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Preface

This proceedings volume contains papers presented at the 20th Workshop on Algorithms in
Bioinformatics (WABI 2020), which was virtually held in Pisa, Italy, September 7–9, 2020.

The Workshop on Algorithms in Bioinformatics is an annual conference established in
2001 to cover all aspects of algorithmic work in bioinformatics, computational biology, and
systems biology. The conference is intended as a forum for presentation of new insights
about discrete algorithms and machine-learning methods that address important problems in
biology (particularly problems based on molecular data and phenomena); that are founded
on sound models; that are computationally efficient; and that have been implemented and
tested in simulations and on real datasets. The meeting’s focus is on recent research results,
including significant work-in-progress, as well as identifying and exploring directions of future
research.

This 20th edition of WABI took place in the year of the COVID-19 pandemic emergency.
This presented some logistic challenges, but also served to highlight the importance of the
development of advanced computational methodologies for understanding biological problems.
Over the 20 instances of WABI, computational biology has grown significantly in importance,
and now computational analysis methods — some furthered significantly over the years at
WABI — are crucial to quickly understanding the evolution and function of the agent of a
global health crisis.

WABI 2020 was organized within the ALGO federation of conferences that in 2020
included WABI, ESA (European Symposium on Algorithms), ALGOCLOUD (International
Symposium on Algorithmic Aspects of Cloud Computing), ALGOSENSORS (International
Symposium on Algorithms and Experiments for Wireless Sensor Networks), ATMOS (Inter-
national Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems), and WAOA (Workshop on Approximation and Online Algorithms).

Because of the COVID-19 pandemic, the ALGO Organizing Committee decided to run
the affiliated conferences online exclusively. On the other hand, the scientific aspects were
not affected, except for a somewhat lower number of submissions that fortunately maintained
the high quality of WABI standards. The activity of the Programme Committee of WABI
took place as usual: peer review, discussion, selection of accepted papers, and publishing of
the proceedings have been accomplished in the same way as in all WABI editions.

In 2020, a total of 38 manuscripts were submitted to WABI from which 19 were selected
for presentation at the conference and are included in this proceedings volume as full papers.
Extended versions of selected papers have been invited for publication in a thematic series in
the journal Algorithms for Molecular Biology (AMB), published by BioMed Central. The 19
papers selected for the conference underwent a thorough peer review, involving at least three
(and often four or five) independent reviewers per submitted paper, followed by discussions
among the WABI Program Committee members. The selected papers cover a wide range
of topics including phylogenetic trees and networks, biological network analysis, sequence
alignment and assembly, genomic-level evolution, sequence and genome analysis, RNA and
protein structure, topological data analysis, and more. They are ordered randomly within
this volume.

We thank all the authors of submitted papers and the members of the WABI 2020
Program Committee and their subreviewers for their efforts that made this conference
possible. We are also grateful to the WABI Steering Committee for their help and advice.
We thank all the conference participants, session chairs, and speakers who contributed to
20th International Workshop on Algorithms in Bioinformatics (WABI 2020).
Editors: Carl Kingsford and Nadia Pisanti
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0:viii Preface

a great scientific program. In particular, we are indebted to the keynote speaker of the
conference, Dan Gusfield (University of California Davis), for his presentation, and to the
two WABI invited speakers Valentina Boeva (ETH Zurich and Institute Cochin Paris) and
Erik Garrison (University of California Santa Cruz). WABI 2020 is grateful for the support
of the University of Pisa. We thank ALGO 2020 Organizing Committee for setting up the
event in these complicated times due to the pandemic emergency.

Previous proceedings of WABI appeared in LNCS/LNBI volumes 2149 (WABI 2001,
Aarhus), 2452 (WABI 2002, Rome), 2812 (WABI 2003, Budapest), 3240 (WABI 2004, Bergen),
3692 (WABI 2005, Mallorca), 4175 (WABI 2006, Zurich), 4645 (WABI 2007, Philadelphia),
5251 (WABI 2008, Karlsruhe), 5724 (WABI 2009, Philadelphia), 6293 (WABI 2010, Liverpool),
6833 (WABI 2011, Saarbrücken), 7534 (WABI 2012, Ljubljana), 8126 (WABI 2013, Sophia
Antipolis), 8701 (WABI 2014, Wroclaw), 9289 (WABI 2015, Atlanta), and 9838 (WABI 2016,
Aarhus). As of 2016, they appeared in LIPICS volumes 88 (WABI 2017, Boston), 113 (WABI
2018, Helsinki), and 143 (WABI 2019, Boston).

Carl Kingsford & Nadia Pisanti
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Abstract
We define a new problem in comparative genomics, denoted PQ-Tree Search, that takes as
input a PQ-tree T representing the known gene orders of a gene cluster of interest, a gene-to-gene
substitution scoring function h, integer parameters dT and dS , and a new genome S. The objective
is to identify in S approximate new instances of the gene cluster that could vary from the known
gene orders by genome rearrangements that are constrained by T , by gene substitutions that are
governed by h, and by gene deletions and insertions that are bounded from above by dT and dS ,
respectively. We prove that the PQ-Tree Search problem is NP-hard and propose a parameterized
algorithm that solves the optimization variant of PQ-Tree Search in O∗(2γ) time, where γ is the
maximum degree of a node in T and O∗ is used to hide factors polynomial in the input size.

The algorithm is implemented as a search tool, denoted PQFinder, and applied to search for
instances of chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes.
We report on 29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements
are guided by the corresponding PQ-tree. One of these results, coding for a heavy metal efflux
pump, is further analysed to exemplify how PQFinder can be harnessed to reveal interesting new
structural variants of known gene clusters.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases PQ-Tree, Gene Cluster, Efflux Pump

Digital Object Identifier 10.4230/LIPIcs.WABI.2020.1

Related Version An extended version of the paper is archived in https://arxiv.org/abs/2007.
03589 [45].

Supplementary Material The code for the PQFinder tool as well as all the data needed to reconstruct
the results are publicly available on GitHub (https://github.com/GaliaZim/PQFinder).
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1:2 Approximate Search for Known Gene Clusters in New Genomes Using PQ-Trees

1 Introduction

Recent advances in pyrosequencing techniques, combined with global efforts to study infectious
diseases, yield huge and rapidly-growing databases of microbial genomes [38, 42]. These big
new data statistically empower genomic-context based approaches to functional analysis:
the biological principle underlying such analysis is that groups of genes that are located
close to each other across many genomes often code for proteins that interact with one
another, suggesting a common functional association. Thus, if the functional association and
annotation of the clustered genes is already known in one (or more) of the genomes, this
information can be used to infer functional characterization of homologous genes that are
clustered together in another genome.

Groups of genes that are co-locally conserved across many genomes are denoted gene
clusters. The locations of the group of genes comprising a gene cluster in the distinct genomes
are denoted instances. Gene clusters in prokaryotic genomes often correspond to (one or
several) operons; those are neighbouring genes that constitute a single unit of transcription
and translation. However, the order of the genes in the distinct instances of a gene cluster
may not be the same.

The discovery (i.e. data-mining) of conserved gene clusters in a given set of genomes is a
well studied problem [8, 21, 44]. However, with the rapid sequencing of prokaryotic genomes
a new problem is inspired: Namely, given an already known gene cluster that was discovered
and studied in one genomic dataset, to identify all the instances of the gene cluster in a given
new genomic sequence.

One exemplary application for this problem is the search for chromosomal gene clusters in
plasmids. Plasmids are circular genetic elements that are harbored by prokaryotic cells where
they replicate independently from the chromosome. They can be transferred horizontally
and vertically, and are considered a major driving force in prokaryotic evolution, providing
mutation supply and constructing new operons with novel functions [28], for example
antibiotic resistance [20]. This motivates biologists to search for chromosomal gene clusters
in plasmids, and to study structural variations between the instances of the found gene
clusters across the two distinct replicons. However, in addition to the fact that plasmids
evolve independently from chromosomes and in a more rapid pace [14], their sequencing,
assembly and annotation involves a more noisy process [29].

To accommodate all this, the proposed search approach should be an approximate one,
sensitive enough to tolerate some amount of genome rearrangements: transpositions and
inversions, missing and intruding genes, and classification of genes with similar function to
distinct orthology groups due to sequence divergence or convergent evolution. Yet, for the
sake of specificity and search efficiency, we consider confining the allowed variations by two
types of biological knowledge: (1) bounding the allowed rearrangement events considered by
the search, based on some grammatical model trained specifically from the known gene orders
of the gene cluster, and (2) governing the gene-to-gene substitutions considered by the search
by combining sequence homology with functional-annotation based semantic similarity.

(1) Bounding the allowed rearrangement events. The PQ-tree [9] is a combina-
torial data structure classically used to represent gene clusters [6]. A PQ-tree of a gene
cluster describes its hierarchical inner structure and the relations between instances of the
cluster succinctly, aids in filtering meaningful from apparently meaningless clusters, and also
gives a natural and meaningful way of visualizing complex clusters. A PQ-tree is a rooted
tree with three types of nodes: P-nodes, Q-nodes and leaves. The children of a P-node can
appear in any order, while the children of a Q-node must appear in either left-to-right or
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Metabolism

(1)

(2)

(3)

Transport

(4)

(5)

E C D F G H I J K L M

R E D C N G H I J L M

C D E F G H I J K L M

F D C E G H I J K L M

E D C M L K J I H G F

Figure 1 A gene cluster containing most of the genes of the PhnCDEFGHIJKLMNOP operon
[25] and the corresponding PQ-tree. The Phn operon encodes proteins that utilize phosphonate
as a nutritional source of phosphorus in prokaryotes. The genes PhnCDE encode a phosphonate
transporter, the genes PhnGHIJKLM encode proteins responsible for the conversion of phosphonates
to phosphate, and the gene PhnF encodes a regulator. (1)-(3). The three distinct gene orders
found among 47 chromosomal instances of the Phn gene cluster. (4). A PQ-tree representing the
Phn gene cluster, constructed from its three known gene orders shown in 1-3. (5). An example of
a Phn gene cluster instance identified by the PQ-tree shown in (4), and the one-to-one mapping
between the leaves of the PQ-tree and the genes comprising the instance. The instance genes are
rearranged differently from the gene orders shown in 1-3 and yet can be derived from the PQ-tree.
In this mapping, gene F is substituted by gene R, gene N is an intruding gene (i.e., deleted from
the instance string), and gene K is a missing gene (i.e., deleted from the PQ-tree).

right-to-left order. (In the special case when a node has exactly two children, it does not
matter whether it is labeled as a P-node or a Q-node.) Booth and Lueker [9], who introduced
this data structure, were interested in representing a set of permutations over a set U , i.e.
every member of U appears exactly once as a label of a leaf in the PQ-tree. We, on the other
hand, allow each member of U to appear as a label of a leaf in the tree any non-negative
number of times. Therefore, we will henceforth use the term string rather than permutation
when describing the gene orders derived from a given PQ-tree.

An example of a PQ-tree is given in Figure 1. It represents a Phn gene cluster that
encodes proteins that utilize phosphonate as a nutritional source of phosphorus in prokaryotes
[25]. The biological assumptions underlying the representation of gene clusters as PQ-trees
is that operons evolve via progressive merging of sub-operons, where the most basic units in
this recursive operon assembly are colinearly conserved sub-operons [17]. In the case where
an operon is assembled from sub-operons that are colinearly dependent, the conserved gene
order could correspond, e.g., to the order in which the transcripts of these genes interact in
the metabolic pathway in which they are functionally associated [43]. Thus, transposition
events shuffling the order of the genes within this sub-operon could reduce its fitness. On
the other hand, inversion events, in which the genes participating in this sub-operon remain
colinearly ordered are accepted. This case is represented in the PQ-tree by a Q-node (marked
with a rectangle). In the case where an operon is assembled from sub-operons that are not
colinearly co-dependent, convergent evolution could yield various orders of the assembled
components [17]. This case is represented in the PQ-tree by a P-node (marked with a circle).
Learning the internal topology properties of a gene cluster from its corresponding gene orders
and constructing a query PQ-tree accordingly, could empower the search to confine the
allowed rearrangement operations so that colinear dependencies among genes and between
sub-operons are preserved.

(2) Governing the gene-to-gene substitutions. A prerequisite for gene cluster
discovery is to determine how genes relate to each other across all the genomes in the dataset.
In our experiment, genes are represented by their membership in Clusters of Orthologous

WABI 2020
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Groups (COGs) [37], where the sequence similarity of two genes belonging to the same COG
serves as a proxy for homology. Despite low sequence similarity, genes belonging to two
different COGs could have a similar function, which would be reflected in the functional
description of the respective COGs. Using methods from natural language processing [31],
we compute for each pair of functional descriptions a score reflecting their semantic similarity.
Combining sequence and functional similarity could increase the sensitivity of the search and
promote the discovery of systems with related functions.

Our Contribution and Roadmap. In this paper we define a new problem in comparative
genomics, denoted PQ-Tree Search (in Section 2), that takes as input a PQ-tree T
(the query) representing the known gene orders of a gene cluster of interest, a gene-to-gene
substitution scoring function h, integer parameters dT and dS , and a new genome S (the
target). The objective is to identify in S a new approximate instance of the gene cluster that
could vary from the known gene orders by genome rearrangements that are constrained by
T , by gene substitutions that are governed by h, and by gene deletions and insertions that
are bounded from above by dT and dS , respectively. We prove that PQ-Tree Search is
NP-hard (Theorem 9 in Appendix A).

We define an optimization variant of PQ-Tree Search and propose an algorithm (in
Section 3) that solves it in O(nγdT 2dS

2(mp · 2γ +mq)) time, where n is the length of S,
mp and mq denote the number of P-nodes and Q-nodes in T , respectively, and γ denotes
the maximum degree of a node in T . In the same time and space complexities, we can also
report all approximate instances of T in S and not only the optimal one.

The algorithm is implemented as a search tool, denoted PQFinder. The code for the tool
as well as all the data needed to reconstruct the results are publicly available on GitHub
(https://github.com/GaliaZim/PQFinder). The tool is applied to search for instances of
chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes. In
our preliminary results (given in Section 5), we report on 29 chromosomal gene clusters
that are rearranged in plasmids, where the rearrangements are guided by the corresponding
PQ-tree. One of these results, coding for a heavy metal efflux pump, is further analysed to
exemplify how PQFinder can be harnessed to reveal interesting new structural variants of
known gene clusters.

Previous Related Works. Permutations on strings representing gene clusters have been
studied earlier by [5, 15, 22, 32, 39]. PQ-trees were previously applied in physical mapping
[2, 10], as well as to other comparative genomics problems [3, 7, 24].

In Landau et al. [24] an algorithm was proposed for representation and detection of gene
clusters in multiple genomes, using PQ-trees: the proposed algorithm computes a PQ-tree of
k permutations of length n in O(kn) time, and it is proven that the computed PQ-tree is the
one with a minimum number of possible rearrangements of its nodes while still representing
all k permutations. In the same paper, the authors also present a general scheme to handle
gene multiplicity and missing genes in permutations. For every character that appears a
times in each of the k strings, the time complexity for the construction of the PQ-tree,
according to the scheme in that paper, is multiplied by an O((a!)k) factor.

Additional applications of PQ-trees to genomics were studied in [1, 4, 30], where PQ-trees
were considered to represent and reconstruct ancestral genomes.

However, as far as we know, searching for approximate instances of a gene cluster that is
represented as a PQ-tree, in a given new string, is a new computational problem.

https://github.com/GaliaZim/PQFinder


G.R. Zimerman, D. Svetlitsky, M. Zehavi, and M. Ziv-Ukelson 1:5

2 Preliminaries

Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each instance
of Π is associated with a parameter k, and the goal is to confine the combinatorial explosion
in the running time of an algorithm for Π to depend only on k. Formally, Π is fixed-parameter
tractable (FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is an
arbitrary computable function of k. Nowadays, Parameterized Complexity supplies a rich
toolkit to design or refute the existence of FPT algorithms [11, 12, 16].

PQ-Tree: Representing the Pattern. The possible reordering of the children nodes in a
PQ-tree may create many equivalent PQ-trees. Booth and Lueker [9] defined two PQ-trees
T, T ′ as equivalent (denoted T ≡ T ′) if one tree can be obtained by legally reordering the
nodes of the other; namely, randomly permuting the children of a P-node, and reversing
the children of a Q-node. To allow for deletions in the PQ-trees, a generalization of their
definition is given in Definition 1 below. Here, smoothing is a recursive process in which if by
deleting leaves from a tree T , some internal node x of T is left without children, then x is
also deleted, but its deletion is not counted (i.e. only leaf deletions are counted).

I Definition 1 (Quasi-Equivalence Between PQ-Trees). For any two PQ-trees, T and T ′, the
PQ-tree T is quasi-equivalent to T ′ with a limit d, denoted T �d T ′, if T ′ can be obtained
from T by (a) randomly permuting the children of some of the P-nodes of T , (b) reversing
the children of some of the Q-nodes of T , and (c) deleting up to d leaves from T and applying
the corresponding smoothing. (The order of the operations does not matter.)

Figure S2 shows two equivalent PQ-trees (Figure S2a, Figure S2b) that are each quasi-
equivalent with d = 1 to the third PQ-tree (Figure S2c). The frontier of a PQ-tree T ,
denoted F (T ), is the sequence of labels on the leaves of T read from left to right. For
example, the frontier of the PQ-tree in Figure 1 is ECDFGHIJKLM . It is interesting
to consider the set of frontiers of all the equivalent PQ-trees, defined in [9] as a consistent
set and denoted by C(T ) = {F (T ′) : T ≡ T ′}. Intuitively, C(T ) is the set of all leaf label
sequences defined by the PQ-tree structure and obtained by legally reordering its nodes.
Here, we generalize the consistent set definition to allow a bounded number of deletions from
T , using quasi-equivalence.

I Definition 2 (d-Bounded Quasi-Consistent Set). Cd(T ) = {F (T ′) : T �d T ′}.

clearly C0(T ) = C(T ), and so in a setting where d = 0 the latter notation is used. For a
node x of a PQ-tree T , the subtree of T rooted in x is denoted by T (x), the set of leaves in
T (x) is denoted by leaves(x), and the span of x (denoted span(x)) is defined as |leaves(x)|.

PQ-Tree Search and Related Terminology. An instance of the PQ-Tree Search problem
is a tuple (T, S, h, dT , dS), where T is a PQ-tree with m leaves, mp P-nodes, mq Q-nodes
and every leaf x in T has a label label(x)∈ ΣT ; S = σ1 . . . σn ∈ ΣnS is a string of length n
representing the input genome; dT ∈ N specifies the number of allowed deletions from T ;
dS ∈ N specifies the number of allowed deletions from S; and h is a boolean substitution
function, describing the possible substitutions between the leaf labels of T and the characters
of the given string, S. Formally, h is a function that receives a pair (σt, σs), where σt ∈ ΣT
is one of the labels on the leaves of T , and σs ∈ ΣS is one of the characters of the given
string S, and returns True if σt can be replaced with σs, and False, otherwise. Considering
the biological problem at hand, ΣT and ΣS are both sets of genes. For 1 ≤ i ≤ j ≤ n,
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S′ = S[i : j] = σi...σj is a substring of S beginning at index i and ending at index j. The
substring S′ is a prefix of S if S′ = S[1 : j] and it is a suffix of S if S′ = S[i : n]. In addition,
we denote σi, the ith character of S, by S[i].

The objective of PQ-Tree Search is to find a one-to-one mapping M between the
leaves of T and the characters of a substring S′ of S, that comprises a set of pairs each
having one of three forms: the substitution form, (x, σs(`)), where x is a leaf in T , σs ∈ ΣS ,
h(label(x), σs) = True and ` ∈ {1, . . . ,n} is the index of the occurrence of σs in S that is
mapped to the leaf x; the character deletion form, (ε, σs(`)), which marks the deletion of the
character σs ∈ ΣS at index ` of S; the leaf deletion form, (x, ε), which marks the deletion of
x, a leaf node of T .

To account for the number of deletions of characters of S′ and leaves of T in M, the
number of pairs inM of the form (ε, σ) are marked by delS(M) and the number of pairs
in M of the form (x, ε) are marked by delT (M). Applying the substitutions defined in
M to S′ resulting in the string SM is the process in which for every (x, σs(`)) ∈ M, the
character σs at index ` of S is deleted if x = ε, and otherwise substituted by x. This
process is demonstrated in Figure S3b. We say that S′ is derived from T under M with dT
deletions from the tree and dS deletions from the string, if dT = delT (M), dS = delS(M)
and SM ∈ CdT

(T ). Thus, by definition, there is a PQ-tree T ′ such that F (T ′) = SM and
T �dT

T ′. Note that the deletions of the nodes in T to obtain the nodes in T ′ are determined
byM. The conversion of T to T ′ as defined by the derivation is illustrated in Figure S3a.
The set of permutations and node deletions performed to obtain T ′ from T together with
the substitutions and deletions from S′ specified byM is named the derivation µ of T to S′.
We also say thatM yields the derivation µ.

For a derivation µ of T to S′ = S[s : e], we give the following terms and notations
(illustrated in Figure S3). The root of T (denoted rootT

2) is the node that µ derives or
the root of the derivation and it is denoted by µ.v. For abbreviation, we say that µ is a
derivation of µ.v. The substring S′ is the string that µ derives. We name s and e the start and
end points of the derivation and denote them by µ.s and µ.e, respectively. The one-to-one
mapping that yields µ is denoted by µ.o. The number of deletions from the tree is denoted
by µ.delT . The number of deletions from the string is denoted by µ.delS . In addition, if x is
a leaf node in T and (x, σs(`)) ∈ µ.o, then x is mapped to S[`] under µ. The character S[`]
is said to be deleted under µ if (ε, σs(`)) ∈ µ.o. If x ∈ T (µ.v) is a leaf for which (x, ε) ∈ µ.o,
then x is deleted under µ. For an internal node of T , x, if every leaf in T (x) is deleted under
µ, then x is deleted under µ, and otherwise x is kept under µ.

We define two versions of the PQ-Tree Search problem: a decision version (Definition 3)
and an optimisation version (Definition 4).

I Definition 3 (Decision PQ-Tree Search). Given a string S of length n, a PQ-tree T with
m leaves, deletion limits dT , dS ∈ N, and a boolean substitution function h between ΣS and
ΣT , decide if there is a one-to-one mappingM that yields a derivation of T to a substring
S′ of S with up to dT and up to dS deletions from T and S′, respectively.

To define an optimization version of the PQ-Tree Search problem it is necessary to
have a score for every possible substitution between the characters in ΣT and the characters
in ΣS . Hence, for this problem variant assume that h is a substitution scoring function, that
is, h(σt, σs) for σt ∈ ΣT , σs ∈ ΣS is the score for substituting σs by σt in the derivation, and
if σt cannot be substituted by σs, then h(σt, σs) = −∞. In addition, we need a cost function,
denoted by δ, for the deletion of a character of S and for the deletion of a leaf of T according

2 We abuse notation and use the term rootT also to refer to the index of the root in T .
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to the label of the leaf. The score of a derivation µ, denoted by µ.score, is the sum of scores
of all operations (deletions from the tree, deletions from the string and substitutions) in µ.
Now, instead of deciding whether there is a one-to-one mapping that yields a derivation of T
to a substring of S, we can search for the one-to-one mapping that yields the best derivation
(if there exists such a derivation), i.e. a one-to-one mapping for which µ.score is the highest.

I Definition 4 (Optimization PQ-Tree Search). Given a string of length n, S, a PQ-tree with
m leaves, T , deletion limits dT , dS ∈ N, a substitution scoring function between ΣS and ΣT ,
h, and a deletion cost function, δ, return the one-to-one mapping,M, that yields the highest
scoring derivation of T to a substring S′ of S with up to dT deletions from T and up to dS
deletions from S′ (if such a mapping exists).

3 A Parameterized Algorithm

In this section we develop a dynamic programming (DP) algorithm to solve the optimization
variant of PQ-Tree Search (Definition 4). Our algorithm receives as input an instance of
PQ-Tree Search (T, S, h, dT , dS), where h is a substitution scoring function as defined in
Section 2. Our default assumption is that deletions are not penalized, and therefore δ is not
given as input. The case where deletions are penalized, as well as additional technical details,
are omitted due to lack of space, and can be found in [45]. The output of the algorithm is a
one-to-one mapping,M, that yields the best (highest scoring) derivation of T to a substring
of S with up to dT deletions from T and up to dS deletions from the substring, and the
score of that derivation. With a minor modification, the output can be extended to include
a one-to-one mapping for every substring of S and the derivations that they yield.

Brief Overview. On a high level, our algorithm consists of three components: the main
algorithm, and two other algorithms that are used as procedures by the main algorithm.
Apart from an initialization phase, the crux of the main algorithm is a loop that traverses
the given PQ-tree, T . For each internal node x, it calls one of the two other algorithms:
P-mapping (given in Section 3.3) and Q-mapping (deferred to [45], due to space constraints).
These algorithms find and return the best derivations from the subtree of T rooted in x,
T (x), to substrings of S, based on the type of x (P-node or Q-node). Then, the scores of the
derivations are stored in the DP table.

We now give a brief informal description of the main ideas behind our P-mapping and
Q-mapping algorithms. Our P-mapping algorithm is inspired by an algorithm described by
Bevern et al. [40] to solve the Job Interval Selection problem. Our problem differs from
theirs mainly in its control of deletions. Intuitively, in the P-mapping algorithm we consider
the task at hand as a packing problem, where every child of x is a set of intervals, each
corresponding to a different substring. The objective is to pack non-overlapping intervals
such that for every child of x at most one interval is packed. Then, the algorithm greedily
selects a child x′ of x and decides either to pack one of its intervals (and which one) or
to pack none (in which case x′ is deleted). Our Q-mapping algorithm is similar to the
P-mapping algorithm, but simpler. It can be considered as an interval packing algorithm as
well, however, this algorithm packs the children of x in a specific order.

In the following sections, we describe the main algorithm, the P-mapping algorithm, and
afterwards analyse the time complexity.
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3.1 The Main Algorithm

We now delve into more technical details. The algorithm constructs a 4-dimensional DP
table A of size m′ × n× dT + 1× dS + 1, where m′ = m+mp +mq is the number of nodes
in T . The purpose of an entry of the DP table, A[j, i, kT , kS ], is to hold the highest score of
a derivation of the subtree T (xj) to a substring S′ of S starting at index i with kT deletions
from T (xj) and kS deletions from S′. If no such derivation exists, A[j, i, kT , kS ] = −∞.
Addressing A with some of its indices given as dots, e.g. A[j, i, ·, ·], refers to the subtable of
A that is comprised of all entries of A whose first two indices are j and i. Some entries of
the DP table define illegal derivations, namely, derivations for which the number of deletions
are inconsistent with the start index, i, the derived node and S. These entries are called
invalid entries and their value is defined as −∞ throughout the algorithm.

The algorithm first initializes the entries of A that are meant to hold scores of derivations
of the leaves of T to every possible substring of S. Afterwards, all other entries of A are
filled as follows. Go over the internal nodes of T in postorder. For every internal node, x,
go in ascending order over every index, i, that can be a start index for the substring of S
derived from T (x) (the possible values of i are explained in the next paragraph). For every
x and i, use the algorithm for Q-mapping or P-mapping according to the type of x. Both
algorithms receive the same input: a substring S′ of S, the node x, its children x1, . . . , xγ ,
the collection of possible derivations of the children (denoted by D), which have already
been computed and stored in A (as will be explained ahead) and the deletion arguments
dT , dS . Intuitively, the substring S′ is the longest substring of S starting at index i that can
be derived from T (x) given dT and dS . After being called, both algorithms return a set of
derivations of T (x) to a prefix of S′ = S[i : e] and their scores. The set holds the highest
scoring derivation for every E(xj , i, dT , 0) ≤ e ≤ E(xj , i, 0, dS) and for every legal deletion
combination 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS .

We now explain the possible values of i and the definition of S′ more formally. To this
end, note that given the node x and some numbers of deletions kT and kS , the length of the
derived substring is L(x, kT , kS) .= span(x)− kT + kS . Thus, on the one hand, a substring
of maximum length is obtained when there are no deletions from the tree and dS deletions
from the string. Hence, S′ = S[i : E(x, i, 0, dS)] where E(x, i, kT , kS) is the function for the
calculation of the end point of a derivation, defined as E(x, i, kT , kS) .= i− 1 + L(x, kT , kS).
On the other hand, a shortest substring is obtained when there are dT deletions from the tree
and none from the string. Then, the length of the substring is L(x, dT , 0) = span(x)− dT .
Hence, the index i runs between 1 and n− (span(x)− dT ) + 1.

We now turn to address the aforementioned input collection D in more detail. Formally,
it contains the best scoring derivations of every child xj of x to every substring of S′ with up
to dT and dS deletions from the tree and string, respectively. It is produced from the entries
A[j, i′, kT , kS ] (where each entry gives one derivation) for all kT and kS , and all i′ between i
and the end index of S′, i.e. i ≤ i′ ≤ E(xj , i, 0, dS). For the efficiency of the Q-mapping and
P-mapping algorithms, the derivations in D are arranged in descending order with respect to
their end point (µ.e). This does not increase the time complexity of the algorithm, as this
ordering is received by previous calls to the Q-mapping and P-mapping algorithms.

In the final stage of the main algorithm, when the DP table is full, the score of a
best derivation is the maximum of {A[rootT , i, kT , kS ] : kT ≤ dT , kS ≤ dS , 1 ≤ i ≤
n − (span(rootT ) − kT ) + 1}. We remark that by tracing back through A the one-to-one
mapping that yielded this derivation can be found.
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3.2 P-Node and Q-Node Mapping: Terminology
Before describing the P-mapping algorithm, we set up some terminology, which is useful
both for the P-mapping algorithm and the Q-mapping algorithm.

We first define the notion of a partial derivation. In the Q-mapping and P-mapping
algorithms, the derivation of the input node, x, is built by considering subsets U of its children.
With respect to such a subset U , a derivation µ of x is built as if x had only the children in
U , and is called a partial derivation. Formally, µ is a partial derivation of a node x if µ.v = x

and there is a subset of children U ′ ⊆ children(x) such that the two following conditions are
true. First, for every u ∈ U ′ all the leaves in T (u) are neither mapped nor deleted under
µ - that is, there is no mapping pair (`, y) ∈ µ.o such that ` ∈ leaves(u). Second, for every
v ∈ children(x)\U ′ the leaves in T (v) are either mapped or deleted under µ. For every u ∈ U ′,
we say that u is ignored under µ. Notice that any derivation is a partial derivation, where the
set of ignored nodes (U ′ above) is empty. Since all derivations that are computed in a single
call to the P-mapping or Q-mapping algorithms have the same start point i, it can be omitted
(for brevity) from the end point function: thus, we denote EI(x, kT , kS) .= L(x, kT , kS).
Then, for a set U of nodes, we define L(U, kT , kS) .=

∑
x∈U span(x)+kS−kT and accordingly

EI(U, kT , kS) .= L(U, kT , kS).
We now define certain collections of derivations with common properties (such as having

the same numbers of deletions and end point).

I Definition 5. The collection of all the derivations of every node u ∈ U to suffixes of
S′[1 : EI(U, kT , kS)] with exactly kT deletions from the tree and exactly kS deletions from
the string is denoted by D(U, kT , kS).

I Definition 6. The collection of all the best derivations from the nodes in U to suffixes
of S′[1 : EI(U, kT , kS)] with up to kT deletions from the tree and up to kS deletions from
the string is denoted by D≤(U, kT , kS). Specifically, for every node u ∈ U , k′T ≤ kT and
k′S ≤ kS, the set D≤(U, kT , kS) holds only one highest scoring derivation of u to a suffix of
S′[1 : EI(U, kT , kS)] with k′T and k′S deletions from the tree and string, respectively.3

It is important to distinguish between these two definitions. First, the derivations in
D(U, kT , kS) have exactly kT and kS deletions, while the derivations in D≤(U, kT , kS) have
up to kT and kS deletions. Second, in D(U, kT , kS) there can be several derivations that differ
only in their score and in the one-to-one mapping that yields them, while in D≤(U, kT , kS),
there is only one derivation for every node u ∈ U and deletion combination pair (k′T , k′S).
Note that the end points of all of the derivations are equal.

Definition 5 is used for describing the content of an entry of the DP table, where the
focus is on the collection of all the derivations of x to S′ with exactly kT and kS deletions,
D({x}, kT , kS). For simplicity, the abbreviation D(u, kT , kS) = D({u}, kT , kS) is used. In
every step of the P-mapping and Q-mapping algorithms, a different set of derivations of
the children of x is examined, thus, Definition 6 is used for U ⊆ children(x). In addition,
the set of derivations D that is received as input to the algorithms can be described using
Definition 6 as can be seen in Equation (1) below. In this equation, the union is over all
U ⊆ children(x) because in this way the derivations of all the children of x with every possible

3 D≤(U, kT , kS) can be defined using Definition 5: D≤(U, kT , kS) =
⋃
u∈U

⋃
k′

T
≤kT

⋃
k′

S
≤kS

max
µ∈D(U,kT ,kS )

s.t.
µ.delT =k′T
µ.delS =k′S
µ.v=u

µ.score.
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end point are obtained (in contrast to having only U = children(x), which results in the
derivations of all the children of x with the end point EI(children(x), kT , kS)).

D =
⋃

U⊆children(x)

⋃
kT≤dT

⋃
kS≤dS

D≤(U, kT , kS) (1)

In the P-mapping algorithm for C ⊆ children(x), the notation x(C) is used to indicate
that the node x is considered as if its only children are the nodes in C. Consequentially,
the span of x(C) is defined as span(x(C)) .=

∑
c∈C span(c), and the set D(x(C), kT , kS) (in

Definition 5 where U = {x(C)}) now refers to a set of partial derivations.

3.3 P-Node Mapping: The Algorithm

Recall that the input consists of an internal P-node x, a string S′, limits on the number of
deletions from the tree T and the string S′, dT and dS , respectively, and a set of derivations
D (see Equation (1)). The output is

⋃
kT≤dT

⋃
kS≤dS

arg maxµ∈D(x,kT ,kS) µ.score, which is
the collection of the best scoring derivations of x to every possible prefix of S′ having up
to dT and dS deletions from the tree and string, respectively. Thus, there are O(dT dS)
derivations in the output.

The algorithm constructs a 3-dimensional DP table P, which has an entry for every
0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and subset C ⊆ children(x). The purpose of an entry P [C, kT , kS ]
is to hold the best score of a partial derivation in D(x(C), kT , kS), i.e. a partial derivation
rooted in x(C) to a prefix of S′ with exactly kT deletions from the tree and kS deletions
from the string. The children of x that are not in C are ignored (as defined in Section 3.2)
under the partial derivation stored by the DP table entry P [C, kT , kS ], thus they are neither
deleted nor counted in the number of deletions from the tree, kT . (They will be accounted
for in the computation of other entries of P.) Similarly to the main algorithm, some of the
entries of P are invalid, and their value is defined as −∞. Every entry P [C, kT , kS ] for which
L(C, kT , kS) = 0 and kS = 0 or for which C = ∅ and kT = 0 is initialized with 0.

After the initialization, the remaining entries of P are calculated using the recursion rule
in Equation (2) below. The order of computation is ascending with respect to the size of the
subsets C of the children of x, and for a given C ⊆ children(x), the order is ascending with
respect to the number of deletions from both tree and string.

P[C, kT , kS ] = max

P[C, kT , kS − 1]
max

µ∈D≤(C,kT ,kS)
P[C \ {µ.v}, kT − µ.delT , kS − µ.delS ] + µ.score

(2)

Intuitively, every entry P [C, kT , kS ] defines some index e′ of S′ that is the end point of every
partial derivation in D(x(C), kT , kS). Thus, S′[e′] must be a part of any partial derivation
µ ∈ D(x(C), kT , kS), so, either S′[e′] is deleted under µ or it is mapped under µ. The former
option is captured by the first case of the recursion rule. If S′[e′] is mapped under µ, then
due to the hierarchical structure of T (x), it must be mapped under some derivation µ′ of
one of the children of x that are in C. Thus we receive the second case of the recursion rule.
We remark that the case of a node deletion is captured by the initialization.

Once the entire DP table is filled, a derivation of maximum score for every end point
and deletion numbers combination can be found in P[children(x), ·, ·]. Traversing the said
subtable in a specific order guarantees the output derivations are ordered with respect to
their end point without further calculations.
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3.4 Complexity Analysis of the Main Algorithm
In this section we compare the time complexity of the main algorithm (in Section 3.1) to the
naïve solution for PQ-Tree Search. Lemma 8 ahead (proven in Appendix B) gives the
time complexity of the main algorithm, and thus it is proven that PQ-Tree Search has an
FPT solution with the parameter γ (Theorem 7).

I Theorem 7. PQ-Tree Search with parameter γ is FPT. Particularly, it has an FPT
algorithm that runs in O∗(2γ) time4.

I Lemma 8. The algorithm in Section 3.1 runs in O(nγdT 2dS
2(mp2γ + mq)) time and

O(dT dS(mn+ 2γ)) space, where γ is the maximum degree of a node in T .

The naïve solution for PQ-Tree Search solves it in O(2mq (γ!)mpnm(dT + dS)dT dS)
time. Therefore, we conclude that the time complexity of our algorithm is substantially
better, as exemplified by considering two complementary cases. One, when there are only
P-nodes in T (i.e.mp = O(m)), the naïve algorithm is super-exponential in γ, and even worse,
exponential in m, while ours is exponential only in γ, and hence polynomial for any γ that is
constant (or even logarithmic in the input size). Second, when there are only Q-nodes in T
(i.e. mq = O(m)), the naïve algorithm is exponential while ours is polynomial.

4 Methods and Datasets

Dataset and Gene Cluster Generation. 1, 487 fully sequenced prokaryotic strains with
COG ID annotations were downloaded from GenBank (NCBI; ver 10/2012). Among these
strains, 471 genomes included a total of 933 plasmids.

The gene clusters were generated using the tool CSBFinder-S [36]. CSBFinder-S was
applied to all the genomes in the dataset after removing their plasmids, using parameters
q = 1 (a colinear gene cluster is required to appear in at least one genome) and k = 0 (no
insertions are allowed in a colinear gene cluster), resulting in 595,708 colinear gene clusters.
Next, ignoring strand and gene order information, colinear gene clusters that contain the
exact same COGs were united to form the generalized set of gene clusters. The resulting
gene clusters were then filtered to 26,270 gene clusters that appear in more than 30 genomes.

Generation of PQ-Trees. The generation of PQ-trees was performed using a program [19]
that implements the algorithm described in [24] for the construction of a PQ-tree from a list
of strings comprised from the same set of characters. In the case where a character appeared
more than once in a training string, the PQ-tree with a minimum sized consistent set was
chosen. The generated PQ-trees varied in size and complexity. The length of their frontier
ranged between 4 and 31, and the size of their consistent set ranged between 4 and 362, 880.

Implementation and Performance. PQFinder is implemented in Java 1.8. The runs were
performed on an Intel Xeon X5680 machine with 192 GB RAM. The time it took to run
all plasmid genomes against one PQ-tree ranged between 5.85 seconds (for a PQ-tree with
a consistent set of size 4) and 181.5 seconds (for a PQ-tree with a consistent set of size
362, 880). In total it took an hour and 47 minutes to run every one of the 779 PQ-trees
against every one of the 933 plasmids.

4 The notation O* is used to hide factors polynomial in the input size.
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Substitution Scoring Function. The substitution scoring function reflects the distance
between each pair of COGs, that is computed based on sentences describing the functional
annotation of the COGs (e.g., “ABC-type sugar transport system, ATPase component”).
The “Bag of Words model” was employed, where the functional description of each COG
is represented by a sparse vector that is normalized to have a unit Euclidean norm. First,
each COG description was tokenized and the occurrences of tokens in each description was
counted and normalized using tf–idf term weighting. Then, the cosine similarity between
each two vectors was computed, resulting in similarity scores ranging between 0 and 1. The
sentences describing COGs are short, therefore each word largely influences the score, even
after the tf–idf term weighting. Therefore, words that do not describe protein functions that
were found in the top 30 most common words in the description of all COGs were used as
stop-words. Two COGs with the same COG IDs were set to have a score of 1.1, and the
substitution score between a gene with no COG annotation to any other COG was set to be
-0.1. Two COGs with a zero score were penalized to have a score of -0.2 and the deletion of a
COG from the query or the target string was set to have a score of zero.

Enrichment Analysis. For each of the four variants in Figure 2.C, a hypergeometric test
was performed to measure the enrichment of the corresponding variant in one of the classes
in which it appears. A total of 10 p-values were computed and adjusted using the Bonferroni
correction; two p-values were found significant (<0.05), reported in Section 5.

Specificity Score. We define a specificity score for a PQ-tree T of a gene cluster named
S-score. Let T̃ be the least specific PQ-tree that could have been generated for the genes
of the gene cluster based on which T was constructed. Namely, a PQ-tree that allows all
permutations of said genes, has height 1 and is rooted in a P-node whose children (being the
leaves of the tree) are the leaves of T . Thus, the S-score of T is |C(T̃ )|

|C(T )| . For a gene cluster of
permutations (i.e. there are no duplications), the computation of |C(T )| is as described in
Equation (3), where the set of P-nodes in T is denoted by T.p.

|C(T )| = 2mq ·
∏
x∈T.p

|children(x)|! (3)

For a gene cluster that has duplications, the set C(T ) is generated to learn its size. Let
a(`, T ) denote the number of appearances of the label ` in the leaves of T and let labels(T )
denote the set of all labels of the leaves of T . So, the formula for |C(T̃ )| is as in Equation (4).
Clearly, for T with no duplications |C(T̃ )| = |F (T )|!.

|C(T̃ )| = |F (T )|!∏
`∈labels(T ) a(`, T )! (4)

5 Results

5.1 Chromosomal Gene Orders Rearranged in Plasmids
The labeling of each internal node of a PQ-tree as P or Q, is learned during the construction
of the tree, based on some interrogation of the gene orders from which the PQ-tree is trained
[24]. As a result, the set of strings that can be derived from a PQ-tree T , consists of two
parts: (1) all the strings representing the known gene orders from which T was constructed,
and (2) additional strings, denoted tree-guided rearrangements, that do not appear in the
set of gene orders constructing T , but can be obtained via rearrangement operations that
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are constrained by T . Thus, the tree-guided rearrangements conserve the internal topology
properties of the gene cluster, as learned from the corresponding gene orders during the
construction of T , such that colinear dependencies among genes and between sub-operons
are preserved in the inferred gene orders.

In this section, we used the PQ-trees constructed from chromosomal gene clusters, to
examine whether tree-guided rearrangements can be found in plasmids. The objective was to
discover gene orders in plasmids that abide by a PQ-tree representing a chromosomal gene
cluster, and differ from all the gene orders participating in the PQ-tree’s construction. PQ-
trees that are constructed from gene clusters that have only one gene order or gene clusters
with less than four COGs cannot generate gene orders that differ from the ones participating
in their construction. Therefore, only 779 out of 26,270 chromosomal gene clusters were used
for the construction of query PQ-trees (the generation of the chromosomal gene clusters is
detailed in Section 4). Using our tool PQFinder that implements the algorithm proposed for
solving the PQ-Tree Search problem, the query PQ-trees were run against all plasmid
genomes. This benchmark was run conservatively without allowing substitutions or deletions
from the PQ-tree or from the target string. 380 of the query gene clusters were found in
at least one plasmid. The instances of these gene clusters in plasmids are provided in the
Supplementary Materials as a session file that can be viewed using the tool CSBFinder-S
[36].

Tree-guided rearrangements were found among instances of 29 gene clusters. The PQ-trees
corresponding to these gene clusters were sorted by a decreasing S-score, where higher scores
are given to a more specific tree (details in Section 4). In this setting, the higher the S-score,
the smaller the number of possible gene orders that can be derived from the respective
PQ-tree. Interestingly, 21 out of these 29 gene clusters code for transporters, namely 20
importers (ABC-type transport systems) and one exporter (efflux pump). The 10 top ranking
results are presented in Table 1.

We selected the third top-ranking PQ-tree in Table 1 for further analysis. This PQ-tree
was constructed from seven gene orders of a gene cluster that encodes a heavy metal efflux
pump. This gene cluster was found in the chromosomes of 79 genomes (represented by the
seven distinct gene orders mentioned above) and in the plasmids of seven genomes. The
tree-guided rearrangement instance was found in the strain Cupriavidus metallidurans CH34,
isolated from an environment polluted with high concentrations of several heavy metals.
This strain contains two large plasmids that confer resistance to a large number of heavy
metals such as zinc, cadmium, copper, cobalt, lead, mercury, nickel and chromium. We
hypothesize that the rearrangement event could have been caused by a heavy metal stress
[41]. In the following section we will focus on this PQ-tree to further study its different
variants in plasmids.

5.2 RND Efflux Pumps in Plasmids
The heavy metal efflux pump examined in the previous section (corresponding to the third
top-ranking PQ-tree in Table 1), was used as a PQFinder query and re-run against all the
plasmids in our dataset in order to discover approximate instances of this gene cluster, possibly
encoding remotely related variations of the efflux pump it encodes. This time, in order to
increase sensitivity, a semantic substitution scoring function (described in Section 4) was
used, and the parameters were set to dT = 1 (up to one deletion from the tree, representing
missing genes) and dS = 3 (up to three deletions from the plasmid, representing intruding
genes). An instance of a gene cluster is accepted if it was derived from the corresponding
PQ-tree with a score that is higher than 0.75 of the highest possible score attainable by the
query. The plasmid instances detected by PQFinder are displayed in Figure S4.
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Table 1 Ten top ranked PQ-trees for which tree-guided rearrangements were found in plasmids.
1Square brackets represent a Q-node; round brackets represent a P-node. Numbers indicate the
respective COG IDs. 2This column indicates the number of genomes harboring plasmid instances
of the respective PQ-tree. The number in brackets indicates the number of genomes harboring a
tree-guided gene rearrangement of the corresponding gene cluster. The full table can be found in
[45].

PQ-Tree1 S-score # Genomes2 Functional Category
1 [[0683 [[0411 0410] [0559 4177]]] 0583] 22.5 5 (2) Amino acid transport
2 (1609 [1653 1175 0395] 3839) 10.0 10 (2) Carbohydrate transport
3 [[1538 [3696 0845]] [0642 0745]] 7.5 7 (1) Heavy metal efflux
4 [[2115 1070] [4213 [1129 4214]]] 7.5 1 (1) Carbohydrate transport
5 [1960 [[2011 1135] [2141 1464]]] 7.5 3 (1) Amino acid transport
6 [[0596 0599] [[3485 3485] 0015]] 7.5 9 (1) Metabolism
7 [[[1129 1172 1172] 1879] 3254] 7.5 6 (1) Carbohydrate transport
8 (1609 1869 [[1129 1172] 1879] 0524) 7.5 1 (1) Carbohydrate transport
9 (0683 [0559 4177] [0411 0410] 0318) 7.5 1 (1) Amino acid transport
10 (3839 0673 [[0395 1175] 1653]) 5.0 10 (1) Carbohydrate transport

Heavy metal efflux pumps are involved in the resistance of bacteria to a wide range
of toxic metal ions [27] and they belong to the resistance-nodulation-cell division (RND)
family. In Gram-negative bacteria, RND pumps exist in a tripartite form, comprised from
an outer-membrane protein (OMP), an inner membrane protein (IMP), and a periplasmic
membrane fusion protein (MFP) that connects the other two proteins. In some cases, the
genes of the RND pump are flanked with two regulatory genes that encode the factors of a
two-component regulatory system comprising a sensor/histidine kinase (HK) and response
regulator (RR) (Figure 2.B). This regulatory system responds to the presence of a substrate,
and consequently enhances the expression of the efflux pump genes.

The PQ-tree of this gene cluster (Figure 2.A) shows that the COGs encoding the IMP
and MFP proteins always appear as an adjacent pair, the OMP COG is always adjacent to
this IMP-MFP pair, and the HK and RR COGs appear as a pair downstream or upstream
to the other COGs. COG3696, which encodes the IMP protein, is annotated as a heavy
metal efflux pump protein, while the other COGs are common to all RND efflux pumps.
Therefore, it is very likely that the respective gene cluster corresponds to a heavy metal
RND pump. The absence of an additional periplasmic protein likely indicates that this gene
cluster encodes a Czc-like efflux pump that exports divalent metals such as the cobalt, zinc
and cadmium exporter in Cupriavidus metallidurans [27] (Figure 2.C(1)).

PQFinder discovered instances of this gene cluster in the plasmids of 12 genomes (Figures
2.C(1) and 2.D), and it is significantly enriched in the β-proteobacteria class (hypergeometric
p-value= 1.09× 10−5, Bonferroni corrected p-value = 1.09× 10−4). In addition, three other
variants of RND pumps were found as instances of the query gene cluster (Figure 2.C(2-4)).
The plasmids of three genomes contained instances that were missing the COG corresponding
to the OMP gene CzcC (Figure 2.C(2)). This could be caused by a low quality sequencing
or assembly of these plasmids. An alternative possible explanation is that a Czc-like efflux
pump can still be functional without CzcC; a previous study showed that the deletion of
CzcC resulted in the loss of cadmium and cobalt resistance, but most of the zinc resistance
was retained [27].
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Figure 2 A. A PQ-tree of a heavy metal RND efflux pump, corresponding to the third top scoring
result in Table 1. B. An illustration of an RND efflux pump consisting of an outer-membrane protein
(OMP), an inner membrane protein (IMP), and a periplasmic membrane fusion protein (MFP) that
connects the other two proteins. In addition, a two-component regulatory system consisting of a
sensor/histidine kinase (HK) and response regulator (RR) enhances the transcription of the efflux
pump genes. C. Representatives of the three different RND efflux pumps found in plasmids. (1) A
Czc-like heavy metal efflux pump, (2) A Czc-like heavy metal efflux pump with a missing OMP
gene, (3) A Cus-like heavy metal efflux pump, (4) An Acr-like multidrug efflux pump. Additional
details can be found in the text. D. The presence-absence map of the three types of efflux pumps
found in the plasmids of different genomes. The rows correspond to the rows in (C), the columns
correspond to the genomes in which instances were found, organized according to their taxonomic
classes. A black cell indicates that the corresponding efflux pump is present in the plasmids of the
genome. The labels below the map indicate the classes α, β, γ, δ-Proteobacteria and Acidobacteriia.

Some instances identified by the query, found in the plasmids of six genomes, seem to
encode a different heavy metal efflux pump (Figure 2.C(3)). This variant includes all COGs
from the query, in addition to an intruding COG that encodes a periplasmic protein (CusF).
This protein is a predicted copper usher that facilitates access of periplasmic copper towards
the heavy metal efflux pump. Indeed, the genomic region of Cus-like efflux pumps that export
monovalent metals, such as the silver and copper exporter in Escherichia coli, include this
periplasmic protein, in contrast to the Czc-like efflux pump [27]. This variant was found in the
plasmids of six bacterial genomes belonging to the class γ-proteobacteria (Figure 2.D). This
gene cluster is significantly enriched in the γ-proteobacteria class (hypergeometric p-value=
2.13× 10−4, Bonferroni corrected p-value = 2.13× 10−3). Surprisingly, all of these strains,
except for one, are annotated as human or animal pathogens. Interestingly, previous studies
suggest that the host immune system exploits excess copper to poison invading pathogens
[18], which can explain why these pathogens evolved copper efflux pumps.

Another variant of the pump, appearing in five genomes (Figures 2.C(4) and 2.D), resulted
from a substitution of the query IMP gene (COG3696) by a different IMP gene (COG0841)
belonging to the multidrug efflux pump AcrAB-TolC. The AcrAB-TolC system, mainly
studied in Escherichia coli, transports a diverse array of compounds with little chemical
similarity [13]. AcrAB-TolC is an example of an intrinsic non-specific efflux pump, which is
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widespread in the chromosomes of Gram-negative bacteria, and likely evolved as a general
response to environmental toxins [35]. In this case, the query gene cluster and the identified
variant share all COGs, except for the COGs encoding the IMP genes. The differing COGs
are responsible for substrate recognition, which naturally differs between the two pumps, as
one pump exports heavy metal while the other exports multiple drugs. When considering
the functional annotation of these two COGs, we see that the query metal efflux pump
COG encoding the IMP gene is annotated as “Cu/Ag efflux pump CusA”, while in the
multidrug efflux pump the COG encoding the IMP gene is annotated as “Multidrug efflux
pump subunit AcrB”. Thus, in spite of the difference in substrate specificity, the semantic
similarity measure employed by PQFinder was able to reflect their functional similarity and
allowed the substitution between them, while conferring to the structure of the PQ-tree.

6 Conclusions

In this paper, we defined a new problem in comparative genomics, denoted PQ-Tree
Search. The objective of PQ-Tree Search is to identify approximate new instances
of a gene cluster in a new genome S. In our model, the gene cluster is represented by a
PQ-tree T , and the approximate instances can vary from the known gene orders by genome
rearrangements that are constrained by T , by gene substitutions that are governed by a
gene-to-gene substitution scoring function h, and by gene deletions and insertions that are
bounded from above by integer parameters dT and dS , respectively.

We proved that the PQ-Tree Search problem is NP-hard and proposed a parameterized
algorithm that solves it in O∗(2γ) time, where γ is the maximum degree of a node in T and
O∗ is used to hide factors polynomial in the input size.

The proposed algorithm was implemented as a publicly available tool and harnessed to
search for tree-guided rearrangements of chromosomal gene clusters in plasmids. We identified
29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements are
guided by the corresponding PQ-tree. A tree-guided rearrangement event of one of these gene
clusters, coding for a heavy metal efflux pump, was detected in a bacterial strain that was
isolated from an environment polluted with several heavy metals. Thus, a future extension
of this study could explore whether similar gene cluster rearrangement events are correlated
with environmental stress or other bacterial adaptations.

The said gene cluster was further analysed to characterize its approximate instances in
plasmids. An interesting variant of the analysed gene cluster, found among its approximate
instances, corresponds to a copper efflux pump. It was found mainly in pathogenic bacteria,
and likely constitutes a bacterial defense mechanism against the host immune response.
These results exemplify how our proposed tool PQFinder can be harnessed to find meaningful
variations of known biological systems that are conserved as gene clusters, and to explore
their function and evolution.

One of the downsides to using PQ-trees to represent gene clusters is that very rare gene
orders taken into account in the tree construction could greatly increase the number of
allowed rearrangements and thus substantially lower the specificity of the PQ-tree. Thus,
a natural continuation of our research would be to increase the specificity of the model by
considering a stochastic variation of PQ-Tree Search. Namely, defining a PQ-tree in which
the internal nodes hold the probability of each rearrangement, and adjusting the algorithm
for PQ-Tree Search accordingly. In addition, future extensions of this work could also aim
to increase the sensitivity of the model by taking into account gene duplications, gene-merge
and gene-split events, which are typical events in gene cluster evolution.
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A PQ-Tree Search is NP-Hard

In this section we prove Theorem 9 by describing a reduction from the Job Interval
Selection problem (JISP) to PQ-Tree Search.

I Theorem 9. PQ-Tree Search is NP-hard.

Since its initial definition by Nakajima and Hakimi [26], JISP has seen several equivalent
definitions [23, 33, 34, 40]. We use the following formulation for JISPk based on colors.
Given γ k-tuples of intervals on the real line, where the intervals of every k-tuple have a
different color i (1 ≤ i ≤ γ), select exactly one interval of each color (k-tuple) such that no
two intervals intersect. The notation Iij is used to denote the interval that starts at sij , ends
at fij (i.e. the interval [sij , fij ]) and has the color i (i.e. it is a part of the ith k-tuple).

JISP3 was shown to be NP-complete by Keil [23]. Crama et al. [34] showed that JISP3 is
NP-complete even if all intervals are of length 2. We use these results to show that PQ-Tree
Search is NP-hard.

The Reduction. Given an instance, J , of JISP3 where all intervals have length 2, an
instance of PQ-Tree Search is created. It is easy to see that shifting all intervals by some
constant does not change the problem. Hence, assume that the leftmost starting interval
starts at 1. Let L be the rightmost ending point of an interval, so the focus can be only on
the segment [1, L] of the real line. Now, an instance of PQ-Tree Search (T, S, h, dT , dS)
is constructed (an illustrated example is given in Figure S1 below):
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Figure S1 (a) The input of the reduction - a JISP3 instance J with intervals of length 2. (b)
The output of the reduction - a PQ-Tree Search instance (T, S, h, dT , dS).

The PQ-tree T : The root node, rootT , is a P-node with 3L−2−3γ children: x1, . . . ,xγ ,

y1, . . . ,y3L−2−4γ . The children of rootT are defined as follows: for every color 1 ≤ i ≤ γ,
create a Q-node xi with four children xsi , xai , xbi , x

f
i ; for every index 1 ≤ i ≤ 3L− 2− 3γ,

create a leaf yi.
The string S: Define S = σ1σaσbσ2σaσb . . . σaσbσL.
The substitution function h: For every interval of the color i, Iij = [sij , fij ], the
function h returns True for the following pairs: (xsi , σsij ), (xfi , σfij ), (xai , σa) and (xbi , σb).
In addition, every leaf yr can be substituted by every letter of S, namely for every index
1 ≤ r ≤ 3L− 2− 3γ and for every s ∈ {a, b, 1, . . . , L} the function h returns True for the
pair (yr, σs). For every other pair h returns False. For the optimization version of the
problem, define a scored substitution function h′, such that h′(u, v) = 1 if h(u, v) = True

and h′(u, v) = −∞ if h(u, v) = False.
Number of deletions: Define dT = 0 and dS = 0, i.e. deletions are forbidden from
both tree and string.

An example of the reduction is shown in Figure S1. A collection of two 3-tuples (one
blue and one red) where each interval is of length 2, i.e a JISP3 instance, is in Figure S1a.
Running the reduction algorithm yields the PQ-Tree Search instance in Figure S1b. The
pairs that can be substituted (i.e. the pairs for which h returns True) are given by the
lines connecting the leafs of the PQ-tree and the letters of the string S. The nodes and
substitutable pairs created due to the blue and red intervals in the JISP3 instance are
marked in blue and red, respectively. The substitutable pairs containing a y node are marked
in gray. Note that the colors given in Figure S1b are not a part of the PQ-Tree Search
instance, and are given for convenience.
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B Time and Space Complexity of the PQ-Tree Search Algorithm

Here we prove Lemma 8.

Proof. The number of leaves in the PQ-tree T is m, hence there are O(m) nodes in the tree,
i.e the size of the first dimension of the DP table, A, is O(m). In the algorithm description
(Section 3.1) a bound for the possible start indices of substrings derived from nodes in T is
given. The node with the largest span in T is the root which has a span of m. The root is
mapped to the longest substring when there are dS deletions from the string. Hence, the size
of the second dimension of A is Ω(n− (m+ dS) + 1) = Ω(n) (given that d < m << n). The
nodes with the smallest spans are the leaves, which have a span of 1, hence the size of the
second dimension of A is O(n). The third and fourth dimensions of A are of size dT + 1 and
dS + 1, respectively. In total, the DP table A is of size O(dT dSmn).

In the initialization step O(dT dSmn) entries of A are computed in O(1) time each. This
holds because there are m leaves and n possible start indices for strings of length 1. The dT
and dS factors come from the initialization of entries with −∞. The P-mapping algorithm is
called for every P-node in T and every possible start index i, i.e. the P-mapping algorithm is
called O(nmp) times. Similarly, the Q-mapping algorithm is called O(nmq) times. Thus, it
takes O(n (mp ·Time(P-mapping)+mq ·Time(Q-mapping))) time to fill the DP table. In the
final stage of the algorithm the maximum over the entries corresponding to every combination
of deletion number and start index (0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 1 ≤ i ≤ n−(span(x)−dT )+1})
is computed. So, it takes O(dT dSn) time to find the maximum score of a derivation. Tracing
back through the DP table to find the actual mapping does not increase the time complexity.

The P-mapping algorithm takes O(γ2γdT 2dS
2) time and O(dT dS2γ) space, and the

Q-mapping algorithm takes O(γdT 2dS
2) time and O(dT dSγ) space. Thus, in total, our

algorithm runs in O(n(mp · γ2γdT 2dS
2 +mq · γdT 2dS

2)) = O(nγdT 2dS
2(mp · 2γ +mq)) time.

Adding to the space required for the main DP table the space required for the P-mapping
algorithm (the space needed for the Q-mapping algorithm is insignificant with respect to
the P-mapping algorithm) results in a total space complexity of O(dT dSmn) +O(dT dS2γ) =
O(dT dS(mn+ 2γ)). This completes the proof. J

C Figures

A B C D E F G

(a) T1.

D C B A E G F

(b) T2.

A B D F E G

(c) T3.

Figure S2 Three different PQ-trees. By the definition of frontier, F (T1) = ABCDEFG; F (T2) =
DCBAEGF ; F (T3) = ABDFEG. T2 can be obtained from T1 by reversing the children of a Q-node
(the left child of the root) and by reordering the children of a P-node (the right child of the root), so
T2 ≡ T1. T3 can be obtained from T1 by deleting one leaf and permuting the children of the right
child of the root, so T1 �1 T3. Now, T2 �1 T3 can be inferred, because the ≡ is an equivalence
relation.
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x11

x4

x1 x2 x3

x7

x5 x6

x10

x8 x9

T

M : (x5, ε) (x6, ε)

reorder the children of x4

smoothing: delete x7

x11

x4

x3 x1 x2

x10

x8 x9

T ′

(a) The derivation µ applied on T resulting in T ′: reorder the children of x4, delete leaves according to
M (delete x5 and x6) and perform smoothing (delete x7, the parent node of x5 and x6). The root of T ,
x11, is the node that µ derives, denoted µ.v. Also, µ is a derivation of x11. The nodes x5, x6 and x7 are
deleted under µ. The leaves x1, x2, x3, x8, x9 are mapped under µ. The nodes x4, x10, x11 are kept under
µ.

S : σ1 σ2 σ1 σ2 σ3 σ4 σ5 σ6 σ3

S′

M : (x3, σ1(3)) (ε, σ2(4)) (x1, σ3(5)) (x2, σ4(6)) (x8, σ5(7)) (x9, σ6(8))

SM : x3 x1 x2 x8 x9

(b) The derivation µ on S′ resulting in SM: apply substitutions and deletions according to M. The
substring S′ = S[3 : 8] is the string that µ derives. The character S[4] is deleted under µ. The characters
S[3], S[5], S[6], S[7], S[8] are mapped under µ.

Figure S3 An illustration of the derivation µ from the PQ-tree T to the substring S′ under the
one-to-one mapping M (µ.o) with µ.delT = delT (M) = 2 deletions from the tree and µ.delS =
delS(M) = 1 deletions from the string. The start point of the derivation (µ.s) is 3. The end point
of the derivation (µ.e) is 8. Notice that SM = F (T ′) and T �2 T

′ which means that SM ∈ C2(T ).
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Figure S4 This figure is continued in the next page.
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(a)

(b)

Figure S4 (Cont.) (a) The plasmid instances of the heavy metal efflux pump gene cluster
discussed in Section 5.2. The COGs of the query gene cluster are: COG0642, COG0745, COG3639,
COG0845, COG1538. The instances were identified using PQFinder and displayed using the graphical
interface of the tool CSBFinder-S [36]. X indicates a gene with no COG annotation. The image was
edited to display instances of the same genome in separate lines. (b) The functional description of
the COGs shown in (a).
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1 Introduction

Drug resistance is the phenomenon by which an infectious organism (also known as pathogen)
develops resistance to one or more drugs that are commonly used in treatment [36]. In
this paper we focus our attention on Mycobacterium tuberculosis, the etiological agent of
tuberculosis, which is the largest infectious killer in the world today, responsible for over 10
million new cases and 2 million deaths every year [37].

The development of resistance to common drugs used in treatment is a serious public
health threat, not only in low and middle-income countries, but also in high-income countries
where it is particularly problematic in hospital settings [40]. It is estimated that, without the
urgent development of novel antimicrobial drugs, the total mortality due to drug resistance
will exceed 10 million people a year by 2050, a number exceeding the annual mortality due
to cancer today [35].

Existing models for predicting drug resistance from whole-genome sequence (WGS) data
broadly fall into two classes. The first, which we refer to as “catalogue methods,” involves
testing the WGS data of an isolate for the presence of point mutations (typically single-
nucleotide polymorphisms, or SNPs) associated with known drug resistance. If one or
more such mutations is identified, the isolate is declared to be resistant [46, 14, 4, 21, 15].
While these methods tend to be easy to understand and apply, they often suffer from
poor predictive accuracy [43], especially in identifying novel drug resistance mechanisms or
screening resistance to untested or rarely-used drugs.

The second class, which we will refer to as “machine learning methods”, seeks to infer
the drug resistance of an isolate by training complex models directly on WGS and drug
susceptibility test (DST) data [48, 11, 2]. Such methods tend to result in highly accurate
predictions at the cost of flexibility and interpretability - specifically, they typically do not
provide any insights into the drug resistance mechanisms involved and often do not impose
explicit limits on the predictive model’s complexity. Learning approaches based on deep
neural networks are one such example.

In this paper we propose a novel method, based on the group testing problem and
Boolean compressed sensing (CS), for the prediction of drug resistance. Compressed sensing
is a mathematical technique for sparse signal recovery from under-determined systems of
linear equations [16], and has been successfully applied in many application areas including
digital signal processing [13, 12], MRI imaging [26], radar detection [19], and computational
uncertainty quantification [29, 9]. Under a sparsity assumption on the unknown signal vector,
it has been shown that CS techniques enable recovery from far fewer measurements than
required by the Nyquist-Shannon sampling theorem [5]. Boolean CS is a slight modification
of the CS problem, replacing the matrix vector product with a Boolean OR operator [28],
and has been successfully applied to areas such as group testing for infection [3, 1].

Our approach combines some of the flexibility and interpretability of catalogue methods
with the accuracy of machine learning methods – specifically, this method is capable of
recovering interpretable rules for predicting drug resistance that both result in a high
classification accuracy as well as provide insights into the mechanisms of drug resistance.
We show that our methods perform comparably to standard machine learning methods on
Mycobacterium tuberculosis in terms of predicting first-line drug resistance, while accurately
recovering many of the known mechanisms of drug resistance, and identifying some potentially
novel ones.
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2 Methods

Our proposed method is based on the rule-based classification technique introduced in
[28], wherein group testing and Boolean CS are combined to determine subsets of infected
individuals from large populations. In that setting the linear system encodes the infection
status of the population through testing, and the solution, obtained from a suitable decoder,
is a {0, 1}-valued vector representing the infection status of the individuals [6]. Since the
infected group is assumed to be small, the solution vector is sparse and can be recovered
using relatively few measurements with Boolean CS. The result of solving the Boolean CS
problem can then be interpreted as a sparse set of rules for determining infections and used
for classification on unseen data.

We present our methodology as follows. Section 2.1 introduces the group testing problem,
and discusses how group testing can be combined with compressed sensing to deliver an
interpretable predictive model. Section 2.2 introduces modifications to the standard setting
to produce an accurate and flexible classifier, which can be tuned for specific evaluation
metrics and tasks. Section 2.3 describes the tuning process for providing the desired trade-off
between sensitivity and specificity in our model’s predictions. Finally, Section 2.4 describes
an approximation of the AUROC (area under receiver operating characteristic curve), a
standard metric in machine learning, that is valid for evaluating the proposed approach.

2.1 Group testing and Boolean compressed sensing
We frame the problem of predicting drug resistance given sequence data as a group testing
problem, originally introduced in [10]. This approach for detecting defective members of a
set, was motivated by the need to screen large populations for syphilis while drafting citizens
into military service for the United States during the World War II. The screening, performed
by testing blood samples, was costly due to the low numbers of infected individuals. To make
the screening more efficient, Dorfman suggested pooling blood samples into specific groups
and testing the groups instead. A positive result for the group would imply the presence of
at least one infected member. The problem then becomes to find the subset of individuals
whose infected status would explain all of the positive results without invalidating any of the
negative ones. By carefully selecting the groups, the total number of required tests m can be
drastically reduced, i.e. if n is the population size, it is possible to achieve m� n.

Mathematically, a group testing problem with m tests can be described in terms of a
Boolean matrix A ∈ {0, 1}m×n, where Aij indicates the membership status of subject j in
the i-th test group, and a Boolean vector y ∈ {0, 1}m, where yi represents the test result of
the i-th group. If w ∈ {0, 1}n is a Boolean vector, with wj representing the infection status
of the j-th individual, then the result of all m tests will satisfy

y = A ∨ w, (1)

where ∨ is the Boolean inclusive OR operator, so that (1) can also be written

yi =
n∨

j=1
Ai,j ∧ wj ∀ 1 ≤ i ≤ m.

If the vector w satisfying equation (1) is assumed to be sparse (i.e. there are few infected
individuals), the problem of finding w is an instance of the sparse Boolean vector recovery
problem:

min ‖w‖0 subject to y = A ∨ w, (2)

where ‖w‖0 is the number of non-zero entries in the vector w.
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Due to the non-convexity of the `0-norm and the nonlinearity of the Boolean matrix
product, the combinatorial optimization problem (2) is well-known to be NP-hard, see, e.g.,
[16, Section 2.3] or [33]. In [27] a relaxation of (2) via linear programming is proposed, with
the `0-norm replaced by the `1-norm (much like in basis pursuit for standard compressed
sensing), and with the nonlinear Boolean matrix product also replaced with two closely related
linear constraints. We recapitulate their equivalent 0-1 linear programming formulation here:

min
n∑

j=1
wj

s.t. w ∈ {0, 1}n

APw ≥ 1
AZw = 0,

(3)

where P = {i : yi = 1} and Z = {i : yi = 0} are the sets of groups that test positive and
negative, respectively. However, this problem is also NP-hard, but can be made tractable
for linear programming by relaxing the Boolean constraint on w in (3) to 0 ≤ wj ≤ 1 for all
j ∈ {1, . . . , n}.

[28] extended this idea for interpretable rule-based classification, meanwhile proving
recovery guarantees for the relaxed problem. Because the Boolean CS problem is based on
Boolean algebra, the conditions on the Boolean measurement matrices A that guarantee
exact recovery of K-sparse vectors via linear programming are quite different from those
of standard CS. Specifically, these guarantees require the definition of K-disjunct matrices,
i.e., matrices A for which all unions of their columns of size K do not contain any other
columns of the original matrix. Constructions exist for matrices with O(K2 log(n)) rows
which satisfy this property. We also note that by introducing an approximate disjunctness
property, allowing for matrices for which a fraction (1−ε) of all

(
n
K

)
possible K-subsets of the

columns satisfy the disjunctness condition, it was shown in [30] that there exist constructions
of measurement matrices A which allow for recovery from O(K3/2

√
log(n/ε)) rows.

In the standard setting for uniform recovery results for CS, the measurement matrices A
are subgaussian random matrices, i.e., having entries Ai,j drawn independently according
to a subgaussian distribution. Examples include m× n matrices consisting of Rademacher
or Gaussian random variables, for which uniform recovery of K-sparse vectors via `1-
minimization has been shown under the condition m is O(K log(n/K)), see, e.g. [16, Chapter
9] for more details. While subgaussian matrices have been shown to possess the most
desirable recovery guarantees, they are not always applicable for every measurement scheme,
in particular the one considered here.

In this work, we only consider the Boolean constrained problem, i.e. w ∈ {0, 1}n, though
we adopt the slack variables and regularization proposed by [28] to trade off between the
sparsity and the discrepancy with the test results of the relaxed problem. With these
modifications in the Boolean constrained problem (3), our problem becomes:

min
n∑

j=1
wj + λ

m∑
i=1

ξi (4a)

s.t. w ∈ {0, 1}n (4b)
0 ≤ ξi ≤ 1, i ∈ P (4c)
0 ≤ ξi, i ∈ Z (4d)
APw + ξP ≥ 1 (4e)
AZw − ξZ = 0, (4f)

where λ > 0 is a regularization parameter. This Boolean constrained problem formulation
can be solved via integer linear programming (ILP) techniques, see, e.g., [28].
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2.1.1 Generalization to other contexts
The solution to the ILP (4) can be seen as an interpretable rule-based classifier in contexts
beyond standard group testing. Given a rule for forming the matrix A, encoding binary
attributes of a set of objects through multiple measurements or tests, and test data y, the
general problem is to derive a Boolean disjunction that best classifies previously unseen objects
from their features. In such a general setting, a context-specific technique for dichotomizing
features may be needed [41]. However, in the case of drug resistance prediction, our features
are the presence or absence of specific single-nucleotide polymorphisms (SNPs), and therefore
no dichotomization is needed.

From now on, we assume that we have a binary labeled dataset D={(x1, y1),. . . ,(xm, ym)},
where the xi ∈ X := {0, 1}n are n-dimensional binary feature vectors and the yi ∈ {0, 1} are
the binary labels. The feature matrix A is defined via Ai,j = (xi)j (the j-th component of
the i-th feature vector). If ŵ is the solution of ILP (4) for this feature matrix and the label
vector y = (yi)m

i=1, we define the classifier ĉ : X → {0, 1} as follows:

ĉ(x) = x ∨ ŵ. (5)

2.2 Our approach
The formulation of the ILP (4) is designed to provide a trade-off between the sparsity of
a disjunctive rule and the total slack, a quantity that resembles (but does not equal) the
training error. Unmodified, these conditions are not ideal for machine learning tasks: i)
they do not allow for accurate expression of this error, and ii) they lack the ability to assign
different weights to different components of the error. Such a weighting can play a large
role in settings where the data is highly unbalanced, or when the cost of a false positive
differs greatly from that of a false negative. We now describe an approach that provides
more flexibility in the training process and performs better on specific tasks such as ours.

Recall that the regularization parameter λ in equation (4) provides control over the
trade-off between the total slack and the sparsity of the solution. It is straightforward to
generalize this term to provide useful information about the classifier’s false positive and
false negative rates. To obtain this information, we modify the ILP (4) in two ways.

For clarity, in the following section we assume that ĉ is a binary classifier trained on a
sample y with corresponding Boolean feature matrix A. In addition, unless otherwise stated,
we refer to the misclassification of a training sample as a false negative if it has label 1 (is
in P), and as a false positive if it has label 0 (is in Z). For instance, in the case of drug
resistance, a false negative would mean that we incorrectly predict a drug-resistant isolate
as sensitive, while a false positive would mean that we predict a drug-sensitive isolate as
resistant.

First, note that in ILP (4), ξP corresponds to the training error of ĉ on the positively
labeled subset of the data, while ξZ does not correspond to its training error on the negatively
labeled subset. This follows from the fact that A is a binary matrix and w is a binary vector,
so ξP is also a binary vector, with∑

i∈P
ξi = 1T ξP = FN, (6)

the number of false negatives. On the other hand, to obtain the number of false positives
(FP) we need to modify the constraints (4d) and (4f) by setting

ξi ∈ {0, 1}, i ∈ Z (7)
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and replacing AZw − ξZ = 0 with the inequalities:

AZw − ξZ ≥ 0, (8a)
αiξi −Aiw ≥ 0 ∀ i ∈ Z, (8b)

where αi =
∑n

j=1 Ai,j and Ai represent ith row of A. Note that the motivation behind this
replacement is to count the number of non-zero elements of AZw by ξZ . Therefore, we
can observer that eq.(8a) ensure that ξi = 0 if Aiw = 0 and eq.(8b) ensures that ξi = 1
if Aiw > 0. However, eq.(8a) can be eliminated in those settings where the ξZ enter the
objective function to be minimized with a positive coefficient. We will see similar situations
in the following section.

After these modifications, we obtain∑
i∈Z

ξi = 1T ξZ = FP. (9)

To provide the desired flexibility, we further split the regularization term into two terms
corresponding to the positive class P and the negative class Z:

λP
∑
i∈P

ξi + λZ
∑
k∈Z

ξk. (10)

The general form of the new ILP is now as follows:

min
n∑

j=1
wj + λP

∑
i∈P

ξi + λZ
∑
k∈Z

ξk

s.t. w ∈ {0, 1}n

0 ≤ ξi ≤ 1, i ∈ P
ξi ∈ {0, 1}, i ∈ Z
APw + ξP ≥ 1
αiξi −Aiw ≥ 0 ∀ i ∈ Z

(11)

In this new formulation, λP and λZ control the trade-off between the false positives and the
false negatives, and jointly influence the sparsity of the rule. This formulation can be further
tailored to optimize specific evaluation metrics. In the following section we demonstrate this
for sensitivity and specificity, as an example.

2.3 Optimizing sensitivity and specificity
Since the ILP formulation in (11) provides us with direct access to the two components of
the training error, we may modify the classifier to optimize a specific evaluation metric. For
instance, assume that we would like to train the classifier ĉ to maximize the sensitivity at a
given specificity threshold t̄. First, recall that

Specificity = TN
TN+FP = 1− FP

N , (12)

Sensitivity = TP
TP+FN = 1− FN

P . (13)

From equation (10), equation (12) and the definition of Z, we get the constraint

t̄ ≤ 1− 1T ξZ
|Z|

⇐⇒ 1T ξZ ≤ (1− t̄)|Z|. (14)
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Our objective is to maximize sensitivity, which is equivalent to minimizing
∑

i∈P ξi by
equations (13) and (6). Hence, the ILP (11) can be modified as follows:

min
n∑

j=1
wj + λP

∑
i∈P

ξi

s.t. w ∈ {0, 1}n

0 ≤ ξi ≤ 1, i ∈ P
ξi ∈ {0, 1}, i ∈ Z
APw + ξP ≥ 1
αiξi −Aiw ≥ 0 ∀ i ∈ Z
1T ξZ ≤ (1− t̄)|Z|.

(15)

The maximum specificity at given sensitivity can be found analogously.

2.4 Approximating the AUROC

In this section we compute an analog of the AUROC1 of our classifier given a limit on rule
size. Recall that the ROC is a plot demonstrating the performance of a score-producing
classifier at different score thresholds, created by plotting the true positive rate (TPR) against
the false positive rate (FPR). However, since the rule-based classifier produced by ILP (11) is
a discrete classifier, it cannot produce a ROC curve in the usual way. To create a ROC curve
for this classifier, we compute the true positive rate (TPR) for different values of the false
positive rate (FPR). In addition, we set a limit on the rule size (sparsity) of the classifier.

More precisely, we create the ROC curve by incrementally changing the FPR and
computing the optimum value of the TPR. To do so, we put varying upper bounds on the
FPR and proceed analogously to the previous section. For instance, assume that we would
like to get the best TPR value when the FPR is at most t̂, where 0 ≤ t̂ ≤ 1, meaning that

FPR = FP
N ≤ t̂. (16)

From equations (10), (16) and the definition of Z we get

1T ξZ
|Z|

≤ t̂ ⇐⇒ 1T ξZ ≤ t̂|Z|. (17)

Assuming further that the limit on rule size is equal to ŝ, we have the following constraint:

1Tw ≤ ŝ. (18)

1 the Area Under the Receiver Operating Characteristic Curve
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Therefore, the modified version of the ILP (11) suitable for computing an AUROC is:

min
∑
i∈P

ξi

s.t. w ∈ {0, 1}n

0 ≤ ξi ≤ 1, i ∈ P
ξi ∈ {0, 1}, i ∈ Z
APw + ξP ≥ 1
αiξi −Aiw ≥ 0 ∀ i ∈ Z
1Tw ≤ ŝ
1T ξZ ≤ t̂|Z|.

(19)

We utilize the CPLEX optimizer [20] to solve the ILP in (19).

3 Implementation

All the methods in this paper are implemented in the Python programming language. We
use a Scikit-learn [38] implementation for the machine learning models and the CPLEX
optimizer version 12.10.0 [20], together with its Python API, for our method.

3.1 Data
To obtain a dataset to train and evaluate our method on, we combine data from the Pathosys-
tems Resource Integration Center (PATRIC)[47] and the Relational Sequencing TB Data
Platform (ReSeqTB)[45]. This results in 8000 isolates together with their resistant/sus-
ceptible status (label) for seven drugs, including five first-line drugs (rifampicin, isoniazid,
pyrazinamide, ethambutol, and streptomycin) and two second-line drugs (kanamycin and
ofloxacin) [34, 8]. The short-read whole genome sequences of these 8000 isolates are down-
loaded from the European Nucleotide Archive [23] and the Sequence Read Archive [24].
The accession numbers used to obtain the data in our study were: ERP[000192, 006989,
008667, 010209, 013054, 000520], PRJEB[10385, 10950, 14199, 2358, 2794, 5162, 9680],
PRJNA[183624, 235615, 296471], and SRP[018402, 051584, 061066].

In order to map the raw sequence data to the reference genome, we use a method similar
to that used in previous work [7, 8]. We use the BWA software [25], specifically, the bwa-mem
program. We then call the single-nucleotide polymorphisms (SNPs) of each isolate with two
different pipelines, SAMtools [18] and GATK [39], and take the intersection of their calls to
ensure reliability. The final dataset, which includes the position as well as the reference and
alternative allele for each SNP [8], is used as the input to our classifier.

Starting from this input we create a binary feature matrix, where each row represents an
isolate and each column indicates the presence or absence of a particular SNP. For each drug,
we group all the SNPs with identical presence/absence patterns into a single column, since at
most one SNP in a group would ever be selected to be part of a rule. The number of labeled
and resistant isolates and of SNPs and SNP groups for each drug is stated in Table 1.

3.2 Train-Test split
To evaluate our classifier we use a stratified train-test split, where the training set contains
80% and the testing set contains 20% of data.
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Table 1 Summary of number of isolates in our data.

Drug Number of isolates Number of resistant isolates Number of SNPs Number of SNP groups
Ethambutol 6,096 1,407 666,349 55,164
Isoniazid 7,734 3,445 666,349 65,090
Kanamycin 2,436 697 666,349 21,513
Ofloxacin 2,911 800 666,349 23,905
Pyrazinamide 3,858 754 666,349 33,942
Rifampicin 7,715 2,968 666,349 65,379
Streptomycin 5,125 2,104 666,349 45,037

3.3 AUROC comparison
The AUROC of our model was computed for two purposes: first, to investigate the effect of
the classifier’s sparsity (rule size) on its performance, and second, to compare this performance
to that of other machine learning methods. We calculated the AUROC of classifiers with
various limits on rule size, selected from {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200}. For
each rule size, we use the formulation in subsection 2.4, increasing the FPR upper bound
from 0 to 1 in increments of 0.1. We then train a classifier by using the ILP (19), and
compute the effective FPR and TPR. Lastly, we create the ROC curve by plotting the TPRs
against the FPRs, and compute the AUROC.

To compare the performance of our model with other machine learning models, we also
compute the AUROC of the Random Forest (RF) and `1-regularized Logistic Regression
(LR) models. For these models, we first perform hyper-parameter tuning using grid search
with three-fold cross validation, and then select the model with the highest AUROC.

3.4 Sensitivity at a fixed specificity
As another evaluation criteria we compute the sensitivity of our model at a desired specificity
level (i.e. β% specificity). To do so, we use the ILP (15). In this formulation, the λP
parameter can be tuned to provide the desired trade-off between the sparsity of the classifier
(i.e., rule size) and the number of false negatives. However, in order to make a consistent
comparison between the trained models for different drugs, we set a specific limit on rule
size and use ILP (19) with the last constraint replaced by the last constraint of ILP (15), i.e.
with (17) replaced with (14).

4 Results

Evaluating the performance of an interpretable predictive model can be challenging. While
most evaluation methods focus on predictive accuracy, it is essential to assess the model’s
interpretability. Even though there is no consensus on the definition of interpretability, the
“Predictive, Descriptive, Relevant” (PDR) framework introduced by [32] provides general
insights into interpretable models, by emphasizing the balance between these characteristics.
In this section, we use the PDR framework to evaluate our models in the following ways.

First, in Section 4.1, we assess our method’s predictive accuracy by comparing it with RF
and LR. At this step we do not have any specific restriction on the rule size, and we report
the best AUROC that our model can achieve based on the settings in Section 3.3.

Second, in Section 4.2, we compare the AUROC produced by our method for different
limits on rule size. This comparison between the method at different parameter values helps
us evaluate its ability to produce a simple model (i.e. a model with a fairly small rule size)
with a high AUROC. The simpler models are easier to understand for human users. In
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Figure 1 Comparison between the test AUROC of our rule-based model (with no limit imposed
on the rule size), `1-regularized logistic regression and Random Forest.

this paper, we define the descriptiveness of a model by its simplicity (its rule size, i.e., the
number of SNPs needed to define it). In addition, we evaluate our method’s sensitivity by
comparing it with LR and RF. To do so, we compute and compare the sensitivity of these
three models at a specificity near 90%. More specifically, this comparison uses the specificity
level achieved by the rule-based model that is closest to 90% (in practice, this is always
between 88% and 92% for this dataset), since the rule-based model does not achieve every
possible specificity level when given a limit on rule size. For this evaluation, we limit model
complexity by setting a limit of 20 on the rule size.

Finally, in Section 4.3, we assess the relevance of the model produced by our method
by observing the fraction of SNPs used by the model that are located in genes previously
reported to be associated with drug resistance. Note that, unlike the approach in [48], we do
not limit the genes a priori to those with known associations with drug resistance.

4.1 Our models produce competitive AUROCs
Figure 1 illustrates the results of comparing our model to LR and RF. In this figure, we
can see that LR provides a higher AUROC for all 7 drugs, but our model produces slightly
higher AUROCs than RF for 3 of the drugs, identical AUROCs for 2 other drugs and slightly
lower ones for the remaining 2.
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Table 2 Comparison between AUROCs of models produced by our method with different rule
size limits. We observe that even small rule sizes produce models with a high AUROC.

Drug Rule size ≤ 10 Rule size ≤ 20 Rule size ≤ 30 Rule size ≤ 40 Max AUROC
Ethambutol 0.86 0.86 0.85 0.86 0.87
Isoniazid 0.88 0.89 0.90 0.91 0.92
Kanamycin 0.88 0.89 0.89 0.88 0.89
Ofloxacin 0.90 0.87 0.90 0.88 0.90
Pyrazinamide 0.88 0.88 0.88 0.89 0.89
Rifampicin 0.90 0.92 0.92 0.93 0.93
Streptomycin 0.84 0.86 0.85 0.87 0.88

4.2 Our approach is able to produce simple models with high AUROC
Figure 2 demonstrates the change in AUROC as we increase the limit on the rule size. Our
results show that as the limit on the rule size increases, we get higher AUROC on the training
set. However, on the test set, we see that the AUROC increases more slowly after a rule size
limit of 10, and eventually starts to decrease.

As shown in Figure 2 and Table 2, the AUROC does not increase significantly beyond
a rule size limit of 10. Thus, our method is capable of producing models with a rule sizes
small enough to keep the model simple yet keep the AUROC within 1% of the maximum.

Table 3 shows the same trend for the `1-regularized logistic regression. We see that, at
the low rule-size limits (such as 10 and 20), our approach produces a comparable performance
to that of `1-regularized logistic regression, while it is slightly worse for larger rule-size limits.
At the same time, as we show in Figures 4a and 4b below, our approach results in the recovery
of a lot more genes known to be associated with drug resistance than logistic regression.

4.3 Our model uses genes previously associated to drug resistance
Our results show that the models produced by our method contains many SNPs in genes
previously associated with drug resistance in Mycobacterium tuberculosis. Due to the large
size of SNP groups (SNPs in perfect linkage disequilibrium), the causality of specific SNPs
remains difficult to determine. However, many of the genes known to be relevant to resistance
mechanisms appear among the possible variants that are pointed to by the selected groups
of duplicated SNPs.

In Figure 4a we show the number of SNPs within different classes of genes found by our
approach with rule size ≤ 20 and specificity ≥ 90%, where each gene is classified according to
whether it has a known association to drug resistance (“known”) or not (“unknown”), with

Table 3 Comparison between AUROCs of models produced by `1-regularized logistic regression
with different numbers of non-zero regression coefficients.

Drug Non-zero coef. ≤ 10 Non-zero coef. ≤ 20 Non-zero coef. ≤ 30 Non-zero coef. ≤ 40 Max AUROC
Ethambutol 0.87 0.87 0.88 0.89 0.91
Isoniazid 0.90 0.91 0.92 0.93 0.96
Kanamycin 0.90 0.91 0.91 0.92 0.92
Ofloxacin 0.86 0.90 0.94 0.94 0.94
Pyrazinamide 0.81 0.87 0.89 0.89 0.90
Rifampicin 0.92 0.92 0.94 0.94 0.97
Streptomycin 0.88 0.88 0.89 0.90 0.92
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Figure 2 Test AUROC for models trained on each drug with various rule size limits. Beyond a
certain rule size, which varies with the drug, the AUROC of the predictive model no longer improves.
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Figure 3 Comparison between the sensitivity of our rule-based method with the rule size limit
set to 20, `1-Logistic regression and Random Forest at around 90% specificity on the testing data.
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(a) (b)

Figure 4 (a) The number of SNPs in genes with known association to drug resistance, genes
without such an association, and intergenic regions, in our models with at most 20 SNPs and a
specificity of ≥ 90%. (b) The same numbers for `1-Logistic regression models with as close as
possible to 20 non-zero regression coefficients.

an additional class for SNPs in intergenic regions. We show these numbers for `1-Logistic
regression models with as close as possible to 20 non-zero regression coefficients in Figure 4b.
A comparison between these figures suggests that when both approaches are restricted to a
small number of features, our approach detects more relevant SNPs than `1-logistic regression.
The list of “known” genes, selected through a data-driven and consensus-driven process by a
panel of experts, is the one in [31], containing 183 out of over 4,000 M. tuberculosis genes.
We note that in both cases, a group of SNPs in perfect linkage disequilibrium was coded as
“known” if at least one of the SNPs was contained in a known gene, “intergenic” if none of
them appeared in a gene, and as “unknown” otherwise.

4.4 Running time
We run our code on a cluster node with 2 CPU sockets, each with an 8-core 2.60 GHz Intel
Xeon E5-2640 v3 with 32 threads. The training of a single model with fixed hyper-parameters
takes between 1 and 8 minutes. This suggests that once a suitable value is chosen for the
hyper-parameters, the optimization used to determine the optimal rule can be performed
efficiently. Overall, producing the ROC curve for each drug takes between 3 and 18 hours,
depending on the number of labeled isolates available for each drug.

5 Conclusion

In this paper, we introduced a new approach for creating rule-based classifiers. Our method
utilizes the group testing problem and Boolean compressed sensing. It can produce inter-
pretable, highly accurate, flexible classifiers which can be optimized for particular evaluation
metrics.

We used our method to produce classifiers for predicting drug resistance in Mycobacterium
tuberculosis. The classifiers’ predictive accuracy was tested on a variety of antibiotics
commonly used for treating tuberculosis, including five first-line and two second-line drugs.
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We show that our method could produce classifiers with a high AUROC, slightly less than that
of unrestricted `1-Logistic regression, and comparable to Random Forest, as well as `1-Logistic
regression restricted to a comparably small number of selected features for interpretability.
In addition, we show that our method is capable of producing accurate models with a rule
size small enough to keep the model understandable for human users. Finally, we show that
our approach can provide useful insights into its input data - in this case, it could help
identify genes associated with drug resistance.

We note that the presence of SNPs with identical presence/absence patterns, which would
be referred to as being in perfect linkage disequilibrium (LD) in genetics [42], is common
in bacteria such as Mycobacterium tuberculosis whose evolution is primarily clonal [17].
For this reason, while the grouping of such SNPs together substantially greatly simplifies
the computational task at hand, it is challenging to ascertain the exact representative of
each group that should be selected to determine the drug resistance status of an isolate.
Determining this representative would likely require larger sample sizes or a built-in prior
knowledge of the functional effects of individual SNPs.

We also note that the genes we define as having a known association to drug resistance
are not specific to the drug being tested, i.e. some of them may have been found to be
associated with the resistance to a drug other than the one being predicted. This is to be
expected, however, as the distinct resistance mechanisms are generally less numerous than
antibiotics [44]. It will be interesting to see whether methods such as ours are able to detect
specific, for instance, by testing it on data for newly developed antibiotics such as bedaquiline
and delamanid [22].

Our goal in this paper was to introduce a novel method for producing interpretable models
and explore its accuracy, descriptive ability, and relevance in detecting drug resistance in
Mycobacterium tuberculosis isolates. In this study, the focus was mostly on the predictive
accuracy, and we will explore the similarities and differences between our model and other
interpretable techniques (both model-based and post-hoc ones) in future work.
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A classical problem in comparative genomics is to compute the rearrangement distance, that is the
minimum number of large-scale rearrangements required to transform a given genome into another
given genome. While the most traditional approaches in this area are family-based, i.e., require the
classification of DNA fragments of both genomes into families, more recently an alternative model
was proposed, which, instead of family classification, simply uses the pairwise similarities between
DNA fragments of both genomes to compute their rearrangement distance. This model represents
structural rearrangements by the generic double cut and join (DCJ) operation and is then called
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genes are just ignored: maximizing the matching prevents the free lunch artifact of having empty or
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In this paper, besides DCJ operations, we allow content-modifying operations of insertions and
deletions of DNA segments and propose a new and more general family-free genomic distance. In
our model we use the pairwise similarities to assign weights to both matched and unmatched genes,
so that an optimal solution does not necessarily maximize the matching. Our model then results in
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space composed of matchings of any size. We provide an efficient ILP formulation to solve it, by
extending the previous formulations for computing family-based genomic distances from Shao et al.
(J. Comput. Biol., 2015) and Bohnenkämper et al. (Proc. of RECOMB, 2020). Our experiments
show that the ILP can handle not only bacterial genomes, but also fungi and insects, or sets of
chromosomes of mammals and plants. In a comparison study of six fruit fly genomes, we obtained
accurate results.
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1 Introduction

Genomes are subject to mutations or rearrangements in the course of evolution. A classical
problem in comparative genomics is to compute the rearrangement distance, that is the
minimum number of large-scale rearrangements required to transform a given genome
into another given genome [21]. Typical large-scale rearrangements change the number of
chromosomes, and/or the positions and orientations of DNA segments. Examples of such
structural rearrangements are inversions, translocations, fusions and fissions. One might also
need to consider rearrangements that modify the content of a genome, such as insertions and
deletions (collectively called indels) of DNA segments.

In order to study the rearrangement distance, one usually adopts a high-level view
of genomes, in which only “relevant” fragments of the DNA (e.g., genes) are taken into
consideration. Furthermore, a pre-processing of the data is required, so that we can compare
the content of the genomes. One popular method, adopted for more than 20 years, is to
group the fragments in both genomes into families, so that two fragments in the same family
are said to be equivalent. This setting is said to be family-based. Without duplications, that
is, with the additional restriction that each family occurs at most once in each genome, many
polynomial models have been proposed to compute the genomic distance [3, 6, 13, 24, 25].
However, when duplications are allowed the problem is more intricate and all approaches
proposed so far are NP-hard, see for instance [2, 7, 8, 18,22,23].

The required pre-classification of DNA fragments into families is a drawback of the family-
based approaches. Moreover, even with a careful pre-processing, it is not always possible to
classify each fragment unambiguously into a single family. Due to these facts, an alternative
to the family-based setting was proposed and consists in studying the rearrangement distance
without prior family assignment. Instead of families, the pairwise similarities between
fragments is directly used [5, 12]. By letting structural rearrangements be represented by
the generic double cut and join (DCJ) operation [24], a first family-free genomic distance,
called family-free DCJ distance, was already proposed [16]. Its computation helps to match
occurrences of duplicated genes and find homologies, but unmatched genes are simply ignored.

In the family-based setting, the mentioned approaches that handle duplications either
require the compared genomes to be balanced (that is, have the same number of occurrences of
each family) [18,23] or adopt some approach to match genes, ignoring unmatched genes [8,22].
Recently, a new family-based approach was proposed, allowing each family to occur any
number of times in each genome and integrating DCJ operations and indels in a DCJ-indel
distance formula [4]. For its computation, that is NP-hard, an efficient ILP was proposed.

Here we adapt the approach mentioned above and give an ILP formulation to compute
a new family-free DCJ-indel distance. In the family-based approach from [4] as well as in
the family-free DCJ distance proposed in [16], the search space needs to be restricted to
candidates that maximize the number of matched genes, in order to avoid the free lunch
artifact of having empty or almost empty matchings giving the smaller distances [25]. In our
formulation we use the pairwise similarities to assign weights to matched and unmatched
genes, so that, for the first time, an optimal solution does not necessarily maximize the
number of matched genes. For the fact that our model takes into consideration all given
genes and has a search space composed of matchings of any size, we call it natural family-free
genomic distance. Our simulated experiments show that our ILP can handle not only bacterial
genomes, but also complete genomes of fungi and insects, or sets of chromosomes of mammals
and plants. We use our implementation to generate pairwise distances and reconstruct the
phylogeny of six species of fruit flies from the genus Drosophila, obtaining accurate results.
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This paper is organized as follows. In Section 2 we give some basic definitions and
previous results that are essential for the approach presented here. In Section 3 we define
the new natural family-free DCJ-indel distance. In Section 4 we describe the optimization
approach for computing the family-free DCJ-indel distance with the help of the family-free
relational diagram. In Section 5 we present the ILP formulation and the experimental results.
Finally, Section 6 concludes the text.

2 Preliminaries

We call marker an oriented DNA fragment. A chromosome is composed of markers and can
be linear or circular. A marker m in a chromosome can be represented by the symbol m
itself, if it is read in direct orientation, or the symbol m, if it is read in reverse orientation.
We concatenate all markers of a chromosome Z in a string z, which can be read in any of
the two directions. If Z is circular, we can start to read it at any marker and the string z
is flanked by parentheses. A set of chromosomes comprises a genome. As an example, let
A = {61784, 352} be a genome composed of two linear chromosomes. A genome can be
transformed or sorted into another genome with the following types of mutations.

1. DCJ operations modify the organization of a genome: A cut performed on a genome
A separates two adjacent markers of A. A double-cut and join or DCJ applied on a
genome A is the operation that performs cuts in two different positions of A, creating
four open ends, and joins these open ends in a different way [3, 24]. For example, let
A = {61784, 352}, and consider a DCJ that cuts between markers 1 and 7 of its first
chromosome and between markers 5 and 2 of its second chromosome, creating fragments
61•, •784, 35• and •2 (where the symbols • represent the open ends). If we join the
first with the fourth and the third with the second open end, we get A′ = {612, 35784},
that is, the described DCJ operation is a translocation transforming A into A′. Indeed,
a DCJ operation can correspond not only to a translocation but to several structural
rearrangements, such as an inversion, a fusion or a fission.

