove the following two theorems, that
define the computability and complexity of Evil Hangman over Context Sensitive languages
and Turing Computable languages. A reduction from Membership(PSPACE) yields the
PSPACE completeness:

I Theorem 14. Evil Hangman is PSPACE-complete when the language L is the language
defined by an arbitrary Linear Bounded Automaton M .

Proof. Membership(LBA) is PSPACE-complete [7]. This implies membership in PSPACE
by a naive simulation of Equation (2). To prove hardness, we can use a result by Feldman
et al. [3] that states that for every n, there is a universal LBA Mn for the class of LBAs
using at most n tape symbols, and thus LBAs hold the property of universal simulation
(Definition 12). As Membership(LBA) is in particular PSPACE-hard, the reduction implies
as well hardness for our problem. J

A similar reduction from Membership, but this time from TM , yields the undecidability
result:

I Theorem 15. Evil Hangman is undecidable when the language L is the language defined
by an arbitrary Turing machine M .

Proof. We reduce from Membership(TM), directly from Lemma 13, as Turing Machines
trivially hold the property of universal simulation from Definition 12. The fact that member-
ship is undecidable for Turing Machines (Rice’s Theorem) concludes the proof. J

This concludes our results about the computational complexity of optimal strategies for
the Evil Hangman problem. In the next section, we summarize our results and outline
some remaining open questions.

6 Discussion

On one hand, the greedy strategy for Evil Hangman (the one which is commonly given as a
programming assignment) can perform arbitrarily bad on certain languages (Theorem 1); on
the other hand finding an optimal strategy for a given language is coNP-hard (Theorem 2),
and thus we cannot expect a polynomial time algorithm for it unless P = NP. Note that
the coNP-hardness from the setter’s perspective implies NP-hardness from the guesser’s
perspective: Theorem 2 is equivalent to the NP-hardness of deciding whether a guesser can
always win the game without making d failed queries. Even worse, the optimality of an
answer by the evil setter is PSPACE-complete for languages described by Context Sensitive
Grammars (Theorem 14) and undecidable for Turing Computable languages (Theorem 15).

Although hard in arbitrary languages, the game of Hangman is traditionally played on
natural languages, where alphabets are pretty small, and words are pretty short. Hence it is
worth noticing that Equation 2 (given on page 4) yields a Fixed Parameter Tractable (FPT)
algorithm [2, 4] when parameterized over ` = σ + k (size of the alphabet + word length).
In particular, it can be implemented in time within n · 2O(`), where n = |L|. First, note
that the recursive formula goes over all the possible σk masks, all possible symbols, and
all the 2σ possible subsets of the alphabet. This last term can be immediately optimized
by considering only the masks that are present in the dictionary, which are no more than
n2k. Note that by considering only those masks, the remaining language (in the subscript
of OPT in Equation 2) is kept implicit. Therefore, the total number of cells is bound by
σn2σ2k ∈ n2O(`). At every cell we have to choose between at most 2k sub-masks of M and σ

FUN 2021

23:12 The Computational Complexity of Evil Hangman

symbols, and compute f which is done in time within O(k). Thus, the total computational
work per cell is within 2O(`). Multiplying this by the amount of cells gives us the desired
result. It is an open problem whether Evil Hangman becomes FPT when parameterized by
d, the number of failed guesses allowed. The reduction presented in Lemma 11 constitutes
an FPT reduction from Minimum Dominating Vertex Set on 3-regular graphs. It is
well known that Minimum Dominating Vertex Set on general graphs is complete for the
class W [2] (Downey et al. [2, 4]). However, k-regular graphs are Kk+1,k+1 free, and thus
the result of Telle et al. [12] implies Minimum Dominating Vertex Set to be FPT when
parameterized by the size of the set. This of course does not imply that Evil Hangman is
FPT under such a parameterization: only that we cannot derive fixed parameter intractability
from the reduction to dominating set in 3-regular graphs presented in Lemmas 10 and 11.

References
1 Derek G. Corneil and Lorna K. Stewart. Dominating sets in perfect graphs. In Topics on

Domination, pages 145–164. Elsevier, 1991.
2 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II:

On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, April 1995.
3 Eliot D. Feldman and James C. Owings. A class of universal linear bounded automata. Inf.

Sci., 6:187–190, 1973.
4 Jörg Flum and Martin Grohe. Parameterized Complexity Theory (Texts in Theoretical

Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

5 P. Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-
10(1):26–30, January 1935.

6 John E. Hopcroft and Richard M. Karp. An $nˆ{5/2} $ algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, December 1973.

7 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer US, 1972.

8 Tohru Kikuno, Noriyoshi Yoshida, and Yoshiaki Kakuda. The np-completeness of the dominat-
ing set problem in cubic planer graphs. IEICE TRANSACTIONS (1976-1990), 63(6):443–444,
1980.

9 S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, June 1964.

10 Peter Linz. An Introduction to Formal Languages and Automata, Fifth Edition. Jones and
Bartlett Publishers, Inc., USA, 5th edition, 2011.

11 Nick Parlante, Julie Zelenski, Keith Schwarz, Dave Feinberg, Michelle Craig, Stuart Hansen,
Michael Scott, and David J. Malan. Nifty assignments. In Proceedings of the 42nd ACM
technical symposium on Computer Science Education - SIGCSE '11. ACM Press, 2011.

12 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free graphs.
In Algorithms – ESA 2012, pages 802–812. Springer Berlin Heidelberg, 2012.

13 Wikipedia.org. Iverson bracket notation. https://en.wikipedia.org/wiki/Iverson_bracket.
Last accessed on 2020-02-06.

https://en.wikipedia.org/wiki/Iverson_bracket

Singletons for Simpletons: Revisiting Windowed
Backoff with Chernoff Bounds
Qian M. Zhou
Mississippi State University, Department of Mathematics and Statistics, MS, USA
qz70@msstate.edu

Aiden Calvert
Mississippi School for Mathematics and Science, Columbus, MS, USA
calverta20@themsms.org

Maxwell Young
Mississippi State University, Department of Computer Science and Engineering, MS, USA
myoung@cse.msstate.edu

Abstract
Backoff algorithms are used in many distributed systems where multiple devices contend for a shared
resource. For the classic balls-into-bins problem, the number of singletons – those bins with a single
ball – is important to the analysis of several backoff algorithms; however, existing analyses employ
advanced probabilistic tools to obtain concentration bounds. Here, we show that standard Chernoff
bounds can be used instead, and the simplicity of this approach is illustrated by re-analyzing some
well-known backoff algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Chernoff bounds, backoff, contention resolution, algorithms

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.24

Funding Maxwell Young: This research is supported by the National Science Foundation grant CNS
1816076, and by the U.S. National Institute of Justice (NIJ) Grant 2018-75-CX-K002.

1 Introduction

Backoff algorithms address the general problem of how to share a resource among multiple
devices [38]. A ubiquitous application is IEEE 802.11 (WiFi) networks [31, 48, 34], where
the resource is a wireless channel, and devices each have packets to send. Any single packet
sent uninterrupted over the channel is likely to be received, but if the sending times of two
or more packets overlap, communication often fails due to destructive interference at the
receiver (i.e., a collision). An important performance metric is the time required for all
packets to be sent, which is known as the makespan.

Formal Model. Time is discretized into slots, and each packet can be transmitted within a
single slot. Starting from the first slot, a batch of n packets is ready to be transmitted on a
shared channel. This case, where all packets start at the same time, is sometimes referred to
as the batched-arrivals setting. Each packet can be viewed as originating from a different
source device, and going forward we speak only of packets rather than devices.

For any fixed slot, if a single packet sends, then the packet succeeds; however, if two or
more packets send, then all corresponding packets fail. A packet that attempts to send in a
slot learns whether it succeeded and, if so, the packet takes no further action; otherwise, the
packet learns that it failed in that slot, and must try again at a later time.

© Qian M. Zhou, Aiden Calvert, and Maxwell Young;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qz70@msstate.edu
mailto:calverta20@themsms.org
mailto:myoung@cse.msstate.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Singletons for Simpletons

Background on Analyzing Makespan. A natural question is the following: For a given
backoff algorithm under batched-arrivals, what is the makespan as measured in the number of
slots?

This question was first addressed by Bender et al. [5] who analyze several backoff
algorithms that execute over disjoint, consecutive sets of slots called windows. In every
window, each packet that has not yet succeeded selects a single slot uniformly at random in
which to send. If the packet succeeds, then it leaves the system; otherwise, the failed packet
waits for the next window to begin and repeats this process.

Bender et al. [5] analyze several algorithms where windows monotonically increase in size.
The well-known binary exponential backoff algorithm – a critical component of many
WiFi standards – exemplifies this behavior, where each successive window increases in size
by a factor of 2.1

There is a close relationship between the execution of such algorithms in a window, and
the popular balls-in-bins scenario, where N balls (corresponding to packets) are dropped
uniformly at random into B bins (corresponding to slots). In this context, we are interested in
the number of bins containing a single ball, which are sometimes referred to as singletons [52].

Despite their simple specification, windowed backoff algorithms are surprisingly intricate
in their analysis. In particular, obtaining concentration bounds on the number of slots
(or bins) that contain a single packet (or ball) – which we will also refer to as singletons
– is complicated by dependencies that rule out a straightforward application of Chernoff
bounds (see Section 2.1). This is unfortunate given that Chernoff bounds are often one of
the first powerful probabilistic tools that researchers learn, and they are standard material
in a randomized algorithms course.

In contrast, the makespan results in Bender et al. [5] are derived via delay sequences [33, 49],
which are arguably a less-common topic of instruction. Alternative tools for handling
dependencies include Poisson-based approaches by Mizenmacher [40] and Mitzenmacher and
Upfal [39], and the Doob martingale [21], but to the best of our knowledge, these have not
been applied to the analysis of windowed backoff algorithms.

1.1 Our Goal
Is there a simpler route to arrive at makespan results for windowed backoff algorithms?

Apart from being a fun theoretical question to explore, an affirmative answer might
improve accessibility to the area of backoff algorithms for researchers. More narrowly, this
might benefit students embarking on research, many of whom cannot fully appreciate the very
algorithms that enable, for example, their Instagram posts access to online course notes.2
Arguably, Chernoff bounds can be taught without much setup. For example, Dhubashi
and Panconesi [21] derive Chernoff bounds starting on page 3, while their discussion of
concentration results for dependent variables is deferred until Chapter 5.

What if we could deploy standard Chernoff bounds to analyze singletons? Then, the
analysis distills to proving the correctness of a “guess” regarding a recursive formula (a
well-known procedure for students) describing the number of packets remaining after each
window, and that guess would be accurate with small error probability.

1 In practice, the doubling terminates at some fixed large value set by the standard.
2 In our experience, the makespan analysis is inaccessible to most students in the advanced computer

networking course.

Q.M. Zhou, A. Calvert, and M. Young 24:3

Finally, while it may not be trivial to show that Chernoff bounds are applicable to
backoff, showing that another problem – especially one that has such important applications
– succumbs to Chernoff bounds is aesthetically satisfying.

1.2 Results

We show that Chernoff bounds can indeed be used as proposed above. Our approach involves
an argument that the indicator random variables for counting singletons satisfy the following
property from [22]:

I Property 1. Given a set of n indicator random variables {X1, · · · , Xn}, for all subsets
S ⊂ {1, · · · , n} the following is true:

Pr

∧
j∈S

Xj = 1

 ≤∏
j∈S

Pr [Xj = 1] . (1)

We prove the following:

I Theorem 1. Consider N balls dropped uniformly at random into B bins. Let Ij = 1 if
bin j contains exactly 1 ball, and Ij = 0 otherwise, for j = 1, · · · , B. If B ≥ N +

√
N or

B ≤ N −
√
N , then {I1, · · · , IB} satisfy the Property 1.

Property 1 permits the use of standard Chernoff bounds; this implication is posed as an
exercise by Dubhashi and Panconesi [21] (Problem 1.8), and we provide the argument in our
appendix.

We then show how to use Chernoff bounds to obtain asymptotic makespan results for
some of the algorithms previously analyzed by Bender et al. [5]: Binary Exponential
Backoff (BEB), Fixed Backoff (FB), and Log-Log Backoff (LLB). Additionally,
we re-analyze the asymptotically-optimal (non-monotonic) Sawtooth Backoff (STB)
from [29, 25].

These algorithms are specified in Section 5, but our makespan results are stated below.

I Theorem 2. For a batch of n packets, the following holds with probability at least 1−O(1/n):
FB has makespan at most n lg lgn+O(n).
BEB has makespan at most 512n lgn+O(n).
LLB has makespan O(n lg lgn/ lg lg lgn).
STB has makespan O(n).

We highlight that both of the cases in Theorem 1, B ≤ N +
√
N and B ≥ N −

√
N , are

useful. Specifically, the analysis for BEB, FB, and STB uses the first case, while LLB uses
both.

1.3 Related Work

Several prior results address dependencies and their relevance to Chernoff bounds and load-
balancing in various balls-in-bins scenarios. In terms of backoff, the literature is vast. In
both cases, we summarize closely-related works.

FUN 2021

24:4 Singletons for Simpletons

Dependencies, Chernoff Bounds, & Ball-in-Bins. Backoff is closely-related to balls-and-
bins problems [4, 18, 47, 50], where balls and bins correspond to packets and slots, respectively.
Balls-in-bins analysis often arises in problems of load balancing (for examples, see [9, 10, 11]).

Dubhashi and Ranjan [22] prove that the occupancy numbers – random variables Ni
denoting the number of balls that fall into bin i – are negatively associated. This result is
used by Lenzen and Wattenhofer [35] use it to prove negative association for the random
variables that correspond to at most k ≥ 0 balls.

Czumaj and Stemann [19] examine the maximum load in bins under an adaptive process
where each ball is placed into a bin with minimum load of those sampled prior to placement.
Negative association of the occupancy numbers is important to this analysis.

Finally, Dubhashi and Ranjan [22] also show that Chernoff bounds remain applicable
when the corresponding indicator random variables that are negatively associated. The same
result is presented in Dubhashi and Panconesi [21].

Backoff Algorithms. Many early results on backoff are given in the context of statistical
queuing-theory (see [30, 28, 43, 26, 30, 27]) where a common assumption is that packet-arrival
times are Poisson distributed.

In contrast, for the batched-arrivals setting, the makespan of backoff algorithms with
monotonically-increasing window sizes has been analyzed in [5], and with packets of different
sizes in [6]. A windowed, but non-monotonic backoff algorithm which is asymptotically
optimal in the batched-arrival setting is provided in [25, 29, 2].

A related problem is contention resolution, which addresses the time until the first packet
succeeds [51, 41, 24, 23]. This has close ties to the well-known problem of leader election
(for examples, see [13, 12]).

Several results examine the dynamic case where packets arrive over time as scheduled in
a worst-case fashion [36, 20, 8]; this is in contrast to batched-arrivals where it is implicitly
assumed that the current batch of packets succeeds before the next batch arrives. A similar
problem is that of wake-up [16, 15, 17, 14, 37, 32], which addresses how long it takes for a
single transmission to succeed when packets arrive under the dynamic scenario.

Finally, several results address the case where the shared communication channel is
unavailable at due to malicious interference [3, 44, 45, 46, 42, 1, 7].

2 Analysis for Property 1

We present our results on Property 1. Since we believe this result may be useful outside
of backoff, our presentation in this section is given in terms of the well-known balls-in-bins
terminology, where we have N balls that are dropped uniformly at random into B bins.

2.1 Preliminaries
Throughout, we often employ the following inequalities (see Lemma 3.3 in [46]), and we will
refer to the left-hand side (LHS) or right-hand side (RHS) when doing so.