2. Indel operations modify the content of a genome: We can modify the content of a
genome with insertions and with deletions of blocks of contiguous markers, collectively
called indel operations [6, 25]. As an example, consider the deletion of fragment 78 from
chromosome 61784, resulting in chromosome 614. In the model we consider, we do not
allow that a marker is deleted and reinserted, nor inserted and then deleted. Furthermore,
at most one chromosome can be entirely deleted or inserted at once.

Let A and B be two genomes and let A be the set of markers in genome A and B be the
set of markers in genome B. We consider two distinct settings:

In a family-based setting markers are grouped into families and each marker from a
genome is represented by its family. Therefore, a marker from A can occur more than
once in A, as well as a marker from B can occur more than once in B. Furthermore,
genomes A and B may share a set of common markers G = A ∩ B. We also have
sets A? = A \ G and B? = B \ G of markers that occur respectively only in A and only in
B and are called exclusive markers. For example, consider genomes A = {31432, 352}
and B = {121326}. In this case we have A = {1, 2, 3, 4, 5} and B = {1, 2, 3, 6}.
Consequently, G = {1, 2, 3}, A? = {4, 5} and B? = {6}.
In a family-free setting the markers of A and B are all distinct and unique. In other
words, each marker of A occurs exactly once in A, each marker of B occurs exactly once
in B and A ∩ B = ∅. Consider, for example, genomes A = {1342} and B = {875, 96}.
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2.1 Relational diagram and distance of family-based singular genomes

Let A and B be two genomes in a family-based setting and assume that both A and B are
singular, that is, each marker from G = A ∩ B occurs exactly once in each genome. We will
now describe how the DCJ-indel distance can be computed in this case [6].

For a given marker m, denote its two extremities by mt (tail) and mh (head). Given
two singular genomes A and B, the relational diagram R(A,B) [4] has a set of vertices
V = V (A) ∪ V (B), where V (A) is the set of extremities of markers from A and V (B) is the
set of extremities of markers from B. There are three types of edges in R(A,B):

Adjacency edges: for each pair of marker extremities γ1 and γ2 that are adjacent in a
chromosome of any of the two genomes, we have the adjacency edge γ1γ2. Denote by EAadj
and by EBadj the adjacency edges in A and in B, respectively. Marker extremities located
at chromosome ends are called telomeres and are not connected to any adjacency edge.
Extremity edges, whose set is denoted by Eγ : for each common marker m ∈ G, we have
two extremity edges, one connecting the vertexmh from V (A) to the vertexmh from V (B)
and the other connecting the vertex mt from V (A) to the vertex mt from V (B).
Indel edges: for each occurrence of an exclusive marker m ∈ A? ∪ B?, we have the indel
edge mtmh. Denote by EAid and by EBid the indel edges in A and in B.

Each vertex has degree one or two: it is connected either to an extremity edge or to an
indel edge, and to at most one adjacency edge, therefore R(A,B) is a simple collection of
cycles and paths. A path that has one endpoint in genome A and the other in genome B
is called an AB-path. In the same way, both endpoints of an AA-path are in A and both
endpoints of a BB-path are in B. A cycle contains either zero or an even number of extremity
edges. When a cycle has at least two extremity edges, it is called an AB-cycle. Moreover, a
path (respectively cycle) of R(A,B) composed exclusively of indel and adjacency edges in
one of the two genomes corresponds to a whole linear (respectively circular) chromosome and
is called a linear (respectively circular) singleton in that genome. Actually, linear singletons
are particular cases of AA- or BB-paths. The numbers of telomeres and of AB-paths in
R(A,B) are even. An example of a relational diagram is given in Figure 1.

······ ······ ······ ······ ······ ······

······ ······ ······ ······ ······ ······

r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r

A 6h 6t 1t 1h5t 5h3t 3h4t 4h2t 2h8t 8h9t 9h

B 6h 6t 5t 5h3h 3t 4t 4h7h 7t 2t 2h9t 9h8t 8h

Figure 1 For genomes A = {61534, 289} and B = {653472, 98}, the relational diagram
contains two cycles, two AB-paths (represented in blue), one AA-path and one BB-path (both
represented in red). Short dotted horizontal edges are adjacency edges, long horizontal edges are
indel edges, top-down edges are extremity edges.

DCJ distance of canonical genomes. When singular genomes A and B have no exclusive
markers, that is, A? = B? = ∅, they are said to be canonical. In this case A can be sorted
into B with DCJ operations only and their DCJ distance ddcj can be computed as follows [3]:

ddcj(A,B) = |G| − c− i

2 ,

where c is the number of AB-cycles and i is the number of AB-paths in R(A,B).
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Runs and indel-potential. When singular genomes A and B have exclusive markers, it
is possible to optimally select DCJ operations that group exclusive markers together for
minimizing indels [6], as follows.

Given two genomes A and B and a component C of R(A,B), a run [6] is a maximal
subpath of C, in which the first and the last edges are indel edges, and all indel edges
belong to the same genome. It can be an A-run when its indel edges are in genome A, or
a B-run when its indel edges are in genome B. We denote by Λ(C) the number of runs
in component C. If Λ(C) ≥ 1 the component C is said to be indel-enclosing, otherwise
Λ(C) = 0 and C is said to be indel-free. The indel-potential of a component C, denoted
by λ(C), is the optimal number of indels obtained after “sorting” C separately and can be
directly computed from Λ(C) [6]:

λ(C) =

 0 , if Λ(C) = 0 (C is indel-free);⌈
Λ(C)+1

2

⌉
, if Λ(C) ≥ 1 (C is indel-enclosing).

With the indel-potential, an upper bound for the DCJ-indel distance did
dcj was estab-

lished [6]:

did
dcj(A,B) ≤ |G| − c− i

2 +
∑

C∈R(A,B)

λ(C) (1)

DCJ-indel distance of singular circular genomes. For singular circular genomes, the graph
R(A,B) is composed of cycles only. In this case the upper bound given by Equation (1) is
tight and leads to a simplified formula [6]:

did
dcj(A,B) = |G| − c +

∑
C∈R(A,B)

λ(C) .

DCJ-indel distance of singular linear genomes. For singular linear genomes, the upper
bound given by Equation (1) is achieved when the components of R(A,B) are sorted
separately. However, it can be decreased by recombinations, that are DCJ operations that
act on two distinct paths of R(A,B). Such path recombinations are said to be deducting.
The total number of types of deducting recombinations is relatively small. By exhaustively
exploring the space of recombination types, it is possible to identify groups of chained
recombinations [6], so that the sources of each group are the original paths of the graph.
In other words, a path that is a resultant of a group is never a source of another group.
This results in a greedy approach (detailed in [6]) that optimally finds the value δ ≥ 0 to be
deducted. We then have the following exact formula [6]:

did
dcj(A,B) = |G| − c− i

2 +
∑

C∈R(A,B)

λ(C) − δ .

3 The family-free setting

As already stated, in the family-free setting, each marker in each genome is represented by a
distinct symbol, thus A ∩ B = ∅. Observe that the cardinalities |A| and |B| may be distinct.

3.1 Marker similarity graph for the family-free setting
Given a threshold 0 ≤ x ≤ 1, we can represent the similarities between the markers of genome
A and the markers of genome B in the so called marker similarity graph [5], denoted by

WABI 2020



3:6 Natural Family-Free Genomic Distance

Sx(A,B). This is a weighted bipartite graph whose partitions A and B are the sets of markers
in genomes A and B, respectively. Furthermore, for each pair of markers a ∈ A and b ∈ B,
denote by σ(a, b) their normalized similarity, a value that ranges in the interval [0, 1]. If
σ(a, b) ≥ x there is an edge e connecting a and b in Sx(A,B) whose weight is σ(e) := σ(a, b).
An example is given in Figure 2.
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Figure 2 Graph S0.1(A,B) for the two genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11}.

Mapped genomes. Let A and B be two genomes with marker similarity graph Sx(A,B)
and let M = {e1, e2, . . . , en} be a matching in Sx(A,B). Since the endpoints of each edge
ei = (a, b) in M are not saturated by any other edge of M , we can unambiguously define
the function s(a,M) = s(b,M) = i. We then define the set of M -saturated mapped markers
G(M) = {s(g,M) : g is M -saturated } = {1, 2, . . . , n}.

Let ñA be the number of unsaturated markers in A and ñB be the number of unsaturated
markers in B. We extend the function s, so that it maps each unsaturated marker a′ ∈ A to
one value in {n+ 1, n+ 2, . . . , n+ ñA} and each unsaturated marker b′ ∈ B to one value in
{n+ ñA + 1, n+ ñA + 2, . . . , n+ ñA + ñB}. The sets of M -unsaturated mapped markers are:
A?(M) = {s(a′,M) : a′ ∈ A is M -unsaturated } = {n+ 1, n+ 2, . . . , n+ ñA} and
B?(M) = {s(b′,M) : b′ ∈ B is M -unsaturated } = {n+ñA+1, n+ñA+2, . . . , n+ñA+ñB}.

The mapped genomes AM and BM are then obtained by renaming each marker a ∈ A
to s(a,M) and each marker b ∈ B to s(b,M), preserving all orientations.

Established distances of mapped genomes. Let the relational graph R(AM , BM ) have cM
AB-cycles and iM AB-paths. By simply ignoring the exclusive markers of A?(M) and B?(M),
we can compute the DCJ distance:

ddcj(AM , BM ) = |M | − cM −
iM
2 .

Taking into consideration the weight of the matching M defined as w(M) =
∑
e∈M σ(e),

we can also compute the weighted DCJ distance wddcj(AM , BM ) [16]:

wddcj(AM , BM ) = ddcj(AM , BM ) + |M | − w(M) .

Observe that, when all edges of M have the maximum weight 1, we have w(M) = |M | and
wddcj(AM , BM ) = ddcj(AM , BM ).

Finally, taking into consideration the exclusive markers of A?(M) and B?(M), but not
the weight w(M), we can compute the DCJ-indel distance of mapped genomes AM and BM :

did
dcj(AM , BM ) = |M | − cM −

iM
2 +

∑
C∈R(AM ,BM )

λ(C) − δM ,

where δM is the deduction given by path recombinations in R(AM , BM ).
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3.2 The family-free DCJ-indel distance
Let AM and BM be the mapped genomes for a given matching M of Sx(A,B). The weighted
relational diagram of AM and BM , denoted by WR(AM , BM ), is obtained by constructing
the relational diagram of AM and BM and adding weights to the indel edges as follows. For
each mapped M -unsaturated marker m ∈ A?(M) ∪ B?(M), the indel edge mhmt receives
a weight w(mhmt) = max{σ(uv)|uv ∈ Sx(A,B) and u=s−1(m,M)}, that is the maximum
similarity among the edges incident to the marker u = s−1(m,M) in Sx(A,B). We denote by
M̃ = EAid∪EBid the set of indel edges, here also called the complement of M . The weight of M̃
is w(M̃) =

∑
e∈M̃ w(e). Examples of diagrams of mapped genomes are shown in Figure 3.
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Figure 3 Considering the same genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11} as in Figure 2,
let M1 (red) and M2 (blue) be two distinct maximal matchings in S0.1(A,B). We also represent the
non-maximal matching M3 (cyan) that is a subset of M2. In the middle part we show diagrams
WR(AM1 , BM1 ) and WR(AM2 , BM2 ), both with two AB-paths and two AB-cycles. In the lower part
we show diagrams WR(AM∅ , BM∅), corresponding to the trivial empty matching M∅ and with two
linear singletons (one AA-path and one BB-path), and WR(AM3 , BM3 ), with two AB-paths and two
AB-cycles. The labeling (X:Y) indicates that Y = s(X,Mi).

In the computation of the weighted DCJ-indel distance of mapped genomes AM and BM ,
denoted by wdid

dcj(AM , BM ), we should take into consideration the exclusive markers
of A?(M) and B?(M), and the weights w(M) and w(M̃). An important condition is
that wdid

dcj(AM , BM ) must be equal to did
dcj(AM , BM ) if w(M) = |M | and w(M̃) = 0. We

can achieve this by extending the formula for computing wddcj(AM , BM ) as follows:

wdid
dcj(AM , BM ) = wddcj(AM , BM ) +

∑
C∈WR(AM ,BM )

λ(C) − δM + w(M̃)

= ddcj(AM , BM ) + |M | − w(M) +
∑

C∈WR(AM ,BM )

λ(C) − δM + w(M̃)

= did
dcj(AM , BM ) + |M | − w(M) + w(M̃) .
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Let us now examine the behaviour of the formula above for the examples given in Figure 3.
Matching M1 is maximal and gives the distance wdid

dcj(AM1 , BM1) = 8.6. Matching M2 is
also maximal and gives the distance wdid

dcj(AM2 , BM2) = 5.2. The empty matching M∅ gives
the distance wdid

dcj(AM∅ , BM∅) = 9.7, that is the biggest. And the non-maximal matching
M3 ⊂M2 gives the distance wdid

dcj(AM3 , BM3) = 5.1, that is the smallest.
Given that M is the set of all distinct matchings in Sx(A,B), the family-free DCJ-indel

distance is defined as follows:

ffdid
dcj(A,B,Sx) = min

M∈M
{wdid

dcj(AM , BM )} .

Complexity. If two family-based genomes contain the same number of occurrences of each
marker, they are said to be balanced. The problem of computing the DCJ distance of balanced
genomes (BG-DCJ) is NP-hard [23]. Since the computation of ffdid

dcj can be used to solve
BG-DCJ, it is also NP-hard. The details of the reduction can be found in [19].

4 Family-free relational diagram

An efficient way to solve the family-free DCJ-indel distance is to develop an ILP that searches
for its solution in a general graph, that represents all possible diagrams corresponding to
all candidate matchings, in a similar way as the approaches given in [4,16,23]. Given two
genomes A and B and their marker similarity graph Sx(A,B), the structure that integrates
the properties of all diagrams of mapped genomes is the family-free relational diagram
FFR(A,B,Sx), that has a set V (A) with a vertex for each of the two extremities of each
marker of genome A and a set V (B) with a vertex for each of the two extremities of each
marker of genome B.

Again, sets EAadj and EBadj contain adjacency edges connecting adjacent extremities of
markers in A and in B. But here the set Eγ contains, for each edge ab ∈ Sx(A,B), an
extremity edge connecting at to bt, and an extremity edge connecting ah to bh. To both
edges atbt and ahbh, that are called siblings, we assign the same weight, that corresponds
to the similarity of the edge ab in Sx(A,B): w(atbt) = w(ahbh) = σ(ab). Furthermore, for
each marker m there is an indel edge connecting the vertices mh and mt. The indel edge
mhmt receives a weight w(mhmt) = max{σ(mv)|mv ∈ Sx(A,B)}, that is, it is the maximum
similarity among the edges incident to the marker m in Sx(A,B). We denote by EAid the
set of indel edges of markers in genome A and by EBid the set of indel edges of markers in
genome B. An example of a family-free relational diagram is given in Figure 4.
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Figure 4 Given genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11}, in the left part we represent
the marker similarity graph S0.1(A,B) and in the right part the family-free relational diagram
FFR(A,B,S0.1). We represent in multiple colors the edges that correspond to multiple matchings.



D.P. Rubert, F. V. Martinez, and M.D. V. Braga 3:9

4.1 Consistent decompositions
The diagram FFR(A,B,Sx) may contain vertices of degree larger than two. A decomposition
of FFR(A,B,Sx) is a collection of vertex-disjoint components, that can be cycles and/or
paths, covering all vertices of FFR(A,B,Sx). There can be multiple ways of selecting a
decomposition, and we need to find one that allows to identify a matching of Sx(A,B). A
set S ⊆ Eγ is a sibling-set if it is exclusively composed of pairs of siblings and does not
contain any pair of incident edges. Thus, a sibling-set S of FFR(A,B,Sx) corresponds to
a matching of Sx(A,B). In other words, there is a clear bijection between matchings of
Sx(A,B) and sibling-sets of FFR(A,B,Sx) and we denote byMS the matching corresponding
to the sibling-set S.

The set of edges D[S] induced by a sibling-set S is said to be a consistent decomposition
of FFR(A,B,Sx) and can be obtained as follows. In the beginning, D[S] is the union of S
with the sets of adjacency edges EAadj and EBadj. We then need to determine the complement
of the sibling-set S, denoted by S̃, that is composed of the indel-edges of FFR(A,B,Sx) that
must be added to D[S]: for each indel edge e, if its two endpoints have degree one or zero
in D[S], then e is added to both S̃ and D[S]. (Note that S̃ = M̃S , while |S| = 2|MS | and
w(S) = 2w(MS).) The consistent decomposition D[S] covers all vertices of FFR(A,B,Sx)
and is composed of cycles and paths, allowing us to compute the values

did
dcj(D[S]) = |S|2 − cD −

iD
2 +

∑
C∈D[S]

λ(C)− δD and

wdid
dcj(D[S]) = did

dcj(D[S]) + |S|2 −
w(S)

2 + w(S̃) ,

where cD and iD are the numbers of AB-cycles and AB-paths in D[S], respectively, and δD
is the optimal deduction of recombinations of paths from D[S].

Given that S is the sets of all sibling-sets of FFR(A,B,Sx), we compute the family-free
DCJ-indel distance of A and B with the following equation:

ffdid
dcj(A,B,Sx) = min

S∈S
{wdid

dcj(D[S])} .

4.2 Capping
Telomeres produce some difficulties for the decomposition of FFR(A,B,Sx), and a known
technique to overcome this problem is called capping [13]. It consists of modifying the
diagram by adding artificial markers, also called caps, whose extremities should be properly
connected to the telomeres of the linear chromosomes of A and B. Therefore, usually the
capping depends on the numbers κA and κB, that are, respectively, the total numbers of
linear chromosomes in genomes A and B.

Family-based singular genomes. First we recall the capping of family-based singular gen-
omes. Here the caps must circularize all linear chromosomes, so that their relational diagram
is composed of cycles only, but, if the capping is optimal, the DCJ-indel distance is preserved.

An optimal capping that transforms singular linear genomes A and B into singular circular
genomes can be obtained after identifying the recombination groups [6]. The DCJ-indel
distance is preserved by properly linking the components of each identified recombination
group into a single cycle [4]. Such a capping may require some artificial adjacencies between
caps. The following result is very useful.

I Theorem 1 (from [4]). We can obtain an optimal capping of singular genomes A and B
with exactly p∗ = max{κA, κB} caps and |κA − κB | artificial adjacencies between caps.
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Capped family-free relational diagram. We transform FFR(A,B,Sx) into the capped
family-free relational diagram FFR◦(A,B,Sx) as follows. Again, let p∗ = max{κA, κB}.
The diagram FFR◦(A,B,Sx) is obtained by adding to FFR(A,B,Sx) 4p∗ new vertices,
named ◦1A, ◦2A, . . . , ◦

2p∗
A and ◦1B , ◦2B , . . . , ◦

2p∗
B , each one representing a cap extremity. Each

of the 2κA telomeres of A is connected by an adjacency edge to a distinct cap extremity
among ◦1A, ◦2A, . . . , ◦

2κA
A . Similarly, each of the 2κB telomeres of B is connected by an adja-

cency edge to a distinct cap extremity among ◦1B , ◦2B , . . . , ◦
2κB
B . Moreover, if κA < κB, for

i = 2κA+1, 2κA+3, . . . , 2κB−1, connect ◦iA to ◦i+1
A by an artificial adjacency edge. Otherwise,

if κB < κA, for j = 2κB + 1, 2κB + 3, . . . , 2κA−1, connect ◦jB to ◦j+1
B by an artificial adjacency

edge. All these new adjacency edges and artificial adjacency edges are added to EAadj and
EBadj, respectively. We also connect each ◦iA, 1 ≤ i ≤ 2p∗, by a cap extremity edge to each ◦jB ,
1 ≤ j ≤ 2p∗, and denote by E◦ the set of cap extremity edges.

A set P ⊆ E◦ is a capping-set if it does not contain any pair of incident edges and is
maximal. Since each cap extremity of A is connected to each cap extremity of B, the size of
any (maximal) capping-set is 2p∗. A consistent decomposition Q[S, P ] of FFR◦(A,B,Sx) is
induced by a sibling-set S ⊆ Eγ and a (maximal) capping-set P ⊆ E◦ and is composed of
vertex disjoint cycles that cover all vertices of FFR◦(A,B,Sx).

I Theorem 2. Let Pmax be the set of all distinct (maximal) capping-sets from FFR◦(A,B,Sx).
For each sibling-set S of FFR(A,B,Sx) and FFR◦(A,B,Sx), we have

did
dcj(D[S]) = min

P∈Pmax
{did

dcj(Q[S, P ])} , and

wdid
dcj(D[S]) = min

P∈Pmax
{wdid

dcj(Q[S, P ])} .

Proof. Each capping-set corresponds to exactly p∗ caps. In addition, all adjacencies, including
the |κA−κB | artificial adjacencies between cap extremities, are part of each consistent decom-
position. Recall that each sibling-set S of FFR◦(A,B,Sx) corresponds to a matching MS of
Sx(A,B). The set of consistent decompositions include all possible distinct consistent decom-
positions induced by S together with one distinct element of Pmax. Theorem 1 states that the
pair of matched genomes AMS and BMS can be optimally capped with p∗ caps and |κA−κB |
artificial adjacencies. Therefore, it is clear that did

dcj(D[S]) = minP∈Pmax{d
id
dcj(Q[S, P ])}. Since

the capping does not change the sizes of the sibling-sets and their weights and complements,
it is also clear that wdid

dcj(D[S]) = minP∈Pmax{wd
id
dcj(Q[S, P ])}. J

Alternative formula for computing the indel-potential of cycles. The consistent decom-
positions of FFR◦(A,B,Sx) are composed exclusively of cycles, and the number of runs
Λ(C) of a cycle C is always in {0, 1, 2, 4, 6, . . .}. Therefore, the formula to compute the
indel-potential of a cycle C can be simplified to

λ(C) =

 Λ(C) , if Λ(C) ∈ {0, 1}

1 + Λ(C)
2 , if Λ(C) ∈ {2, 4, 6, . . .}

that can still be redesigned to a form that can be easier implemented in the ILP [4]. First,
let a transition in a cycle C be an indel-free segment of C that is between a run in one
genome and a run in the other genome and denote by ℵ(C) the number of transitions in C.
Observe that, if C is indel-free, then obviously ℵ(C) = 0. If C has a single run, then we also
have ℵ(C) = 0. On the other hand, if C has at least 2 runs, then ℵ(C) = Λ(C). The new
formula is split into two parts. The first part is the function r(C), defined as r(C) = 1 if
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Λ(C) ≥ 1, otherwise r(C) = 0, that simply tests whether C is indel-enclosing or indel-free.
The second part depends on the number of transitions ℵ(C), and the complete formula
stands as follows [4]:

λ(C) = r(C) + ℵ(C)
2 .

Distance formula. Note that the number of indel-enclosing components is
∑
C∈Q[S,P ]r(C) =

crQ + sQ, where crQ and sQ are the number of indel-enclosing AB-cycles and the number of
circular singletons in Q[S, P ], respectively. Furthermore, the number of indel-free AB-cycles
of Q[S, P ] is cr̃Q = cQ − crQ. We can now compute the values

did
dcj(Q[S, P ]) = p∗ + |S|2 − cQ +

∑
C∈Q[S,P ]

λ(C)

= p∗ + |S|2 − cQ +
∑

C∈Q[S,P ]

(
r(C) + ℵ(C)

2

)

= p∗ + |S|2 − c
r̃
Q + sQ +

∑
C∈Q[S,P ]

ℵ(C)
2 , and

wdid
dcj(Q[S, P ]) = did

dcj(Q[S, P ]) + |S|2 −
w(S)

2 + w(S̃)

= p∗ + |S| − cr̃Q + sQ +
∑

C∈Q[S,P ]

ℵ(C)
2 − w(S)

2 + w(S̃) . (2)

Given that S and Pmax are, respectively, the sets of all sibling-sets and all maximal
capping-sets of FFR◦(A,B,Sx), the final version of our optimization problem is

ffdid
dcj(A,B,Sx) = min

S∈S,P∈Pmax

{
wdid

dcj(Q[S, P ])
}
.

5 ILP formulation to compute the family-free DCJ-indel distance

Our formulation is an adaptation of the ILP for computing the DCJ-indel distance of family-
based natural genomes, by Bohnenkämper et al. [4], that is itself an extension of the ILP for
computing the DCJ distance of family-based balanced genomes, by Shao et al. [23]. The main
differences between our approach and the approach from [4] are the underlying graphs and
the objective functions. The general idea is searching for a sibling-set, that, together with a
maximal capping-set, gives an optimal consistent cycle decomposition of the capped diagram
FFR◦(A,B,Sx) = (V,E), where the set of edges comprises all disjoint sets of distinct types:
E = Eγ ∪E◦∪EAadj∪EBadj∪EAid∪EBid. While in the ILP from [4] the search space is restricted
to maximal sibling-sets, in the family-free DCJ-indel distance the search space includes all
sibling-sets, of any size.

In Algorithm 1 we give the formulation for computing ffdid
dcj(A,B,Sx), distributed in

three main parts. Counting indel-free cycles in the decomposition makes up the first part,
depicted in constraints (C.01)–(C.06), variables and domains (D.01)–(D.03). The second part
is for counting transitions, described in constraints (C.07)–(C.10), variables and domains
(D.04)–(D.05). The last part describes how to count the number of circular singletons,
with constraint (C.11), variable and domain (D.06). The objective function of our ILP
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minimizes the size of the sibling-set, with sum over variables xe, the number of circular
singletons, calculated by the sum over variables sk, half the overall number of transitions in
indel-enclosing AB-cycles, calculated by the sum over variables te, and the weight of all indel
edges in the decomposition, given by the sum over their weights wexe for all e ∈ Eid, while
maximizing both the number of indel-free cycles, counted by the sum over variables zi, and
half of the weights of the extremity edges in the decomposition, given by the sum over their
weights wexe for all edges e ∈ Eγ . The minimization is not affected by constant p∗, that is
included in the objective function to keep the correspondence to Equation (2).

Algorithm 1 ILP for computing the family-free DCJ-indel distance.

min p∗ +
∑
e∈Eγ

xe −
∑

1≤i≤|V |

zi +
∑
k∈K

sk + 1
2

∑
e∈E

te −
1
2

∑
e∈Eγ

wexe +
∑
e∈Eid

wexe

s. t. xe = 1 ∀ e ∈ EAadj ∪ EBadj (C.01)∑
uv∈E

xuv = 2 ∀ u ∈ V (C.02)

xe = xd ∀ e, d ∈ Eγ , e, d are siblings (C.03)
yi
yj

≤
≤

yj + i(1− xvivj )
yi + j(1− xvivj )

}
∀ vivj ∈ E (C.04)

yi
yj

≤
≤

i(1− xvivj )
j(1− xvivj )

}
∀ vivj ∈ EAid ∪ EBid (C.05)

izi ≤ yi ∀ 1 ≤ i ≤ |V | (C.06)
rv
rv′

≤
≥

1− xuv
xu′v′

}
∀ uv ∈ EAid
∀ u′v′ ∈ EBid

(C.07)

tuv
tuv

≥
≥

rv − ru − (1− xuv)
ru − rv − (1− xuv)

}
∀ uv ∈ E (C.08)∑

d∈EAid , d∩e6=∅

xd − te ≥ 0 ∀ e ∈ EAadj (C.09)

te = 0 ∀ e ∈ E \ EAadj (C.10)∑
e∈Ekid

xe − |k| ≤ sk ∀ k ∈ K (C.11)

and xe ∈ {0, 1} ∀ e ∈ E (D.01)
0 ≤ yi ≤ i ∀ 1 ≤ i ≤ |V | (D.02)
zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V | (D.03)
rv ∈ {0, 1} ∀ v ∈ V (D.04)
te ∈ {0, 1} ∀ e ∈ E (D.05)
sk ∈ {0, 1} ∀ k ∈ K (D.06)
p∗ = max{κA, κB} (D.07)

Comparison to related models. Since the pre-requisites of a family-free setting differ
substantially from those of a family-based setting, we could not compare our approach to
the one from [4]. We intend to perform such a comparison in a future work, for example by
using pairwise similarities to cluster the genes into families. Comparing our approach to the
original family-free DCJ distance was also not possible, because the ILP provided in [16] is
only suitable for unichromosomal genomes. Again, we intend to perform such a comparison
in a future work, after we implement an ILP that is able to compute the family-free DCJ
distance of multichromosomal genomes.
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Unweighted version. In the present work, for comparison purposes, we also implemented a
simpler version of the family-free DCJ-indel distance, that simply ignores all weights. This
version is called unweighted family-free DCJ-indel distance, and consists of finding a sibling-
set in FFR◦(A,B,Sx) that minimizes did

dcj(D[S, P ]). But here it is important to observe that
smaller sibling-sets, that simply discard blocks of contiguous markers, tend to give the smaller
distances. Considering the similarity graph S0.1(A,B) of Figure 3, the trivial empty matching
gives the distance did

dcj(AM∅ , BM∅) = 2 (deletion of the chromosome of A followed by the
insertion of the chromosome of B). For the other matchings we have did

dcj(AM1 , BM1) = 4
and did

dcj(AM2 , BM2) = did
dcj(AM3 , BM3) = 3. We then restrict the search space to maximal

sibling-sets only, avoiding that blocks of markers are discarded. However, this could also
enforce weak connections. In the example shown in Figure 3, both maximal matchings M1
and M2 have weak edges with weights 0.2 and 0.3. Matching M3 has only edges with weight
at least 0.6, but it would be ignored for being non-maximal. Enforcing weak connections
can be prevented by removing them from the similarity graph, that is, by assigning a higher
value to the cutting threshold x. Given that Smax and Pmax are, respectively, the sets of
all maximal sibling-sets and all maximal capping-sets of FFR◦(A,B,Sx), the unweighted
version of the problem is then:

unwffdid
dcj(A,B,Sx) = min

S∈Smax,P∈Pmax

{
did

dcj(Q[S, P ])
}
.

For computing the unweighted unwffdid
dcj(A,B,Sx) we need to slightly modify the ILP

described in Algorithm 1. The details can be found in [19].

Implementation. The ILPs for computing both the family-free DCJ-indel distance and its
unweighted version were implemented and can be downloaded from our GitLab server at
https://gitlab.ub.uni-bielefeld.de/gi/gen-diff.

Data analysis. For all pairwise comparisons, we obtained gene similarities using the FFGC
pipeline2 [11], with the following parameters: (i) 1 for the minimum number of genomes for
which each gene must share some similarity in, (ii) 0.1 for the stringency threshold, (iii) 1 for
the BLAST e-value, and (iv) default values for the remaining parameters. As an ILP solver,
for all experiments we ran CPLEX with 8 2.67GHz cores.

Cutting threshold. Differently from the unweighted version, that requires a cutting thresh-
old of about x=0.5 to give accurate results, the weighted ffdid

dcj was designed to be computed
with all given pairwise similarities, i.e., with the cutting threshold x= 0, that leads to a
“complete” family-free relational diagram. Such a diagram would be too large to be handled
in practice, therefore, if x= 0, we consider only the similarities that are strictly greater
than 0. Nevertheless, for bigger instances the diagram with similarities close to 0 might still
be too large to be solved in reasonable time. Hence, for some instances it may be necessary
to do a small increase of the cutting threshold. Our experiments in real data (described in
Section 5.2) show that small similarities have a minor impact on the computed distance,
therefore, by adopting a small cutting threshold x up to 0.3, it is possible to reduce the
diagram and solve bigger instances, still with good accuracy.

2 https://bibiserv.cebitec.uni-bielefeld.de/ffgc
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5.1 Performance evaluation

We generated simulated genomes using Artificial Life Simulator (ALF) [10] in order to
benchmark our algorithm for computing the family-free DCJ-indel distance. We simulated
and compared 190 pairs of genomes with different duplication rates, keeping all other
parameters fixed (e.g. rearrangement, indel and mutation rates). The extant genomes have
around 10,000 genes. We obtained gene similarities between simulated genomes using FFGC.
For each genome pair, a threshold of x = 0.1 resulted in up to 8,400 genes with multiple
homology relations (i.e. vertices with degree > 1 in S0.1(A,B)) and from 2 to 2.8 relations on
average for those genes. In addition, each pair is about 3,000 rearrangement events away from
each other. The complete parameter sets used for running ALF, together with additional
information on simulated genomes, can be found in Appendix A.

For computing the family-free DCJ-indel distances, we ran CPLEX with maximum CPU
time of 1 hour. Results were grouped depending on the number of genes with multiple
homology relations in the respective genome pairs. Figure 5 summarizes the performance of
our weighted family-free DCJ-indel distance formulation. The running times escalate quickly
as the number of genes with multiple homologies increase (Figure 5a, grouped in intervals of
100), reaching the time limit after 2,000 of them (Figure 5b, grouped in intervals of 500).
The optimality gap is the relative gap between the best solution found and the upper bound
found by the solver, calculated by (upper boundbest solution − 1) × 100, and appears to grow, for our
simulated data, linearly in the number of genes with multiple homologies (Figure 5b).

The solution time and the optimality gap of our algorithm clearly depends less on genome
sizes and more on the multiplicity of homology relations. In our experiments, we were able
to find in 1 hour optimal or near-optimal solutions for genomes with 10,000 genes and up
to 4,000 genes with 2.2 homology relations on average. Our formulation should be able to
handle, for instance, the complete genomes of bacteria, fungi and insects, or even sets of
chromosomes of mammal and plant genomes.
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Figure 5 Results of the weighted family-free DCJ-indel distance given by the solver, (a) shows the
average running time for instances grouped by the number of vertices with degree > 1 in S0.1(A,B)
(in intervals of 100, those greater than 900 are not shown), and (b) for groups of instances that did
not finish within the time limit of 1 hour, the average optimality gap and the average number of
homology relations for those genes with multiple homologies (in intervals of 500).
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Figure 6 Based on distance matrices calculated by our ILPs for the pairwise comparisons of
complete genomes (Gen) or only X chromosomes (Xchr) of Drosophila, we built phylogenetic trees
computed by the Neighbor-Joining method [14, 20]. The output of this algorithm is an unrooted
tree, and we assumed the most distant species D. busckii as the outgroup for rooting the trees. All
comparisons converged to exactly two trees, and next to each tree we give a list of comparisons that
produced that tree. The tree in (a) agrees with the reference shown in Figure 7 (Appendix B), while
the tree in (b) diverges from the reference in a single branch.

5.2 Real data analysis
We evaluated the potential of our approach by comparing genomes of fruit flies from the
genus Drosophila [1, 9, 17, 26], including the following species: D. busckii, D.melanogaster,
D. pseudoobscura, D. sechellia, D. simulans and D. yakuba. A reference phylogenetic tree of
these species is shown in Figure 7, in Appendix B, where we also give the sources of the DNA
sequences for each analyzed genome, and additional information on the experiments. Each
genome has approximately 150Mb, with about 13,000 genes distributed in 5–6 chromosomes.
We obtained gene similarities using FFGC and performed two separate experiments, whose
computed distances were used to build phylogenetic trees using Neighbor-Joining [14,20].

Pairwise comparison of complete genomes. In this experiment, genomes in each compar-
ison comprise together ∼ 13,000 genes with multiple homologies (11.2 on average), some of
them having about 90 relations considering similarities that are strictly greater than x = 0.
Since these instances were too large, we set the threshold to x = 0.3. We then ran CPLEX
with maximum CPU time of 3 hours. All ffdid

dcj computations finished within the time limit,
most of them in less than 10 minutes, whereas the unweighted unwffdid

dcj computations, in
spite of having a search space of maximal sibling-sets, that is much smaller, surprisingly took
from 1 to 3 hours. We conjecture that this is due to a large number of co-optimal solutions in
the unweighted version, while in ffdid

dcj the co-optimality is considerably minimized by weights,
which helps the solver to converge faster. While the tree given by ffdid

dcj, shown in Figure 6a,
agrees with the reference tree, the tree given by unwffdid

dcj, shown in Figure 6b, diverges from
the reference in a single branch. Details of the results are given in Appendix B.1.

Pairwise comparison of X chromosomes. We also did an experiment with smaller instances,
composed of pairwise comparisons of X chromosomes only, so that we could evaluate the
impact of the cutting threshold on the accuracy of the approach. In this experiment,
considering similarities that are strictly greater than x = 0, each pair comprises 1,000–2,000
genes with multiple homologies (5 on average) with as many as 30 relations.

We computed ffdid
dcj with cutting thresholds x = 0, x = 0.1, x = 0.2 and x = 0.3, always

obtaining the accurate phylogenetic tree from Figure 6a. These results suggest that a small
cutting threshold allows to reduce the size of the instances, without having a big impact in
the accuracy of ffdid

dcj.
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In addition, we computed unwffdid
dcj with cutting thresholds x = 0 and x = 0.3, both

resulting in the slightly inaccurate tree from Figure 6b, and x = 0.5, that also resulted in
the accurate tree from Figure 6a. As expected, in the unweighted formulation the cutting
threshold plays a major role in the accuracy of the calculated distances.

The analyses were done with maximum CPU time of 1 hour. The comparisons finished
within a few seconds for most of instances, except for unwffdid

dcj with threshold x = 0, for
which the majority of the pairwise comparisons reached the time limit – with an optimality
gap of less than 3.5% though (see Appendix B.2).

Length of indel segments. As a generalization of the singular DCJ-indel model [6], the
basic idea behind our approach is that runs can be merged and accumulated with DCJ
operations. This is a more parsimonious alternative to the trivial approach of inserting or
deleting exclusive markers individually. However, it raises the question of whether the indels
then tend to be very long, and whether this makes biological sense. Considering that it
is possible to distribute the runs so that each indel is composed of 1-2 runs, we can say
that the lengths of the runs play a major role in defining the length of indel segments. In
the particular analysis of Drosophila complete genomes, we have an average run length of
5.1, while the maximum run length is 121. We conjecture that the long runs are mostly
composed of genes that are part of a contiguous segment from the beginning, and are not
really accumulated by DCJ operations. In a future work we intend to have a closer look into
the long runs, so that we can characterize their structures and verify this conjecture.

6 Conclusions and discussion

In this work we proposed a new genomic distance, for the first time integrating DCJ and
indel operations in a family-free setting. In this setting the whole analysis requires less
pre-processing and no classification of the data, since it can be performed based on the
pairwise similarities of markers in both genomes. Based on the positions and orientations of
markers in both genomes we build the family-free relational diagram. We then assign weights
to the edges of the diagram, according to the given pairwise similarities. A sibling-set of
edges corresponds to a set of matched markers in both genomes. Our approach transfers
weights from the edges to matched and unmatched markers, so that, again for the first
time, an optimal solution does not necessarily need to maximize the number of matched
markers. Instead, the search space of our approach allows solutions composed of any number
of matched markers. The computation of our new family-free DCJ-indel distance is NP-hard
and we provide an efficient ILP formulation to solve it.

The experiments on simulated data show that our ILP can handle not only bacterial
genomes, but also complete genomes of fungi and insects, or sets of chromosomes of mammals
and plants. We performed a comparison study of six fruit fly genomes, using the obtained
distances to reconstruct the phylogenetic tree of the six species, obtaining accurate results.
This study was a first validation of the quality of our method and a more rigorous evaluation
will be performed in a future work. In particular, we intend to analyze the reasons behind
insertions and deletions of long segments and verify the quality of the obtained gene matchings,
by comparing them to the annotated orthologies given by public databases. Furthermore, as
already mentioned, we plan to compare our ILP to the one given in [4], once we manage to
cluster the genes into families, and also to implement an ILP that is able to compute the
family-free DCJ distance described in [16] for multichromosomal genomes, so that we can
compare it to our ILP.
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A Generation of simulated data

Here we describe the process and the parameters used in Artificial Life Simulator (ALF) [10]
for generating our simulated data. Each one of the 190 instances generated consists of a
pair of simulated genomes. We used the default values for parameters not mentioned. PAM
units were used as time scale for simulation, starting with a randomly generated root genome
with 10,000 genes, whose lengths where drawn from a Gamma distribution with k = 2.4019
and θ = 133.8063 (minimum length 100). We used a custom evolutionary tree defining an
speciation event after 25 time units, resulting in two leaf species, which evolved for additional
25 time units. The WAG substitution model was used together with Zipfian indels in DNA
sequences with rate 0.0002 (maximum length 50). Such rate varies among sites according to
a Gamma distribution with shape 1 and 10 classes. In addition, we set the rate of invariable
sites to 0.001. Inversions and translocations of up to 30 genes were allowed at a rate of 0.0025.
Finally, for generating instances comprising genes with different numbers of homologies, we
varied the gene duplication and the gene loss rates between 1× 10−5 and 2× 10−3.

B Analysis of Drosophila genomes

We downloaded the genomes of 6 species of Drosophila [1, 9, 17, 26] from NCBI3. In our
experiments we used the assemblies listed in Figure 7, with their respective gene annotations.
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Species NCBI Assembly Species NCBI Assembly

Drosophila busckii ASM1175060v1 Drosophila sechellia ASM438219v1

Drosophila melanogaster Release 6 plus ISO1 MT Drosophila simulans ASM75419v2

Drosophila pseudoobscura UCI_Dpse_MV25 Drosophila yakuba dyak_caf1

D. melanogaster

D. sechellia

D. simulans

D. yakuba

D. pseudoobscura

D. busckii

01020304050
Time (MYA)

Figure 7 List of genomes used in our experiments and a reference phylogenetic tree of the
respective species of Drosophila given by TimeTree [15], a public knowledge-base for information on
the tree-of-life and its evolutionary timescale.

As already mentioned, we obtained pairwise similarities between genes of Drosophila
genomes using the FFGC pipeline4 [11] with the following parameters: (i) 1 for the minimum
number of genomes for which each gene must share some similarity in, (ii) 0.1 for the
stringency threshold, (iii) 1 for the BLAST e-value, and (iv) default values for the remaining
parameters.

In the following subsections, in-depth information is provided on the results for experiments
using complete genomes and X chromosomes of the listed Drosophila species.

B.1 Complete genomes
The first tables in this section detail the results of the comparison of complete genomes in
terms of the BLAST alignment performed for all genes, and the corresponding similarity
graphs for each genome pair without cutting threshold. This data was generated using the
FFCG pipeline with the parameters described above. Unplaced scaffolds were discarded,
decreasing the number of genes from ∼ 15,000 to ∼ 13,000. Table 1 outlines the number
of gene pairs in each similarity range for each pair of genomes. Table 2 shows the number
of genes with no homology relations (which induce trivial selections of indel edges in the
relational diagram), the number of genes with exactly one homology relation and the number
of genes with multiple homologies (which pose a significant challenge to the solver). The
computed distances and elapsed time (or gap in % when the solver reaches the time limit)
in the pairwise comparisons with cutting threshold 0.3 are shown in Tables 3 and 4. The
solver was set to stop after finding a solution with optimality gap smaller than 0.5% or after
3 hours.

4 https://bibiserv.cebitec.uni-bielefeld.de/ffgc
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Table 1 Distribution of similarities between genes (and percentage) in pairwise comparisons of
complete genomes.

species similarity pseudoobscura sechellia simulans yakuba busckii
(0.0-0.2) 53648 (60.09%) 33409 (48.69%) 34803 (49.15%) 38143 (51.71%) 53733 (65.42%)
[0.2-0.4) 19034 (21.32%) 17822 (25.97%) 18566 (26.22%) 18748 (25.42%) 16129 (19.64%)

melanogaster [0.4-0.6) 6036 (6.76%) 3896 (5.68%) 4019 (5.68%) 4195 (5.69%) 5207 (6.34%)
[0.6-0.8) 4993 (5.59%) 1826 (2.66%) 1909 (2.70%) 3010 (4.08%) 4300 (5.23%)
[0.8-1.0] 5570 (6.24%) 11666 (17.00%) 11513 (16.26%) 9663 (13.10%) 2772 (3.37%)

89281 (100%) 68619 (100%) 70810 (100%) 73759 (100%) 82141 (100%)
(0.0-0.2) 53777 (62.13%) 54221 (61.83%) 54147 (61.96%) 54104 (65.78%)
[0.2-0.4) 18169 (20.99%) 18724 (21.35%) 18645 (21.34%) 15940 (19.38%)

pseudoobscura [0.4-0.6) 5466 (6.32%) 5601 (6.39%) 5595 (6.40%) 5183 (6.30%)
[0.6-0.8) 4838 (5.59%) 4895 (5.58%) 4797 (5.49%) 4223 (5.13%)
[0.8-1.0] 4303 (4.97%) 4255 (4.85%) 4202 (4.81%) 2798 (3.40%)

86553 (100%) 87696 (100%) 87386 (100%) 82248 (100%)
(0.0-0.2) 34227 (49.87%) 38169 (52.98%) 53105 (66.03%)
[0.2-0.4) 17325 (25.25%) 17430 (24.19%) 15521 (19.30%)

sechellia [0.4-0.6) 3721 (5.42%) 4075 (5.66%) 5003 (6.22%)
[0.6-0.8) 1277 (1.86%) 2987 (4.15%) 4175 (5.19%)
[0.8-1.0] 12077 (17.60%) 9379 (13.02%) 2626 (3.26%)

68627 (100%) 72040 (100%) 80430 (100%)
(0.0-0.2) 39218 (52.89%) 54066 (66.32%)
[0.2-0.4) 18288 (24.66%) 15648 (19.20%)

simulans [0.4-0.6) 4287 (5.78%) 5115 (6.27%)
[0.6-0.8) 2960 (3.99%) 4103 (5.03%)
[0.8-1.0] 9395 (12.67%) 2589 (3.18%)

74148 (100%) 81521 (100%)
(0.0-0.2) 54022 (66.32%)
[0.2-0.4) 15767 (19.36%)

yakuba [0.4-0.6) 5027 (6.17%)
[0.6-0.8) 4105 (5.04%)
[0.8-1.0] 2540 (3.12%)

81461 (100%)
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Table 2 Association between genes in pairwise comparisons of complete genomes, considering
pairwise similarities strictly greater than 0. The tables show the number of genes with zero, one and
multiple homology relations, respectively. For all of them, the element stored in line i and column j
represents the number of genes of the species i in the pairwise comparison of genomes i and j.

Number of unassociated genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 570 213 277 352 1183
pseudoobscura 13399 565 — 583 694 710 1211
sechellia 13037 189 620 — 263 393 1189
simulans 13023 335 779 345 — 484 1358
yakuba 12835 306 666 323 327 — 1225
busckii 11371 304 354 321 380 400 —

Number of genes uniquely associated

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 5439 6624 6533 6361 5107
pseudoobscura 13399 5775 — 5746 5704 5707 5205
sechellia 13037 6650 5487 — 6656 6307 5099
simulans 13023 6516 5394 6594 — 6237 4985
yakuba 12835 6288 5358 6242 6251 — 4982
busckii 11371 4797 4654 4749 4730 4725 —

Number of genes associated to at least two other genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 7040 6212 6239 6336 6759
pseudoobscura 13399 7059 — 7070 7001 6982 6983
sechellia 13037 6198 6930 — 6118 6337 6749
simulans 13023 6172 6850 6084 — 6302 6680
yakuba 12835 6241 6811 6270 6257 — 6628
busckii 11371 6270 6363 6301 6261 6246 —

Table 3 Computed ffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of complete

genomes, with cutting threshold x = 0.3. The time limit for execution of the ILP solver is 10800s.

species pseudoobscura sechellia simulans yakuba busckii
melanogaster 7373.7 (0.76%) 1925.5 (4431.78s) 2094.7 (109.60s) 3193.2 (201.49s) 7764.6 (540.19s)
pseudoobscura 7326.0 (163.12s) 7355.5 (764.24s) 7351.2 (5782.73s) 7784.0 (290.12s)
sechellia 1661.0 (103.33s) 3259.0 (146.88s) 7710.4 (415.23s)
simulans 3306.0 (216.77s) 7699.9 (115.54s)
yakuba 7667.4 (153.36s)

Table 4 Computed unwffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of complete

genomes, with cutting threshold x = 0.3. The time limit for execution of the ILP solver is 10800s.

species pseudoobscura sechellia simulans yakuba busckii
melanogaster 4084 (2.67%) 708 (0.96%) 933 (0.62%) 1269 (1.35%) 4791 (0.95%)
pseudoobscura 4088 (1.50%) 4176 (1.47%) 4142 (1.22%) 4797 (1.20%)
sechellia 905 (2812.89s) 1341 (1.10%) 4817 (0.98%)
simulans 1478 (1.44%) 4866 (0.84%)
yakuba 4820 (1.00%)
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B.2 X chromosomes
Similarity values in pairwise comparisons are given in Table 5. Results for unwffdid

dcj and
for ffdid

dcj are shown in Tables 6 and 7 (CPLEX was set to stop after finding a solution with
optimality gap smaller than 0.1% or after 1 hour). The number of genes with 0, 1 and
multiple homologies are given in Table 8.

Table 5 Distribution of similarities (and percentage) in pairwise comparisons of X chromosomes.

species similarity pseudoobscura sechellia simulans yakuba busckii
(0.0-0.2) 4710 (63.70%) 829 (22.38%) 897 (25.63%) 987 (28.81%) 2072 (48.64%)
[0.2-0.4) 980 (13.25%) 576 (15.55%) 536 (15.31%) 528 (15.41%) 738 (17.23%)

melanogaster [0.4-0.6) 541 (7.32%) 352 (9.50%) 256 (7.31%) 242 (7.06%) 475 (11.15%)
[0.6-0.8) 605 (8.18%) 271 (7.32%) 256 (7.31%) 412 (12.03%) 584 (13.71%)
[0.8-1.0] 558 (7.55%) 1676 (45.25%) 1555 (44.43%) 1257 (36.69%) 391 (9.18%)

7394 (100%) 3704 (100%) 3500 (100%) 3426 (100%) 4260 (100%)
(0.0-0.2) 4849 (64.60%) 4703 (65.15%) 4588 (64.64%) 5021 (66.59%)
[0.2-0.4) 962 (12.82%) 907 (12.56%) 898 (12.65%) 953 (12.64%)

pseudoobscura [0.4-0.6) 539 (7.18%) 498 (6.90%) 495 (6.97%) 563 (7.47%)
[0.6-0.8) 600 (7.99%) 585 (8.10%) 574 (8.09%) 584 (7.75%)
[0.8-1.0] 556 (7.41%) 526 (7.29%) 543 (7.65%) 419 (5.56%)

7506 (100%) 7219 (100%) 7098 (100%) 7540 (100%)
(0.0-0.2) 773 (22.62%) 961 (28.16%) 2014 (47.90%)
[0.2-0.4) 521 (15.24%) 532 (15.59%) 741 (17.62%)

sechellia [0.4-0.6) 191 (5.59%) 266 (7.79%) 486 (11.56%)
[0.6-0.8) 139 (4.07%) 423 (12.39%) 574 (13.65%)
[0.8-1.0] 1795 (52.50%) 1231 (36.07%) 390 (9.27%)

3419 (100%) 3413 (100%) 4205 (100%)
(0.0-0.2) 1038 (30.77%) 2069 (49.95%)
[0.2-0.4) 506 (15.00%) 697 (16.83%)

simulans [0.4-0.6) 254 (7.53%) 448 (10.82%)
[0.6-0.8) 403 (11.95%) 556 (13.42%)
[0.8-1.0] 1172 (34.75%) 372 (8.98%)

3373 (100%) 4142 (100%)
(0.0-0.2) 2110 (50.62%)
[0.2-0.4) 668 (16.03%)

yakuba [0.4-0.6) 456 (10.94%)
[0.6-0.8) 561 (13.46%)
[0.8-1.0] 373 (8.95%)

4168 (100%)

Table 6 Computed unwffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of X

chromosomes, with cutting thresholds x = 0.0, x = 0.3 and x = 0.5. The time limit is 3600s.

species x pseudoobscura sechellia simulans yakuba busckii

melanogaster
0.0 720 (2.80%) 132 (0.38%) 178 (30.93s) 218 (4.99s) 832 (3.49%)
0.3 829 (1.70s) 160 (9.31s) 218 (0.98s) 293 (0.66s) 972 (0.90s)
0.5 940 (0.46s) 228 (0.52s) 298 (0.40s) 397 (0.34s) 1003 (0.27s)

pseudoobscura
0.0 743 (3.13%) 743 (2.14%) 724 (1.40%) 912 (3.76%)
0.3 836 (1.06s) 849 (1.03s) 837 (0.96s) 980 (1.06s)
0.5 929 (0.44s) 938 (0.43s) 908 (0.43s) 1015 (0.39s)

sechellia
0.0 171 (45.95s) 236 (6.41s) 850 (2.19%)
0.3 194 (1.06s) 301 (0.74s) 982 (2.11s)
0.5 244 (0.44s) 423 (0.40s) 1014 (0.28s)

simulans
0.0 265 (18.14s) 863 (2.35%)
0.3 336 (0.63s) 994 (0.87s)
0.5 453 (0.33s) 1005 (0.25s)

yakuba
0.0 830 (1.73%)
0.3 972 (0.72s)
0.5 992 (0.24s)
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Table 7 Computed ffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of X chromo-

somes, with cutting thresholds ranging between x = 0.0 and x = 0.3. The time limit is 3600s.

species x pseudoobscura sechellia simulans yakuba busckii

melanogaster

0.0 1390.3 (255.22s) 407.3 (0.32%) 432.4 (9.60s) 587.4 (4.21s) 1362.7 (109.59s)
0.1 1370.1 (30.01s) 408.3 (0.34%) 433.8 (10.12s) 590.0 (4.08s) 1363.9 (11.49s)
0.2 1326.0 (6.28s) 412.7 (174.06s) 436.6 (5.25s) 601.0 (2.17s) 1344.7 (5.12s)
0.3 1296.0 (4.13s) 416.7 (24.47s) 445.4 (3.55s) 609.3 (1.64s) 1321.8 (2.87s)

pseudoobscura

0.0 1417.1 (258.89s) 1375.6 (281.95s) 1361.7 (94.68s) 1515.7 (368.78s)
0.1 1394.1 (36.51s) 1355.1 (45.6s) 1337.0 (17.74s) 1491.7 (33.27s)
0.2 1344.1 (3.64s) 1309.7 (329.25s) 1299.5 (3.34s) 1433.3 (5.61s)
0.3 1308.0 (5.56s) 1278.0 (3.73s) 1262.3 (3.69s) 1374.1 (4.69s)

sechellia

0.0 352.5 (5.90s) 626.8 (4.70s) 1378.2 (74.01s)
0.1 352.8 (5.83s) 630.4 (3.92s) 1377.1 (23.36s)
0.2 351.9 (3.56s) 635.3 (3.08s) 1354.2 (5.38s)
0.3 355.0 (2.55s) 641.3 (1.92s) 1328.3 (4.18s)

simulans

0.0 617.8 (7.78s) 1344.0 (80.84s)
0.1 621.3 (5.27s) 1342.7 (29.58s)
0.2 626.2 (2.04s) 1316.7 (5.50s)
0.3 637.8 (1.99s) 1295.5 (3.25s)

yakuba

0.0 1325.5 (69.40s)
0.1 1323.7 (24.32s)
0.2 1304.9 (6.27s)
0.3 1280.8 (3.73s)

Table 8 Association between genes in pairwise comparisons of the corresponding X chromosomes,
considering pairwise similarities strictly greater than 0. For the three tables, the element stored
in line i and column j represents the number of genes of the species i in the pairwise comparison
of genomes i and j. The X chromosome of D. pseudoobscura was fused with another chromosome
during evolution [17], therefore it presents a larger number of unassociated genes when compared to
the other species.

Number of unassociated genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 152 23 84 100 221
pseudoobscura 4770 2076 — 2025 2127 2113 2110
sechellia 2107 57 174 — 102 133 257
simulans 2007 84 187 74 — 130 272
yakuba 1956 80 153 80 107 — 227
busckii 1953 167 124 173 217 201 —

Number of genes uniquely associated

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 1052 1440 1402 1428 1191
pseudoobscura 4770 1613 — 1651 1579 1646 1565
sechellia 2107 1479 1084 — 1454 1449 1224
simulans 2007 1382 1024 1392 — 1352 1126
yakuba 1956 1352 1017 1353 1331 — 1123
busckii 1953 1155 977 1154 1125 1147 —

Number of genes associated to at least two other genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 839 580 557 515 631
pseudoobscura 4770 1081 — 1094 1064 1011 1095
sechellia 2107 571 849 — 551 525 626
simulans 2007 541 796 541 — 525 609
yakuba 1956 524 786 523 518 — 606
busckii 1953 631 852 626 611 605 —
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Abstract
Motivation: With an increasing number of patient-derived xenograft (PDX) models being created
and subsequently sequenced to study tumor heterogeneity and to guide therapy decisions, there is a
similarly increasing need for methods to separate reads originating from the graft (human) tumor
and reads originating from the host species’ (mouse) surrounding tissue. Two kinds of methods
are in use: On the one hand, alignment-based tools require that reads are mapped and aligned
(by an external mapper/aligner) to the host and graft genomes separately first; the tool itself then
processes the resulting alignments and quality metrics (typically BAM files) to assign each read or
read pair. On the other hand, alignment-free tools work directly on the raw read data (typically
FASTQ files). Recent studies compare different approaches and tools, with varying results.
Results: We show that alignment-free methods for xenograft sorting are superior concerning CPU
time usage and equivalent in accuracy. We improve upon the state of the art by presenting a fast
lightweight approach based on three-way bucketed quotiented Cuckoo hashing. Our hash table
requires memory comparable to an FM index typically used for read alignment and less than other
alignment-free approaches. It allows extremely fast lookups and uses less CPU time than other
alignment-free methods and alignment-based methods at similar accuracy.
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1 Introduction

To learn about tumor heterogeneity and tumor progression under realistic in vivo conditions,
but without putting human life at risk, one can implant human tumor tissue into a mouse
and study its evolution. This is called a (patient-derived) xenograft (PDX). Over time,
several samples of the (graft / human) tumor and surrounding (host / mouse) tissue are
taken and subjected to exome or whole genome sequencing in order to monitor the changing
genomic features of the tumor. This information can be used to predict the response to
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Table 1 Tools for xenograft sorting and read filtering with key properties. See text for definition
of operations; Lang.: programming language.

Tool Ref. Input Operations Lang.
XenofilteR [13] aligned BAM filter R
Xenosplit [9] aligned BAM filter, count Python
Bamcmp [12] aligned BAM partial sort C++
Disambiguate [1] aligned BAM partial sort Python or C++
BBsplit [4] raw FASTQ partial sort Java
xenome [7] raw FASTQ count, sort C++
xengsort (this) raw FASTQ count, sort Python + numba

different chemotherapy alternatives and to monitor treatment success or failure. A key step
in such analyses is xenograft sorting, i.e., separating the human tumor reads from the mouse
reads. A recent study [10] showed that if such a step is omitted, several mouse reads would
be aligned to certain regions of the human genome (HAMA: human-aligned mouse allele) and
induce false positive variant calls for the tumor; this especially concerns certain oncogenes.

Several tools have been developed for xenograft sorting, motivated by different goals and
using different approaches; a summary appears below. Here we improve upon the existing
approaches in several ways: By using carefully engineered k-mer hash tables, our approach is
both faster and needs less memory than existing tools. By designing a new decision function,
we also obtain fewer unclassified reads and in some cases even higher classification accuracy.
Since we use a comprehensive reference of the genome and transcriptome, we are able to
uniformly deal with genome, exome, and transcriptome data of xenografts.

Concerning related work, we distinguish alignment-based methods that work on already
aligned reads (BAM files), versus alignment-free methods that directly work on short
subsequences (k-mers) of the raw reads (FASTQ files). On the other hand, we do not
distinguish between the type of data that the tools have been applied to (transcripts, or
genomic DNA), because this does not depend so much on the tool but rather on the reference
sequences used (genome, exome, set of transcripts, etc.).

Alignment-based methods scan existing alignments in BAM files and test whether each
read maps better to the graft or to the host genome. Differences result from different
parameter settings used for the alignment tool (often bwa or bowtie2) and from the way
“better alignment” is defined by each of these tools. Alignment-free methods use a large
lookup table to associate species information with each k-mer.

In Table 1, we list properties of existing tools and of xengsort, our implementation of
the method we describe in this article. These tools support different operations: Operation
“count” outputs proportions of reads belonging to each category (host, graft, etc.); operation
“sort” sorts reads or alignments into different files according to origin, ideally into five
categories: host, graft, both, neither, ambiguous; a “partial sort” only has three categories:
host, graft, both/other; operation “filter” writes only an output file with graft reads or
alignments. The sort operation is more general than the filter or partial sort operation and
allows full flexibility in downstream processing. When available, the count operation is faster
than counting the output of the sort operation, because it avoids the overhead of creating
new BAM or FASTQ files.

XenofilteR, Xenosplit, Bamcmp and Disambiguate all work on aligned BAM files. This
means that the reads must be mapped and aligned with a supported read mapper first
(typically, ’bwa mem’) and the resulting BAM file must be sorted in a specific way required
by the tool. The tool is typically a script that reads and compares the mapping scores and
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qualities in the two BAM files containing host and graft alignments. In principle, all of these
tools do the same thing; large differences result rather from different alignment parameters
than the tool itself. We therefore picked XenofilteR as a representative of this family, also
because it performed well in a recent comparison [10].

BBsplit (part of BBTools) is special in the sense that it performs the read mapping
itself, against multiple references simultaneously, based on k-mer seeds. Unfortunately, only
up to approximately 1.9 billion k-mers can be indexed because of Java’s array indexing
limitations (up to 231 elements) and a table load limit of 0.9; so BBsplit was not usable for
our human-mouse index that contains approximately 4.5 · 109 > 232 k-mers.

The tool xenome [7] is similar to our approach: It is based on a large hash table of
k-mers and sorts the reads into several categories (host, graft, both, neither, ambiguous). A
read is classified based on its k-mer content according to relatively strict rules. We found
the threading code of xenome to be buggy, such that the pure counting mode resulted in
a deadlock and produced no output. The sorting mode produced the complete output but
then did not terminate either.

Recent studies [5, 8, 10] have compared the computational efficiency of several methods,
as well as the classification accuracy of these methods and the effects on subsequent variant
calling after running vs. not running xenograft sorting. The results were contradictory, with
some studies reporting that alignment-based tools are more efficient than alignment-free
tools, and different tools achieving highest accuracy. Our interpretation of the results of
[10] is that each of the existing approaches is able to sort with good accuracy and the main
difference is in computational efficiency. Results about efficiency have to be interpreted with
care because sometimes the time for alignment is included and sometimes not.

2 Methods

2.1 Overview
By considering all available host and graft reference sequences (both transcripts and genomic
sequences of mouse and human), we build a large key-value store that allows us to look up
the species of origin (host, graft or both) of each DNA/RNA k-mer that occurs in either
species. A sequenced dataset (a collection of single-end or paired-end FASTQ files) is then
processed by iterating over reads or read pairs, looking up the species of origin of each k-mer
in a read (host, graft, both or none) and classifying the read based on a decision rule.

Our implementation of the key-value store as a three-way bucketed Cuckoo hashtable
makes k-mer lookup faster than in other methods; the associated value can often be retrieved
with a single random memory access. A high load factor of the hash table, combined with the
technique of quotienting, ensures a low memory footprint, without resorting to approximate
membership data structures, such as Bloom filters.

2.2 Key-value stores of canonical k-mers
We partition the reference genome (plus alternative alleles and unplaced contigs) and
transcriptome into short substrings of a given length k (so-called k-mers); we evaluated
k ∈ {23, 25, 27}. For each k-mer (“key”) in any of the reference sequences, we store whether
it occurs exclusively in the host reference, exclusively in the graft reference, or in both,
represented by “values” 1, 2, 3, respectively. For the host- and graft-exclusive k-mers, we also
store whether a closely similar k-mer (at Hamming distance 1) occurs in the other species
(add value 4); such a k-mer is then called a weak (host or graft) k-mer. This idea extends
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Figure 1 Illustration of (3,4) Cuckoo hashing with 3 hash functions and buckets of size 4. Left:
Each key-value pair can be stored at one of up to 12 locations in 3 buckets. For key x, the bucket
given by f1(x) is full, so bucket f2(x) is attempted, where a free slot is found. Right: If all hb slots
are full, key x is placed into one of these slots at random (blue), and the currently present key-value
pair is evicted and re-inserted into an alternative slot.

the k-mer classification of xenome [7], where a k-mer can be host, graft, both, or marginal,
the latter category comprising both our weak host and weak graft k-mers. So we store,
for each k-mer, a value from the 5-element set “host” (1), “graft” (2), “both” (3), “weak
host” (5), “weak graft” (6). This value is stored using 3 bits. While a more compact base-5
representation is possible (e.g., storing 3 values with 125 < 128 = 27 combinations in 7 bits
instead of in 9 bits), we decided to use slightly more memory for higher speed.

To be precise, we do not work on k-mers directly, but on their canonical integer represen-
tations (canonical codes), such that a k-mer and its reverse complement map to the same
number. We use a simple base-4 numeric encoding A 7→ 0, C 7→ 1, G 7→ 2, T/U 7→ 3, e.g.
reading the 4-mer AGCG as (0212)4 = 38 and its reverse complement CGCT as (1213)4 = 103.
The canonical code is then the maximum of these two numbers; here the canonical code of
both AGCG and CGCT is thus 103. (In xenome, canonical k-mer codes are implemented with
a more complex but still deterministic function of the two base-4 encodings; in other tools,
it is often the minimum of the two encodings.) For odd k, there are exactly c(k) := 4k/2
different canonical k-mer codes, so each can be stored in 2k − 1 bits in principle. However,
implementing a fast bijection of the set of canonical codes (which is a subset of size c(k) of
{0 .. (4k − 1)}) to {0 .. (c(k) − 1)} seems difficult, so we use 2k bits to store the canonical
code directly, which allows faster access. We do use quotienting, described below, to reduce
the size; yet in principle, one additional bit could be saved.

2.3 Multi-way bucketed quotiented Cuckoo hashing

We use multi-way bucketed Cuckoo hash table as the data structure for the k-mer key-
value store. Let C be the set of canonical codes of k-mers; as explained above, we take
C = {0 .. (4k − 1)}, even though only half of the codes are used (for odd k). Let P be the set
of locations (buckets) in the hash table and p their number; we set P := {0 .. (p− 1)}. Each
key can be stored at up to h different locations (buckets) in the table. The possible buckets
for a code are computed by h different hash functions f1, f2, . . . , fh : C → P . Each bucket
can store up to a certain number b of key-value pairs. So there is space for N := pb key-value
pairs in the table overall, and each pair can be stored at one of hb locations in h buckets.
Together with an insertion strategy as described below, this framework is referred to as (h, b)
Cuckoo hashing. Classical Cuckoo hashing uses h = 2 and b = 1; for this work, we use h = 3
and b = 4. A visualization is provided in Figure 1. Using several hash functions and larger
buckets increases the load limit; using h = 3 and b = 4 allows a load factor of over 99.9% [17,
Table 1], while classical Cuckoo hashing only allows to fill 50% of the table.
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Search and insert. Searching for a key-value pair works as follows. Given key (canonical
code) x, first f1(x) is computed, and this bucket is searched for key x and the associated
value. If it is not found, buckets f2(x) and then f3(x) are searched similarly. Each bucket
access is a random memory lookup and most likely triggers a cache miss. We can ensure
that each bucket is contained within a single cache line (by using additional padding bits if
necessary). Then, the number of cache misses is limited to h = 3 for one search operation.

Because we fill the table well below the load limit (at 88% of 99.9%), we are able to store
most key-value pairs in the bucket indicated by the first hash function f1, and only incur
a single cache miss when looking for them. Unsuccessful searches (for k-mers that are not
present in either host or graft genome) will always need h memory accesses. However, one
optimization is possible: If, say, the first bucket f1(x) contains an empty slot, we do not
need to search further, because the insertion procedure produced a tight layout, in the sense
that if a single element could be moved to an “earlier” bucket, it would have been done.

Insertion of a key-value pair works as follows. First, the key is searched as described
above. If it is found, the value is updated with the new value. For example, if an existing
host k-mer is to be inserted again as a graft k-mer, the value is updated to “both”. If the
key is not found, we check whether any of the buckets f1(x), f2(x), f3(x) contains a free slot.
If this is the case, x and its value are inserted there. If all buckets are full, a random slot
among the hb slots is picked, and the key-value pair stored there is evicted (like a cuckoo
removes eggs from other birds’ nests) to make room for x and its value. Then an alternative
location for the evicted element is searched. This process may continue for several iterations
and is called a “random walk” through the table. If the walk becomes too long (longer than
5000 steps, say), we declare that the table is too full, and construction fails and has to be
restarted with a larger table or different random seed.

We require that the final size (number of buckets p) of the hash table is known in advance,
so we can pre-allocate it. The genome length is a good (over-)estimate of the number of
distinct k-mers and can be used. We recently presented a practical algorithm [18] to optimize
the assignment of k-mers to buckets (i.e., their hash function choices) such that the average
search cost of present k-mers is minimized to the provable optimum. This optimization
takes significant additional time and requires large additional data structures; so we took the
opportunity here to evaluate whether it significantly improves lookup times in comparison to
a table filled by the above random walk strategy.

Bijective hash functions and quotienting. In principle, we need to store the 2k bits for
the canonical k-mer code x and the 3 bits for the value at each slot. However, by using
hash functions of the form f(x) := g(x) mod p, where p is the number of buckets and g is
a bijective (randomized) transformation on the full key set {0 .. (4k − 1)}, we can encode
part of x in f(x): Note that from f(x) and q(x) := g(x)//p (integer division), we can recover
g(x) = p · q(x) + f(x), and since g is bijective, we can recover x itself. This means that we
only need to store q(x), not x itself in bucket f(x), which only takes d2k − log2 pe instead of
2k bits. However, since we have h alternative hash functions, we also need to store which
hash function we used, using 2 bits for h = 3 (0 indicating that the slot is empty). This
technique is known as quotienting. It gives higher savings for smaller buckets (for constant
N = pb, smaller b means larger p), but on the other hand the load limit is smaller for small b.
We find b = 4 to be a good compromise, allowing table loads of 99.9%.

For the bijective part g(x), we use affine functions of the form

ga,b(x) := [a · (rotk(x) xor b)] mod 4k,
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where rotk performs a cyclic rotation of k bits (half the width of x), moving the “random”
inner bits to outer positions and the less random outer bits (due to the max operation when
taking canonical codes) inside, b is a 2k-bit offset, and a is an odd multiplier. Picking a
“random” hash function means picking random values for a and b.

I Lemma 1. For any 2k-bit number b and any odd 2k-bit number a, the function ga,b is a
bijection on K := {0 .. (4k − 1)}.

Proof. Let y = ga,b(x). By definition, the range of ga,b on K is a subset of K. Because
|K| is a power of 2 and a is odd, the greatest common divisor of |K| and a is 1, and so
there exists a unique multiplicative inverse a′ of a modulo 4k = |K|, such that aa′ = 1
(mod 4k). The other operations (xor b, rotk) are inverses of themselves; so we recover
x = rotk([(a′ · y) mod 4k] xor b). J

In summary, each stored canonical k-mer needs 2 + 3 + d2k − log2 pe bits to remember
the hash function choice and to store the value (species), and the quotient, respectively. For
k = 25 and p = 1 276 595 745 buckets, this amounts to 25 bits per k-mer, or 100 bits for each
bucket of 4 k-mers. To ensure cache line aligned pages, we could insert 28 padding bits to
grow the bucket size to 128 bits; however, we chose less memory for a small speed decrease,
and let some buckets cross cache line boundaries.

2.4 Annotating weak k-mers

A k-mer that occurs only in the host (graft) reference, but has a Hamming-distance-1 neighbor
in the graft (host) reference, is called a weak host (graft) k-mer. So for a weak k-mer, a
single nucleotide variation could flip its assigned species, while a k-mer that is not weak is
more robust in this sense. A similar concept exists in xenome; however, weak host and graft
k-mers are combined into “marginal” k-mers, and their origin is not stored. After the hash
table has been constructed with all k-mers and their values “host”, “graft” or “both”, we
mark weak k-mers by modifying the value, setting an additional “weak” bit. In principle, we
could scan over the k-mers and query all 3k neighbors of each k-mer, but this is inefficient.

Instead, we extract from the hash table a complete list L of k-mers and their reverse
complements (not canonical codes; approx. 9 ·109 entries for 4.5 ·109 distinct k-mers), together
with their current values. To save memory, this list is created and processed in 16 chunks
according to the first two nucleotides of the k-mer, thus needing approx. 4.5 GB of additional
memory temporarily. Since we use odd k = 2` + 1, we can partition a k-mer into its `-prefix,
its middle base and its `-suffix. We make use of the following observation.

I Observation 1. For k = 2` + 1, two k-mers x, y with Hamming distance 1 differ either in
their `-suffix, in the `-suffix of their reverse complement or in their middle base.

We thus partition the sorted list into blocks of constant (` + 1)-prefixes. Different blocks
are processed independently in parallel threads. The `-suffixes of all pairs of k-mers in such
a block are queried with a fast bit-vector test for Hamming distance 1. If a pair is found
and the k-mers occur in different species, the “weak bit” (value 4) is set. It remains to find
pairs of k-mers that differ only in their middle base. We conceptually partition the list into
blocks of constant `-prefixes and use that such pairs must occur consecutively in a block and
agree in the `-suffix. So these pairs can be identified within a single linear scan. In the end,
updated values are transferred to the values of the canonical k-mers in the hash table.
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Figure 2 Decision rule tree for classifying a DNA fragment from k-mer statistics (h, h′, g, g′, b, x; n),
meaning number of k-mers of type “host” (h), “weak host” (h′), “graft” (g), “weak graft” (g′),
“both” (b), and number of k-mers not present in the key-value store (x), respectively; n is the total
number of (valid) k-mers in the fragment. We also use weighted scores Shost := h + bh′/2c and
Sgraft := g + bg′/2c and thresholds Thost := bn/4c, Tgraft := bn/4c and Tboth := bn/4c. A fragment
is thus classified as “host”, “graft”, “both”, “neither”, or “ambiguous”. Category “ambiguous” is
chosen if no other rule applies and no “else” rule is present in a node.

2.5 Reference sequences
To build the k-mer hash table from genomic and transcribed sequences from human and
mouse, we obtained the “toplevel DNA” genome FASTA files, which include both the primary
assembly, unplaced contigs and alternative alleles, and the “all cDNA” files, which contain
the known transcripts, from the ensembl FTP site, release 98.

As the alternative alleles of the human and mouse toplevel references contain mostly Ns
to keep positional alignment of alternative alleles to the consensus reference, they decompress
to huge FASTA files (over 60 GB for human, over 12 GB for mouse). Therefore we condensed
the toplevel reference sequences by replacing runs of more than 25 Ns by 25 Ns. This does
not change the k-mer content, as k-mers containing even a single N are ignored. It does
provide an efficiency boost to alignment-based tools because read mappers build an index of
every position in the genome and typically replace runs of Ns by random sequence.

2.6 Fragment classification
Given a sequenced fragment (single read or read pair), we query each k-mer of the fragment
about its origins; k-mers with undetermined bases are ignored. Our implementation reads
large chunks (several MB) of FASTQ files and distributes read classification over several
threads (we found that 8 threads saturate the I/O).

We collect k-mer statistics for each fragment (adding the numbers of both reads for a
read pair): Let n be the number of (valid) k-mers in the fragment. Let h be the number
of host k-mers and h′ the number of weak host k-mers, and analogously define g and g′

for the graft species. Further, let b be the number of k-mers occuring in both species, and
let x be the number of k-mers that were not found in the key-value store. Based on the
vector (h, h′, g, g′, b, x; n), we use a tree of hierarchical rules to classify the fragment into one
of five categories: “host”, “graft”, “both”, “neither” and “ambiguous”. Categories “host”
and “graft” are for reads that can be clearly assigned to one of the species. Category “both”
is for reads that match equally well to both references. Category “neither” is for reads
that contain many k-mers that cannot be found in the key-value store; these could point
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Table 2 Properties of the k-mer index for different values of k (wk: weak). Underlying reference
sequences are given in Section 2.5.

k-mers k = 23 (%) k = 25 (%) k = 27 (%)
total 4 396 323 491 (100) 4 496 607 845 (100) 4 576 953 994 (100)
host 1 924 087 512 (43.8) 2 050 845 757 (45.6) 2 105 520 461 (46.0)
graft 2 173 923 063 (49.4) 2 323 880 612 (51.7) 2 395 147 724 (52.3)
both 18 701 862 (0.4) 12 579 160 (0.3) 9 627 252 (0.2)
wk host 132 469 231 (3.0) 52 063 110 (1.2) 32 445 717 (0.7)
wk graft 147 141 823 (3.4) 57 239 206 (1.3) 34 212 840 (0.7)

to technical problems (primer dimers) or contamination of the sample with other species.
Finally, category “ambiguous” is for reads that provide conflicting information. Such reads
should not usually be seen; they could result from PCR hybrids between host and graft
during library preparation. The precise rules are shown in Figure 2. Category “ambiguous”
is chosen if no “else” rule exists and no other rule applies in any given node.

Quick mode. Inspired by a similar acceleration in the kallisto software [3] for transcript
expression quantification, we additionally implemented a “quick mode” that initially looks
only at the type of the third and third-last k-mer in every read. If the two (for single-end
reads) or four (for paired-end reads) types agree (e.g. all are “graft”), the fragment is classified
on this sampled evidence alone. This results in quicker processing of large FASTQ files, but
only considers a small sample of the available information.

3 Results

We evaluate our alignment-free xenograft sorting approach and its implementation xengsort
for the common case of human-tumor-in-mouse xenografts, by using mouse datasets, human
datasets, xenograft datasets and datasets from other species, and compare against an existing
tool with the same purpose, xenome from the gossamer suite [7], and against a representative
of alignment-based filtering tools, XenofilteR [13]. The hardware used for the benchmarks
was one server with two AMD Epyc 7452 CPUs (with 32 cores and 64 threads each), 1024 GB
DDR4-2666 memory and one 12 TB HDD with 7200 rpm and 256 MB cache.

3.1 Hash table construction
Table size and uniqueness of k-mers. We evaluated k ∈ {23, 25, 27} and then decided to
use k = 25 because it offers a good compromise between species specificity and memory
requirements. Table 2 shows several index properties. In particular, moving from k = 25 to
k = 27, the small decrease in k-mers that map to both genomes and in weak k-mers did not
justify the additional memory requirements. In addition, longer k-mers lead to lower error
tolerance against sequencing errors, as each error affects up to k of the k-mers in a read.

Construction time and memory. Table 3 shows time and memory requirements for building
the k-mer hash table or FM index for bwa (for XenofilteR). The main difference is that the
BWA index is a succinct representation of the suffix array of the references and not a k-mer
hash table. Our hash table construction is not paralellized; hence CPU times and wall clock
times agree and are less than one hour. The hash construction of xenome is paralellized; we
gave it 8 threads (but 9 were sometimes used); yet it does about 20 times the CPU work and
takes three times as long as xengsort, even when using multiple threads.
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Table 3 Index construction: CPU times and wall clock times in minutes and memory in Gigabytes
using different tools and different k-mer sizes for xengsort. “Build” times refer to collecting and
hashing the k-mers according to species, but without marking weak k-mers. “Mark” times refer
to marking weak k-mers. “Total” times are the sum of build and mark times, plus additional I/O
times. “CPU” times measure total CPU work load (as reported by the time command as user time),
and “wall” times refer to actually passed time. Final size (“mem final”) is measured by index size
on disk (GB). Memory peak (“mem peak”) is the highest memory usage during construction (GB).

build build mark mark total total mem mem
tool k CPU wall CPU wall CPU wall final peak
xengsort 23 50 50 591 176 641 226 12.8 17.3
xengsort 25 53 53 437 158 490 211 15.9 20.4
xengsort 27 51 51 495 214 546 265 17.3 21.8
xenome 25 992 151 2338 356 3626 552 31.2 57.1
XenofilteR – 528 658 – – 528 658 13.0 22.0

Marking weak or marginal k-mers is paralellized in both approaches; wall clock times are
measured using 8 threads. Again, xengsort finds the weak k-mers faster, both in terms of
total CPU work and wall clock time.

The indexing method of bwa is not comparable, as it builds a complete suffix array
(FM index) that is independent of k and does not include marking weak k-mers. Here the
CPU time is lower than the wall clock time, which indicates an I/O starved process.

We note that xenome uses a large amount of memory during hash table construction (it
was given up to 64 GB). It works with less if restricted, but at the expense of longer running
times. BWA indexing also needs significant additional memory during construction. The
additional memory required by xengsort results from the additional sorted k-mer list required
for detecting weak k-mers. Overall, our construction is fast (even though serial only) and
uses a reasonable amount of memory.

Load factor and hash choice distribution. As explained in Section 2.3, 3-way Cuckoo hash
tables support very high loads (fill ratios) over 99.9%. However, such loads come at the
expense of distributing all k-mers almost evenly across hash function choices. For faster
lookup, it is beneficial to leave part of the hash table empty. We used a load factor of 88%
and thus find 76.7% of the k-mers at their first bucket choice, 15.5% at their second choice
and only 7.8% at their third choice, yielding an average of 1.31 lookups for a present k-mer.

Applying assignment optimization [18], which takes an additional 5 hours (serial CPU
time, not parallelized) and needs over 80 GB of RAM, we achieve a slightly better average of
1.17 lookups for a present k-mer.

3.2 Classification results
We applied our method xengsort, xenome and XenofilteR to several datasets with reads of
known origin (except possible contamination issues or technical artefacts), that however
present certain particular challenges. A summary of running times for all datasets appears
in Table 4.

Human-captured mouse exomes. A recent comparative study [10] made five mouse exomes
accessible, which were captured with a human-exome capture kit and hence presents mouse
reads that are biased towards high similarity with human reads. The mouse strains were
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Table 4 Dataset sizes (number of fragments; M: millions) and CPU times in minutes spent on
different datasets, measured with the “time” command (user time) when running with 8 threads
(xenome, xengsort, bwa-mem, BAM sorting, except for XenofilteR (XfR), which is single-threaded).
N/A: not applicable; tool could not be run on this dataset.

dataset / tool size XfR + bwa + sort xenome xengsort
mouse exomes 307 M 310 + 8291 + 179 1823 368
human matepair 1258 M N/A + 222939 + 940 9845 2463
chicken genome 251 M 76 + 6976 + 118 1273 592
leukemia RNA 1760 M 778 + 22111 + 521 5188 1680
PDX RNA 9742 M 16043 + 278329 + 5862 59692 13555

Table 5 Detailed classification results on five human-captured mouse exomes from different
mouse strains (2× A/J, 1× BALB/c, 2× C57BL/6). Running times are reported both in CPU
minutes [Cm], measuring CPU work, and wall clock minutes [Wm], measuring actual time spent.
Times for XenofilteR (XfR) do not include alignment or BAM sorting time. Classification results
report the number and percentage (in brackets) of fragments classified as mouse (correct), both
human and mouse (likely correct), human (incorrect), ambiguous (no statement) and neither (likely
incorrect). XenofilteR (XfR) only extracts human fragments and does not classify the remainder; so
only the number of fragments classified as human are reported.

A/J-1 xengsort xenome XfR
time 70 Cm 14 Wm 371 Cm 45 Wm 56 Cm 56 Wm

fragmets (%) fragmets (%) fragmets (%)
mouse 46 648 014 (78.03) 45 759 814 (76.54)
both 120 808 (0.20) 65 269 (0.11)
human 12 813 583 (21.43) 12 500 844 (20.91) 6 315 955 (10.56)
ambgs. 58 449 (0.10) 1 383 547 (2.31)
neither 143 775 (0.24) 75 155 (0.13)

A/J-2 xengsort xenome XfR
time 70 Cm 15 Wm 416 Cm 50 Wm 67 Cm 67 Cm

fragmets (%) fragmets (%) fragmets (%)
mouse 60 255 189 (95.57) 59 135 489 (93.80)
both 151 396 (0.24) 89 089 (0.14)
human 2 301 384 (3.65) 2 271 131 (3.60) 1 718 545 (2.73)
ambgs. 57 827 (0.09) 1 340 814 (2.13)
neither 279 556 (0.44) 208 829 (0.33)

BALB/c xengsort xenome XfR
time 68 Cm 15 Wm 392 Cm 45 Wm 61 Cm 61 Wm
mouse 62 235 960 (98.99) 61 274 277 (97.46)
both 118 541 (0.19) 68 949 (0.11)
human 342 908 (0.55) 348 154 (0.55) 285 556 (0.45)
ambgs. 45 063 (0.07) 1 098 036 (1.65)
neither 127 035 (0.20) 80 091 (0.13)

C57BL/6-1 xengsort xenome XfR
time 72 Wm 14 Wm 359 Wm 44 Wm 58 Cm 58 Wm
mouse 57 993 361 (98.93) 57 522 446 (98.13)
both 118 984 (0.20) 74 325 (0.13)
human 375 716 (0.64) 376 653 (0.64) 290 894 (0.50)
ambgs. 27 731 (0.05) 571 542 (0.98)
neither 103 895 (0.18) 74 721 (0.13)

C57BL/6-2 xengsort xenome XfR
time 67 Cm 15 Wm 422 Cm 51 Wm 62 Cm 62 Wm
mouse 62 384 448 (99.00) 61 941 783 (98.30)
both 107 019 (0.17) 66 163 (0.10)
human 189 536 (0.30) 208 149 (0.33) 132 535 (0.21)
ambgs. 27 142 (0.04) 562 659 (0.89)
neither 304 677 (0.48) 234 068 (0.37)

A/J (two mice), BALB/c (one mouse), and C57BL6 (two mice); they were sequenced on the
Illumina HiSeq 2500 platform, resulting in 11.8 to 12.7 Gbp. The datasets are available under
accession numbers SRX5904321 (strain A/J, mouse 1), SRX5904320 (strain A/J, mouse
2), SRX5904319 (strain BALB/c, mouse 1), SRX5904318 (strain C57BL/6, mouse 1) and
SRX5904322 (strain C57BL/6, mouse 2).

Ideally, all reads should be classified as mouse reads.
Table 5 shows detailed classification results and running times. Considering the BALB/c

and C57BL/6 strains first, it is evident that classification accuracy is high (over 98.9% mouse
for xengsort, over 97.4% for xenome; with less than 0.64% human reads for both tools). The
main difference between the tools is that xenome is more conservative, assigning a larger
fraction of reads to the “ambiguous” (unclassified) category. With xenome, this happens for
reads that contain two k-mers x, y, where x maps uniquely to human and y maps uniquely
to mouse. The decision rule of xengsort is more permissive and tolerant towards small
inconsistencies. Therefore, xengsort assigns more reads correctly to mouse, and fewer to the
ambiguous category. Additionally, xengsort assigns fewer reads incorrectly to human.
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However, the two samples of strain A/J give different results. Both xengsort and xenome
assign a large fraction of reads (around 21% and 3.6% in the two samples) to the human
genome, while XenofilteR assigns only 10.5% and 2.7%, respectively. While xengsort does
assign more reads to mouse, it also assigns more reads to human, following its strategy of
leaving fewer reads unassigned (ambiguous). Inspection of these reads revealed that almost
all of them are low-complexity, i.e. consist of repetitive sequence, and a check with BLAT [11]
revealed no hits in mouse and several gapped hits in the human genome. So the classification
as human reads is not incorrect from a technical standpoint, but in fact these reads appear
to point to techincal problems during then enrichment step of the library generation. An
additional low-complexity filter would remove most problematic reads.

Concerning running times, we find that xengsort needs around 70 CPU minutes for one
of these datasets, and less than 15 minutes of wall clock time using 8 threads. The speed-up
being less than 8 results from serial intermediate I/O steps. While xenome makes better
use of parallelism, it is slower overall, requiring 5 to 6 times the CPU work of xenome. For
only scanning already aligned BAM files, XenofilteR is surprisingly slow, and we see that we
can sort the reads from scratch in almost the same amount of CPU work that is required
to compare alignment scores. When adding bwa mem alignment times (even without the
time required for sorting the resulting BAM files), XenofilteR needs an additional 887 to
1424 CPU minutes for the human alignments and an additional 424 to 777 minutes for the
mouse alignments per dataset, making the alignment-based approach far less efficient than
the alignment-free approach.

Human genome (GIAB) matepair library. We obtained FASTQ files of an Illumina-
sequenced 6kb matepair library from the Genome In A Bottle (GIAB) Ashkenazim trio dataset
according to the provided sequence file index (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_
wgs_08032015). The data represents a family (mother, father, son). Ideally, we see only
human reads.

Figure 3A shows the classification results for xengsort and xenome. XenofilteR reported
that the BAM files were too large to be processed and did not give a result (400 GB total
for human and mouse; each BAM file over 30 GB in size). We see that almost all reads
are correctly identified as human, while a small fraction is neither, which could be adapter
dimers or other technical issues. However, xenome classifies a similarly small fraction as
ambiguous. We observe the same wall clock time ratio (about 3.5) between xenome and
xengsort as for the mouse exome dataset.

Because this is a very large dataset (112 GB gzipped FASTQ), we additionally evaluated
the effects of using xengsort’s “quick mode”. We observed a significant reduction in processing
time (by about 33%) and almost unchanged classification results. We also ran the xengsort
classification with the optimized hash table (using an optimized assignment computed using
the methods from [18] and found a small reduction (9%) in running time.

We conclude that both alignment-free tools accurately recognize that this is a pure human
dataset, and that xengsort is again more CPU-efficient and faster, given the same resources.

Chicken genome. We obtained a paired-end (2x101bp) Illumina whole genome sequencing
run of a chicken genome from a whole blood sample (accession SRX6911418) with a total of
251 million paired-end reads. Ideally, none of these reads are recognized as mouse or human
reads. Figure 3B shows divergent results. For XenofilteR, we can only say that almost no
reads are extracted as human; the remainder is unclassified. Xenome assigns a small number
of reads to each category and only around 90% into the “neither” category, while xengsort
assigns 98.11% of the reads as “neither”.
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Figure 3 Classification results of different tools (XenofilteR, xenome, xengsort, and partially
xengsort with “quick” option) on several datasets: A: GIAB human matepair dataset (XenofilteR
did not run on this dataset); B: Chicken genome; C: Human lymphocytic leukemia RNA-seq data;
D: Patient-derived xenograft (PDX) RNA-seq data. E: CPU times on the PDX RNA-seq dataset
with different tools and different xengsort parameters (see text).



J. Zentgraf and S. Rahmann 4:13

Concerning running time (cf. Table 4), the scan of XenofilteR here beats the alignment-free
tools because both BAM files are essentially empty, as very few reads align against human or
mouse. Also, the speed advantage of xengsort over xenome is less on this dataset, mainly
because most k-mers are not found in the index and require h = 3 memory lookups and
likely cache misses. Such a dataset that contains neither graft nor host reads is aversarial for
our design of xengsort; it is also unlikely to be encountered in practice.

Human lymphocytic leukemia tumor RNA-seq data. We obtained single-end FASTQ files
from RNA-seq data of 5 human T-cell large granular lymphocytic leukemia samples, where
recurrent alterations of TNFAIP3 were observed, and 5 matched controls (13.4 Gbp to
27.5 Gbp). The files are available from SRA accession SRP059322 (datasets SRX1055051 to
SRX1055060). Surprisingly, not all fragments were recognized as originating from human
tissue (Figure 3C). While xenome and xengsort agreed that the human fraction is close to
75%, XenofilteR assigned considerably fewer reads to human origins (less than 70%).

For this and other RNA-seq datasets, we trimmed the Illumina adapters using cutadapt
[15] prior to classification, as some RNA fragments may be shorter than the read length. If
this step is omitted, even fewer fragments are classified as human (graft): just below 70% for
xenome and xengsort, and only about 53% for XenofilteR. The number of fragments classified
as neither increases correspondingly.

We investigated the reads classified by xengsort as neither human nor mouse. Quality
control with FastQC [2] revealed nothing of concern, but showed an unusual biomodal
per-fragment GC content distribution with peaks at 45% and 55%. BLASTing the fragments
against the non-redundant nucleotide database [6] yielded no hits at all for 97% of these
fragments. A small number (2%) originated from the bacteriophage PhiX, which was to
be expected, because it is a typical spike-in for Illumina libraries. The remaining 1% of
fragments showed random hits over many species without a distinctive pattern. We therefore
concluded that the neither fragments mainly consisted of artefacts from library construction,
such as ligated and then sequenced random primers.

Concerning running times (Table 4), we observed again that xengsort is more than 3
times faster than xenomeand that xengsort needs time comparable to XenofilteReven when
only the time for sorting and scanning existing BAM files is taken into account. Producing
the alignments takes much longer.

Patient-derived xenograft (PDX) RNA-seq samples from human pancreatic tumors. We
evaluated 174 pancreatic tumor patient-derived xenograft (PDX) RNA-seq samples that are
available internally at University Hospital Essen. Figure 3D shows that all three tools classify
between 70% and 74% as graft (human) fragments. Again, XenofilteR seems to be the most
conservative tool with about 70%, and xenome classifies about 72% as human and xengsort
74%. The remaining reads are not classified by XenofilteR, while xenome and xengsort both
assign about 25% to host (mouse). Furthermore, xenome classifies about 2% and xengsort
less than 1% as ambiguous. So we observe that on all datasets, xengsort is more decisive
than xenome and, judging from the pure human and mouse datasets, mostly correct about it.
Because this is a large dataset, we also applied xengsort’s quick mode and found essentially
no differences in classification results (less than 0.001 percentage points in each class; e.g. for
graft: quick 74.0111% vs. standard 74.0105% of all reads; difference 0.0006%; cf. Fig. 3D).

Concerning running time, Figure 3E shows that the alignment using bwa-mem and the
sorting of the BAM file for XenofilteR took over 284 191 CPU minutes (close to 200 days).
After that, XenofilteR required an additional 16 043 CPU minutes (over 11 days) to classify
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the aligned and sorted reads. In comparison, xenome with 59 691 CPU minutes (41.5 days)
took only 20% of the time used by bwa-mem and XenofilteR, and xengsort needed 13 555 CPU
minutes (9.5 CPU days) to sort all reads and is therefore even faster than the classification
by XenofilteR alone, even excluding the alignment and sorting steps, and over 4 times faster
than xenome. Using the “quick mode” with an optimized hash table at 88% load needed only
5 713 CPU minutes (less than 4 CPU days), i.e., less than half of the time of a full analysis.

We additionally examined some trade-offs for this dataset. First, we note that only
counting proportions without output (“count” operation) is not much faster than sorting the
reads into different output files (“sort” operation): 13285 vs. 13555 CPU minutes (2% faster).
We additionally measured the running time of the xengsort’s count operation on hash tables
with different load factors (88% and 99%) using both the standard assignment by random
walk and an optimal assignment [18]. As expected, a load factor of 99% was slower than 88%
(by 10.4% on the random walk assignment, but only by 2.6% on the optimized assignment).
Using the optimal assignment gives a speed boost (13.3% faster at 88% load; 19.3% at 99%
load). The optimized assignment at 99% load yields an even faster running time than the
random walk assignment at 88% load by 11% (11 824 vs. 13 285 CPU minutes).

4 Discussion and Conclusion

We revisited the xenograft sorting problem and improved upon the state of the art in
alignment-free methods with our implementation of xengsort.

On typical datasets (PDX RNA-seq), it is at least four times faster and needs less
memory than the comparable xenome tool. Our experiments show that it provides accurate
classification results, and classifies more reads than xenome, which more often bails out when
uncertain. Surprisingly, on PDX datasets, our approach is even faster than scanning already
aligned BAM files. This favorable behavior arises because almost every k-mer in every read
can be expected to be found in the key-value store, and lookups of present keys are faster
than lookups of absent keys with our data structure.

On adversarial datasets (e.g., a sequenced chicken genome, where almost none of the
k-mers can be found in the hash table), xengsort is 2 times faster than xenome and about 8
times slower than scanning pre-aligned and pre-sorted BAM files (which are mostly empty).

However, given that producing and sorting the BAM files takes significant additional
time, especially for computing the (non-existing) alignments, our results show that overall,
alignment-free methods require significantly less computational resources than alignment-
based methods. In view of the current worldwide discussions on climate change and energy
efficiency, we advocate that the most resource-efficient available methods should be used for a
task, and we propose that xengsort is preferable to existing work in this regard. Even though
one could argue that alignments are needed later anyway, we find that this is not always
true: First, to analyze PDX samples, typically only the graft reads are further considered
and need to be aligned. Second, recent research has shown that more and more application
areas can be addressed by alignment-free methods, even structural variation and variant
calling [16], so alignments may not be needed at all.

On the methodological side, we developed a general key-value store for DNA/RNA k-mers
that allows extremely fast lookups, often only a single random memory access, and that has
a low memory footprint thanks to a high load factor and the technique of quotienting.

Thus this work might be seen as a blueprint for implementations of other alignment-free
methods (for gene expression quantification, metagenomics, etc.). In principle, one could
replace the underlying key-value store of each published k-mer based method by the hashing
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approach presented here and probably obtain a speed-up of factor 2 to 4, while at the same
time saving some space for the hash table. In practice, such an approach may be difficult
because the code in question is often deeply nested in the application. However, we would
like to suggest that for future implementations, three-way bucketed Cuckoo hash tables with
quotienting should be given serious consideration.

A (small) limitation of our approach is that the size of the hash table must be known (at
least approximately) in advance. (Growing it would mean re-hashing everything). Fortunately,
the total length of the sequences in the k-mer key-value store provides an easily calculated
upper bound. The advantage of such a static approach is that only little additional memory
is required during construction.

The software xengsort is available at http://gitlab.com/genomeinformatics/xengsort
under the MIT license. Installation and usage instructions are provided within the README
file of the repository. The software is written in Python, but makes use of just-in-time
compilation at runtime using the numba package [14]. While requiring an additional 1–2
seconds of startup time, this allows for many optimizations, because certain parameters that
become only known at run time, such as random parameters for the hash functions, can be
compiled as constants into the code. These optimizations yield savings that can exceed the
initial compilation effort.