I Fact 1. For any 0 < x < 1, e−x/(1−x) ≤ 1− x ≤ e−x.

Knowing that indicator random variables (i.r.v.s) satisfy Property 1 is useful since the
following Chernoff bounds can then be applied.

Q.M. Zhou, A. Calvert, and M. Young 24:5

I Theorem 3. (Dubhashi and Panconesi [21])3 Let X =
∑
iXi where X1, ..., Xm are i.r.v.s

that satisfy Property 1 . For 0 < ε < 1, the following holds:

Pr[X > (1 + ε)E[X]] ≤ exp
(
−ε

2

3 E[X]
)

(2)

Pr[X < (1− ε)E[X]] ≤ exp
(
−ε

2

2 E[X]
)

(3)

We are interested in the i.r.v.s Ij , where:

Ij =
{

1, if bin j contains exactly 1 ball.
0, otherwise.

Unfortunately, there are cases where the Ijs fail to satisfy Property 1. For example, consider
N = 2 balls and B = 2 bins. Then, Pr(I1 = 1) = Pr(I2 = 1) = 1/2, so Pr(I1 = 1) · Pr(I2 =
1) = 1/4, but Pr(I1 = 1 ∧ I2 = 1) = 1/2.

A naive approach (although, we have not seen it in the literature) is to leverage the
result in [35], that the variables used to count the number of bins with at most k balls are
negatively associated. We may bound the number of bins that have at most 1 ball, and the
number of bins that have (at most) 0 balls, and then take the difference. However, this is a
cumbersome approach, and our result is more direct.

Returning briefly to the context of packets and time slots, another approach is to consider
a subtly-different algorithm where a packet sends with probability 1/w in each slot of a
window with w slots, rather than selecting uniformly at random a single slot to send in.
However, as Bender et al. [5] point out, when n is within a constant factor of the window size,
there is a constant probability that the packet will not send in any slot. Consequently, the
number of windows required for all packets to succeed increases by a logn-factor, whereas
only O(log logn) windows are required under the model used here.

2.2 Property 1 and Bounding Singletons
To prove Theorem 1, we establish the following Lemma 4. For j = 1, · · · , B − 1, define:

Pj = Pr [Ij+1 = 1 | I1 = 1, · · · , Ij = 1]

which is the conditional probability that bin j + 1 contains exactly 1 ball given each of the
bins {1, · · · , j} contains exactly 1 ball. Note that Pr[Ij = 1] is same for any j = 1, · · · , B,
and let:

P0 , Pr[Ij = 1] = N

(
1
B

)(
1− 1

B

)N−1
. (4)

I Lemma 4. If B ≥ N +
√
N or B ≤ N −

√
N , the conditional probability Pj is a

monotonically non-increasing function of j, i.e., Pj ≥ Pj+1, for j = 0, · · · , B − 2.

Proof. First, for j = 1, · · · ,min{B,N} − 1, the conditional probability can be expressed as

Pj = (N − j)
(

1
B − j

)(
1− 1

B − j

)N−j−1
. (5)

3 This is stated in Problem 1.8 in [21]; we present a proof in Section A of our appendix.

FUN 2021

24:6 Singletons for Simpletons

Note that P0 in (4) is equal to (5) with j = 0.
For B ≥ N +

√
N , we note that beyond the range j = 1, ..., ,min{B,N} − 1 (i.e., N − 1),

it must be that Pj = 0. In other words, Pj = 0 for j = N,N + 1, · · · , B − 1 since all balls
have already been placed. Thus, we need to prove Pj ≥ Pj+1, for j = 0, · · · , N − 2.

On the other hand, if B ≤ N −
√
N , we need to prove Pj ≥ Pj+1, for j = 0, · · · , B − 2.

Thus, this lemma is equivalent to prove if B ≥ N +
√
N or B ≤ N −

√
N , the ratio

Pj/Pj+1 ≥ 1, for j = 0, · · · ,min{B,N} − 2.
Using the expression (5), the ratio can be expressed as

Pj
Pj+1

=
(N − j)

(
1

B−j

)(
1− 1

B−j

)N−j−1

(N − j − 1)
(

1
B−j−1

)(
1− 1

B−j−1

)N−j−2

= 1(
B−j
N−j

)(
N−j−1
B−j−1

) ·
(

1− 1
B−j

)N−j−1

(
1− 1

B−j−1

)N−j−2

= 1(
B−j
N−j

)(
N−j−1
B−j−1

) ·
(
B−j−1
B−j

)N−j−1

(
B−j−2
B−j−1

)N−j−1 (
B−j−1
B−j−2

)
= 1(

B−j
N−j

)(
N−j−1
B−j−2

) ·(B−j−1
B−j
B−j−2
B−j−1

)N−j−1

=

(
1 + 1

(B−j)(B−j−2)

)N−j−1

(N−j−1)(B−j)
(N−j)(B−j−2)

.

Let a = N − j, then 2 ≤ a ≤ N ; and let y = B −N . Thus, the ratio becomes

Pj
Pj+1

=

[
1 + 1

(a+y)(a+y−2)

]a−1

(a−1)(a+y)
a(a+y−2)

.

By the Binomial theorem, we have[
1 + 1

(a+ y)(a+ y − 2)

]a−1
= 1+ a− 1

(a+ y)(a+ y − 2) +
a−1∑
k=2

(
a− 1
k

)[
1

(a+ y)(a+ y − 2)

]k
.

Thus, the ratio can be written as:

Pj
Pj+1

= a(a+ y − 2)
(a− 1)(a+ y) + a

(a+ y)2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= a3 + 2a2y − a2 + ay2 − 2ay − a
a3 + 2a2y − a2 + ay2 − 2ay − y2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= a3 + 2a2y − a2 + ay2 − 2ay − a+ (y2 − y2)
a3 + 2a2y − a2 + ay2 − 2ay − y2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= 1 + y2 − a
(a+ y)2(a− 1) +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

. (6)

Q.M. Zhou, A. Calvert, and M. Young 24:7

Note that because 0 ≤ j ≤ min{B,N} − 2, then a+ y = B − j ≥ 2. Thus, the third term
in (6) is always non-negative. If y = B −N ≥

√
N or y ≤ −

√
N , then y2 ≥ N ≥ a for any

2 ≤ a ≤ N . Consequently, the ratio Pj/Pj+1 ≥ 1. J

We can now give our main argument:

Proof of Theorem 1. Let s denote the size of the subset S ⊂ {1, · · · , B}, i.e. the number
of bins in S. First, note that if B ≥ N +

√
N , when s > N (i.e., more bins than balls),

the probability on the left hand side (LHS) of (1) is 0, thus, the inequality (1) holds. In
addition, shown above Pr[Ij = 1] = P0 for any j = 1, · · · , B. Thus, the right hand side of
(1) becomes Ps0 . Thus, we need to prove for any subset, denoted as S = {j1, · · · , js} with
1 ≤ s ≤ min{B,N}

Pr

[
s∧

k=1
Ijk = 1

]
≤ Ps0 .

The LHS can be written as:

= Pr

[
Ijs = 1 |

s−1∧
k=1

Ijk = 1
]
Pr

[
s−1∧
k=1

Ijk = 1
]

= Ps−1Pr

[
s−1∧
k=1

Ijk = 1
]

= Ps−1Pr

[
Ijs−1 = 1 |

s−2∧
k=1

Ijk = 1
]
Pr

[
s−2∧
k=1

Ijk = 1
]

= Ps−1Ps−2Pr

[
s−2∧
k=1

Ijk = 1
]

...
= Ps−1Ps−2 · · · P0

Lemma 4 shows that if B ≥ N +
√
N or B ≤ N −

√
N , Pj is a non-increasing function of

j = 0, · · · , B − 1. Consequently, P0 ≥ Pj , for j = 1, · · · , B − 1. Thus:

Pr

[
s∧

k=1
Ijk = 1

]
≤ Ps0 ,

and so the bound in Equation (1) holds. J

The standard Cheroff bounds of Theorem 3 now apply, and we use them obtain bounds
on the number of singletons. For ease of presentation, we occasionally use exp(x) to denote
ex.

I Lemma 5. For N balls that are dropped into B bins where B ≥ N +
√
N or B ≤ N −

√
N ,

the following is true for any 0 < ε < 1.
The number of singletons is at least (1−ε)N

eN/(B−1) with probability at least 1− e
−ε2N

2 exp(N/(B−1)) .

The number of singletons is at most (1+ε)N
e(N−1)/B with probability at least 1− e

−ε2N
3 exp(N/(B−1)) .

FUN 2021

24:8 Singletons for Simpletons

Proof. We begin by calculating the expected number of singletons. Let Ii be an indicator
random variable such that Ii = 1 if bin i contains a single ball; otherwise, Ii = 0. Note that:

Pr(Ii = 1) =
(
N

1

)(
1
B

)(
1− 1

B

)N−1

≥
(
N

1

)(
1
B

)(
1− 1

B

)N
≥ N

Be(N/(B−1)) (7)

where the last line follows from the LHS of Fact 1. Let I =
∑B
i=1 Ii be the number of

singletons. We have:

E[I] =
B∑
i=1

E[Ii] by linearity of expectation

≥ N

e(N/(B−1)) by Equation (7)

Next, we derive a concentration result around this expected value. Since B ≥ N +
√
N or

B ≤ N −
√
N , Theorem 1 guarantees that the Iis are negatively associated, and we may

apply the Chernoff bound in Equation 3 to obtain:

Pr

(
I < (1− ε) N

e(N/(B−1))

)
≤ exp

(
− ε2N

2e(N/(B−1))

)

which completes the lower-bound argument. The upper bound is nearly identical. J

3 Bounding Remaining Packets

In this section, we derive tools for bounding the number of packets that remain as we progress
from one window to the next.

All of our results hold for sufficiently large n > 0. Let wi denote the number of slots in
window i ≥ 0. Let mi be the number of packets at the start of window i ≥ 0.

We index windows starting from 0, but this does not necessarily correspond to the initial
window executed by a backoff algorithm. Rather, in our analysis, window 0 corresponds to
the first window where packets start to succeed in large numbers; this is different for different
backoff algorithms.

For example, BEB’s initial window consists of a single slot, and does not play an important
role in the makespan analysis. Instead, we apply Chernoff bounds once the window size is at
least n+

√
n, and this corresponds to window 0. In contrast, for FB, the first window (indeed,

each window) has size Θ(n), and window 0 is indeed this first window for our analysis. This
indexing is useful for our inductive arguments presented in Section 4.

3.1 Analysis
Our method for upper-bounding the makespan operates in three stages. First, we apply an
inductive argument – employing Case 1 in Corollary 6 below – to cut down the number of
packets from n to less than n0.7. Second, Case 2 of Corollary 6 is used whittle the remaining
packets down to O(n0.4). Third, we hit the remaining packets with a constant number of
calls to Lemma 7; this is the essence of Lemma 8.

Q.M. Zhou, A. Calvert, and M. Young 24:9

Intuition for Our Approach. There are a couple things worth noting. To begin, why not
carry the inductive argument further to reduce the number of packets to O(n0.4) directly
(i.e., skip the second step above)? Informally, our later inductive arguments show that mi+1
is roughly at most n/22i , and so i ≈ lg lg(n) windows should be sufficient. However, lg lg(n)
is not necessarily an integer and we may need to take its floor. Given the double exponential,
taking the floor (subtracting 1) results in mi+1 ≥

√
n. Therefore, the equivalent of our

second step will still be required. Our choice of n0.7 is not the tightest, but it is chosen for
simpicity.

The second threshold of O(n0.4) is also not completely arbitrary. In the (common) case
where w0 ≥ n+

√
n, note that we require O(n1/2−δ) packets remaining, for some constant

δ > 0, in order to get a useful bound from Lemma 7. It is possible that after the inductive
argument, that this is already satisfied; however, if not, then Case 2 of Corollary 6 enforces
this. Again, O(n0.4) is chosen for ease of presentation; there is some slack.

I Corollary 6. For wi ≥ n+
√
n, the following is true with probability at least 1− 1/n2:

Case 1. If mi ≥ n7/10, then mi+1 <
(5/4)m2

i

n .
Case 2. If n0.4≤mi<n

7/10, then mi+1 =O(n2/5).

Proof. For Case 1, we apply the first result of Lemma 5 with ε =
√

4e lnn
n1/3 , which implies

with probability at least 1− exp(− 4e lnn
n2/3

n0.7

2) ≥ 1− exp(−2 lnn) ≥ 1− 1/n2:

mi+1 ≤ mi −
(1− ε)mi

emi/(wi−1)

≤ mi

(
1− 1

emi/(wi−1) + ε

)
≤ mi

(
mi

wi − 1 + ε

)
by RHS of Fact 1

≤ m2
i

n
+miε since wi ≥ n+

√
n (8)

≤ m2
i

n
+
(mi

n1/3

)√
4e lnn

<
(5/4)m2

i

n
since mi ≥ n7/10

where 5/4 is chosen for ease of presentation.
For Case 2, we again apply the first result of Lemma 5, but with ε =

√
4e lnn
m . Then,

with probability at least 1− 1/n2, the first and second terms in Equation 8 are at most n0.4

and O(n0.35
√

lnn), respectively, for the any n0.4 ≤ mi ≤ n7/10. J

The following lemma is useful for achieving a with-high-probability guarantee when the
number of balls is small relative to the number of bins.

I Lemma 7. Assume wi > 2mi. With probability at least 1 − m2
i

wi
, all packets succeed in

window i.

Proof. Consider placements of packets in the window that yield at most one packet per slot.
Note that once a packet is placed in a slot, there is one less slot available for each remaining
packet yet to be placed. Therefore, there are wi(wi − 1) · · · (wi −mi + 1) such placements.

Since there are wmii ways to place mi packets in wi slots, it follows that the probability
that each of the mi packets chooses a different slot is:

wi(wi − 1) · · · (wi −mi + 1)
wmii

.

FUN 2021

24:10 Singletons for Simpletons

We can lower bound this probability:

= wmii (1− 1/wi) · · · (1− (mi − 1)/wi)
wmii

≥ e
−
∑mi−1

j=1
j

wi−j by LHS of Fact 1

≥ e
−
∑mi−1

j=1
2j
wi since wi > 2mi > 2j which

leads to j
wi−j <

2j
wj

= e−(1/wi)(mi−1)mi by sum of natural numbers

≥ 1− m2
i

wi
+ mi

wi
by RHS of Fact 1

> 1− m2
i

wi

as claimed. J

I Lemma 8. Assume a batch of mi < n7/10 packets that execute over a window of size wi,
where wi ≥ n +

√
n for all i. Then, with probability at least 1 − O(1/n), any monotonic

backoff algorithm requires at most 6 additional windows for all remaining packets to succeed.

Proof. If mi ≥ n0.4, then Case 2 of Corollary 6 implies mi+1 = O(n0.4); else, we do not need
to invoke this case. By Lemma 7, the probability that any packets remain by the end of
window i+ 1 is O(n0.8/n) = O(1/n0.2); refer to this as the probability of failure. Subsequent
windows increase in size monotonically, while the number of remaining packets decreases
monotonically. Therefore, the probability of failure is O(1/n0.2) in any subsequent window,
and the probability of failing over all of the next 5 windows is less than O(1/n). It follows
that at most 6 windows are needed for all packets to succeed. J

4 Inductive Arguments

We present two inductive arguments for establishing upper bounds on mi. Later in Section 5,
these results are leveraged in our makespan analysis, and extracting them here allows us to
modularize our presentation. Lemma 9 applies to FB, BEB, and LLB, while Lemma 10
applies to STB. We highlight that a single inductive argument would suffice for all algorithms
– allowing for a simpler presentation – if we only cared about asymptotic makespan. However,
in the case of FB we wish to obtain a tight bound on the first-order term, which is one of
the contributions in [5].