Further variants of our approach can be explored and evaluated: We already introduced
a “quick mode”, similar to the one in kallisto [3], that is faster, but may falsely classify
problematic (amiguous) reads as belonging to a specific species. In practice, this does not
appear to be a problem. In the future, we may alternatively reduce the number of k-mer
lookups by not examining every k-mer, but only minimizers in windows of fixed size, using
min-hashing or other sampling methods. Another alternative is to base the classification
not on the number of (overlapping) k-mers belonging to each species, but on the number of
basepairs covered by k-mers of each species. Such investigations are ongoing.

While we have indications that classification results agree well overall among all methods
and variants, we concur with a recent study [10] that there exist subtle differences, whose
effects can propagate through computational pipelines and influence, for example, variant
calling results downstream, and we believe that further evaluation studies are necessary. In
contrast to their study, we however suggest that a best practice workflow for PDX analysis
should start (after quality control and adapter trimming on RNA-seq data) with alignment-
free xenograft sorting, followed by aligning the graft reads and the reads that can originate
from both genomes to the graft genome. In any workflow, the latter reads, classified as
“both”, may pose problems, because one may not be able to decide the species of origin.
Indeed, ultraconserved regions of DNA sequence exist between human and mouse. In this
sense we believe that full read sorting (into categories host, graft, both, neither, ambiguous,
as opposed to extracting graft reads only) gives the highest flexibility for downstream steps
and is prefereable to filter-only apporaches.
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Abstract
Cancer arises from an evolutionary process where somatic mutations occur and eventually give rise
to clonal expansions. Modeling this evolutionary process as a phylogeny is useful for treatment
decision-making as well as understanding evolutionary patterns across patients and cancer types.
However, cancer phylogeny inference from single-cell DNA sequencing data of tumors is challenging
due to limitations with sequencing technology and the complexity of the resulting problem. Therefore,
as a first step some value might be obtained from correctly classifying the evolutionary process as
either linear or branched. The biological implications of these two high-level patterns are different
and understanding what cancer types and which patients have each of these trajectories could
provide useful insight for both clinicians and researchers. Here, we introduce the Linear Perfect
Phylogeny Flipping Problem as a means of testing a null model that the tree topology is linear and
show that it is NP-hard. We develop Phyolin and, through both in silico experiments and real data
application, show that it is an accurate, easy to use and a reasonably fast method for classifying an
evolutionary trajectory as linear or branched.
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1 Introduction

The clonal theory of cancer states that tumors arise from the accumulation of somatic
mutations in a population of cells [18]. This process leads to a tumor comprised of hetero-
geneous clones – groups of cells with similar genotypes – or what is commonly referred to
as intra-tumor heterogeneity. By performing bulk and/or single-cell DNA sequencing of
a heterogeneous tumor biopsy, researchers and clinicians may infer reasonable models of
this evolutionary process for important downstream analysis and clinical decision-making.
Specifically, the evolution of a tumor is represented by a phylogeny, i.e. a rooted tree where
the leaves of the tree represent the extant cells of the tumor, internal vertices represent
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Figure 1 Phyolin identifying a linear perfect phylogeny in single-cell DNA sequencing
data (a) A graphical depiction of Phyolin identifying a linear perfect phylogeny in single-cell DNA
sequencing data when given a binary matrix B and a false negative rate β∗. (b) An example of
error free single-cell data that represents a linear perfect phylogeny and the equivalent clonal tree
representation.

ancestral tumor cells, and the root represents a normal cell. Due to trade-offs between the two
data types, techniques for phylogeny inference have been developed for both bulk-sequencing
and single-cell data individually [4–6,13,20] as well as combined for joint inference [15,16,25].
Bulk-sequencing data is less costly than single-cell data but results in a set of plausible
phylogenies making it difficult to uniquely determine the true evolutionary history of a
tumor [7, 19]. Conversely, single-cell data allows high resolution of the evolutionary process
but is subject to high rates of sequencing errors and is more expensive than bulk-sequencing.
In particular, single-cell sequencing has a high false negative rate, as much as 40% [8],
implying that actual mutations present in a cell might not be indicated correctly in the
resulting data. Doublets, where multiple cells are simultaneously sequenced as a single cell,
are also a unique challenge of single-cell data.

One important open question is whether certain types or subtypes of cancers follow
specific evolutionary patterns. Since tumors are typically biopsied at only a single point
in time for reasons related to patient care, there does not yet exist sufficient longitudinal
data to fully answer this question. However, it is believed that there are four high-level
categories of tumor evolution: linear evolution, branching evolution, neutral evolution and
punctuated evolution [3]. Of these four types, the simplest is linear evolution and will be
the focus of this work. Linear evolution results when subsequent driver mutations develop
a strong selective advantage and outcompete other clones during a clonal expansion [3].
By contrast, in branching evolution, a clone can diverge into separate lineages resulting in
distinct branches and a tree-like model of evolution.

A useful first step in gaining insight into the evolutionary patterns of different cancer
types is to determine the likelihood of each evolutionary process under available sequencing
data. Suppose, we are given single-cell data in the form of a matrix where each row in the
data is a cell and each column is a single-nucleotide variant (SNV), hereafter referred to as
mutation. The entries in the data would then be either 1 or 0 indicating the presence of a
mutation in a particular cell. Suppose also that we assume a null model of linear evolution
and are given a false negative rate for the technology under which the single-cell sequencing
was performed. We could then determine the minimum number of changes from 0 to 1,
indicating the entry was a false negative, such that the data is representative of a linear
perfect phylogeny. This would then provide an estimate of the false negative rate which
could be compared with the expected false negative rate.
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Azer et al. [1] utilized a deep learning approach to decide if single-cell data indicates
whether a tumor followed a linear or branched evolutionary process. Although their method
is fast at prediction time and performs well on simulated data, it has not yet been proved
whether the problem of identifying the minimum number of flips to obtain a linear perfect
phylogeny is NP-hard. Additionally, the neural networks are trained on inputs of a fixed size
and while padding could be used in predicting an input smaller than the fixed size [1], a new
network would have to be trained if the input size is larger than the trained network. This
drawback significantly reduces the speed advantage of such an approach as training of neural
networks is both a time consuming and intensive process.

Here, we prove that the problem of determining the minimum number of flips from 0 to 1
in single-cell data in order for the data to represent a linear perfect phylogeny under the
infinite sites model is NP-hard. Therefore, we develop a method called Phyolin that makes
use of constraint programming to find the minimum number of flips required to represent
a linear perfect phylogeny. The outputted number of flips from Phyolin is then used to
compute the estimated false negative rate to assess the plausibility of a linear evolutionary
pattern (Figure 1(a)). We evaluate the performance of Phyolin on both simulated and real
datasets, demonstrating that our method is an accurate and reasonably fast method for
classifying an evolutionary trajectory as linear or branched.

2 Problem Statement

Let n be the number of single cells sequenced and m be the number of unique mutations
present in the n cells. When a single cell is sequenced, assuming no errors, the group of
mutations present in that cell form a clone of the tumor. Under the infinite sites assumption
(ISA), where each mutation i is gained exactly once and never subsequently lost, each
sequenced cell corresponds to a leaf and we may infer a two-state perfect phylogeny using
a polynomial time algorithm [12] where the binary character states encode the presence of
mutation i in a cell j. We may equivalently represent a perfect phylogeny T as a binary
matrix B ∈ {0,1}n×m where bij = 1 if cell i harbors mutation j and 0 otherwise, for all
i ∈ [n] and j ∈ [m]. We provide the following definition [11] for convenience:

I Definition 1. Given an n by m binary-character matrix B for n cells and m mutations, a
perfect phylogeny for B is a rooted tree T with exactly n leaves provided that:
1. Each of the n cells labels exactly one leaf of T .
2. Each of the m mutations labels exactly one edge of T .
3. For any cell p, the mutations that label the edges along the unique path from the corres-

ponding leaf to the root specify all of the mutations of p whose state is one.

Next, we formalize the notation of a set of cells that contain a mutation as the one-state.

I Definition 2. The one-state Oj of mutation j is the set of single cells i where bij = 1.

A perfect phylogeny T either depicts linear evolution or branched evolution. Intuitively, a
matrix B represents linear evolution if there exists a total order of the set of one-states with
respect to the subset relation. Otherwise, we say perfect phylogeny T represents branched
evolution. Also, we note that perfect phylogeny T is not necessarily bifurcating.

Utilizing the collection of one-states for all m mutations, we determine if a given binary
matrix B represents a linear perfect phylogeny as follows (Figure 1(b)):

I Definition 3. A binary matrix B ∈ {0,1}n×m represents a linear perfect phylogeny if there
exists a permutation π : [m]→ [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(|m|).

WABI 2020



5:4 Phyolin: Linear Perfect Phylogeny Reconstruction

However, single-cell sequencing is not error free and matrix B can fail to represent a
linear perfect phylogeny even when it is representative of the true evolutionary process.
False negatives, where a mutation that is present is not indicated as such, are particularly
problematic with rates of up to 0.4 [8]. False positives, where absent mutations are indicated
as present, are less of an issue in practice with rates less than 0.0005 for typically used whole-
genome amplification strategies [9]. Given that false negatives are particularly prevalent, we
would like to know how many false negatives would have had to occur in order for the inferred
perfect phylogeny under the ISA to have a linear structure? This leads to the following
problem statement.

I Problem 1 (Linear Perfect Phylogeny Flipping Problem (LPPFP)). Given
a matrix B ∈ {0,1}n×m, find the minimum number of bit flips from 0 to 1 such that B
represents a linear perfect phylogeny.

Under the null model, the true phylogeny is linear and thus the input data B must
represent a linear perfect phylogeny. Therefore, any implied branching in matrix B is
interpreted as a false negative and must be corrected through flipping to represent the
presumed linear perfect phylogeny. It is important to note that under this null hypothesis
a trivial solution always exists for any input. In the worst case, every 0 can be flipped to
a 1. This results in a binary matrix with all values equal to 1, suggesting a linear perfect
phylogeny with a single clone harboring all of the mutations. By seeking the solution that
requires the fewest number of flips, we maximize the likelihood of the null model given
the observed data, assuming an estimated false negative rate β∗ ≤ 0.5 of the sequencing
technology. Upon obtaining the solution to the LPPFP, we reverse the problem and compute
the implied false negative rate β̂ that resulted from flipping in order to assess the plausibility
of our null model. Then given the following null hypothesis, H0 : β̂ ≤ β∗, rejection of H0 is
equivalent to concluding that a linear perfect phylogeny is not plausible.

3 Complexity

Following [2], we will prove that LPPFP is NP-hard by a reduction from the chain graph
insertion problem, a known NP-complete problem [24].

I Theorem 4. LPPFP is NP-hard.

Proof. We prove that LPPFP is NP-hard by considering a decision version k-LPPFP asking
whether there exist k bit flips in input matrix B from 0 to 1 yielding a linear perfect phylogeny.
We claim that k-LPPFP is NP-complete by reduction from the chain graph insertion problem.

We begin by stating the definition of a chain graph and introduce the chain graph insertion
problem.

I Definition 5. A bipartite graph G = (X∪Y,E) is a chain graph if there exists a permutation
φ : {1, . . . , |Y |} → Y such that η(φ(1)) ⊆ η(φ(2)) ⊆ . . . ⊆ η(φ(|Y |) where η(v) = {w ∈ X :
(v,w) ∈ E} is the set of adjacent nodes of v.

I Problem 2 (Chain Graph Insertion Problem (CG-IP) [24]). Given a bipartite graph
G = (X ∪ Y,E) and integer k, does there exist a chain graph G′ = (X ∪ Y,E′) such that
E ⊆ E′ and |E|+ k = |E′|?

k-LPPFP ∈ NP because given a certificate (set of k flips from 0 to 1) to k-LPPFP, we
could order the columns by increasing cardinality of the resulting one-state sets and then
check if that permutation satisfies the definition of a linear perfect phylogeny. We will now
show that CG-IP ≤p k-LPPFP.
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Figure 2 Chain graph insertion problem reduction (a) Polynomial time reduction of the
CG-IP to LPPFP. (b) An equivalent solution of the CG-IP and LPPFP when k = 3.

Starting from an instance (G = (X ∪ Y,E),k) of CG-IP, we construct an instance B of
k-LPPFP in the following manner. Binary matrix B has |X| rows and |Y | columns, and its
entries are directly obtained from the edge set E of G: For each v ∈ Y , we set biv = 1 if i is
a neighbor of v for all i ∈ X and let biv = 0 otherwise. This can be done in polynomial time.
Figure 2(a) demonstrates the polynomial time reduction. We claim that k edge insertions
suffice to obtain a chain graph from G if and only if B represents a linear perfect phylogeny
when k bits are flipped from 0 to 1.

(=⇒) Suppose (G,k) ∈ CG-IP. Then there exists an edge set D ⊆ {(u,v) : u ∈ X, v ∈
Y } − E such that |D| = k and H = (X ∪ Y,E ∪D) a chain graph. Then by definition of
chain graph, there exists an permutation φ : {1 . . . |Y |} → Y such that η(φ(1)) ⊆ η(φ(2)) ⊆
. . . ⊆ η(φ(|Y |). It is easy to see that by construction, η(v) = Ov, for all v ∈ Y . Since φ
exists, a permutation π of the one-states also exists. Therefore, B represents a linear perfect
phylogeny.

(⇐=) Suppose (B,k) ∈ k-LPPFP. Then there exists a set F of positions (i,j) where
bij = 0 to bij = 1 such that |F | = k. Let B∗ be the resulting matrix after each flip at
position (i,j) ∈ F is made. Then B∗ represents a linear perfect phylogeny and there exists
a permutation π : {1 . . .m} → [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(|m|). Using the
equivalence between one-states and neighbors, H = (X ∪Y,E) can be constructed from B∗ in
the following manner. First, create the set X = [n] from the rows of B∗ and the set Y = [m]
from the columns of B∗. Then, create the set E of edges as {(x,y) ∈ X × Y | b∗xy = 1}. By
construction, H = (X ∪ Y,E) is a chain graph. J

4 Method

4.1 Model

To solve the LPPFP, we formulate a constraint optimization problem (COP) [21]. A COP
is a constraint satisfaction problem (CSP) with an objective function that specifies which
feasible solutions are preferred based on an optimization criteria. A CSP is defined by a tuple
(X ,D, C), where X = {x1, . . . ,xn} is the set of decision variables, D = {d1, . . . dn} is the set of
domains for X and C is a set of constraints that must be satisfied. A solution a ∈ A(X ,D,C)
to a CSP is an assignment of values {x1 7→ v1, . . . , xn 7→ vn} such that vi ∈ di for all i ∈ [n]
and all constraints C are satisfied. To facilitate an objective function f : A(X ,D,C) → R,
an initial assignment â ∈ A(X ,D,C) is found. Then, a preference constraint is added to
C, such that f(a) ≤ f(â) for a minimization problem or f(a) ≥ f(â) for a maximization
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problem. The search is continued and the preference constraint updated each time a feasible
assignment â is found until no more feasible assignments exist. When this occurs, the
assignment â is returned and f(â) is the objective value. We note that in problems where
multiple optimal solutions exist, it is possible to return all such valid solutions. But even
though multiple solutions may exist, our focus is on assessing the plausibility of the null
hypothesis. Therefore, it is sufficient to consider any optimal solution even if the respective
assignments yield different linear perfect phylogenies.

First, we describe the set X of decision variables and the associated domains D used in
the formulation. The set X contains the variables x and c. Intuitively, the values taken by x
represent a binary matrix B′ used to represent a linear perfect phylogeny after flipping. More
formally, given a set n of cells and a set m of mutations, let xij = 1 if cell i has mutation j
in the linear perfect phylogeny B′ after flipping and 0 otherwise for each cell i ∈ [n], and
mutation j ∈ [m]. Then, D(xij) = {0,1}, for all i ∈ [n], j ∈ [m]. Note that a decision variable
is defined for every entry in B, even though only flips from 0 to 1 are allowed. This is to
facilitate future handling of false positives. The variables c, are used to define a permutation
of the columns in B′, such that after flipping is completed, B′ will adhere to the definition of
a linear perfect phylogeny. Recall that in order to represent a linear perfect phylogeny, there
must exist permutation π : [m]→ [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(m). Let cj = π(j)
for all j ∈ [m]. Then D(cj) = [m] for all j ∈ [m].

Since, our goal is to find the linear perfect phylogeny that requires as few flips as possible,
that is minimizing the number of false negatives we infer, we define an objective function
that minimizes the number of flips from 0 to 1,

min
∑
i∈[n]

∑
j∈[m]

(xij − bij). (1)

The set C ensures that the outputted binary matrix B′ meets the conditions of representing
a linear perfect phylogeny and also that only flips from 0 to 1 can be made. The set C
consists of three constraints,

alldifferent(c), (2)
(bij = 1)⇒ (xij = 1) ∀i ∈ [n],∀j ∈ [m], (3)
(ck < cj)⇒ (xij ≤ xik) ∀k,j ∈ [m],∀i ∈ [n]. (4)

Equation (2) is a global constraint that ensures that every mutation is assigned a unique
ordering in the permutation. Equation (3) ensures that all entries in B, where bij = 1 remain
1 in the linear perfect phylogeny B′. That is, they cannot be flipped from 1 to 0. Finally,
Equation (4) ensures the defining property of a linear perfect phylogeny is met by ensuring
that if π(k) is less than π(j) then it must hold that Ok ⊆ Oj for all k,j ∈ [m].

We implemented Phyolin in C++ utilizing IBM ILOG CP OPTIMIZER2. Phyolin is
publicly available at https://github.com/elkebir-group/phyolin.

4.2 Null Hypothesis
The formulation of the method assumes a null hypothesis that the phylogeny is linear. The
output of Phyolin is an estimate of the false negative rate β̂ under this hypothesis such that

β̂ =
∑
i∈[n]

∑
j∈[m] 1(b′ij = 1, bij = 0)∑
i∈[n]

∑
j∈[m] b

′
ij

, (5)

2 https://www.ibm.com/analytics/cplex-cp-optimizer

https://github.com/elkebir-group/phyolin
https://www.ibm.com/analytics/cplex-cp-optimizer
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where B′ = [b′ij ] is the value of the decision variables x obtained from the solution of Phyolin
and B = [bij ] is the input matrix.

Given some threshold β∗, which could be based on knowledge of the system estimated
false negative rate or alternatively conservatively set at 0.4 [8], then we can reject the null
hypothesis that the phylogeny is linear whenever β̂ > β∗.

5 Results

In order to evaluate Phyolin, we perform in silico experiments as well as run Phyolin on
real data. First, we seek to evaluate the performance of Phyolin when the simulated data
closely approximates a recently published high throughput single-cell DNA sequencing study
of an acute myeloid leukemia (AML) cohort [17] (Section 5.1). Section 5.2 describes the
application of Phyolin to patients with childhood acute lymphoblastic leukemia [10]. All
experiments were conducted on a server with Intel Xeon Gold 5120 dual CPUs with 14 cores
each at 2.20GHz and 512 GB RAM.

5.1 Simulations Approximating an Acute Myeloid Leukemia Cohort
In a recent study, Morita et al. [17] performed high-throughput targeted droplet microfluidic
DNA single-cell sequencing on a cohort of 77 patients with acute myeloid leukemia (AML)
and inferred the evolutionary tree of each patient using SCITE [13]. Utilizing high-throughput
sequencing resulted in a median of 7,584 cells sequenced per patient [17]. AML is a cancer
type where both linear and branching evolutionary patterns are suspected [17]. As a result,
the set of trees published [17] were a mix of linear and branched patterns.

Unfortunately, the single-cell data is not yet publicly available but the estimated clonal
prevalence of each clone in the inferred publish tree was included in the supplementary
material along with the estimated per patient false negative rate for the sequencing technology.
The clonal prevalence of clone i is the number of cells in the sample mapped to clone i
divided by the total number of cells in the sample. We utilize this published data to evaluate
Phyolin on a scenario that closely aligns to a highly realistic scenario. Therefore, we utilize
the published clonal prevalence rates for a subset of 12 patients in the cohort in order to
simulate the total number of single-cells sequenced at false negative rate β = 0.05. This value
of β is to approximate the average system false negative rate for the sequencing technology
used in [17]. The subset contains six patients with linear trees and mutations ranging from
3-5 and six patients with branched trees and mutations ranging from 3-7. A total of 10
replications were performed per simulated patient. Table 1 shows a summary of the patients
selected for inclusion in the simulation study.

We set an upper limit on runtime of Phyolin at 500 seconds with 80% of the replications
returning an optimal solution in under the time limit. We chose the 500 second time limit to
facilitate timely analysis of the input data. Figure 3(a) shows the distribution of runtime
by the simulated evolutionary pattern. Linear patterns resulted in a median runtime of 33
seconds (IQR: 8-82 seconds) and branched patterns resulted in a median of 156 seconds
(IQR: 117-502 seconds). The median input size (cells × mutations) of the linear patterns was
24,435 and 28,775 for branched patterns. The largest input was for AML-74 with 9,279 cells
by 5 mutations and no replications completed within the time limit. Only 1 replication with
a linear pattern did not complete within the time limit. This implies that optimal solutions
are found much faster when the true pattern is linear.

Figure 3(b) compares the distribution of the estimated false negative rate β̂ for the
patients with linear versus branched published trees over all 10 replications. The simulated
system false negative rate was 5% and is shown as a dashed line where relevant. From
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Figure 3 Phyolin results of the in silico experiments on a simulated cohort of patients
with AML (a) A comparison of Phyolin runtimes in seconds between instances with different
evolutionary patterns. (b) A comparison of the distribution of β̂ between simulated linear and
branched topologies over 10 replications. (c) The distribution of the difference between the number
of flips performed by Phyolin and the simulated flips per patient. (d) The mean value of β̂ for each
patient along with the standard error. (e) Relationship between estimated false negative rate and
the ancestor-descendant distance. Each point represents the mean value over 10 replications and
is labeled by the numerical patient identifier. A linear trend line is shown with a 95% confidence
interval.
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Table 1 Simulation study based on characteristics of a published AML cohort [17]
Shown is the patient identifier, the published evolutionary pattern of the tree, the number of
mutations, the total cells sequenced [17], the median number of false negatives over 10 replications,
Phyolin estimated number of false negatives over 10 replications, the median β̂ over 10 replications,
and the median probability of a linear perfect phylogeny as determined by the comparison deep
learning method [1].

patient pattern m n

[17]
median
flips

Phyolin
median
flips

median
β̂

med
prob.

AML-2 Linear 5 7931 1826 1039 0.037 0.70
AML-8 Linear 3 4675 759 294 0.029 0.42
AML-10 Linear 4 8729 1427 584 0.037 0.56
AML-33 Linear 3 8120 1091 350 0.027 0.41
AML-47 Linear 3 6491 1135 488 0.032 0.42
AML-58 Linear 3 8170 1280 472 0.029 0.40
AML-53 Branched 3 8013 544 2220 0.44 0.39
AML-62 Branched 6 4027 726.5 2299 0.19 0.58
AML-63 Branched 4 8347 1238.5 1432 0.084 0.44
AML-67 Branched 7 6024 1061.5 6440 0.31 0.71
AML-69 Branched 3 7462 651.5 2122 0.16 0.29
AML-74 Branched 5 9279 1020 294 0.17 0.38

Figure 3(b), we note a significant difference in the distributions between linear and branched
instances. Additionally, the median of the linear perfect phylogeny patients is 0.03 (IQR:
0.028-0.032) and every linear replication is less than β∗ = 0.05 while the median of the
branched perfect phylogeny patients is 0.19 (IQR: 0.16-0.31) and every branched replication
is greater than β∗ = 0.05.

Figure 3(c) compares the difference between the number of flips performed by Phyolin
and the actual number of simulated false negatives. Interestingly, Phyolin performs fewer
flips than simulated false negatives for all linear patients and performs a much higher number
of flips than simulated for branched patterns. This underestimation can be attributed to
the fact that not every false negative implies that branching occurs and so Phyolin only
needs to flip those that do. Thus, the difference between the number of Phyolin flips and the
number of simulated flips may be negative. The fact that Phyolin performs more flips than
was actually simulated in the branched cases aligns with the original intuition for its design
as we not only need to correct false negatives but also true negatives in order to force the
pattern to be linear.

Figure 3(d) shows the mean β̂ and standard error for each simulated patient over the 10
replications. The number of mutations are also shown in order to investigate if increasing
number of mutations increases β̂. Although there appears to be some effect when increasing
the number of mutations, it does not strictly hold. However, utilizing a strict threshold of
β∗ = 0.05 results in perfect classification of the topology for all patients and all replications.

Since the number of mutations does not necessarily impact the estimated false negative
rate β̂, another consideration is whether or not β̂ increases with the amount of branching. To
this end, we compare the ancestor-descendant distance between the simulated true tree B∗
and the inferred linear tree B′. A mutation x is an ancestor of mutation y if x occurs on the
path from the root to y, in which case y is said to be a descendant of x. Ancestor-descendant
(AD) distance is defined as the size of the symmetric difference between the sets of ordered
pairs of characters, or ancestor-descendant pairs, introduced on distinct edges of perfect
phylogenies B∗ and B′. A higher AD distance implies a greater degree of branching in
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Figure 4 Results of the Deep Learning approach [1] applied to the in silico experi-
ments on a simulated cohort of patients with AML (a) A comparison of the distribution of
the probability of a linear perfect phylogeny between simulated linear and branched topologies over
10 replications. (d) The mean value of the probability of a linear perfect phylogeny for each patient
along with the standard error. A horizontal line indicates the threshold probability (0.05) used to
classify an input as linear.

the true tree. For example AML-63 has only one branch and AML-67 has three distinct
branching events. Figure 3(e) shows the relationship between the mean estimated false
negative rate β̂ and the mean AD distance per simulated patient over 10 replications. The
AD distance is 0 for all patients with a simulated linear perfect phylogeny. This means that
Phyolin correctly infers the true tree when it is linear. Also, there is evidence of a correlation
between the estimated false negative rate β̂ and the AD distance.

Azer et al.’s [1] deep learning method for classifying topology is the most similar method
for comparison with Phyolin. Therefore, we retrained this deep neural network to support
our input size of 9300 cells and 7 mutations. We used a default hidden layer size of 100
and drop-out rate of 0.9, 5000 training examples and 500 epochs. We did not modify any
other hyperparameters. The input size was selected so that only one network needed to
be trained for all in silico experiments and we used padding for any instances where the
n < 9300 or m < 7. After 200 epochs the best validation accuracy was 64.1% and completed
in 2168 seconds (36.1 minutes). After 500 epochs, the best validation accuracy was 64.8% and
completed in 3997 seconds (66.6 minutes). This suggests that further learning was unlikely.
We report the probability that the phylogeny is linear on the same simulation instances when
evaluated with the trained model.

Table 1 shows the median probability that the phylogeny is linear over the 10 replications
per simulated patient. We use a cutoff of 0.5 as the threshold for classifying a topology as
linear. Figure 4(a) shows the distribution of the probabilities over all patient replications by
ground truth topology. Classification accuracy was 100% for 6 of the 12 simulated patients
(Linear: AML-2, AML-10, Branched: AML-53, AML-63, AML-69 and AML-74) and 0%
for the remaining 6 simulated patients. Figure 4(b) shows mean estimated probability per
patient and standard error for the 10 replications. The predicted probability tends to increase
as the number of mutations increases.

In summary, the simulated AML cohort results show that, in contrast to the Deep
Learning approach [1], Phyolin correctly and quickly classifies large instances as linear with
a strict threshold β∗ set at the system estimated false negative rate. Furthermore, as the
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Table 2 Summary of Phyolin analysis of two patients with ALL Shown is the patient
identifier, the number of cells sequenced [10], the number of mutations, the number of flips performed
by Phyolin, the estimated false negative rate β̂ and the false negative rate threshold β∗ that was
estimated for the sequencing technology [14].

patient cells sequenced [10] mutations Phyolin flips β̂ β∗ [10]
Patient 2 115 16 403 0.36 0.18
Patient 6 146 10 191 0.15 0.18

amount of branching increases, the estimated β̂ tends to increase. Thus the greater the
difference between β̂ and β∗, the more confident we can be in rejecting the null hypothesis
that the phylogeny is linear.

5.2 Real Data of Childhood Acute Lympoblastic Leukemia Patients
Gawad et al. [10] performed single-cell DNA sequencing on a cohort of six patients with
childhood acute lymphoblastic leukemia (ALL). As a subtype of leukemia, ALL is also
postulated to follow both linear and branched trajectories [22]. We evaluate Phyolin on two
of the six patients in this cohort: Patient 2 and Patient 6. The input size for Patient 2 was
115 cells by 16 mutations. Two independent, previous analyses of the sequencing data of
Patient 2 suggested a branched topology [15,23].

In addition, we consider Patient 6 because this patient was analyzed by the deep learning
method [1]. In another line of work, Kuipers et al. [14] investigated the validity of the ISA
in single-cell data within the ALL dataset [10]. Using their method, they compared the
likelihood of the data under both a finite sites and infinite sites model via a Bayes Factor
and determined with high probability that Patient 6 suffered a loss of the SUSD2 mutation.
They used SCITE [13] to infer trees from the single-cell data under both an infinite sites
and finite sites model. These trees are show in Figure 5. The tree inferred under the ISA is
linear (Figure 5(a)) while the tree inferred under the finite sites model is branched due to
the loss of SUSD2 (Figure 5(b)). The input size for Patient 6 was 146 cells by 10 mutations.
Table 2 summarizes results obtained by Phyolin.

For Patient 2, Phyolin estimated a false negative rate of 0.36, which is much greater than
the rate of 0.18 estimated in [10]. Taking β∗ = 0.18 implies rejecting the null hypothesis of a
linear perfect phylogeny. This concurs with the branched trees published in [15, 23]. Phyolin
utilized the 500 second time limit to complete its run for Patient 2 despite the small input
size.

For Patient 6, Phyolin estimated a false negative rate of 0.15. The published false negative
rate β∗ in [10] was 0.18. This implies that we cannot reject the null hypothesis of a perfect
linear perfect phylogeny. Indeed, the linear tree output by Phyolin does concur with Figure
5(a). The comparison deep learning approach [1] also concluded that the phylogeny was
linear with probability 0.79. It is important to note that allowing for mutation loss of SUSD2,
in line with [14], will lead to a smaller false negative rate β̂. This suggests that incorporating
mutation loss into Phyolin is an important area for future study.

6 Discussion

In this work, we introduced the Linear Perfect Phylogeny Flipping Problem and
showed that it is NP-hard. To solve the LPPFP, we developed a method named Phyolin that
takes as input a binary matrix of single-cell DNA sequencing data and then identifies a linear
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Figure 5 Patient 6 candidate trees Two possible trees published in [14]. (a) Tree adheres to
the ISA, (b) Tree with a branched topology indicating a mutation loss of SUSD2.

perfect phylogeny in the data by assuming that any implied branching are actually false
negatives. It returns an estimate of the false negative rate under the null hypothesis that the
perfect phylogeny is linear and allows the user to compare this estimate to a false negative
threshold at which the null hypothesis of a linear perfect phylogeny can subsequently be
accepted or rejected. We tested Phyolin on both simulated data and real data and showed
that it is more accurate than a recent deep learning method [1]. In conclusion, Phyolin is
a reliable, easy to use and fast method to assess the likelihood of a linear evolution before
more complex reconstruction methods are utilized.

There are several future research directions. First, Phyolin lacks an absolute criterion or
threshold for rejecting the null hypothesis that the phylogeny is linear. To address this, we
plan to modify Phyolin so that instead of trying to solve the problem to optimality, a user
could input a false negative rate at which he or she would fail to reject the null hypothesis of a
linear perfect phylogeny if any solution exists below the supplied threshold. This would allow
Phyolin to explicitly solve a constraint satisfaction problem and likely reduce the runtime.

Second, Phyolin can be modified to allow false positives, which means allowing flips from
1 to 0. However, before that modification is made, more robust in silico experiments should
be conducted with simulated false positives and doublets. Although false positives are rare,
it is possible that a single or a few critically positioned false positives requires excessive
inference of false negatives in order to represent a linear perfect phylogeny. High doublet
rates could potentially result in low estimates of false negative when the true phylogeny is
branched. Therefore, a constraint could also be incorporated to ignore up to the inputted
number of doublets.
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Third, Phyolin could easily incorporate mutation and cell clustering through additional
constraints when supplied with a number of cell clusters and/or mutation clusters. A search
could be performed to find the optimal number of clusters such that the likelihood of the
data of is maximized. Fourth, even when the phylogeny is branched, the trunk of the tree
may be linear or there might be a long branch with linear evolution within that branch. This
means that a subset of the mutations form a linear perfect phylogeny. A future direction is
to explore if Phyolin can identify a subset of mutations that are likely to be truncal or form
a long branch of the tree, thus potentially providing fast partial inference of the tree.

Finally, given the results of ALL Patient 6, exploring evolutionary models that allow
ISA violations, such as mutation loss, is an exciting direction for future study. In particular,
modeling Patient 6 as a 1-Dollo phylogeny, where each mutation is gained only once and
subsequently lost at most once, could potentially be achieved by replicating each column
once and then using Phyolin. If the two columns representing the same mutation are distinct
in the inferred linear perfect phylogeny, then that implies that the mutation was lost once.
The plausibility of a linear perfect phylogeny under both ISA and under a 1-Dollo model
could be compared [5].
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Abstract
Genome assembly is one of the most important problems in computational genomics. Here, we
suggest addressing the scaffolding phase, in which contigs need to be linked and ordered to obtain
larger pseudo-chromosomes, by means of a second incomplete assembly of a related species. The
idea is to use alignments of binned regions in one contig to find the most homologous contig in the
other assembly. We show that ordering the contigs of the other assembly can be expressed by a
new string problem, the longest run subsequence problem (LRS). We show that LRS is NP-hard
and present reduction rules and two algorithmic approaches that, together, are able to solve large
instances of LRS to provable optimality. In particular, they can solve realistic instances resulting
from partial Arabidopsis thaliana assemblies in short computation time. Our source code and all
data used in the experiments are freely available.
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1 Introduction

Genome assembly from sequencing reads enables the analysis of an organism at its genome
level and is one of the most important problems in computational genomics. The first step is
usually to assemble the reads based on overlap or k-mer based approaches to create contigs,
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(a)
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Assembly 1

Assembly 2

Assembly 1

homology-based contig joining

Contigs
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Contig_A1

Contig_B1 Contig_B2 Contig_B3

Figure 1 Homology-based scaffolding. (a) Independent initial assemblies (contigs), which
are joined into pseudo-chromosomes by using homologies between contigs for scaffolding. (b)
Alignments between contigs from different samples. A1 determines the order of B1, B2 and B3.

which then need to be put into correct order and orientation in a scaffolding phase to generate
the final assembly of pseudo-chromosomes. Presence of a high-quality chromosome-level
reference genome of the same species can significantly simplify assembly generation as it
can be used as a template to order these contigs [1, 3]. However, for many species, such a
reference genome is not available.

There are two commonly used approaches for scaffolding. First, different types of maps
provide anchors for the contigs in the genome. These could be, for example, genetic maps,
physical maps or cytological maps providing markers with known positions in the genome
and known distances between each other [9]. The other approach is to use long-range
genomic information to link multiple contigs and put them into correct order and orientation.
Prominent examples are linked barcoded reads like 10X sequencing [10], Hi-C data based on
chromatin conformation capture [2] and optical mapping [7].

Yet another way for contig scaffolding is to use two or more incomplete assemblies from
closely related samples [4]. Regions of unconnected contigs for one sample might be connected
with the help of another, related sample, e.g., a genome assembly of an individual of the
same species, providing an overall gain in information for both samples. Local similarities
between contigs from different samples can be used to align and order them. Ideally, this
leads to long chromosome like sequences called pseudo-chromosomes, where the contigs of
different samples are aligned like shingles next to each other, as illustrated in Figure 1(a).

Note that structural rearrangements (such as translocations or inversions) and repeat
regions between genomes can result in non-sequential and non-unique mappings within
contigs and can thus lead to misleading connections between contigs. These events need to
be considered when finding homologous contigs as shown in Figure 1(b).
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Contig A1 (binned)

B1

S: S′:

Contig A1 (binned)

LRS

Ordered B-contigsUnordered B-contigs

b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3 b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3

B2 B3 B4 B1 B3 B2

Figure 2 Processing of a single contig A1. The bins are matched against all contigs of another
sample B. Solving Longest Run Subsequence (LRS) on the corresponding string S, yields a maximal
subsequence with at most one run for every contig. This induces the optimal order for a subset of
B-contigs.

In the simplest setting of two incomplete assemblies we are given two sets of contigs
A = {A1, . . . , Al} and B = {B1, . . . , Bm} computed from two different samples. As already
stated, the contigs are not ordered with respect to genome positions, and it is this order
we rather want to compute. More precisely, we aim at inferring the most likely order from
between-sample overlaps among the contigs.

Assuming we want to order the contigs in B, we divide every contig Ai of A into smaller,
equally sized chunks, called bins, map them against the contigs in B and determine the best
matching contig for every bin. If Ai actually overlaps with multiple contigs in B, we should
be able to partition Ai into smaller parts based on mapping the bins to different contigs in B.
However, sequencing or mapping errors as well as mutations between the samples can cause
some bins to map onto a “wrong” contig, i.e., a contig belonging to a different area than the
bin. Therefore a method to find the best partition of Ai needs to distinguish between actual
transitions from one B-contig to another and noise introduced by errors or mutations.

Figure 2 illustrates the different steps in solving this problem. Starting from a binned
contig from A, here A1 for illustration, and its mapping preferences to the unordered contigs
in B, we reformulate this ordering problem as a string problem. In essence, we want to
find the longest subsequence of the input string of mapping preferences that consists only
of consecutive runs of contigs from B where each such run may occur at most once. This
subsequence corresponds to an ordering of the contigs in B, which can be transferred to the
original problem.

In this paper we formalize this process and introduce the Longest Run Subsequence problem
(LRS). We show that LRS is NP-hard. Nevertheless, we want to solve large instances of LRS
to provable optimality in reasonable running time and therefore present a number of reduction
rules and two algorithms based on integer linear programming and dynamic programming,
respectively. We evaluate both approaches on synthetic instances and find that they show
complementary strengths regarding the number of runs and the alphabet size. We also test
our approaches on realistic instances, which occurred during assembly of Arabidopsis thaliana
samples and could not be solved by a brute-force method. We show that all those instances
can be solved within short computation time. Our code and all data used in the experiments
are freely available at https://github.com/AlBi-HHU/longest-run-subsequence.
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2 Problem Formulation

A string S = s1, . . . , sm is a sequence over characters from a finite alphabet Σ. A subsequence
of S is a sequence si1 , . . . , sik , such that 1 ≤ i1 < i2 < . . . < ik ≤ m. We denote the substring
si, . . . , sj of S as S[i, j] and k consecutive occurrences of a character σ inside a string S as σk
and call it a run. Let σ(r) be the character of the run r and L(r) its length. By summarizing
the characters of S into maximally long runs, S can be represented as a unique sequence of
runs r1, . . . , rn = σ(r1)L(r1) . . . σ(rn)L(rn). For every σ ∈ Σ we define Pσ(i) as the index of
the last run before ri containing σ in S (0 if it does not occur). As an example, the string
from Figure 2 can be compressed to b12b4

3b1
3b3

3b1
1b3

1b2
3b3

1 with Pb1(4) = 3, Pb1(3) = 1
and Pb4(1) = 0.

We propose to model the optimal partition of a single contig as a string optimization
problem. Formally, we use the contigs from set B as the alphabet, that is Σ = {b1, . . . , bl}
and write the contig Ai as a string S = bi1 . . . bim over Σ by replacing the bins of Ai with the
corresponding character of the best match from B. On the one hand, we want every single
bin to be assigned to its preferred contig in B, but we also want a simple partition, which is
not skewed by wrong mappings of single bins. We therefore restrict valid partitions of Ai to
contain at most one continuous part for every contig in B. This prevents large parts to be
interrupted by single mismatching bins, at the cost of not being able to capture short-ranged
translocations as seen in Figure 1(b). A partition can be represented as a subsequence S′ of
the string S, which only contains at most one run for every σ ∈ Σ. The runs in S′ are the
parts corresponding to one B-contig each, while the dropped characters from S are bins in
conflict with S′. Finding the best partition can thus be stated as the following optimization
problem:

I Problem 1 (Longest Run Subsequence, LRS). Given an alphabet Σ = {σ1, . . . , σ|Σ|} and a
string s = s1, . . . , sm with si ∈ Σ, find a longest subsequence S′ = s′1, . . . , s

′
k of S, such that

S′ contains at most one run for every σ ∈ Σ. That is, for every pair of positions i and j with
i < j, it holds that

s′i = s′j ⇒ s′l = s′i for all i < l < j .

We denote the length of an optimal LRS solution for S with LRS (S). Since we want
to maximize the length of the run subsequence, it is always beneficial to either completely
add or completely remove a run of S. Once a character si ∈ Σ from a run ski is added to s′,
there can never be any other occurrence of si outside this run. Thus, the entire run must be
added to s′ to achieve maximum length. We will therefore mainly refer to runs instead of
single characters.

3 Complexity

In this section we prove hardness of the Longest Run Subsequence problem. More precisely,
we show that dLRS, the decision version of the problem is NP-complete. An instance of
dLRS is given by a tuple (S, k) and consists in answering the question whether S has a
longest run subsequence of length at least k.

I Theorem 1. dLRS is NP-complete.

Proof. It is easy to see that dLRS is in NP, because it can be checked in polynomial time
whether a string s′ is a soluton, that is, s′ is a run subsequence and |s′| ≥ k.
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To prove NP-hardness, we reduce from the Linear Ordering Problem (LOP), which has
been shown to be NP-hard [5]. LOP takes a complete directed graph with edge weights
and no self-loops as input and looks for an ordering among the vertices, such that the total
weights of edges following this order (i.e., edges leading from lower ordered vertices to higher
ordered vertices) is maximized.

We show that dLOP, the decision problem of LOP, that is, the question whether a vertex
ordering exists whose weight is at least a given threshold, can be polynomially reduced
to dLRS. Let G = (V,E) be a complete digraph with |V | = n. We denote the weight of
(vi, vj) ∈ E with wij and the sum of all weights of G as wsum. Without loss of generality we
can assume that all edge weights are positive: The number of edges following a linear order
is fixed, so adding a sufficiently large offset to all weights only adds a fixed value to any
solution without changing the core problem. This allows us to characterize LOP as finding
an acyclic subgraph G′ with maximum weight, because the non-negativity of the weights
always forces either (vi, vj) or (vj , vi) to be in G′ for every pair of vertices vi, vj ∈ V .

The proof consists of two parts. First, we show how to transform G into a string S.
Second, we show that G has a LOP solution of weight k if and only if S has a LRS of size

fG(k) := (n− 1) ·M + n(n− 1)(n− 2)
3 ·M ′ + n(n− 1) · wsum + 2k (1)

with M ′ := 4n2 · wsum and M := M ′ · n3.
For the transformation, we define Σ using three different types of characters:

1. Separators $i for every vertex vi ∈ V .
2. Edge signs E{i,j} for every pair vi, vj ∈ V . Note that E{i,j} = E{j,i}.
3. Triangle signs ∆(i,j,k) for every triangle in G. Note that triangles between three vertices

have an orientation and can be rotated. Therefore ∆(i,j,k) = ∆(j,k,i) = ∆(k,i,j) 6=
∆(i,k,j) = ∆(k,j,i) = ∆(j,i,k).

On the highest level the string S is constructed as shown in Equation 2. It consists of
one large block per vertex, each of them separated by a run of the associated separation sign
of length M .

S =

edge block
for (v1,v2)︷ ︸︸ ︷
[EB]1,2 [EB]1,3 . . . [EB]1,n︸ ︷︷ ︸

vertex block for v1

$M1 [EB]2,1 . . . [EB]2,n$M2 . . . $Mn−1[EB]n,1 . . . [EB]n,n−1 (2)

Each vertex block consists of a series of edge blocks (EB), which we define as follows:

[EB]i,j = E
wij+wsum
{i,j} ∆M ′

(i,j,1) . . .∆M ′

(i,j,n) E
wij+wsum
{i,j} (3)

In the same way as the i-th vertex block is associated with vertex vi, the edge substrings
in it are associated with the outgoing edges of vi. Note that there is one EB missing in every
vertex block, as self-loops are not allowed. Finally, [EB]i,j contains all triangle signs for
triangles, in which (vi, vj) occurs, i.e., {∆(i,j,k) | 1 ≤ k ≤ n, k 6= i, k 6= j}, which, for the sake
of notation, is written as ∆M ′

(i,j,1) . . .∆M ′

(i,j,n) in Equation 3. The triangle signs are padded by
edge signs for (vi, vj). Every edge sign E{i,j} occurs only in the two edge blocks [EB]i,j and
[EB]j,i. The length of the edge sign runs depends on the weight of the corresponding edge
(in either direction), rewarding the higher weighted edge. We also add wsum to the length
every edge sign run E{i,j}.
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As for the numbers M and M ′, the latter is chosen to be larger than the combined length
of all edge sign runs. This makes a single triangle sign run more profitable than any selection
of edge sign runs. In the same manner, M is chosen to be larger than all triangle sign runs
combined.

Using this construction, a valid solution G′ = (V,E′) for a dLOP instance (G, k), i.e., an
acyclic subgraph of G with total weight at least k, can be transformed into a valid solution
for a dLRS instance (S, fG(k)). First, all separation runs are selected, yielding a total length
of (n− 1) ·M . Second, for every edge in E′, all edge signs in the corresponding edge blocks
are selected. Since |E′| = n(n−1)

2 , this adds at least 2 ·
(
n(n−1)

2 · wsum + k
)
characters to the

solution. Finally, G′ is acyclic, so for every triangle in G, there is at least one edge missing
in G′. Thus, by construction of S, one run can be selected for every triangle sign without
interfering with the edge sign runs, adding the missing n(n−1)(n−2)

3 ·M ′ characters.
Given a solution S′ for the dLRS instance (S, fG(k)), we show how to obtain a subgraph

G′ of total weight at least k for the original dLOP instance. The subsequence S′ must contain
all separation runs and a run for every triangle sign, because without all separation and
triangle signs selected at some place, it is (by choice of M and M ′) impossible to reach length
fG(k) for any k. Every selected edge sign run is therefore restricted to a single edge block.
The idea is that the choice of selecting E{i,j} either in [EB]i,j or [EB]j,i corresponds to the
choice of having either (i, j) or (j, i) in the DAG G′ for the original LOP. Since we added
wsum to the length of every edge sign run and there are only n(n−1)

2 edge signs in total, S′
must contain both runs inside an edge block, in order to reach length n(n− 1) · wsum (the
third summand in fG(k)). Thus, either edge signs or triangle signs may be selected inside an
edge block, but not both. G′ is finally obtained by selecting an edge e if and only if the edge
sign runs in the corresponding edge block are selected. This yields n(n−1)

2 edges with a total
weight of at least k. For every vertex pair vi, vj , exactly one of the edges (vi, vj) and (vj , vi)
is selected, because their corresponding edge blocks share the same edge sign.

It remains to be shown that the obtained subgraph G′ is acyclic. We can directly conclude
that G′ contains no triangles, since every triangle sign ∆(i,j,k) has to be taken, prohibiting
either (i, j), (j, k) or (k, i) (or two of them) to be part of G′. Assume that G′ contains a cycle
vi1 , vi2 , vi3 , . . . , vil , vi1 of length l ≥ 4. Then, either (vi1 , vi3) or (vi3 , vi1) must be in G′. The
latter would lead to a triangle, which we could already exclude from G′. But (vi1 , vi3) ∈ G′
implies that a circle of length l − 1 also exists in G′. Repeated use of this argument implies
that G′ also has a cycle with length 3, which is a contradiction to triangles being excluded.
Thus, G′ cannot contain a cycle of length 4 or greater and must be acyclic.

In summary, the decision problem whether there is a solution for a dLOP instance (G, k)
can be reduced to the decision problem whether a solution for the dLRS instance (S, fG(k))
obtained from G exists. J

4 Solution Strategies

To solve instances of LRS in practice we propose three reduction rules and two algorithmic
approaches. As of Theorem 1 we cannot guarantee a polynomial running time.

4.1 Reduction Rules
In Section 2 we already pointed out that an optimal solution for LRS always selects complete
runs of characters and we reduced the notation of the input to runs of characters with
a certain length each. This can also be seen as a reduction rule to the original problem
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formulation as the remaining size of the solution space now depends on the number of runs n
instead of the actual string length m. We refer to this as the run rule. Two more reduction
rules rely on the following lemma:

I Lemma 2. Let S, T be two strings over the disjoint alphabets ΣS and ΣT . Then the
optimal LRS solutions for S and T can be concatenated to form an optimal solution for the
concatenated string ST .

Proof. Since the two alphabets are disjoint, an LRS solution for S does not contain any
characters from ΣT . Therefore the choice of the subsequence for S does not influence the
valid subsequences for T and vice versa. This means that optimal solutions for S and T can
be computed independently and concatenated fo form a valid solution for ST . Obviously, an
optimal solution for ST cannot be longer than the combined length of optimal solutions for
the S and T , otherwise the latter would not be optimal. J

According to Lemma 2 we can divide an LRS instance S into smaller independent
instances, if we find a prefix r1, . . . , rl of S, which uses an exclusive sub-alphabet Σp, i.e.,
r1, . . . , rl ∈ Σ∗p and rl+1, . . . , rn ∈ (Σ \ Σp)∗. This prefix rule can be applied in linear time
by starting with the prefix r1 and extending it until we either reach the end of S, in which
case no independent suffix exists, or until the prefix is closed regarding the used characters.
Let l be the index of the last occurrence of σ(r1). Since σ(r1) is used in the prefix, all runs
r2, . . . , rl must belong to the prefix. Now start with k = 2 and update l to the index of the
last occurrence of σ(rk) (if this index is higher than l), increase k by 1 and repeat until k > l.
If l < n, an independent prefix is found, otherwise such a prefix does not exist.

This idea can be extended to the infix rule, which finds independent infixes via the
following lemma.

I Lemma 3. Let S, T be two strings over the disjoint alphabets ΣS and ΣT and let l be an
arbitrary position in S. Then it holds that

LRS (s1 . . . slTsl+1 . . . sm) = LRS
(
s1 . . . sl$LRS(T )sl+1 . . . s

)
with $ 6∈ ΣS ∪ ΣT .

Proof. For the same reason as in Lemma 2 LRS for T can be solved independently from
S. For the combined string s1 . . . slTsl+1 . . . sm the infix T is either entirely dropped in
the optimal subsequence or the optimal solution of T itself is entirely taken as a part of
the combined solution. Thus, T contributes either 0 or LRS (T ) characters to the optimal
combined solution. Therefore, if the solution for T is already known, s1 . . . slTsl+1 . . . sm
can be solved by replacing T with a run of length LRS (T ) of a new character $. J

Following Lemma 3 we can search for an independent infix in S to obtain two smaller
instances. Instead of starting with r1, we start with an arbitrary character σ ∈ Σ as anchor
and use the infix rk, . . . , rl as a start with rk and rl being the first and last occurrence of σ,
respectively. Similarly to the prefix search, we iterate over all runs in the infix and move the
markers k, l to the left and right, whenever we encounter a new character with occurrences
outside rk, . . . , rl, until the infix is closed (with respect to used characters) or the entire
string is contained. This is repeated with every character in Σ as anchor, possibly yielding
multiple infixes. Adjacent independent infixes are merged into larger ones, since we want
as many runs as possible to be replaced with a single run, as shown in Lemma 3. Infixes,
which consist of only one run, are discarded, because they do not pose an actual reduction.
Finding and merging all infixes can be done in time O(n · |Σ|).
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For a maximum reduction, the rules are applied as follows: First, the prefix rule is
iteratively applied on S until no further independent prefix can be found. Second, the infix
rule is applied on every sub-instance found so far. For every infix found the procedure is
repeated by starting with the prefix rule again.

4.2 Solving with Integer Linear Programming
We present two algorithms to solve LRS to optimality, which have complementary strengths
and weaknesses. The first is based on an Integer Linear Program (ILP). This approach scales
well with large alphabets, but struggles with a large number of runs. We also propose a
dynamic programming (DP) approach, which remains fast for long strings, but suffers from
large alphabets. Both algorithms work exclusively on the runs of an input string S.

ILPs are a commonly used technique to model and solve combinatorial optimization
problems. We model the LRS formulation from before as an ILP in the following way: Let
n be the number of runs in S and let x1, . . . , xn be binary variables with xi = 1 if ri is
in the optimal subsequence and xi = 0 otherwise. Any possible subsequence of runs can
therefore be represented by a variable assignment. Since we want to maximize the length of
the subsequence, we define our objective function as the weighted sum over all taken runs,
using their lengths as weights:

max
n∑
i=1

xiL(ri) (4)

Let ri, rj be two runs with i < j and σ(ri) = σ(rj). If both runs are selected, no other
intermediate run with a different character can be selected according to the LRS conditions.
This is ensured by adding the following constraints for any pair of run ri, rj , with the same
character.

subject to (j − i)xi +

 ∑
i<l<j

σ(rl)6=σ(ri)

xl

+ (j − i)xj ≤ 2(j − i) for all 1 ≤ i < j (5)

If either ri or rj are not taken, the constraint does not prevent any other combination of
runs between them. The total number of constraints is bounded by dn2 e

2 and the number
of non-zero entries in the constraint matrix is bounded by n · dn2 e

2. The ILP has been
implemented using the Python interface of PuLP, which solves the ILP with the free solver
CoinOR2.

4.3 Solving with Dynamic Programming
As an alternative to the ILP formulation the problem can also be solved bottom-up by a
DP. Let D[i, F ] be the length of an optimal LRS solution for r1 . . . ri, which includes ri
itself and one run for every σ ∈ F ⊆ Σ only. The DP can be initialized with D[0, ∅] = 0
and D[0, F ] = −∞ for F 6= ∅. Known solutions can be extended by adding the runs of S
iteratively, always selecting an optimal predecessor for each run and keeping track of already
used characters with the second parameter F .

2 https://github.com/coin-or/pulp

https://github.com/coin-or/pulp
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Figure 3 Graph visualizing the recursion for the running example. Arcs represent the possible
predecessors for every run. Colors mark the optimal path and the DP entries taken by the recursion.

The full DP is as follows:

D[0, F ] = 0 ∀F ⊆ Σ
D[0, F ] = −∞ ∀F 6= ∅

D[i, F ] =


max

σ∈Σ∪{$}

{
D[Pσ(i), F ] + L(ri) if σ = σ(ri)
D[Pσ(i), F \ {σ(ri)}] + L(ri), if σ 6= σ(ri)

}
if σ(ri) ∈ F

−∞ otherwise
(6)

The recursion can be visualized by a directed acyclic graph as shown in Figure 3. It
contains a start vertex corresponding to the empty prefix of S and one vertex for every run in
S. Each vertex has an incoming edge from the start vertex and from position Pσ(i) for every
σ ∈ Σ. Every path in the graph corresponds to a (possibly invalid for LRS) subsequence of S.
It is optimal to only consider the last occurrences of any character before ri as predecessors
for ri itself, because if we take a LRS subsequence s′, where ri is proceeded by the second to
last occurrence of some other character σ before ri, we can make s′ longer by adding the last
occurrence of σ as well.

To compute D[i, F ] we first check whether the character of the i-th run is in F . If not,
then there is no subsequence using only characters from F , but containing ri, so the optimal
value for this case is −∞. Otherwise, D[i, F ] is computed by taking the maximum over all
previous occurrences for every σ ∈ Σ ∪ {$}: For σ we take the longest solution from position
Pσ(i) and the set F \ {σ(ri)} as used characters, because such a solution can be extended to
a solution for D[i, F ] by appending ri. Note that $ is a character not in Σ and that P$(i) = 0.
The only exception is made for σ = σ(ri), where we know that D[Pσ(i), F ] corresponds to
a subsequence ending with σ(ri), such that we can append ri without any new characters
being used.

The optimal solution for LRS can be found by taking the entry of D with the highest
score and using the backtracking information from the DP to obtain the corresponding
subsequence. The DP table has a total of n+ 1 columns and 2|Σ| rows with each entry taking
O(|Σ|) time to compute. This leads to a worst-case runtime of O

(
|Σ| · n · 2|Σ|

)
for the DP,

making this a fixed parameter tractable (FPT) approach for LRS with the alphabet size as
parameter.
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6:10 The Longest Run Subsequence Problem

5 Experiments

We performed computational experiments on two different types of instances. First, we
generated random instances to see how the two algorithms scale on string length and alphabet
size. Second, we ran both algorithms on instances, which we came across a different project
[4]. Originally these instances were solved by a brute-force approach, but this failed for
longer strings, which motivated us to further investigate this problem.

All tests were run on an AMD Ryzen 7 2700X with 32GB of memory on Ubuntu 20.04.
The algorithms are implemented in Python and executed via Snakemake [8] using Python
3.7.6 and PuLP version 1.6.8.
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Figure 4 Run time plotted against string length (top) and alphabet size (bottom). Each curve
represents an algorithm and an additional parameter (number in parentheses), which is alphabet
size in the top blot and the string length in the bottom plot.

5.1 Synthetic Data
The synthetic data was created by randomly generating strings with different lengths and
alphabet sizes. For any combination a total of 20 strings was generated, such that every
string is guaranteed to use the entire alphabet assigned to it. These instances pose worst-case
instances for our algorithms, as the proposed reduction rules can hardly be applied. The
runs are quite short in general and since there is no structurally induced locality among
the characters, instances could be split very rarely. All runs instances were solved with all
reductions rules applied.

Figure 4 shows how the runtime scales with both increasing string lengths and increasing
alphabet size. For a fixed alphabet size the runtime scales about exponentially with the
string length for the ILP as shown in the top plot. In fact, the alphabet size only has very
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Table 1 Comparison of runtime (in seconds) between DP and ILP on instances from real data.
The times are for all 15 instances.

Algorithm All rules Runs and prefix Only runs
DP 0.01 0.01 out of memory
ILP 2.15 2.03 0.09

minor effect on the ILP compared to the string length, which becomes visible in the bottom
plot, with a slight favor of larger alphabets. The DP behaves complementary to the ILP,
scaling exponentially in the alphabet size and sub-exponentially with string length. Longer
strings take longer to process according to the top plot as opposed to the ILP being almost
oblivious to the alphabet size. However, if the alphabet becomes very large in relation to the
string length, the running time suddenly decreases for the DP.

The scaling can be explained by the properties of the algorithms. The ILP has a binary
decision variable for every run, increasing the number of possible (but not necessarily feasible)
variable assignments exponentially with the number of runs. Since ILP solvers usually fall
back to branching in case cutting planes do not suffice, the bad scaling with running times
appears logical. Larger alphabets might lead to a lower number of constraints (and thus
a lower runtime), as the ILP contains one constraint for every pair of runs with the same
character. As already pointed out in Section 4.3 the DP table grows linearly with the number
of runs and exponentially with alphabet size, explaining the high running time on large
alphabets. But also the memory consumption grew drastically. While the DP only needed
227MB of RAM for a string of length of 60 and |Σ| = 16, the consumption went up to 2,8GB
for |Σ| = 20 and to 9,2GB for |Σ| = 22. With |Σ| = 24 the machine ran out of memory,
making the memory consumption a larger bottleneck than the computation time. With the
ILP no such issues could be observed. The decreasing running time for very large alphabets
is caused by the reduction rules, as it leads to a higher number of characters occurring only
in a single run and thus to a higher chance of the string being splittable into independent
parts.

5.2 Real-World Data
We consider a dataset which was generated to test the performance of an approach to find
structural rearrangements [4]. It consists of fragmented assemblies that have been generated
by introducing random breaks in chromosome-level assemblies of the Col-0 and Ler accessions
of Arabidopsis thaliana [6, 4]. We tested 15 instances, which remained unsolved by brute-force
methods, containing string lengths between 34 and 50 and alphabets of size 31 to 38.

Using all three reduction rules, both algorithms were able to solve all instances in very
short time with the DP outperforming the ILP quite significantly, see Table 1. However, not
using the prefix and infix rules caused the DP to run out of memory because of the large
alphabets, while the ILP got faster. Since the reduction rules themselves only have minimal
impact on the runtime, this must be due to overhead in the ILP solver when solving many
small instances instead of one large one.

6 Discussion

The experiments showed that optimal LRS solutions can be found in short time for instance
sizes that occur on assemblies of real samples. We presented two different algorithms whose
running times depend on two important instance properties, namely string length and
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alphabet size. Random strings, however, do not seem to be a good indicator for actual
assembly instances, which are already pre-sorted except for some noise or rearrangements.
The reduction rules have little to no impact on random strings, while they reduce the assembly
instances to almost trivial sub-instances. This implies that reduction rules might be more
important in practice than the algorithm to process the remaining preprocessed instance.

One potential problem of the model itself was mentioned in Section 2. LRS only allows
for one run per character, which automatically induces an ordering on the underlying contigs.
This can be problematic if the binned contig contains a translocation that splits a long run
into two, e.g., b1b1b1b2b2b2b1b1b1. The LRS model will drop one of the b1 runs, even though
it would be better to leave the order of B1 and B2 open due to lack of evidence.

Another limitation arises while mapping the bins. Since only the best match for every bin
is taken, any mapping ambiguity is ignored, which might drop valuable information. There is
also no support for inversions inside the model. While inverted alignments can be taken into
account for the mapping step of a single bin, the model stays unaware of inversions and the
fact that an interval of bins is actually in the reverse order compared to the second assembly.
However, this might not be as problematic as it sounds, because the bins are not mapped to
other bins but to entire contigs. As long as inversions are contained in a single contig, they
should have no impact on the ordering that the model produces.

7 Conclusion

Ordering contigs by means of an incomplete assembly of a related species occurs as a variant
of homology-assisted assembly, which does not require chromosome-level assemblies already.
We introduced the Longest Run Subsequence (LRS) problem, formalizing the contig ordering
problem as a string problem. We proved that LRS is NP-complete and presented reduction
rules and two algorithms, which work well for long instances and large alphabets, respectively,
which we showed on a synthetic data set. Regarding real data, we managed to solve all
instances that could not be solved by a brute force approach in short computation time.

From the theoretical side, we find it interesting to further investigate approximability and
fixed-parameter tractability of LRS. From a practical perspective, we plan to further test the
approach on real assembly data, also taking more than two related assemblies into account.
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Abstract
We introduce a compact pangenome representation based on an optimal segmentation concept that
aims to reconstruct founder sequences from a multiple sequence alignment (MSA). Such founder
sequences have the feature that each row of the MSA is a recombination of the founders. Several
linear time dynamic programming algorithms have been previously devised to optimize segmentations
that induce founder blocks that then can be concatenated into a set of founder sequences. All
possible concatenation orders can be expressed as a founder block graph. We observe a key property
of such graphs: if the node labels (founder segments) do not repeat in the paths of the graph, such
graphs can be indexed for efficient string matching. We call such graphs segment repeat-free founder
block graphs.

We give a linear time algorithm to construct a segment repeat-free founder block graph given an
MSA. The algorithm combines techniques from the founder segmentation algorithms (Cazaux et al.
SPIRE 2019) and fully-functional bidirectional Burrows-Wheeler index (Belazzougui and Cunial,
CPM 2019). We derive a succinct index structure to support queries of arbitrary length in the paths
of the graph.

Experiments on an MSA of SARS-CoV-2 strains are reported. An MSA of size 410× 29811 is
compacted in one minute into a segment repeat-free founder block graph of 3900 nodes and 4440
edges. The maximum length and total length of node labels is 12 and 34968, respectively. The index
on the graph takes only 3% of the size of the MSA.
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1 Introduction

Computational pangenomics [13] ponders around the problem of expressing a reference
genome of a species in a more meaningful way than as a string of symbols. The basic problem
in such generalized representations is that one should still be able to support string matching
type of operations on the content. Another problem is that any representation generalizing
set of sequences also expresses sequences that may not be part of the real pangenome. That is,
a good representation should have a feature to control over-expressiveness and simultaneously
support efficient queries.

In this paper, we develop the theory around one promising pangenome representation
candidate, the founder block graph. This graph is a natural derivative of segmentation
algorithms [28, 12] related to founder sequences [34].

Consider a set of individuals represented as lists of variations from a common reference
genome. Such a set can be expressed as a variation graph or as a multiple sequence alignment.
The former expresses reference as a backbone of an automaton, and adds a subpath for each
variant. The latter inputs all variations of an individual to the reference, creating a row for
each individual into a multiple alignment. Figure 1 shows an example of both structures
with 6 very short genomes.

A multiple alignment of much fewer founder sequences can be used to approximate the
input represented as a multiple alignment as well as possible, meaning that each original row
can be mapped to the founder multiple alignment with a minimum amount of row changes
(discontinuities). Finding an optimal set of founders is NP-hard [29], but one can solve
relaxed problem statements in linear time [28, 12], which are sufficient for our purposes. As
an example on the usefulness of founders, Norri et al. [28] showed that, on a large public
dataset of haplotypes of human genome, the solution was able to replace 5009 haplotypes with
only 130 founders so that the average distance between row jumps was over 9000 base pairs
[28]. This means that alignments of short reads (e.g. 100 bp) very rarely hit a discontinuity,
and the space requirement drops from terabytes to just tens of gigabytes. Figure 1 shows
such a solution on our toy example.

A block graph is a labelled directed acyclic graph consisting of consecutive blocks, where a
block represents a set of sequences of the same length as parallel (unconnected) nodes. There
are edges only from nodes of one block to the nodes of the next block. A founder block graph
is a block graph with blocks representing the segments of founder sequences corresponding
to the optimal segmentation [28]. Fig. 1 visualises such a founder block graph: There the
founder set is divided into 3 blocks with the first, the second, and the third containing
sequences of length 4, 4, and 3, respectively. The coloured connections between sequences
in consecutive blocks define the edges. Such graphs interpreted as automata recognise the
input sequences just like variation graphs, but otherwise recognise a much smaller subset of
the language. With different optimisation criteria to compute the founder blocks, one can
control the expressiveness of this pangenome representation.

In this paper, we show that there is a natural subclass of founder block graphs that admit
efficient index structures to be built that support exact string matching on the paths of such
graphs. Moreover, we give a linear time algorithm to construct such founder block graphs
from a given multiple alignment. The construction algorithm can also be adjusted to produce
a subclass of elastic-degenerate strings [8], which also support efficient indexing.
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Figure 1 (a) Input multiple alignment, (b) a set of founders with common recombination positions
as a solution to a relaxed version of founder reconstruction, (c) a variation graph encoding the input
and (d) a founder block graph. Here the input alignment and the resulting variation graph are
unrealistically bad; the example is made to illustrate the founders.

The founder block graph definition given above only makes sense if we assume that
our input multiple alignment is gapless, meaning that the alignment is simply produced by
putting strings of equal length under each other, like in Figure 1. We develop the theory
around founder block graphs under gapless multiple alignments. However, most of the results
can be extended to handle gaps properly.

We start in Sect. 2 by putting the work into the context of related work. In Sect. 3 we
introduce the basic notions and tools. In Sect. 4 we study the property of founder block
graphs that enable indexing. In Sect. 5 we give the linear time construction algorithm. In
Sect. 6 we develop a succinct index structure that supports exact string matching in linear
time. In Sect. 7 we consider the general case of having gap symbols in multiple alignment.
We report some preliminary experiments in Sect. 8 on the construction and indexing of
founder block graphs for a collection of SARS-CoV-2 strains. We consider future directions
in Sect. 9.

2 Related work

Indexing directed acyclic graphs (DAGs) for exact string matching on its paths was first
studied by Sirén et al. in WABI 2011 [31]. A generalization of Burrows-Wheeler transform [11]
was proposed that supported near-linear time queries. However, the proposed transformation
can grow exponentially in size in the worst case. Many practical solutions have been
proposed since then, that either limit the search to short queries or use more time on queries
[33, 22, 25, 19, 24, 32]. More recently, such approaches have been captured by the theory on
Wheeler graphs [18, 20, 2].

Since it is NP-hard to recognize if a given graph is Wheeler [20], it is of interest to look
for other graph classes that could provide some indexability functionality. Unfortunately,
quite simple graphs turn out to be hard to index [15, 16] (under the Strong Exponential
Time Hypothesis). In fact, the reductions by Equi et al. [15, 16] can be adjusted to show
that block graphs cannot be indexed in polynomial time to support fast string matching. But
as we will see later, further restrictions on block graphs change the situation: We show that
there exists a family of founder block graphs that can be indexed in linear time to support
linear time queries.
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Block graphs have also tight connection to generalized degenerate (GD) strings and their
elastic version. These can also be seen as DAGs with a very specific structure. Matching a
GD string is computationally easier and even linear time online algorithms can be achieved to
compare two such strings, as analyzed by Alzamel et al. [3]. The elastic counterpart requires
more care, as studied by Bernardini et al. [8]. Our results on founder block graphs can be
casted on GD strings and elastic strings, as we will show later.

Finally, our indexing solution has connections to succinct representations of de Bruijn
graphs [10, 9, 7]. Compared to de Bruijn graphs that are cyclic and have limited memory
(k-mer length), our solution retains the linear structure of the block graph.

3 Definitions and basic tools

3.1 Strings
We denote integer intervals by [i..j]. Let Σ = {1, . . . , σ} be an alphabet of size |Σ| = σ. A
string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes the set of
strings of length n under the alphabet Σ. A suffix of string T [1..n] is T [i..n] for 1 ≤ i ≤ n.
A prefix of string T [1..n] is T [1..i] for 1 ≤ i ≤ n. A substring of string T [1..n] is T [i..j] for
1 ≤ i ≤ j ≤ n. Substring T [i..j] where j < i is defined as the empty string.

The lexicographic order of two strings A and B is naturally defined by the order of
the alphabet: A < B iff A[1..i] = B[1..i] and A[i + 1] < B[i + 1] for some i ≥ 0. If
i+ 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However, we usually avoid
this implicit comparison by adding end marker 0 to the strings.

Concatenation of strings A and B is denoted AB.

3.2 Founder block graphs
As mentioned in the introduction, our goal is to compactly represent a gapless multiple
sequence alignment (MSA) using a founder block graph. In this section we formalize these
concepts.

A gapless multiple sequence alignment MSA[1..m, 1..n] is a set of m strings drawn from Σ,
each of length n. Intuitively, it can be thought of as a matrix in which each row is one of the
m strings. Such a structure can be partitioned into what we call a segmentation, that is, a
collection of sets of shorter strings that can represent the original alignment.

I Definition 1 (Segmentation). Let MSA[1..m, 1..n] be a gapless multiple alignment and let
R1, R2, . . . , Rm be the strings in MSA. A segmentation S of MSA is a set of b sets of strings
S1, S2, . . . , Sb such that for each 1 ≤ i ≤ b there exist interval [x(i)..y(i)] such that Si =
{Rt[x(i)..y(i)] | 1 ≤ t ≤ m}. Furthermore, it holds x(1) = 1, y(b) = n, and y(i) = x(i+1) − 1
for all 1 ≤ i < b, so that S1, S2, . . . , Sb covers the MSA. We call W (Si) = y(i) − x(i) + 1 the
width of Si.

A segmentation of a MSA can naturally lead to the construction of a founder block graph.
Let us first introduce the definition of a block graph.

I Definition 2 (Block Graph). A block graph is a graph G = (V,E, `) where ` : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold.
1. {V 1, V 2, . . . , V b} is a partition of V , that is, V = V 1 ∪ V 2 ∪ . . . ∪ V b and V i ∩ V j = ∅

for all i 6= j;
2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1;
3. if v, w ∈ V i then |`(v)| = |`(w)| for each 1 ≤ i ≤ b and if v 6= w, `(v) 6= `(w).
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Figure 2 An example of two strings, GCG and ATTCGATA , occurring in G(S).

As a convention we call every V i a block and every `(v) a segment.
Given a segmentation S of a MSA, we can define the founder block graph as a block graph

induced by S. The idea is to have a graph in which the nodes represents the strings in S
while the edges retain the information of how such strings can be recombined to spell any
sequence in the original MSA.

IDefinition 3 (Founder Block Graph). A founder block graph is a block graph G(S) = (V,E, `)
induced by S as follows: For each 1 ≤ i ≤ b we have Si = {`(v) : v ∈ V i} and (v, w) ∈ E
if and only if there exists i ∈ [1..b − 1] and t ∈ [1..m] such that v ∈ V i, w ∈ V i+1 and
Rt[j..j + |`(v)|+ |`(w)| − 1] = `(v)`(w) with j = 1 +

∑i−1
h=1 W (Sh).

We regard the edges of (founder) block graphs to be directed from left to right. Consider
a path P in G(S) between any two nodes. The label `(P ) of P is the concatenation of labels
of the nodes in the path. Let Q be a query string. We say that Q occurs in G(S) if Q is a
substring of `(P ) for any path P of G(S). Figure 2 illustrates such queries.

In our example in Figure 1, the intervals corresponding to the segmentation would be
[1..4], [5..8], [9..11], and the induced founder block graph has thus 3 blocks with 9 nodes and
11 edges in total.

3.3 Basic tools
A trie [14] of a set of strings is a rooted directed tree with outgoing edges of each node
labeled by distinct characters such that there is a root to leaf path spelling each string in the
set; shared part of the root to leaf paths to two different leaves spell the common prefix of
the corresponding strings. Such a trie can be computed in O(N log σ) time, where N is the
total length of the strings, and it supports string queries that require O(q log σ) time, where
q is the length of the queried string.

An Aho-Corasick automaton [1] is a trie of a set of strings with additional pointers
(fail-links). While scanning a query string, these pointers (and some shortcut links on them)
allow to identify all the positions in the query at which a match for any of the strings
occurs. Construction of the automaton takes the same time as that of the trie. Queries take
O(q log σ + occ) time, where occ is the number of matches.

A suffix array [26] of string T is an array SA[1..n+ 1] such that SA[i] = j if T ′[j..n+ 1] is
the j-th smallest suffix of string T ′ = T0, where T ∈ {1, 2, . . . , σ}n, and 0 is the end marker.
Thus, SA[1] = n+ 1.

Burrows-Wheeler transform BWT[1..n + 1] [11] of string T is such that BWT[i] =
T ′[SA[i]− 1], where T ′ = T0 and T ′[−1] is regarded as T ′[n+ 1] = 0.

A bidirectional BWT index [30, 6] is a succinct index structure based on some auxiliary
data structures on BWT. Given a string T ∈ Σn, with σ ≤ n, such index occupying
O(n log σ) bits of space can be built in O(n) time and it supports finding in O(q) time if a
query string Q[1..q] appears as substring of T [6]. Moreover, such query returns an interval
pair ([i..j],[i′..j′]) such that suffixes of T starting at positions SA[i], SA[i+ 1], . . . , SA[j] share
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a common prefix matching the query. Interval [i′..j′] is the corresponding interval in the
suffix array of the reverse of T . Let ([i..j],[i′..j′]) be the interval pair corresponding to query
substring Q[l..r]. A bidirectional backward step updates the interval pair ([i..j],[i′..j′]) to
the corresponding interval pair when the query substring Q[l..r] is extended to the left into
Q[l − 1..r] or to the right into Q[l..r + 1]. This takes constant time [6]. A fully-functional
bidirectional BWT index [4] expands the steps to allow contracting symbols from the left or
from the right. That is, substring Q[l..r] can be modified into Q[l + 1..r] or to Q[l..r − 1]
and the the corresponding interval pair can be updated in constant time.

Among the auxiliary structures used in BWT-based indexes, we explicitly use the rank
and select structures: String B[1..n] from binary alphabet is called a bitvector. Operation
rank(B, i) returns the number of 1s in B[1..i]. Operation select(B, j) returns the index i
containing the j-th 1 in B. Both queries can be answered in constant time using an index
requiring o(n) bits in addition to the bitvector itself [23].

4 Subclass of founder block graphs admitting indexing

We now show that there exists a family of founder block graphs that admit a polynomial time
constructable index structure supporting fast string matching. First, a trivial observation:
the input multiple alignment is a founder block graph for the segmentation consisting of only
one segment. Such founder block graph (set of sequences) can be indexed in linear time to
support linear time string matching [6]. Now, the question is, are there other segmentations
that allow the resulting founder block graph to be indexed in polynomial time? We show
that this is the case.

I Definition 4. Founder block graph G(S) is segment repeat-free if each `(v) for v ∈ V
occurs exactly once in G(S).

Our example graph (Fig. 1) is not quite segment repeat-free, as TAT occurs also as
substring of paths starting with ATAT.

I Proposition 5. Segment repeat-free founder block graphs can be indexed in polynomial time
to support polynomial time string queries.

To prove the proposition, we construct such an index and show how queries can be
answered efficiently.

Let P (v) be the set of all paths starting from node v and ending in a sink node. Let
P (v, i) be the set of suffix path labels {`(L)[i..] | L ∈ P (v)} for 1 ≤ i ≤ |`(v)|. Consider
sorting P = ∪v∈V,1≤i≤|`(v)|P (v, i) in lexicographic order. Then one can binary search any
query string Q in P to find out if it occurs in G(S) or not. The problem with this approach
is that P is of exponential size.

However, if we know that G(S) is segment repeat-free, we know that the lexicographic
order of `(L)[i..], L ∈ P (v), is fully determined by the prefix `(v)[i..|`(v)|]`(w) of `(L)[i..],
where w is the node following v on the path L. Let P ′(v, i) denote the set of suffix path
labels cut in this manner. Now the corresponding set P ′ = ∪v∈V,1≤i≤|`(v)|P

′(v, i) is no longer
of exponential size. Consider again binary searching a string Q on sorted P ′. If Q occurs in
P ′ then it occurs in G(S). If not, Q has to have some `(v) for v ∈ V as its substring in order
to occur in G(S).

To figure out if Q contains `(v) for some v ∈ V as its substring, we build an Aho-Corasick
automaton [1] for {`(v) | v ∈ V }. Scanning this automaton takes O(|Q| log σ) time and
returns such v ∈ V if it exists.
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To verify such potential match, we need several tries [14]. For each v ∈ V , we build tries
R(v) and F(v) on the sets {`(u)−1 | (u, v) ∈ E} and {`(w) | (v, w) ∈ E}, respectively, where
X−1 denotes the reverse x|X|x|X|−1 · · ·x1 of string X = x1x2 · · ·x|X|.

Assume now we have located (using the Aho-Corasick automaton) v ∈ V with `(v) such
that `(v) = Q[i..j], where v is at the k-th block of G(S). We continue searching Q[1..i− 1]
from right to left in trie R(v). If we reach a leaf after scanning Q[i′..i − 1], we continue
the search with Q[1..i′ − 1] on trie R(v′), where v′ ∈ V is the node at block k − 1 of G(S)
corresponding to the leaf we reached in the trie. If the search succeeds after reading Q[1]
we have found a path in G(S) spelling Q[1..j]. We repeat the analogous procedure with
Q[j..m] starting from trie F(v). That is, we can verify a candidate occurrence of Q in G(S)
in O(|Q| log σ) time, as the search in the tries takes O(log σ) time per step. Note however,
that there could be several labels `(v) occurring as substrings of Q, so we need to do the
verification process for each one of them separately. There can be at most |Q| such candidate
occurrences, due to the distinctness of node labels in G(S). In total, this search can take at
most O(|Q|2 log σ) time.

We are now ready to specify a theorem that reformulates Proposition 5 in detailed form.

I Theorem 6. Let G = (V,E) be a segment repeat-free founder block graph with blocks
V 1, V 2, . . . , V b such that V = V 1∪V 2∪· · ·∪V b. We can preprocess an index structure for G in
O((N+W |E|) log σ) time, where {1, . . . , σ} is the alphabet for node labels,W = maxv∈V |`(v)|,
and N =

∑
v∈V |`(v)|. Given a query string Q[1..q] ∈ {1, . . . , σ}q, we can use the index

structure to find out if Q occurs in G. This query takes O(|Q|2 log σ) time.

Proof. With preprocessing time O(N log σ) we can build the Aho-Corasick automaton [1].
The tries can be built in O(log σ)(

∑
v∈V (

∑
(u,v)∈E |`(u)|+

∑
(v,w)∈E |`(w)|)) = O(|E|W log σ)

time. The required queries on these structures take O(|Q|2 log σ) time.
To avoid the costly binary search in sorted P ′, we instead construct the bidirectional BWT

index [6] for the concatenation C =
∏

i∈{1,2,...,b}
∏

v∈V i,(v,w)∈E `(v)`(w)0. Concatenation C
is thus a string of length O(|E|W ) from alphabet {0, 1, 2, . . . , σ}. The bidirectional BWT
index for C can be constructed in O(|C|) time, so that in O(|Q|) time, one can find out if Q
occurs in C [6]. This query equals that of binary search in P ′. J

We remark that founder block graphs have a connection with generalized degenerate
strings (GD strings) [3]. In a GD string, sets of strings of equal length are placed one after
the other to represent in a compact way a bigger set of strings. Such set contains all possible
concatenations of those strings, which are obtained by scanning the individual sets from left
to right and selecting one string from each set. The length of the strings in a specific set is
called width, and the sum of all the widths of all sets in a GD string is the total width. Given
two GD strings of the same total width it is possible to determine if the intersection of the
sets of strings that they represent is non empty in linear time in the size of the GD strings
[3]. Thus, the special case in which one of the two GD string is just a standard string can be
seen also as a special case of a founder block graph in which every segment is fully connected
with the next one and the length of the query string is equal to the maximal length of a path
in the graph.

We consider the question of indexing GD strings (fully connected block graphs) to search
for queries Q shorter than the total width. We can exploit the segment repeat-free property
to yield such an index.

I Theorem 7. Let G = (V,E) be a segment repeat-free GD string a.k.a. a fully connected
segment repeat-free founder block graph with blocks V 1, V 2, . . . , V b such that V = V 1 ∪ V 2 ∪
· · · ∪ V b and (v, w) ∈ E for all v ∈ V i and w ∈ V i+1, 1 ≤ i < b. We can preprocess an index
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structure for G in O((N +W |E|) log σ) time, where {1, . . . , σ} is the alphabet for node labels,
W = maxv∈V `(v), and N =

∑
v∈V `(v). Given a query string Q[1..q] ∈ {1, . . . , σ}q, we can

use the index structure to find out if Q occurs in G. This query takes O(|Q| log σ) time.

Proof. Recall the index structure of Theorem 6. for the case of GD strings, we can simplify
it as follow.

We keep the same BWT index structure and the Aho-Corasick automaton, but we do
not need any tries. After finding at most |Q| occurrences of substrings of Q in the graph
using the Aho-Corasick automaton on node labels, we mark the matching blocks accordingly.
If 2 marked blocks have exactly one marked neighboring block and |Q| − 2 blocks have 2
marked neighboring blocks, then we have found an occurrence, otherwise not. J

Observe that max(N,W |E|) ≤ mn, where m and n are the number of rows and number
of columns, respectively, in the multiple sequence alignment from where the founder block
graph is induced. That is, the index construction algorithms of the above theorems can be
seen to be almost linear time in the (original) input size. We study succinct variants of
these indexes in Sect. 6, and also improve the construction and query times to linear as side
product.

5 Construction of segment repeat-free founder block graphs

Now that we know how to index segment repeat-free founder block graphs, we turn our
attention to the construction of such graphs from a given MSA. For this purpose, we will
adapt the dynamic programming segmentation algorithms for founders [28, 12].

The idea is as follows. Let S be a segmentation of MSA[1..m, 1..n]. We say S is valid if it
induces a segment repeat-free founder block graph G(S) = (V,E). We build such valid S for
prefixes of MSA from left to right, minimizing the maximum block length needed.

5.1 Characterization lemma
Given a segmentation S and founder block graph G(S) = (V,E) induced by S, we can ensure
that it is valid by checking if, for all v ∈ V , `(v) occurs in the rows of the MSA only in the
interval of the block V i, where V i is the block of V such that v ∈ V i.

I Lemma 8 (Characterization). Let x(i) = 1+
∑i−1

h=1 W (Sh). A segmentation S is valid if and
only if, for all blocks V i ⊆ V , 1 ≤ t ≤ m and j 6= x(i), if v ∈ V i then Rt[j..j+|`(v)|−1] 6= `(v).

Proof. To see that this is a necessary condition for the validity of S, notice that each row of
MSA can be read through G, so if `(v) occurs elsewhere than inside the block, then these
extra occurrences make S invalid. To see that this is a sufficient condition for the validity of
S, we observe the following:
a) For all (v, w) ∈ E, `(v)`(w) is a substring of some row of the input MSA.
b) Let (x, u), (u, y) ∈ E be two edges such that U = `(x)`(u)`(y) is not a substring of any

row of input MSA. Then any substring of U either occurs in some row of the input MSA
or it includes `(u) as its substring.

c) Thus, any substring of a path in G either is a substring of some row of the input MSA,
or it includes `(u) of case b) as its substring.

d) Let α be a substring of a path of G that includes `(u) as its substring. If `(z) = α for
some z ∈ V , then `(u) appears at least twice in the MSA. Substring α makes S invalid
only if `(u) does. J
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5.2 From characterization to a segmentation
Among the valid segmentations, we wish to select an optimal segmentation under some
goodness criteria. Earlier work [28, 12] has considered various goodness criteria, solving the
associated segmentation problems in linear time. In this paper, we focus on minimizing the
maximum width of the segments. For example, the (non-valid) segmentation in Figure 1
has score 4, as the intervals of the segments are [1..4], [5..8], and [9..11]. That is, as
W (S1) = 4− 1 + 1 = 4, W (S2) = 8− 5 + 1 = 4, W (S3) = 11− 9 + 1 = 3, the maximum of
these is 4. This criteria is analogous to one studied by Cazaux et al. [12], and appears to be
the most natural one to be studied together with validity constraint; both deal directly with
the segment intervals.

Let us now develop a dynamic programming recurrence for finding the minimum scoring
valid segmentation with the score being the maximum width. Let s(j′) be the score of a
minimum scoring valid segmentation S1, S2, . . . , Sb of prefix MSA[1..m, 1..j′], where the score
is defined as max

i:1≤i≤b
W (Si). We can compute

s(j) = min
j′:0≤j′≤v(j)

max(j − j′, s(j′)), (1)

where v(j) is the largest integer such that segment MSA[1..m, v(j) + 1..j] is valid. The
segment is valid iff each substring MSA[i, v(j) + 1..j], for 1 ≤ i ≤ m, occurs as many times
in MSA[1..m, v(j) + 1..j] as in the whole MSA. If such v(j) does not exist for some j, we set
v(j) = 0. The intuition is that [j′ + 1..j] forms the last valid segment of the segmentation,
and since s(j′) is the score of optimal valid segmentation of MSA[1..m, 1..j′], the maximum of
s(j′) and the length of the last segment decides the score s(j). To initialize the recurrence,
one can set s(0) = 0 and s(j) =∞ for 1 ≤ j ≤ J for which v(j) is undefined. The recurrence
can then be applied for j ∈ [J + 1..n].

We can compute the score s(n) of the optimal segmentation of MSA in O(nsmax) time after
preprocessing values v(j) in O(mnsmax log σ) time, where smax = maxj:v(j)>0 s(j). For the
former, one can start comparing max(j − j′, s(j′)) from j′ = v(j) decreasing j′ by one each
step, and then the value j − j′ grows bigger than s(j′) at latest after s(j)− (j − v(j)) ≤ s(j)
steps. For preprocessing, we build the bidirectional BWT index of the MSA in O(mn) time
[6]. At column j, consider the trie containing the reverse of the rows of M [1..m, 1..j]. Search
the trie paths from the bidirectional BWT index until the number of leaves in each trie
subtree equals the length of the corresponding BWT interval. Let j′ be the column closest
to j where this holds for all trie paths. Then one can set v(j) = j′. The O(m(j − v(j)) log σ)
time construction of the trie has to be repeated for each column. As j − v(j) ≤ s(j), the
claimed preprocessing time follows.

5.3 Faster preprocessing
We can do the preprocessing in O(mn) time.

I Theorem 9. Given a multiple sequence alignment MSA[1 . . .m, 1 . . . n], values v(j) for each
1 ≤ j ≤ n can be computed in O(mn) time, where v(j) is the largest integer such that segment
MSA[1..m, v(j) + 1..j] is valid.

Proof. Let us build the bidirectional BWT index [6] of MSA rows concatenated into one
long string. We will run several algorithms in synchronization over this BWT index, but we
explain them first as if they would be run independently.
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Algorithm 1 searches in parallel all rows from right to left advancing each by one position
at a time. Let k be the number of parallel of steps done so far. We can maintain a bitvector
M that at k-th step stores M [i] = 1 iff BWT [i] is the k-th last symbol of some row.

Algorithm 2 uses the variable length sliding window approach of Belazzougui and Cunial
[4] to compute values v(j). Let the first row of MSA be T [1..n]. Search T [1..n] backwards in
the fully-functional bidirectional BWT index [4]. Stop the search at T [j′ + 1..n] such that
the corresponding BWT interval [i′..i] contains only suffixes originating from column j′ + 1
of the MSA, that is, spelling MSA[a, j′ + 1..n] in the concatenation, for some rows a. Set
vb(n) = j′ for row b = 1. Contract T [n] from the search string and modify BWT interval
accordingly [4]. Continue the search (decreasing j′ by one each step) to find T [j′ + 1..n− 1]
s.t. again the corresponding BWT interval [i′..i] contains only suffixes originating from
column j′+ 1. Update vb(n− 1) = j′ for row b = 1. Continue like this throughout T . Repeat
the process for all remaining rows b ∈ [2..m], to compute v2(j), v3(j), . . . , vm(j) for all j. Set
v(j) = mini v

i(j) for all j.
Let us call the instances of the Algorithm 2 run on the rest of the rows as Algorithms

3, 4, . . . ,m+ 1.
Let the current BWT interval in Algorithms 2 to m+ 1 be [j′ + 1..j]. The problematic

part in them is checking if the corresponding active BWT intervals [i′a..ia] for Algorithms
a ∈ {2, 3, . . . ,m + 1} contain only suffixes originating from column j′ + 1. To solve this,
we run Algorithm 1 as well as Algorithms 2 to m + 1 in synchronization so that we are
at the k-th step in Algorithm 1 when we are processing interval [j′ + 1..j] in rest of the
algorithms, for k = n− j′. In addition, we maintain bitvectors B and E such that B[i′a] = 1
and E[ia] = 1 for a ∈ {2, 3, . . . ,m+1}. For each M [i] that we set to 1 at step k with B[i] = 0
and E[i] = 0, we check if M [i− 1] = 1 and M [i+ 1] = 1. If and only if this check fails on
any i, there is a suffix starting outside column j′ + 1. This follows from the fact that each
suffix starting at column j′ + 1 must be contained in exactly one of the distinct intervals of
the set I = {[i′a..ia]}a∈{2,3...m+1}. This is because I cannot contain nested interval pairs as
all strings in segment [j′ + 1..j] of MSA are of equal length, and thus their BWT intervals
cannot overlap except if the intervals are exactly the same.

Finally, the running time is O(mn), since each extend-left and contract-right operations
take constant time [4], and since the bitvectors are manipulated locally only on indexes that
are maintained as variables during the execution. J

5.4 Faster main algorithm

Recall Eq. (1). Before proceeding to the involved optimal solution, we give some insights by
first improving the running time to logarithmic per entry.

As it holds v(1) ≤ v(2) ≤ · · · ≤ v(n), the range where the minimum is taken grows as j
grows. Now, [j′..j′+s(j′)] can be seen as the effect range of s(j′): for columns j > j′+s(j′) the
maximum from the options is j− j′. Consider maintaining (key, value) pairs (s(j′) + j′, s(j′))
in a binary search tree (BST). When computing s(j) we should have pairs (s(j′)+j′, s(j′)) for
1 ≤ j′ ≤ v(j) in BST. Value s(j) can be computed by taking range minimum on BST values
with keys in range [j..∞]. Such query is easy to solve in O(logn) time. If there is nothing
in the interval, s(j) = j − v(j). Since this is semi-open interval on keys in range [1 . . . 2n],
BST can be replaced by van Emde Boas tree to obtain O(n log logn) time computation of
all values [17]. Alternatively, we can remove elements from the BST once they no longer can
be answers to queries, and we can get O(n log smax) solution. To obtain better running time,
we need to exploit more structural properties of the recurrence.
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Cazaux et al. [12] considered a similar recurrence and gave a linear time solution for it.
In what follows we modify that technique to work with valid ranges.

For j between 1 and n, we define

x(j) = maxArgminj′∈[1..v(j)] max(j − j′, s(j′))

I Lemma 10. For any j ∈ [1..n− 1], we have x(j) ≤ x(j + 1).

Proof. By the definition of x(.), for any j ∈ [1..n], we have for j′ ∈ [1..x(j)− 1], max(j −
j′, s(j′)) ≥ max(j − x(j), s(x(j))) and for j′ ∈ [x(j) + 1..v(j)], max(j − j′, s(j′)) > max(j −
x(j), s(x(j))).

We assume that there exists j ∈ [1..n − 1], such that x(j + 1) < x(j). In this case,
x(j + 1) ∈ [1..x(j)− 1] and we have max(j − x(j + 1), s(x(j + 1))) ≥ max(j − x(j), s(x(j))).
As v(j+1) ≥ v(j), x(j) ∈ [x(j+1)+1..v(j+1)] and thus max(j+1−x(j+1), s(x(j+1))) <
max(j + 1− x(j), s(x(j))). As x(j + 1) < x(j), we have j − x(j + 1) > j − x(j). To simplify
the proof, we take A = j − x(j + 1), B = s(x(j + 1)), C = j − x(j) and D = s(x(j)). Hence,
we have max(A,B) ≥ max(C,D), max(A+ 1, B) < max(C + 1, D) and A > C. Now we are
going to prove that this system admits no solution.

Case where A = max(A,B) and C = max(C,D). As A > C, we have A + 1 > C + 1
and thus max(A+ 1, B) > max(C + 1, D) which is impossible because max(A+ 1, B) <
max(C + 1, D).
Case where B = max(A,B) and C = max(C,D). We can assume that B > A (in
the other case, we take A = max(A,B)) and as A > C, we have B > C + 1 and
thus max(A + 1, B) > max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).
Case where A = max(A,B) and D = max(C,D). We have A > D and A > C,
thus max(A + 1, B) > max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).
Case where B = max(A,B) and D = max(C,D). We have B ≥ D and A > C,
thus max(A + 1, B) ≥ max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).

J

I Lemma 11. By initialising s(1) to a threshold K, for any j ∈ [1..n], we have s(j) ≤
max(j,K).

Proof. We are going to show by induction. The base case is obvious because s(1) =
K ≤ max(1,K). As s(j) = minj′:1≤j′≤v(j) max(j − j′, s(j′)), by using induction, s(j) ≤
minj′:1≤j′≤v(j) max(j,K) ≤ max(j,K) J

Thanks to Lemma 11, by taking the threshold K = n+ 1, the values s(j) are in O(n) for
all j in [1..n− 1].

I Lemma 12. Given j? ∈ [x(j − 1) + 1..v(j)], we can compute in constant time if

j? = maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)).

Proof. We need just to compare k = max(j − j?, s(j?)) and s(j�) where j� is in
Argminj′∈[j?+1..v(j)]s(j′). If k is smaller than s(j�), k is smaller than all the s(j′) with
j′ ∈ [j? + 1..v(j)] and thus for all max(j − j′, s(j′)). Hence we have
j? = maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)).
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Otherwise, s(j�) ≥ k and as k ≥ j − j?, max(j − j�, s(j�)) ≥ k. In this case j? 6=
maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)). By using the constant time semi-dynamic range
maximum query by Cazaux et al. [12] on the array s(.), we can obtain in constant time j�
and thus check the equality in constant time. J

I Theorem 13. The values s(j), for all j ∈ [1..n], can be computed in O(n) time after an
O(nm) time preprocessing.

Proof. We begin by preprocessing all the values of v(j) in O(mn) (Theorem 9). The idea
is to compute all the values s(j) by increasing order of j and by using the values x(j). For
each j ∈ [1..n], we check all the j′ from x(j − 1) to v(j) with the equality of Lemma 12 until
one is true and thus corresponds to x(j). Finally, we add s(j) = max(j − x(j), s(x(j))) to
the constant time semi-dynamic range maximum query and continue with j + 1. J

6 Succinct index for segment-free founder block graphs

Recall the indexing solutions of Sect. 4 and the definitions from Sect. 3.
We now show that explicit tries and Aho-Corasick automaton can be replaced by some

auxiliary data structures associated with the Burrows-Wheeler transformation of the concat-
enation C =

∏
i∈{1,2,...,b}

∏
v∈V i,(v,w)∈E `(v)`(w)0.

Consider interval SA[i..k] in the suffix array of C corresponding to suffixes having `(v) as
prefix for some v ∈ V . From the segment repeat-free property it follows that this interval can
be split into two subintervals, SA[i..j] and SA[j + 1..k], such that suffixes in SA[i..j] start with
`(v)0 and suffixes in SA[j + 1..k] start with `(v)`(w), where (v, w) ∈ E. Moreover, BWT[i..j]
equals multiset {`(u)[|`(u)| − 1] | (u, v) ∈ E} sorted in lexicographic order. This follows by
considering the lexicographic order of suffixes `(u)[|`(u)| − 1]`(v)0 . . . for (u, v) ∈ E. That is,
BWT[i..j] (interpreted as a set) represents the children of the root of the trie R(v) considered
in Sect. 4.

We are now ready to present the search algorithm that uses only the BWT of C and
some small auxiliary data structures. We associate two bitvectors B and E to the BWT of
C as follows. We set B[i] = 1 and E[k] = 1 iff SA[i..k] is maximal interval with all suffixes
starting with `(v) for some v ∈ V .

Consider the backward search with query Q[1..q]. Let SA[j′..k′] be the interval after
matching the shortest suffix Q[q′..q] such that BWT[j′] = 0. Let i = select(B, rank(B, j′))
and k = select(E, rank(B, j′)). If i ≤ j′ and k′ ≤ k, index j′ lies inside an interval SA[i..k]
where all suffixes start with `(v) for some v. We modify the range into SA[i..k], and continue
with the backward step on Q[q′ − 1]. We check the same condition in each step and expand
the interval if the condition is met. Let us call this procedure expanded backward search.

We can now strictly improve Theorems 6 and 7 as follows.

I Theorem 14. Let G = (V,E) be a segment repeat-free founder block graph (or a segment
repeat-free GD string) with blocks V 1, V 2, . . . , V b such that V = V 1 ∪ V 2 ∪ · · · ∪ V b. We
can preprocess an index structure for G occupying O(W |E| log σ) bits in O(W |E|) time,
where {1, . . . , σ} is the alphabet for node labels and W = maxv∈V `(v). Given a query string
Q[1..q] ∈ {1, . . . , σ}q, we can use expanded backward search with the index structure to find
out if Q occurs in G. This query takes O(|Q|) time.

Proof. (sketch) As we expand the search interval in BWT, it is evident that we still find all
occurrences for short patterns that span at most two nodes, like in the proof of Theorem 6.
We need to show that a) the expansions do not yield spurious occurrences for such short
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Table 1 Segment of MSA with and without gaps.

segment of MSA gaps removed
-AC-CGATC- ACCGATC
-A-CCGATCC ACCGATCC
AAC-CGATC- AACCGATC
AAC-CGA-C- AACCGAC

patterns and b) the expansions yield exactly the occurrences for long patterns that we earlier
found with the Aho-Corasick and tries approach. In case b), notice that after an expansion
step we are indeed in an interval SA[i..k] where all suffixes match `(v) and thus corresponds
to a node v ∈ V . The suffix of the query processed before reaching interval SA[i..k] must be
at least of length |`(v)|. That is, to mimic Aho-Corasick approach, we should continue with
the trie R(v). This is identical to taking backward step from BWT[i..k], and continuing
therein to follow the rest of this implicit trie.

To conclude case b), we still need to show that we reach all the same nodes as when using
Aho-Corasick, and that the search to other direction with L(v) can be avoided. These follow
from case a), as we see.

In case a), before doing the first expansion, the search is identical to the original algorithm
in the proof of Theorem 6. After the expansion, all matches to be found are those of case b).
That is, no spurious matches are reported. Finally, no search interval can include two distinct
node labels, so the search reaches the only relevant node label, where the Aho-Corasick and
trie search simulation takes place. We reach all such nodes that can yield a full match for
the query. J

7 Gaps in multiple alignment

We have so far assumed that our input is a gapless multiple alignment. Let us now consider
how to extend the results to the general case. The idea is that gaps are only used in the
segmentation algorithm to define the valid ranges, and that is the only place where special
attention needs to be taken; elsewhere, whenever a substring from MSA rows is read, gaps
are treated as empty strings. That is, A-GC-TA- becomes AGCTA.

It turns out that allowing gaps in MSA indeed makes the computation of valid ranges
more difficult. To see this, consider the example in Table 1. The second column in Table 1
shows the sequences after gaps are removed. Without even seeing the rest of the MSA, one
can see that this is not a valid block, as the first string is a prefix of the second. With gapless
MSAs this was not possible and the algorithm in Sect. 5.3 exploited this fact.

Modifying the construction algorithm to handle gaps properly is possible, but non-trivial.
We leave this extension to journal version; see however Sections 8 and 9 for some further
insights.

Despite the computation of the segmentation is affected by gaps in MSA, once such valid
segmentation is found, the rest of the results stay unaffected. All the proposed definitions
extend to this interpretation by just omitting gap symbols when reading the strings. The
consequence for founder block graph is that strings inside a block can be of variable length.
Interestingly, with this interpretation Theorem 7 can be expressed with GD strings replaced
by elastic strings [8].
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8 Implementation and experiments

We implemented several methods proposed in this paper. The implementation is available
at https://github.com/algbio/founderblockgraphs. Some preliminary experiments are
reported below.

8.1 Construction
We implemented the founder block graph construction algorithm of Sect. 5.2 with the faster
preprocessing routine of Sect. 5.3. In place of fully-functional bidirectional BWT index, we
used similar routines implemented in compressed suffix trees of SDSL library [21]; this affects
the theoretical running time by a logarithm factor.

To test the implementation we downloaded 1484 strains of SARS-CoV-2 strains stored in
NCBI database.1 We created a multiple sequence alignment of the strains using ViralMSA[27].
We then filtered out rows that contained gaps or N’s. We were left with a multiple sequence
alignment of 410 rows and 29811 columns. Our algorithm took 58 seconds to produce the
optimal segmentation on Intel(R) Xeon(R) CPU, E5-2690, v4, 2.60GHz. There were 3352
segments in the segmentation, the maximum segment length was 12, and the maximum
number of founder segments in a block was 12. The founder block graph had 3900 nodes
and 4440 edges. The total length of node labels was 34968. The graph size was thus less
than 1% of the MSA size.

We also implemented support to construct founder block graphs for general MSA’s that
contain gaps. The modification to the gapless case was that nested BWT intervals needed to
be detected. We stopped left-extension as soon as the BWT intervals contained no other
repeats than those caused by nestedness. This left valid range undefined on such columns,
but for the rest the valid range can still be computed correctly (undefined values could be
postprocessed using matching statistics [5] on all pairs of prefixes preceding suffixes causing
nested intervals). Initial experiments show very similar behaviour to the gapless case, but we
defer further experiments until the implementation is mature enough.

8.2 Indexing
We implemented the succinct indexing approach of Sect. 6. On the founder block graph of
the previous experiment, the index occupied 87 KB. This is 3% of the original input size, as
the encoding of the input MSA with 2 bits per nucleotide takes 2984 KB.

Figure 3 shows an experiment with indexes built on different size samples of the MSA
rows, and with querying patterns of varying length sampled from the same rows. As can be
seen, the query times are not affected by the size of the MSA samples (showing independence
of the input MSA), but only on their length (showing linear dependency on the query length).

9 Discussion

One characterization of our solution is that we compact those vertical repeats in MSA that
are not horizontal repeats. This can be seen as positional extension of variable order de
Bruijn graphs. Also, our solution is parameter-free unlike de Bruijn approaches that always
need some threshold k, even in the variable order case.

1 https://www.ncbi.nlm.nih.gov/, accessed 24.04.2020.

https://github.com/algbio/founderblockgraphs
https://www.ncbi.nlm.nih.gov/
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Figure 3 Running time of querying patterns from the founder block graph. The sample sizes
(for MSA row subsets) are shown on the right-hand side of each plot. The plots show averages and
distribution over 10 repeats of each search, where one search consist of a set of query patterns of
given length randomly sampled from the respective MSA row subset. The pattern set sample size
(10,20,30,40, respectively) grows by the MSA sample size, but the reported numbers are normalized
so that the query time (milliseconds) is per pattern. This experiment was run on Intel(R) Core(TM)
i5-4308U CPU, 2.80GHz.

The founder block graph concept could also be generalized so that it is not directly
induced from a segmentation. One could consider cyclic graphs having the same segment
repeat-free property. This could be an interesting direction in defining parameter-free de
Bruijn graphs.

For journal version we plan to include a proper extension of the approach to general
MSA’s containing gaps. Our implementation already contains support for such MSA’s, but
the theory framework still requires some more work to show that such extension can be done
without any effect on the running time.

On the experimental side, there is still much more work to be done. So far, we have not
optimized any of the algorithms for multithreading nor for space usage. For example, one
could use BWT indexes engineered for highly repetitive text collections to build the founder
block graphs in space proportional of the compressed MSA. Such optimizations are essential
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for applying the approach on e.g. human genome data. Past experience on similar solutions
[28] indicate that our approach should easily be applicable to much larger datasets than
those we covered in our preliminary experiments.

Finally, this paper only scratches the surface of a new family of pangenome representations.
There are myriad of options how to optimize among the valid segmentations [28, 12], e.g. by
optimizing the number of founder segments [28] or controlling the over-expressiveness of the
graph, rather than minimizing the maximum block size as studied here.
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Abstract
Metagenomic sequencing allows us to study structure, diversity and ecology in microbial communities
without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained
from metagenomics sequencing are first assembled into longer contigs and these contigs are then
binned into clusters of contigs where contigs in a cluster are expected to come from the same species.
As different species may share common sequences in their genomes, one assembled contig may belong
to multiple species. However, existing tools for contig binning only support non-overlapped binning,
i.e., each contig is assigned to at most one bin (species). In this paper, we introduce GraphBin2
which refines the binning results obtained from existing tools and, more importantly, is able to
assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage information from
assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple
species. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not
only improves binning results of existing tools but also supports to assign contigs to multiple bins.
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1 Introduction

With the advent of high throughput sequencing approaches, the field of metagenomics has
enabled us to access and study the genetic material of entire microbial communities [25, 32].
A microbial community is usually a complex mixture of multiple species and recovering these
species is crucial to understand the behaviour and functions within such communities. To
characterise the composition of a sample, we cluster metagenomic sequences into groups that
represent different taxonomic groups such as species, genera or higher levels [28]. This process
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is known as metagenomics binning. Although it is possible to bin reads directly (before
assembly) [1, 8, 10, 18, 23, 27, 33], reads are usually too short to enable accurate binning
results [34]. Hence, a typical approach in metagenomics analysis starts from assembling
short reads into longer contigs and then bin these resulting contigs into groups representing
different taxonomic groups [28].

Existing contig-binning tools can be divided into two categories, (1) reference-based and
(2) reference-free. Reference-based binning approaches [3, 15, 20, 37] rely on a database
of reference genomes and thus may not be applicable in many metagenomic samples when
reference genomes are not available. Reference-free binning tools use unsupervised approaches
to group contigs into unlabelled bins which correspond to different taxonomic groups solely
based on the information obtained from the contigs [28]. These reference-free binning
methods become very useful when analysing environmental samples where many species
are not found in the current reference databases [16]. Most of the reference-free tools
make use of the composition and/or abundance (coverage) information of contigs to bin
them [2, 12, 13, 14, 31, 36, 38]. Although contigs are assembled from reads using assembly
graphs, most existing binning tools do not use the information of the assembly graph. More
recently, GraphBin [19] has been developed to use the connectivity information in the
assembly graph to refine the binning results of existing tools because contigs connected to
each other in the assembly graph are more likely to belong to the same taxonomic group [5].

Different bacterial genomes in a metagenomic sample may share similar genes and genomic
regions [26], which is a major challenge in assembling metagenomic reads into contigs [22].
Therefore, some assembled contigs from metagenomic reads may be shared by multiple species
in the sample. However, very few contig-binning tools support overlapped binning (i.e.,
assigning shared contigs to multiple species). S-GSOM [7] abstracts the flanking sequences
of highly conserved 16S rRNA and incorporates them into Growing Self-Organising Maps
(GSOM) to bin contigs into overlapping bins. MetaPhase [6] uses Hi-C reads to scaffold
assembled contigs into assemblies of individual species and allows certain contigs to belong
to multiple species. However, the applications of S-GSOM and MetaPhase are limited
due to their required additional sequencing effort (e.g., 16S RNA or Hi-C sequencing). As
shared contigs correspond to shared vertices between different genomic paths on the assembly
graph [22], it is worth investigating whether it is possible to infer such shared contigs from
the assembly graph without additional sequencing requirements.

In this paper, we present GraphBin2, the new generation of GraphBin, to refine binning
results using the assembly graph. While GraphBin only uses the topology information of
the assembly graph, GraphBin2 improves the algorithms to adjust existing binning results
and to support overlapped binning based on both the connectivity and coverage information
of assembly graphs. Experimental results show that GraphBin2 not only improves existing
binning results, but also infers contigs that may belong to multiple species.

2 Methods

Figure 1 denotes the workflow of GraphBin2. The preprocessing steps of GraphBin2 assemble
reads into contigs using the assembly graph and then bin the contigs (i.e., assign coloured
labels to contigs) using existing contig-binning tools. GraphBin2 takes this labelled assembly
graph as the input, removes unsupported labels, corrects the labels of inconsistent vertices,
propagates labels to unlabelled vertices and finally infers vertices with multiple labels
(colours).
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Figure 1 The workflow of GraphBin2.
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2.1 Preprocessing
In this step, we assemble the next generation reads (e.g., Illumina reads with length ranging
from 75bp to 300bp) into contigs using the assembly graph. There are two dominant
paradigms for genome assembly: overlap-layout-consensus (or string graphs) [21] and de
Bruijn graphs [24]. We select two representative assemblers from each paradigm, SGA [30]
and metaSPAdes [22] respectively, to demonstrate the adaptability of GraphBin2. In the
assembly graph, each vertex represents a contig with coverage denoting the average number
of reads that map to each base of the contig and each edge indicates a significant overlap
between a pair of contigs. In an ideal case, a genome corresponds to a path in the assembly
graph and its genomic sequence corresponds to the concatenation of contigs along this path.
Hence, if two contigs are connected by an edge in the assembly graph, they are more likely
to belong to the same genome. Previous studies [5, 19] have shown that the connectivity
information between contigs can be used to refine binning results. In the assembly graph of
metagenomic datasets, different genomes usually correspond to different paths in the assembly
graph. If two genomes share a common contig (e.g., unresolved “interspecies repeat” [22]),
the corresponding vertex would be shared by two genomic paths in the assembly graph.

After assembling reads into contigs using assembly graphs, GraphBin2 uses an existing
contig-binning tool to derive an initial binning result. Note that most of the existing tools
for binning contigs require a minimum length for the contigs (e.g., 1,000bp for MaxBin2 [38]
and SolidBin [36], 500bp for BusyBee Web [16] and 1500bp for MetaBAT2 [13]). Therefore,
many short contigs in the assembly graph will be discarded, resulting in low recall values
as a common limitation of existing binning tools. For example, 65% of the contigs in the
metaSPAdes assembly of the Sharon-All dataset were discarded by MaxBin2 due to their
short length.

2.2 Step 1: Remove Labels of Unsupported Vertices
A linear (or circular) chromosome usually corresponds to a path (or a cycle) that traverses
multiple vertices in the assembly graph. If two contigs belong to the same chromosome,
they are likely to be connected by a path which consists of other contigs from the same
chromosome. Therefore, a labelled vertex is defined as supported if and only if one of the
following conditions hold.

It is an isolated vertex
It directly connects to a vertex of the same label
It connects to a vertex of the same label through a path that consists of only unlabelled
vertices

Otherwise, a labelled vertex is defined as unsupported. Note that the definition of unsupported
vertices in GraphBin2 is more strict than ambiguous vertices in GraphBin.1 For example,
in the initial labelled assembly graph of Figure 1, vertex 2 in red is supported by vertex
6 in red as they are directly connected. Note that vertex 18 in green is also supported by
vertex 15 in green as there exists a path (i.e., 18 → 19 → 14 → 15) between them that
traverses only unlabelled vertices (i.e., 19 and 14). However, vertex 1 in blue is unsupported
as it cannot reach another blue vertex through a path consisting of only unlabelled (white
coloured) vertices.

1 In GraphBin, a vertex i is denoted as an ambiguous vertex if at least one of its closest labelled vertices
has a label that is different than the label of the vertex i.
An ambiguous vertex in GraphBin may be supported (in GraphBin2) by another vertex of the same
label if they are directly connected or connected through a path consisting of only unlabelled vertices.
An unsupported vertex in GraphBin2 is always ambiguous in GraphBin.
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To check whether a labelled vertex is supported or unsupported, a naive approach is to
perform a breadth-first-search from each labelled vertex. A refined algorithm first initialises
all labelled vertices as unsupported and scans the graph to identify all labelled vertices
that are either isolated or directly connected to a vertex of the same label and classifies
them as supported vertices. This refined algorithm then uses breadth-first-search to find
all connected components that consist of only unlabelled vertices and for each component
Component stores a set of labelled vertices N(Component) that are connected to vertices
in Component. If multiple labelled vertices in N(Component) have the same label, these
vertices are supported because they connect to each other through a path that consists of
only unlabelled vertices in Component. GraphBin2 removes the labels for all unsupported
vertices because these labels may not be reliable. For example, the label of the unsupported
vertex 1 is removed by GraphBin2 in Step 1 of Figure 1.

2.3 Step 2: Correct Labels of Inconsistent Vertices
After Step 1, each non-isolated labelled vertex v is supported by at least one vertex with
the same label. The closer two vertices are in the assembly graph, the more likely they have
the same label. For each vertex v, we introduce a labelled score, S(v, x), for each label x by
considering all vertices of label x that are directly connected to v or connected to v through
a path that consists of only unlabelled vertices. A vertex t of label x contributes to S(v, x)
by 2−D(v,t) where D(v, t) is the shortest distance between v and t using only unlabelled
vertices. This distance is measured by the number of edges in a path and D(v, t) = 1 if v
and t are directly connected. Therefore, the labelled score S(v, x) is the sum of contributions
from all vertices of label x that are directly connected to v or connected to v through a path
that consists of only unlabelled vertices. In Step 1 of Figure 1, vertex 17 contributes 1/2
to S(18, blue) because D(17, 18) = 1 and vertex 8 contributes 1/8 to S(18, green) because
D(8, 17) = 3. The labelled score of S(18, blue) is 2 to which all four blue vertices 17, 20, 23
and 24 contribute 1/2 respectively while S(18, green) = 5/16 to which vertex 8 contributes
1/8, vertex 15 contributes 1/8 and vertex 26 contributes 1/16.

A labelled vertex v of label x is defined as inconsistent if and only if the labelled score of
its current label x times α is less than or equal to the labelled score of another label y where
α is a parameter, i.e., α × S(v, x) 6 S(v, y). We have set α = 1.5 in the default settings
of GraphBin2. In Step 1 of Figure 1, vertex 18 in green is an inconsistent vertex because
1.5× S(18, green) = 1.5× 5/16 = 0.47 is less than S(18, blue) = 2.

Again, GraphBin2 uses the breadth-first-search to check if a labelled vertex is inconsistent.
GraphBin2 corrects the label of an inconsistent vertex v to another label that maximises the
labelled score. For example, GraphBin2 corrects the label of vertex 18 from green to blue
and corrects the label of vertex 22 from red to green (refer from Step 1 to Step 2 in Figure 1).

2.4 Step 3: Propagate Labels to Unlabelled Vertices
As existing contig-binning tools discard contigs due to their short lengths in the initial
binning, many vertices are still unlabelled in the current assembly graph. In this step, we
will propagate existing labels to the remaining unlabelled vertices using the assembly graph.
There are two intuitions behind this label propagation process. Firstly, vertices that are
closer to each other in the assembly graph are more likely to have the same label. Secondly,
vertices with similar coverages are more likely to have the same label because contigs from the
same genome usually have similar coverages [39, 12]. GraphBin2 uses both the connectivity
and coverage information of the assembly graph to propagate the labels.
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For each unlabelled vertex v with coverage c(v) (i.e., coverage of the contig that corres-
ponds to the vertex), a candidate propagation action (D(v, t), |c(v)− c(t)|, t, v) is recorded
as a tuple where t is the nearest labelled vertex to v, c(t) is the coverage of t and D(v, t) is
the shortest distance between v and t (as defined in Step 2). Given two candidate propaga-
tion actions, (d1, c1, t1, v1) and (d2, c2, t2, v2), GraphBin2 will execute (d1, c1, t1, v1) before
(d2, c2, t2, v2), i.e., propagating the label of t1 to v1 before propagating the label of t2 to v2,
if (d1 < d2) or (c1 < c2 and d1 = d2). In other words, GraphBin2 puts more emphasis on the
connectivity information than the coverage information because the edges in the assembly
graph are expected to be more reliable than the coverage information on vertices, especially
for vertices corresponding to short contigs (which are discarded by initial binning tools).

GraphBin2 first uses the breadth-first-search to compute all candidate propagation actions
for unlabelled vertices and sort them into a ranked list according to the order defined above.
At each iteration, GraphBin2 executes the first candidate propagation action and then
updates the ranked list of candidate propagation actions. Note that one unlabelled vertex
receives its label at each iteration and updating the ranked list of candidate propagation
actions can be done efficiently by breadth-first-search from this unlabelled vertex. Please refer
to the Supplementary Material Section A to see a step-by-step label propagation process from
Step 2 to Step 3 in Figure 1. Note that this label propagation process in GraphBin2 improves
on the label propagation algorithm in GraphBin by incorporating both the connectivity
and coverage information in the assembly graph. So far, GraphBin2 does not generate
multi-labelled vertices. In the next step, we will show how GraphBin2 uses the labelling,
connectivity and coverage information together on the assembly graph to infer multi-labelled
vertices.

2.5 Step 4: Infer Multi-Labelled Vertices

Contigs belonging to multiple genomes correspond to multi-labelled vertices in the assembly
graph. What are the characteristics of shared contigs between multiple species? Firstly, a
contig shared by multiple genomes may connect other contigs in these genomes. Secondly,
the coverage of a contig shared by multiple genomes should be equal to the sum of coverages
of these genomes in the ideal case. After label propagation, vertices of the same label are
likely to form connected components in the assembly graph and multi-labelled vertices are
likely to be located along the borders between multiple connected components where distinct
labels meet and have a coverage similar to the sum of the average coverages of multiple
components that they belong to.

GraphBin2 checks labelled vertices that are connected to vertices of multiple different
labels. The average coverage of a connected component P is calculated by

∑
c(i)×L(i)∑

L(i)
for

each vertex i in the connected component P , where c(i) is the coverage of the vertex i and
L(i) is the length of the contig corresponding to vertex i. Assume v is a labelled vertex v from
a component P , the coverage of v is c(v) and the average coverage of P is c(P ). When c(v) is
larger than c(P ) and v is connected to other components P1, P2, . . . , Pk with different labels,
it is possible that v also belongs to one or more components (in addition to P ). For example,
if v belongs to P , Pi and Pj in the ground-truth, the coverage of v, c(v), is expected to be
close to the sum of average coverages of the above three components, c(P ) + c(Pi) + c(Pj).
In fact, finding which components in {P1, P2, . . . , Pk} that v also belongs to (in addition to
P ) can be modelled as the following subset sum problem [9]. Given a set of positive numbers
{c(P1), c(P2), . . . , c(Pk)}, find a subset whose sum is or is closest to c(v)− c(P ). Then v will
be assigned to the corresponding components in this subset as well as to P . Note that it is
possible that the selected subset is empty and thus v only belongs to P .
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In all of our experiments, the maximum number of different components that a vertex
connects to in the assembly graph is less than 5. We use a brute-force way to enumerate
all possible combinations of components and find out the combinations that best explain
the observed coverages. For example, after Step 3 in Figure 1, vertex 3 in green connects
to another red component. The coverage of vertex 3 is 108 while the average coverage of
the green component is 95 and the average coverage of the red components is 19. Because
the coverage of vertex 3 (108) is closer to the sum of average coverages of green and red
components (95+19=114) compared to the average coverage of the green component (95),
vertex 3 is assigned both green and red labels. Similarly, the coverage of vertex 25 (142) is
closer to the sum of average coverages of green and blue components (95+49=144) compared
to the average coverage of the green component (95). Hence, vertex 25 is assigned both green
and blue labels. In the same assembly graph after Step 3 in Figure 1, vertex 14 in red does
not gain any other labels because its own coverage is closest to the average coverage of the
red component (19) compared to other possible combinations (i.e., red+blue, red+green,
green+blue and red+green+blue).

3 Experimental Setup

3.1 Datasets
3.1.1 Simulated Datasets
We simulated three metagenomic datasets according to the species found in the simMC+
dataset [38]. Three datasets were simulated each containing 5 species (referred as Sim-5G),
10 species (referred as Sim-10G) and 20 species (referred as Sim-20G) respectively. Paired-
end reads were simulated using the tool InSilicoSeq [11] modelling a MiSeq instrument with
300bp mean read length. More details about the simulated datasets can be found in Table 1
and Supplementary Material Section B.

3.1.2 Real Datasets
We used the preborn infant gut metagenome, commonly known as the Sharon dataset [29]
(NCBI accession number SRA052203 ). There are 18 Illumina (Illumina HiSeq 2000) runs
available for this dataset. One run SRR492184 is included as a representative dataset
(referred as Sharon-1) and all the 18 Illumina runs are combined to form the Sharon-
All dataset in our experiments. Further details can be found in Supplementary Material
Section B.

3.2 Tools Used
To derive the assembly graph, there are two dominant assembly paradigms, de Bruijn
graphs [24] and overlap-overlap-layout-consensus (or string graphs) [21]. We selected one
representative tool from each paradigm to show the effectiveness of GraphBin2. To represent
the de Bruijn graph paradigm, we used metaSPAdes[22] (from SPAdes version 3.13.0 [4]) with
its default parameters to generate the assembly graph. As for the overlap-layout-consensus
paradigm, we selected SGA (version 0.10.15) [30] to derive the assembly graph.

We used MaxBin2 (version 2.2.5) [38] with default parameters and SolidBin (version
1.3) [36] in SolidBin-SFSmode to obtain the initial binning results for our experiments.
MaxBin2 and SolidBin are considered as hybrid contig-binning tools as they use both the
composition and coverage information. They make use of tetranucleotide frequencies and
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Table 1 Details about the simulated datasets.

Dataset Species present Genome size Coverage Abundance

Sim-5G

Acetobacter pasteurianus 2.9 Mb 115× 28%
Aeromonas veronii 4.6 Mb 72× 28%
Amycolatopsis mediterranei 10.4 Mb 26× 22%
Arthrobacter arilaitensis 3.9 Mb 41× 13%
Azorhizobium caulinodans 5.4 Mb 20× 9%

Sim-10G

Acetobacter pasteurianus 2.9 Mb 357× 25%
Aeromonas veronii 4.6 Mb 225× 25%
Amycolatopsis mediterranei 10.4 Mb 80× 20%
Arthrobacter arilaitensis 3.9 Mb 128× 12%
Azorhizobium caulinodans 5.4 Mb 62× 8%
Bacillus cereus 5.3 Mb 58× 7%
Bdellovibrio bacteriovorus 3.8 Mb 11× 1%
Bifidobacterium adolescentis 2.1 Mb 20× 1%
Brachyspira intermedia 3.4 Mb 11× 1%
Campylobacter jejuni 1.7 Mb 21× 1%

Sim-20G

Acetobacter pasteurianus 2.9 Mb 705× 23%
Aeromonas veronii 4.6 Mb 445× 23%
Amycolatopsis mediterranei 10.4 Mb 157× 18%
Arthrobacter arilaitensis 3.9 Mb 253× 11%
Azorhizobium caulinodans 5.4 Mb 123× 7%
Bacillus cereus 5.3 Mb 114× 7%
Bdellovibrio bacteriovorus 3.8 Mb 22× 1%
Bifidobacterium adolescentis 2.1 Mb 40× 1%
Brachyspira intermedia 3.4 Mb 21× 1%
Campylobacter jejuni 1.7 Mb 41× 1%
Candidatus Pelagibacter ubique 1.3 Mb 54× 1%
Chlamydia trachomatis 1.1 Mb 64× 1%
Clostridium acetobutylicum 4.0 Mb 18× 1%
Corynebacterium diphtheriae 2.5 Mb 28× 1%
Cyanobacterium UCYN 1.5 Mb 47× 1%
Desulfovibrio vulgaris 3.6 Mb 20× 1%
Ehrlichia ruminantium 1.5 Mb 47× 1%
Enterococcus faecium 3.0 Mb 24× 1%
Erysipelothrix rhusiopathiae 1.8 Mb 39× 1%
Escherichia coli 5.0 Mb 14× 1%

coverages of reads with different machine learning approaches to bin contigs. Note that both
MaxBin2 and SolidBin only bin contigs which are longer than 1,000bp by default. We also
compared GraphBin2 with its predecessor GraphBin [19]. The commands used to run all the
assembly and binning tools can be found in Supplementary Material Section C.

3.3 Evaluation Criteria
Since the reference genomes of the simulated datasets were known, we used BWA-MEM [17]
to align the contigs to their reference genomes to determine the ground truth species to
which the contigs actually belonged to. If at least 50% of a contig aligns to a species, then
a contig is considered to belong to this species. Note that a contig may be considered to
belong to multiple species if multiple such alignments exist. To reduce the effect of random
alignments between short contigs and multiple genomes, a contig is considered to belong
to multiple species when its length is at least 1,000bp long. Furthermore, isolated contigs
(corresponding vertices with zero degree in the assembly graph) were not considered for the
ground-truth set of the datasets.
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For the Sharon dataset, we considered the annotated contigs from 12 species which are
available at https://ggkbase.berkeley.edu/carrol/organisms as references. A process
similar to the simulated datasets were followed for the Sharon datasets to determine the
origin species of contigs and contigs belonging to multiple species.

To evaluate the binning results of MaxBin2 [38], SolidBin [36], GraphBin [19] and
GraphBin2, we used the metrics (1) precision, (2) recall and (3) F1-score which have been
used in previous studies [2, 19, 35]. The binning result is denoted as a K×S matrix where K
is the number of bins identified by the binning tool and S is the number of species available
in the ground truth. In this matrix, the element aks denotes the number of contigs binned to
the kth bin and belongs to the sth species. Note that contigs belonging to multiple species are
not included in this matrix. Unclassified denotes the number of contigs that are unclassified
or discarded by the tool. Following are the definitions and equations that were used to
calculate the precision, recall and F1-score.

Precision =
∑

k maxs{aks}∑
k

∑
s aks

(1)

Recall =
∑

s maxk{aks}
(
∑

k

∑
s aks + Unclassified) (2)

F1 = 2× Precision×Recall
Precision+Recall

(3)

To evaluate the detection of multi-labelled vertices corresponding to contigs that may
belong to multiple species, we used the criteria (1) sensitivity (also known as true positive
rate or recall) which measures the proportion of actual positives that are correctly identified,
(2) specificity (also known as true negative rate) which measures the proportion of actual
negatives that are correctly identified and (3) balanced accuracy as follows.

Sensitivity = TP

TP + FN
(4)

Specificity = TN

TN + FP
(5)

Balanced accuracy = Sensitivity + Specificity
2 (6)

Here TP refers to the true positives (i.e., the number of multi-labelled vertices correctly
assigned with multiple labels), FP refers to the false positives (i.e., the number of single-
labelled vertices incorrectly assigned with multiple labels), FN refers to the false negatives
(i.e., the number of multi-labelled vertices incorrectly assigned with a single label) and TN
refers to the true negatives (i.e., the number of single labelled vertices correctly assigned with
a single label). We use the balanced accuracy because the dataset is imbalanced; i.e., the
number of multi-labelled contigs is much smaller than the number of single-labelled contigs.

4 Results and Discussion

4.1 Binning Results

WABI 2020
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Table 2 Comparison of binning results of MaxBin2 [38], GraphBin [19] and GraphBin2 (on top of
MaxBin2 results) using assembly graphs built by metaSPAdes [22]. The best values are highlighted
in bold.

Dataset No. of bins
identified

Evaluation
Criteria MaxBin2 GraphBin with

MaxBin2 results
GraphBin2 with
MaxBin2 results

Sim-5G 5
Precision 92.28% 99.80% 99.03%
Recall 44.16% 97.08% 99.03%
F1 score 59.74% 98.42% 99.03%

Sim-10G 10
Precision 90.24% 99.77% 99.78%
Recall 38.21% 98.66% 99.78%
F1 score 53.69% 99.21% 99.78%

Sim-20G 21
Precision 89.48% 98.28% 97.78%
Recall 41.37% 94.06% 97.71%
F1 score 56.59% 96.12% 97.74%

Sharon-1 5
Precision 75.46% 89.28% 90.02%
Recall 31.59% 61.44% 62.53%
F1 score 44.54% 72.79% 73.80%

Sharon-All 11
Precision 83.80% 90.02% 90.09%
Recall 28.55% 82.04% 83.25%
F1 score 42.58% 85.84% 86.53%

Table 3 Comparison of binning results of SolidBin [36], GraphBin [19] and GraphBin2 (on top of
SolidBin results) using assembly graphs built by metaSPAdes [22]. The best values are highlighted
in bold.

Dataset No. of bins
identified

Evaluation
Criteria SolidBin GraphBin with

SolidBin results
GraphBin2 with
SolidBin results

Sim-5G 5
Precision 91.94% 99.40% 99.03%
Recall 44.36% 96.50% 99.03%
F1 score 59.84% 97.93% 99.03%

Sim-10G 10
Precision 92.17% 99.21% 98.77%
Recall 39.44% 98.99% 99.55%
F1 score 55.24% 99.10% 99.16%

Sim-20G 10
Precision 17.51% 35.30% 46.05%
Recall 8.80% 89.62% 90.05%
F1 score 11.72% 50.65% 60.94%

Sharon-1 5
Precision 72.31% 83.98% 86.93%
Recall 30.08% 86.99% 92.95%
F1 score 42.49% 85.46% 89.84%

Sharon-All 9
Precision 78.30% 82.98% 81.13%
Recall 22.63% 66.75% 68.30%
F1 score 35.11% 73.99% 74.16%
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Table 4 Comparison of binning results of MaxBin2 [38], GraphBin [19] and GraphBin2 (on top
of MaxBin2 results) using assembly graphs built by SGA [30]. The best values are highlighted in
bold.

Dataset No. of bins
identified

Evaluation
Criteria MaxBin2 GraphBin with

MaxBin2 results
GraphBin2 with
MaxBin2 results

Sim-5G 5
Precision 93.01% 99.45% 99.57%
Recall 2.70% 99.35% 99.57%
F1 score 5.26% 99.40% 99.57%

Sim-10G 9
Precision 97.12% 93.03% 98.08%
Recall 5.21% 89.73% 94.70%
F1 score 9.89% 91.35% 96.36%

Sim-20G 20
Precision 96.30% 87.66% 94.39%
Recall 4.03% 85.91% 92.69%
F1 score 7.74% 86.78% 93.53%

Sharon-1 5
Precision 91.29% 85.90% 93.48%
Recall 32.90% 76.67% 80.47%
F1 score 48.36% 81.02% 86.49%

Sharon-All 8
Precision 63.32% 77.83% 78.07%
Recall 15.85% 37.62% 39.58%
F1 score 25.35% 50.73% 52.53%

Table 5 Comparison of binning results of SolidBin [36], GraphBin [19] and GraphBin2 (on top of
SolidBin results) using assembly graphs built by SGA [30]. The best values are highlighted in bold.

Dataset No. of bins
identified

Evaluation
Criteria SolidBin GraphBin with

SolidBin results
GraphBin2 with
SolidBin results

Sim-5G 5
Precision 93.37% 99.29% 99.62%
Recall 2.71% 99.29% 99.54%
F1 score 5.27% 99.29% 99.58%

Sim-10G 9
Precision 85.20% 77.82% 88.91%
Recall 5.05% 75.38% 93.62%
F1 score 9.54% 76.58% 91.20%

Sim-20G 19
Precision 86.25% 77.07% 83.28%
Recall 3.86% 64.92% 77.31%
F1 score 7.39% 70.10% 80.18%

Sharon-1 4
Precision 94.79% 97.19% 96.53%
Recall 35.78% 90.83% 91.59%
F1 score 51.95% 93.90% 93.99%

Sharon-All 5
Precision 60.85% 76.02% 75.90%
Recall 22.33% 47.48% 47.84%
F1 score 32.67% 58.45% 58.69%
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Table 2 and Table 4 denote the binning results of MaxBin2 [38] and the binning results of
GraphBin [19] and GraphBin2 on top of MaxBin2 results for the metaSPAdes [22] assemblies
and SGA [30] assemblies, respectively. Table 3 and Table 5 demonstrate the results of
SolidBin [36], GraphBin [19] and GraphBin2 on top of SolidBin results for metaSPAdes
assemblies and SGA assemblies, respectively. The results in these tables show that GraphBin2
achieves the best performance in most of the scenarios. Both GraphBin and GraphBin2 have
shown significant improvements on recall compared to MaxBin2 and SolidBin. While MaxBin2
and SolidBin filter contigs with length shorter than 1,000bp, GraphBin and GraphBin2 are
able to bin short contigs using assembly graphs built by either metaSPAdes or SGA. In a
few scenarios, GraphBin2 improved on the recall with a bit of a compromise on the precision
compared to the GraphBin because GraphBin removes ambiguous labels in the final step.
Furthermore, the existence of weak edges (i.e., edges that are not well supported from the
data) can form false connections between contigs and can mislead the label propagation
process.

4.2 Multi-Labelled Inference Results
One key novelty of GraphBin2 is the introduction of the multiple-labelled inference for contigs.
Tables 6, 7, 8 and 9 demonstrate the performance of the GraphBin2 with its multi-labelled
inference. It is evident that there is an increase in the number of multi-labelled contigs with
the increasing complexity of the dataset.

Table 6 Multi-labelled inference results using GraphBin2 on top of MaxBin2 [38] results for the
metaSPAdes assemblies.

Dataset Ground
truth TP FP TN FN Sensitivity Specificity Balanced

accuracy
Sim-5G 2 2 2 512 0 100.00% 99.61% 99.81%
Sim-10G 5 4 3 893 1 80.00% 99.67% 89.83%
Sim-20G 7 4 7 1,393 3 57.14% 99.50% 78.32%
Sharon-1 2 2 1 368 0 100.00% 99.73% 99.86%
Sharon-All 8 4 34 2,692 4 50.00% 98.75% 74.38%

Table 7 Multi-labelled inference results using GraphBin2 on top of SolidBin [36] results for the
metaSPAdes assemblies.

Dataset Ground
truth TP FP TN FN Sensitivity Specificity Balanced

accuracy
Sim-5G 2 2 3 511 0 100.00% 99.42% 99.71%
Sim-10G 5 4 3 893 1 80.00% 99.67% 89.83%
Sim-20G 7 4 7 1,393 3 57.14% 99.50% 78.32%
Sharon-1 2 1 1 369 1 50.00% 99.73% 74.86%
Sharon-All 8 1 29 2,700 7 12.50% 98.94% 55.72%

GraphBin2 has assigned correct labels for most of the multi-labelled and single-labelled
vertices (i.e., TP+TN). The relatively poor true-positive rate on Sharon-All dataset may
be due to the poor performance of the initial binning results of MaxBin2 and SolidBin.
Moreover, the sequencing noise or contamination in the real metagenomic dataset may also



V.G. Mallawaarachchi, A. S. Wickramarachchi, and Y. Lin 8:13

affect the identification of multi-labelled vertices in the assembly graph. Furthermore, the
Sharon-All dataset consisted of short reads of 100bp length compared to other datasets
and resulted in a very fragmented assembly graph with a large number of nodes and edges.

Table 8 Multi-labelled inference results using GraphBin2 on top of MaxBin2 [38] results for the
SGA assemblies.

Dataset Ground
truth TP FP TN FN Sensitivity Specificity Balanced

accuracy
Sim-5G 3 1 5 18,186 2 33.33% 99.97% 66.65%
Sim-10G 2 1 8 32,380 1 50.00% 99.98% 74.99%
Sim-20G 3 1 14 72,776 2 33.33% 99.98% 66.66%
Sharon-1 3 1 1 764 2 33.33% 99.87% 66.60%
Sharon-All 9 1 36 20,905 8 11.11% 99.83% 55.47%

Table 9 Multi-labelled inference results using GraphBin2 on top of SolidBin [36] results for the
SGA assemblies.

Dataset Ground
truth TP FP TN FN Sensitivity Specificity Balanced

accuracy
Sim-5G 3 2 6 18,184 1 66.67% 99.97% 83.32%
Sim-10G 2 1 0 32,388 1 50.00% 100.00% 75.00%
Sim-20G 3 1 10 72,780 2 33.33% 99.99% 66.66%
Sharon-1 3 1 0 765 2 33.33% 100.00% 66.67%
Sharon-All 9 2 15 20,925 7 22.22% 99.93% 61.08%

4.3 Visualisation of the Assembly Graph

Figure 2 denotes the labelling of the contigs in the metaSPAdes assembly graph of the Sim-
5G dataset at different stages as it undergoes the processing of GraphBin2. In Figure 2(a),
we can see that some mis-binned contigs are identified (circled in red) as differently coloured
contigs within components of a single colour. Figure 2(b) shows the refined assembly
graph where GraphBin2 has removed labels of unsupported vertices and corrected labels
of inconsistent vertices. After GraphBin2 propagates labels to the remaining unlabelled
vertices, the assembly graph will be as denoted in Figure 2(c). Finally, GraphBin2 will detect
multi-labelled vertices that correspond to contigs that may belong to multiple species as
shown by the black coloured vertices in Figure 2(d).

4.4 Implementation

The source code for the experiments was implemented using Python 3.7.3 and run on a
Darwin system with macOS Mojave 10.14.6, 16G memory and Intel Core i7 CPU @ 2.8 GHz
with 4 CPU cores. In our experiments, we restrict the depth of the breadth-first-search in
Steps 2-3 to be 5 to speed up GraphBin2. Moreover, we have set the parameter α = 1.5
by default for GraphBin2. Furthermore, the process of inferring multi-labelled vertices was
performed in parallel using multithreading (set to 8 threads by default in GraphBin2).
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(a) (b)

(c) (d)

Figure 2 The labelling of the assembly graph of Sim-5G dataset based on (a) the initial MaxBin2
result (mis-binned contigs are circled in red), (b) after removing labels of unsupported vertices and
correcting labels of inconsistent vertices, (c) after propagating labels of unlabelled vertices (d) after
determining multi-labelled vertices (black coloured vertices) by GraphBin2.

4.5 Running Time and Memory Usage

Table 10 denotes the running times (wall time) and the peak memory used for the Sharon-1
and Sharon-All datasets. MaxBin2 and GraphBin2 executed with 8 threads and SolidBin
executed with a single thread. The running times for MaxBin2 and SolidBin only include the
times taken to run the main software, excluding the times taken to build the composition
and coverage profile files.

GraphBin2 took less than 12 minutes and less than 165 MB of memory to complete
executing the Sharon-All dataset with 8 threads.
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Table 10 Running times (wall time) and peak memory usage for binning using each tool. s
denotes seconds, m denotes minutes and MB denotes megabytes.

Dataset Assembly
type Criteria MaxBin2

GraphBin2
with

MaxBin2
result

SolidBin

GraphBin2
with

SolidBin
result

Sharon-1
metaSPAdes Time 9s 5s 6s 5s

Memory 1,389 MB 45 MB 290 MB 45 MB

SGA Time 12s 3s 15s 3s
Memory 203 MB 33 MB 654 MB 33 MB

Sharon-All
metaSPAdes Time 30s 10m 50s 2m 7s 11m 12s

Memory 1,378 MB 163 MB 1,416 MB 163 MB

SGA Time 28s 1m 21s 2m 51s 1m 15s
Memory 241 MB 50 MB 2,612 MB 50 MB

5 Conclusion

In this paper we presented a novel algorithm, GraphBin2, that incorporates the coverage
information into the assembly graph as an improvement of GraphBin [19]. While GraphBin
uses only the topology of the assembly graph to remove and propagate labels, GraphBin2
makes use of the coverage information on vertices to perform label propagation. Furthermore,
GraphBin2 enables the detection of contigs that may belong to multiple species. The
performance of GraphBin2 was evaluated against its predecessor and two other binning tools
on top of contigs obtained from short-reads assembled using metaSPAdes [22] and SGA [30]
which represent the two assembly paradigms; de Bruijn graphs and overlap-layout-consensus
(string graphs). The results showed that GraphBin2 achieves the best binning performance in
both simulated and real datasets. Moreover, GraphBin2 shows the potential to infer contigs
shared by multiple species. Note that GraphBin2 could be in principle applied to long-read
assemblies. In the future, we intend to extend the capabilities of GraphBin2 to explore the
avenues at improving the detection of contigs shared by multiple species and further extend
towards binning long reads directly using read-overlap graphs.
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A Step-By-Step Example of Label Propagation in GraphBin2

Figure 3 shows how GraphBin2 propagates labels from Step 2 to Step 3 on the example
assembly graph denoted in Figure 1. Figure 3(a) denotes the assembly graph after correcting
labels of inconsistent vertices (after Step 2). In our example assembly graph that we have
considered in Figure 1(a), the following candidate propagation actions will be executed in
the given order.

(1) The candidate propagation action (1, 0, 6, 1) is executed. Vertex 1 receives the red label
from vertex 6 as shown in Figure 3(b).

(2) The candidate propagation action (1, 0, 13, 14) is executed. Vertex 14 receives the red
label from vertex 13 as shown in Figure 3(c).

(3) The candidate propagation action (1, 1, 22, 21) is executed. Vertex 21 receives the green
label from vertex 22 as shown in Figure 3(d).

(4) The candidate propagation action (1, 2, 14, 7) is executed. Vertex 7 receives the red label
from vertex 14 as shown in Figure 3(e).

(5) The candidate propagation action (1, 3, 18, 19) is executed. Vertex 19 receives the blue
label from vertex 18 as shown in Figure 3(f).

(6) The candidate propagation action (1, 16, 8, 3) is executed. Vertex 3 receives the green
label from vertex 8 as shown in Figure 3(g).

(7) The candidate propagation action (1, 53, 21, 25) is executed. Vertex 25 receives the green
label from vertex 21 as shown in Figure 3(h).

https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1186/2049-2618-2-26
https://doi.org/10.1186/2049-2618-2-26
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Figure 3 Step-by-step illustration of how labels are propagated in Step 3 of the GraphBin2
Workflow on the example assembly graph.
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B Details on the Datasets

Table 11 Information on the datasets used for the experiments.

Dataset Assembler
Read
length
(bp)

Number
of paired
end reads

Total number
of non-isolated

contigs

Mean contig
length (bp)

Number of
species in

ground truth

Sim-5G metaSPAdes 300 2,000,000 516 51,723 5
SGA 300 2,000,000 18,192 1,675 5

Sim-10G metaSPAdes 300 6,999,998 900 47,279 10
SGA 300 6,999,998 32,389 1,300 10

Sim-20G metaSPAdes 300 15,000,001 1,404 48,021 20
SGA 300 15,000,001 72,791 873 20

Sharon-1 metaSPAdes 100 14,869,863 371 17,144 12
SGA 100 14,869,863 766 3,034 12

Sharon-All metaSPAdes 100 135,493,567 2,730 7,689 12
SGA 100 135,493,567 20,942 1,547 12

C Commands Used

C.1 Assembly Tools
metaSPAdes
spades --meta -1 Reads_1.fastq -2 Reads_2.fastq -o /path/output_folder -t 20

SGA
sga preprocess -o reads.fastq --pe-mode 1 Reads_1.fastq Reads_2.fastq
sga index -a ropebwt -t 16 --no-reverse reads.fastq
sga correct -k 41 --learn -t 16 -o reads.k41.fastq reads.fastq
sga index -a ropebwt -t 16 reads.k41.fastq
sga filter -x 2 -t 16 reads.k41.fastq
sga fm-merge -m 45 -t 16 reads.k41.filter.pass.fa
sga index -t 16 reads.k41.filter.pass.merged.fa
sga overlap -m 55 -t 16 reads.k41.filter.pass.merged.fa
sga assemble -m 95 reads.k41.filter.pass.merged.asqg.gz

C.2 Binning Tools
MaxBin2
perl MaxBin-2.2.5/run_MaxBin.pl -contig contigs.fasta -abund abundance.abund -thread
8 -out /path/output_folder

Note: abundance.abund is a tab separated file with contig ID and the coverage for each
contig in the assembly. metaSPAdes provides the coverage of each contig in the contig identi-
fier of the final assembly. We can directly extract these values to create the abundance.abund
file. However, no such information is provided for contigs produced by SGA. Hence, reads
should be mapped back to contigs in order to determine the coverage of SGA contigs.

SolidBin
python scripts/gen_kmer.py /path/to/data/contig.fasta 1000 4
sh gen_cov.sh
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python SolidBin.py --contig_file /path/to/contigs.fasta --composition_profiles
/path/to/kmer_4.csv --coverage_profiles /path/to/cov_inputtableR.tsv --output
/output/result.tsv --log /output/log.txt --use_sfs

GraphBin
metaSPAdes version
python graphbin.py --assembler spades --graph /path/to/graph_file.gfa --paths
/path/to/paths_file.paths --binned /path/to/binning_result.csv --output
/path/to/output_folder

SGA version
python graphbin.py --assembler sga --graph /path/to/graph_file.asqg --binned
/path/to/binning_result.csv --output /path/to/output_folder

GraphBin2
metaSPAdes version
python graphbin2.py --assembler spades --graph /path/to/graph_file.gfa --contigs
/path/to/contigs.fasta --paths /path/to/paths_file.paths --binned
/path/to/binning_result.csv --output /path/to/output_folder

SGA version
python graphbin2.py --assembler sga --graph /path/to/graph_file.asqg --contigs
/path/to/contigs.fasta --abundance /path/to/abundance.abund --binned
/path/to/binning_result.csv --output /path/to/output_folder
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Abstract
Genome wide optical maps are high resolution restriction maps that give a unique numeric repres-
entation to a genome. They are produced by assembling hundreds of thousands of single molecule
optical maps, which are called Rmaps. Unfortunately, there exists very few choices for assembling
Rmap data. There exists only one publicly-available non-proprietary method for assembly and one
proprietary method that is available via an executable. Furthermore, the publicly-available method,
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1 Introduction

In 1993 Schwartz et al. developed optical mapping [24], a system for creating an ordered,
genome wide high resolution restriction map of a given organism’s genome. Since this
initial development, genome wide optical maps have found numerous applications including
discovering structural variations [12, 8], scaffolding and validating contigs for several large
sequencing projects [9, 4], and detecting misassembled regions in draft genomes [27, 16, 20].
Thus, optical mapping has assisted in the assembly of a variety of species – including various
prokaryote species [23, 31, 32], rice [33], maize [34], mouse [6], goat [7], parrot [9], and
amborella trichopoda [4]. Bionano Genomics has enabled the automated generation of the
data, enabling the data to become more wide-spread. For example, Bionano data was
generated for 133 species sequenced for the Vertebrate Genomes Project.

Similar to sequencing, the protocol for producing optical mapping data, begins with many
fragmented copies of the genome of interest. This redundancy allows overlap between the
raw data and assembly into longer contiguous regions corresponding to the genome. With a
selected enzyme, the fragments are nicked at each restriction site recognized by the enzyme.
These nicked fragments are then photographed and analyzed in order to determine the length
(in kbp) of the regions between nick sites. The result of this process are optical maps for
all the fragments, which are referred to as Rmaps. For example, given a genome fragment
TTTTAACTGGGGGGGAACTTTTTTTTAACTTTTT and an enzyme that recognizes the site AACT and
cleaves in the middle, the resulting Rmap would be [6, 11, 11, 6]. Rmaps by themselves are
not traditionally used for analysis – although, they can be [17, 8, 12] – and instead have
to be assembled into longer contiguous optical maps corresponding to the genome. Hence,
assembly of Rmaps refers to the problem of generating a consensus genome wide optical map
from overlapping Rmaps.

Although optical mapping has been around for decades now, the problem of efficiently
assembling the data largely remains open as there has been little work in this area - which is
largely due to the challenges posed by the data itself. Rmap data has a number of errors
that make it difficult to assemble – namely, there exists added and deleted cut sites and
sizing error, resulting in extra fragments, merges in neighboring fragments and under or
over-estimates of the length of a fragment. In the running example, the error free Rmap
of [6, 11, 11, 6] could occur as [6, 22, 6] with error. Nonetheless, there exists two Rmap
assembly methods: Gentig by Anantharaman et al. [1] and the assembler of Valouev et
al. [29]. Developed in 1998, Gentig is the first Rmap assembly algorithm. It is based on a
Bayesian model that seeks to maximize the a posteriori estimate of the consensus optical map
produced by the assembly of Rmaps. It first computes the overlap between all pairs of Rmaps
using dynamic programming, and then builds contigs by greedily merging the Rmaps based
on alignment score. This process of merging contigs continues until all alignments above a
certain score are merged. Valouev et al. [29] implemented an overlap-layout-consensus (OLC)
assembly algorithm using their alignment algorithm [28], which also starts by calculating
alignment between all pairs of Rmaps, and identifying all alignments that have score above
a specified threshold. A graph is built, where Rmaps are represented as nodes, and the
non-filtered alignments are represented as edges. The graph is refined by eliminating paths
in the graph that are weakly supported. In other words, if two connected regions in the
graph are joined by only a single path – or with multiple paths, but having one or more
common intermediate nodes – then the graph is disconnected at these nodes. Further, an
edge is removed if it is inconsistent with a higher scoring edge. Contigs are then generated by
traversing this graph in a depth first manner. Bionano Genomics Inc. provides a proprietary
assembly method, called Bionano Solve, however the source code is not publicly available
and the algorithmic details are unknown due to the proprietary nature of the software.
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The alternative to an OLC approach for assembly is Eulerian assembly that relies on
building and traversing the de Bruijn graph. For simplicity, we give a constructive definition
of the de Bruijn graph in the context of genome assembly. Given a set of sequences
R = {r1, . . . , rn} and an integer k, the de Bruijn graph is constructed by creating a directed
edge for each unique k length substring (k-mer) with the nodes labeled as the k − 1 length
prefix and k − 1 length suffix of the k-mer, and then all nodes that have the same label are
merged. The important aspect of Eulerian assembly is that it avoids having to find alignments
between any pair of sequences, leading to an O(n) run-time. Since its introduction by Idury
et al. [11] and Pevzner et al. [22], Eulerian assembly has become the most common paradigm
for assembling short read sequencing data because it led to huge gains in performance over
OLC approaches. Hence, applying a Eulerian approach to Rmap assembly would likely lead
to similar improvements by removing the burden of finding all pairwise alignments between
Rmaps. The challenge we face is constructing a de Bruijn graph with added and deleted
cut-sites and sizing error. Eulerian assembly works on the premise that a k-mer will occur
exactly without error frequently in the data. Even without the occurrence of added and
deleted cut-sites, k-mers created from Rmap data are unlikely to be exact replicas due to
sizing error. For example, [6, 11, 11, 6] and [5, 10, 11, 7] should likely be recognized as
instances of the same k-mers in Rmap data. Thus, to overcome this challenge the de Bruijn
graph has to be redefined to account for the inexactness of the data.

In this paper, we formulate and describe an Eulerian approach for de novo Rmap assembly,
which heavily relies on redefining the de Bruijn graph to make it suitable for Rmap data.
We accomplish this by extending the definition of a bi-label in the context of the paired
de Bruijn graph that was introduced by Medvedev et al. [14]. We refer to our modified de
Bruijn graph as bi-labelled de Bruijn graph. Next, we demonstrate how to efficiently build
and store the de Bruijn graph using a two tier orthogonal-range search data structure. We
implement this approach, leading to a novel Rmap assembler that we call rmapper. We
compare the performance of our method with the assembler of Valouev et al., and Bionano
Solve on three genomes of varying size: E. coli, human, climbing perch (a fish species from
the Vertebrate Genomes Project). Our comparison demonstrates that rmapper was more
than 130 times faster and used less than five times less memory than Solve, and was more
than 2,000 times faster than Valouev et al. Consequently, rmapper was the only method
able to scale to the largest Rmap dataset: climbing perch. It successfully assembled the 3.1
million Rmaps of the climbing perch genome into contigs that covered over 87% of the draft
genome with zero mis-assemblies.

2 Background and definitions

2.1 Rmap Data and Genome Wide Optical Maps

From a computer science perspective, we can view an Rmap R = [r1, r2, . . . , r|R|] as an
ordered list of integers. Each number represents the length of the respective fragment. The
size of an Rmap R denotes the number of fragments in R, which we denote as |R|. For example,
say we have an enzyme that cleaves the DNA at the middle position of AACT and a genomic
sequence TTTTAACTGGGGGGGAACTTTTTTTTAACTTTTT, then the Rmap will be R = [6, 11, 11, 6]
corresponding to the cleaved sequences [TTTTAA, CTGGGGGGGAA, CTTTTTTTTAA, CTTTTT].

WABI 2020
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2.2 Error Profile of Rmap Data

There are three types of errors that can occur in optical mapping: (1) missing cut sites which
are caused by an enzyme not cleaving at a specific site, (2) additional cut sites which can
occur due to random DNA breakage and (3) inaccuracy in the fragment size due to the
inability of the system to accurately estimate the fragment size. Continuing again with the
example above, an example of an additional cut site would be when the second fragment
of R is split into two, e.g., R′ = [6, 5, 6, 11, 6], and an example of a missing cut site would
be when the last two fragments of R are joined into a single fragment, e.g., R′ = [6, 11, 17].
Lastly, an example of a sizing error would be if the size of the first fragment is estimated to
be 7 rather than 6.

Several different probabilistic models have been proposed for describing the sizing error,
and the frequency of added and missed cut-sites, including the models of Valouev et al. [28],
Li et al. [13], and Chen et al. [5]. We briefly describe these models here but refer to the
original papers for a full description. Both Valouev et al. and Chen et al. describe the
observed fragment lengths as normal distribution with the mean being equal to the true
length of the fragment and the standard deviation being a function of the true length, i.e.
longer fragments exhibit larger standard deviation. In the model by Li et al. the sizing error
uses a Laplace distribution as follows: if the observed and actual size of a fragment are oi and
ri, respectively, then the sizing error, oi ∼ ri × Laplace(µ, β) where µ and β are parameters
of the Laplace distribution and are functions of ri. All studies model the probability of
having a missed cut-site as a Bernoulli trial. Valouev et al. and Chen et al. predict a fixed
probability for digestion of a cut-site while Li et al. model the probability of digestion as a
function of lengths of the fragments flanking the cut-site. The likelihood of a missed cut-site
decreases with the length of the fragment. All three models postulate additional or false
cut-sites result from random breaks of the DNA molecule and hence model the number of
false cuts per unit length of DNA as a Poisson distribution. Li et al. observed that false cuts
occurred less frequently at the two ends of an Rmap.

2.3 Rmap Segments and k-mers

We define a segment sp,q of an Rmap starting at position p and ending at position q, as the
q− p+ 1 consecutive fragments starting from rp, i.e., [rp, rp+1, .., rq]. We define the length of
a segment as the summation of all of its constituent fragments, i.e., rp + · · ·+ rq. We denote
the length of a segment sp,q as `(sp,q). We note that the length of the Rmap R should not
be confused with the number of fragments, which we denote as its size |R|.

In this paper, we extend the definition of a k-mer to the context of Rmap data as follows.
Given an integer k, we define a k-mer as a segment of exactly k fragments, i.e., a sequence of
k successive fragments of an Rmap. Following the example from above, the following two
3-mers exist in R = [6, 11, 11, 6]: [6, 11, 11] and [11, 11, 6].

2.4 Prefixes and Suffixes of Rmaps

Given an Rmap R= [r1, r2, . . . , r|R|], we define the x-size prefix of R as R= [r1, r2,. . . ,rx],
where x is at most |R|−1. Conversely, we define the x-size suffix of R as R=[r|R|−x+1,. . . ,r|R|],
where x is at most |R| − 1.
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3 The Bi-labelled de Bruijn Graph

In this section, we modify the traditional definition of the de Bruijn graph for Rmap data by
first redefining the concept of a bi-label for Rmap data. The term bi-label was first introduced
by Medvedev et al. [14] in the context of short read assembly to incorporate mate-pair data
into assembly of paired-end reads. There the term bi-label refers to two k-mers separated
by a specified genomic distance. The redefinition of the de Bruijn graph with this extra
information was shown to de-tangle the resulting graph, making traversal more efficient and
accurate. Here, we demonstrate that an equivalent paradigm can be effective for Rmap
assembly.

3.1 Bi-labels

Given integers k and D, and Rmap R, we define a bi-label from an Rmap R, as a segment of
R containing a pair of k-mers separated by the shortest segment that has a length of at least
D. The following is a formal definition.

I Definition 1. Given an Rmap R = [r1, r2, ..., ri, ri+1, .., r|R|], integers k and D, and a
position i, we define the bi-label at position i to be [s1

k, rp, . . . , rq, s
2
k], where p = i+ k and

q is an index such that `(sp,q−1) < D ≤ `(sp,q) and s1
k and s2

k are the k-mers starting at
positions i and q + 1, respectively.

Next, we refer to segment sp,q between s1
k and s2

k as the skip segment, and note that,
unlike s1

k and s2
k which both have k fragments, this segment is only bounded by its length

and can have any number of fragments. Thus, this accounts for added and deleted cut-sites
since these errors do not impact the length of a segment. Figure 1 demonstrates how the
skip-segment tolerates a deleted cut-site.

For example, given k = 3, D = 25, and R = [7, 18, 13, 3, 15, 12, 4, 3, 6, 5, 13, 2], the bi-labels
of R are

(
[7, 18, 13]

∣∣∣[3, 15, 12]
∣∣∣[4, 3, 6]

)
,

(
[18, 13, 3]

∣∣∣[15, 12]
∣∣∣[4, 3, 6]

)
and

(
[13, 3, 15]

∣∣∣[12, 4, 3, 6]∣∣∣[5, 13, 2]
)
.

We are now going to define the prefix and suffix bi-labels.

I Definition 2. Given integers D and k and bi-label b with k-mers b1 = [b1
1, ..b

1
k] and

b2 = [b2
1, .., b

2
k] and skip segment bs, we define the prefix bi-label of b as the bi-label with

(k− 1)-mers and skip-segment length at least D, where the first (k− 1)-mer is the (k− 1)-size
prefix of b1 i.e. [b1

1, ..b
1
k−1].

Note that the second (k − 1)-mer of the prefix bi-label is not necessarily the (k − 1)-size
prefix of b2. We also require an equivalent definition for the suffix of a bi-label.

I Definition 3. Given integers D and k and bi-label b with k-mers b1 = [b1
1, ..b

1
k] and

b2 = [b2
1, .., b

2
k] and skip segment bs, we define the suffix bi-label of b as the bi-label with

(k− 1)-mers and skip-segment length at least D, where the first (k− 1)-mer is the (k− 1)-size
suffix of b1 i.e. [b1

2, ..b
1
k].

Figure 2 illustrate this concept of prefix and suffix bi-labels. Note that for two successive
bi-labels from an Rmap, the prefix bi-label of the latter is the same as the suffix bi-label of
the former as shown in Figure 2. This is a vital property that allows the de Bruijn graph
constructed over bi-labels to be connected.
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Figure 1 All bi-labels for k = 3 and D = 25 of two Rmaps R and R′, {b1, b2, b3} and {b′
1, b′

2}
respectively. Both Rmaps cover the same genomic location but R′ has a missed cut-site in position 5
(shown in red). On each bi-label the fragments from the k-mers and the length of the skip segment
are shown in white while the fragments of the skip segment are shown in blue. Despite the missed
cut-site on R′ bi-labels b1 and b2 are merged to b′

1 and b′
2 respectively according to our merge

function.

3.2 Bi-label Proximity
One of the challenges with Rmap data is the fact that the fragments correspond to genomic
distances and due to experimental error, the measured estimates for the same genomic
fragment are different across different Rmaps representing the same genomic location. For
example, R = [5, 6, 7, 11, 5] and R′ = [6, 5, 6, 11, 6] likely correspond to the same k-mer but
the numerical nature makes it such that they are not exactly equal. Thus, we need to define
a criteria such that two bi-labels drawn from different Rmaps but corresponding to the same
genomic locations can be identified and merged for the construction of the de Bruijn graph.
Thus, to make the definition of a bi-label robust to sizing errors, we define conditions on
both the difference of the individuals fragments of two bi-labels and the difference in the
total lengths. Hence, we have the following definitions.

I Definition 4. Given integers tf , k and D, and two bi-labels a and b, we let the k-mers
of a and b be a1 = [a1

1, .., a
1
k] and a2 = [a2

1, .., a
2
k] and b1 = [b1

1, .., b
1
k] and b2 = [b2

1, .., b
2
k],

respectively. We define a and b to be fragment proximal if and only if |a1
i − b1

i | ≤ tf and
|a2

i − b2
i | ≤ tf for all i = 1, .., k.

Here tf is an error-tolerance parameter that handles sizing errors on the fragments of the
bi-label.

I Definition 5. Given integers t`, k and D, and two bi-labels a and b, we let the k-mers of
a and b be a1 and a2 and b1 and b2, respectively, and the skip segment of a and b be as and
bs, respectively. We define a and b to be length proximal if and only if |`(a1)− `(b1)| ≤ t`,
|`(a2)− `(b2)| ≤ t` and |`(as)− `(bs)| ≤ t`.

Here t` is another error-tolerance parameter that handles sizing errors on the segment
lengths of the bi-label. These two definitions lead to our final definition that defines whether
two bi-labels should be defined as equivalent in the de Bruijn graph.
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I Definition 6. Given integers k and D and two bi-labels a and b, we define them to be
proximal if and only if they are fragment proximal and length proximal.

This leads to our final definition, which is the set of bi-labels in which the bi-labelled de
Bruijn graph is defined on.

I Definition 7. Given a set of Rmaps {R1, .., Rn} and integers k and D, let B be the set
of bi-labels from R. We define the proximal reduced set of bi-labels as the set B′, where for
each b in B there is a bi-label in B′ that it is proximal to.

Figure 2 All bi-labels for k = 3 and D = 25 of an Rmap R. On each bi-label the fragments from
the k-mers and the length of the skip segment are shown in white while the fragments of the skip
segment are shown in blue. For each bi-label we show the prefix and suffix bi-labels built with k = 2
and D = 25.

3.3 Definition of the Bi-labelled de Bruijn Graph

Given the above definitions, we are now ready to define the bi-labelled de Bruijn graph built
on a set of proximal bi-labels extracted from Rmaps.

I Definition 8. Given integers k and D and set of Rmaps {R1, .., Rn}, let B be the set of
proximal bi-labels extracted from R. We create a directed edge e for each bi-label b in B and
label the incoming and outgoing nodes of e as the prefix bi-label of b and suffix bi-label of b,
respectively. After all edges are formed, the graph undergoes a gluing operation. A pair of
node bi-labels are glued into a single node if and only if they are proximal. We define the
final graph obtained after gluing of nodes as the bi-labelled de Bruijn graph.
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4 Methods

In this section, we describe our method for building and traversing the bi-labelled de
Bruijn graph from an Rmap dataset. Our method, which we refer to as rmapper, can be
summarized into the following steps: extract and store bi-labels, find proximal bi-labels,
build the bi-labelled de Bruijn graph, resolve tips and bubbles, and traverse the graph to
build the contigs. We now describe each of these steps in detail.

4.1 Extract and Store all Bi-lablels
We first error correct the Rmap data using cOMet [18] and then extract and store all
bi-labels from the error corrected Rmaps. We recall from Definition 6 that two bi-labels are
proximal if they are both fragment proximal as well as length proximal for error-tolerance
parameters tf and t`. Therefore, we must store all the bi-labels in a manner that allows
finding all proximal bi-lablels of a given bi-label efficiently. To accomplish this, we store all
the bi-labels in a disjoint set of k-d trees [3] such that each pair of bi-labels in the same k-d
tree are length proximal. For each bi-label, the 2k fragments of the k-mers of it are stored
in the corresponding k-d tree, which will allow for efficiently finding all fragment proximal
bi-labels of a given bi-label. Hence, the dimension of each k-d tree is 2k.

More formally, we identify each k-d tree Ka1,a2,a3 by three positive integers a1, a2, and a3,
and insert a given bi-label b into Ka1,a2,a3 if the length of its two k-mers `(b1) and `(b2) are
within the range [a1× t`, . . . , (a1 + 1)× t`− 1] and [a2× t`, . . . , (a2 + 1)× t`− 1] respectively
and the length of the skip segment `(bs) is also within the range [a3× t`, . . . , (a3 + 1)× t`−1].
If such a tree does not exist then we create a new one with Ka1,a2,a3 , where a1 = b`(b1)/t`c,
a2 = b`(b2)/t`c and a3 = b`(bs)/t`c.

Next, for each bi-label in our set of k-d trees, we find and store pointers to all proximal
bi-labels by performing an orthogonal range query. Given a bi-label b in Ka1,a2,a3 , we let
the k-mers of the bi-label b be b1 = [b1

1, .., b
1
k] and b2 = [b2

1, .., b
2
k]. We perform a range query

with ([b1
1 ± tf ], . . . , [b1

k ± tf ], [b2
1 ± tf ], . . . , [b2

k ± tf ]) in the disjoint set of k-d trees to find all
bi-labels whose first k-mer is equal to [b1

1± tf ], . . . , [b1
k± tf ] and whose second k-mers is equal

to [b2
1 ± tf ], . . . , [b2

k ± tf ]. We add a pointer from b to each of these bi-labels. We repeat
this for each bi-label. In particular, we perform the range query in all k-d trees where the
proximal bi-labels can be found, i.e., all k-d trees Ka′

1,a′
2,a3 where for m = min(ktf , t`) we

have, b(`(b1)−m)/t`c ≤ a′1 ≤ b(`(b1) +m)/t`c and b(`(b2)−m)/t`c ≤ a′2 ≤ b(`(b2) +m)/t`c.
We note that k-d trees support multi-dimensional orthogonal range-search queries in

O(n(2k−1)/2k + occ) time and O(n) space where n is the number of bi-labels in the tree,
k is the k-mer value, and occ is the number of bi-labels that satisfy the constrains of the
range-search query.

4.2 Graph Construction
We first filter all low frequency bi-labels, i.e., bi-labels that have a low number of proximal
bi-labels. As illustrated in Figure 3, bi-labels that have low frequency typically arise from
Rmap data that is highly erroneous. After filtering low frequency bi-labels, we build the
bi-labelled de Bruijn graph by first building a proximal reduced set from the unfiltered
bi-labels, then building all directed edges with labelled nodes from the reduced set, and
finally merging nodes that have the same label. Using an efficient heuristic, we first greedily
find the proximal reduced set of bi-labels by sorting the unfiltered bi-labels in descending
order based on the number of proximal bi-labels found for them. From this sorted list
of bi-labels B, we iteratively insert bi-labels into the reduced set B′ unless the bi-label is
proximal to a bi-label already in B′.
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Figure 3 Histogram showing the precision of finding proximal bi-labels. For simulated human
Rmap data, we found proximal bi-labels for all extracted bi-labels. We designate a proximal bi-label
found to be a true positive if its true location in the genome is the same as the location of the
bi-label to which it is proximal - and false positive otherwise. Next, we plotted a histogram showing
the distribution of true positives and false positive proximal bi-labels for each bi-label. We show
that high frequency bi-labels i.e. bi-labels for which we find more proximal bi-labels produce more
precise proximal bi-labels. This justifies filtering low frequency bi-labels.

Next, we build a bi-labelled de Bruijn graph by creating a directed edge for each bi-label
b′ in B′ and labeling the incoming and outgoing nodes as the prefix bi-label and suffix bi-label
of b′. We store all the nodes and edges in a modified adjacency list format that contains
three arrays: one array stores all node bi-labels, one array containing a list of pointers of
the incoming nodes for each node, and lastly, one array containing a list of pointers of the
outgoing nodes for each node. Thus, to insert b′ into the graph, we first determine if the
prefix and suffix bi-labels are contained in the node array and insert them if they are not
contained in the list, and then insert an entry into the incoming and outgoing arrays with
lists containing pointers to the prefix and suffix bi-labels. This graph representation will allow
for the adjacency lists of two nodes to be efficiently merged if the bi-labels they represent
are found to be proximal.

Lastly, we merge all nodes in the graph whose bi-labels are proximal to obtain the final
bi-labelled de Bruijn graph. For merging the nodes, we again use a set of disjoint k-d trees as
we did before for finding proximal bi-labels for the edge bi-labels. Hence, we extract all the
node bi-labels and construct a set of k-d trees as before. Then for each node v in the node
array, we query the corresponding k-d trees to find all nodes that are proximal to it using
the same error tolerance parameters tf and t`. Any node u that is found to be proximal to v
is merged to v by removing u from the graph by updating the two adjacency lists such that
the incoming and outgoing array entries storing pointers to u are updated to store pointers
to v. This can be achieved in linear time. We repeat this until all proximal nodes have been
merged. Figure 4 illustrates the construction of the bi-labelled de Bruijn graph for a pair of
Rmaps.

4.3 Graph Cleaning and Traversal
Before traversing the graph, we first pre-process the bi-labelled de Bruijn graph to remove
tips and bubbles, which are common in de Bruijn graphs. Since they limit the size of unary
paths (i.e. paths in the graph that contain nodes with only a single outgoing edge) and
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Figure 4 The construction of the bi-labelled de Bruijn Graph. (a) Two Rmaps R1 and R2 and
the bi-labels extracted from them – {b1, b2, b3} from R1 and {b3, b4} from R2 for k = 3 and D = 25.
(b) Edges {e1, e2, e3} depict the proximal reduced set of bi-labels. Bi-labels {b1, b4} are represented
by e1, bi-labels {b2, b5} are represented by e2 and bi-label {b3} forms e3. We note that in this
example no bi-labels are filtered for finding the proximal reduced set. (c) Nodes introduced into the
graph. Each edge breaks into two nodes - one denoted by the prefix bi-label and the other by suffix
bi-label of the edge. A directed edge is drawn from the former to the latter. (d) The final graph is
formed by merging nodes v12 with v21 and merging v22 with v32.

do not affect the accuracy of the assembly, it is common practice in short read assembly
to resolve or remove these structures [2, 30, 26, 21]. Tips are produced when errors cause
an otherwise unary path to branch at a node and create a short unary path that ends in a
terminal node. Bubbles are created when bi-labels from the same genomic location are not
merged and included in the graph as separate edges. This generates short unary paths that
have the same starting node and the same ending node and are close in length.

Similar to existing short read assemblers, we identify all tips and bubbles that have length
of at most a specified threshold by performing depth first search starting at each node with
out-degree greater than one. Hence, if there exists a tip starting at a given node as well as a
path of length longer than the specified threshold, then the tip is removed by deleting all of
its edges starting at the branching node. Furthermore, if there exists a bubble starting at
a given node, we remove one of the edges adjacent to the branching node. We note we do
not remove an entire path from the graph to resolve a bubble – rather, we only disconnect
them at the branching node. Following the work of Simpson et al. [26], we fix the maximum
length of the paths in a bubble to twice the size of the bi-label.

After cleaning, our traversal algorithm extracts unitigs (i.e. contigs corresponding to
unary paths) from the graph by performing a simple depth first traversal starting from each
node with zero incoming edges. We terminate the traversal of a given path if a cycle is
reached or a node with out-degree greater than one is reached.
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5 Experiments

In this section, we compare the performance of rmapper, the assembler of Valouev et al. and
Bionano Solve. We used the most recent version of Bionano Solve that is publicly available
(version 3.5.1.). We performed all experiments on Intel E5-2698v3 processors with 192 GB
of RAM running 64-bit Linux. Valouev and rmapper were ran on error corrected data.
Bionano Solve was not because the input is required to be specified in their proprietary
format. In addition, for larger genomes, we also ran rmapper by extracting bi-labels from
both directions in an Rmap. We refer to this as rmapper2.0.

For all experiments we report the run time (CPU time), peak memory, maximum and
mean contig size, genome fraction and number of mis-assembled contigs. We note that
genome assembly evaluation tools such as QUAST [10] cannot be used on optical maps
- hence, we design our own evaluation setup. To compute the genome fraction, we align
all assembled contigs to the optical map reference genome using the alignment method of
Valouev et al. [28]. The optical map reference genome is produced by in silico digesting the
reference genome using the same restriction enzyme as used for producing the Rmaps. For all
contigs that were successfully aligned, we designate their alignment locations on the reference
genome as covered and report the percentage of the genome covered by at least one contig as
the genome fraction. Any contig which is unable to be aligned by Valouev et al. is verified to
be mis-assembled by aligning it to the reference genome using a second alignment software
- Bionano’s RefAligner. The Valouev method aligns an assembled contig to a contiguous
stretch of the reference optical map that optimizes its alignment score and does not tolerate
mis-assembled regions. Whereas, RefAligner allows split alignments. Hence, if the alignment
outputted from RefAligner is uncontiguous then it is counted as a mis-assembly.

rmapper takes as input four parameters, namely the size k of the k-mers, the minimum
distance D between the two k-mers in the bi-label, and the error tolerance parameter setting
tf and t`. The k-mer size depends on the error-rate of the Rmap data. When the frequency
of added and missed cut-sites is high, the k-mer size needs to be set low so that a good
percentage of k-mers are error-free. We node that the average error-rate of optical-map data
typically lies between 14% to 16%. Considering that error-correcting the Rmaps brings the
average error-rate below 10%, the k-mer size of 6 is the largest value such that the probability
that an extracted k-mer will be error-free is at least 50%. Hence we use 6 as the default
k-mer size in our experiments. The best combination of coverage, average length of contigs
and run-time is achieved by fixing t` = 2000. We experimented with the following values
of D = {15 000, 20 000, 25 000, 30 000} and the following values of tf = {500, 1000, 1500} and
for each experiment, we choose the parameter setting that gives the best performance. A
higher value of tf is needed when the Rmap data still has significant sizing errors after error
correction. A lower value of D is needed when the average Rmap size is small so that we can
extract an adequate number of bi-labels from each Rmap.

5.1 Datasets
We performed experiments on both simulated and real Bionano datasets. We simulated data
from both E. coli K-12 substr. MG1655 genome and the human reference genome GRCh38
(NCBI accession number GCF_000001405.26) with OMSim [15]. We used enzyme BspQI – a
standard, commonly used restriction enzyme for optical mapping – and used the default error
rate of OMSim, which is a 15% rate of deleted cut sites, and 1 added cut site per 100kbp.
The resulting E. coli dataset contains 23 450 Rmaps with a mean of 42 fragments per Rmap.
The Human dataset contains 377 894 Rmaps with a mean of 61 fragments per Rmap.

WABI 2020



9:12 Fast and Efficient Rmap Assembly Using the Bi-Labelled de Bruijn Graph

Lastly, we performed experiments using the Rmap dataset of the climbing perch (Anabas
testudineus) genome generated for the Vertebrate Genomes Project, which consists of 3 121 480
Rmaps with mean of 28 fragments. A draft assembly of the genome is provided from the
same source which was used to obtain the reference genome optical map.

5.2 Performance on E. coli
The results on E. coli Rmap dataset is summarized in Table 1. For this experiment we
extracted bi-labels with k = 6 and D = 15 000 and used error tolerance parameter setting
tf = 500 and t` = 2000. rmapper took 342 seconds and peak memory of 274 Mb to assemble
the data. The assembler produced two unitigs that are 529 and 522 fragments in length,
which covered the reference from start to finish.

Table 1 Assembly results for E. coli Rmap data simulated by OMSim using enzyme BspQI. The
dataset has 23,450 Rmaps of mean size of 42 fragments and coverage of 900x. The peak memory is
given in gigabytes (GB). The run time is reported in second (s) minutes (m), hours (h) and days
(d). rmapper was run with k = 6, D = 15 000 and error tolerance parameter setting tf = 500 and
t` = 2000. The contig with maximum length (Max) is reported in the number of fragments and the
total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also
reported in the number of fragments and the total genomic length in mega base pairs. The genome
fraction (GF) is the percentage of the genome that is covered by at least one contig. Lastly, the
number of mis-assembled contigs (MA) is given.

Assembler Run time Peak
Memory

No. of
contigs Max Mean GF(%) MA

Valouev 8.5 d 0.48 5 102
(1.0 Mbp)

56
(0.5 Mbp) 48 0

Solve 48.1 h 1.18 1 631
(4.9 Mbp)

631
(4.9 Mbp) 100 0

rmapper 6 m 0.46 2 529
(4.6 Mbp)

526
(4.5 Mbp) 100 0

The Valouev assembler [29] took 204.8 hours to compute pairwise alignments between all
pairs of Rmaps and an additional 30 minutes to assemble them into contigs. It produced 5
contigs with the longest contig of length 102 fragments (corresponding to a 1Mbp genomic
span). We aligned the assembled contigs back to the reference and found the total genome
coverage to be 48%. Bionano solve produced a high quality assembly, i.e., one contig that
spanned 100% of the genome. The assembly took 48.14 hours of CPU time (59.75 minutes
of wall time using 60 CPUs in parallel) and peak memory of 1.18 GB. The Valouev aligner
reported alignments for all contigs, hence we report zero mis-assembled contigs for all three
methods.

In summary, the quality of Bionano Solve and rmapper were comparable, yet rmapper
was 480 times faster (6 minutes versus 2889 minutes) and used less than 500 Mb of memory.

5.3 Performance on Human
The results on the Human Rmap dataset are shown in Table 2. For this experiment we
extracted bi-labels with k = 6 and D = 25 000 and used error tolerance parameter setting
tf = 1500 and t` = 2000. rmapper took 12.1 hours and peak memory of 7.9 GB to assemble
the data whereas rmapper 2.0 took 22.2 hours and 18.8 GB of peak memory. rmapper
produced 3134 contigs whereas rmapper 2.0 produced 2867 contigs. The maximum size
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unitig produced by rmapper and rmapper2.0 was 1380 and 1752 fragments in length,
respectively. Lastly,. rmapper achieved a net coverage of 95.8% while rmapper2.0 was
able to cover 96.7% of the genome - both with zero mis-assembled contigs.

Table 2 Assembly results for human Rmap data simulated by OMSim using enzyme BspQI.
The dataset has 377 894 Rmaps of mean size of 61 fragments and coverage 80x. See Table 1 for a
description of the assembly statistics and notation. As described in the text, rmapper2.0 extracts
bi-labels from Rmaps in both forward and reverse directions.

Assembler Run
time

Peak
Memory

No. of
contigs Max Mean GF(%) MA

Valouev > 360 d n/a n/a n/a n/a n/a n/a

Solve 122.4 d 94.8 169 14,133
(124.6 Mbp)

2,036
(16.4 Mbp) 93.8 4

rmapper 12.1 h 7.9 3865 1,380
(14.4 Mbp)

144
(1.4 Mbp) 95.8 0

rmapper 2.0 22.2 h 18.8 3524 1,752
(18.5 Mbp)

203
(2.0 Mbp) 96.7 0

The Valouev assembler did not produce any output after 360 CPU days so n/a is reported
in Table 2. Bionano Solve produced comparably fewer but longer contigs to rmapper but
had 4 mis-assembled contigs. In addition, it took approximately 2937 CPU hours (55 hours
of wall time using 60 CPUs in parallel) and peak memory of 94.8 GB. It is also worth noting
that Bionano Solve performs an elaborate scaffolding and stitching of contigs, which explains
the relatively few number of contigs but higher mis-assembly rate. The scaffolding and
stitching cannot be decoupled from the assembly since Bionano only distributed a single
executable that runs both. The source code is not publicly available.

In summary, the Valouev assembler did not scale to the human genome, rmapper2.0
produced slightly longer contigs than rmapper, Bionano Solve produced the longest contigs
but covered 93.8% of the genome and had 4 mis-assembled contigs. In addition, rmapper2.0
has the highest genome fraction, which is 96.7%. Lastly, rmapper and rmapper2.0 was
242 and 132 times faster than Solve, respectively, and used 5 times less memory.

5.4 Performance on Climbing Perch

The results on the climbing perch (Anabas Testudineus) Rmap dataset are shown in Table
3. For this experiment we extracted bi-labels with k = 6 and D = 15 000 and used error
tolerance parameter setting tf = 1500 and t` = 2000. rmapper took 7.5 hours and peak
memory of 9.7 GB to assemble the data whereas rmapper 2.0 took 14.9 hours and 18.77
GB of peak memory. rmapper produced 1848 contigs whereas rmapper 2.0 produced 2489
contigs. The maximum size unitig produced by rmapper and rmapper 2.0 was 217 and
294 fragments in length, respectively. Lastly, rmapper achieved a genome fraction of 78.2%,
while rmapper 2.0 was able to cover 87.6% of the genome. Both rmapper and rmapper2.0
produced zero mis-assemblies.

The Valouev assembler did not halt on this dataset after 360 CPU days so we do not
report any results. Solve was also unable to assemble this genome as it halted with a fatal
error message after 156 CPU days and using a peak memory of 16 GB. In summary, rmapper
was only method able to assemble this genome. Although rmapper and rmapper2.0 both
successfully assembled the genome with zero mis-assemblies, rmapper2.0 produced slightly
longer contigs than rmapper and achieved a higher genome coverage.
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Table 3 Assembly results for the Rmap dataset of the climbing perch genome generated for the
Vertebrate Genomes Project, which consists of 3 121 480 Rmaps with mean of 28 fragments. The
restriction enzyme used in the experiment is BspQI. See Table 1 for a description of the assembly
statistics and notation. As described in the text, rmapper2.0 extracts bi-labels from Rmaps in both
forward and reverse directions.

Assembler Run
time

Peak
Memory

No. of
contigs Max Mean GF(%) MA

rmapper 7.5 h 9.7 1848 217
(1.6 Mbp)

52
(0.4 Mbp) 78.2 0

rmapper2.0 14.9 h 18.8 2489 294
(2.4 Mbp)

65
(0.6 Mbp) 87.6 0

6 Conclusion and Future Work

Assembly of Rmap data is a fundamental problem in optical mapping that still remains in a
nascent stage – as prior to this work, there was only a single other non-proprietary assembler.
In this paper, we formulate and describe the first Eulerian approach for Rmap assembly by
redefining the de Brujn graph to adapt it to Rmap data. We accomplish this by extending
the definition of a bi-label introduced in the context of the paired-end de Bruijn graph by
Medvedev et al. [14]. We refer to our modified de Bruijn graph as the bi-labelled de Bruijn
graph and demonstrate how to efficiently build and store it using a two-tiered orthogonal
range search data-structure.

We implement our approach and show its performance on multiple simulated and real
datasets. Our experimental results show the only non-proprietary method (i.e. by Valouev
et al. [29]) is unable to scale to the human genome, and that our method is at least 130
times faster than Bionano Solve and its memory usage is less than 20% of the memory
usage of Bionano Solve. An important note about the comparison of the assemblers is that
rmapper has a very simple traversal algorithm and does not use any sort of scaffolding.
This is due to the fact that the main contribution of this work is formulating and solving the
assembly of Rmaps. Bionano Solve has a scaffolding algorithm that cannot be decoupled
from the assembly step since only an executable is available. Thus, the results really compare
rmapper’s unitigs with Solve’s scaffolds, and rmapper are still comparable. This work does
open the door for improving Rmap assembly by employing more involved graph traversal
and/or adapting methods designed for scaffolding and stiching sequence contigs using optical
mapping data [19, 25].
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Abstract
Ongoing developments in genome sequencing have caused a fundamental paradigm shift in the
field in recent years. With ever lower sequencing costs, projects are no longer limited by available
raw data, but rather by computational demands. The high complexity of eukaryotic genomes in
concordance with increasing data sizes creates unique demands on methods to assemble full genomes.
We describe a new approach to assemble genomes from a combination of low-coverage short and
long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively filtered
short-read unitigs, which are then reduced to a long-read overlap graph G. Instead of the more
conventional approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts
subgraphs whose global properties approach a disjoint union of paths. First, a consistently oriented
subgraph is extracted, which in a second step is reduced to a directed acyclic graph. In the next step,
properties of proper interval graphs are used to extract contigs as maximum weight paths. These
are translated into genomic sequences only in the final step. A prototype implementation of LazyB,
entirely written in python, not only yields significantly more accurate assemblies of the yeast and
fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational
effort. Our findings demonstrate a new low-cost method that enables the assembly of even large
genomes with low computational effort.
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1 Introduction

The assembly of genomic sequences from high throughput sequencing data has turned out
to be a difficult computational problem in practice. Recent approaches combine cheap
short-read data (typically using Illumina technology) with long reads produced by PacBio or
Nanopore technologies. Although the short-read data are highly accurate and comparably
cheap to produce, they are insufficient even at (very) high coverage due to repetitive elements.
Long-read data, on the other hand, are comparably expensive and have much higher error
rates. HiFi PacBio reads derived from repeat sequencing of circularized elements rival short
read accuracy but at vastly increased costs.

Several assembly techniques have been developed recently for de novo assembly of large
genomes from high-coverage (50× or greater) PacBio or Nanopore reads. Recent state-of-
the-art methods employ a hybrid assembly strategy using Illumina reads to correct errors
in the longer PacBio reads prior to assembly. For instance, the 32 Gb axolotl genome was
produced in this manner [26].

Traditional assembly strategies can be classified into two general categories [21]. The
Overlap-layout-consensus (OLC) assembly model attempts to find all pairwise matches
between reads, using sequence similarity as a metric for overlaps. A general layout is
constructed and post-processed in various ways. Most notably, overlaps can be transformed
into assembly graphs such as string graphs. This method is flexible to read length and can
be adapted to the diverse error models of different sequencing technologies. However, finding
all overlaps is very expensive, especially for increasing read sizes.

In de Bruijn graph based strategies, reads are deconstructed to fixed length k-mers,
representing nodes with edges between them for each k−1 overlap. Ideally, a de Bruijn graph
represents exactly one Eulerian path per chromosome, although this property is generally
violated in practice even by light sequencing errors. With the help of specialized hashing
strategies k-mers can be efficiently stored and constructed. Thus, de Bruijn graphs require
much less memory than OLC strategies. An overall speed up can be attributed to the absence
of an all-vs-all comparison step. However, as k has to be chosen smaller than read size,
contiguity information is lost. With increasing error rates in reads, de Bruijn graphs tend to
become less useful, as k-mers become also less accurate.

Long read only and hybrid assembly strategies also largely align to these two categories,
although some more unique methods have emerged over the years. Canu [18] and Falcon [5]
implement classic OLC, albeit both error-correct long reads before creating a string graph.
MinHash filters can significantly reduce the costs of comparisons, but overall complexity
remains high. Wtdbg2 [28] also follows OLC, but utilizes de Bruijn like graphs based on
sparse k-mer mapping for comparison. It avoids all-vs-all mapping by matching reads that
share k-mers under the assumption that even under high error rates correct pairs share more
k-mer than those with spurious matches. Shasta [29] implements a full de Bruijn graph
strategy by transforming k-mers into a run-length encoding that is more robust to sequencing
errors in long reads. Newer versions of Canu also implement a similar encoding [27].
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Classic de Bruijn methods have been adapted to combine both long and short reads into
a hybrid assembly. Long reads can serve as “bridging elements” in the same way as mate
pairs to resolve paths in (short read) assembly graphs [2, 33].

Under the assumption that short-read assemblies are cheap and reliable, various workflows
have been proposed to integrate both kinds of data also for OLC like approaches. As a
general goal, these programs aim to avoid the costly all-vs-all comparison to create the
assembly graph by various heuristics. MaSuRCA [36] attempts to join both long and short
reads into longer super-reads by chaining unique k-mers, as such creating fewer reads to
compare for overlap. WENGAN [7] first creates full short-read contigs that are then scaffolded
by synthetic mate pairs generated out of the long reads. Flye [17], even more uniquely,
assembles intentionally erroneous contigs that are concatenated to a common sequence.
Self-mapping then reveals repeats that can be resolved much like in a traditional assembly
graph. In HASLR [11] an assembly graph like structure is defined combing both short and long
reads. Short reads are assembled into contigs that, after k-mer filtering to remove repeats,
are aligned to long reads. In the resulting backbone graph, short-read contigs serve as nodes
that are connected by an edge if they map onto the same long read. While different to
e.g. string graphs, standard tip and bubble removal algorithms are applied to remove noise.
Contigs are extracted as paths. TULIP [13] implements a very similar strategy, however, does
not assemble short reads into full contigs. Instead, the gaps between mate-pairs are closed
if possible with sufficiently rare k-mers, resulting in relative short but unique seeds that
serve in the same capacity. In both cases, consensus construction of the resulting sequence
is trivial. Edges define fixed regions on groups of long reads that can be locally aligned for
each edge along a path.

DBG2OLC [35] is methodologically most closely related to LazyB, however, both approaches
differ in various key features (which becomes obvious over the course of this paper). DBG2OLC
assembles short reads to full contigs with the advise to avoid repeat resolving techniques such
as gap closing or scaffolding as they introduce too many errors. Contigs are then aligned
against long reads. Each long read implies a neighborhood of contigs. Mappings are corrected
prior to graph construction via consistency checks over all neighborhoods for each contig,
i.e., contigs are required to map in the same order on all long reads. This technique can help
to remove both spuriously matched contigs and chimeric long reads, but requires adequate
coverage to allow for effective voting. Notably, here, long reads serve as nodes, with edges
representing contigs mapping to both. Nodes that map a subset of contigs of another node
are removed as they are redundant. The resulting graph can be error corrected by classic tip
and bubble removal, after which paths are extracted as contigs, following the edge with the
best overlap at each step.

LazyB implements an alternative approach to assembling genomes from a combination
of long-read and short-read data. We avoid the expensive direct all-vs-all comparison of
the error-prone long-read data, the difficult mapping of individual short reads against the
long reads, and the conventional techniques to error-correct de Bruijn or string graphs. As
we shall see, this is not only possible but also adds the benefit of producing rather good
assemblies with surprisingly low requirements on the coverage of both short and long reads.
Our methods lends itself in particular to the exploratory assembly of large numbers of species.

2 Strategy

Instead of a “total data” approach, we identify “anchors” that are nearly guaranteed to be
correct and use an, overall, greedy-like workflow to obtain very large long-read contigs. To
this end, the initial overlap graph is oriented and then edited in several steps to graph classes
approaching the desired union of paths. The strategy of LazyB is outlined in Fig. 1.
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Figure 1 Overview of the LazyB assembly pipeline. a) Short Illumina reads are filtered to
represent only near unique k-mers and subsequently assembled into unambiguous unitigs. Long
Nanopore reads (ONT) can be optionally scrubbed to include only regions consistent to at least
one other read. For larger data sets scrubbing can be handled on subsets efficiently. Mapping
unitigs against Nanopore reads yields unique “anchors” between them b). An undirected graph c) is
created by adding Nanopore reads as nodes and edges between all pairs of reads sharing an “anchor”.
Each edge is assigned a relative orientation, depending on whether the “anchor” maps in the same
direction on both Nanopore reads. Cycles with a contradiction in orientation have to be removed
before choosing a node at random and directing the graph based on its orientation. As Nanopore
reads that are fully contained within another do not yield additional data, they can be collapsed.
Contigs are extracted as maximally supported paths for each connected component d). Support in
this context is defined by the number of consistent overlaps transitive to each edge. Final contigs e)
can be optionally polished using established tools.

The key idea to obtain the overlap graph is to start from a collection S ∶= {si} of pre-
assembled, high-quality sequences that are unique in the genome. These serve as “anchors”
to determine overlaps among the long reads R ∶= {rj}. In practice, S can be obtained by
assembling Illumina data with fairly low coverage to the level of unitigs only. The total
genomic coverage of S only needs to be large enough to provide anchors between overlapping
long reads, and it is rigorously filtered to be devoid of repetitive and highly similar sequences.
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Mapping a short read s ∈ S against the set R of long reads implies (candidate) overlaps
r1 − r2 between two long reads (as well as their relative orientation) whenever an s maps to
both r1 and r2. Thus we obtain a directed overlap graph G of the long reads without an
all-vs-all comparison of the long reads.

A series of linear-time filtering and reduction algorithms then prunes first the underlying
undirected overlap graph and then the directed version of the reduced graph. Its connected
components are reduced to near-optimal directed acyclic graphs (DAGs) from which contigs
are extracted as best-supported paths. In the following sections we describe the individual
steps in detail. In comparison to DBG2OLC we avoid global corrections of short-read mappings,
but instead rely on the accuracy of assembled unitigs and a series of local corrections. For
this, we utilize previously unreported properties of the class of alignment graphs used by
both tools. This allows LazyB to operate reliably even on very low coverage. Variations of
the dataset dependent assembly options have little impact on the outcome. In contrast of
complicated setup of options required for tools such as DBG2OLC, LazyB comes with robust
defaults.

3 Theory and Methods

3.1 Preprocessing
A known complication of both PacBio and Nanopore technologies are chimeric reads formed
by the artificial joining of disconnected parts of the genome [23] that may cause mis-
assemblies [34]. Current methods dealing with this issue heavily rely on raw coverage [22]
and hence are of little use for our goal of a low-coverage assembler. In addition, start- and
end-regions of reads are known to be particularly error-prone. We pre-filter low quality
regions, but only consider otherwise problematic reads later at the level of the overlap graph.

Short-read (Illumina) data are preprocessed by adapter clipping and trimming. A set S
of high quality fragments is obtained from a restricted assembly of the short-read data. The
conventional use case of assembly pipelines aims to find a minimal set of contigs in trade-off
to both correctness and completeness. For our purposes, however, completeness is of little
importance and fragmented contigs are not detrimental to our workflow, as long as their
lengths stay above a statistical threshold. Instead, correctness and uniqueness are crucial.
We therefore employ three filtering steps: (1) Using a k-mer profile, we remove all k-mers
that are much more abundant than the expected coverage since these are likely part of
repetitive sequences. This process can be fully automated (see Appendix B).(2) In order to
avoid ambiguities only branch-free paths are extracted from the assembly graph. Moreover,
a minimal path length is required for secure anchors. The de Bruijn based assembler ABySS
[30] allows to assemble up to unitig stage, implementing this goal. Since repeats in general
lead to branch-points in the de Bruijn graph, repetitive sequences are strongly depleted in
unitigs. While in theory, every such assembly requires a fine tuned k-mer size, a well known
factor to be influential on assembly quality, we found overall results to be mostly invariant of
this parameter. To test this, we systematically varied the k-mer-size for ABySS. Nevertheless,
we found little to no effect on the results of LazyB (Fig. 2). As assembly stops at unitigs,
error rates and genome coverage stay within a narrow range as long as the unitigs are long
enough. (3) Finally, the set R of long reads is mapped against the unitig set. At present
we use minimap2 [20] for this purpose. Regions or whole unitigs significantly exceeding the
expected coverage are removed from S because they most likely are repetitive or at least
belong to families of very similar sequences such as multi-gene families. Please note that
all repetitive elements connected to a unique region within a single long read may still be
correctly assembled (see Appendix C).
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Figure 2 Assembly statistics as a function of the k-mer size used to construct unitigs from
the short-read data for yeast. Top: Illumina unitigs (left: number of unitigs; middle: fraction
of the reference genome covered; right: N50 values); bottom: final LazyB assembly at ∼11× long
reads (left: number of unitigs; middle: fraction of the reference genome covered; right: number of
mis-assemblies).

3.2 Overlap Graph for Long Reads
As a result we obtain a set of significant matches V ∶= {(s, r) ∈ S ×R ∣ δ(s, r) ≥ δ∗} whose
matching score δ(s, r) exceeds a user-defined threshold δ∗. The long-read overlap graph G has
the vertex set R. Conceptually, two long reads overlap, i.e., there should be an undirected
edge r1r2 ∈ E(G) if and only if there is an s ∈ S such that (s, r1) ∈ V and (s, r2) ∈ V. In
practice, however, we employ a more restrictive procedure:

For distinct long reads r1, r2 ∈R with (s, r1), (s, r2) ∈ V the sequence intervals on s that
match intervals on r1 and r2 are denoted with [i, j] and [k, l], respectively. The intersection
[i, j] ∩ [k, l] is the interval [max{i, k},min{j, l}] if k ≤ j and the empty interval otherwise.
Note that if [i, j] ∩ [k, l] is not empty, then it corresponds to a direct match of r1 and r2.
The expected bit score for the overlap is estimated as

ω(s, r1, r2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if [i, j] ∩ [k, l] = ∅;
1
2(min{j, l} −max{i, k} + 1) ( δ(s,r1)

(j−i+1) +
δ(s,r2)
(l−k+1)) otherwise.