In the following, we specify m0 ≤ n since a (very) few packets may have succeeded prior
to window 0; recall, this is the window where a large number of packets are expected to
succeed.

I Lemma 9. Consider a batch of m0 ≤ n packets that execute over windows wi ≥ m0 +√m0
for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

22i lg(5/4) with error probability at most
(i+ 1)/n2.

Proof. We argue by induction on i ≥ 0.

Q.M. Zhou, A. Calvert, and M. Young 24:11

Base Case. Let i = 0. Using Lemma 5:

m1 ≤ m0 −
(1− ε)m0

em0/(w0−1)

≤ m0

(
1− 1

em0/(w0−1) + ε

)

≤ m0

(
1− 1

e
+ ε

)
≤ (0.64)m0

where the last line follows by setting ε =
√

4e lnn
n1/3 , and assuming n is sufficiently large to

satisfy the inequality; this gives an error probability of at most 1/n2 . The base case is
satisfied since (4/5) m0

22i lg(5/4) = (0.64)m0.

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0
22i−1 lg(5/4) with error probability

at most i/n2.

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0
22i lg(5/4) with an

error bound of (i+ 1)/n2. Addressing the number of packets, we have:

mi+1 ≤
(5/4)m2

i

wi

≤
(

4m0

5 · 22i−1 lg(5/4)

)2(5
4wi

)
≤
(

4m0

5 · 22i lg(5/4)

)(
m0

wi

)
<

(
4m0

5 · 22i lg(5/4)

)
since wi > n

The first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥ m0 +√m0
for all i ≥ 0, and mi ≥ n7/10 by assumption. This yields an error of at most 1/n2, and so
the total error is at most i/n2 + 1/n2 = (i+ 1)/n2 as desired. The second line follows from
the IH. J

A nearly identical lemma is useful for upper-bounding the makespan of STB. The main
difference arises from addressing the decreasing window sizes in a run, and this necessitates
the condition that wi ≥ mi + √mi rather than wi ≥ m0 + √m0 for all i ≥ 0. Later in
Section 5, we start analyzing STB when the window size reaches 4n; this motivates the
condition that wi ≥ 4n/2i our next lemma.

I Lemma 10. Consider a batch of m0 ≤ n packets that execute over windows of size
wi ≥ mi +√mi and wi ≥ 4n/2i for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

2i22i lg(5/4)

with error probability at most (i+ 1)/n2.

Proof. We argue by induction on i ≥ 0.

Base Case. Nearly identical to the base case in proof of Lemma 9; note the bound on mi+1
is identical for i = 0.

FUN 2021

24:12 Singletons for Simpletons

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0
2i−122i−1 lg(5/4) with error prob-

ability at most i/n2.

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0
2i22i lg(5/4) with an

error bound of (i + 1)/n2 (we use the same ε as in Lemma 9). Addressing the number of
packets, we have:

mi+1 ≤ (5/4)m2
i

wi

≤
(

4m0

5 · 2i−122i−1 lg(5/4)

)2(5
4wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)(
m0

2i−2wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)
since wi ≥ 4n/2i

Again, the first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥
m0 +√m0 for all i ≥ 0, and mi ≥ n7/10 by assumption. This gives the desired error bound
of i/n2 + 1/n2 = (i+ 1)/n2. The second line follows from the IH. J

5 Bounding Makespan

We begin by describing the windowed backoff algorithms Fixed Backoff (FB), Binary
Exponential Backoff (BEB), and Log-Log Backoff (LLB) analyzed in [5]. Recall
that, in each window, a packet selects a single slot uniformly at random to send in. Therefore,
we need only specify how the size of successive windows change.

FB is the simplest, with all windows having size Θ(n). The value of hidden constant does
not appear to be explicitly specified in the literature, but we observe that Bender et al. [5]
use 3e3 in their upper-bound analysis. Here, we succeed using a smaller constant; namely,
any value at least 1 + 1/

√
n.

BEB has an initial window size of 1, and each successive window doubles in size.
LLB has an initial window size of 2, and for a current window size of wi, it executes

dlg lg(wi)e windows of that size before doubling; we call these sequence of same-sized windows
a plateau.4

STB is non-monotonic and executes over a doubly-nested loop. The outer loop sets the
current window size w to be double that used in the preceding outer loop and each packet
selects a single slot to send in; this is like BEB. Additionally, for each such w, the inner loop
executes over lgw windows of decreasing size: w,w/2, w/4, ..., 1; this sequence of windows is
referred to as a run. For each window in a run, a packet chooses a slot uniformly at random
in which to send.

5.1 Analysis
The following results employ tools from the prior sections a constant number of times, and
each tool has error probability either O(logn/n2) or O(1

n). Therefore, all following theorems
hold with probability at least 1−O(1/n), and we omit further discussion of error.

4 As stated by Bender et al. [5], an equivalent (in terms of makespan) specification of LLB is that
wi+1 = (1 + 1/ lg lg(wi))wi.

Q.M. Zhou, A. Calvert, and M. Young 24:13

I Theorem 11. The makespan of FB with window size at least n+
√
n is at most n lg lgn+

O(n) and at least n lg lgn−O(n).

Proof. Since wi ≥ n+
√
n for all i ≥ 0, by Lemma 9 less than n7/10 packets remain after

lg lg(n) + 1 windows; to see this, solve for i in (4/5) n

22i lg(5/4) = n0.7. By Lemma 8, all
remaining packets succeed within 6 more windows. The corresponding number of slots is
(lg lgn+ 7)(n+

√
n) = n lg lgn+O(n). J

I Theorem 12. The makespan of BEB is at most 512n lgn+O(n).

Proof. Let W be the first window of size at least n+
√
n (and less than 2(n+

√
n)). Assume

no packets finish before the start of W ; otherwise, this can only improve the makespan.
By Lemma 9 less than n7/10 packets remain after lg lg(n) + 1 windows. By Lemma 8 all
remaining packets succeed within 6 more windows. Since W has size less than 2(n+

√
n),

the number of slots until the end of W , plus those for the lg lg(n) + 7 subsequent windows,
is less than:lg(2(n+

√
n))∑

j=0
2j
+

lg lg(n)+7∑
k=1

2(n+
√
n)2k

= 512(n+

√
n) lgn+O(n)

by the sum of a geometric series. J

I Theorem 13. The makespan of STB is O(n).

Proof. Let W be the first window of size at least 4n. Assume no packets finish before the
start of W , that is m0 = n; else, this can only improve the makespan.

While mi ≥ n0.7, our analysis examines the windows in the run starting with window
W , and so w0 ≥ 4n,w1 ≥ 2n, etc. To invoke Lemma 10, we must ensure that the condition
wi ≥ mi+

√
mi holds in each window of this run. This holds for i = 0, since w0 = 4n ≥ n+

√
n.

For i ≥ 1, we argue this inductively by proving mi ≤ (5/4)2i−1−1 n

32i−1 . For the base case
i = 1, Lemma 5 implies that m1 ≤ n(1− e−n/(4n−1) + ε) ≤ n(1− e−1/3 + ε) ≤ n/3, where
ε is given in Lemma 6. For the inductive step, assume that mi ≤ (5/4)2i−1−1 n

32i−1 for all
i ≥ 2. Then, by Case 1 of Corollary 6:

mi+1 ≤ (5/4)m2
i /n

≤ (5/4)
(

(5/4)2i−1−1 n

32i−1

)2
/n

≤ (5/4)2i−1 n

32i

where the second line follows from the assumption, and so the inductive step holds. On the
other hand, at window i, wi ≥ 4n

2i >
4n

(5/2)·(12/5)2i−1 = 2 · (5/4)2i−1−1 n

32i−1 ≥ 2mi > mi+
√
mi

holds.
Lemma 10 implies that after lg lgn+ O(1) windows in this run, less than n0.7 packets

remain. Pessimistically, assume no other packets finish in the run. The next run starts with
a window of size at least 8n, and by Lemma 8, all remaining packets succeed within the first
6 windows of this run.

We have shown that STB terminates within at most dlg(n)e + O(1) runs. The total
number of slots over all of these runs is O(n) by a geometric series. J

FUN 2021

24:14 Singletons for Simpletons

It is worth noting that STB has asymptotically-optimal makespan since we cannot hope
to finish n packets in o(n) slots.

Bender et al. [5] show that the optimal makespan for any monotonic windowed backoff
algorithm is O(n lg lgn/ lg lg lgn) and that LLB achieves this. We re-derive the makespan
for LLB.

I Theorem 14. The makespan of LLB is O
(
n lg lgn
lg lg lgn

)
.

Proof. For the first part of our analysis, assume n/ ln ln lnn ≤ m0 ≤ n packets remain.
Consider the first window with size w0 = cn/ ln ln lnn for some constant c ≥ 8. By Lemma 5,
each window finishes at least the following number of packets:

(1− ε)m0

e
m0

(cn/ ln ln lnn)−1
>

(1− ε)n
e

n
(cn/ ln ln lnn)−1 · ln ln lnn

= (1− ε)n
(ln lnn) 2

c · ln ln lnn

= (1− ε)n
(ln lnn) ln ln ln lnn

ln ln lnn + 2
c

>
n

(ln lnn) 3
c

where the third line follows from noting that (ln lnn)ln(ln ln lnn) = (ln ln lnn)ln(ln lnn), and
the last line follows for sufficiently-large n. Setting ε =

√
4e ln2(n)

n suffices to give an error
probability at most exp(− 4e ln2(n)

n · n

2 ln ln ln(n)e
n

(cn/ ln ln lnn)−1
) ≤ 1/n2.

Observe that in this first part of the analysis, we rely on wi ≤ mi−
√
mi or wi ≥ mi+

√
mi

in order to apply Lemma 5. However, after enough packets succeed, neither of these
inequalities may hold. But there will be at most a single plateau with windows of size
O(n/ ln ln lnn) where this occurs, since the window size will then double. During this
plateau, which consists of O(lg lg(n/ ln ln lnn)) = O(lg lgn) windows, we pessimistically
assume no packets succeed.

Therefore, starting with n packets, after at most n−n/ ln ln lnn
n/(ln lnn)3/c + O(lg lgn) = O(ln lnn)

windows, the number of remaining packets is less than n/ ln ln lnn, and the first part of our
analysis is over.

Over the next two plateaus, LLB has at least 2 lg lg(n) − O(1) windows of size
Θ(n/ ln ln lnn). Since in this part of the analysis, wi ≥ 8n/ ln ln lnn and mi < n/ ln ln lnn,
we have wi ≥ mi +√mi. Therefore, we may invoke Lemma 9, which implies that after at
most lg lg(n) + 1 windows, less than n0.7 packets remain. If at least n2/5 packets still remain,
by Case 2 of Corollary 1, at most O(n2/5) packets remain by the end of the next window,
and they will finish within an additional 6 windows by Lemma 8.

Finally, tallying up over both parts of the analysis, the makespan is O(ln lnn)O(n
ln ln lnn) =

O(n ln lnn
ln ln lnn). J

6 Discussion

We have argued that standard Chernoff bounds can be applied to analyze singletons, and we
illustrate how they simplify the analysis of several backoff algorithms under batched arrivals.

While our goal was only to demonstrate the benefits of this approach, natural extensions
include the following. First, there is some slack in our arguments, and we can likely derive
tighter constants in our analysis. For example, the number of windows required in Lemma 8
might be reduced; this would reduce the leading constant for our BEB analysis.

Q.M. Zhou, A. Calvert, and M. Young 24:15

Second, we strongly believe that lower bounds can be proved using this approach. In
fact, Max bets Qian (under penalty of eating bitter melon) that a lower bound on FB of
n lg lgn−O(n) can be proved, which is tight in the highest-order term.

Third, a similar treatment is possible for polynomial backoff or generalized exponential
backoff (see [5] for the specification of these algorithms).

Fourth, a plausible next step is to examine whether we can extend this type of analysis
to the case where packets have different sizes, as examined in [6].

References
1 Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.

Medium access control for adversarial channels with jamming. In Proceedings of the 18th Inter-
national Colloquium on Structural Information and Communication Complexity (SIROCCO),
pages 89–100, 2011.

2 Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 67(3):295–314, 2013.

3 Baruch Awerbuch, Andrea Richa, and Christian Scheideler. A jamming-resistant MAC protocol
for single-hop wireless networks. In Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing (PODC), pages 45–54, 2008.

4 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, September 1999.

5 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
325–332, 2005.

6 Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. Contention Resolution with
Heterogeneous Job Sizes. In Proceedings of the 14th Conference on Annual European Symposium
(ESA), pages 112–123, 2006.

7 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. How to scale
exponential backoff: Constant throughput, polylog access attempts, and robustness. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.

8 Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention resolution
with log-logstar channel accesses. In Proceedings of the Forty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 499–508, 2016.

9 Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel. Multiple-
choice balanced allocation in (almost) parallel. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM), pages 411–
422, 2012.

10 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations:
The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.

11 Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
into-bins with nearly optimal load distribution. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 326–335,
2013.

12 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 95–104, 2018.

13 Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Exponential
separations in the energy complexity of leader election. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 771–783, 2017.

FUN 2021

24:16 Singletons for Simpletons

14 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-
channel single-hop radio networks. Theoretical Computer Science, 615(C):23–44, February
2016.

15 Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the
wake-up problem in radio networks. In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 347–359, 2005.

16 Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In
Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages
266–274, 2004.

17 Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-up problem in multihop
radio networks. SIAM Journal on Computing, 36(5):1453–1471, 2007.

18 Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W. Richa,
Ramesh K. Sitaraman, and Eli Upfal. On balls and bins with deletions. In Proceedings of the
Second International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 145–158, 1998.

19 A. Czumaj and V. Stemann. Randomized Allocation Processes. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 194–203, 1997.

20 Gianluca De Marco and Grzegorz Stachowiak. Asynchronous shared channel. In Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pages 391–400,
2017.

21 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 1st edition, 2009.

22 Devdatt Dubhashi and Desh Ranjan. Balls and Bins: A Study in Negative Dependence. Random
Structures & Algorithms, 13(2):99–124, 1998. doi:10.1002/(SICI)1098-2418(199809)13:
2<99::AID-RSA1>3.0.CO;2-M.

23 Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Contention resolution
on a fading channel. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 155–164, 2016.

24 Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. Contention resolution on multiple
channels with collision detection. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 175–184,
2016.

25 Mihály Geréb-Graus and Thanasis Tsantilas. Efficient optical communication in parallel com-
puters. In Proceedings 4th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 41–48, 1992.

26 Leslie Ann Goldberg and Philip D. MacKenzie. Analysis of practical backoff protocols for
contention resolution with multiple servers. Journal of Computer and System Sciences,
58(1):232–258, 1999. doi:10.1006/jcss.1998.1590.

27 Leslie Ann Goldberg, Philip D. Mackenzie, Mike Paterson, and Aravind Srinivasan. Contention
resolution with constant expected delay. Journal of the ACM, 47(6):1048–1096, 2000.

28 Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. Stability of binary
exponential backoff. Journal of the ACM, 35(3):579–602, July 1988.

29 Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. In Proceedings
of the 26th Annual Symposium on Foundations of Computer Science (FOCS), pages 241–249,
1985.

30 Johan Hastad, Tom Leighton, and Brian Rogoff. Analysis of backoff protocols for multiple
access channels. SIAM Journal on Computing, 25(4):1996, 740-774.

31 IEEE. IEEE standard for information technology–telecommunications and information ex-
change between systems local and metropolitan area networks – Specific requirements - Part
11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, 2016.

https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1006/jcss.1998.1590

Q.M. Zhou, A. Calvert, and M. Young 24:17

32 Tomasz Jurdzinski and Grzegorz Stachowiak. The cost of synchronizing multiple-access
channels. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 421–430, 2015.