(1)

For a given edge r1r2 ∈ E(G) there may be multiple significant matches, mediated by a set of
unitigs Sr1r2 ∶= {s ∈ S ∣ (s, r1), (s, r2) ∈ V}. In ideal data they are all consistent with respect
to orientation and co-linear location. In real data, however, this may not be the case.

For each significant match (s, r) ∈ V we define the relative orientation θ(s, r) ∈ {+1,−1}
of the reading directions of the short-read scaffold s relative to the long read r. The relative
reading direction of the long reads (as suggested by s) is thus θs(r1, r2) = θ(s, r1) ⋅ θ(s, r2).

The position of a significant match (s, r) defined on the unitig s on interval [i, j]

corresponds to an interval [i′, j′] on the long read r that is determined by the alignment
of s to r. Due to the large number of randomly distributed InDels in the Nanopore data,
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Figure 3 Construction of the overlap of two long reads r1 and r2 (long black arrows) from all
unitigs Sr1r2 ∶= {s1, ..., s5} (short black bars) that match to both r1 and r2. A significant match (s, r)
of s ∈ Sr1r2 on r ∈ {r1, r2} is illustrated by blue and green thick arrows on r. The relative orientation
of (s, r) is indicated by the direction of its arrow, that is, θ(s, r) = +1 (resp. θ(s, r) = −1) if its arrow
points to the right (resp. left). The subsets S1

r1r2 ∶= {s1, s3, s5} (unitigs with blue significant matches)
and S2

r1r2 ∶= {s2, s4} (unitigs with green significant matches) of Sr1r2 are both inclusion-maximal and
consists of pairwise consistent unitigs. The set S1

r1r2 maximizes Ω(r1, r2) and thus determines the
overlap. It implies θ(r1, r2) = +1. Moreover, ir1 (resp. jr1) is the minimal (resp. maximal) coordinate
of significant matches of unitigs from S1

r1r2 on r1. The corresponding coordinates on r2 are kr2 and
lr2 , respectively. The spanning intervals [ir1 , jr1] and [kr2 , lr2] define the overlap of r1 and r2. In
this example we have ir1 > kr2 and ∣r1∣ − jr1 > ∣r2∣ − lr2 , implying that r2 extends r1 neither to the
left or right and thus, edge r1r2 is contracted in G.

the usual dynamic programming alignment strategies fail to produce accurate alignments.
This is also the case for minimap2 [20], our preliminary choice, as it only chains short, high
quality matches into larger intervals. Although more accurate alignments would of course
improve the local error rate of the final assembled sequence, we expect very little impact
on the overall assembly that is not effected in large by small local errors. We therefore
record only the matching intervals and use a coordinate transformation τr that estimates the
position τr(h) ∈ [i′, j′] for some h ∈ [i, j] by linear interpolation:

τr(h) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

j′ − (j − h) j
′
−i′+1
j−i+1 if j − h ≤ h − i;

i′ + (h − i) j
′
−i′+1
j−i+1 if j − h > h − i.

(2)

The values of τr(h) are rounded to integers and used to determine intersections of matches.
We write [i, j]r ∶= [τr(i), τr(j)] for the interval on r corresponding to an interval [i, j] of s.

I Definition 1. Two unitigs s, s′ in Sr1r2 are consistent if (i) θs(r1, r2) = θs′(r1, r2), (ii) the
relative order of [is, js]r1 , [ks

′

, ls
′

]r1 on r1 and [is, js]r2 , [ks
′

, ls
′

]r2 on r2 is the same.

For distinct long reads r1, r2 ∈ R, Definition 1 enables us to determine m ≥ 1 subsets
S1
r1r2

, ...,Smr1r2
of Sr1r2 such that each is maximal with respect to inclusion and contains only

unitigs that are pairwise consistent with respect to r1 and r2. In addition, we may require
that the difference between the distances of consecutive corresponding intervals on r1 and r2,
respectively, is sufficiently similar. Computing the set S ∈ {S1

r1r2
, ...,Smr1r2

} that maximizes
the total bit score ∑s∈S ω(s, r1, r2) amounts to a chaining problem that can be solved in
quadratic time by dynamic programming [25]. An edge r1r2 is inserted into G if the optimal
total bit score Ω(r1, r2) ∶= ∑s∈S ω(s, r1, r2) exceeds a user-defined threshold. The signature
θ(r1, r2) of the edge r1r2 ∈ E(G) is the common value θs(r1, r2) for all s ∈ S.

For each edge r1r2 ∈ E(G) we determine s, s′ ∈ S such that τr1(i
s) is the minimal

and τr1(j
s′) is the maximal coordinate of the matching intervals on r1. Hence, the inter-

val [is, js
′

]r1 spans all matching intervals on r1. The corresponding pair of coordinates,
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τr2(k
s) and τr2(l

s′), spans the matching intervals on r2. In particular, the interval [ks, ls
′

]r2

(resp. [ls
′

, ks]r2) spans both matching intervals on r2 if θ(r1, r2) = 1 (resp. θ(r1, r2) = −1).
For the sake of a clear notation, let [ir1 , jr1] ∶= [is, js

′

]r1 and [kr2 , lr2] be the “spanning”
interval on r2, i.e., either [kr2 , lr2] ∶= [ks, ls

′

]r2 or [kr2 , lr2] ∶= [ls
′

, ks]r2 . Intervals [ir1 , jr1]

and [kr2 , lr2] specify the known overlapping regions between r1 and r2, see also Fig. 3 for
an illustration. If θ(r1, r2) = +1 then r1 extends r2 to the left if ir1 > kr2 and to the right if
∣r1∣ − jr1 > ∣r2∣ − lr2 . For θ(r1, r2) = −1 the corresponding conditions are ir1 > ∣r2∣ − kr2 and
∣r1∣ − jr1 > lr2 , respectively. If r1 does not extend r2 to either side then r1 is completely
contained in r2 and does not contribute to the assembly. If r1 extends r2 on both sides, r2
is fully contained, respectively. In both cases we contract the edge between r1 and r2 in G.
Otherwise, if r1 extends r2 to the left and r2 extends r1 to the right we record r1 → r2 and
accordingly, if r2 extends r1 to the left and r1 extends r2 to the right we note r1 ← r2.

The result of this construction is a long-read-overlap graph G whose vertices are the
non-redundant long reads and whose edges r1r2 record (1) the relative orientation θ(r1, r2),
(2) the bit score Ω(r1, r2), (3) the local direction of extension, and (4) the overlapping
interval.

3.3 Consistent Orientation of Long Reads
For perfect data it is possible to consistently determine the reading direction of each read
relative to the genome from which it derives. This is not necessarily the case in real-
life data. The relative orientation of two reads is implicitly determined by the relative
orientation of overlapping reads, i.e., by the signature θ(r1, r2) of the edge r1r2 ∈ E(G).
To formalize this idea we consider a subset D ⊆ E(G) and define the orientation of D as
θ(D) ∶= ∏r1r2∈D θ(r1, r2). For a disjoint union of two edge sets D and D′ we therefore
have θ(D ⊍D′) = θ(D′)θ(D) and, more generally, their symmetric different D ⊕D′ satisfies
θ(D ⊕ D′) = θ(D)θ(D′) since the edges in D ∩ D′ appear twice in θ(D)θ(D′) and thus
contribute a factor (±1)2 = 1.

I Definition 2. Two vertices r1, r2 ∈ V (G) are orientable if θ(P ) = θ(P ′) holds for any two
paths P and P ′ connecting r1 and r2 in G. We say that G is orientable if all pairs of vertices
in G are orientable.

I Lemma 3. G is orientable if and only if every cycle C in G satisfies θ(C) = 1.

Proof. Let r, r′ be two vertices of G and write C(r, r′) for the set of all cycles that contain r
and r′. If r = r′ or C(r, r′) = ∅, then r and r′ are orientable by definition. Now assume r ≠ r′,
C(r, r′) ≠ ∅, and consider a cycle C ∈ C(r, r′). Clearly, C can be split into two edge-disjoint
path C1 and C2 both of which connect r and r′. If r and r′ are orientable, then θ(C1) = θ(C2)

and thus θ(C) = 1. If r and r′ are not orientable, then there is a pair of path P1 and P2
connecting r and r′ such that θ(P1) = −θ(P2). Since P1 ⊕ P2 = ⊍

k
i=1Ci is an edge-disjoint

union of cycles Ci we have −1 = θ(P1)θ(P2) =∏
k
i=1 θ(Ci) and thus there is least one cycle Ci

with θ(Ci) = −1 in G. J

The practical importance of Lemma 3 is the implication that only a small set of cycles
needs to be considered since every graph G with c connected components has a cycle basis
comprising ∣E∣− ∣V ∣− c cycles. Particular cycles bases, known as Kirchhoff bases, are obtained
from a spanning tree T of G as the set B of cycles Ce consisting of the edge e ∈ E ∖ T and
the unique path in T connecting the endpoints of e. Every cycle C of G can then be written
as C =⊕e∈C∖T Ce, see e.g. [15].
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I Theorem 4. Let B be a cycle basis of G. The graph G is orientable if and only if θ(C) = 1
for all C ∈ B.

Proof. The theorem follows from Lemma 3 and the fact that every cycle C in G can be
written as an ⊕-sum of basis cycles, i.e., θ(C) = 1 for every cycle in C if and only if θ(C ′) = 1
for every basis cycle C ′ ∈ B. J

Theorem 4 suggests the following, conservative heuristic to extract an orientable subgraph
from G:
(1) Construct a maximum weight spanning tree TG of G by using the Ω-scores as edge

weights. Tree TG can easily be obtained using, e.g., Kruskal’s algorithm [19].
(2) Construct a Kirchhoff cycle basis B from TG.
(3) For every cycle C ∈ B, check whether θ(C) = −1. If so, find the Ω-minimum weighted

edge ê ∈ C and remove it from E(G) and (possibly) from TG if ê ∈ E(TG). Observe that
if ê /∈ E(TG), then TG stays unchanged. If ê ∈ E(TG), then the removal of ê splits TG into
two connected components. We restrict G to the connected components of TG.

This procedure yields a not necessarily connected subgraph G′ and a spanning forest TG ∩
E(G′) for G′.

I Lemma 5. Let G be an undirected graph and let G′′ be a connected component of the
residual graph G′ produced by the heuristic steps (1)-(3). Then (i) G′′ is orientable and (ii)
TG ∩E(G′′) is an Ω-maximal spanning tree of G′′.

Proof. Removal of an edge e from a spanning tree T of G partitions T into two components
with vertex sets V1 and V2. Let G1 = G[V1] and G2 = G[V2] be the corresponding induced
subgraphs ofG. The cut inG induced by e is E(G)∖(E(G1)∪E(G2)). Clearly T1 = T∩E(G1)

and T2 = T ∩E(G2) are spanning trees of G1 and G2, respectively. The restrictions B1 and
B2 of the Kirchhoff basis B to cycles with non-tree edges e ∈ E(G1) or e ∈ E(G2) form
a Kirchhoff basis of G1 and G2, respectively. Now consider G′

1 is obtained from G1 by
removing a set of non-tree edges, then B′

1 obtained from B1 by removing the cycles with
these non-tree edges is a cycle basis of G′

1 and T1 is still a spanning tree of G1. The Ω-weights
of T1 = T ∩E(G1) and T2 = T ∩E(G2) must be maximal, since otherwise a heavier spanning
tree T of G could be constructed by replacing T1 or T2 by a heavier spanning tree of G1
or G2. The arguments obviously extend to splitting Gi by cutting at an edge of Ti. Since
the heuristic removes all non-tree edges e with θ(Ce) = −1, Theorem 4 implies that each
component G′′ is orientable. When removing e ∈ T , the corresponding cut edges are removed,
the discussion above applies and thus T ∩E(G′′) is Ω-maximal. J

From here on, we denote a connected component of G′ again by G and write TG for
its maximum Ω-weight spanning tree, which by Lemma 5 is just the restriction of the
initial spanning tree to G. We continue by defining an orientation ϕ for the long reads.
To this end, we pick an arbitrary r∗ ∈ V (G) and set ϕ(r∗) ∶= +1. For each r ∈ V (G) we
set ϕ(r) ∶= ∏e∈path(r∗,r) θ(e), where path(r∗, r) is the unique path connecting r∗ and r in
TG. We can now define an equivalent graph G̃ with the same vertices and edges as G and
orientations θ̃(e) = +1 for e ∈ TG and θ̃(e) ∶= ϕ(xe)ϕ(ye) for all non-tree edges e = xeye ∉ TG.
We note that the vertex orientations can be computed in O(∣R∣) time along TG. Since
θ(Ce) = θ̃(e) for every Ce ∈ B, we can identify the non-orientable cycles in linear time.
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3.4 Reduction to a DAG
We next make use of the direction of extension of long read r1 and r2 defined by the mutual
overhangs in the case that r1r2 is an edge in G. We write G⃗ for the directed version
of a connected component G of the residual graph G′ constructed above. For each edge
r1r2 ∈ E(G) we create the corresponding edge e ∈ E(G⃗) as

e ∶=

⎧⎪⎪
⎨
⎪⎪⎩

r1r2 if ϕ(r1) = +1 and r1 → r2 or ϕ(r1) = −1 and r1 ← r2;
r2r1 if ϕ(r1) = +1 and r1 ← r2 or ϕ(r1) = −1 and r1 → r2.

(3)

In perfect data, G⃗ is a directed interval graph. Recall that we have contracted edges
corresponding to nested reads (i.e., intervals). Therefore, G⃗ is a proper interval graph or
indifference graph. Thus there is an ordering ≺ of the vertices (long reads) that satisfies the
umbrella property [12]: r1 ≺ r2 ≺ r3 and r1r3 ∈ E(G⃗) implies r1r2, r2r3 ∈ E(G⃗). A “normal
interval representation” and a linear order ≺ of the reads, can be computed in O(∣R∣) time [24].
Again, we cannot use these results directly due to the noise in the original overlap graph.

First we observe that G⃗ should be acyclic. Our processing so far, however, does not
guarantee acyclicity since G⃗ still may contain some spurious edges due to unrecognized
repetitive elements. The obvious remedy is to remove a (weight-)minimal set of directed
edges. This Feedback Arc Set problem, however, is NP-complete, see [3] for a recent
overview. We therefore resort to a heuristic that makes use of our expectations on the
structure of G⃗: In general we expect multiple overlaps of correctly placed reads, i.e., r is
expected to have several incoming edges from its predecessors and several outgoing edges
exclusively to a small set of succeeding reads. In contrast, we expect incorrect edges to
appear largely in isolation. This suggest to adapt Khan’s topological sorting algorithm [14].
In its original version, it identifies a source u, i.e., a vertex with in-degree 0, appends it to
the list W of ordered vertex and then deletes all its out-edges. It stops with “fail” when
no source can be found before the sorting is complete, i.e., W does not contain all vertices
of the given graph, indicating that a cycle has been encountered. In our setting we need
to identify the best approximation to create a new source in this case. Denote by N+(W )

denotes the out-neighborhood of the already sorted set W . The set K ∶= (V ∖W ) ∩N+(W )

of not yet sorted out-neighbors of W are the candidates for the next source. For each u ∈K
we distinguish incoming edges xu from x ∈W , x ∈K, and x ∈ V ∖ (W ∪K) and consider two
cases:
(1) There is a u ∈K without an in-edge xu from some other x ∈K. Then we choose among

these the vertex û with the largest total Ω-weight incoming from W because û then
overlaps with most of the previously sorted reads.

(2) If for each u ∈ K there is an in-edge xu from some other x ∈ K, then the candi-
date set K forms a strongly connected digraph. In this case we choose the candi-
date û ∈ K with the largest difference of Ω-weights incoming from W and K, i.e.,
û ∶= arg maxu∈K ∑w∈W Ω(w,u) −∑k∈K∖{u}Ω(k, u).

In either case we remove from G⃗ the edges incoming from V ∖W into û and proceed. If
multiple sources are available we always pick the one with largest Ω-weight incoming from W .
As a consequence, incomparable paths in G⃗ are sorted contiguously. The result of the
modified Kahn algorithm is a directed acyclic graph Ð⇀G .

3.5 Golden Paths
For perfect data, Ð⇀G (and already G⃗) has a single source and a single sink vertex, corresponding
to the left-most and right-most long reads r′ and r′′, respectively. Furthermore, every directed
path connecting r′ and r′′ is a golden path, that is, a sequence of overlapping intervals that
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covers the entire chromosome. Even more stringently, every read r ≠ r′, r′′ has at least one
predecessor and at least one successor in Ð⇀G . The acyclic graph Ð⇀G therefore has a unique
topological sorting, i.e., its vertices are totally ordered. As before, we cannot expect that Ð⇀G
has these properties for real-life data.

Ploidy in eukaryotes may constitute a valid exception to this assumption, as differences
in chromosomes ideally also cause diverging structures. However, given the high error rate of
long reads, low sequence variation can only be differentiated in very high coverage scenarios;
these explicitly are not targeted by LazyB. High accuracy short read assemblies originating
from different alleles thus can be expected to match equally well to the same long reads
given their low quality. Therefore, also ploidy variation will normally be merged to a single
consensus. Accordingly, we did not detect any mayor duplication issues in the human, fly, or
yeast.

A transitive reduction H○ of some directed graph H is a subgraph of H with as few edges
as possible such that two vertices x and y are connected by a directed path in H○ if and only
if they are connected by a directed path in H. It is well-known that each acyclic digraph has
a unique transitive reduction [1, Thm. 1]. This property enables us to call an edge e of an
acyclic digraph H redundant if e ∉ E(H○).

Consider a proper interval graph H, an induced subgraph F of H, and recall that H is an
acyclic digraph. Since H satisfies the umbrella property, every redundant edge uw ∈ E(H)

is part of some triangle. We also observe that F has a unique topological sorting and its
triangle reduction F△, obtained by removing all edges uw ∈ E(F ) for which there is a vertex
v with uv, vw ∈ E(F ), is a path. In fact, F△ is an induced path in the triangle reduction H△

of H.
This deduction suggests to identify maximal paths in the triangle reduction Ð⇀G△ of the

directed acycling graph Ð⇀G as contigs. Since the topological sorting along any such path is
unique, it automatically identifies any redundant non-triangle edges along a path.

On imperfect data Ð⇀G△ differs from a unique golden path by bubbles, tips, and crosslinks
(see Appendix A). Tips and bubbles predominantly are caused by edges that are missing e.g.
due to mapping noise between reads that belong to a shared contig region. Hence, any path
through a bubble or superbubble yields essentially the same assembly of the affected region
and thus can be chosen arbitrarily, whereas tips may prematurely end a contig. Node-disjoint
alternative paths within a (super-)bubble start and end in the neighborhood of the original
path. Tips either originate or end in neighborhood of the chosen path.

Crosslinks represent connections between two proper contigs by spurious overlaps, caused,
e.g., by repetitive elements that have escaped filtering. As crosslinks can occur at any
positions, a maximal path may not necessarily follow the correct connection and thus may
introduce chimeras into the assembly. As a remedy we measure how well an edge e fits into a
local region that forms an induced proper interval graph. Recall that the out-neighborhood
of each vertex in a proper interval graph induces a transitive tournament. For real data,
however, the subgraphÐ⇀G[N+(r)] induced by the out-neighbors of r may in general violate this
expectation. The problem of finding the maximum transitive tournament in an acyclic graph
is NP-hard [8]. An approximation can be obtained, however, using the fact that a transitive
tournament has a unique directed Hamiltonian path. Finding a longest path in a DAG
only requires linear time. Thus candidates for transitive tournaments in Ð⇀G[N+(r)] can be
retrieved efficiently as the maximal path Prq in

Ð⇀
G[N+(r)] that connects r with an endpoint q,

i.e., a vertex without an outgoing edge within Ð⇀G[N+(r)]. Clearly, it suffices to consider
the maximum path problem in the much sparser DAG Ð⇀G△[N+(r)]. The induced subgraph
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Ð⇀
G△[Prq] with the largest edge set Hr ∶= E(

Ð⇀
G△[Prq]), i.e., q ∶= arg maxp ∣E(

Ð⇀
G△[Prp])∣,

serves as approximation for the maximal transitive tournament and is used to define the
interval support of an edge e ∈ E(

Ð⇀
G) as

ν(e) ∶= ∑

r∈V (
Ð⇀
G)∶e∈Hr

(∣Hr ∣ − d(r, e) − 1) . (4)

Here, d(r, e) is the minimal number of edges in the unique path from r to e in the path
formed by the edges in Hr. The interval support can be interpreted as the number of triangles
that support e as lying within an induced proper interval graph. It suffices to compute ν(e)
for e ∈ E(

Ð⇀
G△). We observed empirically that determining the best path with respect to ν(e)

(rather than weight Ω of the spanning tree edges) results in contigs with a better solution
quality. Taken together, we arrive at the following heuristic to iteratively extract meaningful
paths (see also Appendix D):
i) Find the longest path p = r1, . . . , rn in Ð⇀G△ such that at every junction, we choose the

incoming and outgoing edges e with maximal interval support ν(e).
ii) Add the path p to the contig set if it is at least two nodes long and neither the in-

neighborhood N−(r1) nor the out-neighborhood N+(rn) are marked as previously visited
in Ð⇀G . Otherwise, we have found a tip if one of N−(r1) or N+(rn) was visited before and
a bubble if both were visited. Such paths are assumed to have arisen from more complex
crosslinks and can be added to the contig set if they exceed a user-defined minimum
length.

iii) The path p is marked visited in Ð⇀G and all corresponding nodes and edges are deleted
from Ð⇀

G△.
iv) The procedure terminates when Ð⇀G△ is empty.
As the result, we obtain a set of paths, each defining a contig.

3.6 Consensus Sequence
The final step is the retrieval of a consensus sequence for each path p. This step is more
complicated than usual due to the nature of our initial mappings. While we enforce compatible
sets of unitigs for each pair of long reads, a shared unitig between edges does not necessarily
imply the same genomic coordinate. (i) Unitigs can be long enough that we gain triples
ri, ri+1, ri+2 ∈ V (p) such that an s ∈ Sriri+1 ∩ Sri+1ri+2 exists but ri and ri+2 share no interval
on s. Such triples can occur chained. (ii) Unitigs of genomic repeats may remain in the
data. Such unitigs may introduce pairwise distinct edges ei, ej , ek that appear in this order,
denoted by ei ≺ ej ≺ ek, along the path p such that s ∈ Sei and s ∈ Sek

but s ∉ Sej , therefore
creating disconnected occurrences of s. (iii) Similarly, proximal repeats may cause inversions
in the order of two unitigs s, s′ ∈ Sei ∩ Sek

, w.l.o.g ei ≺ ek. This scenario cannot appear on
neighboring edges, as the shared node has a unique order of s and s′. Hence, either s or s′
must be missing in an intermediary edge el due to the consistency constraints in the original
graph, resulting in a situation as described in (ii). (iv) Finally, true matches of unitigs may
be missing for some long reads due to alignment noise, which may also yield a situation as
in (ii).

To address (i), we collect all instances of a unitig in the path independent of its context.
We create an undirected auxiliary graph Us with a vertex setV (Us) ∶= {e ∈ E(p) ∣ s ∈ Se}.
We add edges for all edge-pairs that share an overlap in s. Any clique in this graph then
represents a set of edges that share a common interval in s. We assign each edge a unique
cluster index ces, according to a minimal size clique decomposition. As finding a set of
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maximal cliques is NP-hard, we instead resort to a O(∣V ∣/(log ∣V ∣)2) heuristic [4]. We address
(ii-iv) with the help of a second index ges , where gei

s ≠ gek
s for two edges ei, ek if and only if

an edge ej exists such that ei ≺ ej ≺ ej and s ∉ Sej .
Finally, we can now create a multigraph M consisting of vertex triples {(s, ces, g

e
s) ∣ s ∈

Se with e ∈ E(p)}. We add edges (s, ces, g
e
s) → (s′, c′es , g

′e
s ) if and only if s ≺ s′ on an edge e

and no element s′′ exists such that s ≺ s′′ ≺ s′ . The resulting graph is cycle free and thus
uniquely defines the positions of all unitigs. Nodes represent the sequence of the common
interval on the unitig s as attributed to the clique ces. Edges represent the respective sequence
of long reads between s and s′, or a negative offset value if unitigs overlap. We take an
arbitrary node in M and set its interval as the reference point. Positions of all other nodes
are progressively built up following a topological order in this graph. If multiple edges exist
between two nodes in this process a random but fixed edge is chosen to estimate the distance
between nodes. As now all sequence features are embedded in the same coordinate system,
an arbitrary projection of the sequence is set as the reference contig, retaining unitigs were
possible due to their higher sequence quality. At the same time, we can map the features
of each long read to their respective position in this newly constructed reference. This
information can be directly fed into consensus based error correction systems such as racon
[32].

4 Experimental Results

To demonstrate the feasibility of our assembly strategy we applied LazyB to publicly available
datasets (see Appendix E) [9, 16, 31] for three well studied model organisms, baker’s yeast (S.
cerevisiae, genome size 12 Mb), fruit fly (D. melanogaster, genome size 140 Mb) and human
(H. sapiens, genome size 3 Gb). The data were downsampled to approximately 5× and 10×
nanopore coverage for long reads, respectively, and Illumina coverage sufficient for short-read
anchors. We compare results to the most widespread competing assembler Canu [18], also
highlighting the disadvantage of long read only strategies, DBG2OLC’s [35] implementing the
most closely related concept, as well as the recent competitor HASLR [11] based on also a
similar strategy. For comparison, we also provide the statistics for short-read only assemblies
created with ABySS [30] on the same sets of reads used to create the “anchors” to show the
advantage of hybrid assembly even at a low coverage of long reads. Quality was assessed
via alignment to a reference genome by the QUAST tool [10]; see Table 1. LazyB produced
consistently better results than Canu, increasing genomic coverage at a lower contig count.
Due to our inclusion of accurate short-read unitigs, overall error counts are also significantly
lower. Most notably, Canu was unable to properly operate at the 5× mark for both data sets.
Only insignificant portions of yeast could be assembled, accounting for less than 15% of the
genome. Canu completely failed for fruit fly, even after adapting settings to low coverage.
Even at 5×, LazyB already significantly reduces the number of contigs compared to the
respective short-read assemblies, while retaining a reasonably close percentage of genome
coverage. At only 10× coverage for fruit fly, we were able to reduce the contig count 10-fold
at better error rates. For human, LazyB manages at 39-fold decrease of the number contigs,
albeit at a loss of greater 10% coverage. This difference appears to be a consequence of
the high fragmentation of unitigs in the abundant repeat regions of the genome, rendering
them too unreliable as anchors. Results are indeed in line with unitig coverage. While HASLR
produced the fewest mis-assemblies, it creates significantly more and shorter contigs that
cover a much smaller fraction of the genome. As a consequence it has the least favorable
N50 values of all tools. For fruit fly at 10×, it results in four times as many contigs and
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Table 1 Assessment of assembly qualities for LazyB, Canu, and short-read only assemblies for two
model organisms. LazyB outperforms Canu in all categories, while significantly reducing contig counts
compared to short-read only assemblies. While HASLR is more accurate, it covers significantly lower
fractions of genomes at a higher contig count and drastically lower N50. While DBG2OL produces few
contigs at a high N50 for higher coverage cases, it calls significantly more mis-assemblies. Mismatches
and InDels are given per 100kb. Accordingly, errors in LazyB’s unpolished output constitute < 1%
except for human. Column descriptions: X coverage of sequencing data, completeness of the
assembly. #ctg number of contigs, #MA number of mis-assemblies (breakpoints relative to the
reference assembly) MisMatches and InDels relative to the reference genomes. N50 of correctly
assembled contigs (minimal length of a correctly assembled contig needed to cover 50% of the
genome, also named NGA50; omitted when < 50% is correctly recalled).

Org. X Tool compl.[%] #ctg #MA MM InDels N50
yeast ∼5× LazyB 90.466 127 9 192.56 274.62 118843

Canu 14.245 115 5 361.47 2039.15 -
HASLR 64.158 111 1 14.87 34.86 60316

DBG2OLC 45.645 53 20 2066.64 1655.92 -
∼11× LazyB 97.632 33 15 193.73 300.20 505126

Canu 92.615 66 15 107.00 1343.37 247477
HASLR 92.480 57 1 7.89 33.91 251119

DBG2OLC 97.689 38 25 55.06 1020.48 506907
∼80× Abyss 95.247 283 0 9.13 1.90 90927

fruit fly ∼5× LazyB 71.624 1879 68 446.19 492.43 64415
Canu - - - - - -
HASLR 24.484 1407 10 31.07 58.96 -

DBG2OLC 25.262 974 141 1862.85 969.26 -
∼10× LazyB 80.111 596 99 433.37 486.28 454664

Canu 49.262 1411 275 494.66 1691.11 -
HASLR 67.059 2463 45 43.83 84.89 36979

DBG2OLC 82.52 487 468 739.47 1536.32 498732
∼45× Abyss 83.628 5811 123 6.20 8.31 67970

human ∼10× LazyB 67.108 13210 2915 1177.59 1112.84 168170
∼43× Unitig 69.422 4146090 252 93.07 13.65 338
∼43× Abyss 84.180 510315 2669 98.53 25.03 7963

covers 10% less of the genome, with a 12 times lower N50. While an improvement to Canu, it
also struggles on datasets with low Nanopore coverage. DBG2OLC shows the greatest promise
compared to our own method, but similarly fails to operate well on very low coverage
datasets. For yeast at 5×, less then 50% the genome can be reconstructed. In fruit fly even
less then 25% can be assembled at about 2 times the error rate of LazyB. At 10×, DBG2OLC
reconstruct a similar proportion of the genome, albeit at high error rates. While it produces
about 100 fewer contigs for fruit fly, this achievement is offset by over 350 (4.7 times more)
mis-assemblies.

The resource footprint of LazyB is small enough to run on an off-the-shelf desktop machine
or even a laptop. The total effort is, in fact, dominated by the computation of the initial
unitig set from the short reads. We expect that an optimized re-implementation of LazyB
will render its resource consumption negligible. Compared to the competing Canu assembler,
the combination of ABySS and the python-prototype of LazyB is already more than a factor
of 60 faster. In terms of memory, given precomputed unitigs LazyB also requires 3 − 18
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times less RAM than Canu, see Table 4. Most notably, we were able to assemble the human
genome within only 3 days, while Canu could not be run within our resource constraints.
HASLR shows a similar distribution of running times between tasks, overall operating slightly
faster. We could not process our human test set with HASLR. A human DBG2OLC assembly
can be estimated to take several weeks without manual parallelization for a single set of
parameters, with authors recommending several possible alternatives for optimization. We
therefore include only the results for LazyB here, and leave a more detailed comparison of
the performance for very complex genomes for a proper follow-up experiment.

5 Discussion and Outlook

We demonstrated here the feasibility of a new strategy for sequence assembly with low
coverage long-read data. Already the non-optimized prototype LazyB, written entirely in
python, not only provides a significant improvement of the assembly but also requires much
less time and memory than state-of-the-art tools. This is achieved by avoiding both a
correction of long reads and an all-vs-all comparison of the long reads. Instead, we use
rigorously filtered short-read unitigs as anchors to sparsifying the complexity of full string-
graphs construction. LazyB then uses a series of fast algorithms to consistently orient this
sparse overlap graph, reduce it to a DAG, and sort it topologically, before extracting contigs
as maximum weight paths. This workflow relies on enforcing properties of overlap graphs
that have not been exploited in this manner in competing sequence assembly methods.

The prototype implementation leaves several avenues for improvements. We have not
attempted here to polish the sequence but only to provide a common coordinate system
defined on the long reads into which the short-reads unitigs are unambiguously embedded to
yield high-quality parts of the LazyB-assembly. The remaining intervals are determined solely
by long-read data with their high error rate. Multiple edges in the multigraph constructed
in the assembly step correspond to the same genome sequence, hence the corresponding
fragments of reads can be aligned. This is also true for alternative paths between two nodes.
This defines a collection of alignments distributed over the contig, similar to the situation
in common polishing strategies based on the mapping of (more) short-read data or long
reads to a preliminary assembly. Preliminary tests with off-the-shelf tools such as racon
[32], however, indeed improve sequence identity but also tend to introduce new translocation
breakpoints. We suspect this is the consequence of InDels being much more abundant than
mismatches in Nanopore data, which is at odds with the Needleman–Wunsch alignments
used by polishing tools.

A prominent category of mis-assemblies within the LazyB contigs are inherited from
chimeric reads. This therefore suggests an iterative approach: Subsampling the long-read
set will produce more fragmented contigs, but statistically remove chimeric reads from the
majority of replicate assemblies. Final contigs are constructed in a secondary assembly
step by joining intermediary results. It might appear logical to simply run LazyB again to
obtain a “consensus” assembly, where intermediary contigs play the role of longer reads with
mapped anchors. In preliminary tests, however, we observed that this results in defects that
depend on the sampling rate. The question of how to properly design the majority calling to
construct a consensus assembly remains yet to be answered.
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A Definitions of Alignment Graph Defects
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Figure 4 Examples of assembly graph defects in Ð⇀G△.

On ideal data, Ð⇀G△ would consist of a unique golden path. For real data, however, it also
also harbors bubbles, tips, and crosslinks. We briefly define these types of imperfections
here. Given two nodes s, t ∈ Ð⇀G△, an s − t path is a path starting in s and ending in t. A
simple bubble consists of two vertex disjoint s − t paths. This construct can be extended to
super-bubbles, defined as a set of s − t paths, exactly including all nodes reachable from s

without passing t and vice versa. Bubbles and superbubbles are primarily the result of
unrecognized overlaps. Tips are “side branches” that do not reconnect with the dominating
paths and thus have distinct end-points. Crosslinks, finally, are connecting edges between
two golden paths. As tips themselves may also be subject to mild noise, and crosslinks may
occur near the start- or end-sites of the true paths, both are not always easily distinguished.
Hence, we apply the heuristic filtering steps described in the main text.
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Figure 5 Assembly statistics of yeast as a function of the k-mer size and maximal occurrence
cut-off used to remove very frequent k-mers from short reads prior to unitig assembly. a) k-mer
profiles for k=50 bp and k=75 bp. Cut-offs restrict short reads to different degrees. Note logarithmic
axes. b) Illumina unitigs (left: percentage of remaining short-read data; middle: fraction of the
reference genome covered; right: number of unitigs mapping multiple times to reference). c) final
LazyB assembly left: number of unitigs; middle: fraction of the reference genome covered; right:
number of mis-assemblies). x: not enough data to assemble.

B Influence of Short Read Filtering

The strategies for filtering short-read data have a larger impact than the choice of the k-mer
size for unitig assembly (Fig. 5). This is not surprising given that both chimeric unitigs
and unitigs that harbor repetitive DNA elements introduce spurious edges into G and thus
negatively influence the assembly. In order to exclude short reads that contain highly frequent
k-mers, the maximal tolerated occurrence has to be set manually and is dependent on the
k-mer size. Setting the cut-off right next to the main peak in the profiles has turned out
to be a good estimate. After assembling short reads, unitigs are mapped to long reads
and a coverage profile over the length of every unitig is calculated. Unitigs with maximal
coverage above interquartile range IQR × 1.5 +Q3 are considered outliers. However, regions
below coverage threshold (Q3) spanning more than 500 bp can be “rescued”. This filter step
effectively reduces ambiguous regions, especially when no previous filtering is applied (Fig. 6).
Combining both short-read filter improves the assembly quality; see Table 2.
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Table 2 Impact of short-read filtering strategies on LazyB assembly quality in fruit fly. Column
descriptions: completeness of the assembly, #ctg number of contigs, #MA number of mis-
assemblies (breakpoints relative to the reference assembly).

Filter strategy compl.[%] #ctg #MA
no filter 82.81 457 302
k-mer filter 80.66 567 104
unitig filter 80.71 563 108
k-mer and unitig filter 80.11 596 99

C Validation of Minimap2 Anchor Alignments

Classic alignment tools, even those specifically advertised for this purpose, rely on scoring
schemes that cannot accurately represent the high InDel profiles of long-read data. Instead,
they rely on seeds of high quality matches that are then chained with high error tolerance.
Currently, minimap2 is one of the most commonly used tools for this purpose. Since we do
not have a gold set of perfect data, we can only roughly estimate the influence of this heuristic
on the LazyB alignment quality in a related experiment. Specifically, we test consistency
of anchor alignments on pairs of long reads to direct alignments of both reads for fruit fly.
Consistency is validated at the level of relative orientation, the offset indicated by both
alignment methods, the portion of overlap that can be directly aligned and whether direct
alignment of the long reads is possible at all. Different relative orientations were observed
only in very small numbers. Changes in the offset by more then 5% of the longer read length
are equally rare (Fig. 7). However, requiring a direct alignment of at least 75% of the overlap
region marks 4.6% of the anchor links as incorrect. Removing those has a negative effect on
the final LazyB assembly and in particular tends to break correct contigs apart; see Table 3.
In our test set 7.7% of direct alignments of two anchor-linked long reads gave no result. In
these cases, expected overlaps are rather short (Fig. 7). We therefore tested whether the
assembly could be improved by excluding those connections between long reads for which no
alignment could be calculated despite the presence of an overlap of at least 1 kbp (3.7%).
We found, however, that this procedure also causes the loss of correct edges in G.

Summarizing, we observe three facts: (1) The overwhelming number of pairs is consistent
and therefore true. (2) Removing inconsistent edges from the assembly not only does not
improve the results but results are worse on average. (3) While we can manually identify
some incorrect unitig matches, the mappings produced by minimap2 are too inconsistent
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Figure 7 Consistency test of anchor-linked long-read overlaps to direct alignments of both reads
on fruit fly. a) Frequencies of shifted offsets (% of the longer read); changes up to 5% are tolerated;
note logarithmic axis. b) Frequencies of the percentage at which the direct alignment covers the
overlap. A minimum of 75% is set for consistency. c) Long read pairs where no direct alignment is
possible tend to have shorter anchor-indicated overlaps. Connections that cannot be confirmed via
direct alignments despite an expected overlap of at least 1 kbp are excluded.

for proper testing. Since we have no proper methods to identify such false positives we also
cannot properly estimate the number of false negatives, i.e., missing matches in the graph
Ð⇀
G , e.g. by computing a transitive completion.

Overall, our main results together with (1) indicate that a high level trust in the anchors
mapping in warranted. We also conclude that minimap2 is sufficient for our purposes.
However, the data also suggest that the assembly would profit from a more accurate handling
of the alignments.

Table 3 Assessment of different parameters to verify long-read overlaps and their impact on
LazyB assembly quality on fruit fly. Overlaps are indicated by anchors and evaluated by pairwise
long-read alignments. They are considered valid if: the relative direction suggested by the anchor
matches that of the pairwise alignment (direction); the offset is sufficiently similar for both methods
(offset); at least 75% of the overlap is found as direct alignment (incomplete mapping); the overlap
indicated by the anchor is less than or equal to 1 kbp or a pairwise alignment is possible (no
mapping). Column descriptions: completeness of the assembly, #ctg number of contigs, #MA
number of mis-assemblies (breakpoints relative to the reference assembly).

Varification parameters compl.[%] #ctg #MA
direction 80.13 608 111
direction + offset 80.08 622 103
direction + offset + incomplete mapping 80.04 1263 121
no mapping 80.15 801 113

D Alternative Heuristic for Maximum Induced Transitive Tournament

We found that ν(e) provides a better heuristic than the initial bit scores Ω(e) for the
extraction of the paths. Most plausibly, one is interested transitive tournaments as an
indication for the correct assembly path. Since this is a computationally difficult problem,
we described in the main text a heuristic based on longest paths in Ð⇀G△, that is equivalent
for perfect data. Here we briefly sketch an alternative heuristic operating directly on the
edges of Ð⇀G .

Here, we denote by N+(r) and N−(r) the set of out- and in-edges of r in Ð⇀G . We note that
the out-neighbors of r form an induced proper interval graph if and only if they are an acyclic
tournament (AT). With noisy data, we therefore ask for the maximal AT Ð⇀Kr with source r.
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Unfortunately, this task is NP-hard even in acyclic graphs [8]. We therefore resort to a
heuristic making use of the topological order in N+(r) inherited from the topological order of
Ð⇀
G and process nodes in increasing order starting with r: (i) Initialize a list L of candidates
with the pair (H,A) where H = {r} and A = N+(r). (ii) For each candidate (H,A) ∈ L

consider the ri ∈ A in topological order and append (H ′
i ,A

′
i) to L, where H ′ =H ∪ {ri} and

A′ = A ∩N+(ri). (iii) Select the candidate with maximum cardinality ∣Hr ∣.

E Evaluation of Real Data Sets

We re-used data sets from previously published benchmarks of Nanopore assemblies. For
yeast (S. cerevisiae) we used Nanopore sets ERR1883389 for lower coverage, ERR1883399
for higher coverage, and short-reads set ERR1938683, all from bioproject PRJEB19900 [9].
For comparison we use the reference genome R64.2.1 of strain S288C from the SGD. For the
fruit fly (D. melanogaster) we used the Oxford Nanopore and Illumina raw data of bioproject
PRJNA433573 [31], and the FlyBase reference genome 6.30 (http://www.flybase.org). On
Human we use SRX6356866-8 on bioproject PRJNA549351 [16] for long reads and SRA292482
[6] for short reads. We compare against reference GRCh38.p13. QUAST [10] is a specialized
tool to evaluate the quality of assemblies. We report statistics without further processing.
Table 4 summarizes the resource requirements for the assembly of the yeast, fruit fly, and
human data set.

Table 4 Assessment of running times for LazyB and Canu. Resources for LazyB are given in
three steps: 1) ABySS unitig assembly; 2) Mapping of unitigs to long reads and 3) LazyB itself.
Step 1) is often not needed as short-read assemblies are available for many organisms. Resources
are only compared for yeast and fruit fly, as Canu cannot be run for human in sensible time and
resource-constraint on our machine. As all tools except LazyB and DBG2OL are parallelized, running
times are given as the sum of time spent by all CPUs. ABySS greatly dominates the LazyB pipeline.
Nevertheless, LazyB is faster on a factor of > 60 to Canu and ≈ 3 to DBG2OL.

Organism X Tool Runtime (dd:hh:mm:ss) RAM (MB)
yeast ABySS 00:00:11:03 2283

∼5× Mapping 00:00:00:05 540
LazyB 00:00:00:30 136
ABySS + Mapping + LazyB 00:00:11:38 2283
Canu 00:10:23:55 2617
HASLR 00:00:06:44 4922
DBG2OL 00:00:31:46 1141

∼11× Mapping 00:00:00:15 1544
LazyB 00:00:01:46 362
ABySS + Mapping + LazyB 00:00:13:04 2283
Canu 00:13:44:16 6779
HASLR 00:00:08:09 4922
DBG2OL 00:00:51:13 1264

fruit fly ABySS 00:02:32:39 25344
∼5× Mapping 00:00:02:43 6433

LazyB 00:00:08:33 613
ABySS + Mapping + LazyB 00:02:43:55 25344
Canu 02:13:51:39 7531
HASLR 00:01:30:33 5531
DBG2OL 00:07:58:22 6151

∼10× Mapping 00:00:06:11 9491
LazyB 00:00:11:57 2241
ABySS + Mapping + LazyB 00:02:50:47 25344
Canu 07:04:08:28 7541
HASLR 00:01:43:21 5553
DBG2OL 02:07:32:01 17171

http://www.flybase.org
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Abstract
Considering a set of intervals on the real line, an interval graph records these intervals as nodes
and their intersections as edges. Identifying (i.e. merging) pairs of nodes in an interval graph
results in a multiple-interval graph. Given only the nodes and the edges of the multiple-interval
graph without knowing the underlying intervals, we are interested in the following questions. Can
one determine how many intervals correspond to each node? Can one compute a walk over the
multiple-interval graph nodes that reflects the ordering of the original intervals? These questions
are closely related to linked-read DNA sequencing, where barcodes are assigned to long molecules
whose intersection graph forms an interval graph. Each barcode may correspond to multiple
molecules, which complicates downstream analysis, and corresponds to the identification of nodes of
the corresponding interval graph. Resolving the above graph-theoretic problems would facilitate
analyses of linked-reads sequencing data, through enabling the conceptual separation of barcodes
into molecules and providing, through the molecules order, a skeleton for accurately assembling the
genome. Here, we propose a framework that takes as input an arbitrary intersection graph (such
as an overlap graph of barcodes) and constructs a heuristic approximation of the ordering of the
original intervals.
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1 Introduction

A well-known limitation of short-read sequencing is that it does not provide long-range
information, which is crucial to many biological endeavors, such as genome assembly and
structural variant identification. There have been several sequencing technologies developed
to overcome this limitation, such as matepair libraries, Hi-C, and long reads (PacBio &
Oxford Nanopore). Another family of approaches is linked-read sequencing, which includes
10XGenomics Chromium, stLFR [28], CPTv2-seq [32] and TELL-seq [8]. In these approaches,
DNA is cloned and cut into large molecules (10-100 kbp), which are then isolated (physically
in 10X, or virtually using beads) and sheared into shorter fragments. A barcode is attached
to each short fragment for identification of its originating molecule. Importantly, barcodes
do not uniquely identify molecules: several molecules are typically labeled with the same
barcode. The number of different barcodes differ from 150k for CPTv2 to 2 billions for
TELL-seq. Fragments are then sequenced using a standard short-read protocol (e.g Illumina).

Linked-reads have been used to assemble genomes [29], detect complex structural vari-
ants [16], and more recently assemble metagenomes [4]. A common challenge faced by most
linked-read methods is that in order to make use of the linking information, the reads within
each barcode should be first separated into their constituent molecules. More formally, for
each read r, we would like to find the identifier mi(r) of its originating molecule, given
as input an observed identifier b(mi(r)), where b(x) associates a barcode identifier to a
molecule x. Note that the image of b (all barcodes) is significantly smaller than its domain
(all molecules), hence b can be viewed as a non-invertible hash function. Currently, this
problem is being tackled, one way or another, as part of any method using linked-read
data. Switching from a read-centric view to a molecule-centric view opens the possibility
of using methodology similar to long-read overlap graphs. Finding an ordering of barcodes
that reflects the underlying order of molecules would indeed greatly facilitate and decrease
errors during the scaffolding stage of genome assembly. As noted by the authors of the
ARCS scaffolder [31], different molecules having the same barcode can induce false joins in a
scaffolding algorithm, resulting in misassemblies.

Linked-read mapping tools such as longranger or ema [25] are able to infer molecules by
clustering mapping locations of reads from the same barcode. While such reference-based
algorithms are often applicable, they do not replace the need for de novo algorithms. The
quality of reference-based algorithms is related to the quality of the assembly, since clusters
cannot be identified across different contigs. When the genome or metagenome references are
in a draft state, molecules will frequently span multiple contigs, preventing their identification.
Moreover, in many situations the reference is simply unavailable.

To the best of our knowledge, the barcode ordering problem has not been previously
studied, and the assignment of molecule identifiers to reads without a reference has only been
previously studied in [11], where it was referred to as barcode deconvolution. The authors
first constructed a bipartite graph between reads and barcodes. An edge (r, b) was added
when a k-mer of read r was found in another read of barcode b. Then a second graph was
constructed with reads as nodes, and edges indicating whether two reads were connected
to sufficiently many common barcodes in the bipartite graph. Finally, the second graph
was clustered and each cluster reflected reads from the same molecule. This algorithm was
implemented in a software called Minerva. We note that Minerva only assigns molecules
identifiers to a fraction of the reads. In our tests on a simulated E. coli dataset, Minerva
reported results for 12% of the reads, inferring around 50% of the true number of molecules.
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This raises the question of whether reference-free inference of molecules is fundamentally
unsolvable in the setting of linked-read data, or whether an adequate technique has just not
yet been found. Surely there exist corner cases where the problem is either impossible, e.g.
in an hypothetical situation where all molecules are assigned to the same barcode, or trivial,
when each molecule is assigned to a different barcode. As we will see in Section 2, while
there exist previous works in graph theory (e.g. in a setting corresponding to all barcodes
containing 2 molecules each), the general setting does not appear to have previously been
studied.

In this paper, we establish theoretical grounds for studying the feasibility of inferring
molecule without a reference genome. We will not directly tackle the problem of assigning
molecule identifiers to reads (as Minerva does), but instead we look at two problems which
can be reduced, in the complexity sense, to molecule inference:

1. Molecule counting: count the number of molecules assigned to each barcode

2. Molecule ordering: reconstruct a total (or partial) order of molecules as a sequence of
barcodes

Both problems, if solved accurately, can provide useful information for barcode deconvolution
(molecule counting) and genome scaffolding (molecule ordering). Staying at the level of
barcodes and molecules instead of reads will allow to thoroughly establish expectations on
whether molecule inference is at all feasible, and how various parameters (e.g. number of
molecules, how many molecules per barcode, etc) influence its difficulty.

We first present the commononalities between the barcodes ordering problem, and
the previously-known concepts of interval graphs and multiple-interval graphs. We then
introduce the notion of barcode graph, which models overlaps between molecules across
different barcodes. We discuss its link with well-known graph classes leading to the conclusion
that solving the molecules ordering problem for a barcode graph is likely difficult. Next
we introduce another graph structure, the local clique-pairs graph, inspired of approaches
used to realise an interval graph. By identifying maximal cliques in the barcode graph,
which are then paired into structures that we call local clique-pairs, we show that the local
clique-pairs graph captures a strong signal related to the ordering of the barcodes according
to their underlying molecules. We apply this technique to synthetic interval graphs, as well as
barcode graphs constructed from simulated molecules from a real genome, and show that on
synthetic interval graphs we are able to accurately count the number of molecules per barcode,
and reconstruct an approximate but accurate molecule ordering on barcodes. Finally, we
demonstrate how to construct a barcode graph directly from linked-read sequencing data.

2 Models and Methods

We consider the problem of sequencing a single long DNA molecule (e.g. a chromosome)
using linked reads. We assume that the sequencing data were obtained by sequencing n
fragments (called molecules from now) from the chromosome, each molecule being assigned a
barcode, where several molecules can be assigned the same barcode; for a molecule m we
denote by b(m) its barcode. We denote by B the barcode alphabet and by |B| = µ its size, i.e.
the total number of observed barcodes; for a barcode b we denote by m(b) the molecules it
labels (the barcode size). Let F = maxb∈B |m(b)|. Finally, we assume that no two molecules
do start at the same coordinate, which implies that molecules can be totally ordered by their
start coordinates.

WABI 2020
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2.1 Barcode graphs and families of interval graphs.
The sequenced molecules can be seen as intervals along the real line if the sequenced
chromosome is linear, or arcs around a circle if it is circular; their intersection graph is
the graph whose vertices are the n molecules and two vertices are linked by an edge if the
corresponding intervals do intersect. Intersection graphs of intervals on the real line (resp.
arcs around a circle) form the class of interval graphs (resp. circular-arc graphs). It is
well-known that deciding if a graph is an interval graph or an arc-circular graph can be
done in linear time [6, 23], and many algorithmic problems that are computationally hard in
general graphs are tractable in these graph classes [15].

However, the result of the sequencing experiment with linked reads does not provide direct
knowledge of the sequenced molecules and of their intersections, as the reads originating from
molecules having the same barcode b are all labeled by b and, as discussed in introduction, the
problem of separating reads with the same barcodes into clusters corresponding to molecules
is non-trivial. Nevertheless, we assume here first that it is possible to infer, from the barcoded
reads if, for a given pair of barcodes b1, b2 there exists molecules m1 and m2 such that
b(m1) = b1, b(m2) = b2 and and m1 and m2 do intersect: we then say that barcodes b1 and
b2 do intersect. We assume here moreover that we do not observe two intersecting molecules
m1 and m2 such that b(m1) = b(m2)1.

I Definition 1. The exact barcode graph of a set of barcoded molecules is the graph with
vertex set B and edges between pairs of intersecting barcodes.

In the case of a linear chromosome, exact barcode graphs generalize the class of interval
graphs and form another well-studied graphs class, multiple-interval graphs [12]. Moreover
if we assume that each barcode labels exactly f molecules, exact barcode graphs form
the class of f -interval graphs; finally, under the additional assumption that all sequenced
molecules have exactly the same length, exact barcode graphs are equivalent to the class
of unit f-interval graph. We are not aware of any study of the equivalent graph classes for
circular chromosomes, i.e. arcs around a circle, and from now on we concentrate on the case
of linear chromosomes. We describe below the formulation of several algorithmic problems
related to barcode graphs and how they translate into problems on the aforementioned graph
classes. Note that an exact barcode graph can be a multi-graph (a graph where multiple
edges may have the same endpoints) in the case where there exist molecules m1,m2,m3,m4
with b(m1) = b(m3), b(m2) = b(m4) and m1,m2 (resp. m3,m4) do intersect.
Recognizing exact barcode graphs. The link with unit f -interval graph, although it assumes
an unrealistic uniformity in the sequencing process (uniform molecules length and uniform
number of molecules per barcode) sheds a light on the computational hardness of analyzing
barcoded sequencing data. Indeed, recognizing 2-interval graphs is NP-complete [30], while
the complexity of recognizing unit f -interval graphs is still open, the only positive recognition
result being for depth-2 unit f -interval graphs [18], corresponding to the case where no
chromosome base is covered by more than two molecules, an unrealistic assumption for
sequencing experiments. To the best of our knowledge, given a graph on a barcode alphabet
whose edges represent possible molecules intersections, deciding if it is an exact barcode
graph, even in the setting of molecules of uniform length and barcodes of uniform size, is
open.

1 We justify this assumption as such molecules could be seen as a single molecule defined by the union of
m1 and m2; moreover, simulations with realistic sequencing parameters show that this situation occurs
rarely and most often with molecules that share a small intersection.
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Realizing an exact barcode graph. A barcode sequence is a sequence b1 . . . bn over the barcode
alphabet. Given a barcode graph BG, a barcode sequence realizes BG if every edge of BG
can be assigned to two barcodes of the sequence in such a way that if bj is covered by an
edge between bi and bk (i.e. i < j < k) then there are also edges between bi and bj and
between bj and bk. The molecules ordering problem applied to an exact barcode graph BG
is then equivalent to finding a barcode sequence realizing BG. This problem is tractable in
the case of interval graphs (F = 1); note that if intervals lengths are also fixed, then the
problem becomes NP-complete [24], while it solvable in polynomial time if additionally the
intersection lengths are provided [19]. We are not aware of similar tractability results for
multiple-interval graphs. However, existing algorithms to realize interval graphs are mainly
based on the property that such a realization can be obtained by a sequence of overlapping
maximal cliques. While maximal cliques are easy to find in an interval graph, it is not the case
in multiple-interval graph, as the problem of finding the maximum clique in multiple-interval
graphs is NP-complete, even for unit 2-interval graphs [13], although approximation and
parameterized algorithms do exist [7, 12]. Moreover a structural property of interval graphs
that is important toward the realization through maximal cliques, the existence of a vertex
whose neighbourhood is a clique, does not hold for multiple interval graphs [2]. Finally, it is
easy to see that a maximal clique of size c in an exact barcode graph might not correspond
to a set of c pairwise intersecting molecules. This leads us to conjecture that realizing an
exact barcode graph is difficult.
Handling inexact barcode graphs. Constructing an exact barcode graph implies to detect
intersecting barcodes from sequenced barcoded reads and it is thus likely unrealistic to expect
perfectly obtaining such a graph from sequencing data. It follows that solving the molecules
ordering problem would then implicitly assumes to solve a graph modification problem,
aimed at transforming a graph into a multiple-interval graph, with additional constraints
about the number of occurrences of barcodes in a realization. Graph modification problems
that aim to minimize the number of modifications are generally hard, even in the case of
interval graph, [10], and so for multiple-interval graphs; note however that it was recently
shown to be fixed-parameter tractable [27, 5, 10]. Such problems naturally translates into
vertex ordering optimization problems (also known as graph layout problems) that can, in
principle, be addressed with combinatorial optimization techniques such as Integer Linear
Programming (ILP). However, ILP approaches to vertex ordering currently do not scale to
the size of instances corresponding to sequencing experiments [9].

From the link we described above between barcode graphs and multiple-interval graphs,
and the current state-of-the art in multiple-interval graphs algorithms, it does not appear that
the problem of realizing a barcode graph can be addressed by existing algorithms, and we
actually conjecture that this problem is difficult, whether the provided barcode graph is exact
or not. Nevertheless, toward application to real sequencing data, additional assumptions
about the sought realization, such as the expected length of intervals or the expected size
of the barcodes, lead to specific open problems of interest in the field of multiple-interval
graphs algorithms that deserves further research.

2.2 The Local Clique-Pairs Graph
In this section, we assume that we are given a barcode graph BG. The barcode graph needs
not be perfect: it might contain additional (wrong) edges that do not correspond to true
overlaps between molecules of two barcodes, or even have missing edges. We will describe
the construction of another graph based on the BG: the local clique-pairs (lcp) graph. We
will then use the lcp graph to identify a sequence of barcodes that reflects the true order of
molecules.
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The idea behind the lcp graph will be that, similarly to interval graphs, a realization of
an exact barcode graph can be described as a succession of overlapping maximal cliques.
Intuitively, these maximal cliques correspond to a set of barcodes that each contain at least
one molecule coming from a common genomic region. The task is made more difficult by
the fact that not all maximal cliques in a barcode graph satisfy this property. We observed
that one can identify and skip such ’wrong’ maximal cliques by instead considering a slightly
more advanced object: pairs of co-localized maximal cliques, that we name local clique-pairs.

I Definition 2. Let c be a vertex of a barcode graph BG. A neighbour of c is a vertex
adjacent to c. The neighbourhood of c is the subgraph induced by the set of neighbours of
c. A local clique-pair (lcp) is a triplet (c;C1, C2) where C1 and C2 are maximal cliques in
the neighbourhood of c. If there are k edges between vertices of C1 and vertices of C2 and d
is the maximum number of vertices in either C1 or C2, the weight of the lcp (c, C1, C2) is
defined by w(c;C1, C2) = |d(d− 1)/2− k|. 2

The definition of the weight of an lcp follows from the following observation: when
molecules are all of the same length and are evenly spaced along the chromosome, if both
cliques C1 and C2 are of size d and do indeed correspond to the d barcodes of the molecules
preceding (resp. following) the molecule of barcode c, then one expects to observe d(d− 1)/2
edges between them in the barcode graph. So the weight measures the divergence between
the observed number of edges between C1 and C2 and the expected number of edges in the
case of uniform sequencing (see Fig. 1).

Barcode graph

Local clique-pair around node c

Clq 1 Clq 2

Clique edges

Central node edges

Linking edges

c

c

Figure 1 (Top) linear representation of a barcode graph obtained from 7 molecules of uniform
length. (Bottom) The local clique-pair associated to c. In black, the edges from the side cliques of
the unit 3-graph. In blue, the edges between the central nodes and the other nodes. In red, the
edges between the cliques.

To motivate the introduction of lcps, we ran an experiment described in Appendix 5.1,
showing that the rate of lcps that actually encode the barcodes of consecutive molecules is
higher than the rate of maximal cliques having the same property (Table A1).

We now present our algorithm to compute lcps. Given a barcode c, there can be many
maximal cliques among nodes in its neighbourhood, especially cliques that involve the two
barcodes that respectively precede and follow c in the true barcode sequence. Given the

2 The weight is presented for an ideal case where no node is shared between the cliques. If C1 and C2
share nodes, there are two modifications. For each node shared, 1 is added to the weight because the
shared node is due to a barcode collision. Each shared edge between C1 and C2 counts for 2 additional
points in the score instead of 1, because 2 edges can be merged inside.
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set of all maximal cliques C in the neighbourhood of c, we thus need to extract a matching
defining pairs of cliques C1 and C2 forming lcps. To do so, we consider the complete graph of
size |C| whose vertices are maximal cliques and edges are putative lcps. Edges are weighted
by the previously-defined lcp weights. Let W be the maximum observed edge weight. We
replace the weight w of each lcp by W −w and apply a maximum-weight matching to clique
pairs in order to obtain the set of lcps associated to c (Algorithm 1, illustrated in Fig. 2).

Algorithm 1 Determination of a set of lcps centered at a barcode c.

1: procedure compute_Lcp(c,BG) . c: barcode, BG: barcode graph
2: LCP ← Ø
3: ngbs← BG.neighbours(c) . Neighbours of c
4: subgraph← BG.induced_subgraph(ngbs) . Neighbourhood of c
5: cliques← subgraph.max_cliques() . Enumerate maximal cliques
6: CG← clique_graph(cliques)
7: m = CG.maximum_weight_matching()
8: for (C1, C2) ∈ m do
9: LCP ← LCP ∪ new_lcp(c, C1, C2) . Add the new lcp
10: return LCP

2
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Figure 2 Top left: barcode graph; bottom left: max-cliques of the barcode graph; right: max-clique
graph construction and maximum weight matching to construct lcps. The resulting maximum-weight
matching is the edge A-D, yielding a single lcp with clique-pair (A, D).

The time complexity of enumerating all maximal cliques of a graph is exponential [26],
while computing a maximum-weight matching is polynomial-time solvable [14]. We imple-
mented Algorithm 1 in Python using the output-sensitive cliques enumeration and maximum-
weight matching methods implemented in the Networkx library [17]. Its complexity is
O(max(C3,M(n)C)) with n the number of graph nodes, C the number of maximal cliques
in the graph, and M(n) the cost of multiplying two n× n matrices.

Local search for linked cliques are akin to local graph community detection. Soft
clustering is being performed with maximal clique detection, i.e. a node may belong to
multiple communities. This property leads to a lcp detection algorithm that, intuitively, is
resilient to the situation where a barcode corresponds to two or more molecules. Yet it is not
perfect: some of the generated lcps may not reflect a collection of overlapping molecules (due
to additional artifactual maximal cliques); and also, missing edges in the barcode graph may
lead to missing lcps. In the ideal case, lcps can be totally ordered according to their overlaps.
But because of artefactual and missing lcps, a total order is not always self-evident.
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Figure 3 Left: barcode graph (3k nodes and 98k edges) of a simulated interval graph. Right:
Resulting lcp graph (13k nodes and 23k edges). Graphs are drawn using Gephi, ForceAtlas 2
layout [3].

I Definition 3. Let BG be a barcode graph and V a set of lcps obtained from BG. The
lcp graph lcp(BG) is the weighted graph with V for vertex set and where there is an edge
between two lcps (b;B1, B2) and (c;C1, C2) such that some barcode belongs to both one of
the Ci cliques and one of the Bi cliques. The weight of an edge is the size of the symmetric
differences of the barcodes content of (b;B1, B2) and (c;C1, C2).

The lcp graph is a framework for determining which lcps are consecutive, also enabling to
identify lcps that are not overlapping with others. Figure 3 shows a simulated barcode graph
where the corresponding lcp graph has a linear structure, similar to the original interval
graph among molecules. This makes the task of finding a suitable path within the lcp graph,
which reflects the ordering of molecules, easier than in the barcode graph. In the following,
we will describe how we determine a barcode ordering based on finding a path in the lcp
graph.

2.3 Finding a suitable path in the lcp graph

Recall that the molecule counting problem amounts to finding how many molecules were
merged in each barcode. The molecule ordering problem asks for a sequence of barcodes
that reflects the order of molecules. As these two problems are centered on barcodes and
not lcps, we need a way to convert a lcp path into an ordered list of barcodes. We do this
as follows: i) each lcp in the path is replaced by its central barcode, ii) an edge reduction
step is applied to the lcp graph, and finally iii) a path is found using a branch-and-bound
algorithm. Formally, the algorithmic problem we address heuristically in this section is to
find a path in the lcp graph that maximizes the sum of the weight of the selected lcps and
of the selected edges between lcps, under the constraint that the union of the selected lcps
covering sets contains all edges of the initial barcode graphs.

lcp graph simplification

We simplify the lcp graph by performing transitive reduction over triplets. Given an edge
(a, b) of weight wab, we remove this edge from the graph if there exist 2 edges (a, c) of weight
wac and (b, c) of weight wbc such that wab 6 wac + wbc. This operation does not change the
node set (lcps) but reduces the number of possible paths to explore. Intuitively, requiring to
go through lcp c when going from lcp a to lcp b forces to select two higher-confidence lcp
overlaps instead of one lower-confidence overlap between two lcps.
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lcp path construction

Assuming the barcode graph has been obtained by merging nodes of an exact interval graph
defined by the molecules intersections, every edge of the barcode graph corresponds to one
(or potentially several) edges of the interval graph; we show in Section 3.3 that barcode
graphs created from reads have nearly all correct edges corresponding to such molecules
intersections. This observation motivates to require that a walk in the lcp graph that reflects
the true order of molecules should be composed of lcps that contain most of the edges of
the original barcode graph. Each lcp is an induced subgraph of the barcode graph, and we
associate to it a covering set defined as the set of edges of the barcode graph it contains. We
will seek a path such that the union of covering sets over all its constituent lcps is as close as
possible to the set of all edges of the barcode graph.

Our lcp path construction strategy is a local branch & bound algorithm. Assuming we
have already constructed a path of lcps p = l1, . . . , li, we consider as candidates for li+1 all
the neighbours of li in the lcp graph such that li+1 /∈ p. Those neighbours are sorted by
priority over three criteria: first if one or more lcp(s) cover at least one uncovered edge of
the original barcode graph, we prioritize those lcps. For the second sorting criterion, we
sort the candidate li+1’s by increasing lcp weight (Def. 3). Last, if multiple candidates have
equal clique pair weights, we sort them by increasing li → li+1 edge weight in the lcp graph.
Selecting the first element in the sorted neighbours at each step defines a greedy heuristic for
the path computation.

The above algorithm might result in a short path due to tips in the lcp graph, i.e. nodes
of degree 1. In order to address this issue, we use a local branch and bound algorithm and
backtrack a few nodes when a dead end is reached. This can result in several paths and
we use the size of the union of covering sets in the path as a score to keep only the best
solutions according to that score.

The last part of the algorithm is the selection of the first node l1 of the path. We initially
select a l1 at random among all lcps, and compute a path using the above procedure which
ends at some node le. We then discard this path and restart again our algorithm from l′1 = le
to create a new path, where le has a higher chance to be an endpoint of the true lcp path
than l1.

We will show in the next section that despite this heuristic being very simple and likely
leaving room for improvement, it does work very well on simulated data, suggesting the lcp
graph does actually capture a robust signal toward recovering the correct barcode sequence.

3 Results

3.1 Overview

Simulated data

We will examine three types of barcode graphs ordered by increasing level of realism. They
will be generated from either:
1. entirely synthetic sets of intervals (i.e. interval graphs) with randomly identified vertices,
2. intersections of molecules sampled from a genome,
3. directly from simulated linked-read sequencing data.
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Analysis pipeline
Our complete analysis pipeline performs the following steps:
1. Generate all the lcps from the barcode graph (Algorithm 1)
2. Generate the lcp graph
3. Simplify the graph by transitive reduction of the triplets (Section 2.3)
4. Generate the lcp path using the hybrid greedy/branch and bound algorithm (Section 2.3)
5. Replace all the lcp by their central barcodes
6. Evaluate the accuracy of the resulting barcode sequence

In the remaining of the Results sections, all the graphs and paths are generated by
the above pipeline, implemented using Snakemake [20] and available at https://gitlab.
pasteur.fr/ydufresne/linkedreadsmoleculeordering.

Quality metrics
We design quality metrics that are applicable to both barcode graphs and lcp graphs. To do
so, in lcp graphs we identify each lcp to its central barcode. We consider three metrics over
the graphs: accuracy, sensitivity and longest correct path. The first two metrics are estimated
by randomly sampling paths having l ∈ {2, 4, 10, 100} edges from the graph. To measure
accuracy, a path having barcodes (b0, b1, . . . , bl) is considered to be correct if there exists
m0,m1, . . . ,ml overlapping (but not necessarily consecutive) molecules such that mi ∈ m(bi),
0 ≤ i ≤ l. Accuracy is then defined as the number of correct paths over the total number of
sampled paths. To measure sensitivity, we determined for all (l+1)-tuples mi,mi+1, . . . ,mi+l

of consecutive molecules in the genome, whether there exist a path b(mi), b(mi+1), . . . , b(mi+l)
in the graph. Sensitivity is then the ratio of such paths that are found in the graph. Finally,
the Longest Correct path (LC) metric is defined as the longest path that can be found in the
lcp graph that is correct, i.e. corresponding to a barcode sequence equal to the barcodes of a
sequence of overlapping molecules. This measure is not informative on barcode graphs; it
measures the conservation of molecule overlap information in a lcp graph.

Two additional quality metrics are defined on lcp paths found by our branch-and-bound
algorithm: Undercounted/Overcounted (U/O) molecules and Longest Common Subsequence
(LCS). The U/O metric is computed by recording two counters, U and O initialized at 0.
Given each barcode b that appears within a lcp path, we compare the number of occurrences
of b to Mb, the true number of molecules having barcode b. If b occurs in the lcp path strictly
more (resp. less) thanMb times, U (resp. O) is incremented by the absolute difference. U and
O should both be as close to zero as possible, and they indicate how well we solve the molecule
counting problem. For the LCS metric, we compute the longest common subsequence between
central nodes of the lcp path and the molecule path where each molecule is replaced by its
barcode. The LCS reflects how well we solve the molecule ordering problem.

3.2 Simulated data from interval graphs

Dataset generation
At first we focus on purely synthetic interval graphs, where a genome is conceptually a
real line and molecules are intervals on this line. We make the simplifying assumption that
molecules all have the same size, and are evenly distributed along the genome. To simulate
barcode graphs, we start from an intersection graph of molecules and perform so-called merges
of molecules. A merge is defined as follows: given two nodes a and b that will be merged,

https://gitlab.pasteur.fr/ydufresne/linkedreadsmoleculeordering
https://gitlab.pasteur.fr/ydufresne/linkedreadsmoleculeordering
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create a new node c; for all neighbours v of either a or b, create edges (c, v), and finally
delete a and b. Merging two nodes in the graph is equivalent to replacing two molecules by
one barcode corresponding to those two molecules. A succession of merge operation creates
an exact barcode graph as defined in Section 2.

We created 8 synthetic test datasets, using the following grid of parameters: 5, 000 or
10, 000 molecules, average number of merges (i.e. molecules per barcode) of 2 or 3, standard
deviation in the number of merges of 0 or 1.

Quality of lcp graphs

Table 1 shows the accuracy and sensitivity of barcode graphs and their corresponding lcp
graphs. Recall that accuracy measures whether a random path in the graph has a correct
order of barcodes. As expected, paths in the barcode graph are mostly inaccurate, as one
may jump from one genome location to another due to barcode merges. Conversely paths in
the lcp graph are very accurate (100% for nearly all l = 10 paths), with a slight decrease
at l = 100 (95%− 100%). The sensitivity metric measures how much of the true barcode
ordering is present in short paths of the graph. It is (unsurprisingly) high for barcode
graphs, as they indeed record all overlaps between molecules. Note that some merges collapse
consecutive molecules by chance, hence the sensitivity of barcode graphs can sometimes be
lower than 1. On lcp graphs, sensitivity is high for short paths (> 93% for l = 10) and drops
for long ones (54%− 98% for l = 100). Nevertheless, this shows that at least partial molecule
order can be inferred through looking at central nodes of lcps in the lcp graph, and that
the lcp graph shows a better balance between accuracy and sensitivity than the barcode
graph. Note that central nodes are not the only way to infer molecule order, as one could
also extract information from clique-pairs, yet we leave this direction for future work.

Overall, lcp graphs are clearly more informative than barcode graphs for reconstructing
accurate barcode orderings. The hardest instances, in terms of accuracy and sensitivity on
lcp graphs, are when the number of molecules is low and the number of merges is high.

Quality of lcp paths

Table 2 reports additional metrics on lcp graphs and lcp paths constructed using the branch-
and-bound algorithm, over the same 8 datasets. All lcp graphs have a high longest correct
path (LC), confirming the theoretical possibility of reconstructing over 99% of the true
barcode order, through central nodes of a suitable path of lcps. The last two metrics of Table
2 are computed on lcp paths found by the algorithm described in Section 2.3. On 10,000
molecules graphs, the longest common subsequence (LCS) of the computed lcp path is 90%
of the true barcode order, indicating that we nearly recovered the correct barcode order.
The 5,000 molecules graphs appear to be more challenging to process as, smaller graphs are
more sensitive to information loss by the merging process, yet LCS values remain above 79%.
The U/O metric reports the ability to count the number of molecules that are present in
each barcode, though counting the number of times each barcode occurs in the computed lcp
path. Overall, lcp paths tend to undercount molecules (higher U metric than O), yet both U
and O metrics are around or below 10% of the number of molecules, indicating that lcp path
provides a reliable estimation of the number of molecules per barcode.
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Table 1 Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in
lcp graphs generated from merged interval graphs, compared to sampled paths of the same lengths
in barcode graphs (Gb) as a base-line.

Graph l=2 l=4 l=10 l=100
# mols Merges Type Acc Sens Acc Sens Acc Sens Acc Sens

5,000 2 ± 0 Gb 0.48 1.00 0.09 1.00 0.00 0.99 0.00 0.94
lcp 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.88

5,000 2 ± 1 Gb 0.46 1.00 0.09 1.00 0.00 1.00 0.00 0.98
lcp 1.00 1.00 1.00 0.99 1.00 0.98 0.99 0.84

5,000 3 ± 0 Gb 0.31 1.00 0.03 1.00 0.00 0.99 0.00 0.88
lcp 1.00 0.99 1.00 0.98 0.99 0.95 0.99 0.60

5,000 3 ± 1 Gb 0.33 1.00 0.03 1.00 0.00 1.00 0.00 0.96
lcp 1.00 0.99 1.00 0.97 0.99 0.93 0.95 0.54

10,000 2 ± 0 Gb 0.48 1.00 0.10 1.00 0.00 1.00 0.00 1.00
lcp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

10,000 2 ± 1 Gb 0.47 1.00 0.09 1.00 0.00 1.00 0.00 0.97
lcp 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.93

10,000 3 ± 0 Gb 0.31 1.00 0.02 1.00 0.00 1.00 0.00 1.00
lcp 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.87

10,000 3 ± 1 Gb 0.31 1.00 0.03 1.00 0.00 1.00 0.00 0.97
lcp 1.00 0.99 1.00 0.99 1.00 0.97 0.99 0.78

Table 2 Experiments on synthetic barcode graphs. The dataset is described on the first part of
the columns (Number of molecules in the molecule graph, number of merges, resulting number of
barcodes in the barcode graph). The LC column is the length of the longest correct path in the lcp
graph. The U/C column is the number of undercounted and overcounted molecules per barcode
in our computed lcp path, and the LCS column is the length of the longest common subsequence
between the lcp path and the correct barcode order.

# mols Merges # barcodes LC U/O Counts LCS

5,000 2 ± 0 2500 4990 227/56 4748
5,000 2 ± 1 2428 4991 405/109 4512
5,000 3 ± 0 1667 4985 549/240 4282
5,000 3 ± 1 1682 4975 498/665 3972
10,000 2 ± 0 5000 9992 268/68 9667
10,000 2 ± 1 4889 9993 418/129 9531
10,000 3 ± 0 3334 9981 593/184 9309
10,000 3 ± 1 3341 9987 753/201 9140
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Table 3 Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in
lcp graphs, compared to sampled paths of the same lengths in barcode graphs (Gb) as a base-line,
with 15 kbp E. coli molecules, 50X coverage, minimal molecule overlap lengths of 7000.

l=2 l=4 l=10 l=100
Graph Acc Sens Acc Sens Acc Sens Acc Sens

Gb, m = 1 1 1 1 1 1 1 1 1
lcp, m = 1 1 1 1 0.99 1 0.99 1 0.84
Gb, m = 2 0.50 1 0.12 0.99 0.001 0.99 0 0.99
lcp, m = 2 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.84
Gb, m = 3 0.34 1 0.04 1 0 1 0 1
lcp, m = 3 0.99 0.99 0.99 0.99 0.98 0.99 0.88 0.88
Gb, m = 4 0.26 1 0.02 0.99 0 0.99 0 0.99
lcp, m = 4 0.99 0.99 0.99 0.99 0.98 0.99 0.83 0.87

3.3 Genome graphs
Quality of genome LCP graphs
We designed experiments to evaluate the quality of lcp graphs constructed from the barcode
graphs that originate from real molecules. We created a synthetic E.coli molecule graph by
simulating molecules of length 15 kbp using wgsim, corresponding to sequences of the E. coli
genome, at 50x coverage of the genome and with no sequencing errors. Overlaps between all
pairs of molecules were computed using minimap2 using default parameters, and we selected
overlaps of lengths greater than 7000 using fpa [22].

Table 3 shows the accuracy and sensitivity on our constructed lcp graphs versus the
average number of merges, i.e. average number of molecules per barcode. As in Section 3.2,
barcode graphs have poor accuracy, which is expected due to the glueing of molecules, and
near-perfect sensitivity as all molecule overlaps are found. In contrast, lcp-graphs manage to
keep both near-perfect accuracy and sensitivity (> 0.98) for short paths (< 10) and have a
decrease in accuracy (0.83− 0.94) and sensitivity (0.84− 0.87) for paths of length 100.

Construction of genome barcode graphs from reads
In this section we describe a method that constructs an accurate barcode graph directly from
linked-read data. This closes a gap between our theoretical results, that required to already
have a barcode graph, and experimental data which only consist of sequencing reads.

We simulated reads from the E. coli genome at 50X coverage using LRSIM[21]. We
assembled these reads using SPAdes[1] version 3.12.0 without using linked-read information
(only using paired-end information), in order to generate contigs to which linked-reads can be
mapped to using the EMA aligner[25]. We designed an algorithm3 to infer molecule overlaps
given the set of contigs and the EMA alignments. In brief, the algorithm proceeds as follows.

For each barcode, and within each contig, we collect and sort the mapping positions
of all reads associated that barcode. We define a molecule interval to be the first and last
mapping positions of a group of mapping positions that are all within a distance < Md than
each other. A barcode can be associated to multiple molecule intervals even within the same
contig. We construct the barcode graph by looking at overlapping molecule intervals from
different barcodes. If two intervals share an overlap larger than a parameter Mo, we add an
edge between the two associated barcodes.

3 Available at https://github.com/natir/mapping2barcode
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Figure 4 Quality of barcode graph construction from a set of reads and corresponding paired-end
assembly. Each square represents the F1-score given parameters Md (read mapping distance) and
Mo (minimal molecule overlap length), from purple (low F1-score) to yellow (high F1-score).

The algorithm has two key parameters: Md, the maximal distance between two reads
in an inferred molecule interval, and Mo, the minimal overlap length between molecules.
As we used simulated data, we were able to generate a ground-truth barcode graph given
that molecule intervals in the underlying genome are known for each barcode. Figure 4
shows the performance of the algorithm in terms of F1-score (combining both sensitivity
and precision, computed by comparing the edge set of the inferred barcode graph versus
the edge set of the ground truth). We observe that the best F1-score (0.953) is reached
for (Mo,Md) = (5000, 9000), with otherwise consistently high F1-scores (≥ 0.9) whenever
Mo > 2000 and Md > 7000.

4 Conclusion

In this paper, we introduced novel approaches to analyze linked-reads sequencing data.
We introduced the problem of recovering a barcode sequence from the barcode graph, and
described its link with natural algorithmic problems on multiple-interval graphs; we believe
that the potential applications in sequencing data analysis motivate further research on these
algorithmic questions. Moreover, motivated by classic algorithmic techniques in interval
graph realization, we introduced the concept of local clique pairs (lcp) and lcp graph. Our
experiments on simulated data suggests that the lcp graph exhibits a much more linear
structure than the barcode graph and is likely a relevant intermediate structure between the
barcode graph and the barcode sequence.

This work casts a spotlight on a couple open problems in graph theory, for which linked-
reads bring an additional practical application: recognizing perfect barcode graphs, realizing
multiple-interval graphs, and the complexity of recognizing unit f -interval graphs. We suspect
also that more effective algorithms than the ones proposed here may exist for constructing
lcp graphs and finding lcp paths.

While our treatment of synthetic barcode graphs demonstrates the feasibility of recovering
barcode orders, we encountered difficulties going further in our analyses of realistic instances
(e.g. real E. coli reads). First, a more advanced path(s) discovery procedure will be needed
to deal with lcp graphs constructed from real molecule intersections (Section 3.3), which have
inferior accuracy than those in Section 3.2. Second, refinements to Algorithm 1, potentially
in the form of post-processing, will be needed to avoid outputting too many artefactual lcps
in barcode graphs of high-coverage molecules, such as the one produced in Section 3.3.
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Finally, the proposed barcode graph construction approach has potential to be applied
to larger instances, but so far we only tested it on simulated data and is merely a proof of
concept. The current method relies on having sufficient assembly contiguity (longer contigs
than molecules). A potential direction that we leave for future work is to determine molecule
intervals using the structure of an assembly graph instead of contigs.
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5 Appendix

5.1 Experiment on perfect cliques versus perfect lcps
Given an interval graph with m vertices, and an integer parameter f , we repeated for each
vertex x the following process f times: pick another unmerged node y at random and merge
vertices x and y. This generates a simulated barcode graph where all barcodes correspond
to exactly f molecules. Then on this graph we computed all maximal cliques and all lcps
and call such a set of vertices perfect if it corresponds to a set of consecutive intervals in the
original interval graph.

Table A1 Average number of perfect maximal clique vs perfect lcps, averaged over 10 runs for
each setting defined by m and f .

m f cliques perfect cliques lcp perfect lcp
5000 2 5318.5 54645.2 (9.73%) 4600.2 12763 (36.04%)
5000 3 6361.8 76569.4 (8.31%) 4054.3 29924.8 (13.55%)
10000 2 10344.8 104817.5 (9.87%) 9586.2 18958.4 (50,56%)
10000 3 12070.6 130092.4 (9.28%) 9031.2 44276 (20.40%)

WABI 2020

https://doi.org/10.1093/bioinformatics/btx675
https://doi.org/10.1093/bioinformatics/btx675
https://doi.org/10.1038/nbt.3897




Exact Transcript Quantification Over
Splice Graphs
Cong Ma1

Computational Biology Department, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
congm1@andrew.cmu.edu

Hongyu Zheng1

Computational Biology Department, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
hongyuz1@andrew.cmu.edu

Carl Kingsford2

Computational Biology Department, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
carlk@cs.cmu.edu

Abstract
The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances
of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this
model graph quantification, which was first proposed by Bernard et al. (2014). The model can be
viewed as a generalization of transcript expression quantification where every full path in the splice
graph is a possible transcript. However, the previous graph quantification model assumes the length
of single-end reads or paired-end fragments is fixed. We provide an improvement of this model to
handle variable-length reads or fragments and incorporate bias correction. We prove that our model
is equivalent to running a transcript quantifier with exactly the set of all compatible transcripts.
The key to our method is constructing an extension of the splice graph based on Aho-Corasick
automata. The proof of equivalence is based on a novel reparameterization of the read generation
model of a state-of-art transcript quantification method. This new approach is useful for modeling
scenarios where reference transcriptome is incomplete or not available and can be further used in
transcriptome assembly or alternative splicing analysis.

2012 ACM Subject Classification Applied computing → Computational transcriptomics

Keywords and phrases RNA-seq, alternative splicing, transcript quantification, splice graph, network
flow

Digital Object Identifier 10.4230/LIPIcs.WABI.2020.12

Supplementary Material The source code is available at https://github.com/Kingsford-Group/
subgraphquant.

Funding This work was partially supported in part by the Gordon and Betty Moore Foundation’s
Data-Driven Discovery Initiative through Grant GBMF4554, by the US National Science Foundation
(DBI-1937540), by the US National Institutes of Health (R01GM122935), and by The Shurl and
Kay Curci Foundation. This project is funded, in part, under a grant (#4100070287) with the
Pennsylvania Department of Health. The Department specifically disclaims responsibility for any
analyses, interpretations or conclusions.

Acknowledgements We would also like to thank Natalie Sauerwald, Dr. Guillaume Marçais, Xiangrui
Zeng and Dr. Jose Lugo-Martinez for insightful comments on the manuscript. C.K. is a co-founder
of Ocean Genomics, Inc.

1 Equal Contribution
1 Equal Contribution
2 Corresponding Author

© Cong Ma, Hongyu Zheng, and Carl Kingsford;
licensed under Creative Commons License CC-BY

20th International Workshop on Algorithms in Bioinformatics (WABI 2020).
Editors: Carl Kingsford and Nadia Pisanti; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3064-2816
mailto:congm1@andrew.cmu.edu
https://orcid.org/0000-0002-7668-2090
mailto:hongyuz1@andrew.cmu.edu
https://orcid.org/0000-0002-0118-5516
mailto:carlk@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.WABI.2020.12
https://github.com/Kingsford-Group/subgraphquant
https://github.com/Kingsford-Group/subgraphquant
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Exact Transcript Quantification Over Splice Graphs

1 Introduction

Transcript quantification has been a key component of RNA-seq analysis pipelines, and the
most popular approaches (such as RSEM [9], kallisto [4], and Salmon [12]) estimate the
abundance of individual transcripts by inference over a generative model from transcripts to
observed reads. To generate a read in the model, a transcript is first sampled proportional
to its relative abundance multiplied by length, then a fragment is sampled as a subsequence
of the transcript according to bias correction models. The quantification algorithm thus
takes the reference transcriptome and the set of reads as input and outputs a most probable
set of relative abundances under the model. We focus on a generalization of the problem,
called graph quantification, that allows for better handling of uncertainty in the reference
transcriptome.

The concept of graph quantification was first proposed by Bernard et al. [3], which
introduced a method called FlipFlop. Instead of a set of linear transcripts, a splice graph is
given and every transcript compatible with the splice graph (a path from transcript start to
termination in the splice graph) is assumed to be able to express reads. The goal is to infer
the abundance of edges of the splice graph (or its extensions) under flow balance constraints.
Transcript abundances are obtained by flow decomposition under this setup. FlipFlop infers
network flow on its extension of splice graphs, called fragment graphs, and uses the model
to further assemble transcripts. However, the proposed fragment graph model only retains
its theoretical guarantee when the lengths of single-end reads or paired-end fragments are
fixed. In this work, we propose an alternative approach to graph quantification that correctly
addresses the variable-length reads and corrects for sequencing biases. Our method is based
on flow inference on a different extension of the splice graph.

Modeling RNA-seq reads directly by network flow on splice graphs (or variants) is
advantageous when the set of transcript sequences is uncertain or incomplete. It is unlikely
that the set of reference transcripts is correct and complete for all genes in all tissues, and
therefore, many transcriptome assembly methods have been developed for reconstructing a
set of expressed transcripts from RNA-seq data [18, 13, 10, 14], including FlipFlop [3]. Recent
long read sequencing confirms the expression of unannotated transcripts [17], but they also
show that the individual exons and splice junctions are relatively accurate. With incomplete
reference transcripts but correct splice graphs, it is more appropriate to model RNA-seq
reads directly by splice graph network flows compared to modeling using the abundances of
an incomplete set of transcripts.

The network flow of graph quantification may be incorporated into other transcriptome
assembly methods in addition to FlipFlop. StringTie [13] iteratively finds the heaviest path of
a flow network constructed from splice graphs. A theoretical work by Shao et al. [15] studies
the minimum path decomposition of splice graphs when the edge abundances satisfy flow
balance constraints. Better network flow estimation on splice graphs inspires improvement of
transcriptome assembly methods.

The splice graph flow itself is biologically meaningful as it indicates the relative usage
of splice junctions. Estimates of these quantities can be used to study alternative splicing
patterns under the incomplete reference assumption. PSG [8] pioneered this line of work but
with a different abundance representation in splice graph. It models splice junction usage by
fixed-order Markov transition probabilities from one exon (or fixed number of predecessor
exons) to its successor exon in the splice graph. It develops a statistical model to detect
the difference in transition probability between two groups of samples. However, fixed-order
Markov chain is less expressive: a small order cannot capture long-range phasing relationships,
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and a large order requires inferring a number of transition probabilities that are likely to
lack sufficient read support. Markov models set the abundance of a transcript to the product
of transition probabilities of its splice junctions, which implicitly places a strong constraint
on the resulting transcriptome. Many other previous studies of splice junction usage depend
on a list of reference transcripts and compute the widely used metric Percentage Spliced In
(PSI) [7, 16, 19]. Under an incomplete reference assumption, the estimated network flow is a
potential candidate to compute PSI and study alternative splicing usage.

A key challenge of graph quantification, especially for paired-end reads, is to incorporate
the co-existence relationship among exons in transcripts. When a read spans multiple
exons, the exons must co-exist in the transcript that generates this read. Such a co-
existence relationship is called phasing, and the corresponding read is said to contain phasing
information. For these reads, the flows of the spanned splice edges may be different from
each other, and in this case, the probability of the read cannot be uniquely inferred from the
original splice graph flow. FlipFlop solves this problem by expanding the splice graph into
a fragment graph, assuming all reads are fixed-length. In a fragment graph, every vertex
represents a phasing path, two vertices are connected if the phasing paths represented by the
vertices differ by one exon, and every transcript on the splice graph maps to a path on the
fragment graph. The mapped path in the fragment graph contains every possible phasing
path from a read in the transcript, in ascending order of genomic location. However, it is
not possible to construct this expansion of splice graphs when the reads or fragments are of
variable lengths. There is no longer a clear total order over all phasing paths possible from a
given transcript, and it is unclear how to order the phasing paths in a fragment graph. We
detail the FlipFlop model in Section A.3.

To incorporate the phasing information from variable-length reads or fragments, we develop
a dynamic unrolling technique over the splice graph with an Aho-Corasick automaton. The
resulting graph is called prefix graph. We prove that optimizing network flow on the prefix
graph is equivalent to the state-of-the-art transcript expression quantification formulation
when all full paths of splice graphs are provided as reference transcripts, assuming modeled
biases of generating a fragment are determined by the fragment sequence itself regardless
of which transcript it is from. In other words, quantification on prefix graphs generates
exact quantification for the whole set of full splice graph paths. The proof is done by
reparameterizing the sequencing read generation model from transcript abundances to edge
abundances in the prefix graph. We also propose a specialized EM algorithm to efficiently
infer a prefix graph flow that solves the graph quantification problem.

As a case study, we apply our method on paired-end RNA-seq data of bipolar disease
sequencing samples and estimate flows for neurogenesis-related genes, which are known to
have complex alternative splicing patterns and unannotated isoforms. We use this case
study to demonstrate the applicability of our method to handle variable-length fragments.
Additionally, the network flow leads to different PSI compared to the one computed with
reference transcripts, suggesting reference completeness should be considered in alternative
splicing analysis.

2 Methods

We now provide a brief technical overview of the method section.
In Section 2.1, we describe the detailed derivation and procedure to reparameterize the

generative model in transcript quantification. A key component in this process is re-defining
transcript effective length. The transcript effective length is introduced to offset sampling
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biases towards shorter transcripts, and an empirical formula by penalizing transcript length
with average fragment length has been widely used. We show that this empirical formula
has a more elegant explanation, purely from introspection of the generative model. Based
on this observation, we naturally introduce the path abundances, the new set of variables
that parameterize the generative model, and the path effective lengths, weights of the path
abundances in the normalization constraints. To introduce bias correction, we introduce
the concept of affinity that encodes bias corrected likelihood for generating a fragment at a
particular location, and the rest follows naturally by redefining the effective lengths.

In Section 2.2, we describe the prefix graph, whose purpose is to map the abundances of
compatible transcripts onto network flows that preserve path abundances. This is beneficial,
as we avoid enumerating compatible transcripts and only need to infer the prefix graph flow.
The key technical contribution in this section is connecting the process of matching phasing
paths onto transcripts, to the general problem of multi-pattern matching. This leads to a
rollout of the splice graph according to an Aho-Corasick automaton, and the correctness
(that the flow preserves of path abundances) can be proved by running the Aho-Corasick
algorithm on the compatible transcripts.

In Section 2.3, we describe the inference process for the prefix graph flows, as we need to
expand our model to handle multi-mapped reads within a gene or across different genes. We
employ a standard EM algorithm for multi-mapped reads, similar to existing approaches.
Inference across genes is enabled by another reparameterization of the generative model,
which relativizes edge abundances to its incident gene. We are able to decouple the inference
for each gene during the M-step, which combined with a simple E-step, allows for efficient
inference and completes the specification of our methods.

We formally define the following terms. A splice graph is a directed acyclic graph
representing alternative splicing events in a gene. The graph has two special vertices: S
represents the start of transcripts and T represents the termination of transcripts. Every
other vertex represents an exon or a partial exon. Edges in the splice graph represent splice
junctions, potential adjacency between the exons in transcripts, or connect two adjacent
partial exons. A path is a list of vertices such that every adjacent pair is connected by
an edge, and an S − T path is a path that starts with S and ends with T . We refer to
phasing paths as the paths of which the exons co-exist in some transcripts. Specifically,
we use a generalized notion of phasing path that includes singleton path (path of a single
vertex) and path consisting of a single edge, so all vertices and edges are considered phasing
paths. Each transcript corresponds to a unique S − T path in the splice graph, and as
discussed in the introduction, we will assume every S − T path is also a transcript. Graph
quantification generalizes transcript quantification as we can set up a “fully rolled out” splice
graph, containing only chains each corresponding to a linear transcript. We use the phrase
quantified transcript set to denote a set of transcripts with corresponding abundances.

2.1 Reparameterization
Our goal in this section is to establish an alternative set of parameters for the graph
quantification problem. In the transcript quantification model, every transcript corresponds
to a variable denoting its relative abundance. We will identify a more compact set of
parameters that would represent the same model, as described below.

We start with the core model of transcript quantification at the foundation of most
modern methods [9, 6, 4, 12]. Assume the paired-end reads from an RNA-seq experiment
are error-free and uniquely aligned to a reference genome with possible gaps as fragments
(assumptions will be relaxed later). We denote the set of fragments (mapped from paired-
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end reads) as F , the set of transcripts as T = {T1, T2, . . . , Tn} with corresponding lengths
l1, l2, . . . , ln and abundances (copies of molecules) c1, c2, . . . , cn. This can be used to derive
other quantities, for example, the transcripts per million (TPM) values are calculated by
normalizing {ci} then multiplying the values by 106. Under the core model, the probability
of observing F is:

P (F | T , c) =
∏
f∈F

∑
i∈idx(f)

P (Ti)P (f | Ti).

Here, P (Ti) denotes the probability of sampling a fragment from transcript Ti, and P (f | Ti)
denotes the probability of sampling the fragment f given it comes from Ti. idx(f) is the set of
transcript indices onto which f can map. Let D(l) be the distribution of generated fragment
length. In the absence of bias correction, P (f | Ti) is proportional to D(f) = D(l(f)), where
l(f) denotes the fragment length inferred from mapping f to Ti. Define the effective length for
Ti as l̂i =

∑li

j=1
∑li

k=j D(k− j+ 1) (which can be interpreted as the total “probability” for Ti

to generate a fragment), and P (f | Ti) = D(f)/l̂i. The probability of generating a fragment
from Ti is assumed to be proportional to its abundance times its effective length, meaning
P (Ti) ∝ ci l̂i. Our definition of effective length is different from existing literature, where it
is usually defined as li − µ(Ti), the actual length of transcript li minus the truncated mean
of D, and the truncated mean is defined as µ(Ti) = (

∑li

j=1 jD(j))/(
∑li

k=1 D(k)). However,
these two definitions are actually essentially the same most of the time:

I Lemma 1. l̂i =
∑li

j=1
∑li

k=j D(k − j + 1) = (
∑li

t=1 D(t))(li + 1− µ(Ti)).

Proof.

l̂i =
li∑

t=1
D(t)(li + 1− t)

= (li + 1)
li∑

t=1
D(t)−

li∑
t=1

tD(t)

=
(

li∑
t=1

D(t)
)(

li + 1−
∑li

t=1 tD(t)∑li

t=1 D(t)

)

=
(

li∑
t=1

D(t)
)

(li + 1− µ(Ti))

This means ignoring the difference between li and li + 1, the two definitions differ by a
multiplicative factor of

∑li

t=1 D(t). J

The factor
∑li

t=1 D(t) is the probability of sampling a fragment no longer than li. It is very
close to 1 as long as the transcript is longer than most fragments, which is usually true in
practice. We refer to previous papers [9, 11, 6, 4, 12] for more detailed explanation of the
model. This leads to:

P (F | T , c) =
∏
f∈F

(
∑

i∈idx(f)

ci)D(f)/(
∑

Ti∈T
ci l̂i).

We now propose an alternative view of the probabilistic model with paths on splice graphs
in order to derive a compact parameter set for the quantification problem. The splice graph
is constructed so each transcript can be uniquely mapped to an S − T path p(Ti) on the
graph, and we assume the read library satisfies that each fragment f can be uniquely mapped
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to a (non S − T ) path p(f) on the graph (this assumption will also be relaxed later). With
this setup, i ∈ idx(f) if and only if p(f) is a subpath of p(Ti), or p(f) ⊂ p(Ti).

We now define cp =
∑

i:Ti∈T ,p⊂p(Ti) ci to be the total abundance of transcripts including
path p, called path abundance, and l̂p =

∑li

j=1
∑li

k=j 1(p(Ti[j, k]) = p)D(k − j + 1) called
path effective length, where Ti[j, k] is the fragment generated from transcript i from base
j to base k and 1(·) is the indicator function. Intuitively, the path effective length is the
total probability of sampling a fragment that maps exactly to the given path. This definition
is independent of the chosen transcript Ti and any Ti yields the same result as long as Ti

includes p. Next, let P be the set of paths from the splice graph satisfying l̂p > 0.

I Lemma 2. The normalization term can be reparameterized:
∑

Ti∈T ci l̂i =
∑

p∈P cp l̂p.