33 A R Karlin and E Upfal. Parallel Hashing - An Efficient Implementation of Shared Memory.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC),
pages 160–168, 1986.

34 James F. Kurose and Keith Ross. Computer Networking: A Top-Down Approach. Pearson,
6th edition, 2013.

35 Christoph Lenzen and Roger Wattenhofer. Tight Bounds for Parallel Randomized Load
Balancing: Extended Abstract. In Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 11–20, 2011.

36 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm
for conflict resolution in a dynamic multiple-access channel. SIAM Journal on Computing,
44(3):868–888, 2015.

37 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. Theoretical Computer Science, 689:1–13, 2017.

38 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404, July 1976.

39 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

40 Michael David Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
PhD thesis, University of California, Berkeley, 1996.

41 K. Nakano and S. Olariu. Uniform leader election protocols for radio networks. IEEE
Transactions on Parallel and Distributed Systems, 13(5):516–526, May 2002. doi:10.1109/
TPDS.2002.1003864.

42 Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Sade:
competitive MAC under adversarial SINR. Distributed Computing, 31(3):241–254, June 2018.

43 Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays, April
1999.

44 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. A jamming-resistant MAC
protocol for multi-hop wireless networks. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 179–193, 2010.

45 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and fair
medium access despite reactive jamming. In Proceedings of the 31st International Conference
on Distributed Computing Systems (ICDCS), pages 507–516, 2011.

46 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and Fair
Throughput for Co-existing Networks Under Adversarial Interference. In Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing (PODC), pages 291–300, 2012.

47 Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A
survey of techniques and results. Combinatorial Optimization, 9:255–304, 2001.

48 X. Sun and L. Dai. Backoff Design for IEEE 802.11 DCF Networks: Fundamental Tradeoff
and Design Criterion. IEEE/ACM Transactions on Networking, 23(1):300–316, 2015.

49 Eli Upfal. Efficient Schemes for Parallel Communication. J. ACM, 31(3):507–517, June 1984.
50 Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–589,

2003.
51 Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.

SIAM J. Comput., 15(2):468–477, May 1986.
52 D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran. Fast and Robust Compressive Phase

Retrieval with Sparse-Graph Codes. In 2015 IEEE International Symposium on Information
Theory (ISIT), pages 2583–2587, June 2015.

FUN 2021

https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1109/TPDS.2002.1003864

24:18 Singletons for Simpletons

Appendix

A Chernoff Bounds and Property 1

In Problem 1.8 of Dubhashi and Panconesi [21], the following question is posed: Show that if
Property 1 holds, then Theorem 3 holds. We are invoking this result, but an argument is
absent in [21].

We bridge this gap with Claim 15 below. This fits directly into the derivation of Chernoff
bounds given in Dubhashi and Panconesi [21]. In particular, the line above Equation 1.3 on
page 4 of [21] claims equality for Equation 10 below by invoking independence of the random
variables. Here, Claim 15 gives an inequality (in the correct direction) and the remainder of
the derivation in [21] follows without any further modifications.

B Claim 15. Let X1, · · · , Xn be a set of indicator random variables satisfying the property:

Pr

[∧
i∈S

Xi = 1
]
≤
∏
i∈S

Pr [Xi = 1] (9)

for all subsets S ⊂ {1, · · · , n}. Then the following holds:

E

[
n∏
i=1

eλXi

]
≤

n∏
i=1

E
[
eλXi

]
(10)

Proof. Let N denote the set of strictly positive integers. First, we need to point out two
properties of indicator random variables

(i) Xk
i = Xi for all k ∈ N; and

(ii) E [Xi] = Pr [Xi = 1], and E
[∏

i∈SXi

]
= Pr

[∧
i∈S

Xi = 1
]
for all subset S.

By Taylor expansion we have eλXi =
∑∞
k=0 λ

k X
k
i

k! , and then,

E
[
eλXi

]
=
∞∑
k=0

λk
E
[
Xk
i

]
k! (11)

Thus, the product in the left hand side (LHS) of (10) becomes
∏n
i=1 e

λXi =∏n
i=1

(∑∞
k=0

λk

k! X
k
i

)
, which can be written as a polynomial function of λ, i.e.

∑∞
r=0 frλ

r,
where fr are coefficients which may contain the indicator random variables Xis. Here f0 = 1.
To get the expression of fr for r ≥ 1, we first define a set, for all integers k, r ∈ N with k ≤ r,
let I(k, r) = {(d1, d2, · · · , dk) : d1, · · · , dk ∈ N, d1 ≤ d2 ≤ · · · ≤ dk, d1 + d2 + · · ·+ dk = r}.
Then the coefficients fr, r ≥ 1, can be expressed as

fr =
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

Xd1
i1

d1!
Xd2
i2

d2! · · ·
Xdk
ik

dk! . (12)

Q.M. Zhou, A. Calvert, and M. Young 24:19

For example,

f1 =
n∑
i=1

Xi

f2 =
n∑
i=1

X2
i

2! +
∑

1≤i1 6=i2≤n
Xi1Xi2

f3 =
n∑
i=1

X3
i

3! +
∑

1≤i1 6=i2≤n
Xi1

X2
i2

2! +
∑

1≤i1 6=i2 6=n3≤n

Xi1Xi2Xi3

...

With the expression (12), the LHS becomes

LHS = 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E

[
Xd1
i1

d1!
Xd2
i2

d2! · · ·
Xdk
ik

dk!

]

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1
Xd2
i2
· · ·Xdk

ik

]
d1!d2! · · · dk!

Similarly, with the Taylor expansion of (11), the product in the right hand side (RHS) of
(10) becomes

RHS =
n∏
i=1

(∞∑
k=0

λk
E
[
Xk
i

]
k!

)

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1

]
d1!

E
[
Xd2
i2

]
d2! · · ·

E
[
Xdk
ik

]
dk!

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1

]
E
[
Xd2
i2

]
· · ·E

[
Xdk
ik

]
d1!d2! · · · dk!

By the above-mentioned two properties (i) and (ii) of indicator random variables, then

E
[
Xd1

i1 Xd2
i2 · · ·X

dk
ik

]
= E [Xi1 Xi2 · · ·Xik] = P r [Xi1 = 1, Xi2 = 1, · · · , Xik = 1]

E
[
Xd1

i1

]
E
[
Xd2

i2

]
· · ·E

[
X

dk
ik

]
= E [Xi1] E [Xi2] · · ·E [Xik]

= P r [Xi1 = 1] P r [Xi2 = 1] · · ·P r [Xik = 1] .

By the condition (9), we have Pr [Xi1 = 1, Xi2 = 1, · · · , Xik = 1] ≤
Pr [Xi1 = 1]Pr [Xi2 = 1] · · ·Pr [Xik = 1], and thus

E
[
Xd1
i1
Xd2
i2
· · ·Xdk

ik

]
≤ E

[
Xd1
i1

]
E
[
Xd2
i2

]
· · ·E

[
Xdk
ik

]
.

Thus (10) holds. C

FUN 2021

	p000-Frontmatter
	Preface

	p001-Adler
	Introduction
	Gadget Area Hardness Framework
	Tatamibari is NP-hard
	Reduction Overview
	Wire Gadgets and Terminators
	Variable Gadgets
	Clause Gadgets
	Layout, Sheathing, and Filler
	Finale

	Font
	Open Problems
	Example: Spiral Galaxies

	p002-Anagnostopoulos
	Introduction
	Model
	Limitations and Further Assumptions
	Team Behavior on Task Graphs
	Assignment Problems
	Related Work
	Conclusion and Open Problems
	Appendix

	p003-Ani
	Introduction
	Self-Closing Doors
	Terminology
	PSPACE-hardness of Self-Closing Doors

	Planar Doors
	Terminology
	PSPACE-hardness for Planar Self-Closing Doors
	PSPACE-hardness for Planar Doors

	Applications
	Sokobond
	Captain Toad: Treasure Tracker
	Super Mario 64/Super Mario 64 DS
	Super Mario Sunshine
	Super Mario Galaxy
	Super Mario Odyssey

	p003-ZZZ-Ani
	p004-Besa
	Introduction
	Our contributions
	Related Work

	The Algorithm
	Correctness

	Lower Bounds and Approximation Ratios
	Number of Turns
	Number of Crossings

	Extensions
	High-dimensional boards
	Odd boards
	90 Degree Symmetry

	Giraffe's tour
	Conclusions
	Computational Complexity
	Easy Lower Bound for Turns

	p005-Bilo
	Introduction
	New bounds on the makespan of known BGT algorithms
	The analysis for Reduce-Max
	The analysis for Reduce-Fastest(x)

	Trimming oracles
	A Trimming Oracle implementing Reduce-Fastest(x)
	A Trimming Oracle implementing Reduce-Max
	A Trimming Oracle achieving makespan 2

	p006-Bramas
	Introduction
	Contribution
	Roadmap

	Preliminaries
	Configurations
	Views
	Algorithm
	Poleless Exploration
	An Algorithm as a Set of Rules
	Well-defined Algorithms
	Notations

	Impossibility Result
	The Fence Crossing Lemma
	The Impossibility Result

	Algorithms
	Six Robots with Three Colors under Visibility Range One
	Eight Anonymous Oblivious Robots under Visibility Two

	Related Work
	Conclusion

	p006-ZZZ-Bramas
	p007-Brunner
	Introduction
	Basics
	2-color Oriented Subway Shuffle is PSPACE-complete
	1x1 Rush Hour is PSPACE-complete
	Open Problems

	p008-Brunner
	Introduction
	Setup and Results
	2.414...-Competitive Algorithm
	Example Lower Bound Construction
	Tight Lower Bound

	p008-ZZZ-Brunner
	p009-Churchill
	Introduction
	Previous Work
	Our Contribution
	Overview

	Preliminaries
	Previous Magic Turing Machines

	An Overview of the Construction
	The Tape
	The Controller
	The Read/Write Head
	Adding a Second State

	The Full Construction
	Beginning a Computational Step and Casting Spells
	Reading the Current Cell
	Moving Left or Right
	Changing State
	Out of Tape
	Halting

	Discussion
	Consequences for Computational Theories of Games
	Real-world Playability and Legality

	Conclusion
	How to Play Magic: the Gathering
	An Introduction to Magic
	Tokens
	Tapping
	Editing Card Text and Types
	Abilities and the Stack
	Phasing
	Counters
	The Structure of a Turn

	Tables

	p009-ZZZ-Churchill
	p010-Clokie
	Introduction
	Basic properties
	Infinite classes of sturdy numbers
	Algorithms when swm(n) is small
	The case swm(n) = 2
	The case swm(n) = 3

	A dynamic programming algorithm
	An algorithm based on finite automata
	Improving the automaton-based algorithm
	Another breadth-first search approach
	Running time comparison
	Computational results
	Numbers with few 0's
	The k-flimsy numbers via formal language theory
	Constructing the PDA M_k
	Converting the PDA to a CFG
	Cleaning the CFG
	Converting the CFG to a system of equations
	Solving the system
	Asymptotic expansion of the coefficients of the power series

	The k-equal numbers via formal language theory
	Conclusions and open problems

	p010-ZZZ-Clokie
	p011-Crombez
	Introduction
	Preliminaries
	Connection with Classification Trees
	Parallelogram-Free Shapes

	HV-Convex Polyominoes
	Definition and Properties
	Shooting Algorithm with O(log n) Misses

	Digital Convex Sets
	Discrete Blaschke-Lebesgue Inequality
	Algorithm with O(log log n) Misses

	Conclusion and Open Problems

	p011-ZZZ-Crombez
	p012-Dempsey
	Introduction
	Worst-Case Complexity: CONSISTENCY and INFERENCE
	Phase Transition
	Algorithmic Barriers
	Asymptotic Behavior

	p013-Eppstein
	Introduction
	New results and prior work

	Preliminaries
	Hanoi graphs
	Recursive balanced separators, treewidth, and havens

	Three pegs
	More pegs
	Conclusion
	Four pegs

	p013-ZZZ-Eppstein
	p014-Frei
	The Same Old Pouring Problem Again
	Our Problem: Significantly Less Pouring
	Our Contribution
	Upper Bound
	Experimental Evidence
	Lower Bound
	Solving Hard Instances Optimally

	L'Art Pour l'Art

	p014-ZZZ-Frei
	p015-Brocken
	Introduction
	Problem statement and preliminaries
	Nondeterministic constraint logic

	From NCL to 2-DRMP
	Gadgets
	Correctness of the gadgets
	Reduction

	Conclusion

	p016-Idziaszek
	Introduction
	Preliminaries
	Multiplication Algorithms
	Conversions Between Representations
	Alternative Explanation

	p016-ZZZ-Idziaszek
	p017-Koch
	Introduction
	Preliminaries
	Implementing Cuts and Pile Cuts with Choice
	Cutting the Cards

	Permutation Protocols for Arbitrary Groups
	Computational Model with Two Players
	Passive and Active Security
	Implementing Mizuki–Shizuya Protocols
	Active Input Security
	Conclusion

	p017-ZZZ-Koch
	p018-Kopczynski
	Introduction
	Hyperbolic Geometry
	Hyperbolic Graph
	Hyperbolic Local Constraint Satisfaction Problem
	Proof of Theorem 2
	Conclusion

	p018-ZZZ-Kopczynski
	p019-Kuszmaul
	Train Cars with Arbitrary Wheel Arrangements
	A Randomized Algorithm for Building Track

	A Matching Lower Bound
	Three Algorithms for Building Track
	A Deterministic Algorithm
	An Application of the Algorithmic Lovász Local Lemma
	An Application of Min-Hash

	p019-ZZZ-Kuszmaul
	p020-Miyahara
	Introduction
	The Existing ZKP Protocol for Takuzu
	Our improved ZKP Protocols for Takuzu
	Preliminaries
	Possible Sequences
	Basic Shuffles
	Mizuki–Sone AND (OR) Protocol
	Mizuki–Sone XOR protocol
	Six-Card Trick
	Input-Preserving Function Evaluation Technique

	Our Constructions
	Protocol 1: Verifying Each Constraint Separately
	Protocol 2: Verifying All the Constraints Simultaneously

	Comparison
	Security Proofs for Takuzu
	Security Proofs of Protocol 1
	Security Proofs of Protocol 2

	Our ZKP Protocol for Juosan
	Subprotocol: Five-Card Trick
	Our Construction
	Optimized Adjacent Verification for Juosan
	Security Proofs for Juosan

	Conclusion

	p020-ZZZ-Miyahara
	p021-Cordasco
	Introduction
	The hardness in P context
	Our results

	Neighborhood diversity
	Maximum matching
	The algorithm

	Cycles
	Triangle counting and listing
	Girth

	Global minimum vertex cut

	p022-Ruangwises
	Introduction
	Zero-Knowledge Proof
	Related Work
	Our Contribution

	Preliminaries
	Numberlink Board
	Cards
	Matrix
	Double-Scramble Shuffle
	Rearrangement Protocol

	Our Main Protocol
	Well-Designed Puzzles
	General Puzzles

	Proof of Security
	Applications
	Future Work

	p022-ZZZ-Ruangwises
	p023-Barbay
	Introduction
	Preliminaries
	Hangman
	Evil Hangman
	Evaluation of Evil Hangman strategies

	The greedy cheater
	Hardness of Finding an Optimal Evil Adversary
	Generalized Languages
	Discussion

	p024-Zhou
	Introduction
	Our Goal
	Results
	Related Work

	Analysis for Property 1
	Preliminaries
	Property 1 and Bounding Singletons

	Bounding Remaining Packets
	Analysis

	Inductive Arguments
	Bounding Makespan
	Analysis

	Discussion
	Chernoff Bounds and Property 1

	p024-ZZZ-Zhou