Proof. The idea is to break down the expression of l̂i into a sum over fragments, and regroup
the fragments by the path to which they are mapped:∑

Ti∈T
l̂ici =

∑
Ti∈T

li∑
j=1

li∑
k=j

D(k − j + 1)ci

=
∑
p∈P

∑
i,j,k:p(Ti[j,k])=p

D(k − j + 1)ci

=
∑
p∈P

(
∑

j,k:∃i,p(Ti[j,k])=p

D(k − j + 1))(
∑

i:p⊂p(Ti)

ci)

=
∑
p∈P

l̂pcp

The third equation holds because the sum of D(k − j + 1) across any transcripts containing
path p is the same, as a shift in the reference does not change D(k − j + 1) assuming there
are no sequencing biases. J

The likelihood objective can now be rewritten as:

P (F | T , c) =
∏
f∈F

(
∑

j:p(f)⊂p(Tj)

cj)D(f)/(
∑
p∈P

cp l̂p)

∝
∏
f∈F

cp(f)/(
∑
p∈P

cp l̂p) (1)

This reparameterizes the model with {cp}, the path abundance. In practice, we reduce
the size of P by discarding long paths with small l̂p and no mapped fragments, as they
contribute little to the likelihood (see Section A.2). To incorporate bias correction into our
model, we define the affinity Ap(j, k) to be the unnormalized likelihood of generating a read
pair mapped to path p from position j to k. This is the analog for P (f | ti) in the transcript
quantification model. In the non-bias-corrected model, we simply have Ap(j, k) = D(k−j+1).
Certain motif-based corrections and GC-content-based corrections, which are calculated from
the genomic sequence in between the paired-end alignment, can then be integrated into our
analysis naturally. To adapt the likelihood model to bias correction, we define transcript and
path effective length as follows:

l̂i =
li∑

j=1

li∑
k=j

Ap(Ti[j,k])(j, k)

l̂p =
li∑

j=1

li∑
k=j

Ap(j, k)1(p(Ti[j, k]) = p),∀p ⊂ p(Ti)
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l̂p is still the same for any Ti that includes p, so it does not matter which transcript is used
to compute it. p(Ti[j, k]) denotes the path that Ti[j, k] (transcript Ti from location j to k)
maps to, and we assume the coordinate when calculating Ap coincides with that of Ti. The
definition of path abundance remains unchanged, and all of our proposed methods will work
in the same way. Transcript-specific bias correction requires an approximation to the affinity
term, and we discuss this topic in detail in Section A.1.

We have now completed the necessary steps to claim the following theorem, which formally
establishes the correctness of the reparameterization procedure with bias correction:

I Theorem 3. Assuming each read is uniquely mapped to one phasing path, the following
two optimization instances are equivalent:

optimizing {cp}, which are the path abundances under the reparameterized objective∏
f∈F cp(f)/(

∑
p∈P cp l̂p), conditioned on {cp} corresponding to a valid quantified set of

transcripts;
optimizing {ci} which are the transcript abundances under the original objective∏

f∈F (
∑

i∈idx(f) ci)/(
∑

Ti∈T ci l̂i).
Here l̂i and l̂p are transcript effective length and path effective length defined with the same
set of affinities Ap(j, k).

Proof. This naturally follows in two steps. First, we can prove Lemma 2 with bias correction
using the identical technique of breaking l̂i down to sum over fragments, then regroup by
path mappings. This means the normalization term can be reparameterized. We finish by
reparameterizing the whole likelihood in the same way as in the non-bias-corrected case (see
equation (1)), again with identical technique. J

With reads multimapped to different phasing paths (within or across genes), let M(f)
denote the set of phasing paths f can map onto, and for p ∈M(f) let A(f | p) denote the
affinity of f mapping to p. In this case, we can use the same idea of grouping transcripts by
the phasing path that f maps onto:

P (f) =
∑

i∈idx(f)

P (Ti)P (f | Ti)

=
∑

p∈M(f)

∑
i:p⊂Ti

ciA(f | p)

=
∑

p∈M(f)

cpA(f | p).

The reparameterization theorem holds by replacing cp(f) with
∑

p∈M(f) cpA(f | p) in the
objective function.

2.2 Prefix Graphs
In Theorem 3, we showed that to perform graph quantification, it is sufficient to optimize
the path abundances under a reparameterized objective, conditioned on that the path
abundances correspond to a quantified set of transcripts. This means to apply the theorem
for optimization of path abundance, we need a set of constraints that ensures this condition.
One solution is to introduce a variable for every compatible transcript and then use the
definition of cp as the constraints. However, this will lead to an impractically large model, as
the number of S − T paths in the splice graph can be exponentially larger than the size of
the prefix graph. In this section, we derive a set of linear constraints governing {cp} that
achieves this purpose.
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To motivate the next step, assume every inferred fragment either resides within an exon
or contains one junction. In this case, the phasing paths are nodes or edges in the splice
graph. If the quantified transcript set is mapped onto the splice graph, we obtain a network
flow. The path abundance for a phasing path equals either the flow through a vertex or an
edge. By the flow decomposition theorem, given a network flow on the splice graph, we can
decompose it into S − T paths with weights, which then naturally maps back to a quantified
transcript set. As the two-way mapping (between quantified transcript sets and splice graph
flows) preserves path abundances, we conclude optimization over a splice graph flow would
achieve the goal of graph quantification. Specifically, it is easy to restructure the constraints
to represent a splice graph flow, and optimizing the resulting model is equivalent to the
transcript quantification model with all compatible transcripts included.

This solution no longer works when some phasing path p contains three or more exons.
This is because one cannot determine the total flow that goes through two consecutive
edges (corresponding to a phasing path with two junctions) just from the flow graph, and
different decompositions of the flow lead to different answers. Informally, this can be solved
by constructing higher-order splice graphs (as done by Legault et al. [8] for example), or
fixed-order Markov models, but the size of the resulting graph grows exponentially fast and
some phasing paths can be very long. Instead, we choose to “unroll” the graph just as
needed, roughly corresponding to a variable-order Markov model, similar to FlipFlop [3] but
applicable to paired-end reads.

To motivate our proposed unrolling method, consider the properties it needs to satisfy.
Roughly speaking, the unrolled graph needs to exactly identify every path in P to accurately
calculate the path abundances. That is, for every path p in P, there is a set of vertices or
edges in the unrolled graph, such that a transcript includes p if and only if its corresponding
S − T path intersects with this set. We can view this “identify phasing paths” problem as
an instance of multiple pattern matching. That is, given P, for a given transcript Ti, we
want to determine the set of paths in P that are subpaths of Ti, reading one exon of Ti

at a time. Similar to our previous example, if P contains only single exons, we only need
to recognize [x] (the singleton path including only x) when we read exon x, and we will
recognize a general phasing path p when the transcript we have seen admits p as a suffix.
To speed up the process, we can memorize a suffix of the transcript we have seen that is a
prefix of some path in p, so we do not need to check all preceding exons again when trying to
recognize p. This is not a new idea and in fact is the Aho-Corasick algorithm [1], a classical
algorithm for multiple pattern matching where the nodes in the splice graph (set of exons)
is the alphabet, P is the set of patterns and Ti is the text, and the idea is formalized as a
finite state automaton (FSA) that maintains the longest suffix of current text that could
extend and match a pattern in the future. This can be regarded as an unrolling of the splice
graph, which has the power of exactly matching arbitrarily phasing paths, and a flow on the
automaton is the analog of a splice graph flow that also is unrolled enough to recover path
abundances, as we will prove in this section.

We formalize the idea. Consider the Aho-Corasick FSA constructed from P, where we
further modify the finite state automaton as follows. Transitions between states of the FSA,
called dictionary suffix links, indicate the next state of the FSA given the current state and
the upcoming character. We do not need the links for all characters (exons), as we know
Ti ∈ T is an S−T path on the splice graph. If x is the last seen character, the next character
y must be a successor of x in the splice graph, and we only generate the state transitions for
this set of movements. With an FSA, we now construct a directed graph from its states and
transitions as described above:
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I Definition 4 (Prefix Graph). Given splice graph GS and set of splice graph paths P
(assuming every single-vertex path is in P), we construct the corresponding prefix graph G as
follows:

The vertices V of G are the splice graph paths p such that p is a prefix of some path in P.
For p ∈ V , let x be the last exon in p. For every y that is a successor of x in the splice graph,
let p′ be the longest path in V that is a suffix of py (py is the path generated by appending y
to p). We then add an edge from p to p′.

The source and sink of G are the vertices corresponding to splice graph paths [S] and [T ],
where [x] denotes a single-vertex path. The set AS(p) is the set of vertices p′ such that p is a
suffix of p′.

Intuitively, the states of the automaton are the vertices of the graph and are labeled with
the suffix in consideration at that state. The edges of the graph are the dictionary suffix
links of the FSA, now connecting vertices. For p ∈ P, AS(p) denotes the set of states in
FSA that recognizes p. All transcripts start with S, end with T and there is no path in P
containing either of them as they are not real exons, so there exist two vertices labeled [S]
and [T ]. We call them the source and sink of the prefix graph respectively, and we will see
they indeed serve a similar purpose.

I Lemma 5. There is a one-to-one correspondence between S − T paths in the splice graph
and [S]− [T ] paths in the prefix graph.

Proof. Every transcript can be mapped to an [S]− [T ] path on the prefix graph by feeding
the transcript to the finite state automaton and recording the set of visited states, excluding
the initial state where no string is matched. The first state after the initial state is always
[S] as the first vertex in an S − T path is S, and the last state is always [T ] because there
are no other vertexes in the prefix graph that would contain T . Conversely, a [S]− [T ] path
on the prefix graph can also be mapped back to a transcript, as it has to follow dictionary
suffix links (transitions between FSA states), which by our construction can be mapped back
to edges in the splice graph. J

This implies that the prefix graph is also a DAG: If there is a cycle in the prefix graph, it
implies an exon appears twice in a transcript, which violates our assumption that the splice
graph is a DAG.

1

2

3

4

5
1 2 3 4 5

13 24 35

135

Root State

P={135,24,35}

AS(24) AS(35)Fail Edges Trie Edges

Splice Graph Aho-Corasick Automaton Prefix Graph

1

2

13

3

4

24

135

35

5

Source Sink

Figure 1 An example construction of the Prefix Graph. The source and sink of the prefix graph
are [S] and [T ], respectively. The set of phasing paths P is shown in blue in the left panel, and we
does not include the singleton paths for simplicity. We draw the trie and the fail edges for the A-C
automaton as it reduces cluttering (dictionary suffix link can be derived from both edge sets). The
colored nodes in prefix graph are the vertices (states) in AS(35) and AS(24).

The resulting prefix graph flow serves as a bridge between the path abundance {cp} and
the quantified transcript set {ci}:
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I Theorem 6. Every quantified transcript set can be mapped to and from a prefix graph flow.
The path abundance is preserved during the mapping and can be calculated exactly from prefix
graph flow: cp =

∑
s∈AS(p) fs, where fs is the flow through vertex s.

Proof. Using the path mapping between splice graph and prefix graph, we can map a
quantified transcript set onto the prefix graph as a prefix graph flow and reconstruct a
quantified transcript set by decomposing the flow and map each [S]− [T ] path back to the
splice graph as a transcript.

To prove the second part, let {cp} be the path abundance calculated from the definition
given a quantified transcript set, and {c′p} be the path abundance calculated from the prefix
graph flow. We will show {cp} = {c′p} for any finite decomposition of the prefix graph flow.

For any transcript Ti and any path p ∈ P , since no exon appears twice for a transcript, if
Ti contains p, it will be recognized by the FSA exactly once. This means the [S]− [T ] path to
which Ti maps intersects with AS(p) by exactly one vertex in this scenario, and it contributes
the same abundance to c′p and cp. If Ti does not contain p, by similar reasoning, it contributes
to neither c′p nor cp. This holds for any transcript and any path, so the two definitions of
path abundance coincide and are preserved in mapping from quantified transcript set to
prefix graph flow. Since the prefix graph flow is preserved in flow decomposition, the path
abundance is preserved as a function of prefix graph flow. J

This connection allows us to directly optimize over {cp} by using the prefix graph flow
as variables (the path abundances cp is now represented as seen in Theorem 6), and use
flow balance and non-negativity as constraints, as we describe in the next section. The
corresponding quantified transcript set is guaranteed to exist by a flow decomposition followed
by the mapping process.

We next describe an improvement to the prefix graph, which we call compact prefix graph.
The idea is to recognize phasing paths at the edges of the resulting graph, instead of at the
vertices. We will still start with the Aho-Corasick FSA, but we will be building the graph in
a way that states of the FSA correspond to edges of the resulting graph, as described below:

I Definition 7 (Compact Prefix Graph). Given splice graph GS and set of splice graph paths
P, we construct the corresponding compact prefix graph G′ as follows. The vertex set of the
compact prefix graph is the union of

all single-vertex paths on the splice graph;
any splice graph path p that is the prefix of some path p′ in P, while strictly shorter than
p′.

For p in the compact prefix graph, let x be its last exon and y be a successor of x in the splice
graph. We create an edge which has label py (again, appending y to p), originates from p,
and leads to the node that is the longest suffix of py in the compact prefix graph.

The source and sink of G are the vertices corresponding to splice graph paths [S] and [T ].
The set AS(p) is the set of edges p′ such that the edge label on p′ is a suffix of p.

The set AS(p) bears the same meaning as in the original prefix graph, as the states of
the Aho-Corasick FSA are now (roughly) the edges of the compact prefix graph. With this
intuition, we can prove the same property as stated in Lemma 5 and Theorem 6 for compact
prefix graph. The compact prefix graph by the virtue of its construction is a smaller graph
(compared to the original prefix graph) with the same power and is preferred in practice.
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2.3 Inference
While the restructuring process described in the previous section reduces the size of the
optimization problem, we still need to solve it efficiently. We start with the base case, that
is, a single gene and every read pair maps to exactly one path. Recall that P is the set of
phasing paths we consider, p(f) is the path fragment f maps to. For a phasing path p, cp is
the path abundance, l̂p is the path effective length. For the prefix graph, we let fe denote the
flow through an edge, fv denote the flow through a vertex, and AS(p) is the set of vertices
(as FSA states) that recognize p. We also use In(v) to denote the incoming edges of vertex v,
and Out(v) similarly for the outgoing edges. The full instance in this case, with the prefix
graph proposed the previous section, is:

max
∑
f∈F

log cp(f)

s.t.
∑
p∈P

cp l̂p = 1

cp =
∑

v∈AS(p)

fv ∀p ∈ P

fv =
∑

e∈In(v)

fe =
∑

e∈Out(v)

fe ∀v ∈ V − {[S], [T ]}

fe ≥ 0 ∀e ∈ E

This is slightly different from what we described in Section 2.1. First, we maximize the
logarithm of the likelihood objective. Second, we explicitly fix the normalization constant to
be 1, instead of placing it on the divisor of the fragment likelihood. This does not change the
objective, and the only difference is that in the original form {cp} can be arbitrarily scaled,
while here the scaling is fixed. The variables and the constraints come from the prefix graph
flow, and cp is represented as in Theorem 6. For a compact prefix graph as described in
Definition 7, we simply replace the equation of cp to sum over fe with e ∈ AS(p). This is a
convex problem, as the target function is convex with respect to {cp}, and the constraints
are all linear. We can solve the problem with general purpose convex solvers.

With the presence of multimapped reads (to multiple genes and/or multiple paths within
one gene), we can employ a standard EM approach. Recall M(f) is the set of phasing paths
onto which f can map, and for p ∈ M(f) let A(f | p) denote the affinity of f mapping to
p, as described in Section 2.1. We also let z denote the hidden allocation vector, where
zf,p denotes the probability that fragment f is mapped onto splice graph path p. We can
alternatively optimize for {zf,p} and {cp} until convergence as follows:

z
(t)
f,p = c(t)

p A(f | p)/(
∑

p′∈M(f)

c
(t)
p′ A(f | p′))

c(t+1) = arg max
c

∑
p∈P

(
∑
f∈F

z
(t)
f,p) log cp, s.t.

∑
p∈P

cp l̂p = 1

z(t) and c(t) denote the variables at iteration t. We hide the constraint from prefix graphs
for clarity. The optimization for z(t)

f,p can be run in parallel, so we focus on the M-step that
optimizes c(t+1) = {c(t+1)

p }, hiding the superscript whenever it is clear from context. When
we optimize over the whole genome, the instance becomes impractically huge. This is because
we need to infer the flow for every prefix graph (one for each gene) across the whole genome,
and we need to satisfy flow balance for each graph and normalization for all graphs together.
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We let G denote the set of genes. Denote the gene abundance cg =
∑

p∈Pg
cp l̂p, where Pg

is the set of phasing paths in gene g. We then define relative abundance c∗p = cp/cg for every
phasing path p. Plugging cp = cgc

∗
p into the expression for M-step, we have the following

transformed objective:

max
∑
p∈P

(
∑
f∈F

z
(t)
f,p)(log c∗p + log cg)

=
∑
g∈G

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log c∗p +

∑
g∈G

(
∑
f∈F

∑
p∈Pg

z
(t)
f,p) log cg

=
∑
g∈G

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log c∗p +

∑
g∈G

sg log cg

s.t.
∑
p∈P

cgc
∗
p l̂p =

∑
g∈G

cg = 1

∑
p∈Pg

c∗p l̂p = 1,∀g ∈ G

Here, sg =
∑

f∈F

∑
p∈Pg

z
(t)
f,p can be interpreted as the estimated read count of gene g. Again

for clarity we hide the prefix graph constraints for c∗p, which retain their original form because
all prefix graph constraints are affine. Now, we can decouple optimization of c∗p and cg, as the
objective function is split into two parts, and each constraint only involves one of them. The
optimization for c∗p can be done for each gene independently, and it is exactly the single-gene
optimization as we described above except we weight log cp(f) with z

(t)
f,p in the objective.

The optimization for cg has the form max
∑

g∈G sg log cg constrained by
∑

g∈G cg = 1, from
which we derive that cg ∝ sg. Since

∑
g∈G sg =

∑
p∈P

∑
f∈F z

(t)
f,p =

∑
f∈F 1 = |F |, we have

the following localized EM algorithm:

Global E-step: z
(t)
f,p = c(t)

p A(f | p)/(
∑

p′∈M(f)

c
(t)
p′ A(f | p′))

Gene-Level M-step: c(t+1) = arg max
c

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log cp

s.t.
∑

p∈Pg

cp l̂p =
∑

p∈Pg

∑
f∈F

z
(t)
f,p/|F |,∀g ∈ G

The M-step is run independently for each gene and can be parallelized. Again we omit listing
the prefix graph constraint over cp for clarity, and cg is implicitly derived as the right-hand
side of the normalization constraint.

3 Experiments

Based on the expression quantification method Salmon [12] and its effective lengths, we
implement our method and call it Graph Salmon. We apply Graph Salmon on three
bipolar disease (BD) RNA-seq samples and three control samples to estimate the expression
network flow on neurogenesis-related genes (GO:0022008), which are known to have complex
alternative splicing patterns and novel isoforms. We use this as a case study to show that
Graph Salmon is applicable with variable fragment lengths and that the relative usage of
splice junctions under the incomplete reference assumption are different from those under
complete reference assumption.
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3.1 Implementation
The splice graphs are constructed using the reference exons and splice junctions of Gencode [5]
version 26. Since Salmon’s effective lengths are needed for path effective lengths, we
first run Salmon on the samples. We also use Salmon read mappings (obtained with the
–writeMappings argument) and convert their coordinates onto splice graph nodes and edges.
Prefix graphs are constructed with the converted read mappings. Each edge in the prefix
graph corresponds to a path in the original splice graph, and we compute the path effective
length by taking the average of the effective lengths of the corresponding region in reference
transcripts that include the corresponding path (for details see Supplementary Material
Section A.1). With the converted read mappings and path effective lengths, the probabilistic
model of graph quantification can be specified.

Since only neurogenesis-related genes are of interest and the rest of the genes are assumed
to have complete reference transcripts, we assume that Salmon correctly estimates the
probability of each paired-end read generated from each gene when the read is mapped to
multiple genes. We use Salmon’s gene-level weight assignment as read count and only solve
the flow optimization problem within each gene, which corresponds to one round of the
gene-level M step for each gene.

3.2 Graph Salmon reveals unique between-sample differences of PSI
for neurogenesis genes

The RNA-seq data can be accessed from Gene Expression Omnibus (GEO) database with
accession numbers GSM1288369, GSM1288370, GSM1288371 for bipolar disease samples,
and GSM1288374, GSM1288375, GSM1288376 for control samples [2].

The mean fragment lengths of the six sample range from 349.17 bp to 375.28 bp. The
standard deviations of fragment lengths are between 53.00 bp and 82.15 bp. Meanwhile, 30%
of the exons (or subexons) across the splice graphs are less than 56 bp long, and the 40%
quantile of subexon lengths is 79 bp. Graph Salmon is needed in this dataset because of the
large standard deviation of fragment lengths compared to subexon lengths.

We computed Percentage Spliced In (PSI) of 2441 skipped exon events using the Graph
Salmon network flow and compare them with PSIs calculated using Salmon’s expression
quantification based on the reference transcripts. Given three exons, the PSI is defined as
the total abundance of transcripts that include all three of them, divided by total abundance
of transcripts that include the first and the last (but not necessarily the middle one). The
correlations of Graph Salmon PSI and Salmon PSI of the same sample are around 0.51 to 0.57
(for both Spearman and Pearson), while the correlations of PSI between different samples
computed by the same quantification method are over 0.75 (for both Spearman and Pearson
and both methods). The large correlation between different samples can be explained by
the fact that they are from the same tissue and should follow the tissue-specific expression
and alternative splicing patterns. The smaller correlation between different quantification
methods indicates the incomplete reference and complete reference assumptions lead to very
different splice junction abundance estimates.

An example of different PSI computed by Graph Salmon and Salmon is shown in Figure 2
and Supplementary Figure A2 on LPAR1 gene. LPAR1 gene encodes a lysophosphatidic acid
(LPA) receptor that functions in the LPA signaling pathway, which is related to cognitive
behavioral deficits such as schizophrenia and depression when dysregulated [20]. We focus
on the event that describes the percentage of expression of the inclusions of exon 6 (position
110973480-110973558 in GRCh38) between exon 3 (position 111037840-111038043 in GRCh38)
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Figure 2 (A) Network flow of BD 1 and control 3 samples estimated by Graph Salmon. The
subgraph includes exons 1, 3 to 7, and exons are represented by nodes and node label indicates the
index of exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges of which the
flows are involved in PSI calculation are solid; the rest edges are dashed. (B) Network flow of the
same samples computed by Salmon with reference transcripts.

and exon 7 (position 110972072-110972220 in GRCh38). Graph Salmon computes the PSIs to
be 0.45 to 0.64 for BD samples and 0.07 to 0.33 for control samples, whereas PSIs computed
by Salmon are larger than 0.95 for all six samples.

Even though this difference is not evaluated by rigorous statistical testing, it indicates
that when reference is incomplete, previous reference-based alternative splicing analysis may
lead to different results. Considering the incomplete reference assumption in alternative
splicing analysis enlarges the pool of candidate alternative splicing events.

4 Discussion

We improve the graph quantification model of FlipFlop to incorporate phasing information
from variable length reads or fragments. The key algorithmic contributions are a provably
correct reparameterization process and the introduction of the prefix graph inspired by
Aho-Corasick automata for inference.

To demonstrate the feasibility of our method to handle variable length fragments, we apply
our method to neurogenesis-related genes of bipolar disease RNA-seq samples and control
RNA-seq samples. The RNA-seq samples contain paired-end reads with mean fragment
lengths around 350 bp and standard deviation around 53 – 82 bp. We show that our
method successfully estimates network flows on prefix graphs and the estimated flow (under
the incomplete reference assumption) only has around 0.5 correlation (both Pearson and
Spearman) with the flow estimated by Salmon under the complete reference assumption.
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The size of the prefix graph depends on the length of the phasing paths exponentially.
Unfortunately, for long read sequencing, especially with transcript-long reads, the prefix graph
may be as large as the set of all S − T paths (equivalently the set of all possible transcripts)
and its efficiency compared to the naïve implementation of graph quantification (where we
enumerate every compatible transcript) may diminish. It is still open what algorithmic tools
are required to avoid this inefficency.

An intrinsic issue with graph quantification is non-identifiability: Many configurations
of transcript abundances lead to the same read generation model, and thus it is impossible
to distinguish which configuration is closer to the ground truth if our goal is to recover
an underlying transcriptome. While our prefix graph representation is compact, for many
downstream analyses, we are invariably forced to perform a flow decomposition to transform
prefix graph flow into quantified transcript sets. The non-identifiability problem manifests
in this step, as different decompositions can lead to the same prefix graph flow, which as
we proved implies the same model of read generation. Therefore, it is possible to assess the
severity of non-identifiability problem by inspecting different ways of decomposing a fixed
prefix graph flow.

This work focuses on theoretical improvements of the graph quantification model, while
its practical utility is still largely unexplored. For example, our proposed approach may be a
promising method for transcript assembly similar to FlipFlop, where we use quantification
for assembly. The method also has potential use cases in alternative splicing analyses and
other related tasks in RNA-seq. However, careful benchmarking is needed to determine the
cases when graph quantification is superior to standard quantification with a given set of
transcripts.
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A Additional Methods

In Section A.1 and Section A.2, we describe two modifications to our proposed model in
practice. These modifications greatly improve practicality of our proposed model. On the
other hand, inclusion of these modifications means the conditions for Theorem 3 no longer
hold and the inference is no longer over the exact set of all possible transcripts with exact
bias correction. In Section A.3, we describe the fragment graph constructed in FlipFlop in
more detail, and describe our reasoning why it loses the theoretical guarantee in presence of
variable-length reads or fragments.

A.1 Bias Correction, Continued
Admittedly, there is no way to know the exact location of the read pair within the
transcript after reparameterization with path abundance, so these specific biases can-
not be integrated into our proposed models directly. Nonetheless, since the splice graph
is known in full, approximate bias correction is possible. Let Bi(j, k) denote the affin-
ity value calculated from a full bias correction model for the fragment generated from
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base j to k on transcript Ti, and r̂i be the reference abundance of transcript Ti. We let
Ap(j, k) = (

∑
i:p⊂p(Ti) r̂iBi(j′, k′))/(

∑
i:p⊂p(Ti) r̂i), where j′ and k′ are the coordinates of the

path sequence in the reference coordinates of Ti. This means we average the affinity value
calculated from known transcripts on this locus, weighted by their reference abundance. For
simplicity, we use Salmon outputs as reference abundance, but other approaches, including
an iterative process of estimating Ap(j, k) and cp alternatively, are possible.

One limiting factor for bias correction in our proposed framework is that calculating
l̂p can be expensive as we need to calculate the affinity value for every possible fragment.
While we did this for our experiments, there are also alternative approaches that speeds
up the process by approximating l̂p. We can use a simplified form for Ap(j, k) so l̂p has a
closed-form solution (for example, do not allow bias correction when calculating effective
length, similar to existing approaches to calculate effective length of transcripts), sample
from possible Ap(j, k) when the number of fragments from a particular path is large, or
precompute the values for fixed genome and bias correction model. These approaches may
result in slightly inaccurate path effective length, and it is still an open question how it
affects downstream procedures.

A.2 Trimming Set of Phasing Paths
Recall the likelihood function under our reparameterized model:
P (F | T , c) ∝

∏
f∈F cp(f)/(

∑
p∈P cp l̂p). Paths p ∈ P with no mapped fragments do not

contribute to
∏

f∈F cp(f), as there are no f ∈ F such that p(f) = p. These paths do play a
role in calculating the normalization constant

∑
p∈P cp l̂p. However, since we only remove

paths with very low l̂p, the contribution of cp l̂p from this set is small. This removal thus
causes small underestimation of the normalization constant, and in turn small overestimation
of transcript abundances (and path abundances).

If there is a removed path with large cp when optimized under this model, it means in the
inferred quantified transcript set there is are many fragments mapped to path p, even though
exactly zero fragments are mapped to p in the sequencing library. This mostly happens if
there is a dominant transcript with high abundance, and p is part of the transcript. For such
things to happen, the transcript must have many fragments mappable, and the fact that
no single fragment mapped to path p indicates l̂p is small, or the modeling might be faulty.
This trimming is necessary in practice, as the fragment length distribution D(l) usually has
a long tail when inferred from experiments, due to smoothing and potential mapping errors,
leading to many extremely long paths that are near impossible to sample a read from.

A.3 FlipFlop and the Fragment Graph
The fragment graph constructed by FlipFlop is defined as follows. Given splice graph G
and a set of phasing paths P (again we consider a general notion of phasing paths, meaning
single exon paths also count as phasing), the fragment graph GF is constructed such that

Each vertex in GF is either S, T , or a phasing path.
There is an edge connecting X to Y only if Y is a single exon extension or shrinking of
X (unless one of them is either S or T ).
Every S − T path in the splice graph can be mapped uniquely to a S − T path in the
fragment graph, and the set of vertices included in the S − T path is exactly the set of
phasing paths that are a subpath of the transcript.
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We only list a necessary condition in the second item, and we will not discuss how the graph
is constructed in practice here. The third item is essential for the FlipFlop algorithm, as it
solves the inference problem with convex cost flows which requires that every phasing path
is represented by a single vertex in the graph.

As discussed in the introduction, the FlipFlop algorithm is correct when input library is
single-end reads with fixed read length. This implies that if X is a phasing path, there are no
phasing paths that are extension of X on both ends (for example, if X = [3, 4], then [2, 3, 4, 5]
cannot be a phasing path), otherwise it would violate the condition that all reads have equal
length. We now show that there exists no correct fragment graph when the condition is
violated.

Figure A1 The fragment graph with 4 exons and 10 phasing paths, not including S and T . Blocks
denote vertices of the fragment graph, and lines denote possible edges between vertices (phasing
paths). A path visiting 9 vertices (excluding the singleton phasing path [2]) is marked in dark red,
and there is no Hamiltonian path in the graph.

Consider a splice graph with a chain of four exons denoted 1, 2, 3 and 4, and where
every subpath of [1, 2, 3, 4] is a phasing path. The fragment graph, if exists, will contain
10 vertices (excluding S and T ) and a Hamiltonian path corresponding to the transcript
[1, 2, 3, 4]. However, as seen in the above figure, the graph will not contain a Hamiltonian
path no matter how the graph is constructed.
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Figure A2 (A) Network flow of BD 2, BD 3, control 1, and control 2 samples estimated by Graph
Salmon. The subgraph includes exons 1, 3 to 7, and exons are represented by nodes and node label
indicates the index of exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges of
which the flows are involved in PSI calculation are solid; the rest edges are dashed. (B) Network
flow of the same samples computed by Salmon with reference transcripts.
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Abstract
In the context of biomarker discovery and molecular characterization of diseases, laser capture
microdissection is a highly effective approach to extract disease-specific regions from complex,
heterogeneous tissue samples. These regions have to be decomposed into feasible fragments as they
have to satisfy certain constraints in size and morphology for the extraction to be successful. We
model this problem of constrained shape decomposition as the computation of optimal feasible
decompositions of simple polygons. We use a skeleton-based approach and present an algorithmic
framework that allows the implementation of various feasibility criteria as well as optimization
goals. Motivated by our application, we consider different constraints and examine the resulting
fragmentations. Furthermore, we apply our method to lung tissue samples and show its advantages
in comparison to a heuristic decomposition approach.
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1 Introduction

Laser capture microdissection (LCM) [14] is a highly effective approach to extract specific cell
populations from complex, heterogeneous tissue samples and has been used extensively in the
context of biomarker discovery [15] as well as the molecular characterization of diseases [17].
Since LCM separates homogeneous and disease-specific regions from their heterogeneous
and unspecific surrounding tissue regions, the characterizations obtained from genomic,
transcriptomic or proteomic characterizations of samples processed with LCM provide more
accurate molecular markers of diseases [9, 20]. With LCM being used more and more
commonly in clinical studies, there is a need to automate all procedures involved in sample
processing.
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Problem Statement

In our present contribution, we address one central problem of processing samples with LCM.
Namely that the regions of interest (ROIs) consist of complex shapes of varying size which in
general cannot be extracted in one piece from the tissue sample. Rather, the ROI needs to
be fragmented into small subregions that satisfy certain constraints in size and morphology:
Fragments must not exceed certain limits of minimal or maximal size and should be of
approximately round shape. If a fragment does not meet these constraints, it cannot be
properly extracted from the surrounding tissue. This negatively affects the sample quality
and thus compromises the advantages of LCM-based sample preparation.

By interpreting each connected component of the ROI as a simple polygon, we can model
this problem of constrained shape decomposition as the computation of optimal feasible
decompositions of polygons. The constraints can be modeled as certain feasibility criteria
and optimization goals. Our decomposition method utilizes a skeleton of the shape and
follows a dynamic approach. Specifically, we restrict our cuts to certain line segments based
on the skeleton. This not only results in simple cuts but also in a flexible framework that
allows to integrate various criteria. With respect to our application, we consider different
criteria regarding for example the area, convexity or fatness of a polygon or the length of
inserted cuts. However, other constraints as well as combinations of multiple criteria are
possible.

Application

Our contribution is motivated by an application introduced in [15] in which the ROI to
be dissected from the tissue sample is identified using label-free hyperspectral infrared
microscopy. In this approach, an infrared microscopic image of the sample yields infrared
pixel spectra at a spatial resolution of about 5 µm. A previously trained random forest
classifier assigns each pixel spectrum to one tissue component such as healthy or diseased, with
the diseased class being further subdivided into inflamed tissue as well as several subtypes of
thoracal tumors. The general sample preparation task in the context of LCM is to dissect all
tumor regions (or all regions identified as one specific tumor subtype) from a sample. While
our current contribution deals with the specific context of label-free infrared microscopy,
our shape decomposition approach equally applies more broadly to LCM in the context
of other microscopic modalities, most notably H&E stained images [9] for which recent
digital pathology approaches facilitate reliable computational identification of disease specific
regions [26, 28].

2 Related Work

Polygon decomposition is an important tool in computational geometry, as many algorithms
work more efficiently on certain polygon classes, for example convex polygons [16]. Moreover,
polygon decomposition is frequently used in applications such as pattern recognition or image
processing [16]. Object recognition, biomedical image analysis and shape decomposition
are typical areas of application that utilize skeletons [23]. Skeletons are oftentimes used to
analyze the morphology of a given shape and work especially well on elongated structures,
such as vessels [11], pollen tubes [27] or neuron images [19, 24]. There are several shape
decomposition methods based on the skeleton or some other medial representation of a
shape. However, most of these methods are designed for object recognition and thus focus on
decomposing a shape into “natural” or “meaningful” parts [22, 18, 21]. In some approaches
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even decompositions with overlapping parts are allowed [10, 25]. None of the established
decomposition methods facilitate a straightforward introduction of adjustable size and shape
constraints as needed for our application.

We utilize the skeleton for two main reasons: it is well-established to represent shape
morphology and has proved useful for shape decomposition previously. As cancerous tissue
regions often present themselves as highly complex and ramified shapes, we apply the skeleton
to obtain a morphological representation, based on which we compute a decomposition that
includes the morphological features.

3 Methods

As an input, we receive a binary mask of a microscopic slide with the region of interest
(ROI) as the foreground (Fig. 1a). After a preprocessing step, the foreground is reduced
to connected components without holes. We can interpret each of these components as
a polygon by taking each boundary pixel as a polygon vertex. The goal is to produce a
decomposition of each component in such a way that the fragments fulfill certain constraints
in size and morphology. We compute this fragmentation using a skeleton-based approach for
polygon decomposition (Fig. 1b).

(a) Selection of one region of interest in a histopathological tissue sample (H&E-stained image of a
subsequent sample on the left) in which different regions have been identified using the method in [15].

(b) After a preprocessing step, each connected component is a simple polygon without holes and is
decomposed using the method presented in this paper.

Figure 1 Decomposition of ROI polygons in a histopathological tissue sample.

3.1 Skeleton of a shape
Our approach is based on the medial axis or skeleton of the polygon. The medial axis of a
shape is the set of points that have more than one closest point on the shape’s boundary. The
medial axis was introduced for the description of biological shapes [3, 4] but is now widely
used in other applications such as object recognition, medical image analysis and shape
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decomposition [23]. An important property is that the medial axis represents the object and
its geometrical and topological characteristics while having a lower dimension [8, 29].

Formally, the medial axis of a shape D is defined as the set of centers of maximal disks
in D. A closed disk B ⊂ D is maximal in D if every other disk that contains B is not
contained in D. A point s is called skeleton point if it is the center of a maximal disk B(s)
(see Fig. 2). For a skeleton point s, we call the points where B(s) touches the boundary the
contact points – every skeleton point has at least two contact points. A skeleton S is given
as a graph consisting of connected arcs Sk, which are called skeleton branches and meet at
branching points. Given a simple polygon without holes the skeleton is an acyclic graph.

s

B(s)

c1

c2

c3

Figure 2 Medial axis of a simple shape. The skeleton point s is a branching point with three
contact points c1, c2, c3.

There are various methods for the computation of the medial axis in practice [23]. In
general, the medial axis is very sensitive to noise in an object’s boundary. This is a problem
that often occurs in digital images and leads to spurious skeleton branches. Therefore, many
approaches apply some kind of pruning method to remove those branches. In our application,
we have a discrete input and a discrete output is expected. Because of that, we use a
skeletonization algorithm that computes a discrete and pruned skeleton, which consists of
a finite number of skeleton pixels as our skeleton points [2]. Furthermore, the computed
skeleton has the property that every branching point has a degree of exactly three.

3.2 Skeleton-based polygon decomposition
We consider the following problem: Given a simple polygon P , compute an optimal feasible
decomposition of P . A decomposition is feasible if every subpolygon is feasible, in the sense
that it fulfills certain conditions on for instance its size and shape. We present an algorithmic
framework that allows the integration of various criteria for both feasibility and optimization,
which are discussed later. As for now, we only consider criteria that are locally evaluable.

In our skeleton-based approach, we allow only cuts that are line segments between a
skeleton point and its corresponding contact points. Thus, the complexity of our algorithm
mainly depends on the number of skeleton points rather than the number of boundary points
of the polygon. Every subpolygon in our decomposition is generated by two or more skeleton
points. We present two decomposition algorithms: One in which we restrict the subpolygons
to be generated by exactly two skeleton points and a general method. In the first case, each
subpolygon belonging to a skeleton branch can be decomposed on its own and in the second
case the whole polygon is decomposed at once.

Decomposition based on linear skeletons

First, let us consider the restriction that the subpolygons are generated by exactly two
skeleton points. In this case, the corresponding skeleton points have to be on one skeleton
branch Sk. In our work, a branching point belongs to exactly three branches and has exactly
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three contact points. When a branching point generates a subpolygon with another skeleton
point on an adjacent branch, we choose those two line segments that correspond to this
branch. Due to the Domain Decomposition Lemma (see Fig. 3, proof in [8]) and the following
corollary, we can decompose each skeleton branch on its own.

I Theorem 1 (Domain Decomposition Lemma). Given a domain D with skeleton S(D), let
p ∈ S(D) be some skeleton point and let B(p) be the corresponding maximal disk. Suppose
A1, A2, . . . , Ak are the connected components of D \B(p). Define Di = Ai ∪B(p) for all i.
Then:

S(D) =
k⋃

i=1
S(Di).

Moreover, we have

S(Di) ∩ S(Dj) = p ∀ i 6= j.

I Corollary 2. Let p ∈ S(D) and A1, A2, . . . , Ak be as above. For each skeleton point q 6= p

exists an i such that all contact points of q are contained in Ai.

p
p

p p

q

q

Figure 3 Domain Decomposition Lemma.

Let Sk be a skeleton branch with a linear skeleton of size nk and let Pk be the polygon
belonging to this branch. By Pk(i, j), we denote a subpolygon that is generated by two
skeleton points i and j on Sk (see Fig. 4). Thus, we have Pk(1, nk) = Pk. First, we consider
the decision problem. Note that there exists a feasible decomposition of a polygon Pk(i, nk)
if either

Pk(i, nk) is feasible or
there exists j > i such that Pk(i, j) is feasible and Pk(j, nk) has a feasible decomposition.

Thus, we can solve the problem by using dynamic programming and use backtracking to
compute the corresponding decomposition. We can include different optimization criteria by
choosing an optimal point j.

I Lemma 3. Given a subpolygon Pk with a linear skeleton Sk consisting of nk points, one
can compute a feasible decomposition of Pk based on Sk in time O(nk

2F ), with F being a
factor depending on the feasibility criteria.
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ji

Pk(i, j)

1nk Sk

Figure 4 Polygon Pk belonging to a skeleton branch Sk.

Proof. For every skeleton point i, for i = nk − 1 down to 1, we compute X(i) such that
X(i) equals True if there exists a feasible decomposition of Pk(i, nk). To compute X(i), we
consider O(nk) other values X(i′) for i < j ≤ nk and check in time O(F ) if the polygon
Pk(i, j) is feasible. The correctness follows inductively. J

The factor F is determined by the runtime it takes to decide whether a subpolygon is feasible.
This factor might depend on for instance the number of points in the skeleton or in the
boundary of the polygon. We discuss examples in the following section. After computing
decompositions for each subpolygon corresponding to a skeleton branch, we can combine
those to obtain a decomposition of the entire polygon. This leads to the following result.

I Theorem 4. Given a simple polygon P with skeleton S consisting of n points, one can
compute a feasible decomposition of P based on the skeleton branches of S in time O(n2F ),
with F being a factor depending on the feasibility criteria.

Note that there might not exist a feasible decomposition of the entire polygon or for certain
subpolygons. By using this method, we are able to obtain partial decompositions. Thus, this
approach can be favorable in practice.

General decomposition

In the general setting, subpolygons are allowed to be generated by more than two skeleton
points. In this paper, we will briefly explain the idea of our method (see [5] for a more
detailed description and the corresponding formulas). Recall that our skeleton is an acyclic
graph consisting of a finite number of vertices, i.e. skeleton points. The skeleton computed
for our application (method of Bai et al. [2]) has the property that the maximal degree of a
skeleton point is three. We select one branching point as a root and consider a rooted skeleton
tree. Since branching points belong to three different branches, these nodes are duplicated in
the skeleton tree such that each node corresponds to the cut edges on the respective branch
(see Fig. 5). Our method and its runtime are based on two main observations.

I Observation 5. The maximal number of skeleton points that can generate a subpolygon
is equal to the number of endpoints in the skeleton, i.e. the number of leaves in the skeleton
tree.

IObservation 6. Every subpolygon can be represented as the union of subpolygons generated
by just two skeleton points.

Let i be a node in the skeleton tree and Ti the subtree rooted in i. By P (i), we denote
the subpolygon ending in the skeleton point i. This polygon corresponds to the subtree Ti in
the given tree representation (see Fig. 6). For each node i (bottom-up), we compute if there
exists a feasible decomposition of the polygon P (i). Such a decomposition exists if either
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Figure 5 Representing the skeleton graph as a tree rooted at the point r.

Figure 6 Subpolygon P (i) ending in the skeleton point i and the corresponding subtree Ti.

P (i) is feasible or
there exists a feasible polygon P ′ ending in i and feasible decompositions of the connected
components of P (i) \ P ′.

Thus, we have to consider all different combinations of skeleton points that together with i
can form such a polygon P ′. In a top-down manner, we consider the different combinations
of nodes [i1, i2, . . . , il] such that ij ∈ Ti and Tij ∩ Tij′ = ∅ for all j 6= j′. The polygon P ′

corresponds to the subtree rooted in i with i1, i2, . . . , il as the leaves, depicted in blue in
Fig. 7. Note that we can compute P ′ as a union of subpolygons iteratively. We check if P ′ is
feasible and we have feasible decompositions for each P (ij), meaning every subtree Tij

(gray
in Fig. 7). Because of Observation 5, we know that l ≤ k, for k being the number of leaves in
the skeleton tree. We have a feasible decomposition of the whole polygon if there exists one
of the polygon P (r). This computation dominates the runtime with the maximum number
of combinations to consider being in O(nk). Note that this approach does not depend on the
initial choice of the root node.

I Theorem 7. Given a simple polygon P with skeleton S consisting of n points with degree
at most three, one can compute a feasible decomposition of P based on S in O(nkF ) time,
with k being the number of leaves in the skeleton tree and F as above.

3.3 Feasibility constraints and optimization
Our decomposition method is highly versatile framework that can be adjusted for different
feasibility constraints and optimization goals. In the following, we present a few examples
of criteria we considered with regard to our application. As stated before, the ROI in our
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Figure 7 Different possibilities of skeletons points to consider when computing the decomposition
of P (i).

tissue sample needs to satisfy constraints in size and morphology for the LCM. In LCM, a
laser separates a tissue fragment from its surrounding sample and a subsequent laser pulse
catapults the fragment into a collecting device. On the one hand, the fragment has to have a
certain size to ensure that enough material is supplied to be analyzed. On the other hand,
the size cannot be too large otherwise the transferring process will fail. The transferring
process also fails if the fragment has an irregular shape, since the laser pulse is concentrated
on only one boundary point of the fragment. Specifically, elongated shapes or objects with
narrow regions (bottlenecks) are problematic, as the tissue can tear and is only transferred
partly or not at all. For simplicity, we consider only polygons with a linear skeleton in the
following, but all mentioned constraints can be applied to the general decomposition method
as well.
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Feasibility constraints

First, we consider the size constraint by constraining the area of the subpolygons. Given
two bounds l and u, a polygon P is feasible if l ≤ A(P ) ≤ u, for A(P ) being the area of
the polygon. Instead of the area one could also constrain the number of boundary points.
Regarding a shape constraint for the polygons, we considered approximate convexity and
fatness. For the convexity, a polygon P would be feasible if every inner angle lies between two
given bounds. However, this does not prevent elongated shapes. By constraining the fatness
of a polygon, we can achieve less elongated shapes. Fatness is defined by the aspect ratio
AR(P ) of a polygon, which is the ratio of its width to its diameter. For a simple polygon,
the diameter is defined as the diameter of the smallest enclosing circle and the width as
the diameter of the largest inscribed circle. The aspect ratio lies in [0, 1] and the higher its
value the more circular and less elongated the shape is. We have the following constraint: A
polygon is feasible if it is α-fat, meaning that AR(P ) ≥ α given some parameter α.

For all these feasibility criteria, we can compute all feasible subpolygons beforehand in
time O(m) for m being the number of polygon vertices. Thus, we are able to verify if a
subpolygon is feasible in constant time, which leads to an overall runtime of O(n2 +m) to
compute a feasible decomposition of the polygon.

Optimization goals

To solve the decision problem, we assign a value X(i) to every skeleton point i. This value
equals True if there exists a feasible decomposition of the polygon P (i, n) and False otherwise.
We initialize X(1) = True and compute X(i) as described before, that is X(i) = True if there
exists j ≥ i such that P (i, j) is feasible andX(j) = True. We can defineX(i) in different ways
to achieve various optimization goals. For a point i, let I be the set of points j such that P (i, j)
are feasible. One possible optimization goal would be to find the minimal decomposition
(MinNum). We defineX(i) as the number of subpolygons in an optimal feasible decomposition
of P (i, n), set X(1) = 0 and compute X(i) = minj∈I X(j) + 1. If one prefers the cuts to be
at bottlenecks of the polygon, one could also consider minimizing the length of the cut edges
(MinCut). Since every skeleton point i is the center of a maximal disk, we can obtain the
cut length by the corresponding radius r(i). We can define X(i) either as the length of the
longest cut or as the sum of cut lengths in the optimal decomposition of P (i, n) and compute
X(i) = max{minj∈I X(j), r(i)} resp. X(i) = minj∈I X(j) + r(i). Another optimization goal
we considered is maximizing the fatness (MaxFat). We define X(i) as the smallest aspect ratio
of a subpolygon in the decomposition and compute X(i) = maxj∈I{min{X(j), AR(P (i, j))}}.
The runtime of the algorithm stays the same for different optimization goals. Obviously, one
can combine different feasibility criteria and optimization goals.

The versatility of our algorithm allows the implementation of many different criteria. Note
that for certain combinations other (faster) methods might exist. One example is finding the
minimal (MinNum) decomposition in which the area of the subpolygons is bounded. For
polygons with linear skeletons this can be modeled as finding the minimal segmentation of
a weighted trajectory (in O(n logn) time [1]). For general polygons, this problem can be
modeled as computing the minimal (l, u)-partition of a weighted cactus graph (in O(n6)
time [6, 7]).
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4 Results

We evaluated our algorithm by computing decompositions of tumor regions in infrared
microscopic images of lung tissue samples that were identified using the method in [15].
With the tumor regions as our ROI, we decomposed each connected component by applying
our algorithm on each branch of the corresponding skeletons separately. This approach
follows the practical consideration that a polygon as a whole may not possess a feasible
decomposition, while some individual branches do. We assessed the decomposition outcome
in two respects. First, we present the differences in the decompositions when using different
feasibility criteria and optimization goals. Then, we compare our decomposition approach
based on the maximal fatness (MaxFat) to a heuristic recursive bisection method (BiSect)
that was used to decompose tissue samples for LCM in previous work [15].

4.1 Comparison of feasibility constraints and optimization goals
Our algorithm facilitates the use of a wide range of feasibility criteria and optimization goals.
The number of subpolygons as well as the positions of cuts depend on these constraints.
Having a larger upper bound on, for example, the maximal area of a subpolygon results in
fewer subpolygons, as illustrated in Fig. 8a and 8b. These decompositions both minimized
the number of subpolygons, but the solutions are not necessarily unique and one optimal
decomposition is chosen arbitrarily. This can be seen at the bottom-most skeleton branch
in both polygons as the decomposition in Fig. 8a would be feasible with the constraints in
8b as well. In Fig. 8c and 8d, a fatness criterion has been added through a lower bound
on the aspect ratio of subpolygons. This criterion avoids the tendency towards elongated
subpolygons that can be observed in Fig. 8a. If the bounds in some constraints are too
tight, a feasible decomposition might not exist. We illustrate this case in Fig. 8d, where the
algorithm did not decompose the polygon parts depicted in gray. This is not favorable for
our application, as it reduces the amount of extracted tissue material.

Regarding size as the feasibility criterion, we applied the different optimization goals
described in Section 3.3, which we denoted by MinNum, MinCut and MaxFat. While choosing
a different optimization criterion will not affect the area of the polygon that is successfully
decomposed, the amount and positions of cut edges may change significantly. These changes
may have an influence on the amount of successfully extracted fragments with LCM in
practice later on. If we look at the decompositions of the top left skeleton branch, we can
see that in Fig. 8a and 8e we have the same number of fragments, but with MinCut a cut
with a lower length is chosen. However, maximizing the fatness of each subpolygon usually
results in a higher number of subpolygons, but, as can be seen in Fig. 8f, each subpolygon is
less elongated and somewhat rounder in shape. We expect these to be the desired shapes for
our application. Thus, we used this optimization goal in the comparison of decomposition
methods.

4.2 Comparison to BiSect
In this section, we evaluate our method with respect to its benefits for LCM. As mentioned
before, the success of tissue extraction with LCM highly depends on the size and shape
of the given tissue region. For the comparison, we applied the algorithm that maximizes
the fatness (the aspect ratios) of the computed subpolygons while using a size constraint
(lower and upper bound on the subpolygon’s area). We denote this approach by MaxFat and
compare it to a heuristic method we call BiSect. This method decomposes a polygon by
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(a) area in [50, 300],
MinNum.

(b) area in [50, 500],
MinNum.

(c) area in [50, 300],
fatness ≥ 0.4, MinNum.

(d) area in [50, 300],
fatness ≥ 0.5, MinNum.

(e) area in [50, 300],
MinCut.

(f) area in [50, 300],
MaxFat.

Figure 8 Decomposition with different feasibility criteria and optimization goals.

recursively bisecting it if its area exceeds the upper size bound. If the area of a (sub)polygon
is below the given lower bound, it is discarded. For technical reasons with LCM, this method
is designed to leave a strip of tissue behind with every bisection (see Fig. 9).

We computed the decompositions of 10 different lung tissue samples with both methods
and the same area bounds, namely, a minimal and maximal area of 100 px and 2800 px
respectively. These 10 tissue samples contained 460 connected components of tumor regions
as our regions of interest (ROI). Each ROI covered in average an area of 4100 px. Hence, for
many ROIs the decomposition size with BiSect is fairly low. In fact, the average number of
subpolygons per ROI was 2.3 for BiSect, but 9.3 for MaxFat.

Assessing the quality of results is of key importance for comparing results between the
two methods. While an ideal assessment would compare the actual physical yield of tissue
material, such experimental validation was not available in our present study, so that we
rely on purely computational measures. Specifically, we employed two main measures: On
the one hand, the amount of tissue loss in both decompositions, and on the other hand, the
fatness of the resulting subpolygons, which as a single parameter captures reasonably how
favourable a specific shape is for LCM. While MaxFat in fact optimizes towards obtaining
fat fragments, it is still important to assess how far this translates into practice and how it
compares to the fatness obtained by BiSect.

WABI 2020
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(a) MaxFat BiSect

(b) MaxFat BiSect

(c) MaxFat BiSect

(d) MaxFat BiSect

Figure 9 Four example shapes decomposed by MaxFat (left) and BiSect (right).



L. Selbach, T. Kowalski, K. Gerwert, M. Buchin, and A. Mosig 13:13

Area loss

First, we compare the amount of tissue loss (in percent) for each individual polygon/ROI.
Both methods inherently involve tissue loss. In BiSect, each bisection results in some tissue
loss, therefore, the amount of lost tissue rises with the number of subpolygons. In MaxFat,
however, we lose tissue only if no feasible decomposition exists for a given skeleton branch.
This mainly occurs when the corresponding (sub)polygon is either too slim or too wide. The
first case is depicted in Fig. 9a: The polygons belonging to the bottom two skeleton branches
(depicted in gray) are too small and thus no feasible decomposition was computed, resulting
in this area being lost. This can be attributed to shortcomings of the underlying skeleton
pruning method [2]. Improving the pruning of the skeleton may avoid such short branches.
The second case of too wide (or fat) shapes is exemplified in Fig. 9d: In our approach, cut
edges are introduced as line segments between a skeleton point and its closest boundary
points. In the case of a wide shape being decomposed using a small upper bound for the size
constraint, this leads to either thin-slicing or no feasible solution at all. This illustrates that
our approach is tailored towards complex, ramified shapes rather than fat objects whose
interior can be decomposed effectively through a simple grid pattern. It is also noteworthy
that Polygon in Fig. 9d covers an area of around 43000 px and therefore presents an huge
outlier in our sample.

The mean area loss with MaxFat is lower than the mean area loss with BiSect (see Fig. 10),
yet with a greater variability in values and some high-loss outliers, which can be assigned
to large and fat objects. While such objects do not occur frequently in our samples, the
resulting area loss is obviously very high. This contributes to the higher standard deviation
that we observe when considering the individual ROIs. Since the resulting fragments for
each component in one tissue sample are collectively gathered, it is reasonable to validate on
the level of samples and determine the entire yield for all ROIs in each sample. As can be
seen in Table 1, the decomposition with MaxFat yields overall more tissue (with respect to
area) to be collected for most tissue samples.

Fatness

It is important to note that the success of tissue collection using LCM depends not only on
the size but also the shape of the fragments. BiSect applies merely a size constraint, whereas
MaxFat considers both factors. While BiSect only decomposes polygons that exceed the
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(a) MaxFat (M=8.84%, STD=11.18),
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(b) MaxFat (M=0.58, STD=0.05),
BiSect (M=0.35, STD=0.11).

Figure 10 Comparison of the distribution of the percentage of area loss and the average fatness
in the decompositions with MaxFat and BiSect for each ROI (n=460).
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Table 1 Comparison of the yielded area (in %) of the different decomposition methods.

Sample 1 2 3 4 5 6 7 8 9 10
MaxFat 91.42 78.57 94.78 76.15 96.58 88.29 96.60 86.44 89.55 94.78
BiSect 89.38 81.96 86.56 76.59 86.53 80.98 87.00 85.41 81.52 86.56
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(a) MaxFat (n=4285, M=0.58, STD=0.1)
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(b) BiSect (n=1066, M=0.38, STD=0.12)

Figure 11 Distributions of the aspect ratios for each subpolygon in the decompositions with
MaxFat and BiSect for all samples combined.

given upper size bound, MaxFat searches for an decomposition in which the subpolygons have
the highest possible aspect ratios. This obviously results in a higher number of subpolygons
over all samples: MaxFat resulted in 4285 and BiSect in 1066 fragments. In some cases, the
size of a ROI did not make it necessary to place any cut when decomposing with BiSect,
but the shape of the ROI oftentimes is too complex or irregular for LCM to be successful.
Additionally, the cut placement with BiSect is far from being optimal.

As can be seen in the examples of Fig. 9b and 9c, the shapes resulting from BiSect are
highly irregular – except for most “internal” subpolygons in large, round ROI. In most cases,
the resulting subpolygons are far from being convex (in an approximate sense), but elongated
and show narrow bottlenecks. All these shape properties pose a risk for the tissue to tear in
the extraction process. With the MaxFat approach, however, we overall receive less elongated
and rounder shapes. When comparing the average fatness – meaning the average of aspect
ratios of the subpolygons – in the decompositions for each ROI (Fig. 10), we clearly achieved
higher values with MaxFat with a smaller variability. In fact, for over 75 % of ROI our
method achieved an average fatness higher than 0.5, whereas with BiSect nearly 75 % of ROI
have an average fatness lower than 0.4. When comparing the distribution of aspect rations
for the individual subpolygons, it is revealed that BiSect shows the pattern of a normal
distribution, whereas the distribution for MaxFat is clearly left-skewed (see Fig. 11). This
shows that without applying additional shape constraints the decomposition does not result
in fragments of the desired shape whereas our method consistently obtains such fragments.

5 Conclusion

In this paper, we presented a skeleton-based decomposition method for simple polygons as
a novel approach to decompose disease-specific regions of tissue samples while aiming to
optimize the amount of tissue obtained by laser capture microdissection (LCM). Compared
to naive heuristic approaches that are currently used, our approach provably optimizes
target functions under side constraints that are tailored towards relevance for tissue yield in
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LCM, as this requires fragments of suitable size and morphology to minimize tissue loss. As
we demonstrated, these theoretical properties translate into practice when comparing our
approach to a recursive bisection approach that considers fragment size as the only criterion
for decomposition.

Our approach is designed towards complex morphological structures that are commonly
found in cancerous tissue and are usually the most challenging to extract using LCM without
major loss of tissue mass. Not surprisingly, it does not perform well when fragmenting
relatively fat shapes into small fragments. In this case, it is expected to yield thin slices
not ideal for LCM or find no feasible decomposition at all. Yet, such fat shapes does not
occur frequently and can easily be decomposed using simple approaches, e.g. bisection-based
approaches, without major tissue loss. Thus, we expect to achieve the best outcome for
the practical application if we combine both approaches. Our method can be used for the
majority of the complex tissue regions and for simple fat morphologies, which can be easily
distinguished and separated, other approaches can be applied.

The implementation of our approach relies on a skeletonization of the underlying polygons.
Specifically, we utilizes the approach by Bai et al. [2], which implements a heuristic pruning
approach. It is likely that recent improvements for skeletonization and pruning [12, 13] will
further improve results, as in particular the pruning step of these recent methods promises
to avoid short and other spurious branches which negatively affect the amount of yielded
tissue in our approach.

Finally, our validation is merely based on quantitative morphological indicators about
the resulting fragments. For future work, it will be important to validate the improvements
experimentally, e.g. by comparing the actual yield of protein or DNA from different ap-
proaches. Overall, our work contributes to further optimization and automation of LCM
and thus promises to contribute to the further maturing of the technology and enhancing its
suitability for systematic use in larger scale clinical studies.
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Abstract
Mutation trees are rooted trees of arbitrary node degree in which each node is labeled with a mutation
set. These trees, also referred to as clonal trees, are used in computational oncology to represent the
mutational history of tumours. Classical tree metrics such as the popular Robinson–Foulds distance
are of limited use for the comparison of mutation trees. One reason is that mutation trees inferred
with different methods or for different patients often contain different sets of mutation labels. Here,
we generalize the Robinson–Foulds distance into a set of distance metrics called Bourque distances
for comparing mutation trees. A connection between the Robinson–Foulds distance and the nearest
neighbor interchange distance is also presented.
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1 Introduction

Trees have been used in biology to model the evolution of species, genes and cancer cells
[15, 32, 39]; to represent the secondary structures of RNA molecules and to classify cell types,
to name just a few uses [23, 37]. A fundamental issue arising from these applications of trees
is how to quantitatively compare tree models that are inferred by different methods or from
different data. A number of tree metrics have been proposed for comparisons, including the
Robinson–Foulds (RF) [3, 35, 36], nearest-neighbor interchange (NNI) [31, 35] and triple(t)
distances [7] for phylogenetic trees; gene duplication, gene loss and reconciliation costs [17, 27]
for gene and species trees; and the tree-edit distances [40, 37, 43] for tree models of secondary
RNA structures, etc. [2, 21, 26, 33, 41].

With advances in next-generation sequencing and single-cell sequencing technologies, a
large amount of genomic data is now available for identifying tumour subclones and inferring
their evolutionary relationships. The most common representation of these relationships are
mutation trees, also known as clonal trees, which encode the (partial) temporal order in which
mutations were acquired. Formally, a mutation tree on a finite set of mutations Γ is a rooted
tree T with k nodes and a partition of Γ into k disjoint non-empty parts Pi so that each Pi

is assigned as the label of a node of T [16, 32]. A large number of computational approaches
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for reconstructing mutation trees from bulk sequencing data [9, 11, 14, 29, 34], single-cell
sequencing data [6, 13, 19, 42], or a combination of both [30, 28] have been developed over
the last years. Unlike phylogenetic trees, mutation trees inferred with these methods will
not only differ in their topology but may also be defined on different sets of mutations. The
latter happens in the comparison of methods using different data (e. g. single-cell vs. bulk)
or divergent criteria for mutation calling. For that reason, classical tree distance measures
are not immediately applicable to mutation trees. Instead novel measures have recently
been developed [1, 4, 5, 10, 18, 20], but no standard approach for mutation tree comparison
has yet emerged. Instead, shortcomings of some of these measures such as the inability to
resolve major differences between trees have recently been demonstrated [5]. Additionally,
computing the distances between two mutation trees takes at east quadratic time for each of
these measures.

Here, we generalize the Robinson-Foulds metric, a classic distance measure for unrooted
trees, for the comparison of mutation trees. This metric is based on the so-called (edge)
contraction and decontraction operations introduced by Bourque for leaf-labeled unrooted
trees in a study of Steiner trees [3]. A contraction on an edge (u.v) of a tree T is an operation
that transforms T into a new tree by shrinking (u, v) into a single node. The decontraction
operation is the reverse of contraction. Robinson and Foulds independently adopted the
contraction and decontraction to define a metric of unrooted labeled trees, where there is a
finite set S and a partition of S into disjoint parts (some of which may be empty) so that
nodes with a degree of at most 2 are each labeled with a unique non-empty part, and nodes
with a degree of at least 3 are labeled with either a unique non-empty part or an empty part.
They defined a metric, now called the Robinson-Foulds (RF) distance, in which the distance
between two unrooted labeled trees is the minimum number of contraction or decontraction
operations that are necessary to transform one into another [36]. The RF distance is equal
to the number of edge-induced partitions that are not shared between the two trees and thus
is computable in linear time [8].

Although the RF distance is popular in phylogenetic analysis, it is not robust when
applied to the comparison of mutation trees with different sets of mutations, as it is simply
equal to the total number of edges in the trees and thus fails to capture any topological
similarity between the trees.

In this paper, by generalizing the RF distance, we propose a collection of distance
measures to measure the topological dissimilarity between unrooted (resp. rooted) labeled
trees with different label sets. We also apply these measures to simulated and real tumour
mutation trees. To set our distances apart from another recently introduced generalised RF
distance that is based on a node flip operation [4], we refer to our generalisations as Bourque
distances, as they are closely related to the edge contraction and decontraction operations
introduced by Bourque for leaf-labeled unrooted trees [3]. They are also shown to be related
to the NNI distance [35]. Unlike previous measures proposed for the comparison of mutation
trees, the basic version of the Bourque distance can be computed in linear time.

The rest of this paper is divided into seven sections. Section 2 introduces basic concepts
and the notation that will be used. In Section 3, we present a connection between the NNI
distance and the RF distance for both phylogenetic and arbitrary trees that are unrooted
and labeled. In Section 4, we generalize the RF distance into the Bourque distances for
unrooted labeled trees. In Section 5, we define the Bourque distances for mutation trees. In
Section 6, we examine the relationships among the distance measures proposed in [10, 20, 5]
and the Bourque distances on rooted 7-node trees and on random rooted trees with 30 nodes.
In Section 7, we computed the Bourque distances on two sets of mutation trees. Section 8
concludes the study with a few remarks.
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2 Concepts and Notation

A (unrooted) tree is an acyclic graph. A rooted tree is a directed tree with a designated root
node ρ in which the edges are oriented away from ρ. There is a unique directed path from ρ

to every other node.
For a tree or rooted tree T , the nodes, leaves and edges are denoted V (T ), Leaf(T ) and

E(T ), respectively. Let u ∈ V (T ). The degree of u is the number of edges incident to it,
where edge orientation is ignored if T is rooted. In a rooted tree, non-root nodes with a
degree of one are called the leaves; non-leaf nodes are called internal nodes. One or more
edges may leave an internal node, but exactly one edge enters every node that is not the
root. An internal edge is an edge between two internal nodes.

Let T be a rooted tree and u, v ∈ V (T ). The node v is called a child of u and u is called
the parent of v if (u, v) ∈ E(T ). The node v is a descendant of u and u is an ancestor of v
if the unique path from the tree root to v contains u. We use CT (u), AT (u) and DT (u) to
denote the set of all children, ancestors and descendants of u in T , respectively. Note that u
is in neither AT (u) nor DT (u).

A star tree is a tree that contains only one non-leaf node, which is called the center of
the tree. A line tree is a tree in which every internal node is of degree 2. A rooted line tree
is a line tree whose root is of degree 1.

A tree is binary if every internal node is of degree 3. A rooted tree is binary if the root
is of degree 2 and every other internal node is of degree 3. A caterpillar tree is a binary tree
in which each internal node is adjacent to one or two leaves.

Let X be a finite set. A (rooted) phylogenetic tree on X is a binary (rooted) tree where
the leaves are uniquely labeled with the elements of X, the taxon set. A (rooted) phylogenetic
tree T on X is labeled if there is a set I that is disjoint from X and a labeling function
` : V (T ) \ Leaf(T ) → I such that each u of V (T ) \ Leaf(T ) is labeled with `(u). If ` is a
one-to-one function, T is said to be uniquely labeled. In a labeled phylogenetic tree, the
label set for the internal nodes and the taxon set for the leaves are distinct and thus are not
interchangeable.

A tree or rooted tree T with n nodes is labeled if there is a finite set M and a labeling
function ` : V (T )→ 2M satisfying ∪v∈V (T )`(v) = M and `(v) 6= ∅ for v ∈ V (T ) so that f(v)
is assigned as the label of v, where 2M denotes the collection of subsets of M . Furthermore,
if `(v) contains exactly one element for each node v, we say T is 1-labeled with L. Here, M
is called the label set of T .

A mutation tree on a set M of mutations is a rooted labeled tree that has M as the label
set, where the labels of different nodes are disjoint.

3 Metrics for labeled trees

For convenience, we will introduce new metrics on the space of 1-labeled trees and then
generalize them to the space of mutation trees later.

3.1 Nearest neighbor interchanges on labeled phylogenetic trees
The NNI operation (Fig. 1A) and NNI distance were originally introduced for binary phylo-
genetic trees [35]. It is known that any binary phylogenetic tree can be transformed into
another in n logn+ 2n− 4 NNIs at most [24]. The NNI operation for rooted phylogenetic
trees is given in Fig. 1B. Since the NNI operation does never interchange the labels of internal
nodes and of leaves, Proposition 1 is simple, but as far as we know, it has never appeared in
literature.
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Figure 1 Illustration of the NNI operation on phylogenetic trees. (A) In a phylogenetic
tree, an NNI operation on an internal edge (a, b) first selects two edges (a, x) and (b, y) that are,
respectively, incident to a and b such that (a, x) 6= (a, b) 6= (y, b); it then rewires them to the opposite
end so that (a, y) and (b, x) are the two edges in the resulting tree (red). Since a and b are labeled
differently, a unrooted tree can be transformed into one of four possible trees in one NNI. (B) In
a rooted phylogenetic tree T , an NNI operation on an internal edge (a, b) (where b is a child of a)
transforms T by either (i) selecting two edges (a, x) and (b, y) that leave from a and b, respectively,
and replacing them with (a, y) and (b, x) (left), where x 6= b, or (ii) selecting an edge (b, y) leaving
from b and replacing the unique edge (z, a) that enters a, (a, b) and (b, y) with (z, b), (b, a) and
(a, y) (right), respectively. A rooted tree can be transformed into four different trees in one NNI.
(C) Illustration of the interchange of two labels of the ends of an internal edge in two NNIs in an
1-labeled phylogenetic tree.

I Proposition 1. In the space of binary (resp. rooted) phylogenetic trees where the internal
nodes are 1-labeled, any tree can be transformed into another.

Proof. This follows from the fact that two NNIs on an internal edge (a, b) are enough
to exchange the labels of a and b (Fig. 1C). A similar fact is also true for binary rooted
phylogenetic trees. J

3.2 Generalized NNI on 1-labeled trees
An arbitrary tree with n nodes can have 1 to n−2 internal nodes of degree ≥ 2. To transform
a tree into any other of the same size with the same label set, we define the generalized NNI
(gNNI) operation as follows.

I Definition 2. Let T be a 1-labeled tree and e = (a, b) ∈ E(T ). A gNNI on e is an operation
that transforms T into a new tree S by (i) selecting a subset Ca and a subset Cb of the edges
that are, respectively, incident to a and b such that e 6∈ Ca ∪ Cb and then (ii) replacing each
edge (a, x) of Ca with (b, x) and each edge (b, y) of Cb with (a, y).

The gNNI operation is illustrated in Fig. 2. Note that if we apply a gNNI operation
on an edge e = (a, b) to reconnect all the children of a to b while keeping the children of b
unmoved, a will become a leaf adjacent to b in the resulting tree. Another difference between
gNNI and NNI is that gNNI can be applied to any edge, whereas NNI can only be applied
on an internal edge.

Let L be a set of n elements. The gNNI graph Ggnni(L) is defined as a graph in which
the nodes are all 1-labeled trees with nodes labeled with L and two trees are connected
by an edge if the two trees are one gNNI apart. The diameter of Ggnni(L) is written as
D(Ggnni(L)). The distance between two trees T ′ and T ′′ in the graph is called the gNNI
distance between them, written as dgnni(T ′, T ′′).
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Figure 2 An illustration of the gNNI operation on a labeled tree (A) or a rooted labeled tree
(B). A. A gNNI operation on an edge (a, b) interchanges one or more children of a with an arbitrary
number of children of b. B. A gNNI operation on an edge (a, b) (where b is the child of a) not only
rewires the selected edges leaving a and b (left), but also rewires the unique edge entering a and b

simultaneously if necessary (right).

I Proposition 3. Let L be a set of n elements. The graph Ggnni(L) has the following
properties:
|V (Ggnni(L))| = nn−2;
Ggnni(L) is connected;
n− 2 ≤ D(Ggnni(L)) ≤ 2n− 4

Proof. The first property is the Cayley formula on the count of 1-labeled trees with n nodes.
The second property is a consequence of the third. We prove the third property as follows.

Let T1, T2 ∈ V (Ggnni(L)). Let r1 and r2 be the two nodes of T1 and T2, respectively, that
have the same label. Each n-node tree has at least two leaves and therefore n− 2 internal
nodes at most. By applying a gNNI operation on an edge (r1, u), we can reconnect all the
subtrees that each contain exactly one neighbor of u to r1, producing a tree in which u

becomes a leaf adjacent to r1. By continuing to apply the gNNI operation on the edges
between r1 and its non-leaf neighbors, we can transform T1 into the star tree centered at r1
in n− 2 gNNIs at most. In reverse, we can transform the star tree centered at r2 into T2 in
n− 2 gNNIs at most. By combining these two transformations, we transform T1 into T2 by
using 2n− 4 gNNIs at most. This proves the upper bound of the third property.

Let S be a line tree where the leaves are labeled with a and b and let T be a 1-labeled
star tree centered at the node of the label a. The distances between a and b are (n− 1) and
1 in S and T , respectively. It takes at least (n− 2) gNNIs to transform S to T , as each gNNI
can only decrease the distance between a and b by 1. This proves the lower bound of the
third property. J

Let T be a tree in Ggnni(L). We use d(u, v) to denote the number of edges in the
unique path between u and v in T . Any edge (u, v) ∈ E(T ) induces a two-part partition
P (e) = {Pu, Pv} of L, where Pu = {`(x) | d(x, u) < d(x, v)}, which contains u, and
Pv = {`(y) | d(y, v) < d(y, u)}, which contains v. Let us define P(T ) = {P (e) | e ∈ E(T )}.

I Proposition 4. For any two 1-labeled trees S, T of Ggnni(L),

1
2 |P(S)∆P(T )| ≤ dgnni(S, T ) < |P(S)∆P(T )|,

where ∆ is the set symmetric difference operator.

Proof. Let S and T have n nodes in the tree space. The first inequality is derived from the
following two facts:
P(S) \ P(T ) contains exactly one partition P (e) if T is obtained from S by applying a
gNNI on any e ∈ E(S);
A∆B ⊆ (A∆C) ∪ (C∆B) for any three sets.

WABI 2020



14:6 The Bourque Distances for Mutation Trees of Cancers

To prove the upper bound, we let m = |P(S) ∩ P(T )| and let

P(S) ∩ P(T ) = {P (e′1), P (e′2), · · ·P (e′m)} = {P (e′′1), P (e′′2), · · ·P (e′′m)},

where e′i ∈ E(S), e′′i ∈ E(T ) such that P (e′i) = P (e′′i ) for each i. S − {e′i|1 ≤ i ≤ m} is the
disjoint union of m+ 1 subtrees Sj (0 ≤ j ≤ m); similarly, T −{e′′i |1 ≤ i ≤ m} is the disjoint
union of m+ 1 subtrees Ti (0 ≤ i ≤ m). Additionally, for each 0 ≤ j ≤ m, a unique index
k(j) exists such that Sj and Tk(j) contain the same number (say oi) of nodes. Note that

|P(S)∆P(T )|+ 2m = |E(S)|+ |E(T )| = 2n− 2. (1)

There are three possible cases for each pair of subtrees Sj and Tk(j). First, if oj = 1, we
do not need to do any local adjustments of Sj to transform S to T .

If both Sj and Tk(j) contain two nodes u and v, (u, v) is then the only edge of Sj and
Tk(j). This implies that the two nodes are the ends of different edges of P(S) ∩ P(T ) in S
and T , and thus we need one gNNI to switch these two nodes in S so that they are incident
to the same edges as in T after the operation.

If both Sj and Tk(j) contain oj (≥ 3) nodes, we select an internal node s of Sj and a node
t of Tk(j) such that s and t have the same label. By continuing to apply, at most, oj − 3
gNNIs on the edges incident to s, we can transform Sj into a star tree C centered on s, as
s is an internal node. Similarly, by applying oj − 2 gNNIs at most, we can transform C

into Tk(j). Taken together, the two transformations give a transformation from Sj into Tk(j)
consisting of at most 2oj − 5 gNNIs at most.

Let mi be the number of subtrees Sj such that |Sj | = i for i = 1, 2 and let m3 be the
number of subtrees Sj such that |Sj | ≥ 3. We have that m1 +m2 +m3 = m+ 1 and there
are n −m1 − 2m2 nodes in the union of all subtrees Sj in Case 3. By combining all the
transformations from Sj to Tk(j), we can transform S to T in c gNNIs at most, where:

c = 0 +m2 + [2(n−m1 − 2m2)− 5m3]
= 2n− 2m1 − 3m2 − 3m3 − 2m3

= 2n− 2m1 − 3m2 − 3m3 − 2(m+ 1−m1 −m2)
= 2n− 2m− 2−m2 − 3m3

Since m2 ≥ 0 and m3 ≥ 0, by Eqn. (1), c ≤ 2n− 2m− 2 = |P(S)∆P(T )|. J

3.3 The RF distance

Let S and T be two 1-labeled trees. |P(S)∆P(T )| is called the RF distance between S

and T , denoted RF(S, T ). For example, in the left tree given in Fig. 3A, the edge (2, 4)
(bold) induces the two-part partition {{1, 2, 3}, {4, 5, 6, 7, 8}}; the edge (7, 8) (bold) induces
{{7}, {1, 2, 3, 4, 5, 6, 8}}. These two partitions are not equal to any edge-induced partition in
the right tree. Similarly, we have that the two-part partitions induced by the edges (2, 4)
and (7, 8) in the right tree are not found in the left tree. One can also verify that the other
five edge-induced partitions in both trees are identical. Hence, the RF distance between the
left and right trees is 4.

Like the phylogenetic tree case, it is easy to see that the RF satisfies the non-negativity,
symmetry and triangle inequality conditions.
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Figure 3 An illustration of the RF distance and the Bourque distance. A. Two unrooted 1-labeled
trees. The RF distance between them is 4, as in the left tree, the edges (2, 4) and (7, 8) induces
two partitions that are not found in the right tree and vice versa. B. The labels 0–5 are the labels
appearing in the two trees. The Bourque distance between them is 9 (see the main text for details).
C. The two labeled trees are rooted at different nodes. The RF distance between the left tree and
the right tree is 2, as the partitions induced by (6, 4) of Tree A and (4, 6) of Tree B are different.

4 Generalizations of the RF distance for labeled trees

Let us consider labeled trees of different sizes or whose label sets are not the same (see the
mutation trees studied in Section 7). The RF distance between any pair of such trees is simply
equal to the total number of edges in the trees and thus fails to capture their dis-similarity.
Here, we propose generalizations of the RF distance for measuring the dis-similarity of such
trees better.

4.1 Bourque distances
For a labeled tree S, we use L(S) to denote the label set of S. Since each node of
V (S) is labeled with a non-empty subset of L(S), each edge e = (u, v) induces the two-
part partition P (e) = {L(u), L(v)}, where L(u) = ∪x∈V (S):d(x,u)<d(x,v)`(x) and L(v) =
∪y∈V (S):d(y,v)<d(y,u)`(y).

Let T be another labeled tree such that C , L(S) ∩ L(T ) 6= ∅. For e′ ∈ E(S) and e′′ ∈
E(T ), we assume that the two-part partitions induced by e′ and e′′ are P (e′) = {X,L(S)\X}
and P (e′′) = {Y,L(T ) \ Y }, respectively, where X ⊂ L(S) and Y ⊂ L(T ). P (e′) and P (e′′)
are said to be similar if the following conditions are satisfied:

P (e′) 6= P (e′′);
X ∩ C 6= ∅ and (L(S) \X) ∩ C 6= ∅;
{X ∩ C, (L(S) \X) ∩ C} = {Y ∩ C, (L(T ) \ Y ) ∩ C}.

We use ∼ to denote the similarity relationship of the edge-induced partitions of two trees. Note
that the similarity relation is a many-to-many relation in the product space of edge-induced
partitions P(S)× P(T ).

I Definition 5. Let S and T be two labeled trees and let P be the set of two-part partitions
of L(S) ∩ L(T ). The Bourque metric B(S, T ) between S and T is defined as:

B(S, T ) , |P(T )∆P(S)| −
∑
P∈P

min
(
|{Q′ ∈ P(S) : Q′ ∼ P}|, |{Q′′ ∈ P(T ) : Q′′ ∼ P}|

)
. (2)

The intuition behind this definition is that we “correct” the RF distance by those
partitions, that would be shared between both trees when labels unique to either of the two
trees were ignored. For example, in Fig. 3B, the labels {7, 9} that appear in the left tree
are not found in the right tree, whereas the labels {6, 8} that appear in the right tree are
not found in the left tree. Therefore, none of the seven edge-induced partitions in either
tree is found in the other. This implies that the RF distance between the two trees is 14.
Since the labels appearing in both trees are {1, 2, 3, 4, 5}, the edge (4, 9) (purple) of the left
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14:8 The Bourque Distances for Mutation Trees of Cancers

tree induces the same partition, {{1, 2, 3, 4}, {0, 5}} of {0, 1, 2, 3, 4, 5} as the edges (4, 6) and
(6, 0) (purple) of the right tree. Furthermore, the edge (1, 2) (resp. (2, 3) and (2, 4)) induces
the same partition of {0, 1, 2, 3, 4, 5} in both trees; and the edge (9, 5) of the left tree induces
the same partition of {1, 2, 3, 4, 5} as the edge (0, 5) of the right tree. Therefore, the Bourque
distance between both trees is 14− 5 = 9.

I Proposition 6. Let S and T be two labeled trees with s and t nodes, respectively.
(i) If L(S) = L(T ), 2× |s− t| ≤ B(S, T ) = RF(S, T ).
(ii) If L(S) 6= L(T ), max(s, t)− 1 ≤ B(S, T ) ≤ RF(S, T ) = s+ t− 2.
(iii) If L(S) ∩ L(T ) = ∅, B(S, T ) = RF(S, T ) = s+ t− 2.
(iv) The Bourque metric is a distance metric; in other words, it satisfies the non-negativity,

symmetry and triangle inequality conditions.

Proof. The full proof appears in the Appendix. J

I Proposition 7. The Bourque distance between two labeled trees S and T can be computed
in linear time O(|L(S)|+ L(T )|.

Proof. We assume node labels are integers (otherwise, we apply hashing to convert the labels
into integers). By indexing labels with integers and fill a hash table, we can determine the
set C of node labels that are in both trees. We then remove all labels that are not in C from
the two trees, as well as nodes that lost all labels in the process, so that the resulting trees
have only nodes with labels from C. Lastly, we apply the algorithm developed by Day [8] for
the RF distance to compute the negative term of Eqn. (2) in linear time.

The first term of Eqn. (2) is the RF distance and can thus be found in linear time. J

4.2 High-order Bourque distances
Like the RF distance, the Bourque distance has the tendency to overpenalize certain labeling
differences and can saturate quickly. Thus it is not refined enough for some applications. In
this subsection, we will use the Bourque distances between local subtrees and a matching
algorithm ([2, 26, 33]) to define new distance metrics. The new metrics will take more values
than the basic version.

Let T be a labeled tree and u ∈ V (T ). For an integer k > 0, the k-star subtree Nk(u)
centered at u is defined as the subtree induced by the vertex set {v ∈ V (T ) | d(u, v) ≤ k}
in T . For any pair of labeled trees S and T of n and n′ nodes, respectively, such that
n ≥ n′, define BGk(S, T ) as the weighted complete bipartite graph with two node parts
{Nk(x) : x ∈ V (S)} and {∅1, · · · ∅n−n′} ∪ {Nk(y) : y ∈ V (T )}, where each ∅i is just the
empty graph; the Bourque distance B(Nk(x), Nk(y)) is assigned to the edge (Nk(x), Nk(y))
as a weight for every x ∈ V (S) and y ∈ V (T ) and |Nk(x)| − 1 is assigned to the edge
(Nk(x), ∅i) as a weight for any ∅i. Although Nk(x) can be identical for different nodes x,
BGk(S, T ) always has 2n nodes.

I Definition 8. Let S and T be two labeled trees. The k-Bourque distance Bk(S, T ) is defined
as the minimum weight of a perfect matching in BGk(S, T ), k ≥ 1.

I Proposition 9. The k-Bourque distances have the following properties:
(1) For any uniquely labeled trees S and T such that |V (S)| = |V (T )| = n, Bk(S, T ) =

n · B(S, T ) for any k ≥ max(diam(S),diam(T )), where diam(X) is the diameter of X
for X = S, T .

(2) Bk(S, T ) satisfies the non-negativity, symmetry and triangle inequality conditions for
each k ≥ 1.
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Proof. The full proof appears in the Appendix. J

I Remark. The run time of computing the k-Bourque distance for two labeled trees S and T
with m and n nodes, respectively, is O(max(m,n)3), as computing the Bourque distances
between the k-star trees centered at tree nodes takes O(max(m,n)2) in the worst case and
computing the minimum weight perfect matching in BGk(S, T ) takes O(max(m,n)3) time.

5 The Bourque distances for mutation trees

In this section, we will describe how to generalize the gNNI and Bourque distances to rooted
labeled trees.

5.1 The gNNI
To transform a binary rooted phylogenetic tree into another in which the root is labeled
differently, we add the so-called rotation operation that allows two nodes u and v that
are connected by an edge to interchange not only one of their children but also their
positions (right, Fig. 1B)[25]. A gNNI on a directed edge (a, b) of a rooted tree rewires some
outgoing edges from a to b and vice versa and/or rewires the incoming edges to both a and
b simultaneously (right, Figure 2B). More precisely, the gNNI is defined on rooted labeled
trees as follows:

I Definition 10. Let T be a rooted labeled tree and e = (a, b) ∈ E(T ) (where b is a child of
a). An NNI operation on e transforms T by selecting a subset of edges Ca = {(a, x)} that
leave a, where (a, b) 6∈ Ca, and a subset of edges Cb = {(b, y)} that leave b and then either
(i) replacing each edge (a, x) of Ca with (b, x) and each edge (b, y) of Cb with (a, y) (left,
Figure 2B) or (ii) rewiring the edges in Ca and Cb as in (i) as well as replacing the unique
edge (z, a) that enters a and (a, b) with (z, b) and (b, a), respectively (right, Figure 2B).

It is easy to see that for any pair of arbitrary labeled trees S and T , S can be transformed
into T through a series of gNNIs as long as the labels appearing in the two trees are the
same.

5.2 The RF and Bourque distances
In a rooted labeled tree, each directed edge also induces a 2-part partition on the label set.
Therefore, the RF distance is well defined even for rooted trees that may not be uniquely
labeled.

Let T be a rooted labeled tree. Recall that L(T ) denotes the set of labels appearing in
T . For a non-root node u ∈ V (T ), we use LT (u) to denote the set of the labels of u and
its descendants. The unique edge entering u induces then an “ordered” two-part partition
(LT (u),L(T ) \ LT (u)), which is an ordered pair of the two complementary subsets of L(T ).
Since the root of a rooted tree is a distinct node of the tree, we assume that the root is
contained in the second part of an edge-induced partition. Hence, two edge-induced ordered
partitions P ′ and P ′′ are equal if and only if the first part of P ′ is equal to the first component
of P ′′ and the second part of P ′ is equal to the second component of P ′′. This is particularly
useful when comparing two rooted trees with different roots. Let us define OP(T ) to be the
set of all edge-induced ordered partitions of T .

I Definition 11. For two rooted labeled trees S and T , the RF distance RF(S, T ) between S
and T is defined as |OP(T ) ∆ OP(T )|.
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For example, the two trees given in Figure 3C are obtained from rooting a unrooted
labeled tree in different nodes. Only the partition induced by the edge (6, 4) of the left tree
is not found in the right tree. Conversely, the partition induced by the edge (4, 6) in the
right tree is not found in the left tree. Hence, the distance between these two trees is 2.

I Proposition 12. Let S and T be two rooted labeled trees of equal size that have the same
labels.
(1) Let t ∈ V (T ) such that it has the same label as the root rS of S and let rT be the root of

T . We have that RF (S, T ) ≥ 2d, where d is the distance between rT and t.
(2) 1

2RF (S, T ) ≤ dgnni(S, T ) ≤ RF (S, T ).

Proof.
(1) Let the path between rT and t be rT = t0, t1, t2, · · · , td = t. All label sets LT (ti)

contain the label `(rS). However, only LT (t0) is an element of {LS(u) | u ∈ V (S)}.
Furthermore, since both trees have the same number of nodes and edges, at least d subsets
of {LS(u) | u ∈ V (S)} are not found in {LT (v) | v ∈ V (T )}. Hence, RF (S, T ) ≥ 2d.

(2) The proof is similar to that of Proposition 4. J

Similarly, we can generate the similarity relationship of edge-induced partitions. For two
non-root nodes u ∈ V (S) and v ∈ V (T ), the ordered partitioned induced by the edges entering
u and v are similar if and only if (LS(u),L(S) \LS(u)) 6= (LT (v),L(T ) \LT (v)) but they are
equal when restricted on L(S)∩L(T ), denoted (LS(u),L(S)\LS(u)) ∼ (LT (v),L(T )\LT (v)).

I Definition 13. The Bourque distance B(S, T ) between two rooted labeled trees S and T is
defined to be:

|OP(S)∆OP(T )| −
∑
P∈P

min(|{(P ′ ∈ OP(S) : P ′ ∼ P}|, |{(P ′′ ∈ OP(T ) : P ′′ ∼ P}|). (3)

I Proposition 14. The Bourque distance between two mutation trees S and T can be computed
in linear time O(|L(S)|+ L(T )|.

The proof is analogous to Proposition 7, but we only count partitions that have no root
label(s) in their first part.

5.3 High-order Bourque distances
Let S and T be two rooted labeled trees and k ≥ 1. Set L(k)

T (u) = {`(v) ∈ LT (u) | dT (u, v) ≤
k}. By Proposition 12.1, we naturally define the k-Bourque distance Bk(S, T ) to be the
minimum weight of a perfect matching in the complete bipartite graph Gk(S, T ). Here, if we
assume |V (S)| ≤ |V (T )|, Gk(S, T ) has the vertex set {∅i, L

(k)(s) |1 ≤ i ≤ |V (T )|−|V (S)|; s ∈
S} ∪ {L(k)(t) | t ∈ T} and the edge set {∅i, L

(k)(s) | s ∈ S} × {L(k)(t) | t ∈ T}, together with
the weight function B(x, y), where each ∅i is a copy of the empty graph.

6 Comparison of eight distance measures on rooted labeled trees

In this section, we compare the Bourque distance (BD) against the 1-Bourque distance (1-BD),
the 2-Bourque distance (2-BD) and five previously published distance measures: Common
Ancestor Set (CASet) [18], Distinctly Inherited Set Comparison (DISC) [18], an Ancestor
Difference measure (AD) [18], a Triplet-based Distance (TD) [5] and the Multi-Labeled Tree
Dissimilarity (MLTD) measure [20]. A detailed description of these measures is given in
the Appendix. The gNNI distance is not included in this comparison, as there is no known
method for its efficient computation.
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Figure 4 The frequency distribution of pairwise distances for the BD, 1-BD and 2-BD metrics
(A), the AD, CASet and DISC measures (B), the TD measure (C) and the MLTD measure (D) in
the space of rooted 1-labeled trees with 7 nodes. BD: Bourque distance; AD: Ancestor distance;
CASet: Common Ancestor Set distance; DISC: Distinctly Inherited Set; TD: Triplet-based distance.
MLTD: Multi-label tree distance.

6.1 Frequency distribution of the pair-wise distances in different
metrics

There are 16, 807 unrooted and 7 × 16, 807 rooted 1-labeled trees with seven nodes. Let
R denote the set of such trees and let Ri denote the set of those rooted at Node i, where
1 ≤ i ≤ 7. Let d be a distance function of rooted labeled trees. Clearly, for any i,
{d(x, y) : x ∈ Ri, y ∈ Ri} = {d(x, y) : x ∈ R1, y ∈ R1}; for different nodes i and j,
{d(x, y) : x ∈ Ri, y ∈ Rj} = {d(x, y) : x ∈ R1, y ∈ R2}. Therefore, we computed the pairwise
Bourque distance (DB), 1-BD and 2-BD metrics between any x ∈ R1 and any y ∈ R1 ∪R2
such that x 6= y. The frequency distributions of the three metrics are given in Fig. 4A,
showing a Poisson distribution as the RF in the unrooted case [38].

The pairwise distances of AD, CASet, DISC and TD range from 0 to 1. We computed all
the pair-wise distances for all possible pairs of distinct x ∈ R1 and y ∈ R1∪R2. Because of the
huge number of pair-wise distances, we binned them into 40 intervals

(
i

40 ,
i+1
40
)
, 0 ≤ i ≤ 39.

The histograms for the frequency distributions of the pairwise distance values for the three
measures are given in Fig. 4B. The AD and CASet measures have a similar distribution (blue
and red in Fig. 4B), each having two peaks. The pairwise distances between trees rooted at
the same node form the first peak, whereas the pairwise distances between trees rooted at
different nodes form the second peak. These facts show that AD and CASet are sensitive to
the root node. The frequency distribution (black) of the DISC measure appears to be again
a kind of Poisson distribution. Whether the pairwise distances of the DISC, 1-BD and 2-BD
between all 1-labeled trees with a given number of nodes follow a Poisson distribution or
not needs further mathematical investigation. The bottom line is that the DISC measure
and the Bourque metrics have different distributions of pairwise distances from the AD and
DISC measures.
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The frequency distribution of the TD is clearly different from the AD, CASet and DISC
(Fig. 4C). More than 60% of the pairwise distances are greater than 0.9. For the discrete
MLTD measure, we observe a Poisson-like distribution similar to the BD metric.

Lastly, for each of the AD, CASet, DISC, TD and MLTD measures, there are many
pairs of trees with the same distance value, that have distinct distances in the BD metric.
Figure S1 give an example for each.

6.2 Pairwise distances between random trees

We compared the BD, 1-BD, 2-BD, AD, CASet, DISC, TD and MLTD measures on rooted
1-labeled, 30-node trees that were randomly generated as follows. The tree generator first
generated a random unrooted 1-labeled 30-node tree T0 and then generated 20,000 random
unrooted 1-labeled, 30-node trees in 400 iterations. In the i-th iteration, a tree generated
in the (i− 1)-th iteration was randomly selected. Next, five random trees were generated
from the selected tree by applying a random NNI on an edge e = (u, v) that was randomly
generated, where u was an internal node. Here, a NNI just switched one subtree from the u
side to v and one subtree from the v side to u if v was not a leaf and just moved a subtree
from u to v if v was a leaf.

We computed the eight different distance values between T0 rooted at Node 1 and the
20,000 trees rooted at Node 1, which are summarized in Fig. 5. This produced two interesting
findings. First, the BD distances from T0 to the random trees range from 0 to 58; the BD,
1-BD and 2-BD correlate well with each other, particularly when the Bourque distances
ranged from 0 to 35. However, the distances between a pair of trees can be very different in
the three metrics. For example, there are 3367 random trees that are 46 BD away from T0.
The 1-BDs between T0 and the trees are from 32 to 45 (top left panel, Figure 5).
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Figure 5 The scatter plots of the Bourque vs the other distance measures between a rooted
1-labeled tree and 20,000 random trees of 30 nodes. BD: Bourque distance; AD: Ancestor distance;
CASet: Common Ancestor Set distance; DISC: Distinctly Inherited Set; MLTD: Multi-label tree
distance; TD: Triplet-based distance.
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Second, AD, DISC, MLTD and TD correlated with BD (and hence 1-BD and 2-BD)
surprisingly well with Pearson correlation coefficients (PCC) from 0.38 to 0.543 even though
they are defined differently. However, CASet and BD poorly correlated (middle panel, second
row) with PCC 0.112.

7 Applications to mutation trees

7.1 The distances between three leukemia mutation trees

A                                          B                                   C

Figure 6 The mutation trees inferred by SCITE [19] (A), B-SCITE [28] (B) and PhISCS [30]
(C) from single-cell sequencing data or with the bulk sequencing data for Patient 2 with childhood
acute lymphoblastic leukemia that was reported in [16]. The mutation trees contain 16 mutated
genes: ATRNL1 (1), BDNF_AS (2), BRD7P3 (3), CMTM8 (4), FAM105A (5), FGD4 (6), INHA
(7), LINXC00052 (8), PCDH7 (9), PLEC (10), RIMS2 (11), RRP8 (12), SIGLEC10 (13), TRRAP
(14), XPO7 (15), ZC3H3 (16).

Single-cell sequencing data are prone to errors. Mutation trees inferred by different
methods from the single-cell sequencing data of a patient are often different in both topology
and labels of mutated genes. Fig. 6 shows mutation trees inferred by SCITE [19], B-SCITE
[28] and PhISCS [30] for Patient 2, who had childhood acute lymphoblastic leukemia from
[16]. Both the SCITE and B-SCITE trees (i.e. Tree A and Tree B) contain 16 mutations,
whereas the PhISCS tree (i.e. Tree C) contains just 13 of the 16 mutations.

The pairwise distances between the trees were calculated using the eight distance measures
(Table 1). Tree A and Tree B contain the same mutations. The difference between them
is mainly the positions of Mutation 4 and Mutation 5 in the long chain on the left. The
pairwise distance between them has the smallest value among the three trees for each of the
eight measures. Tree B and Tree C have the same topology and are different only in that
Mutations 4, 11 and 12 are missing in the latter. For each measure, the distance between
Tree B and Tree C is smaller than or nearly equal to the distance between Tree A and Tree
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Table 1 Pairwise distances between three mutation trees A, B, and C in Fig. 6 according to
different metrics. The union extension of CASet and DISC were used to measure the difference
between Tree A (or Tree B) and Tree C [10].

A & B A & C B & C
BD 12 14 14

1-BD 9 26 23
2-BD 28 40 33

MLTD 4 7 5
CASet 0.1079 0.5495 0.5302
DISC 0.2394 0.4135 0.3468
AD 0.1699 0.5499 0.5276
TD 0.3607 0.6393 0.5821

C, consistent with intuition.

7.2 Distances between four simulated mutation trees
Figure 7 presents four simulated mutation trees downloaded from the OncoLib database
for which the CASet and DISC disagreed significantly [10]. The pairwise distances between
the four trees are given in Table 2. Note that the CASet and DISC distances between T5
and T20 and between T14 and T26 are different from those reported in [10]. This is because
a mutation appearing in a tree node is not an ancestor of another mutation in the same
node in our distance calculation. Regardless of the differences between the definitions, our
distance computing also shows the disagreement between the CASet and DISC distances.
For example, the CASet distance between T5 and T20 is four times as large as the CASet
distance between T14 and T26, whereas the DISC distance between the former is smaller than
the DISC distance between the latter. This disagreement is also observed on the tree pairs
{T5, T14} and {T20, T26}.

Since these four different trees have only one internal edge, the Bourque distance between
any two of them is 2. The pairwise 1-BD distances are not much different. However, their
differences are reflected in the pairwise 2-BD distances.

𝑇5 𝑇14

𝑇20 𝑇26

Figure 7 Four simulated mutation trees T5, T14, T20 and T26 from the OncoLib database [12].
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Table 2 Pairwise distances between trees in Fig. 7 according to the eight distance measures.

T5 & T14 T5 & T20 T5 & T26 T14 & T20 T14 & T26 T20 & T26

BD 2 2 2 2 2 2
1-BD 11 12 12 12 13 12
2-BD 4 6 5 7 7 8

MLTD 6 10 6 14 10 12
CASet 0.0523 0.1830 0.0523 0.1961 0.0392 0.2157
DISC 0.3807 0.2402 0.3807 0.2483 0.3529 0.3039
AD 0.2500 0.1944 0.2500 0.2222 0.2222 0.2778
TD 0.1961 0.4363 0.2120 0.4669 0.2659 0.4951

8 Conclusions

We have introduced the Bourque and k-Bourque metrics for both unrooted labeled trees and
mutation trees. These distances are the generalizations of the RF distance. We demonstrate,
through a simulation, that they correlate with the CASet, DISC and AD distance measures
for similar trees, but have different distributions of pairwise distances on between all 1-labeled
trees with a fixed number of nodes. The advantages of the Bourque metric over CASet and
DISC include that it satisfies the triangle inequality and it is computable in linear time. The
k-Bourque metrics refine the Bourque metric.

Another contribution is a novel connection between the RF and gNNI metrics on labeled
trees. A few theoretical questions arise from this connection between the RF and gNNI and
related contributions. Is finding the gNNI distance for labeled trees NP-complete? What is
the maximum value of the NNI distance between two binary 1-labeled trees? Can the RF
distance be used to define a polynomial time algorithm with approximation ratio < 2 for the
gNNi distance?

General mathematical questions also arise from the development of new metrics for
comparisons of mutation trees. One is investigating mathematical relationships between the
proposed metrics. Another is determining the distributions of pairwise distances between all
the 1-labeled trees of the same size. For example, is the distribution Poisson for the Bourque
metrics?

Finally, further generalisations of the Bourque distance will be interesting to study in the
future, in particular for mutation trees where labels may occur multiple times in different
nodes [5]. The motivation for this generalisation comes from the observation that in tumours
the same mutations can happen independently in multiple subclones and can also be lost
again over time [22].
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A Appendix: Proofs of Propositions 4 and 6

A.1 Proposition 4
Proposition 4. Let S and T be two labeled trees with s and t nodes, respectively.
(i) If L(S) = L(T ), 2× |s− t| ≤ B(S, T ) = RF(S, T ).
(ii) If L(S) 6= L(T ), max(s, t)− 1 ≤ B(S, T ) ≤ RF(S, T ) = s+ t− 2.
(iii) If L(S) ∩ L(T ) = ∅, B(S, T ) = RF(S, T ) = s+ t− 2.
(iv) The Bourque metric is a distance metric; in other words, it satisfies the non-negativity,

symmetry and the triangle inequality conditions.

Proof.
(i) Since the second term of (2) is non-positive, B(S, T ) ≤ |P(S)∆P(T )| = RF(S, T ).

Without loss of generality, we may assume s ≥ t. By the definition of the similarity
relation, L(S) = L(T ) implies that {(P,Q) ∈ P(S) × P(T ) : P ∼ Q} = ∅ and thus
B(S, T ) = RF (S, T ) = 2|P(S) \ P(T )| ≥ 2(s− t), proving the inequality.

(ii) If L(S) 6= L(T ), |P(T )∆P(S)| = |P(T )|+ |P(S)| = s+ t− 2. Moreover, we have:∑
P∈P

min (|{Q′ ∈ P(S) : Q′ ∼ P}|, |{Q′′ ∈ P(T ) : Q′′ ∼ P}|)

≤ min
(∑

P∈P
|{Q′ ∈ P(S) : Q′ ∼ P}|,

∑
P∈P
|{Q′′ ∈ P(T ) : Q′′ ∼ P}|

)
≤ min(|P(T )|, |P(T )|) = min(s, t)− 1

and:

B(S, T ) = s+ t− 2− (min(s, t)− 1) = max(s, t)− 1.

(iii) If L(S) = L(T ), the first term becomes |P(S)| + |P(T )|, which is s + t − 2; and the
second term is zero. Therefore, the fact is true.

(iv) The non-negativity follows from (i) and (ii). The symmetric property of the Bourque
metric follows from the definition of the Bourque distance. The triangle inequality is
proved as follows.
Let T1, T2 and T3 be three labeled trees. We consider the following three cases to prove
B(T1, T2) ≤ B(T1, T3) +B(T3, T2).
Case 1. L(T1) = L(T3) = L(T2). In this case, B(Ti, Tj) = RF(Ti, Tj). The triangle
inequality for these three trees follows from the fact that the RF distance satisfies the
triangle inequality.
Case 2. L(T1) 6= L(T3) and L(T3) 6= L(T2).
We have B(T1, T2) ≤ |P(T1)∆P(T2)| = |P(T1) \ P(T2)|+ |P(T2) \ P(T1)|.
On the other hand, by (ii), L(Ti) 6= L(T3) implies thatB(Ti, T3) ≥ max (|P(Ti)|, |P(T3)|)
for i = 1, 2. Therefore,

B(T1, T3) +B(T1, T3) ≥ max (|P(T1)|, |P(T3)|) + max (|P(T2)|, |P(T3)|)
≥ |P(T1)|+ |P(T2)| ≥ B(T1, T2).

Case 3. L(T1) = L(T3) 6= L(T2) or L(T1) 6= L(T3) = L(T2).
Note that the two conditions are symmetric. Hence, we just need to prove that the
triangle inequality holds if the first condition is satisfied.
Let P be the set of 2-part partitions of L(T1)∩L(T2). Since L(T1) = L(T3), B(T1, T3) =
|P(T1)∆P(T3)| = |P(T1)|+ |P(T3)| − 2|P(T3) ∩ P(T1)|. Since L(T1) 6= L(T2),

B(T1, T2)

= |P(T1)|+ |P(T2)| −
∑
P∈P

min
(
|{Q′ ∈ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|

)
. (A.1)
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Similarly, since L(T2) 6= L(T3),

B(T1, T3) +B(T3, T2)
= |P(T1)|+ 2|P(T3) \ P(T1)|+ |P(T2)|

−
∑
P∈P

min (|{Q′ ∈ P(T3) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|) . (A.2)

Since ∑
P∈P

min (|{Q′ ∈ P(T3) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|)

≤
∑
P∈P

min (|{Q′ ∈ P(T3) \ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|)

+
∑
P∈P

min (|{Q′ ∈ P(T3) ∩ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|)

≤
∑
P∈P
|{Q′ ∈ P(T3) \ P(T1) : Q′ ∼ P}|

+
∑
P∈P

min (|{Q′ ∈ P(T3) ∩ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|)

≤ |P(T3) \ P(T1)|+
∑
P∈P

min (|{Q′ ∈ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|) ,

by Eqn. (A.1) and (A.2),
B(T1, T3) + B(T3, T2)

= |P(T1)|+ 2|P(T3) \ P(T1)|+ |P(T2)|

−
∑
P∈P

min
(
|{Q′ ∈ P(T3) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|

)
≥ |P(T1)|+ |P(T2)| −

∑
P∈P

min
(
|{Q′ ∈ P(T1) : Q′ ∼ P}|, |{Q′′ ∈ P(T2) : Q′′ ∼ P}|

)
= B(T1, T2).

The triangle inequality is proved. J

A2. Proposition 6
Proposition 6. The k-Bourque distances have the following properties:
(1) For any uniquely labeled trees S and T such that |V (S)| = |V (T )| = n, Bk(S, T ) =

n · B(S, T ) for any k ≥ max(diam(S),diam(T )), where diam(X) is the diameter of X
for X = S, T .

(2) Bk(S, T ) satisfies the non-negativity, symmetry and triangle inequality conditions for
each k ≥ 1.

Proof.
(1) If k ≥ max(diam(S),diam(T )), Nk(u) = S for any u ∈ V (S) and Nk(v) = T for any

v ∈ V (T ). This implies that every edge has the same weight B(S, T ) and every perfect
matching has a weight of n×B(S, T ) in the graph BGk(S, T ).

(2) Obviously, Bk(S, T ) has the non-negativity and symmetry properties for each k. Let S, T
and W be three labeled trees. We assume that s = |V (S)| ≥ |V (T )| = t and consider
three cases to prove that Bk(S, T ) ≤ Bk(S,W ) +Bk(W,T ) for k ≥ 1.
Case 1. w = |V (W )| ≥ s. Let us assume that:

f : {Nk(v), ∅i : v ∈ V (S), 1 ≤ i ≤ w − s} → {Nk(v) : v ∈ V (W )}
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is a 1-to-1 function such that {(Nk(v), f(Nk(v))), (∅j , f(∅i) : v ∈ V (S), 1 ≤ i ≤ w − s}
is the minimum weight perfect matching in BGk(S,W ). Let us also assume that:

g : {Nk(v) : v ∈ V (W )} → {Nk(v), ∅i : v ∈ V (T ), 1 ≤ i ≤ w − t}

is a 1-to-1 function such that {(Nk(v), g(Nk(v))) : v ∈ V (W )} is the minimum weight
perfect matching in BGk(W,T ).
We now define the following:

W00 = {v ∈ V (W ) : Nk(v) = f(∅) & g(Nk(v)) = ∅},

W01 = {v ∈ V (W ) : Nk(v) = f(∅) & g(Nk(v)) 6= ∅},

W10 = {v ∈ V (W ) : Nk(v) 6= f(∅) & g(Nk(v)) = ∅},

W11 = {v ∈ V (W ) : Nk(v) 6= f(∅) & g(Nk(v)) 6= ∅}.

Clearly, |W10|+W11| = s, |W01|+W11| = t and thus |W10| − |W01| = s− t.
Let W10 = {a1, a2, · · · , ak′} and W01 = {b1, · · · , bk}, where k′ = k+ s− t. We then have:
{(f−1(Nk(v)), g(Nk(v))) : v ∈W11} ∪ {(f−1(Nk(ai)), g(Nk(bi))) : 1 ≤ i ≤ k}

∪ {(f−1(Nk(aj)), ∅) : k < j ≤ k′}
is a perfect matching in BGk(S, T ) and its weight is:

C =
∑

v∈W11

B
(
f−1(Nk(v)), g(Nk(v))

)
+
∑

1≤i≤k

B
(
f−1(Nk(ai)), g(Nk(bi))

)
+

∑
k+1≤i≤k′

B
(
f−1(Nk(aj)), ∅

)
Since the BD satisfies the triangle inequality (Proposition 6),

B
(
f−1(Nk(ai)), g(Nk(bi))

)
≤ B

(
f−1(Nk(ai)), Nk(ai)

)
+ B(Nk(ai), ∅) + B(∅, Nk(bi)) + B (Nk(bi), g(Nk(bi))) , 1 ≤ i ≤ k.

C ≤
∑

v∈W11

[
B
(
f−1(Nk(v)), Nk(v)

)
+ B(Nk(v), g(Nk(v)))

]
+
∑

1≤i≤k

[
B
(
f−1(Nk(ai)), Nk(ai)

)
+ B(Nk(ai), ∅) + B(∅, Nk(bi)) + B(Nk(bi), g(Nk(bi)))

]
+

∑
k+1≤i≤k′

[
B
(
f−1(Nk(aj)), Nk(v)

)
+ B(Nk(v), ∅)

]
≤

∑
v∈V (W )

B
(
f−1(Nk(v)), Nk(v)

)
+
∑

v∈V (W )

B(Nk(v), g(Nk(v)))

= Bk(S, W ) + Bk(W, T ).
By definition, Bk(S, T ) ≤ C, implying the triangle inequality.

Case 2. t ≥ w.
Let us assume that

f : {Nk(v) : v ∈ V (S)} → {Nk(v), ∅i : v ∈ V (W ), 1 ≤ i ≤ s− w}

is a 1-to-1 function such that {(Nk(v), f(Nk(v))) : v ∈ V (S)} is a minimum weight
perfect matching in BGk(S,W ), and assume that

g : {Nk(v), ∅i : v ∈ V (W ), 1 ≤ i ≤ t− w} → {Nk(v) : v ∈ V (T )}
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is a 1-to-1 function such that {(Nk(v), g(Nk(v))), (∅i, g(∅i)) : v ∈ V (W ), 1 ≤ i ≤ t−w}
is the minimum weight perfect matching in BGk(W,T ). Then,{(

f−1(Nk(v)), g(Nk(v))
)

: v ∈ V (W )
}
∪
{(
f−1(∅i), g(∅i)

)
: 1 ≤ i ≤ t− w

}
∪
{(
f−1(∅j), ∅j−t+w

)
: t− w < j ≤ s− w

}
defines a perfect matching in BGk(S, T ) and its weight C can be bounded by:

C ≤
∑

v∈V (W )

[
Bk

(
f−1(Nk(v)), Nk(v)

)
+Bk(Nk(v), g(Nk(v)))

]
∑

1≤i≤t−w

[
Bk

(
f−1(∅i

)
, ∅i) +Bk(∅i, g(∅i))

]
+

∑
t−w<j≤t−w

Bk(f−1(∅i), ∅j−t+w)

= Bk(S,W ) +Bk(W,T ).

Case 3. s > w > t. Let us assume that

f : {Nk(v) : v ∈ V (S)} → {Nk(v), ∅i : v ∈ V (W ), 1 ≤ i ≤ s− w}

is a 1-to-1 function such that {(Nk(v), f(Nk(v))) : v ∈ V (S)} is the minimum weight
perfect matching in BGk(S,W ), and assume that

g : {Nk(v) : v ∈ V (W )} → {Nk(v), ∅i : v ∈ V (T ), 1 ≤ i ≤ w − t}

is a 1-to-1 function such that {(Nk(v), g(Nk(v))) : v ∈ W} is the minimum weight
perfect matching in BGk(W,T ). Then,

{(f−1(Nk(v)), g(Nk(v))), (f−1(∅j), ∅j) : v ∈ V (W ), 1 < j ≤ s− w}

is a perfect matching in BGk(S, T ) and its weight is:
C =

∑
v∈V (W )

B(f−1(Nk(v)), g(Nk(v))) +
∑

1≤i≤s−w

B(f−1(∅j), ∅j))

≤
∑

v∈V (W )

[
B(f−1(Nk(v)), Nk(v)) + B(Nk(v), g(Nk(v)))

]
+

∑
1≤i≤s−w

B(f−1(∅j), ∅j))

≤ Bk(S, W ) + Bk(W, T ),
where the inequality is derived from the triangle inequality. J

A3. Measures for comparing mutation trees
The CASet and DISC metrics
Recently, two metrics were introduced for mutation trees [18]. Let M be a label set and T be a
rooted tree in which the nodes are uniquely labeled with the parts of a partitions of M . For a node
u ∈ V (T ), we use `(u) to denote the label of u. For each m ∈M , we use `−(m) to denote the unique
node whose label contains m.

Recall that AT (u) denotes the set of ancestors of u and u 6∈ AT (u). For any m ∈ M , define
AT (m) =

∑
u∈AT (`−(m)) `(u). Note that AT (m′) ∩ AT (m′′) is equal to the set of their common

ancestors for any m′ and m′′ of M .
Let S and T be two rooted labeled trees S and T whose nodes are uniquely labeled with the

elements of M . The Common Ancestor Set (CASet) metric between S and T is defined as the
average the Jaccard distance between the sets of common ancestors of two labels in S and T [18],
i.e.,

CASet(S, T ) , 1(
m
2

) ∑
i,j∈M :i<j

|(AS(i) ∩AS(j))4(AT (i) ∩AT (j))|
|(AS(i) ∩AS(j)) ∪ (AT (i) ∩AT (j))| ,

where AS(i) is the empty set if i is not in the label set of S or it is an element of the label of the
root of S. Here, the Jaccard distance between the empty set and itself is 0.

WABI 2020



14:22 The Bourque Distances for Mutation Trees of Cancers

We use DS(i, j) to denote AS(i) \ AS(j) for any two labels. The Distinctly Inherited Set
Comparison (DISC) metric between S and T is defined to be [18]:

DISC(S, T ) , 1
m(m− 1)

∑
i,j∈M :i 6=j

|DS(i, j)4DT (i, j)|
|DS(i, j) ∪DT (i, j)| .

In a mutation tree, the nodes are labeled with disjoint subsets of the label set; a label appearing
in a tree may not appear in another tree inferred for the same patient. It is not hard to generalize
the CASet and DISC in the context of mutation trees [18].

An ancestor difference metric
One reason to introduce the Bourque distance is that every uniquely labeled tree can be uniquely
reconstructed from all its node-induced star subtrees. It is not hard to see that every rooted uniquely
labeled tree can also be reconstructed from the paths from the root to all other nodes. Hence, the
difference between two mutation trees on M can be measured by the Ancestor Difference (AD)
metric defined by:

AD(S, T ) ,
∑

m∈M

|AS(m)4AT (m)|.

The AD metric has been used for comparing mutation trees in [18, 19]. Note that CASet, DISC and
AD metrics do not satisfy the triangle inequality in general.

The triplet-based distance
The triplet distance has also been generalized to mutation trees [5]. In a mutation tree, any three
labeled nodes induce a labeled tree that has three labeled nodes at most. The triplet-based distance
(TD) between two mutation trees S and T with the same label set is defined by:

TD(S, T ) = 1− |Triplets(S) ∩ Triplets(T )|
max (|Triplets(S)|, |Triplets(T )|) ,

where Triplets(S) denotes the set of possible subtrees induced by three different labels.

A4. Supplementary Figure S1

Figure. S1.  A.  AD,  B. CASet,  C. DISC and D. Triplet 

A

C

B

D

Figure S1 The two trees that have the same AD (A), CASet (B), DISC (C) and TD (D) distance
but different DB distances from the 1-labeled star tree centered at Node 1.
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One of the Grand Challenges in Science is the construction of the Tree of Life, an evolutionary
tree containing several million species, spanning all life on earth. However, the construction of the
Tree of Life is enormously computationally challenging, as all the current most accurate methods
are either heuristics for NP-hard optimization problems or Bayesian MCMC methods that sample
from tree space. One of the most promising approaches for improving scalability and accuracy for
phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping subsets,
trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we
present Exact-RFS-2, the first polynomial-time algorithm to find an optimal supertree of two trees,
using the Robinson-Foulds Supertree (RFS) criterion (a major approach in supertree estimation
that is related to maximum likelihood supertrees), and we prove that finding the RFS of three input
trees is NP-hard. We also present GreedyRFS (a greedy heuristic that operates by repeatedly using
Exact-RFS-2 on pairs of trees, until all the trees are merged into a single supertree). We evaluate
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1 Introduction

Supertree construction (i.e., the combination of a collection of trees, each on a potentially
different subset of the species, into a tree on the full set of species) is a natural algorithmic
problem that has important applications to computational biology; see [7] for a 2004 book
on the subject and [25, 38, 14, 18, 17, 16, 9, 10] for some of the recent papers on this subject.
Supertree methods are particularly important for large-scale phylogeny estimation, where it
can be used as a final step in a divide-and-conquer pipeline [45]: the species set is divided
into two or more overlapping subsets, unrooted leaf-labelled trees are constructed (possibly
recursively) on each subset, and then these subset trees are combined into a tree on the full
dataset, using the selected supertree method. Furthermore, provided that optimal supertrees
are computed, divide-and-conquer pipelines can be provably statistically consistent under
stochastic models of evolution: i.e., as the amount of input data (e.g., sequence lengths when
estimating gene trees, or number of gene trees when estimating species trees) increases, the
probability that the true tree is returned converges to 1 [24, 44].

Unfortunately, the most accurate supertree methods are typically local-search heuristics
for NP-hard optimization problems [4, 29, 25, 38, 33, 27, 34, 16], and are computationally
intensive on large datasets. However, divide-and-conquer strategies, especially recursive ones,
may only need to apply supertree methods to two trees at a time, and hence the computational
complexity of supertree estimation given two trees is of interest. One optimization problem
where optimal supertrees can be found on two trees is the NP-hard Maximum Agreement
Supertree (SMAST) problem (also known as the Agreement Supertree Taxon Removal
problem), which removes a minimum number of leaves so that the reduced trees have
an agreement supertree [17, 14]. Similarly, the Maximum Compatible Supertree (SMCT)
problem, which removes a minimum number of leaves so that the reduced trees have a
compatibility supertree [5, 6], can also be solved in polynomial time on two trees (and note
that SMAST and SMCT are identical when the input trees are fully resolved). Because
SMAST and SMCT remove taxa, methods for these optimization problems are not true
supertree methods, because they do not return a tree on the entire set of taxa. However,
solutions to SMAST and SMCT could potentially be used as constraints for other supertree
methods, where the deleted leaves are added into the computed SMAST or SMCT trees, so
as to optimize the desired criterion.

When restricting to methods that return trees on the full set of taxa, much less seems to
be understood about finding supertrees on two trees. However, if the two input trees are
compatible (i.e., there is a supertree that equals or refines each tree when restricted to the
respective leaf set), then finding that compatibility supertree is solvable in polynomial time,
using (for example) the well known BUILD algorithm [1], but more efficient algorithms exist
(e.g., [6, 3]).

Since compatibility is a strong requirement (rarely seen in biological datasets), optimiza-
tion problems are more relevant. One optimization problem worth discussing is the Maximum
Agreement Supertree Edge Contraction problem (which takes as input a set of rooted trees
and seeks a minimum number of edges to collapse so that an agreement supertree exists).
This problem is NP-hard, but the decision problem can be solved in O((2k)pkn2) time when
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the input has k trees and p is the allowed number of number of edges to be collapsed [14].
Note that the algorithm for AST-EC proposed by [14] may be exponential even for two trees,
when the number of edges that must be collapsed is Ω(n) (e.g., imagine two caterpillar trees,
where one is obtained from the other by moving the left-most leaf to the rightmost position).

In sum, while supertree methods are important and well studied, when restricted to the
major optimization problems that do not remove taxa, polynomial time methods do not
seem to be available, even for the special case where the input contains just two trees. This
restriction has consequences for large-scale phylogeny estimation, as without good supertree
methods, divide-and-conquer pipelines are not guaranteed to be statistically consistent, are
not fast, and do not have good scalability [44].

In this paper we examine the well known Robinson-Foulds Supertree (RFS) problem
[2], which seeks a supertree that minimizes the total Robinson-Foulds [30] distance to
the input trees. Although RFS is NP-hard [20], it has several desirable properties: it is
closely related to maximum likelihood supertrees [36] and, as shown very recently, has good
theoretical performance for species tree estimation in the presence of gene duplication and
loss [23]. Because of its importance, there are several methods for RFS supertrees, including
PluMiST [18], MulRF [8], and FastRFS [42]. A comparison between FastRFS and other
supertree methods (MRL [25], ASTRAL, ASTRID [41], PluMiST, and MulRF) on simulated
and biological supertree datasets showed that FastRFS matched or improved on the other
methods with respect to topological accuracy and RFS criterion scores [42]. Hence, FastRFS
is currently the leading method for the RFS optimization problem.

The main contributions of this paper are:
We prove that RFS is solvable in O(n2|X|) time for two trees, where n is the number of
leaves and X is the number of shared leaves (Theorem 2) and NP-hard for three or more
trees (Lemma 10).
We present Exact-RFS-2, a polynomial time algorithm for the RFS problem when given
only two source trees, and explore its performance on simulated data, both within a
natural divide-and-conquer pipeline and within a greedy heuristic (Section 3). We show
that Exact-RFS-2 outperforms FastRFS [42] on two trees, the current most accurate
method for RFS, and that GreedyRFS is better than FastRFS for small to moderate
numbers of source trees (Section 4).
We prove that divide-and-conquer pipelines using Exact-RFS-2 are statistically consistent
methods for phylogenetic tree estimation (both gene trees and species trees) under
standard sequence evolution models (Theorem 12).
We establish equivalence between RFS and some other supertree problems (Lemma 1).
We show critical differences between RFS and SMAST/SMCT problems, that establish
that methods for SMAST or SMCT cannot provably be used to constrain the search for
RFS supertrees (Lemma 23 in Appendix in the full version on bioRxiv).

The remainder of the paper is organized as follows. In Section 2, we provide terminology
and define the optimization problems we consider. We present the Exact-RFS-2 algorithm
and establish theory related to the algorithm in Section 3. Our experimental performance
study is presented in Section 4, and we conclude in Section 5 with a discussion of trends and
future research directions.

2 Terminology and Problem Statements

We let [N ] = {1, 2, . . . , N} and A = {Ti | i ∈ [N ]} denote the input to a supertree problem,
where each Ti is a phylogenetic tree on leaf set L(Ti) = Si ⊆ S (where L(t) denotes the leaf
set of t) and the output is a tree T where L(T ) is the set of all species that appear as a leaf
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in at least one tree in A, which we will assume is all of S. We use the standard supertree
terminology, and refer to the trees in A as “source trees” and the set A as a “profile”. For a
tree T , let V (T ) and E(T ) denote the set of vertices and edges of T , respectively.

Robinson-Foulds Supertree

Each edge e in a tree T defines a bipartition πe := [A|B] of the leaf set, and each tree is
defined by the set C(T ) := {πe | e ∈ E(T )}. The Robinson-Foulds distance [30] (also called
the bipartition distance) between trees T and T ′ with the same leaf set is RF(T, T ′) :=
|C(T )\C(T ′)|+ |C(T ′)\C(T )|. We extend the definition of RF distance to allow for T and
T ′ to have different leaf sets as follows: RF (T, T ′) := RF (T |X , T ′|X), where X is the shared
leaf set and t|X denotes the homeomorphic subtree of t induced by X. Letting TS denote
the set of all phylogenetic trees such that L(T ) = S and T BS denote the binary trees in TS ,
then a Robinson-Foulds supertree [2] of a profile A is a binary tree

TRFS = argmin
T∈T B

S

∑
i∈[N ]

RF(T, Ti).

We let RF(T,A) :=
∑
i∈[N ] RF(T, Ti) denote the RFS score of T with respect to profile A.

Thus, the Robinson-Foulds Supertree problem takes as input the profile A and seeks a
Robinson-Foulds (RF) supertree for A, which we denote by RFS(A).

Split Fit Supertree

The Split Fit (SF) Supertree problem was introduced in [46], and is based on optimizing the
number of shared splits (i.e., bipartitions) between the supertree and the source trees. For
two trees T , T ′ with the same leaf set, the split support is the number of shared bipartitions,
i.e., SF(T, T ′) := |C(T ) ∩ C(T ′)|. For trees with different leaf sets, we restrict them to the
shared leaf set before calculating the split support. The Split Fit supertree for a profile A of
source trees, denoted SFS(A), is a tree TSFS ∈ T BS such that

TSFS = argmax
T∈T B

S

∑
i∈[N ]

SF(T, Ti).

Thus, the split support score of T with respect to A is SF(T,A) :=
∑
i∈[N ] SF(T, Ti). The

Split Fit Supertree (SFS) problem takes as input the profile A and seeks a Split Fit
supertree (the supertree with the maximum split support score), which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

The relaxed versions of the problems where we do not require the output to be binary
(i.e., we allow T ∈ TS) are named Relax-RFS and Relax-SFS.
We append “-N” to the name to indicate that we assume there are N source trees. If no
number is specified then the number of source trees is unconstrained.
We append “-B” to the name to indicate that the source trees are required to be binary;
hence, we indicate that the source trees are allowed to be non-binary by not appending -B.

Thus, the RFS problem with two binary input trees is RFS-2-B and the relaxed SFS problem
with three (not necessarily binary) input trees is Relax-SFS-3.
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Other notation

For any v ∈ V (T ), we let NT (v) denote the set of neighbors of v in T . A tree T ′ is a refinement
of T iff T can be obtained from T ′ by contracting a set of edges. Two bipartitions π1 and π2
of the same leaf set are said to be compatible if and only if there exists a tree T such that
πi ∈ C(T ), i = 1, 2. A bipartition π = [A|B] restricted to a subset R is π|R = [A ∩R|B ∩R].
For a graph G and a set F of vertices or edges, we use G+F to represent the graph obtained
from adding the set F of vertices or edges to G, and G− F is defined for deletions, similarly.

3 Theoretical Results

In this section we establish the main theoretical results, with detailed proofs provided in [47]
or in the Appendix in the full version on bioRxiv [48].

3.1 Solving RFS and SFS on two trees
I Lemma 1. Given an input set A of source trees, a tree T ∈ T BS is an optimal solution for
RFS(A) if and only if it is an optimal solution for SFS(A).

The main result of this paper is Theorem 2 (correctness is proved later within the main
body of the paper, and the running time is established in the Appendix):

I Theorem 2. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.
The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|) time, where n :=
max{|S1|, |S2|}.

3.1.1 Exact-RFS-2: Polynomial time algorithm for RFS-2-B and
SFS-2-B

The input to Exact-RFS-2 is a pair of binary trees T1 and T2. Let X denote the set of shared
leaves. At a high level, Exact-RFS-2 constructs a tree Tinit that has a central node that is
adjacent to every leaf in X and to the root of every “rooted extra subtree” (a term we define
below under “Additional notation”) so that Tinit contains all the leaves in S. It then modifies
Tinit by repeatedly refining it to add specific desired bipartitions, to produce an optimal Split
Fit (and optimal Robinson-Foulds) supertree (Figure 3). The bipartitions that are added are
defined by a maximum independent set in a bipartite “weighted incompatibility graph” we
compute.

Additional notation

Let 2X denote the set of all bipartitions of X; any bipartition that splits a single leaf from
the remaining |X| − 1 leaves will be called “trivial” and the others will be called “non-trivial”.
Let C(T1, T2, X) denote C(T1|X) ∪ C(T2|X), and let Triv and NonTriv denote the sets of
trivial and non-trivial bipartitions in C(T1, T2, X), respectively. We refer to Ti|X , i = 1, 2 as
backbone trees (Figure 2). Recall that we suppress degree-two vertices when restricting a
tree Ti to a subset X of the leaves; hence, every edge e in Ti|X will correspond to an edge or
a path in T (see Fig. 1 for an example). We will let P (e) denote the path associated to edge
e, and let w(e) := |P (e)| (the number of edges in P (e)). Finally, for π ∈ C(Ti|X), we define
ei(π) to be the edge that induces π in Ti|X (Fig. 1).
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Figure 1 T1 and T2 depicted in (a) and (b) have an overlapping leaf set X = {l1, l2, . . . , l7}. Each
of a1, . . . , a6 and b1, . . . , b6 can represent a multi-leaf extra subtree. For e ∈ T1|X as shown, P (e) is
the path from v1 to v4, so w(e) = 3. Using indices to represent the shared leaves, let π = [12|34567];
then e1(π) = e and e2(π) = e′. T R(e) = {a1, a2}, T R(e′) = {b2}, so T R∗(π) = {a1, a2, b2}. Let
A = {1, 2, 3}, B = {4, 5, 6, 7}. Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]}
and BP(B) = {[1234|567], [12345|67], [12346|57]}. T RS(A) = {a1, a2, b1, b2} and T RS(B) =
{a6, b4, b5, b6}.

(a) T1|X

e1 e2 e3 e4

l1

l2 l6
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l3 l4 l5

(b) T2|X
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Figure 2 We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph, based on the trees
T1 and T2 in Figure 1 (without the trivial bipartitions). Each πi is the bipartition induced by ei,
and the weights for π1, . . . , π8 are 3, 4, 1, 1, 2, 2, 2, 3, in that order. We note that π1 and π5 are the
same bipartition, but they have different weights as they are induced by different edges; similarly
for π3 and π7. The maximum weight independent set in this graph has all the isolated vertices
(π1, π3, π5, π7) and also π2, π8, and so has total weight 15.

The next concept we introduce is the set of extra subtrees, which are rooted subtrees
of T1 and T2, formed by deleting X and all the edges and vertices on paths between vertices
in X (i.e., we delete Ti|X from Ti). Each component in Ti−Ti|X is called an extra subtree
of Ti, and note that the extra subtree t is naturally seen as rooted at the unique vertex r(t)
that is adjacent to a vertex in Ti|X . Thus, Extra(Ti) = {t | t is a component in Ti − Ti|X}.

We can now define the initial tree Tinit computed by Exact-RFS-2: Tinit has a center
node that is adjacent to every x ∈ X and also to the root r(t) for every extra subtree
t ∈ Extra(T1)∪Extra(T2). Note that Tinit has a leaf for every element in S, and that Tinit|Si

is a contraction of Ti, formed by collapsing all the edges in the backbone tree Ti|X .
We say that an extra subtree t is attached to edge e ∈ E(Ti|X) if the root of t is adjacent

to an internal node of P (e), and we let T R(e) denote the set of such extra subtrees attached
to edge e. Similarly, if π ∈ C(T1, T2, X), we let T R∗(π) refer to the set of extra subtrees
that attach to edges in a backbone tree that induce π in either T1|X or T2|X . For example,
if both trees T1 and T2 contribute extra subtrees to π, then T R∗(π) :=

⋃
i∈[2] T R(ei(π)).

For any Q ⊆ X, we let BPi(Q) denote the set of bipartitions in C(Ti|X) that have one side
being a strict subset of Q, and we let T RSi(Q) denote the set of extra subtrees associated with
these bipartitions. In other words, BPi(Q) := {[A|B] ∈ C(Ti|X) | A ( Q or B ( Q}, and
T RSi(Q) :=

⋃
π∈BPi(Q) T R(ei(π)). Intuitively, T RSi(Q) denotes the set of extra subtrees in

Ti that are “on the side of Q”. By Corollary 14, which appears in the Appendix, for any π =
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Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees (see Figure 3).

Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X 6= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do
3: for i ∈ [2] do
4: compute T R(ei(π)), w(ei(π))
5: compute BP(A), BP(B), T RS(A), T RS(B), and T R∗(π),
6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each t ∈

Extra(T1) ∪ Extra(T2) connected to v̂ by an edge . let Tinit = T
7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G
9: let I be the set of bipartitions associated with vertices in I∗
10: for each π = [{a}|B] ∈ Triv do
11: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that T R(e1(π)) are

attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached
to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their attachments
on e2(π)

. let T̃ = T after for loop
12: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
13: for each π ∈ NonTriv ∩ I (in any order) do
14: T ← Refine(T, π,H, sv) . let T ∗ = T after for loop
15: arbitrarily refine T to make it a binary tree
16: return T

[A|B] ∈ C(Ti|X), BPi(A) ∪ BPi(B) is the set of bipartitions in C(Ti|X) that are compatible
with π. Finally, let BP(Q) = BP1(Q) ∪ BP2(Q), and T RS(Q) = T RS1(Q) ∪ T RS2(Q).
We give an example for these terms in Figure 1.

The incompatibility graph of a set of trees, each on the same set of leaves, has one vertex
for each bipartition in any tree (and note that bipartitions can appear more than once) and
edges between bipartitions if they are incompatible (see [28]). We compute a weighted
incompatibility graph for the pair of trees T1|X and T2|X , in which the weight of the
vertex corresponding to bipartition π appearing in tree Ti|X is w(ei(π)), as defined previously.
Thus, if a bipartition is common to the two trees, it produces two vertices in the weighted
incompatibility graph, and each vertex has its own weight (Figure 2).

We divide C = C(T1)∪C(T2) into two sets: Π1 = {[A|B] ∈ C | A∩X 6= ∅ and B∩X 6= ∅},
and Π2 = {[A|B] ∈ C | A ∩X = ∅ or B ∩X = ∅}. Intuitively, Π1 is the set of bipartitions
from the input trees that are induced by edges in the minimal subtree of T1 or T2 spanning
X, and Π2 are all the other input tree bipartitions. We define p1(·) and p2(·) on trees T ∈ TS
by:

p1(T ) =
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩Π1|, p2(T ) =
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩Π2|.

Note that p1(T ) and p2(T ) decompose the split support score of T into the score con-
tributed by bipartitions in Π1 and the score contributed by bipartitions in Π2; thus, the split
support score of T with respect to T1, T2 is p1(T ) + p2(T ).

As we will show, the two scores can be maximized independently and we can use this
observation to refine Tinit so that it achieves the optimal total score.

Overview of Exact-RFS-2

Exact-RFS-2 (Algorithm 1) has four phases. In the pre-processing phase (lines 1–5), it
computes the weight function w and the mappings T R, T R∗,BP , and T RS for use in latter
parts of Algorithm 1 and Algorithm 2. In the initial construction phase (line 6), it constructs
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a tree Tinit (as described earlier), and we note that Tinit maximizes p2(·) score (Lemma 3).
In the refinement phase (lines 7–14), it refines Tinit so that it attains the maximum p1(·)
score. In the last phase (line 15), it arbitrarily refines T to make it binary. The refinement
phase begins with the construction of a weighted incompatibility graph G of T1|X and T2|X
(see Figure 2). It then finds a maximum weight independent set of G that defines a set
I ⊆ C(T1, T2, X) of compatible bipartitions of X. Finally, it uses these bipartitions of X in
I to refine Tinit to achieve the optimal p1(·) score, by repeatedly applying Algorithm 2 for
each π ∈ I (and we note that the order does not matter). See Figure 3 for an example of
Exact-RFS-2 given two input source trees.

(a) Tinit: star with leaf set X and all
extra subtrees attached to center

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4a5 a6 b1

b2
b3
b4
b5

b6

(b) T̃ : after adding all Triv to T |X

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4 a5 b2

b3
b4
b5

b6

b1 a6

(c) After adding π2 = [123|4567]

va vb
l1

l2

l3
l4 l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4 b5 b6

b1 a6

(d) After adding π8 = [12346|57]

l1

l2

l3
l4

l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1

a6

(e) After adding π1 = π5 = [12|34567]

l1

l2

l3 l4

l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

(f) After adding π3 = π7 = [1234|567]

l1

l2

l3 l4

l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

Figure 3 Algorithm 1 working on T1 and T2 from Figure 1 as source trees; the indices of leaves
in X = {l1, l2, . . . , l7} represent the leaves and the notation of π1, . . . , π8 is from Figure 2. In (a) to
(f), the pX(·) score of the trees are 14, 16, 20, 23, 27, 29, in that order. We explain how the algorithm
obtain the tree in (c) from T̃ by adding π2 = [123|4567] to the backbone of T̃ . Let A = {l1, l2, l3}
and B = {l4, l5, l6, l7}. The center vertex c of T̃ is split into two vertices va, vb with an edge between
them. Then all neighbors of c between c and A are made adjacent to va while the neighbors
between c and B are made adjacent to vb. All neighbors of c which are roots of extra subtrees are
moved around such that all extra subtrees in T R∗(π2) are attached onto (va, vb); all extra subtrees
in T RS(A) = {a1, a2, b2} are attached to va and all extra subtrees in T RS(B) = {b4, b5, b6} are
attached to vb. We note that in this step, b3 can attach to either va or vb because it is not in T RS(A)
or T RS(B). However, when obtaining the tree in (d) from the tree in (c), b3 can only attach to the
left side because for A′ = {l1, l2, l3, l4, l6}, [124|3567] ∈ BP(A′) and thus b3 ∈ T RS(A′).

Algorithm 2 refines the given tree T on leaf set S with bipartitions onX from C(T1, T2, X)\
C(T |X). Given bipartition π = [A|B] on X, Algorithm 2 produces a refinement T ′ of T such
that C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈ C(Ti) | π′|X = π} for both i = 1, 2. To do this, we first
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Algorithm 2 Refine.

Input: a tree T on leaf set S, a nontrivial bipartition π = [A|B] of X, two data structures H and sv
Output: a tree T ′ which is a refinement of T such that for both i = 1, 2, C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈

C(Ti) | π′|X = π}
1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈ NT (v) | ∃b ∈ B

s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪NB do
5: if u ∈ NA then connect u to va

6: else connect u to vb

7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that T R(e1(π)) are
attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached
to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their attachments
on e2(π)

8: for each t ∈ T RS(A) do
9: if t is attached to v, detach it and attach to va

10: for each t ∈ T RS(B) do
11: if t is attached to v, detach it and attach to vb

12: for each remaining extra subtree attached to v do
13: detach it from v and attach it to either va or vb

14: H(va)← ∅, H(vb)← ∅
15: for each π′ ∈ H(v) do
16: if π′ ∈ BP(A) then
17: sv(π′) = va, H(va)← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then
19: sv(π′) = vb, H(vb)← H(vb) ∪ {π′}
20: else
21: discard π′
22: return T ′ = T ′ − v

find the unique vertex v such that no component of T − v has leaves from both A and B.
We create two new vertices va and vb with an edge between them. We divide the neighbor
set of v into three sets: NA is the set of neighbors that split v from leaves in A, NB is the
set of neighbors that split v from leaves in B, and Nother contains the remaining neighbors.
Then, we make vertices in NA adjacent to va and vertices in NB adjacent to vb. We note
that Nother = ∅ if X = S and thus there are no extra subtrees. In the case where X 6= S,
Nother contains the roots of the extra subtrees adjacent to v and we handle them in four
different cases to make T ′ include the desired bipartitions:

those vertices that root extra subtrees in T R∗(π) are moved onto the edge (va, vb) (by
subdividing the edge to create new vertices, and then making these vertices adjacent to
the new vertices)
those vertices that root extra subtrees in T RS(A) are made adjacent to va
those that root extra subtrees in T RS(B) are made adjacent to vb
the remaining vertices can be made adjacent to either va or vb

Algorithms 1 and 2 also use two data structures (functions) H and sv: (1) For a given node
v ∈ V (T ), H(v) ⊆ C(T1, T2, X) is the set of bipartitions of X that can be added to T |X by
refining T |X at v, and (2) Given π ∈ C(T1, T2, X), sv(π) = v means ∃T ′, a refinement of T
at v, so that C(T ′|X) = C(T |X) ∪ {π}.

I Lemma 3. For any tree T ∈ TS, p2(T ) ≤ |Π2|. In particular, let Tinit be the tree defined
in line 6 of Algorithm 1. Then, p2(Tinit) = |Π2|.

Lemma 3 formally states that the tree Tinit we build in line 6 of Exact-RFS-2 (Algorithm 1)
maximizes the p2(·) score. This lemma is true because there are only |Π2| bipartitions that
can contribute to p2(·) and Tinit contains all of them by construction. We define the function
w∗ : Π→ N≥0 as follows:
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w∗(π) =


0 if π 6∈ C(T1, T2, X),
w(e1(π)) if π ∈ C(T1|X) \ C(T2|X),
w(e2(π)) if π ∈ C(T2|X) \ C(T1|X),∑
i∈[2] w(ei(π)) else.

For any set F of bipartitions, we let w∗(F ) =
∑
π∈F w

∗(π).

I Lemma 4. Let π = [A|B] ∈ Π. Let T ∈ TS be any tree with leaf set S such that
π /∈ C(T |X) but π is compatible with C(T |X). Let T ′ be a refinement of T such that for all
π′ ∈ C(T ′|Si

)\C(T |Si
) for some i ∈ [2], π′|X = π. Then, p1(T ′)− p1(T ) ≤ w∗(π).

I Lemma 5. For any compatible set F ⊆ Π, let T ∈ TS be any tree with leaf set S such that
C(T |X) = F . Then p1(T ) ≤ w∗(F ).

Lemma 4 shows that w∗(π) represents the maximum potential increase in p1(·) as a
result of adding bipartition π to T |X . The proof of Lemma 4 follows the idea that for
any bipartition π of X, there are at most w∗(π) edges in either T1 or T2 whose induced
bipartitions become π when restricted to X. Therefore, by only adding π to T |X , at most
w∗(π) more bipartitions get included in C(T |S1) or C(T |S2) so that they contribute to the
increase of p1(T ). The proof of Lemma 5 uses Lemma 4 repeatedly by adding the compatible
bipartitions to the tree in an arbitrary order.

I Proposition 6. Let T̃ be the tree constructed after line 11 of Algorithm 1, then p1(T̃ ) =
w∗(Triv).

The proof naturally follows by construction (Line 8 of Algorithm 1), and implies that the
algorithm adds the trivial bipartitions of X (which are all in I) to T |X so that p1(T ) reaches
the full potential of adding those trivial bipartitions.

I Lemma 7. Let T be a supertree computed within Algorithm 1 at line 14 immediately before
a refinement step. Let π = [A|B] ∈ NonTriv ∩ I. Let T ′ be a refinement of T obtained from
running Algorithm 2 with supertree T , bipartition π, and the auxiliary data structures H and
sv. Then, p1(T ′)− p1(T ) = w∗(π).

The idea for the proof of Lemma 7 is that for any non-trivial bipartition π ∈ I of X to
be added to T |X , Algorithm 2 is able to split the vertex correctly and move extra subtrees
around in a way such that each bipartition in T1 or T2 that is induced by an edge in P (e1(π))
or P (e2(π)), which is not in T |S1 or T |S2 before the refinement, becomes present in T |S1 or
T |S2 after the refinement. Since there are exactly w∗(π) such bipartitions, they increase p1(·)
by w∗(π).

I Proposition 8. Let G be the weighted incompatibility graph on T1|X and T2|X , and let I be
the set of bipartitions associated with vertices in I∗, which is a maximum weight independent
set of G. Let F be any compatible subset of C(T1, T2, X). Then w∗(I) ≥ w∗(F ).

We now restate and prove Theorem 2:

I Theorem 2. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.
The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|) time, where n :=
max{|S1|, |S2|}.
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Proof. First we claim that p1(T ∗) ≥ p1(T ) for any tree T ∈ TS , where T ∗ is defined as from
line 14 of Algorithm 1. Fix arbitrary T ∈ TS and let F = C(T |X). Then by Lemma 5, p1(T ) ≤
w∗(F ). We know that w∗(π) = 0 for any π /∈ C(T1, T2, X), so w∗(F ) = w∗(F ∩C(T1, T2, X))
and thus p1(T ) ≤ w∗(F ∩ C(T1, T2, X)). Since F ∩ C(T1, T2, X) is a compatible subset of
C(T1, T2, X), we have w∗(F ∩C(T1, T2, X)) ≤ w∗(I) by Proposition 8. Then p1(T ) ≤ w∗(I).
Since Triv ⊆ C(T1|X) ∩ C(T2|X) ⊆ I, we have I = (NonTriv ∩ I) ∪ (Triv ∩ I) = (NonTriv ∩
I) ∪ Triv. Therefore, by Proposition 6 and Lemma 7, we have

p1(T ∗) = p1(T̃ ) +
∑

π∈NonTriv∩I
w∗(π) = w∗(Triv) + w∗(NonTriv ∩ I) = w∗(I).

Therefore, p1(T ∗) = w∗(I) ≥ p1(T ).
From Lemma 3 and the fact that a refinement of a tree never decreases p1(·) and p2(·),

we also know that p2(T ∗) ≥ p2(Tinit) ≥ p2(T ) for any tree T ∈ TS . Since for any T ∈ TS ,
SF(T,A) = p1(T ) + p2(T ), T ∗ achieves the maximum split support score with respect to A
among all trees in TS . Thus, T ∗ is a solution to Relax–SFS-2-B (Corollary 9). If T ∗ is not
binary, Algorithm 1 arbitrarily resolves every high degree node in T ∗ until it is a binary tree
and then returns a tree that achieves the maximum split support score among all binary
trees of leaf set S. See the Appendix for the running time analysis. J

I Corollary 9. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.
Relax–SFS-2-B can be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.

I Lemma 10. RFS-3, SFS-3, and Relax–SFS-3 are all NP-hard.

The proof for this lemma can be found in the Appendix.

3.2 DACTAL-Exact-RFS-2
Let Φ be a model of evolution (e.g., GTR) for which statistically consistent methods exist,
and we have some data (e.g., sequences) generated by the model and wish to construct a
tree. We construct an initial estimate of the tree, and we select an edge e in the tree. The
deletion of e and its endpoints creates four subtrees, and we let P be the set of the p nearest
leaves to e taken from each subtree (including all leaves that tie for closest in each subtree).
We define the subsets be A ∪ P and B ∪ P , where πe = [A|B]), and we re-estimate trees
on these subsets and then combine the trees together using Exact-RFS-2. We call this the
DACTAL-Exact-RFS-2 pipeline, due to its similarity to the DACTAL pipeline [24]. The
DACTAL pipeline differs from the DACTAL-Exact-RFS-2 pipeline only in that it computes
four trees (each containing the set P and otherwise being leaf-disjoint) and then combines
the overlapping subset trees using the Strict Consensus Merger technique, and was proven
statistically consistent when the subset trees are computed using statistically consistent
methods.

Before we prove that DACTAL-Exact-RFS-2 can enable statistically consistent pipelines,
we begin with some definitions. Given a tree T and an internal edge e in T , the deletion
of the edge e and its endpoints defines four subtrees. A short quartet around e is a set
of four leaves, one from each subtree, selected to be closest to the edge. Note that due to
ties, there can be multiple short quartets around some edges. The set of short quartets for
a tree T is the set of all short quartets around the edges of T . The short quartet trees
of T is the set of quartet trees on short quartets induced by T . It is well known that the
short quartet trees of a tree T define T , and furthermore T can be computed from this set in
polynomial time [11, 12, 13].
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I Lemma 11. Let T be a binary tree on leaf set S and let A,B ⊆ S. Let TA = T |A and
TB = T |B (i.e., TA and TB are induced subtrees). If every short quartet tree is induced
in TA or in TB, then T is the unique compatibility supertree for TA and TB and Exact-2-
RFS(TA, TB) = T .

Proof. Because TA and TB are induced subtrees of T , it follows that T is a compatibility
supertree for TA and TB . Furthermore, because every short quartet tree appears in at least
one of these trees, T is the unique compatibility supertree for TA and TB (by results from
[12, 13], mentioned above). Finally, because T is a compatibility supertree, the RFS score of
T with respect to TA, TB is 0, which is the best possible. Since Exact-2-RFS solves the RFS
problem on two binary trees, Exact-2-RFS returns T given input TA and TB . J

Thus, Exact-2-RFS is guaranteed to return the true tree when given two correct trees that
have sufficient overlap (in that all short quartets are included). We continue with proving
that these pipelines are statistically consistent.

I Theorem 12. The DACTAL-Exact-RFS-2 pipeline is a statistically consistent method for
estimating the unrooted tree topology under any model Φ for which statistically consistent
unrooted tree topology estimation methods exist.

Proof. The proof is very similar to the proof given for the original DACTAL pipeline in
[24]. Let Φ be the stochastic evolution model. To establish statistical consistency of the
DACTAL-Exact-RFS-2 pipeline (see above), we need to prove that as the amount of data
increases the unrooted tree topology that is returned by the pipeline converge to the true
unrooted tree topology. That is, we will show that for any ε > 0, there is an amount of data
so that the probability of returning the true tree topology given that amount of data is at
least 1 − ε. Hence, let F be the method used to compute the starting tree, let G be the
method used to compute the subset trees, and let ε > 0 be given. Because F is statistically
consistent under Φ, it follows that there is an amount of data so that the starting tree
computed by F will have the true tree topology T with probability at least 1− ε/2. Now
consider the decomposition into two sets produced by the algorithm produced by deleting
edge e, applied to a tree with the true unrooted tree topology. Note that for any p ≥ 1, all the
leaves appearing in any short quartet around e are placed in the set P . Now, subset trees are
computed using G on A ∪ P and B ∪ P , where πe = [A|B], which we will refer to as TA and
TB, respectively. Since G is statistically consistent, for a large enough amount of data, TA
and TB will have the true tree topology on their leaf sets (T |L(TA) and T |L(TB), respectively)
with probability at least 1− ε/2. When TA and TB are equal to the true trees on their leaf
sets, then every short quartet tree of T is in TA or TB , so that by Lemma 11, T is the only
compatibility supertree for TA and TB . Thus, under these conditions, Exact-2-RFS(TA, TB)
returns T . Hence, for a large enough amount of data, Exact-2-RFS(TA, TB) returns T with
probability at least 1− ε, completing our proof. J

Hence, DACTAL+Exact-2-RFS is statistically consistent under all standard molecular
sequence evolution models and also under the MSC+GTR model [43, 31] where gene trees
evolve within species trees under the multi-species coalescent model (which addresses gene
tree discordance due to incomplete lineage sorting [19]) and then sequences evolve down each
gene tree under the GTR model.

Note that all that is needed for F and G to guarantee that the pipeline is statistically
consistent is that they should be statistically consistent under Φ. However, for the sake of
improving empirical performance, F should be fast so that it can run on the full dataset but
G can be more freely chosen, since it will only be run on smaller datasets. Indeed, the user
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Figure 4 Results for Experiment 1: Exact-2-RFS has better RFS criterion scores than FastRFS
(lower is better) in ILS-based species tree estimation (using ASTRAL-III [49], for 501 species with
varying numbers of genes).

can specify the size of the subsets that are analyzed, with smaller datasets enabling the use
of more computationally intensive methods.

For example, when estimating trees under the GTR [40] model, F could be a fast but
statistically consistent distance-based method such as neighbor joining [32] and G could be
RAxML [35], a leading maximum likelihood method. For the MSC+GTR model, F and G
could be polynomial time summary methods (i.e., methods that estimate the species tree by
combining gene trees), with F being ASTRID [41] (a very fast summary method) and G
being ASTRAL [21, 22, 49], which is slower than ASTRID but often more accurate. However,
if the subsets are chosen to be very small, then other choices for G include StarBeast2 [26], a
Bayesian method for co-estimating gene trees and species trees under the MSC+GTR model.

4 Experiments and Results

We performed two experiments: Experiment 1, where we used Exact-2-RFS within a divide-
and-conquer strategy for large scale phylogenomic species tree estimation where gene trees
differ from the species tree due to Incomplete Lineage Sorting (ILS), and Experiment 2, where
we used Exact-2-RFS as part of a greedy heuristic, GreedyRFS, for large-scale supertree
estimation.

4.1 Experiment 1: Phylogenomic species tree estimation

In this experiment, the input is a set of gene trees that can differ from the species tree
due to Incomplete Lineage Sorting [19], ASTRAL [21, 22, 49] is used to construct species
trees on the two overlapping subsets in the DACTAL pipeline described above, and the
two overlapping estimated species trees are then merged together using either Exact-2-RFS
or FastRFS. Because the divide-and-conquer strategy produces two source trees, the RFS
criterion score for Exact-2-RFS cannot be worse than the score obtained by FastRFS; here
we examine the degree of improvement. The simulation protocol produced datasets with
high variability (especially for small numbers of genes), so that there was substantial range
in the optimal criterion scores for 25 and 100 genes (Fig. 4).
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Figure 5 Results for Experiment 2: The percentage of datasets (y-axis) that each method
(FastRFS and GreedyRFS) ties with or is strictly better than the other in terms of RFS criterion
score is shown for varying numbers of source trees (x-axis), based on nine replicate supertree 500-leaf
20% scaffold datasets (from [39]).

On average, Exact-2-RFS produces better RFS scores than FastRFS for all numbers of
genes (Fig. 4), showing that divide-and-conquer pipelines are improved using Exact-2-RFS
compared to FastRFS.

4.2 Experiment 2: Exploring GreedyRFS for supertree estimation
We developed GreedyRFS, a greedy heuristic that takes a profile A as input, and then merges
pairs of trees until all the trees are merged into a single tree. The choice of which pair
to merge follows the technique used in SuperFine [39] for computing the Strict Consensus
Merger, which selects the pair that maximizes the number of shared taxa between the
two trees (other techniques could be used, potentially with better accuracy [15]). Thus,
GreedyRFS is identical to Exact-2-RFS when the profile has only two trees.

We use a subset of the SMIDgen [37] datasets with 500 species and varying numbers of
source trees (each estimated using maximum likelihood heuristics) that have been used to
evaluate supertree methods in several studies [37, 39, 25, 38, 42]. See Appendix (in the full
version of the paper on bioRxiv) for full details of this study.

We explored the impact of changing the number of source trees. The result for two source
trees is predicted by theory (i.e., GreedyRFS is the same as Exact-2-RFS for two source
trees, and so is guaranteed optimal for this case), but even when the number of source trees
was greater than two, GreedyRFS dominated FastRFS in terms of criterion score, provided
that the number of source trees was not too large (Fig. 5).

This establishes that the advantage in criterion score is not limited to the case of two
source trees, suggesting that using Exact-2-RFS within GreedyRFS (or some other heuristics)
may be useful for supertree estimation more generally.

5 Conclusions

The main contribution of this paper is Exact-2-RFS, a polynomial time algorithm for the
Robinson-Foulds Supertree (RFS) of two trees that enables divide-and-conquer pipelines to
be provably statistically consistent under sequence evolution models (e.g., GTR [40] and
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MSC+GTR [31]). Our experimental study showed that Exact-2-RFS dominates the leading
RFS heuristic, FastRFS, when used within divide-and-conquer species tree estimation using
genome-scale datasets, a problem of increasing importance in biology. We also showed that a
greedy heuristic using Exact-2-RFS produced better criterion scores than FastRFS when
the number of source trees was small to moderate, showing the potential for Exact-2-RFS
to be useful in other settings. Overall, our study advances the theoretical understanding of
several important supertree problems and also provides a new method that should improve
scalability of phylogeny estimation methods.

This study suggests several directions for future work. For example, although we showed
that Exact-2-RFS produced better RFS criterion scores than FastRFS when used in divide-
and-conquer species tree estimation (and similarly GreedyRFS was better than FastRFS
for small numbers of source trees in supertree estimation), additional studies are needed
to explore its performance, including additional datasets (both simulated and biological
datasets) and other leading supertree methods. Similarly, other heuristics using Exact-2-RFS
besides GreedyRFS should be developed and studied. Finally, our study explored accuracy
rather than computational aspects; hence, a comparison between methods with respect to
running time would also help inform the choice of method, especially for large datasets, and
should be studied.
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Abstract
K-mer based methods have become prevalent in many areas of bioinformatics. In applications such
as database search, they often work with large multi-terabyte-sized datasets. Storing such large
datasets is a detriment to tool developers, tool users, and reproducibility efforts. General purpose
compressors like gzip, or those designed for read data, are sub-optimal because they do not take into
account the specific redundancy pattern in k-mer sets. In our earlier work (Rahman and Medvedev,
RECOMB 2020), we presented an algorithm UST-Compress that uses a spectrum-preserving string
set representation to compress a set of k-mers to disk. In this paper, we present two improved
methods for disk compression of k-mer sets, called ESS-Compress and ESS-Tip-Compress. They
use a more relaxed notion of string set representation to further remove redundancy from the
representation of UST-Compress. We explore their behavior both theoretically and on real data.
We show that they improve the compression sizes achieved by UST-Compress by up to 27 percent,
across a breadth of datasets. We also derive lower bounds on how well this type of compression
strategy can hope to do.
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1 Introduction

Many of today’s bioinformatics analyses are powered by tools that are k-mer based. These
tools first reduce the input sequence data, which may be of various lengths and type, to a
set of short fixed length strings called k-mers. K-mer based methods are used in a broad
range of applications, including genome assembly [4], metagenomics [38], genotyping [36, 14],
variant calling [34], and phylogenomics [25]. They have also become the basis of a recent
wave of database search tools [32, 33, 35, 15, 7, 5, 26, 13, 23], surveyed in [22]. K-mer based
methods are not new, but only recently they have started to be applied to terabyte-sized
datasets. For example, the dataset used to test the BIGSI database search index, which is
composed of 31-mers from 450,000 microbial genomes [7], takes about 12 TB to store in
compressed form.
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Storing such large datasets is a detriment to tool developers, tool users, and reproducibility
efforts. For tool developers, development time is significantly increased when having to
manage such large files. Due to the iterative nature of the development process, these files
do not typically just sit in one place, but instead get created/moved/recreated many times.
For tool users, the time it takes for the tools to write these files to disk and load them into
memory is non-negligible. In addition, as we scale to even larger datasets, storage costs start
to play a larger factor. Finally, for reproducibility efforts, storing and moving terabytes of
data across networks can be detrimental.

To minimize these negative effects, disk compression of k-mer sets is a natural solution.
By disk compression, we refer to a compressed representation that, while supporting de-
compression, does not support any other querying of the compressed data. Compressed
representations that allow for membership queries [10] are important in their own right, but
are sub-optimal when only storage is required. Most k-mer sets are currently stored on disk
in one of two ways. In the situation where the set of k-mers comes from k-mer counting
reads, one can simply compress the reads themselves using one of many read compression
tools [17, 16, 24]. This approach requires the substantial overhead of running a k-mer counter
as part of decompression, but it is often used in the absence of better options. The second
approach is to gzip/bzip the output of the k-mer counter [19, 30, 21, 27, 37]. As we showed
in [29], both of these approaches are space-inefficient by at least an order-of-magnitude. This
is not surprising, as neither of these approaches was designed specifically for disk compression
of k-mer sets.

Disk compression tailor-made for k-mer sets was first considered in our earlier work [29].
The idea was based on the concept of spectrum-preserving string sets (SPSS), introduced
in [9, 29, 8]. In [8], the concept of SPSS is introduced under the name simplitigs. A set of
strings S is said to be a SPSS representation of a set of k-mers K iff 1) the set of k-mers
contained in S is exactly K, 2) S does not contain duplicate k-mers, and 3) each string in
S is of length ≥ k. The weight of an SPSS is the number of characters it contains. For
example, if K = {ACG,CGT,CGA}, then {ACGT,CGA} would be an SPSS of weight 7;
also K itself would be an SPSS of K of weight 9. On the other hand, {CGACGT} is not
an SPSS, because it contains GAC /∈ K. Intuitively, a low weight SPSS can be constructed
by gluing together k-mers in K, with each glue operation reducing the weight by k − 1.
In [29], we proposed the following simple compression strategy, called UST-Compress. We
find a low-weight SPSS S, using a greedy algorithm called UST, and compress S to disk
using a generic nucleotide compression algorithm (e.g. MFC [28]). UST-Compress achieved
significantly better compression sizes than the two approaches mentioned above.

UST-Compress was not designed to be the best possible disk compression algorithm but
only to demonstrate one of the possible applications of the SPSS concept. When the goal is
specifically disk compression, we are no longer bound to store a set of strings with exactly
the same k-mers as K, as long as a decompression algorithm can correctly recover K. The
main idea of this paper is to replace the SPSS with a more relaxed string set representation,
over the alphabet {A,C,G, T, [, ],+,−}. Our approach is loosely inspired by the notion of
elastic-degenerate strings [18]. It attempts to remove even more duplicate (k − 1)-mers from
the representation than SPSS does, using the extra alphabet characters as placeholders
for nearby repetitive (k − 1)-mers. For the above example, our representation would be
ACG[+A]T , where the “ + ” is interpreted as a placeholder for the k − 1 characters before
the open bracket (i.e. CG). After replacing the “ + ”, we get ACG[CGA]T and we split the
string by cleaving out the substring within brackets; i.e., we get ACGT and CGA.
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Based on this idea, we present two algorithms for the disk compression of k-mer sets,
ESS-Compress and ESS-Tip-Compress. We explore the behavior of these algorithms both
theoretically and on real data. We give a lower bound on how well this type of algorithm
can compress. We show that they improve the compression sizes achieved by UST-Compress
by 10-27% across a breadth of datasets. The two algorithms present a trade-off between
time/memory and compression size, which we explore in our results. The two algorithms are
freely available open source tools on http://github.com/medvedevgroup/ESSCompress.

2 Preliminaries

2.1 Basic definitions
Strings: The length of string x is denoted by |x|. A string of length k is called a k-mer. We
assume k-mers are over the DNA alphabet. A string over the alphabet {A,C,G, T, [, ],+,−}
is said to be enriched. We use · as the string concatenation operator. For a set of strings S,
weight(S) =

∑
x∈S |x| denotes the total count of characters. We define sufk(x) (respectively,

prek(x)) to be the last (respectively, first) k characters of x. We define cutPrek(x) =
suf|x|−k(x) as x with the prefix removed. When the subscript is omitted from pre, suf , and
cutPre, we assume it is k − 1. A string x is canonical if it is the lexicographically smaller of
x and its reverse complement.

For x and y with suf(x) = pre(y), we define gluing x and y as x� y = x · cutPre(y). For
s ∈ {0, 1}, we define orient(x, s) to be x if s = 0 and to be the reverse complement of x if
s = 1. We say that x0 and x1 have a (s0, s1)-oriented-overlap if suf(orient(x0, 1− s0)) =
pre(orient(x1, s1)). Intuitively, such an overlap exists between two strings if we can orient
them in such a way that they are glueable. For example, AAC and TTG have a (0, 0)-oriented
overlap.

Bidirected de Bruijn graphs: A bidirected graph G is a pair (V,E) where the set V are
called vertices and E is a set of edges. An edge e is a set of two pairs, {(u0, s0), (u1, s1)},
where ui ∈ V and si ∈ {0, 1}, for i ∈ {0, 1}. Note that this differs from the notion of an
edge in an undirected graph, where E ⊆ V × V . Intuitively, every vertex has two sides,
and an edge connects to a side of a vertex (see Figure 1 for examples). An edge is a loop
if u0 = u1. Given a non-loop edge e that is incident to a vertex u, we denote side(u, e) as
the side of u to which it is incident. We say that a vertex u is a dead-end if it has exactly
one side to which no edges are incident. A bidirected DNA graph is a bidirected graph G
where every vertex u has a string label lab(u), and for every edge e = {(u0, s0), (u1, s1)},
there is a (s0, s1)-oriented-overlap between lab(u0) and lab(u1) (see Figure 1 for examples).
G is said to be overlap-closed if there is an edge for every such overlap. Let K be a set of
canonical k-mers. The node-centric bidirected de Bruijn graph, denoted by dBG(K), is the
overlap-closed bidirected DNA graph where the vertices and their labels correspond to K.
In this paper, we will assume that dBG(K) is not just a single cycle; such a case is easy to
handle in practice but is a space-consuming corner-case in all the analyses.

Paths and spellings: A sequence p = (u0, e1, u1, . . . , en, un) is a path iff 1) for all 1 ≤ i ≤ n,
ei is incident to ui−1 and to ui, 2) for all 1 ≤ i ≤ n− 1, side(ui, ei) = 1− side(ui, ei+1), and
3) all the uis are different. A path can also be any single vertex. Vertices u1, . . . , un−1 are
called internal and u0 and un are called endpoints. We call u0 to be the initiator vertex
of p. We say that p is normalized if for every ei, side(ui−1, ei) = 1 and side(ui, ei) = 0;
intuitively, the path uses edges like in a directed graph. The spelling of a normalized path
p is defined as spell(p) = lab(u0) � · · · � lab(un). If P is a set of normalized paths, then
spell(P ) =

⋃
p∈P spell(p).
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Unitigs and the compacted de Bruijn graph: A path in dbG(K) is a unitig if all its vertices
have in- and out-degrees of 1, except that the first vertex can have any in-degree and the last
vertex can have any out-degree. A single vertex is also a unitig. A unitig is maximal if it is
not a sub-path of another unitig. It was shown in [12] that if dBG(K) is not a cycle, then
the set of maximal unitigs forms a unique decomposition of the vertices in dBG(K) into
vertex-disjoint paths. The bidirected compacted de Bruijn graph of K, denoted by cdBG(K),
is the overlap-closed bidirected DNA graph where the vertices are the maximal unitigs of
dBG(K), and the labels of the vertices are the spellings of the unitigs. In practice, this
graph can be efficiently constructed from K using the BCALM2 tool [12, 11].

Spanning out-forest: Given a directed graph D, an out-tree is a subgraph in which every
vertex except one, called the root, has in-degree one, and, when the directions on the edges
are ignored, is a tree. An out-forest is a collection of vertex-disjoint out-trees. An out-forest
is spanning if it covers all the vertices of D.

2.2 Path covers and UST-Compress
A vertex-disjoint normalized path cover Ψ of cdBG(K) is a set of normalized paths such
that every vertex is in exactly one path and no path visits a vertex more than once; we
will sometimes use the shorter term path cover to mean the same thing. There is a close
relationship between SPSS representations of K and path covers, shown in [29]. In particular,
a path cover Ψ induces the SPSS spell(Ψ). An example of a path cover is one where every
vertex of cdBG(K) is in its own path, and the corresponding SPSS is the set of all maximal
unitig sequences. Figures 1 and 2 show examples of path covers. The number of paths in Ψ
(denoted as |Ψ|) and the weight of the induced SPSS is closely related:

weight(spell(Ψ)) = |K|+ |Ψ|(k − 1) (1)

This relationship also translates to the number of edges in Ψ; by its definition, the number
of edges in Ψ is simply the number of vertices in cdBG(K) minus |Ψ|.

The idea of our previous algorithm UST-Compress [29] is to find a path cover ΨUST with
as many edges as possible. Having more edges reduces the number of paths, which in turn
reduces the weight of the corresponding SPSS and the size of the final compressed output.
We can understand this intuitively as follows. Edges in cdBG(K) connect unitigs whose
endpoints have the same (k − 1)-mer (after accounting for reverse complements). For every
edge we add to our path cover, we glue these two unitigs and remove one duplicate instance
of the (k − 1)-mer from the corresponding SPSS. Note however that ΨUST does not remove
all duplicate (k − 1)-mers from the SPSS, because Ψ can only have two edges incident on a
vertex, one from each side, and hence a unitig can only be glued at most twice. If a unitig
has edges to more than two other unitigs, then some of the adjacent unitigs would include
the duplicate (k − 1)-mer in the SPSS. The idea of our paper is to exploit the redundancy
due to those remaining edges an thus further reduce the size of the representation.

3 ESS-Compress

3.1 Main algorithm
Our starting point is a set of canonical k-mers K, the graph cdBG(K), and a vertex-disjoint
normalized path cover Ψ of cdBG(K) returned by UST.1 To develop the intuition for our

1 Though we did not explain it in [29], UST always returns normalized paths. It flips any vertex that is in
the wrong orientation on its path, by reverse complementing its label, without affecting anything else.
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algorithm, we first consider a simple example (Figure 1A). In this example, we see a vertex-
disjoint path cover Ψ composed of two paths, ψp and ψc. There is an edge between an
internal vertex (=unitig 2) up of ψp and the initiator vertex uc of ψc. Such an edge is an
example of an absorption edge. ESS-Compress constructs an enriched string representation
of K, as shown in the figure. The basic idea is that up and uc share a common (k − 1)-mer
(i.e. GT ). We can cut out this common portion from the string representing uc and replace
it with a special marker character “+”. We can then include uc inside of the representation
of up by surrounding uc with brackets. The marker character “ + ” is a placeholder for the
k − 1 nucleotides right before the opening bracket. To decompress the enriched string, we
first replace the marker to get TCGT [GTAA]T and then cleave out the bracketed string to
get {TCGTT,GTAA}. This exactly recovers the SPSS representation of ψp and ψc.

Formally, we say that an edge in cdBG(K) is an absorption edge iff 1) it connects two
unitigs up and uc, on two distinct paths ψp and ψc, respectively, 2) up is an internal vertex,
and 3) uc is an initiator vertex. We refer to up and ψp as parents and uc and ψc as children;
we also say that ψp and up absorb ψc and uc. 3

Figure 1B-D shows the other cases, corresponding to the possible orientation of the
absorption edge. The logic is the same, but we need to introduce a second marker character
“− ” that is a placeholder for the reverse complement of the last k− 1 characters right before
the opening bracket. In each of these cases, we add 3 extra characters (two brackets and one
marker) and remove k − 1 nucleotide characters.

Next, observe that a single parent path can absorb multiple children paths, as illustrated
in Figure 2A. Also, observe that a single parent unitig can absorb more than one child path,
as shown in Figure 2B. As in the previous example, we save k − 1− 3 = k − 4 characters for
every absorbed edge.

These absorptions can be recursively combined, as shown in Figure 2C. Because we
require a parent unitig to be an internal vertex and a child unitig to be an initiator vertex,
the same unitig cannot be both parent and child. Therefore, ESS-Compress can construct a
representation recursively, without any conflicts. The recursion tree is reflected in the nesting
structure of the brackets in the enriched string.

However, we must be careful to avoid cycles in the recursion. We define the absorption
digraph DA as the directed graph whose vertex set is the set of paths Ψ and an edge (ψp → ψc)
if ψp absorbs ψc. For every edge in DA, we also associate the corresponding bidirected edge
between up and uc in cdBG(K). We would like to select a subset of edges F along which to
perform absorptions, so as to avoid cycles in DA and to make sure a path cannot be absorbed
by more than one other path. We would also try to choose as many edges as possible, since
each absorption saves k− 4 characters. To achieve these goals, ESS-Compress defines F as a
spanning out-forest in DA with the maximum number of edges. We postpone the algorithm
to find F to Section 3.2.

The high-level pseudo-code of ESS-Compress is shown in Algorithm 1 and illustrated
in Figure 3. The recursive algorithm to create the enriched representation using F as a
guide is shown in Algorithm 2. It follows the intuition we just developed. It starts from the
paths that will not be absorbed (i.e. the roots in F ). For a path ψp, it first computes the
enriched representations of all the child paths (Lines 3 to 9). It then integrates them into

2 Note that the vertices of this graph (i.e. cdBG(K)) correspond to maximal unitigs in the non-compacted
graph (i.e. dBG(K)). We will generally use “vertex” and “unitig” interchangeably, to refer to a vertex
in cdBG(K). We never use “unitig” to refer to a type of path in cdBG(K).

3 In our code, we actually allow a slightly broader definition of absorption. In particular, we also allow an
edge to be absorbing if up is an initiator and sp = 1, or if up is an initiator and |lab(up)| ≥ 2k − 2. For
the sake of simplicity, we do not consider this edge case in the paper.
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Panel (A) Panel (B)

Panel (C) Panel (D)

Figure 1 Examples of the four types of absorption. Each panel shows the edges along two paths:
ψp (red vertices inside a shaded rectangle) and ψc (blue vertices inside a shaded rectangle) and an
absorption edge e = {(up, sp), (uc, sc)} (dashed line) between the parent unitig up and the child
unitig uc. The graph being shown in each panel is cdBG(K), but only the absorption edge and the
edges of ψp and ψc are shown. In this simple example, the unitigs of dBG(K) are just paths made of
single vertices, and hence the vertices of cdBG(K) have labels of length k = 3. Each vertex is shown
as a pointed rectangle with its label inside; we use the convention that the “zero” side of a vertex
is the flat side on the left, and the “one” side is the pointy side on the right. At the bottom left
of each panel, we show the spectrum-preserving string set (SPSS) spell({ψp, ψc}). At the bottom
right, we show the enriched representation generated by our algorithm. Depending on the value of sp

and sc, four different cases can arise. When sp = 1, sc = 0 (shown in (A)), pre(lab(uc)) is replaced
with marker “+”, as it is same as suf(lab(up)). When sp = 1, sc = 1 (shown in (B)), pre(lab(uc))
is replaced by “−”, as it is same as the reverse complement of suf(lab(up)). When sp = 0, sc = 0
(shown in (C)), pre(lab(uc)) is replaced with “−”, as it is the same as the reverse complement of
pre(lab(up)). When sp = 0, sc = 1 (shown in (D)), suf(lab(uc)) is replaced with “+”, as it is the
same as pre(lab(up)).
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Panel (A) Panel (B)

Panel (C)

Figure 2 More complex absorption examples. In (A), one path absorbs multiple paths. In (B),
one unitig up absorbs multiple paths. In (C), one path (ψ1) absorbs another (ψ2) which itself absorbs
another (ψ3). This is a recursive absorption, showing how a path can be both a child and a parent.

Figure 3 Visual overview of the steps in Algorithm 1.
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Algorithm 1 ESS-Compress (K)
Input: a set of canonical k-mers K
Output: a set of enriched strings X.

1: Construct cdBG(K)
2: Run UST to get a path cover Ψ
3: Run DFS algorithm to get F , a spanning out-forest of the absorption graph DA

4: X ← ∅
5: for each path ψ which is a root in F do
6: add Spell-Path-Enrich (ψ, null) to X
7: end for
8: return X

the appropriate locations of spell(ψp) (Lines 10 to 14). It then uses a marker to replace the
redundant sequence in the spelling of ψp, with respect to ψp’s own parent (Lines 17 to 31).
To decide which marker to use, it receives as a parameter the absorption edge eD that was
used to absorb ψp.

Decompression is done by a recursive algorithm DEC that takes as input an enriched
string x and a (k−1)-mer called markerReplacement. Initially, DEC is called independently
on every enriched string x ∈ ESS-Compress(K), with markerReplacement = null. We call
the characters of x which are not enclosed within brackets outer. The brackets themselves
are not considered outer characters. DEC first replaces any occurrence of an outer “ + ”
(respectively, “ − ”) with markerReplacement (respectively, the reverse complement of
markerReplacement). It then outputs all the outer characters as a single string. Then, for
every top-level open/close bracket pair in x, it calls DEC recursively on the sequence in
between the brackets, and passes as markerReplacement the rightmost k−1 outer characters
to the left of the open bracket.

3.2 Algorithm to choose absorption edges
Let D be any directed graph and consider the problem of finding a spanning out-forest with
the maximum number of edges. We call this the problem of finding an edge-maximizing
spanning out-forest. This problem is a specific instance of the maximum weight out-forest
problem [3], which allows for weights to be placed on the edges. As we show in this section,
there is an optimal algorithm for our problem that is simpler than the algorithm for arbitrary
weights described in [3].

Our algorithm first decomposes D into strongly connected components, and builds SC(D),
the strongly connected component digraph of D. In SC(D), the vertices are the strongly
connected components of D, and there is an edge from component c1 to c2 if there is an edge
in D from some vertex in c1 to some vertex in c2. For every component that is a source in
SC(D), we pick an arbitrary vertex from it (in D) and put it into a “starter” set. Then, we
perform a depth-first search (DFS) traversal of D, but whenever we start a new tree, we
initiate it with a vertex from the starter set, if one is available. We remove the vertex from
the starter set once it is used to initiate a tree. We then output the DFS forest F .

We will prove that F is a spanning out-forest of D with the maximum number of edges.

I Lemma 1 (Correctness of edge-maximizing spanning out-forest algorithm). Let D be a directed
graph, let F be the spanning out-forest returned by our algorithm run on D, and let nsc be
the number of source components in SC(D). Then, the number of out-trees in F is nsc and
this is the smallest possible for any spanning out-forest. Also, the number of edges in F is
the maximum possible for any spanning out-forest.



A. Rahman, R. Chikhi, and P. Medvedev 16:9

Algorithm 2 Spell-Path-Enrich(ψ,eD)
Input: a path ψ corresponding to the sequence of unitigs u0, . . . , un. If ψ is itself absorbed, then
the absorption edge eD.
Output: an enriched string representation of ψ and all its descendent paths in F .

1: for i = 0 to n do . for each unitig in ψ
2: Use up to denote the ith unitig of ψ.
3: ins0 = “” . absorbed enriched strings to insert at the end
4: ins1 = “” . absorbed enriched strings to insert after prefix
5: for each unitig uc absorbed by up in F do
6: Let e = {(up, sp), (uc, sc)} be the corresponding absorption edge in cdBG(K)
7: Let ψc ∈ Ψ be the path containing uc.
8: inssp ← inssp · Spell-Path-Enrich(ψc, e)
9: end for
10: if i = 0 then . if up is the first unitig in ψ
11: enrichedStr[i]← pre(lab(up)) · ins0 · cutPre(lab(up)) · ins1
12: else
13: enrichedStr[i]← ins0 · cutPre(lab(up)) · ins1
14: end if
15: end for
16: x← concatenate enrichedStr[i], in increasing order of i
17: if eD 6= null then . if ψ is not a root in F
18: /* Perform marker replacement, following Figure 1 */
19: Let {(up, sp), (uc, sc)} = eD
20: if (sp xor sc) = 1 then
21: marker = “ + ”
22: else
23: marker = “− ”
24: end if
25: if sc = 1 then
26: In x, replace suf(lab(uc)) with marker
27: else
28: In x, replace pre(lab(uc)) with marker
29: end if
30: x← “[” · x · “]”
31: end if
32: return x

Proof. Consider any spanning out-forest of D. If it has less than nsc out-trees, then by the
pigeonhole principle, there are two source components c1 and c2 with vertices v1 and v2,
respectively, belonging to the same out-tree. This is a contradiction, since c1 and c2 are source
components and hence there cannot be a path between them. Hence, any spanning out-forest
must have at least nsc out-trees. Now, consider F . Every vertex in D is reachable from one
of the vertices in the starter set, by its construction. There are nsc starter vertices, so F will
have at most nsc out-trees. Since any spanning out-forest must have at least nsc out-trees,
F will have nsc out-trees and it will be the minimum achievable. Also, in any spanning
out-forest, the number of edges is the number of vertices minus the number of out-trees;
hence F will have the the maximum number of edges of any spanning out-forest. J
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3.3 The weight of the ESS-Compress representation
In this section, we derive a formula for the weight of the ESS-Compress representation and
explore the potential benefits of some variations of ESS-Compress.

I Theorem 2. Let K be a set of canonical k-mers, and let Ψ be a vertex-disjoint normalized
path cover of cdBG(K) that is used by ESS-Compress(K). Let nsc be the number of sources
in the strongly connected component graph of the absorption graph DA. Let X be the solution
returned by ESS-Compress(K). Then

weight(X) = |K|+ 3|Ψ|+ nsc(k − 4)

Proof. If we unroll the recursion of ESS-Compress, then there are exactly |Ψ| runs of
Spell-Path-Enrich, one for each ψ ∈ Ψ. For each call, we let nψ be the number of characters
in the returned string that are added non-recursively (i.e. everything except ins0 and ins1).
Considering the structure of the recursion and accounting for characters in this way, we have
that weight(X) =

∑
ψ∈Ψ nψ.

Prior to marker replacement (Line 17, the non-recursive part of x is spell(ψ)). When
ψ is a root in the absorption forest F , then the marker absorption stage is not executed
and so nψ = |spell(ψ)|. Otherwise, the marker absorption phase (Lines 17 to 31) removes
k − 1 characters, adds 1 new marker character, and adds two new bracket characters. Hence,
nψ = |spell(ψ)| − (k− 1) + 3 = |spell(ψ)| − (k− 4). By Lem. 1, F contains nsc roots. Hence,

weight(X) =
∑
ψ∈Ψ

nψ =
∑

ψ is a root
|spell(ψ)|+

∑
ψ is not a root

|spell(ψ)| − (k − 4)

=
∑
ψ∈Ψ
|spell(ψ)| − (k − 4)(|Ψ| − nsc) = |K|+ 3|Ψ| − nsc(k − 4)

The last equality follows by applying Equation (1) from Section 2. J

We can use Thm. 2 to better understand ESS-Compress. The weight depends on the
choice of Ψ. The Ψ returned by UST has, empirically, almost the minimum |Ψ| possible [29].
This (almost) minimizes the 3|Ψ| term in Thm. 2. However, this may not necessarily lead to
the lowest total weight, because there is an interplay between Ψ and nsc, as follows. Let Ψ′
be a vertex-disjoint normalized path cover with |Ψ′| > |Ψ|. Its paths are shorter, on average,
than Ψ’s. There may now be edges of cdBG(K) that become absorption edges, that were
not with Ψ. For example, an edge between two unitigs which are internal in Ψ is not, by our
definition, an absorption edge. With the shorter paths in Ψ′, one of these unitigs may become
an initiator vertex, making the edge absorbing. This may in turn improve connectivity in
DA and decrease nsc, counterbalancing the increase in |Ψ′|. Nevertheless, ESS-Compress
does not consider alternative path covers and always uses the one returned by UST.

Another aspect of ESS-Compress that could be changed is the definition of absorption
edge. We restrict absorption edges to be between an initiator unitig and an internal unitig;
however, one could in principle also define ways to absorb between an endpoint unitig and
an internal unitig, or between two internal unitigs. This could potentially decrease nsc by
increasing the number of absorption edges, though it would likely need more complicated
and space-consuming encoding schemes.

How much could be gained by modifying the path cover and the absorption rules that
ESS-Compress uses? We can answer this by observing that nsc cannot be less than C, the
number of connected components of the undirected graph underlying cdBG(K). At the same
time, in [29] we gave an algorithm to compute an instance-specific lower bound β on the
number of paths in any vertex-disjoint path cover. Putting this together, we conclude that
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regardless of which path cover is used and which subset of cdBG(K) edges are allowed to be
absorbing, the weight of a ESS-Compress representation cannot be lower than:

|K|+ 3β + C(k − 4) (2)

As we will see in the results, the weight of ESS-Compress is never more than 2% higher
than this lower bound, which is why we did not pursue these other possible optimizations to
ESS-Compress. We note, however, that the above is not a general lower bound and does not
rule out the possibility of lower-weight string set representations that beat ESS-Compress.

4 ESS-Tip-Compress: a simpler alternative

ESS-Compress is designed to achieve a low compression size but can require a large memory
stack due to its recursive structure. The memory during compression and decompression
is proportional to the depth of this stack, which is the depth of the out-forest F . If
F were to be more shallow, then the memory would be reduced. In this section, we
describe ESS-Tip-Compress, a simpler, faster, and lower-memory technique that can be used
when compression speed/memory are prioritized. It is centered on dead-end vertices in the
compacted graph, which usually correspond to tips in the uncompacted dBG and are typically
due to sequencing errors, endpoints of transcripts, or coverage gaps. ESS-Tip-Compress is
based on the observation that a large chunk of the graph is dead-end vertices (at least for
sequencing data), and limiting absorption to only them can yield much of the benefits of a
more sophisticated algorithm.

First, we find a vertex-disjoint normalized path cover Ψ that is forced to have each
dead-end vertex in its own dedicated path (i.e. its path only contains the vertex itself). This
can be done easily by running UST on the graph obtained from cdBG(K) by removing all
dead-end vertices. Next, we select the absorption forest F as follows. For each dead-end
vertex v, we identify a non-dead-end vertex u which is connected to v via an edge e. In the
rare case that such a u does not exist, we skip v. Otherwise, we add (u→ v) to F . We can
assume without loss of generality that side(u, e) = 1− side(v, e) because if that is not the
case, than we can replace lab(v) by its reverse complement and thereby change the side to
which e is incident. For any paths that remain uncovered by F , we add them as roots of
their own tree. Finally, we run a slightly modified version of Spell-Path-Enrich, using this Ψ
and this F .

We modify Spell-Path-Enrich as follows. First, observe that F has max depth of 2 vertices.
Hence, the parenthesis generated by Spell-Path-Enrich are never nested. Second, observe
that the marker value is always “ + ”, because side(u, e) = 1− side(v, e) for all absorption
edges in F . These observations allow us to reduce the number of extra characters we need
for each absorption down to 2, instead of 3 (we omit the implementation details).

5 Empirical Results

We evaluated our methods on one small bacterial dataset, two metagenomic datasets from
NIH human microbiome project, and RNA-seq reads from both human and plant (Table 1).
To obtain the set of k-mers K from these datasets, we ran the DSK k-mer-counter [30]
with k = 31 and filtered out low-frequency k-mers (<5 for whole human and <2 for the
other datasets). We then constructed cdBG(K) using BCALM2. The last three columns
in Table 1 show the properties of the graph: number of vertices, number of dead-end vertices
and total percentage of isolated vertices. We ran all our experiments single-threaded on
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Table 1 Dataset characteristics.

Dataset Source Read
Length
(bp)

# reads # distinct
31-mers # unitigs % dead-end

unitigs
% isolated

unitigs

R. sphaeroides GAGE [31] 101 2,050,868 5,908,467 442,681 47% 8%
Human RNA-seq SRR957915 101 49,459,840 101,017,526 7,665,682 40% 13%
Gingiva metagenome SRS014473 101 55,419,548 101,872,420 5,678,516 36% 15%
Soybean RNA-seq SRR11458718 125 83,594,116 111,206,789 3,659,969 28% 12%
Tongue metagenome SRS011086 101 81,664,789 165,159,726 11,358,233 37% 11%
Whole human ERR174310 101 207,579,467 2,319,022,432 51,094,913 14% 18%

a server with an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor with 64 cores
and 512 GB of memory. We used /usr/bin/time to measure time and memory. Detailed
steps to reproduce our experiments are available at https://github.com/medvedevgroup/
ESSCompress/tree/master/experiments.

The output of our tools was compressed with MFC. Note that MFC is not optimized
for non-nucleotide characters, but such characters are rare in our string sets (< 0.1 bits per
k-mer). We compared our tools against four other approaches. The first is UST-Compress,
which we showed in our previous work to outperform other disk compressors [29]. The second
is to strip the read FASTA files of all non-sequence information and compress them using
MFC. The third is to simply write one distinct k-mer per line to a file and compress it
using MFC. The fourth is the BOSS method, as implemented in [1]. BOSS is a succinct
implementation of a de Bruijn graph [6]. Though it is designed to answer membership queries,
it also achieved the closest compression size to UST-Compress in our previous study [29]. As
in [29], we compressed BOSS’s binary output using LZMA. We confirmed the correctness of
all evaluated tools, including our own, on the datasets.

We did not explore the possibility of replacing UST in our pipeline with ProphAsm [2].
ProphAsm is an alternative algorithm to compute an SPSS called simplitigs, but we showed
in [29] that the UST SPSS representation is nearly optimal, with only 2-3% difference to
the lower bound of weight. Since ProphAsm computes the same kind of representation,
it is impossible for it to improve result beyond 2-3%. We also did not compare against
other k-mer membership data structures because in our previous paper [29], we showed that
UST-Compress and BOSS achieve a better compression ratio on the tested datasets.

String set properties

We first measure the weights and sizes of our ESS-Compress and ESS-Tip-Compress, shown
in Table 2. ESS-Compress uses 13-42% less characters than UST. ESS-Tip-Compress was
worse than ESS-Compress (6-13% larger), but still better than UST-Compress (3-38%
smaller). The lower bound computed by Eq. 2 is very close to the weight of ESS-Compress
(within 1.7%, Table 2), indicating that the alternate strategies explored in Section 3.3 would
not be useful on these datasets.

Compression size

Table 3 shows the final compression sizes, after the string sets are compressed with MFC.
ESS-Compress outperforms the second best tool (which is usually UST-Compress) by 4-27%.
It outperforms the naive strategies (i.e. read FASTA or one k-mer per line) by an order-
of-magnitude. Interestingly, it outperforms ESS-Tip-Compress by only 1-8%; this can be
attributed to the large number of dead-end vertices (Table 1).

https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
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Table 2 The weights and sizes of various string set representations. The rightmost column shows
the lower bound computed by Equation (2) in Section 3.3. The weight of ESS-Compress was verified
to be the same as predicted by Theorem 2.

UST ESS-Tip-Compress ESS-Compress
Eq. 2
lower
bound

Dataset # strings #char/
k-mer # strings #char/

k-mer # strings #char/
k-mer

#char/
k-mer

R. sphaeroides 240,562 2.22 61,909 1.38 36,456 1.29 1.28
Human RNA-seq 4,098,389 2.22 1,834,945 1.60 1,098,938 1.42 1.39
Gingiva metagenome 3,095,476 1.91 1,499,270 1.48 917,388 1.33 1.32
Soybean RNA-seq 1,806,078 1.49 1,137,350 1.32 515,244 1.17 1.17
Tongue metagenome 6,030,814 2.10 2,664,422 1.53 1,327,701 1.33 1.32
Whole human 22,072,219 1.32 21,320,263 1.28 10,321,275 1.15 1.14

Table 3 The compression sizes, as measured in bits per k-mer in the compressed output. All
string representations (i.e. not BOSS) are compressed using MFC in the final step. Since BOSS is a
binary representation, we use LZMA for the final compression step.

Dataset Read
FASTA

One k-mer
per line BOSS UST-

Compress
ESS-Tip-
Compress

ESS-
Compress

R. sphaeroides 45.4 28.4 6.55 3.93 2.90 2.87
Human RNA-seq 45.8 31.7 6.89 4.14 3.43 3.33
Gingiva metagenome 48.0 32.4 10.64 3.76 3.22 3.05
Soybean RNA-seq 43.0 33.1 5.97 2.83 2.66 2.55
Tongue metagenome 48.1 33.3 3.59 4.07 3.32 3.07
Whole human 31.9 48.2 4.65 2.49 2.46 2.40

We observe that our improvement in weight (Table 2) does not directly translate to
improvement after compression with MFC (Table 3). For ESS-Compress, the average
improvement in weight over UST is 30% but the improvement in bits is 17%. We attribute
this to the fact that MFC works by exploiting redundant regions, based on their context.
Thus, the redundant sequence that ESS-Compress removes is likely the sequence that was
more compressible by MFC and hence MFC looses some of its effectiveness.

We also verified that ESS-Compress can successfully compress datasets of varying k-
mer sizes (between 21 and 71) and low-frequency thresholds (2,3, and 4). Figure 4 shows
compressed sizes of human RNA-seq data in bits/k-mer as well as their weights compared
to the lower bounds. The weight of ESS-Compress closely matches the lower bound across
all parameters (< 2.4% gap), but the weight and compression size increase for larger k and
lower thresholds.

Decompression and compression time and memory

The cost of decompression is important since it is incurred every time the dataset is used
for analysis. For both ESS-Compress and ESS-Tip-Compress, the decompression memory is
< 1 GB (Table 5) the time is < 10 minutes for the large whole human dataset and < 1.5
minutes for the other datasets (Table 4). Both of these are dominated by the MFC portion.

Compression is typically done only once, but the time and memory use can still be
important in some applications. Tables 5 and 6 show the compression time and memory

WABI 2020



16:14 Disk Compression of k-mer Sets

|
|

|

|

|

|
1.

2
1.

4
1.

6
1.

8
2.

0
2.

2
2.

4

k

nu
m

be
r 

of
 c

ha
r/

k−
m

er

21 31 41 51 61 71

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

threshold=2
threshold=2
threshold=3
threshold=3
threshold=4
threshold=4

+

+
+

+

+

+

2.
5

3.
0

3.
5

4.
0

k

co
m

pr
es

si
on

 s
iz

e 
(b

its
/k

−
m

er
)

21 31 41 51 61 71

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

threshold=2
threshold=3
threshold=4

Figure 4 Compression performance of ESS-Compress when varying k and the low-frequency filter
threshold, on Human RNA-seq dataset. In the left panel, solid lines represent the weight of the
ESS-Compress representation, compared against the lower bound, represented by the dashed lines.
In the right panel, compressed sizes are shown in bits/k-mer.

Table 4 Decompression time in seconds. The time is broken down into the portion taken by
MFC to decompress the binary file into an enriched string set and the portion taken by our core
algorithm to decompress the enriched string set into an SPSS. Note that BOSS does not implement
decompression (because it is a membership data structure) so it is not included.

Dataset UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core Total MFC-D Core Total

R. sphaeroides 3 2 1 4 2 1 3
Human RNA-seq 40 41 19 60 34 17 51
Gingiva metagenome 37 38 16 54 30 15 45
Soybean 31 33 13 46 29 13 42
Tongue metagenome 62 61 28 89 49 25 74
Whole human 302 337 259 596 303 250 553

usage. For UST-Compress, the time is dominated by the cdBG construction step (i.e.
BCALM2). For ESS-Compress, the time and memory are significantly increased beyond
that. Here, the advantage of ESS-Tip-Compress stands out. Its run time is nearly the same
as UST-Compress, and its memory, while close to UST-Compress, is significantly lower than
ESS-Compress.

Note that MFC is one of many DNA sequence compressors that can be used with
our algorithms. MFC is known to achieve superior compression ratios but is slower for
compression/decompression than other competitors [20]. We recommend using MFC since it
was not the time or memory bottleneck during compression, in our datasets.
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Table 5 Peak memory usage for compression and decompression. Decompression takes far less
memory than compression, so compression memory is shown in GB and decompression memory in
MB. Decompression memory is split in the same manner as the running time in Table 4.

Dataset
Compression (GB) Decompression (MB)

BOSS UST-
Compress

ESS-Tip-
Compress

ESS-
Compress

UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core MFC-D Core

R. sphaeroides 2 3 3 3 509 513 3 513 4
Human RNA-seq 4 3 3 6 515 515 3 515 38
Gingiva metagenome 4 2 2 5 515 515 3 515 4
Soybean 4 2 2 3 515 515 3 515 12
Tongue metagenome 4 2 2 9 515 515 3 515 6
Whole human 5 12 11 42 515 515 3 515 735

Table 6 Compression time, measured in minutes. The column for BOSS includes the time for
k-mer counting the reads using KMC [19], the time to run BOSS construction, and the time to run
LZMA. The total time in UST-Compress, ESS-Tip-Compress and ESS-Compress include the time
to compute cdBG from the reads using BCALM, which is same for all three. The columns labelled
core refer to Algorithm 1. ESS-Tip-Compress core uses the specific instance of Algorithm 1 defined
in Section 4.

Dataset BOSS BCALM UST-Compress ESS-Tip-Compress ESS-Compress

UST MFC Total Core MFC Total Core MFC Total

R. sphaeroides 0.2 0.4 0.1 0.1 1 0.1 0.0 1 0.2 0.0 1
Human RNA-seq 4.0 6.6 1.6 0.8 9 1.3 0.7 9 5.0 0.6 12
Gingiva metagenome 4.3 5.5 1.2 0.7 7 1.0 0.7 7 3.4 0.6 10
Soybean 5.7 9.6 0.8 0.6 11 0.7 0.7 11 2.4 0.5 13
Tongue metagenome 7.4 8.7 1.6 0.8 11 1.9 1.1 12 7.6 0.9 17
Whole human 95 106 11 7 124 10 6 122 40 7 152

6 Discussion

In this paper, we presented a disk compression algorithm for k-mer sets called ESS-Compress.
ESS-Compress is based on the strategy of representing a set of k-mers as a set of longer
strings with as few total characters as possible. Once this string set is constructed, it is
compressed using a generic nucleotide compressor such as MFC. On real data, ESS-Compress
uses up to 42% less characters than the previous best algorithm UST-Compress. After MFC
compression, ESS-Compress uses up to 27% less bits than UST-Compress.

We also presented a second algorithm ESS-Tip-Compress. It is simpler than ESS-Compress
and does not achieve as good of compression sizes. However, the difference is less than 8%
on our data, and it has the advantage of being about twice as fast and using significantly
less memory during compression. For many users, this may be a desirable trade-off.

Our algorithms can also be used to compress information associated with the k-mers in K,
such as their counts. Every k-mer in K corresponds to a unique location in the enriched string
set. The counts can then be ordered sequentially, in the same order as the k-mers appear in
the string set, and stored in a separate file. This file can then be compressed/decompressed
separately using a generic compressor. After decompression of the enriched string set, the
order of k-mers in the output SPSS will be the same as in the counts file.

We discussed several potential improvements to ESS-Compress, such as allowing more
edges in the compacted de Bruijn graph to be absorbing or exploring the space of all path
covers. We also gave a lower bound to what such improvements could achieve and showed
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they cannot gain more than 2% in space on our datasets. This makes these improvement of
little interest, unless we encounter datasets where the gap is much larger.

ESS-Compress works by removing redundant (k− 1)-mers from the string set, but a more
general strategy could be to somehow remove `-mer duplicates, for all `min ≤ ` ≤ k−1. Such
a strategy would require novel algorithms but would still be unable to reduce the characters
per k-mer below one. On our datasets, this amounts to at most a 30% improvement in
characters, which would be further reduced after MFC compression. It is also not clear if a
30% improvement in characters is even possible, since this kind of strategy would require a
more sophisticated encoding scheme with more overhead.

Another direction to achieve lower compression sizes is to look beyond string set approaches.
We observe, for example, that the large improvement of ESS-Compress compared to UST-
Compress, measured in the weight of the string set, was significantly reduced when measured
in bits after MFC compression. This indicates that some of the work done by ESS-Compress
duplicates the work done by MFC on UST, which is itself designed to remove redundancy in
the input. Thus, generic compressors such as MFC could potentially be modified to work
directly on k-mer sets.

We believe that the biggest opportunity for improving the two algorithms of this paper
are the compression time and memory. The time is dominated by the initial step of running
BCALM2 to find unitigs. It may be possible to avoid this step by running UST directly on
the non-compacted graph. Such an approach was taken in [8], and it would be interesting to
see if it ends up improving on the memory and run-time of BCALM2. The memory usage,
on the other hand, can likely be optimized with better software engineering. The current
implementation of Algorithm 2 is done in a memoized bottom-up manner. Instead, a top
down iterative implementation can reduce memory usage by directly writing to disk as soon
as a vertex is processed. A “max-depth” option in Algorithm 2 could also be used to limit
the depth of the recursion, thereby controlling memory at the cost of the compression ratio.
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Abstract
We consider the following model for sampling pairs of strings: s1 is a uniformly random bitstring
of length n, and s2 is the bitstring arrived at by applying substitutions, insertions, and deletions
to each bit of s1 with some probability. We show that the edit distance between s1 and s2 can be
computed in O(n lnn) time with high probability, as long as each bit of s1 has a mutation applied
to it with probability at most a small constant. The algorithm is simple and only uses the textbook
dynamic programming algorithm as a primitive, first computing an approximate alignment between
the two strings, and then running the dynamic programming algorithm restricted to entries close
to the approximate alignment. The analysis of our algorithm provides theoretical justification for
alignment heuristics used in practice such as BLAST, FASTA, and MAFFT, which also start by
computing approximate alignments quickly and then find the best alignment near the approximate
alignment. Our main technical contribution is a partitioning of alignments such that the number
of the subsets in the partition is not too large and every alignment in one subset is worse than an
alignment considered by our algorithm with high probability. Similar techniques may be of interest
in the average-case analysis of other problems commonly solved via dynamic programming.
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1 Introduction

Edit distance is an important string similarity measure whose computation has applications
in many fields including computational biology. Its simplest variant is the Levensthein
distance, which is the minimum number of insertions, deletions, or substitutions required to
turn the first string into the second. A textbook dynamic programming algorithm computes
the edit distance between two length n strings in O(n2) time (see e.g. Section 6.3 of [12]),
and the best known worst-case exact algorithm runs in O( n2

ln2 n
) time [23]. Assuming the

Strong Exponential Time Hypothesis, Backurs and Indyk showed that no O(n2−ε) time
algorithm exists [7] for any ε > 0, and Bringmann and Künnemann extended this result to
the special case of bitstrings, suggesting that these algorithms are near-optimal [10].
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In many practical applications, a quadratic runtime is prohibitively expensive. For
example, it was once estimated that using the textbook algorithm to align the full genomes
of a human and a mouse (although not a very practical problem) would take 95 CPU years
[14]. When the edit distance is small, one can do better. An immediate result is that if
the edit distance between two length n strings is at most d, it can be computed in time
O(nd) (by considering only entries in the dynamic programming table which are distance
at most d from entries indexed (i, i) for some i), and Landau et al. give a more nuanced
algorithm which finds the edit distance in time O(n+ d2) [22]. However, when e.g. aligning
the sequences of two different species the edit distance can still be as large as Ω(n), so these
results do not offer substantial improvements over the textbook algorithm.

Motivated by this and the aforementioned lower bounds, there have been many efforts to
design faster algorithms. Many worst-case approximation algorithms exist for the problem
(e.g. [9, 5, 6, 11]). However, most results give super-constant approximation ratios, and even
the known constant approximation ratios are perhaps too large for practical applications. For
example, popular knowledge suggests that a 3-approximation algorithm1 for edit distance
when applied to genome sequences is not guaranteed to determine that humans are more
closely related to dogs than chickens.

However, there is good reason to believe that in biological applications, the subquadratic
lower bound is not applicable. Roughly speaking, the lower bounds of [7, 10] say that every
part of one string must be compared to every part of another string in order to compute
the edit distance exactly. In practice, this should rarely be true. e.g. when aligning two
genomes, there is good reason to believe that the beginning of the first genome only needs to
be compared to the beginning of the second genome. Observations like this motivate the
need for average-case analysis of edit distance algorithms. There are already several results
on average-case analyses of edit distance. For example, [4] gives an approximation algorithm
when the inputs are chosen adversarially but then perturbed, [17] gives an exact algorithm
when the inputs are compressible, and [21] gives an approximation algorithm when one of
the input strings satisfies a pseudo-randomness condition. Note that all these results require
losing an approximation factor (which as mentioned before is undesirable) and/or for fairly
specific conditions (such as compressibility) to hold for the input.

1.1 Our Contribution

In this paper, we consider a model for average-case analysis of edit distance called the indel
channel which is motivated by biological applications. In this model, we generate a random
bitstring of length n as our first string (using bitstrings simplifies the presentation, and the
results generalize easily to larger alphabets), and then at each position in the string randomly
apply each of the three types of mutations (insertion, deletion, substitution) independently
with some probability to get the second string. We let ID(n) denote the distribution of
pairs of strings and sets of mutations generated by this model. This model of random
string mutation is popular as an extension of the CFN model for biological mutations in
computational biology, and problems based on the indel channel have been defined and
studied in the areas of sequence alignment [15], phylogenetic reconstruction [13, 2, 3, 16],
and trace reconstruction [19, 24, 18]. We show that for pairs of strings generated by this
model, we can compute their exact edit distance in near-linear time with high probability:

1 The approximation ratio proven by [11] is 1680, though they conjecture their algorithm is actually a
(3 + ε)-approximation.
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I Theorem 1 (Informal). Let s1 be a uniformly random bitstring of length n and s2 be the
bitstring generated by applying substitution, insertion, and deletion to each bit of s1 each
uniformly at random and with probability at most some constant. Then with high probability
we can compute the edit distance between s1 and s2 in O(n lnn) time.

Our Techniques. Our algorithm is simple, using only the dynamic programming algorithm
as a primitive. The high-level approach is as follows: While we cannot use the dynamic
programming algorithm to compute the edit distance between the two strings and get a
near-linear time algorithm, we can repeatedly use it to compute the edit distance between
two substrings of length k lnn, where k is a (sufficiently large) constant. Under the indel
channel, a substring of length k lnn of the first string s1 and the corresponding substring of
the second string s2 have low edit distance compared to two random substrings with high
probability. So by computing the edit distance between two substrings of length k lnn, we
can determine if the correct alignment places these two substrings close to each other.

We can now use this as a primitive to find an alignment of the two strings that is
an approximation of the “canonical” alignment, i.e. the alignment corresponding to the
insertions and deletions caused by indel channel. If we know bit i of s1 is aligned with bit j
of s2, then with high probability there are only O(lnn) indices in s2 that bit i+ k lnn of s1
can be aligned with. Even if we only have an estimate for where bit i of s1 is aligned with
in s2 that is O(lnn) bits off, with high probability the number of indices bit i+ k lnn of s1
can be aligned with is still O(lnn). So, once we have computed an approximate alignment
for the first i bits of s1, we can iteratively extend the approximate alignment by using a
small number of edit distance computations on bitstrings of length O(lnn) to determine
approximately where bit i+ k lnn of s1 should be aligned. We note that some past works
studying the indel channel in phylogenetic reconstruction use the trivial “diagonal” alignment
(e.g. [13, 16]) as an approximate alignment.

Once we have an approximate alignment, our algorithm is straightforward: Use the
dynamic programming algorithm, but only compute entries in the dynamic programming
table which are close to the approximate alignment. We show that with high probability,
the best alignment is close to the canonical alignment suggested by the indel channel, which
is close to our approximate alignment, giving the correctness of this algorithm. To show
this statement holds, we would like to use the fact that that any alignment which differs
significantly from the canonical alignment is better than the canonical alignment with
probability decaying exponentially in the difference between the two alignments. However,
there are too many alignments for us to conclude by combining this fact with a union bound.
Instead, we construct a partition B of the alignments such that for each element B of the
partition B, the alignments in B are structurally similar. Roughly speaking, this lets us
argue for each B that with probability much smaller than 1/|B| all alignments in B are not
optimal. We can then take a union bound over the subsets in B instead of over all alignments
to get the desired statement.

We note that techniques similar to finding an approximate alignment and then computing
the DP table restricted to entries near this alignment are used in heuristics in practice such
as BLAST [1], FASTA [25], and MAFFT [20]. Our analysis thus can be viewed as theoretical
support for these kinds of heuristics.

The rest of the paper is as follows: In Section 2, we define the indel channel model
formally, give some simple probability facts that are useful, and define some terms that
appear frequently in the analysis. In Section 3, as a warm-up we show that in the substitution-
only case, the optimal alignment is close to the diagonal. In Section 4 we describe and
analyze our algorithm for finding an approximate alignment. In Section 5, we extend the
analysis from Section 3 to the general case, completing the proof of Theorem 1.
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2 Preliminaries and Definitions

To simplify the presentation, we will often treat possibly non-integer numbers like lnn, k lnn
and n/k lnn as integers without explicitly rounding them first. The correctness of all proofs
in the paper is unaffected by replacing these quantities by their rounded versions (e.g. dlnne)
where appropriate.

2.1 Problem Setup
In this section, we describe the model used to generate the pairs of correlated strings
and formally state our main result. We start by sampling a uniformly random bitstring
s1 ∼ {0, 1}n. We pass s1 through an indel channel to arrive at a new bitstring s2. When
passed through the indel channel, for the jth bit of s1, bj := (s1)j :

bj is substituted, i.e. flips, with probability ps.
bj is deleted, with probability
pd if the previous bit bj−1 was not deleted,
qd > pd if the previous bit bj−1 was deleted. (This is similar but not equivalent to
deleting a geometric number of bits whenever a deletion occurs)

That is, whenever a bit bj is deleted, an additional number of bits equal to roughly a
geometric random variable with mean 1/(1− qd) are deleted to the right of bj .
An insertion event occurs with probability pi, inserting a uniformly random bit string
t ∼ {0, 1}I with length I ∼ Geo (1− qi) (I has mean 1/(1−qi)) to the right of bj . Inserted
bits are not further acted upon by the indel channel.

We call each of these edits, and use E to denote the set of edits occurring in the indel
channel. Each mutation happens independently for each bit and across different bits. As
mentioned before, this definition of the indel channel is chosen to parallel models in both the
computer science theory and computational biology communities that account for splicing
in/out entire subsequences rather than individual sites (e.g. see [15] for an example of a
model for mutation which uses geometric indel lengths; of course, setting qd = pd, qi = 0
gives the setting where only single bits are spliced in/out). We require that

ps ≤ ρs, pd ≤ ρd,
1− ρd
1− qd

≤ ρ′d, pi ≤ ρi,
1

1− qi
≤ ρ′i. (1)

for some small constants {ρ} := {ρs, ρd, ρ′d, ρi, ρ′i}. Our lemma/theorem statements will
implicity assume (1) holds, and our proofs will specify certain inequalities which must hold for
the values {ρ}, thus specifying a range of values for the mutation probabilities for which our
algorithm is proven to work. We do not attempt to the optimize the values of {ρ} for which
our algorithm works, but will state the exact inequalities that need to hold for {ρ} when it
is convenient to do so. We use ID(n) to denote the distribution of tuples (s1, s2, E) arrived
at by this process for some p, q values - we often make statements about (s1, s2, E) ∼ ID(n)
which apply for any realization of the p, q values satisfying the constraints given by {ρ}, in
which case we will not specify what these values are. Given (s1, s2, E) ∼ ID(n) we want to
compute the edit distance ED(s1, s2) between s1 and s2 as quickly as possible. For simplicity,
we specifically use the Levenshtein distance in our proofs, but they can easily be generalized
to other sets of penalties for edits. We now formally restate Theorem 1 as our main result:

I Theorem 2. Assuming (1) holds for certain constants {ρ}, there exists a (deterministic)
algorithm running in time O(n lnn) that computes ED(s1, s2) for (s1, s2, E) ∼ ID(n) with
probability 1− n−Ω(1).
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2.2 Probability Facts
We start with some basic probability facts appearing in our analysis. We denote the number
of ways to sort a+ b+ c elements into three groups of size a, b, c, i.e. trinomial, by

(
a+b+c
a,b,c

)
.

This of course equals (a+b+c)!
a!b!c! . When the trinomial appears, we use Stirling’s approximation

to bound its value:

I Fact 3 (Stirling’s approximation).
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

We do not aim to optimize constants, so we will use the following standard simplified
Chernoff bound in our proofs:

I Fact 4 (Chernoff bound). Let X1 . . . Xn be independent Bernoulli random variables and
X =

∑n
i=1Xi and µ = E[X]. Then for 0 < ε < 1:

Pr[X ≥ (1 + ε)µ] ≤ e−
ε2µ

3 , P r[X ≤ (1− ε)µ] ≤ e−
ε2µ

2 .

We will also use the following simplified negative binomial tail bound:

I Fact 5 (Negative binomial tail bound). Let X ∼ NBinom(n, p), i.e. X is a random variable
equal to the number of probability p success events needed before n successes are seen. Then
for k > 1:

Pr[X ≥ kn/p] ≤ e−
kn(1−1/k)2

2 .

Proof. This follows from noticing that Pr[X ≥ kn/p] = Pr[Binom(kn/p, p) < n] and
applying a Chernoff bound with ε = 1− 1/k. J

We’ll chain together these facts to get a tail bound for a binomial number of geometric
random variables:

I Lemma 6. Consider X ∼ NBinom(m, q) where m =
∑t
i=1mi, mi ∼ Bern(pi), i.e. X is

a random variable obtained by first sampling m, the sum of t independent Bernoullis, and
then sampling X ∼ NBinom(m, q). Then for 1 < k ≤ 4, µ =

∑t
i=1 pi :

Pr

[
X ≥ k · µ

q

]
≤ e−

(
√
k−1)2µ

3 + e−
kµ(1−1/

√
k)2

2 .

A proof is given in Appendix A.

2.3 Definitions
In this section we give definitions that simplify the presentation. There are many identical
definitions for solutions to the edit distance problem - we will define solutions as paths
through the dependency graph as doing so simplifies the presentation of the analysis.

I Definition 7. Consider the dependency graph of the edit distance dynamic programming
table: For two strings s1, s2 of length n1, n2, the dependency graph of s1, s2 has vertices (i, j)
for i ∈ {0, 1, . . . n1}, j ∈ {0, 1, . . . n2} and directed edges from (i, j) to (i+ 1, j), (i, j + 1) and
(i+ 1, j + 1) for i ∈ [n1], j ∈ [n2] if these vertices exist. The edges {(i− 1, j− 1), (i, j)} where
(s1)i = (s2)j have weight 0 and all other edges have weight 1. The edit distance between s1
and s2, denoted ED(s1, s2), is the (weighted) shortest path from (0, 0) to (n1, n2).
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For completeness we recall the standard dynamic programming algorithm for edit distance
and its restriction to a subset of indices.

I Fact 8 (Textbook Algorithm). The edit distance between s1, s2 of length n1, n2 can be
computed in O(n1n2) time by using e.g. the O(|V | + |E|)-time2 dynamic programming
algorithm for shortest paths in a DAG. In addition, if we know the shortest path in the
dependency graph is contained in vertex set V ′, we can compute the edit distance in O(|V ′|)
time by applying the dynamic program “restricted to V ′” i.e. by applying it to the dependency
graph after deleting all vertices not in V ′.

I Definition 9. An alignment (of two strings s1, s2) is any path A = {(i1 = 0, j1 =
0), (i2, j2) . . . (iL−1, jL−1), (iL = n1, jL = n2)} from (0, 0) to (n1, n2) in the dependency graph
of s1, s2. Denote the set of all alignments by A.

For convenience, we will abuse notation and sometimes use A to also denote the cost of
alignment A, e.g. using A ≥ A′ to denote that the cost of A is at least the cost of A′.

I Definition 10. For (s1, s2, E) ∼ ID(n), the canonical alignment of s1, s2, denoted A∗,
is informally the alignment corresponding to E. More formally, A∗ starts at (0, 0), and for
each row i of the dependency graph, if the first vertex in A∗ in this row is (i, j), we extend
A∗ as follows according to E:

If no insertion or deletion occurs on the ith bit, we include the edge {(i, j), (i+ 1, j + 1)}.
If an insertion of I bits occurs on the ith bit and no deletion occurs, we include the path
{(i, j), (i, j + 1), . . . (i, j + I), (i+ 1, j + I + 1)}
If a deletion and no insertion occurred on the ith bit, we include the edge {(i, j), (i+1, j)}.
If an insertion of I bits occurred and a deletion, we include the path {(i, j), (i, j +
1), . . . (i, j + I), (i+ 1, j + I)}.

The definition of (canonical) alignments depends on the pair of strings s1, s2, but through-
out the paper usually it will be clear that the pair of strings being referred to is sampled
from ID(n), so for brevity’s sake we may refer to a canonical alignment without referring to
strings, letting the strings be implicit.

Note that the canonical alignment is not necessarily the optimal alignment (in fact, even in
the substitution-only case, the substitutions cause the optimal alignment to be one including
insertions and deletions with high probability). However, alignments which differ sufficiently
from the canonical alignment should not perform better than the canonical alignment with
high probability. For alignments which aren’t the canonical alignment, we characterize their
differences from the canonical alignment in terms of where they break from the canoncial
alignment.

I Definition 11. Fix a canonical alignment A∗, and let A be any alignment. A break of
A (from A∗) is any subpath ({(i1, j1), (i2, j2) . . . (iL, jL)}) of A such that (i1, j1) and (iL, jL)
are in A∗ but none of (i2, j2) to (iL−1, jL−1) are in A∗. The length of the break is the value
iL − i1.

For (s1, s2, E) ∼ ID(n), a break of alignment A from (i1, j1) to (iL, jL) is long if its
length is at least k lnn (for a constant k to be specified later) and short otherwise3. An
alignment is good if it has no long breaks and bad if it has at least one long break.

2 Note that the dependency graph has |E| = O(|V |).
3 Note that in the definition of length, we use iL − i1 and ignore j1, jL. This is because with high

probability, for all i, i′ such that i′ > i+ k lnn, if the canonical alignment goes through (i, j) and (i′, j′),
j′ − j will be within a constant factor of i′ − i. So defining length as iL − i1 instead of jL − j1 will not
substantially affect our categorization of which breaks are short or long.
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Intuitively, short breaks are smaller and might make an alignment better than the canonical
alignment, so we can’t rule out alignments containing only short breaks in our analysis. On the
other hand, long breaks are sufficiently large such that replacing them with the corresponding
part of the canonical alignment should be an improvement with high probability. Lastly,
we define two functions that take alignments and make them look more like the canonical
alignment A∗.

I Definition 12 (Short and Long Break Replacement). We define SBR : A 7→ A as a function
from alignments to alignments, such that for any alignment A, SBR(A) is the alignment
arrived at by applying the following modification to all short breaks in A: For a short break
from (i1, j1) to (iL, jL), replace it with the subpath of A∗ from (i1, j1) to (iL, jL). We define
LBR analogously, except LBR applies the modification to all long breaks instead of short
breaks.

Note that all alignments in the range of LBR are good by definition. The idea behind
these functions and the definitions of good and bad alignments is to use them in the analysis as
follows: It is possible to compute the best of the good alignments quickly by only considering
a narrow region within the DP table. So it suffices to show any bad alignment is not the best
alignment. For a single bad alignment A, it is fairly straightforward to show that A∗ is better
than A with high probability. However, there are many bad alignments and thus a simple
union bound does not suffice to complete the analysis. We instead use LBR to show that it
suffices if all alignments in the range of SBR are not better than A∗ with high probability.
There are considerably fewer of these alignments and they can be partitioned in a way that
is easy to analyze, and so simple counting and probability techniques let us show this holds.

3 Substitution-Only Case

As a warmup, let’s consider the easier case when only substitutions are present in the indel
channel. In this case, A∗ is just the diagonal {(0, 0), (1, 1) . . . (n, n)}. We show the following
theorem:

I Theorem 13. For (s1, s2, E) ∼ ID(n) with pi, pd = 0, as long as ps ≤ ρs where ρs = .028,
there is an O(n lnn) time algorithm for calculating ED(s1, s2) which is correct with probability
1− n−Ω(1).

The algorithm is simple - compute entries of the canonical DP table indexed by (i, j)
where |i− j| ≤ k lnn, ignoring dependencies on entries for which |i− j| > k lnn. The value
of k used in the algorithm and the definition of long breaks will be specified by the analysis,
which will determine a lower bound for k needed to make the failure probability sufficiently
small.

We start by showing that “off-diagonal” alignments, i.e. alignments which do not share
any edges with A∗, are not better than A∗ with high probability. While there are many bad
alignments which are not entirely off-diagonal, this will be useful as later we can show that a
bad alignment A in the range of SBR being better than A∗ corresponds to an off-diagonal
alignment being better than A∗ in a subproblem.

I Lemma 14. For (s1, s2, E) ∼ ID(n), with probability 1−e−Ω(n), A > A∗ for all alignments
A such that A and A∗ do not share any edges.
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Proof. The cost of A∗ can be upper bounded using a Chernoff bound: The expected number
of substitutions is at most ρsn, so Fact 4 gives

Pr

[
A∗ ≤ 3

2ρsn
]
≤ 1− e−

ρsn
12 .

Now our goal is to show that with high probability, no alignment A that does not share
edges with A∗ has cost lower than cn (where c = 3

2ρs). We achieve this using a union
bound over alignments, grouping alignments by their number of deletions d (which in the
substitution-only case is also the number of insertions). We can ignore alignments with more
than cn/2 deletions, as they will of course have cost more than cn.

Pr[∃A,A ≤ cn] ≤
cn/2∑
d=1

∑
A with d deletions

Pr[A ≤ cn]

≤
cn/2∑
d=1

(
n+ d

d, d, n− d

)
Pr

[
Binom(n− d, 1

2) ≤ cn− 2d
]

≤ cn

2

(
(1 + c

2 )n
c
2n,

c
2n, (1−

c
2 )n

)
Pr

[
Binom((1− c

2)n, 1
2) ≤ cn

]
.

The second line counts the number of alignments with d deletions, and it expresses the
probability of success in terms of the number of substitutions, or edges in A of the form
((i− 1, j − 1), (i, j)): The cost of each off-diagonal edge of the form ((i− 1, j − 1), (i, j)) is
Bern( 1

2 ), even if we condition on the cost of all previous edges in A: assuming wlog that
i > j knowing the costs of all edges before ((i− 1, j − 1), (i, j)) in A gives no information
about the bit i of s1, which is distributed uniformly at random. So the total cost of these
edges is given by Binom((1− c

2 )n, 1
2 ). In the third line we upper bound the probability for

simplicity. A Chernoff bound now gives:

Pr

[
Binom((1− c

2)n, 1
2) ≤ cn

]
= Pr

[
Binom((1− c

2)n, 1
2) ≤ (1− 2− 5c

2− c )1
2(1− c

2)n
]

≤ exp
(
− (2− 5c)2

8(2− c) n
)
. (2)

Next we upper bound the trinomial using Stirling’s approximation:(
(1 + c

2 )n
c
2n,

c
2n, (1−

c
2 )n

)
≤ e

(2π)3/2
((1 + c

2 )n)(1+ c
2 )n+ 1

2

( c2n)cn+1((1− c
2 )n)(1− c2 )n+ 1

2

≤ e

(2π)3/2
2
cn

√
2 + c

2− c

[
(1 + c

2 )(1+ c
2 )

( c2 )c(1− c
2 )(1− c2 )

]n
. (3)

Putting everything together, we have the following upper bound

Pr[∃A,A ≤ cn] ≤ e

(2π)3/2
2
cn

√
2 + c

2− c

[
(1 + c

2 )(1+ c
2 )

( c2 )c(1− c
2 )(1− c2 )

]n [
exp

(
− (2− 5c)2

8(2− c)

)]n
.

For the above bound to be exponentially decaying in n, we need that:

(1 + c
2 )(1+ c

2 )

( c2 )c(1− c
2 )(1− c2 ) exp

(
− (2− 5c)2

8(2− c)

)
< 1, (4)

which holds as long as c ≤ 0.042, i.e. ρs ≤ .028. For these values of c, with high
probability A∗ < cn and A > cn for any A which does not share any edges with A∗. J
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We now make the following observations which will allow us to apply Lemma 14 to make
more powerful statements about the set of all alignments:

I Fact 15. Fix any s1, s2, E in the support of ID(n), and let A,A′ be any two alignments
with the same set of long breaks. Then LBR(A)−A = LBR(A′)−A′.

This follows because applying LBR to A,A′ results in the same pairs of subpaths being
swapped (and thus the same change in cost) as A,A′ have the same long breaks.

I Corollary 16. Fix any (s1, s2, E) in the support of ID(n). If for all alignments A in the
range of SBR, A ≥ A∗, then any lowest-cost good alignment is also a lowest-cost alignment.

Proof. Applying a composition of LBR and SBR to any alignment gives A∗, and for any A,
A and SBR(A) have the same long breaks. This gives that for any alignment A, LBR(A) (a
good alignment) satisfies LBR(A) ≤ A:

LBR(A)−A Fact 15= LBR(SBR(A))− SBR(A) = A∗ − SBR(A) ≤ 0.

Now, letting A′ be a lowest-cost good alignment, we get A ≥ LBR(A) ≥ A′ for all A, i.e.
A′ is the lowest cost alignment. J

We complete the argument by showing that the assumption of Corollary 16 holds with
high probability.

I Lemma 17. For (s1, s2, E) ∼ ID(n), with probability 1− nΩ(1) for all alignments A in the
range of SBR, A ≥ A∗.

Proof. As in Lemma 14, we apply a union bound over the range of SBR, grouped by
total length of breaks from A∗. Consider the set Ai contained in the range of SBR, which
contains all alignments A for which the sum of the lengths of breaks of A from A∗ is in
[ik lnn, (i+ 1)k lnn). Then the sets {Ai : 0 ≤ i ≤ n

k lnn} forms a disjoint cover of the range
SBR(A). Note that elements of Ai have at most i breaks from A∗, each of length at least
k lnn. Also note that A0 is a singleton set containing only A∗.

For any alignment A, we call the set of starting and ending indices of all breaks of that
alignment the breakpoint configuration of A (to simplify future analysis, we index with respect
to s1

4). Let Bi be the set of all possible breakpoint configurations of alignments in Ai. We
can view B ∈ Bi as a binary assignment of each edge in A∗ to either agree or disagree with
A ∈ Ai. For a fixed set of break points B ∈ Bi, let AB be the set of all alignments having
the breakpoints corresponding to B (i.e. every alignment in AB has the same breaks from
A∗). Note that the set {AB : B ∈ Bi} forms a disjoint cover of Ai.

For any fixed set of breaks B ∈ Bi, let sB1 , sB2 denote the restriction of s1, s2 to indices
contained in the breaks in B, and (A)B denote the restriction of an alignment A to these
indices. sB1 , sB2 are distributed according to ID(b) for b ≥ ik lnn. Furthermore, for A ∈ AB ,
A < A∗ if and only if (A)B < (A∗)B. Since for all A ∈ AB, (A)B does not share any edges
with (A∗)B , by Lemma 14:

Pr[∃A ∈ AB , A < A∗] = Pr[∃A ∈ AB , (A)B < (A∗)B ] ≤ e−Ω(ik lnn) = n−Ω(ik).

4 In the substitution only case, indexing with respect to s1 and s2 is the same, but when indels are present
indexing with respect to s1 will simplify the analysis.
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This reduces our problem to that of counting the cardinality of Bi:

Pr[∃A ∈ SBR(A), A < A∗] =
n

k lnn∑
i=1

Pr[∃A ∈ Ai, A < A∗]

=
n

k lnn∑
i=1

∑
B∈Bi

Pr[∃A ∈ AB , A < A∗]

≤
n

k lnn∑
i=1

∑
B∈Bi

n−Ω(ik) =
n

k lnn∑
i=1
|Bi|n−Ω(ik).

Now we must count the cardinality of Bi. We claim that each B ∈ Bi can be uniquely
mapped to i or less contiguous subsets of [n], each of a size in [k lnn, 2k lnn) or size 0. There
are at most nk lnn + 1 such subsets (there are n different possible smallest elements for
each non-empty subset, and k lnn different possible sizes for each non-empty subset, and the
smallest element and size uniquely determine the non-empty subsets), giving that

|Bi| ≤ (nk lnn+ 1)i.

Our mapping is as follows: For a break in B ∈ Bi which starts at index j and has length
` ∈ [i′k lnn, (i′ + 1)k lnn), we map the break to the subsets {j, j + 1 . . . j + k lnn− 1}, {j +
k lnn, j + k lnn+ 1 . . . j + 2k lnn− 1} . . . {j + (i′ − 1)k lnn, j + (i′ − 1)k lnn+ 1 . . . `}. That
is, for a break we take the indices the break spans, and peel off the first k lnn elements to
create a subset, until there are less than 2k lnn indices remaining, which then form their
own subset. We map B to the union of the subsets its breaks are mapped to, plus enough
empty subsets to make the total number of subsets i. It is straightforward to see that this
map from Bi to a set of subsets is injective as desired, and that the set of subsets has the
stated properties.

Using |Bi| ≤ (nk lnn+ 1)i and assuming k is a sufficiently large constant we get:

Pr[∃A ∈ SBR(A), A < A∗] ≤
n

k lnn∑
i=1

(nk lnn+ 1)in−Ω(ik) ≤ n−Ω(k). J

Proof of Theorem 13. The algorithm is to use the standard DP algorithm restricted to
entries indexed by (i, j) where |i − j| ≤ k lnn, ignoring dependencies on entries for which
|i − j| > k lnn. Theorem 13 follows immediately from Corollary 16, Lemma 17, and the
observation that all good alignments are contained in the set of entries used by the DP
algorithm. J

4 Finding an Approximate Alignment

We now consider the case where insertions and deletions are present. While in the substitution
case it is obvious that the canonical alignment is the diagonal, in the presence of insertions
and deletions there is the additional algorithmic challenge of finding something close to
the canonical alignment. We now use our previous definition for alignments to define an
alignment function, which will be useful in analyzing the approximate alignment algorithm.

I Definition 18. Given an alignment A of (s1, s2, E) ∼ ID(n), let fA : [n] → Z be the
function such that for all i ∈ [n], (i, fA(i)) is the first vertex in A of the form (i, j).
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Using this definition, fA∗(j) gives the location of the jth bit of s1 in s2, or if the jth bit
is deleted, where the location would be had it not been deleted. To find the edit distance
between s1, s2, our algorithm will start by computing an approximate alignment function
which does not differ much from fA∗ . Before describing our algorithm, it will help to prove
some properties about edit distances between pairs of strings sampled from ID(n).

4.1 Properties of the Indel Channel
The term (ρiρ′i + (ρd + 1/k lnn)(ρ′d + 1)), which is roughly speaking an upper bound on
the edit distance (divided by k lnn) between s1, s2 sampled from ID(k lnn) due to indels,
appears frequently in the rest of the analysis. To simplify the presentation, we denote
(ρiρ′i + (ρd + 1/k lnn)(ρ′d + 1)) by κn for the rest of the paper. Our goal in the following
lemmas is to show that by computing the edit distance between the substrings of length
k lnn starting at bit i1 of s1 and bit i2 of s2, we can identify if i2 ≈ fA∗(i1).

I Lemma 19. For (s1, s2, E) ∼ ID(n), let s′1 be the substring formed by bits i to i+k lnn−1
of s1, and s′2 be the substring formed by bits fA∗(i) to fA∗(i+ k lnn)− 1 of s2. Then:

Pr
(s1,s2,E)∼ID(n)

[
ED(s′1, s′2) ≥ 3

2(ρs + κn)k lnn
]
≤ n−ρsk/12 + 2n−ρik/60 + 3n−ρdk/60.

Proof. The edit distance between s1 and s2 is upper bounded by the number of substitutions,
deletions, and insertions that occur in the channel on bits i to i + k lnn − 1 of s1. So it
suffices to show this total is at most 3

2 (ρs + ρi + ρd)k lnn with high probability. In turn, it
suffices to show the number of substitutions is at most 3

2ρsk lnn, the number of insertions is
at most 3

2ρiρ
′
ik lnn, and the number of deletions is at most 3

2 (ρdk lnn+ 1)(ρ′d + 1) with high
probability. We do this using a union bound over the three types of mutations.

The number of substitutions is at most ρsk lnn in expectation. A Chernoff bound
with ε = 1/2 gives that the number of substitutions exceeds 3

2ρsk lnn with probability at
most n−ρsk/12. The probability the number of insertions exceeds 3

2ρiρ
′
ik lnn is maximized

when pi = ρi, 1/(1 − qi) = ρ′i. The number of insertions is then the random variable
NBinom(Binom(k lnn, ρi), 1/ρ′i) with expectation ρiρ′ik lnn, and by Lemma 6 with k = 3/2
the probability it exceeds 3

2ρiρ
′
ik lnn is at most 2n−ρik/60.

To bound the number of deletions, we consider the following process for deciding where
deletions occur in s1:

For each bit of s1 a “type 1” deletion occurs with probability pd, except bit 1 of s1 where
the probability is qd.
For each bit j where a type 1 deletion occurs, we sample δ ∼ Geo( 1−qd

1−pd ). Let ∆ be the
number of bits between j and the next bit with a type 1 deletion. A type 2 deletion
occurs on the min{δ,∆} bits following j.

For bit 1, its probability of seeing a deletion in the indel channel is upper bounded by
qd. Otherwise, if no deletion occurs on bit j − 1, then for bit j > i, the only way bit j
sees a deletion is if it has a type 1 deletion, which occurs with probability pd. If a deletion
occurs on bit j − 1 and bit j does not have a type 1 deletion, it sees a type 2 deletion
with probability (1− 1−qd

1−pd ) = qd−pd
1−pd by the properties of the geometric distribution (this is

regardless of the type of deletion on bit j−1). So its overall probability of seeing a deletion is
pd + (1− pd) qd−pd1−pd = qd. So, the number of deletions in this process stochastically dominates
the number of deletions on bits i to i+ k lnn− 1 of s1.
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Then, the number of deletions is stochastically dominated by the random variable X + Y

arrived at by sampling Y ∼ Binom(k lnn − 1, pd) + Bern(qd), X ∼ NBinom(Y, 1−qd
1−pd ),

which exceeds 3
2 (ρd + ρdρ

′
d)k lnn with maximum probability when pd = ρd, 1−ρd

1−qd = ρ′d.
The probability Y exceeds 3

2 (ρdk lnn) + 1 is at most n−ρdk/12 by a Chernoff bound. The
probability X exceeds 3

2 (ρdk lnn+ 1)ρ′d is at most 2n−ρdk/60 by Lemma 6 with k = 3/2. So
by a union bound the probability the number of deletions exceeds 3

2 (ρdk lnn+ 1)(ρ′d + 1) is
at most 3n−ρdk/60. J

I Lemma 20. Let s1, s2 be bitstrings of length k lnn, chosen independently and uniformly
at random from all bitstrings of length k lnn. Then Pr[ED(s1, s2) ≤ D] ≤ (4e k lnn

D +5e+ 4e
D )D

2k lnn .

The proof of this lemma is fairly standard (see e.g. [8, Lemma 8]). For completeness, we
give a proof in Appendix A.

I Lemma 21. For constant k > 0, i ≤ n− k lnn,

Pr(s1,s2,E)∼ID(n)

[
|fA∗(i+ k lnn)− fA∗(i)− k lnn| ≤ 3

2κn · k lnn
]
≥

1− 2n−ρik/60 − 3n−ρdk/60.

Proof. fA∗(i+k lnn)−fA∗(i)−k lnn is the signed difference between the number of insertions
and deletions happening in indices i to i+ k lnn− 1 of s1. A simple upper bound for this
difference is the sum of the number of insertions and deletions. The same analysis as
Lemma 19 gives the lemma. J

I Corollary 22. Consider the following random process, which we denote P: we choose i1
such that i1 < n− k lnn, sample (s1, s2, E) ∼ ID(n), and then choose an arbitrary i2 such
that |i2 − fA∗(i1)| ≤ lnn and i2 is at least k lnn less than the length of s2. Let s′1 denote the
string consisting of bits i1 to i1 + k lnn− 1 of s1 and s′2 the string consisting of bits i2 to
i2 + k lnn− 1 of s2. Then for any i2 we choose satisfying the above conditions,

Pr
P

[
ED(s′1, s′2) ≤ (1 + 3

2(ρs + 2κn))k lnn
]
≥

1− 2n−ρik/12 − 4n−ρik/60 − 6n−ρdk/60.

Proof. By Lemma 21 and the assumptions in the corollary statement, with probability at least
1−2n−ρik/60−3n−ρdk/60, the edit distance between s′2 and bits fA∗(i1) to fA∗(i1 +k lnn)−1
of s2 (call this substring s∗2) is at most (1 + 3

2κn)k lnn (the upper bound on the difference
between starting indices plus the high-probability upper bound on the difference between
ending indices). s∗2 is the result of passing s′1 through the indel channel, so by Lemma 19 with
probability at least 1−n−ρsk/12−2n−ρik/60−3n−ρdk/60, the edit distance between s∗2 and s′1
is at most 3

2 (ρs + κn)k lnn, giving the lemma by a union bound and triangle inequality. J

I Corollary 23. Consider the following random process, which we denote P: we choose i1
such that i1 < n− k lnn, sample (s1, s2, E) ∼ ID(n), and then choose an arbitrary i2 such
that

|i2 − fA∗(i1)| >
(

3
2κn + 1

)
k lnn,

and i2 is at least k lnn less than the length of s2. Let s′1 denote the string consisting of
bits i1 to i1 + k lnn− 1 of s1 and s′2 the string consisting of bits i2 to i2 + k lnn− 1 of s2.
Then for 0 < r < 1,
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PrP [ED(s′1, s′2) > kr lnn] ≥ 1−
[

( 4e
r +5e+ 4e

kr lnn )r
2

]k lnn
− 2n−ρik/60 − 3n−ρdk/60.

Proof. Either i2 < fA∗(i1)− k lnn or i2 > fA∗(i1) + (3
2κn + 1)k lnn. If i2 < fA∗(i1)− k lnn,

then none of the bits in s′2 are inherited from bits in s′1. If i2 > fA∗(i1) + ( 3
2κn + 1)k lnn,

then by Lemma 21 we have with probability 1− 2n−ρik/60 − 3n−ρdk/60:

i2 − fA∗(i1 + k lnn) = [i2 − fA∗(i1)− k lnn] + [fA∗(i1) + k lnn− fA∗(i1 + k lnn)] ≥

3
2κn · k lnn− 3

2κn · k lnn = 0.

Then since i2 > fA∗(i1 + k lnn), none of the bits are in s′2 are inherited from bits in s′1.
In either case, s′1, s′2 are independent and uniformly random bitstrings, and we can apply
Lemma 20 with D = kr lnn to get the lemma by a union bound. J

Let n0 be a sufficiently large constant. If we choose any r which is less than a certain
constant (which is approximately .1569), for all n ≥ n0, if k is sufficiently large then the
term ( 4e

r +5e+ 4e
kr lnn )r

2 from Corollary 23 is less than 1 and thus the failure probability in
Corollary 23 becomes n−Ω(k). If for all n ≥ n0, (1 + 3

2k(ρs + 2κn)) < kr, then for all n ≥ n0
the lower bound on edit distance given by Corollary 23 exceeds the upper bound given by
Corollary 22. In turn, informally we have the desired property that we can use the edit
distance between substrings of length k lnn in s1 and s2 to test if these substrings are close
in the canonical alignment. So for the rest of this section, we will fix ρs, ρi, ρ′i, ρd, ρ′d, r to
be positive values satisfying these conditions for all n ≥ n0. Once these values are fixed we
can make the failure probabilities in both corollaries n−c with any exponent c of our choice
(c = 2 will suffice to achieve a final failure probability of O(1/n)) by choosing a sufficiently
large k depending only on c and n0. So we also fix k to be said sufficiently large value.

4.2 Algorithm for Quickly Finding an Approximate Alignment
We now describe the algorithm ApproxAlign, given as Algorithm 1, which finds the
approximate alignment f ′. Informally, ApproxAlign runs as follows: It starts by initializing
f ′(1) = 1, which is of course exactly correct. By Lemma 21, we know that fA∗(k lnn+ 1)
will be within O(lnn) of 1 + k lnn. So, to decide what f ′(k lnn + 1) will be, we compute
the edit distance between bits k lnn + 1 to 2k lnn of s1 and bits j to j + k lnn − 1 of s2
for various values of j close to 1 + k lnn. By Corollary 22 we know that when j is near
fA∗(k lnn+ 1), the edit distance will be small, and by Corollary 23 we know that when j is
far from fA∗(k lnn+ 1) the edit distance will be large. So whichever value of j causes the
edit distance to be minimized is not too far from the true value of fA∗(k lnn + 1). Once
we’ve decided on the value f ′(k lnn + 1), we proceed analogously to choose a value for
f ′(2k lnn+ 1), using f ′(k lnn+ 1) to decide what range of values try, and so on. We now
formally prove our guarantee for ApproxAlign (including the runtime guarantee).

I Lemma 24. For (s1, s2, E) ∼ ID(n), ApproxAlign(s1, s2) computes in time O(n lnn)
a function f ′ such that with probability at least 1− n−Ω(1), for all i where f ′(i) is defined
|f ′(i)− fA∗(i)| ≤ d( 3

2κn + 1)k lnne.

Proof. We proceed by induction. Clearly, |f ′(1)− fA∗(1)| = |1− 1| ≤ d( 3
2κn + 1) · k lnne.

Suppose |f ′((i− 1)k lnn+ 1)− fA∗((i− 1)k lnn+ 1)| ≤ d( 3
2κn + 1) · k lnne. By Lemma 21

and our choices of constants, with probability 1− n−Ω(1), |fA∗((i− 1)k lnn+ 1) + k lnn−
fA∗(ik lnn+ 1)| ≤ 3

2κn · k lnn. This gives:

WABI 2020
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Algorithm 1 Algorithm for Approximate Alignment.

1: function ApproxAlign(s1, s2)
2: f ′(1)← 1
3: J ← 2d( 3

2κn + 1) · ke
4: for i = 1, 2, . . . b n

k lnnc − 1 do
5: minED ←∞
6: for j = −J,−J + 1, . . . J do
7: s′1 ← bits ik lnn+ 1 to (i+ 1)k lnn of s1
8: s′2 ← bits f ′((i− 1)k lnn+ 1) + (j + k) lnn to

f ′((i− 1)k lnn+ 1) + (j + 2k) lnn− 1 of s2
9: if ED(s′1, s′2) ≤ minED then
10: minED ← ED(s′1, s′2)
11: f ′(ik lnn+ 1)← f ′((i− 1)k lnn) + (j + k) lnn
12: end if
13: end for
14: end for
15: return f ′

16: end function

|[f ′((i− 1)k lnn+ 1) + k lnn]− fA∗(ik lnn+ 1)| ≤
|[f ′((i− 1)k lnn+ 1) + k lnn]− [fA∗((i− 1)k lnn+ 1) + k lnn]|

+ |[fA∗((i− 1)k lnn+ 1) + k lnn]− fA∗(ik lnn+ 1)| =
|f ′((i− 1)k lnn+ 1)− fA∗((i− 1)k lnn+ 1)|

+ |fA∗((i− 1)k lnn+ 1) + k lnn− fA∗(ik lnn+ 1)| ≤⌈
(3
2κn + 1) · k lnn

⌉
+ 3

2κn · k lnn ≤ J.

So for some j in the range iterated over by the algorithm, |f ′((i−1)k lnn+ 1) + (j+k) lnn−
fA∗(ik lnn+ 1)| ≤ lnn and thus the minimum edit distance minED found by the algorithm
in iterating over the j values is at most (1 + 3

2k(ρs + 2κn) lnn < kr lnn by Corollary 22 with
probability at least 1−n−Ω(1). By Corollary 23, with probability at least 1−n−Ω(1) the final
value of f ′(ik lnn + 1) can’t differ from fA∗(ik lnn + 1) by more than d( 3

2κn + 1) · k lnne
as desired - otherwise, by the corollary with high probability minED would be larger than
kr lnn.

Thus by induction, |f ′(i)− fA∗(i)| ≤ d( 3
2κn + 1) · k lnne for all i if the high probability

events of Lemma 21, Corollary 22, and Corollary 23 occur in all inductive steps. Across
all inductive steps we require O(n) such events to occur, and each occurs with probability
1− n−Ω(1) where the negative exponent can be made arbitrarily large, so by a union bound
we can conclude that with probability 1− n−Ω(1), |f ′(i)− fA∗(i)| ≤ 2k lnn for all i.

For runtime, note that the for loops iterate over O( n
lnn ) values of i and O(1) values of j.

For each i, j pair, we perform an edit distance computation between two strings of length
O(lnn) which can be in done in O(ln2 n) time using the canonical dynamic programming
algorithm. So the overall runtime is O(n lnn). J
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5 Error Analysis with Indels

In this section, we extend the results from Section 3 to the case where indels are present.

I Lemma 25. For any realization of (s1, s2, E) ∼ ID(n), let s′1 be the restriction of s1 to
any fixed subset of indices B of total size ` ≥ k lnn, s′2 be the substring of s2 that A∗ aligns
with s′1, and let (A∗)B denote the restriction of the alignment A∗ to indices in s′1, s′2. Then
with probability 1− e−Ω(`) over (s1, s2, E) ∼ ID(n), A > (A∗)B for all alignments A of s′1, s′2
such that A and (A∗)B do not share any edges.

The proof is almost identical to that of Lemma 14. We defer the proof to Appendix A. We
remark that the resulting constraint on the mutation probailities is given by 3

2ρs+κn < .03485.

I Lemma 26. For (s1, s2, E) ∼ ID(n), with probability 1− n−Ω(1) for all alignments A in
the range of SBR, A ≥ A∗.

Proof. The proof proceeds similarly to that of Lemma 17. Recall that the starting/ending
indices and the lengths of breaks are defined with respect to the indices in s1. Since s1’s
length is n always, we can define sets of break points independently of the realization of
ID(n), and so we define Ai, Bi, AB as in Lemma 17. The restriction of s1 to a fixed subset
of indices in the statement 25 can be applied to the subsets of indices contained in breaks, so
the same analysis as in Lemma 17 gives:

Pr[∃A ∈ SBR(A), A < A∗] =
n

k lnn∑
i=1
|Bi|n−Ω(ik).

Since breakpoints are defined with respect to the fixed-length string s1, as before we have
|Bi| ≤ (nk lnn+ 1)i and thus Pr[∃A ∈ SBR(A), A < A∗] ≤ n−Ω(k) as desired. J

Proof of Theorem 2. We estimate fA∗ using ApproxAlign to obtain f ′. Then, we use the
standard DP algorithm restricted to entries that are within distance k2 lnn from (i, f ′(i))
for some i. By Theorem 24, for any fixed k, if k2 is sufficiently large, this range of entries
computed contains all entries within distance k lnn of A∗, i.e. contains the range of LBR.
Fact 15 and Corollary 16 also hold when indels are present, so by Lemma 26, the optimality
of the DP algorithm gives that the algorithm is correct.

For runtime, note that ApproxAlign runs in O(n lnn) time per Theorem 24 and the
set of entries considered by the DP algorithm is size at most O(n lnn) (each of the n/ lnn
indices where f ′ is defined contribute O(ln2 n) entries to be computed), and each entry can
be computed in constant time. So the overall runtime is O(n lnn) as desired. J

References
1 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search

tool. J. Mol. Biol., 215(3):403–410, October 1990. doi:10.1016/s0022-2836(05)80360-2.
2 Alexandr Andoni, Mark Braverman, and Avinatan Hassidim. Phylogenetic reconstruction

with insertions and deletions. Preprint, 2010.
3 Alexandr Andoni, Constantinos Daskalakis, Avinatan Hassidim, and Sebastien Roch. Global

alignment of molecular sequences via ancestral state reconstruction. Stochastic Processes and
their Applications, 122(12):3852–3874, 2012. doi:10.1016/j.spa.2012.08.004.

4 Alexandr Andoni and Robert Krauthgamer. The smoothed complexity of edit distance. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, pages 357–369, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1145/2344422.2344434.

WABI 2020

https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.1016/j.spa.2012.08.004
https://doi.org/10.1145/2344422.2344434


17:16 Near-Linear Time Edit Distance for Indel Channels

5 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic Approximation
for Edit Distance and the Asymmetric Query Complexity, pages 244–252. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-16367-8_16.

6 Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
Journal on Computing, 41(6):1635–1648, 2012. doi:10.1137/090767182.

7 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’15, page 51–58, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2746539.2746612.

8 Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In STOC,
2003. doi:10.1145/780542.780590.

9 Tugkan Batu, Funda Ergün, and Süleyman Cenk Sahinalp. Oblivious string embeddings
and edit distance approximations. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 792–801, 2006. doi:10.5555/1109557.1109644.

10 K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems and
dynamic time warping. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 79–97, 2015. doi:10.1109/FOCS.2015.15.

11 D. Chakraborty, D. Das, E. Goldenberg, M. Koucky, and M. Saks. Approximating edit distance
within constant factor in truly sub-quadratic time. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages 979–990, 2018. doi:10.1109/FOCS.2018.
00096.

12 Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill,
Inc., New York, NY, USA, 1 edition, 2008. doi:10.1016/j.cosrev.2008.03.001.

13 Constantinos Daskalakis and Sebastien Roch. Alignment-free phylogenetic reconstruction.
In Annual International Conference on Research in Computational Molecular Biology, pages
123–137. Springer, 2010. doi:10.1007/978-3-642-12683-3_9.

14 Martin C. Frith. Large-scale sequence comparison: Spaced seeds and suffix arrays, 2008. URL:
http://last.cbrc.jp/mcf-kyoto08.pdf.

15 Martin C Frith. How sequence alignment scores correspond to probability models. Bioinform-
atics, 36(2):408–415, July 2019. doi:10.1093/bioinformatics/btz576.

16 Arun Ganesh and Qiuyi (Richard) Zhang. Optimal sequence length requirements for phylo-
genetic tree reconstruction with indels. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, page 721–732, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3313276.3316345.

17 Paweł Gawrychowski. Faster algorithm for computing the edit distance between slp-compressed
strings. In Liliana Calderón-Benavides, Cristina González-Caro, Edgar Chávez, and Nivio
Ziviani, editors, String Processing and Information Retrieval, pages 229–236, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. doi:10.1007/978-3-642-34109-0_24.

18 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for random
strings and arbitrary deletion probability. In COLT, 2018. URL: http://proceedings.mlr.
press/v75/holden18a.html.

19 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace re-
construction with constant deletion probability and related results. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, pages 389–398, January 2008.
doi:10.1145/1347082.1347125.

20 Kazutaka Katoh, Kazuharu Misawa, Keiichi Kuma, and Takashi Miyata. MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Research, 30(14):3059–3066, July 2002. doi:10.1093/nar/gkf436.

https://doi.org/10.1007/978-3-642-16367-8_16
https://doi.org/10.1137/090767182
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/780542.780590
https://doi.org/10.5555/1109557.1109644
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1016/j.cosrev.2008.03.001
https://doi.org/10.1007/978-3-642-12683-3_9
http://last.cbrc.jp/mcf-kyoto08.pdf
https://doi.org/10.1093/bioinformatics/btz576
https://doi.org/10.1145/3313276.3316345
https://doi.org/10.1007/978-3-642-34109-0_24
http://proceedings.mlr.press/v75/holden18a.html
http://proceedings.mlr.press/v75/holden18a.html
https://doi.org/10.1145/1347082.1347125
https://doi.org/10.1093/nar/gkf436


A. Ganesh and A. Sy 17:17

21 William Kuszmaul. Efficiently approximating edit distance between pseudorandom strings. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’19, page 1165–1180, USA, 2019. Society for Industrial and Applied Mathematics.

22 G. Landau, E. Myers, and J. Schmidt. Incremental string comparison. SIAM Journal on
Computing, 27(2):557–582, 1998. doi:10.1137/S0097539794264810.

23 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20:18–31, February 1980. doi:
10.1016/0022-0000(80)90002-1.

24 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(o(n1/3)) samples. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
1042–1046, New York, NY, USA, 2017. ACM. doi:10.1145/3055399.3055494.

25 W R Pearson and D J Lipman. Improved tools for biological sequence comparison. Proceedings
of the National Academy of Sciences, 85(8):2444–2448, 1988. doi:10.1073/pnas.85.8.2444.

A Deferred Proofs

A.1 Proof of Lemma 6
Proof. We consider two cases for the realization of m and apply tail bounds to each case:

Pr

[
X ≥ k · µ

q

]
= Pr

[
X ≥ k · µ

q
∧m ≥

√
kµ

]
+ Pr

[
X ≥ k · µ

q
∧m <

√
kµ

]

≤ Pr
[
m ≥

√
kµ
]

+ Pr

[
X ≥ k · µ

q
|m ≤

√
kµ

]
.

A Chernoff bound gives Pr[m ≥
√
kµ] ≤ e−

(
√
k−1)2µ

3 , the negative binomial tail bound
(and noticing that Pr[X ≥ k · µq |m ≤

√
kµ] is maximized when m =

√
kµ) gives Pr[X ≥

k · µq |m <
√
kµ] ≤ e−

√
kµ(1−1/

√
k)2

2 , giving the lemma. J

A.2 Proof of Lemma 20
Proof. We first bound the number of strings within edit distance D of s1. Fix any set of up
to D edits that can be applied to a bitstring initially of length k lnn, that does not contain
redundant edits (such as substituting the same bit more than once, deleting an inserted bit).
This set can be mapped to a set of D tuples as follows:

For a substitution (or deletion) applied to the bit in the ith position (using the indexing
prior to insertions and deletions), it is encoded as the tuple (i, S) (or (i,D) for a deletion).
Note that by the assumption that there are no redundant edits, all substitution and
deletion edits in the set of edits map to distinct tuples.
For insertions, we handle indexing differently to still ensure no two insertions are mapped
to the same tuple. Suppose the set of D edits inserts the bitstring b1b2 . . . bk to the right
of index of i (using the original indexing - we treat bits are being inserted to the left of
the entire bitstring as being inserted to the right of bit 0). Let i′ be i plus the number of
insertions in the set of edits occurring before bit i. Then we map these k insertions to
the tuples (i′, Ib1), (i′ + 1, Ib2) . . . (i′ + k − 1, Ibk). This ensures that the insertions in the
set of edits also get mapped to different tuples, since the first index will be distinct for
all tuples that insertions are mapped to.
If the number of edits is D−k, we include (1, N), (2, N) . . . (k,N) in the final set of tuples
so the final set of tuples still has size D.
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Every tuple that can be mapped to in this encoding scheme is of the form (i, E) for
0 ≤ i ≤ k lnn + D,E ∈ {S,D, I0, I1} or (i,N) for 1 ≤ i ≤ D. So, there are at most(4k lnn+5D+4

D

)
sets of D tuples that any set of up to D edits can be mapped to. Furthermore,

note that the mapping is injective, i.e. given a set of D tuples, using the reverse of the
above process it can be uniquely mapped to set of edits. So, there are also at most(4k lnn+5D+4

D

)
possible ways to apply at most D edits to a bitstring which is initially length

k lnn. Stirling’s approximation gives that this is at most (4ek lnn
D + 5e+ 4e

D )D. So there are
at most (4ek lnn

D + 5e+ 4e
D )D strings s′ such that ED(s1, s

′) ≤ D. The number of bitstrings
of length k lnn is 2k lnn. So the probability ED(s1, s2) ≤ D is at most (4e k lnn

D +5e+ 4e
D )D

2k lnn . J

A.3 Proof of Lemma 25
Proof. We proceed similarly to Lemma 14, but for the case with indels. The same analysis
as in Lemma 19 gives that that for a fixed s′1,

Pr
(s1,s2,E)∼ID(n)

[(A∗)B ≥
3
2 (ρs + κn) `] ≤ e−ρs`/12 + 2e−ρi`/60 + 3e−ρd`/60.

Our goal now is to show any alignment A of s′1, s′2 that shares no edges with (A∗)B has
A > c` with high probability, where c = 3

2ρs + κn.
Fix any realization ζ of the positions of indels generated by (s1, s2, E) ∼ ID(n), without

fixing the values of s1, the inserted bits, or the positions of substitutions. Let `1 = ` and `2
be the lengths of s′1 and s′2. Let r = |`1 − `2|. A similar analysis to Lemma 21 gives that
r ≤ κn` with probability 1− e−Ω(`), so it suffices to prove the lemma statement holds with
high probability conditioned on any ζ such that r < κn`, so we condition on ζ for the rest of
the proof. Assume without loss of generality that `2 − `1 = r, i.e. that the r excess indels
are insertions. The counting argument is similar when `1 − `2 = r. As before, we sum over
the number of deletions, d, which corresponds to d+ r insertions and `− d substitutions.

Pr[∃A,A ≤ c`] ≤
c`/2∑
d=0

∑
A∈A with d deletions

Pr[A ≤ c`]

≤
c`/2∑
d=0

(
`+ d+ r

d, d+ r, `− d

)
Pr[Binom(`− d, 1

2) ≤ c`− 2d− r]

≤ c`

2

(
(1 + c

2 )`+ r
c
2`,

c
2`+ r, (1− c

2 )`

)
Pr[Binom((1− c

2)`, 1
2) ≤ c`].

Where the probability is taken over the events we haven’t conditioned on, i.e. the realization
of s1, the inserted bits, and the positions of substitutions. Since we assume r < κn`, then( (1+ c

2 )`+r
c
2 `,

c
2 `+r,(1−

c
2 )`
)
≤
( (1+ c

2 +κn)`
c
2 `,(

c
2 +κn)`,(1− c2 )`

)
with high probability. Note also that κn ≤ 3

2ρs+κn < c.
Hence, similar to Equation (3) from Lemma 14, Stirling’s approximation gives an upperbound
on the trinomial(

(1 + c
2 + κn)`

c
2`, (

c
2 + κn)`, (1− c

2 )`

)
≤ e

(2π)3/2
2
c`

√
2 + 3c
2− c

[
(1 + 3

2c)
(1+ 3

2 c)

( c2 )c(1− c
2 )(1− c2 )

]`
.

We combine this with Equation (2) from Lemma 14 for the term Pr[Binom((1− c
2 )`, 1

2 ) ≤ c`],
to get that when c < 0.03485, the probability decays exponentially in `. Hence requiring
that 3

2ρs + κn < .03485 ensures that A > (A∗)B with high probability. J
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Abstract
Directed Evolution (DE) is a technique for protein engineering that involves iterative rounds of
mutagenesis and screening to search for sequences that optimize a given property (ex. binding affinity
to a specified target). Unfortunately, the underlying optimization problem is under-determined, and
so mutations introduced to improve the specified property may come at the expense of unmeasured,
but nevertheless important properties (ex. subcellular localization). We seek to address this issue by
incorporating a fold-specific regularization factor into the optimization problem. The regularization
factor biases the search towards designs that resemble sequences from the fold family to which the
protein belongs. We applied our method to a large library of protein GB1 mutants with binding
affinity measurements to IgG-Fc. Our results demonstrate that the regularized optimization problem
produces more native-like GB1 sequences with only a minor decrease in binding affinity. Specifically,
the log-odds of our designs under a generative model of the GB1 fold family are between 41− 45%
higher than those obtained without regularization, with only a 7% drop in binding affinity. Thus,
our method is capable of making a trade-off between competing traits. Moreover, we demonstrate
that our active-learning driven approach reduces the wet-lab burden to identify optimal GB1 designs
by 67%, relative to recent results from the Arnold lab on the same data.
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1 Introduction

The field of protein engineering seeks to design molecules with novel or improved properties
[15]. The primary techniques used in protein engineering fall into two categories: rational
design [22] and directed evolution (DE) [1]. Rational design uses model-driven in silico
combinatorial searches to identify promising candidate designs, which are then synthesized
and tested experimentally. Directed evolution, in contrast, involves iterative rounds of
saturation mutagenesis at select residue positions, followed by in vitro or in vivo screening
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for desirable traits. The most promising sequences are then isolated and used to seed the
next round of mutagenesis. Traditionally, directed evolution is a model-free approach. That
is, computational models are not used to guide or simulate mutagenesis.

Recently, a technique for incorporating Machine Learning (ML) into the DE workflow
was introduced [32]. Briefly, this ML-assisted form of DE uses the screening data from each
round to update a model that predicts the effects of mutations on property being optimized,
f(sk) → y. Here, y is the measured trait, sk is the choice of residues at k � n positions,
and n is the length of the protein’s primary sequence. The mutagenesis step in the current
round of DE is then biased towards generating sequences with high predicted fitness under
the model, as opposed to generating a uniformly random sample. ML-assisted DE has
been shown to reduce the number of rounds needed to find optimal sequences, relative to
traditional (i.e., model-free) DE [32].

Significantly, the models learned in ML-assisted DE are myopic in the sense that they only
consider the relationship between sk and the screened trait, y (ex binding affinity). Therefore,
the underlying optimization problem is under-determined, and so the technique may improve
the measured trait at the expense of those that are unmeasured, but nevertheless important
(ex. thermostability, solubility, subcellular localization, etc). The primary goal of this paper
is to introduce an enhanced version of ML-assisted DE that is biased towards native-like
designs, while optimizing the desired trait. By “native” we mean that the optimized design
still has high probability under a generative model of the fold family to which the protein
belongs. The intuition behind this approach is that any high-probability sequence is likely to
respect factors that are not directly accounted for by the fitness model, f , such as epistatic
interactions between the mutated residues and the rest of the protein [27], among others.

Our method performs Bayesian optimization [16] and incorporates a regularization factor
derived from a generative model of the fold family. Here, we evaluate two choices of generative
models: Markov Random Fields (MRF) generated by the gremlin algorithm [2], and profile
HMMs [11]. We demonstrate our method by re-designing the B1 domain of streptococcal
protein G (GB1) to maximize binding affinity to the IgG Fc receptor. Our results demonstrate
that the regularization term leads to more native-like GB1 sequences, with minimal impact on
binding affinity. Like previous studies, our results also show that ML-assisted DE outperforms
the traditional, model-free approach to DE. Additionally, we demonstrate that our approach
reduces the wet-lab burden to identify optimal GB1 designs by 67%, relative to recent results
from previous results on the same data [32].

2 Background

The method introduced in this paper combines several technologies: directed protein evolution,
Bayesian optimization, and generative modeling of protein fold families. The following
subsections provide brief summaries of these techniques.

2.1 Directed Protein Evolution
Directed evolution (DE) is an iterative technique for designing molecules. It has been used to
create proteins with increased stability (ex. [6]), improved binding affinity (ex. [9]), to design
new protein folds (ex. [7]), to change an enzyme’s substrate specificity (ex. [26]) or ability
to selectively synthesize enantiomeric products (ex. [32]), and to study fitness landscapes
([24]), among others. Given an initial sequence, the primary steps in directed evolution are:
(i) mutagenesis, to create a library of variants; (ii) screening, to identify variants with the
desired traits; and (iii) amplification of the best variants, to seed the next round. Each step
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Figure 1 Traditional, model-free approaches to directed evolution: (Top) The “single
mutation walk” approach to directed evolution. The library of variants is the union of k libraries
created by performing saturation mutagenesis at a single location. The resulting library, therefore,
has 20k variants. The library is screened to find the single variant that optimizes the measured trait.
That variant is fixed and the procedure is repeated for the remaining k − 1 positions. (Bottom)
The library of variants is created by performing saturation mutagenesis at k positions. The top
variants are identified through screening. Those variants are randomly recombined to generate a
second library, which is then screened to find the top design.

can be performed in a variety of ways, giving rise to multiple options for performing DE.
For example, the mutagenesis step can be performed one residue at a time, called a single
mutation walk (Fig. 1-top), or simultaneously at multiple positions, followed by genetic
recombination (Fig. 1-bottom).

Rational design and directed evolution have complementary strengths and weaknesses,
and in practice it is not unusual for protein engineers to use both. The computational models
used in rational design are typically physics- or knowledge based [4], and will therefore filter
designs that are predicted to be energetically or statistically unfavorable. This filtering, in
turn, may reduce the total number of designs that need to be synthesized/cloned and tested
in the lab. Directed evolution, in contrast, performs what is in effect a parallel in vitro or in
vivo search over designs. Most of the designs will lack the desired trait, which is inefficient in
the sense that consumable resources are wasted. On the other hand, DE’s approach results
in the screening of a larger number of designs than rational design, because it generates large
libraries of variants, as opposed to individual designs. That is, DE may ultimately be the
faster route to finding optimal designs due to its parallel and high throughput nature, which
may also increase the odds of serendipitous discoveries. Moreover, the traditional approach
to DE is model-free, and therefore not subject to the limitations of computational models
which are, at best, only approximations to the underlying physics and are not intended to
reflect phenomena at higher scales (i.e., chemistry and biology).

Machine Learning-assisted directed protein evolution
While effective, the mutagenesis, screening, and amplification steps in DE are expensive and
time-consuming, relative to rational design’s in silico screens. In an effort to reduce these
experimental demands, a Machine Learning-assisted approach to DE was introduced recently
[32]. This ML-assisted form of DE is summarized in Fig. 2. The key difference between
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Figure 2 Machine Learning-assisted directed evolution: The first step in ML-assisted DE
is the same as for traditional DE (see Fig 1). A library of variants is created via mutagenesis.
Existing data, S = {sk, y}i=1:n are used to train a classifier or regression model, f(sk)→ y, which
is then used to rank variants via an in silico screen. The top variants are then synthesized/cloned
and screened using in vitro or in vivo assays. The data from the ith round is added to S and used
in subsequent DE rounds.

traditional and ML-Assisted DE is that the data generated during screening, S = {sk, y}i=1:n
are used to train a model, f(sk) → y, that maps the set of mutations to the trait. The
model, f , can be a classifier or regression model, and is used to perform an in silico screen
over designs. Promising designs are then synthesized/cloned and screened in the lab. The
key assumption made by ML-assisted DE is that the cost of performing an in silico screen is
much lower than running wet-lab experiments.

Like rational design, ML-assisted DE uses computational models, but the nature of those
models is rather different. For one, the models used in ML-assisted DE make predictions
corresponding to the quantity measured in the screening step, whereas the models used in
rational design tend to be based on physical or statistical energy functions, and are therefore
making predictions about the energetic favorability of the design. Second, the models used in
ML-assisted DE are updated after each DE round to incorporate the new screening data, and
thus adapt to protein-specific experimental observations. The models used in rational design,
in contrast, are typically fixed. Finally, the models used in ML-assisted DE are myopic, in the
sense that they only consider the relationship between a small subset of sequence positions
and the measured quantity. The models used in rational design, in contrast, generally
consider the entire sequence, and are thus better suited to filtering energetically unfavorable
designs. The technique introduced in this paper seeks to combine the strengths of both
methods; our method uses a fitness model that adapts to the experimental data, but also
considers the favorability of the mutations across the entire sequence.

2.2 Bayesian Optimization
Bayesian optimization [16] is a technique for optimizing black-box objective functions, f .
It has been used in a variety of contexts, including robotics (ex. [14]), particle physics (ex.
[10]), and hyper-parameter optimization in deep learning (ex [3]). The first published form
of ML-assisted DE [32] did not employ Bayesian optimization, but the same lab subsequently
introduced a version that does [33].

In the Bayesian optimization framework, our goal is to find x∗, the point that maximizes
(or minimizes) f(x). This is challenging because f is both unknown and expensive to
evaluate. Therefore, we want to minimize the number of times f(x) is evaluated. Because
it is unknown, f is treated as a random function with a suitably defined prior. Given



T. S. Frisby and C. J. Langmead 18:5

experimental observations, a posterior distribution over f is computed, which becomes the
prior for the next round. Typical choices for priors/posteriors include Gaussian Processes
[21] and Tree-structured Parzen estimators [3]. In the context of this paper, f is the function
that maps designs to fitness values. The evaluation of f is expensive, because it requires the
previously described DE mutagenesis and screening steps.

The posterior over f becomes the input to an acquisition function, which is used to select
the next point(s) to evaluate [30]. A variety of acquisition functions have been proposed,
including: expected improvement (EI), upper (or lower) confidence bounds, Thompson
sampling [28], and probability of improvement. In general, an acquisition function defines
some trade-off between exploring the design space, and simply selecting the point that has
the best expected value under the posterior (aka exploitation). In this paper, we seek to
maximize f , and use expected improvement criterion as the acquisition function.

2.3 Generative modeling of protein fold families
The proposed approach uses a modified acquisition function that considers not only the
expected improvement in fitness for a given set of mutations, sk, but also whether the overall
design, sn, resembles proteins within the same fold family. The latter criterion is implemented
using a regularization term, as described in Sec. 3. Our assumption is that the statistical
properties of the proteins within a given fold family have been optimized through natural
evolution to ensure that they have a full range of physical, chemical, and biological properties
to function properly in a complex cellular environment. Therefore, during the process of
protein engineering, we should seek designs that are as native-like as possible [8, 12, 17].

To accomplish this task, we propose to use fold family-specific generative models of
sequences. We evaluate two options for such models – profile HMMs and Markov Random
Fields (MRF), as generated by the gremlin algorithm [2]. HMM and MRF models can be
learned from known sequences from a given fold family. The primary difference between
these models is that whereas HMMs only encode dependencies between adjacent residues,
the gremlin algorithm can detect and encode both sequential and long-range dependencies.
Either way, the models encode a joint distribution over residue types at each position in the
primary sequence, P (S1, ..., Sn), which can be used to compute the probability (or related
quantities, like log-odds) of given design. We assume that any design with a high probability
or log-odds under the generative model is native-like.

3 Methods

3.1 Generative models of Protein G IgG Fc binding domain (GB1)
Our method incorporates generative models of protein sequences for the fold family to which
the target protein belongs. We evaluated two options for such models, (i) a Markov Random
Field (MRF) model learned using the gremlin algorithm [2], and (ii) a profile Hidden
Markov Model (HMM). We downloaded the profile HMM [11] for the fold family to which
GB1 belongs (Pfam id: PF01378) from the Pfam database [5]. We also downloaded the
multiple sequence alignment that was used to train the HMM from Pfam, and then used the
alignment to train the gremlin model. Thus, the gremlin and HMM models were trained
from the same sequence data. We used these models to compute the log-odds of each design.
These log-odds are used as a regularization factor in the Bayesian optimization (see Sec 3.2).
The two models make different assumptions about the conditional independencies among
the residues in the distribution over GB1 sequences, and thus will output different log-odds
scores for the same design, in general.
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3.2 Fold family-regularized Bayesian Optimization for Directed Protein
Evolution

The Bayesian optimization is performed using Gaussian Process (GP) regression as the
prior over the unknown fitness function, f . A GP requires a kernel, K, which describes the
covariance between sequences si and sj . In our models, we use the squared exponential
kernel given by:

Ksi,sj = exp
(
− d(si, sj)2

2`2

)
where d(·, ·) is the Euclidean distance and ` the length scale. A one-hot encoding of the
variants at the selected positions was used to compute distances. Hyperparameter θ is
optimized while fitting the GP to data by maximizing the log marginal likelihood:

log p(y|θ) = −N2 log 2π − 1
2 log det|K + σ2I| − 1

2y
T (K + σ2I)−1y

The term y is a vector of the given property (e.g. fitness) of N sequences, σ2 the variance of
observations, and I is the N ×N identity matrix. Once fitted, the GP encodes a distribution,
P , which is used to obtain a posterior mean function µP(sk) and variance over the unknown
fitness function f :

µP(sk) = E[f(sk)] = Ksk,s(K + σ2I)−1y

Var[f(sk)] = Ksk,sk
−Ksk,s(K + σ2I)−1Ks,sk

Ksk,s refers to the row vector of kernel function values between sequence sk and all other
sequences, denoted by subscript s. Additionally, Ks,sk

= KT
sk,s.

The GP becomes the argument to an acquisition function, which is used to select sequences
for wet-lab screening. The data produced via the screening step are used to update the GP
for the next round. In our experiments, we used the expected improvement (EI) criterion as
our acquisition function. Two versions of EI were considered: (i) the standard version, which
is often used in Bayesian optimization, and (ii) a regularized form of EI. The standard form
of EI is given by:

EI(sk;P) = EP
[
max(0, f(sk)− µP(x+)

]
(1)

where x+ is the location of the (estimated) optimal posterior mean.

Regularized Expected Improvement
We also evaluated a regularized form of EI by scaling the standard EI by a design-specific
scaling factor, F(sk;P). In our experiments, F refers to the log-odds score obtained by either
an MRF or profile HMM, as described in Section 3.1. Our regularized EI is defined as:

EIF (sk;P) = EI(sk;P)F(sk) (2)

We will demonstrate in Section 4 that this small modification to the acquisition function
results in a substantial shift in the designs discovered via ML-assisted DE. In particular, our
method finds designs that are substantially more native-like, with only a small decrease in
expected fitness.
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3.3 Directed evolution with machine learning and in silico traditional
approaches

Our experiments contrast the performance of “standard” ML-assisted DE (i.e., non-regulari-
zed) to the regularized version. We also compare the results to simulated forms of “traditional”
DE (i.e., without ML), as was also done in [32]. Specifically, we simulated both the single
mutation walk and recombination versions of DE (see Fig. 1). We note that the single
mutation walk approach is deterministic, given the starting sequence. With the single step,
we start each trial with a randomly chosen sequence from the GB1 variant library. At each
of positions 39, 40, 41, and 54, we observe the experimentally determined fitness values for
all possible single-residue mutations. Having observed these mutations, we then fix in place
the single-residue mutant which has the highest fitness. With this residue fixed, we then
repeat this procedure for the remaining unfixed residue positions. Continuing in this manner,
the trial ends when all residues have been fixed. All observed fitness values within a trial
thus represent a DE determined fitness function approximation.

For the recombination method, we mimic saturation mutatgenesis experiments by starting
with n randomly chosen sequences from the GB1 variant library. From these, we identify the
top three sequences that have highest fitness (as was done in [32]), and use these sequences
to perform recombination. A recombinant library is simulated in silico by computing the
Cartesian product S39 × S40 × S41 × S54, where the set Sm refers to the variant residues
found at position m among the three highest fitness sequences in the initial random library.
The resulting list of 4-tuples defines the recombinant library. Here, the DE fitness function
approximation is given by observing fitness values for the n starting sequences as well as the
recombined sequences.

4 Results

In this section, we report the results of five approaches to performing DE: (i) single mutation
walk (see Fig. 1-top); (ii) recombination (see Fig. 1-bottom); (iii) Bayesian optimization
using standard expected improvement (EI), denoted by “GP+EI”; (iv) Bayesian optimization
using regularized EI with MRF-derived log-odds, denoted by “GP+EI+gremlin”; and
(v) Bayesian optimization using regularized EI with HMM-derived log-odds, denoted by
“GP+EI+HMM”. Gaussian Process regression models are used for (iii)-(v). The standard
form of expected improvement (Eq. 1) is used for (iii), and the regularized version of EI (Eq.
2) is used for (iv) and (v).

Each method was allowed to screen (i.e., obtain fitness values for) a total of 191 variants.
This number was chosen to be similar to the number of sequences screened by the deterministic
single mutant walk so that each method had similar experimental burden. Each model was
initially trained on 20 randomly selected sequences. The small number of initial sequences
simulates the scenario where the available fitness data is limited, prior to DE. The Bayesian
optimization methods selected the top 19 sequences during each acquisition round. Each
model is then updated with the experimentally measured fitness values for the chosen batch
of 19 sequences, and this process is repeated for 9 batches (ie. 20 initial sequences plus 9
batches of 19 designs per batch, giving 20 + 19× 9 = 191 variants selected). We refer to a
complete set of variant selection batches as a trial. We performed 100 total trials with each
selection strategy with different random initial starting sequences. 20% of the data were held
out for testing purposes.
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Table 1 Descriptive statistics for fitness, gremlin log odds score, and HMM log odds score. The
final three columns show correlations between each respective score.

Metric Mean Median Variance (1) (2) (3)
(1) Fitness 0.08 0.003 0.16 1
(2) gremlin 0.54 0 1.06 0.17 1
(3) HMM 2.71 2.56 1.12 0.12 0.67 1

4.1 Data
Protein G is an antibody-binding protein expressed in Streptococcus. The B1 domain of
protein G (GB1) interacts with the Fc domain of immunoglobulins. We performed our
experiments on an existing dataset generated by Wu et al. [31], who performed saturation
mutagenesis at four carefully chosen sites in GB1 in order to investigate the protein’s
evolutionary landscape. The four chosen residues (V39, D40, G41, and V54) are collectively
present in 12 of the protein’s top 20 pairwise epistatic interactions, meaning these sites are
expected to contain evolutionarily favorable variants [20].

The fitness criterion for their study was binding affinity to IgG-Fc. Experimental
measurements were obtained for 149,361 out of 160,000 (i.e. 204) possible variants at these
four loci using mRNA display [23], followed by high-throughput Illumina sequencing. Briefly,
this approach to measuring binding affinity works by first creating an input mRNA-protein
fusion library from GB1 variants. This input library is then exposed to the GB1 binding target
IgG-Fc. Any variant that binds to the target is subsequently sequenced for identification. By
measuring the counts of each variant contained in the input library, cin, and output “selected”
library, cout, the relative fitness w of the ith variant is calculated as follows:

wi = γ
cini
couti

(3)

Here, γ is a normalizing factor that ensures the wildtype sequence has fitness 1, and sequences
with improved fitness are greater than 1. The range of fitness scores is from 0 to 8.76, with
mean 0.08. Only 3,643 sequences in the dataset (≈ 2.4%) have fitness greater than 1.

The MRF and HMM models described in Sec. 3 were used to compute the log-odds
of each of the 149,361 variants in the GB1 library. The log-odds were scaled to match
the range of the fitness scores (0 − 8.76). As described in Sec. 3.2, the (scaled) log-odds
were used as regularization terms. Table 1 displays the descriptive statistics of the fitness
and the scaled log-odds values used in our experiment. While most fitness and gremlin
scores lie close to 0, the HMM scores have mean and median values of 2.71 and 2.56,
respectively. The difference between the gremlin and HMM log-odds is not unexpected,
because the HMM makes strong assumptions about the conditional independencies between
residues, and therefore does not penalize as many interaction pairs. We note that because
gremlin and HMM scores describe statistics related to position specific and pairwise patterns,
wildtype sequence {V39,D40,G41,V54} takes the maximum value under these metrics. Further,
gremlin and HMM scores have weak positive Pearson’s correlation with fitness (0.17 and
0.12, respectively). Conversely, gremlin and HMM have relatively high correlation (0.67) to
each other.

4.2 Protein fold family-regularization biases variant selection
Traditionally, DE techniques aim to identify sequences that score highly in one property. In
Figure 3 we demonstrate that ML-assisted DE outperform simulated traditional approaches
(i.e., single-mutant walk and recombination). Over each cumulative fractions of trials, each
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Figure 3 ML-assisted Directed Evolution techniques identify high fitness variants in
fewer experiments. These curves show the fraction of trials (y-axis) that reach less than or equal
to a specified fitness or log-odds value (x-axis). (Left) On average, GP+EI selected a variant with
maximum fitness 7.28, followed by GP+EI+gremlin at 6.76, then GP+EI+HMM at 6.74. The
simulated traditional single step and recombination methods identified variants with maximum
fitness 5.13 and 4.86 on average, respectively. (Right) With respect to gremlin log-odds score,
on average, the maximum variant scores identified by each model are 4.79 for GP+EI, 6.75 for
GP+EI+gremlin, 6.95 for GP+EI+HMM, 6.34 for recombination, and 4.60 for single step.

of the three ML-assisted methods identify higher fitness variants than simulated traditional
approaches. Of the two traditional approaches, the single mutant walk method fares better
than recombination, though both consistently identify variants that have higher fitness than
wildtype. On average, the single mutant walk procedure finds a variant with maximum
fitness 5.13, whereas recombination yields a variant with maximum fitness 4.85.

GP+EI on average identifies variants with 7.28 fitness, followed by GP+EI+gremlin
and GP+EI+HMM at 6.76 and 6.74, respectively. This suggests that protein fold family-
regularization via gremlin or HMM induces a small reduction (≈ 7%) in overall fitness.
Since GP+EI+gremlin and GP+EI+HMM are regularized with the intent to select variants
with higher gremlin or HMM scores, we expect that this fitness cost is actually a tradeoff
with these metrics. Figure 4 supports this notion. In Figure 4 top left, GP+EI achieves
highest per-batch average maximum fitness, and is able to do so in fewer batches. This
is consistent with the result in Figure 3. However, GP+EI+gremlin and GP+EI+HMM
are able to find variants of equal fitness levels to GP+EI if given more batches. We note
that 20 initial sequences plus 9 batches of 19 corresponds to 191 mutagensis and screening
experiments, a relatively modest burden.

The per-batch average gremlin and HMM scores of selected variants reveal a different
pattern. In the top right and bottom of Figure 4, it is clear that variants selected by
GP+EI+GREM and GP+EI+HMM have highest per-batch average maximum log-odds,
and this holds true for every batch. Thus, the 7% decrease in binding affinity is more than
compensated for by a 41 to 45% increase in the the log-odds of our designs under a generative
model of the GB1 fold family.

That GP+EI+gremlin and GP+EI+HMM have high overlap is not unexpected, given
the high correlation between these two metrics. GP+EI at no point selects variants with
log-odds scores on par with GP+EI+gremlin and GP+EI+HMM. Since GP+EI gives
no consideration to these scores when making variant selection decisions, it should not be
expected that this performance difference will ameliorate itself given more batches. Thus,
protein fold family-regularization can bias variant selections towards those with favorable
fitness and fold family conservation statistics.
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Figure 4 Protein fold family-regularization biases variant selections towards those
with native-like position-specific and pairwise statistics with little cost to fitness. These
plots show per batch averages over 100 trials. Models were initialized with 20 randomly chosen
sequences, and each batch consists of 19 selected variants. (Top Left) GP+EI chooses variants
with higher max fitness in fewer batches than other methods. GP+EI+gremlin and GP+EI+HMM
catch up to GP+EI given enough batches. The curves are not monotonic because the values being
plotted are fitness values for a particular batch, not the best fitness seen thus far. (Top right)
GP+EI+gremlin and GP+EI+HMM are biased towards selecting variants with higher gremlin
scores, and do so consistently better than GP+EI in each batch. (Bottom) The same pattern is
observed for the HMM scores.

To further demonstrate the utility of protein fold family-regularization, Figure 5 compares
the maximum fitness and maximum gremlin scores of variants selected in each of 100 trials.
For brevity, we omit similar results with HMM scores from this discussion. To show how this
process evolves as selections are made, the left figure shows selections from the first batches
of each trial, and the right figure shows the final selections made in each trial. First batch
selections use models that have only observed 20 random sequences, while the last batches
have also observed all choices made in previous batches. There is clear separation between
max gremlin scores of GP+EI and GP+EI+gremlin in the first batch. GP+EI+gremlin
identifies variants with maximum gremlin score of at least 3 in most trials, whereas most
GP+EI selected variants have gremlin scores of 4 or less. On the other hand, the max
fitness of selected variants have very similar means (GP+EI = 2.98, GP+EI+gremlin
=2.99) and variance (GP+EI = 2.57, GP+EI+gremlin = 2.21). Even as the models are
able to select new variants and update themselves, we observe that this general trend persists
(Figure 5, right hand side). Thus, selections made by GP+EI+gremlin are most strongly
biased toward variants with high gremlin scores, while still being able to identify variants
of fitness on par with GP+EI.
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Figure 5 Biased variant selection persists over many batches when using protein
fold family-regularization. Shown is the average maximum fitness and GREMLIN scores of
selected variants with the first (Left) and last (Right) batch of variant selection using GP+EI and
GP+EI+gremlin. The dots denoted “center” corresponds to the mean of its respective metric.

4.3 Sequence characteristics of selected variants
Thus far, we have characterized each ML-assisted DE technique in terms of the average
maximum fitness and the log-odds of selected variants. We now consider the residue-specific
behavior of choices made under each model. Figure 6 shows residue-specific entropy of variant
selections. A high entropy grid (dark blue) indicates that the model selects many different
residue types at that position within a given batch. Low entropy (light blue) indicates that
the model selects only few residue types. The relative entropy of selections thus provides a
sense of the confidence the model has that a particular variant residue is informative. Each
model has relatively low entropy at residues 41 and 54, where GP+EI has lowest entropy at
residue 54. The models attain low entropy statuses at these residues during the early batches,
and maintain low entropy for the duration of the trial. Conversely, residues 39 and 40 have
high entropy throughout, even increasing in later batches. This suggests that all the models
attain certainty at residues 41 and 54, but are uncertain at residue positions 39 and 40.

In Figure 7, we show sequence logos obtained from each model after the final batch
selections. Again, positions 41 and 54 have highest information content among all positions.
Interestingly, all models select similar residue types at each position. In positions 40, 41, and
54, the top two selections are the same residues, just in different orders. Most notably, the
top choice at each position yields a variant sequence that is most optimal in terms of the
applied regularization (or lack thereof). GP+EI has consensus sequence, {W39,W40,C41,A54}
which has a very high fitness (7.28), but comparably low gremlin (0.47) and HMM
(1.71) scores. Meanwhile, GP+EI+gremlin with consensus sequence {I39,W40,G41,A54}
(fitness=2.75,GREMLIN=3.77,HMM=4.34) and GP+EI+HMM with consensus sequence
{I39,W40,G41,A54} (fitness=2.34,GREMLIN=3.42,HMM=4.67) strike a balance between find-
ing variants with increased fitness yet high gremlin and HMM score.

4.4 Predictions on unseen data
In the previous sections, we characterized the batched variant sequence selections made
by ML-assisted DE techniques with and without protein fold family-regularization. These
selections allowed us to iteratively update models for variant fitness using sequences that each
model expected to be informative. Since each model selected different sequences according

WABI 2020
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Figure 6Bayesian selection techniques quickly identify informative sequence patterns.
These plots show the per-batch average position-specific entropy of selections under each model.
Lighter squares denote low entropy decisions, meaning the model selects among fewer residue types
at that position in that batch. Clockwise from top left, models shown include GP+EI+gremlin,
GP+EI+HMM, and GP+EI.

Figure 7 Protein fold family-regularization biases sequence logos towards sequences
with desired properties. While each have similar logos, the GP+EI consensus sequence
({W39,W40,C41,A54}) has high fitness but low log-odds scores, whereas the consensus GP+EI+gremlin
({L39,W40,G41,A54}) and GP+EI+HMM ({I39,W40,G41,A54}) scores strike a balance between elevated
fitness and high log-odds scores.
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Figure 8 The sequential active learning strategies of ML-assisted DE approaches
yields low-accuracy models, but are able to maintain any biases induced by protein
fold family-regularization. Predictions made on 30,000 held out test sequences from the final
models in each of 100 separate DE trials. Moving counterclockwise from the top left, included are
mean squared error, true fitness values of the top 100 predictions from each model, true HMM scores
of the top 100 predictions, and true gremlin scores of the top 100 predictions.

to their own unique selection objective, each model should also have unique predictive
capabilities on unseen sequences. To demonstrate this, we used models obtained from each
trial to predict the fitness of a held out test set of approximately 30,000 variants (Figure 8).
We emphasize that these sequences were never seen by the models during the iterative variant
selection stage of each trial, and that they constitute a random subsample of the GB1 data
set. While the models generally yield low-accuracy in terms of predicting actual fitness values,
we find that each are still able to discern between high fitness and low fitness variants, and
that regularization introduced during selection and training influences model predictions.

Each plot in Figure 8 shows distributions over 100 trials of each model type. The thick
black bar shows the interquartile range, and the white dot the median value. The width of
each plot corresponds to the mass of the distribution at a given value. The top left figure
shows the mean squared error of predictions. All models tend to have error greater than
1, meaning each model has relatively low accuracy in terms of predicting fitness of unseen
sequences. The remaining plots show the true fitness, GREMLIN, and HMM scores of the top
100 sequences ranked by predicted fitness for each model. With respect to fitness (top right
Figure 8), top predictions made by GP+EI have higher mass than those of GP+EI+gremlin
or GP+EI+HMM. Conversely, with respect to gremlin and HMM scores (bottom Figure 8),
the opposite trend exists, where the mass of the distributions are higher in GP+EI+gremlin
and GP+EI+HMM than in GP+EI.
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5 Discussion

Our work extends recent successes of ML-assisted DE. In particular, we show that GP
regression techniques with and without protein fold family-regularization are able to identify
high fitness variants with greater efficiency than traditional laboratory-based methods. These
results echo those found by [32], though our ML-based strategies differ from theirs in key
ways. First, they used an ensemble of different regressor types followed by extensive model
selection, whereas we use a single Bayesian framework. Additionally, while they use a more
traditional supervised learning setup, we adopt an active learning strategy where models
iteratively select variants and are able to update themselves based on these selections. This
more naturally mimics the workflow of real experimental labs. The batch sizes of an active
learning setup can be easily tuned to match the throughput of a given lab, which is useful
if incorporating ML-assisted DE into a laboratory-based experimental design. Finally, our
models are able to identify high fitness variants while observing true fitness values of fewer
sequences compared to the approach in [32]. Specifically, our sequential method only required
191 fitness value acquisitions (20 initial observations plus 9 batches of 19) to identify designs
with high fitness values. In contrast, the experiment in [32], which used the same GB1 data,
required 470 initial observations plus a single batch of 100 to find similarly fit designs. This
is a 67% reduction in the number of sequences tested, which demonstrates the merits of
active learning and Bayesian optimization, as the models are able to correct for mistakes
made early in the learning process.

A common weakness with traditional DE approaches is that they only seek to optimize
sequences with respect to a single property, such as fitness. However, there are any number of
other characteristics that describe a protein, such as solubility, thermostability, or subcellular
location, and in general, the relationships between these variables may be nonlinear. It is
often favorable to identify sequences that score favorably according to multiple such metrics.
In principle, one might consider using a set of regression models, each specialized to make
predictions about a particular trait. Unfortunately, obtaining sufficient data to train such
models is challenging, and we may not know all the relevant properties to consider. More
importantly, such models would likely be trained on data from a range of fold families, and
may therefore not include factors that are unique to a specific fold family. This motivated our
use of fold family-regularization. Our results demonstrate that such regularization produces
more native-like designs, with only a slight reduction in fitness.

We note that there are other ways that one might introduce fold family-regularization
into this problem. A separate approach that we tried includes creating a new label for each
sequence that is the product of fold family score F and variant fitness. Since the highest
products should correspond to jointly high fitness and log odds scores, we expected that
identifying variants that score highly according to this product should identify mutually
favorable variants with respect to each individual score. However, we found that this approach
does not obtain a desirable balanced tradeoff between fitness and log odds scores (data not
shown, average maximum fitness of selected variants, gremlin×fitness = 4.62, HMM×fitness
= 4.52, average maximum log odds score: gremlin×fitness = 7.37, HMM×fitness = 7.04).
One possible explanation is that the generative fold family model is conditioned on the
entire protein sequence, whereas our prediction task was constrained over only a few specific
residues. Another is that the small number of training samples (between 20 and 190, in our
experiments) may not be sufficient to learn such a complex function.

Finally, we noted a trend where selections by each model had low entropy at two residue
positions. This coincided with each model being able to identify high fitness variants early
within each active learning trial. This may suggest that the models quickly identified
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informative sequence patterns. When we looked at the types of residues selected by each
model, we saw that each model had similar but different selection patterns. With respect to
residue positions 41 and 54, the top two residues identified by each model were 41G vs 41C
and 54A vs 54G. Interestingly, these selections correspond to some known biology. Olson et al.
[20] used this same dataset to study epistasis in GB1. They observed that the mutation
V54A is by itself neutral, but often beneficial (ie. increase fitness) in the presence of other
mutants, and that this effect was most pronounced at residue 41. While 41G represents the
wildtype sequence, each model seems to also favor the mutation G41C. Olson et al. find that,
with a V54A background, the G41C mutation provides the highest fitness. Even at residue
positions where the models had high entropy, it seems they identify informative sequence
features. Each model consistently chooses variant D40W, and both in the background of
mutant V54A and by itself as single mutant, this mutation increases fitness. Thus, our
Bayesian ML-assisted DE methods are capable of identifying informative sequence patterns.

6 Conclusions and future work

We have introduced protein fold family-regularization for Bayesian ML-assisted directed
evolution. Using log-odds scores from gremlin and Pfam HMM’s, we calculate an adjus-
ted expected improvement score that is biased towards selecting variants with native-like
sequences. Using an active learning approach, we show that we can efficiently trade off
small losses in variant fitness for larger gains in gremlin and HMM scores, while also
outperforming traditional laboratory methods.

In our experiments, we investigated variants at four residue positions, totaling nearly
150,000 sequences. While we only needed small training sets to identify favorable variants,
it could be the case that the amount of necessary training data increases as the number of
residue positions under investigation increases. A downside with using GP as the underlying
model is that they do not scale well with large data, as inference with a GP has complexity
O(n3). A natural extension to our procedure then is to incorporate recent advances in learning
sparse GPs, using either pseudoinputs or variational techniques [29, 13]. We could also
imagine improving our model by using kernels that are specifically designed with sequential
data in mind [18, 19].

Finally, we have so far observed that using fold family-regularization induces a fitness
tradeoff. However, our model does not attempt to harness this tradeoff in any way. We can
imagine a utility where a user specifies a tradeoff parameter which dictates by how much
the regularization should favor the generative model for a protein fold family compared to
fitness. It could be informative to use such a utility to identify a Pareto optimal frontier
over variant sequences (ex. [25]), where sequences on the boundary correspond to those that
jointly optimize fitness and probability under a given fold family model.
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Abstract
Unbalanced translocations are among the most frequent chromosomal alterations, accounted for 30%
of all losses of heterozygosity, a major genetic event causing inactivation of tumor suppressor genes.
Despite of their central role in genomic sequence analysis, little attention has been devoted to the
problem of matching sequences allowing for this kind of chromosomal alteration.

In this paper we investigate the approximate string matching problem when the edit operations
are non-overlapping unbalanced translocations of adjacent factors. In particular, we first present
a O(nm3)-time and O(m2)-space algorithm based on the dynamic-programming approach. Then
we improve our first result by designing a second solution which makes use of the Directed Acyclic
Word Graph of the pattern. In particular, we show that under the assumptions of equiprobability
and independence of characters, our algorithm has a O(n log2

σm) average time complexity, for an
alphabet of size σ, still maintaining the O(nm3)-time and the O(m2)-space complexity in the worst
case. To the best of our knowledge this is the first solution in literature for the approximate string
matching problem allowing for unbalanced translocations of factors.
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1 Introduction

Retrieving information and teasing out the meaning of biological sequences are central
problems in modern biology. Generally, basic biological information is stored in strings of
nucleic acids (dna, rna) or amino acids (proteins).

In recent years, much work has been devoted to the development of efficient methods
for aligning strings and, despite sequence alignment seems to be a well-understood problem
(especially in the edit-distance model), the same cannot be said for the approximate string
matching problem on biological sequences.

String alignment and approximate string matching are two fundamental problems in
text processing. Given two input sequences x, of length m, and y, of length n, the string
alignment problem consists in finding a set of edit operations able to transform x in y, while
the approximate string matching problem consists in finding all approximate matches of x in
y. The closeness of a match is measured in terms of the sum of the costs of the elementary
edit operations necessary to convert the string into an exact match.
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Most biological string matching methods are based on the Levenshtein distance [15],
commonly referred to just as edit distance, or on the Damerau distance [11]. The edit
operations in the case of the Levenshtein distance are insertions, deletions, and substitutions
of characters, whereas, in the case of the Damerau distance, swaps of characters, i.e.,
transpositions of two adjacent characters, are also allowed (for an in-depth survey on
approximate string matching, see [18]). Both distances assume that changes between strings
occur locally, i.e., only a small portion of the string is involved in the mutation event.
However, evidence shows that in some cases large scale changes are possible [8, 10, 21] and
that such mutations are crucial in dna since they often cause genetic diseases [16, 17]. For
example, large pieces of dna can be moved from one location to another (translocations)
[8, 19, 22, 23], or replaced by their reversed complements (inversions) [3].

Translocations can be balanced (when equal length pieces are swapped) or unbalanced
(when pieces with different lengths are moved). Interestingly, unbalanced translocations are a
relatively common type of mutation and a major contributor to neurodevelopmental disorders
[23]. In addition, cytogenetic studies have also indicated that unbalanced translocations
can be found in human genome with a de novo frequency of 1 in 2000 [22] and that it is
a frequent chromosome alteration in a variety of human cancers [19]. Hence the need for
practical and efficient methods for detecting and locating such kind of large scale mutations
in biological sequences arises.

1.1 Related Results

In the last three decades much work has been made for the alignment and matching problem
allowing for chromosomal alteration, especially for non-overlapping inversions. Table 1 shows
the list of all solutions proposed over the years, together with their worst-case, average-case
and space complexities.

Concerning the alignment problem with inversions, a first solution based on dynamic
programming, was proposed by Schöniger and Waterman [20], which runs in O(n2m2)-time
and O(n2m2)-space on input sequences of length n and m. Several other papers have been
devoted to the alignment problem with inversions. The best solution is due to Vellozo et
al. [21], who proposed a O(nm2)-time and O(nm)-space algorithm, within the more general
framework of an edit graph.

Regarding the alignment problem with translocations, Cho et al. [8] presented a first
solution for the case of inversions and translocations of equal length factors (i.e., balanced
translocations), working in O(n3)-time and O(m2)-space. However their solution generalizes
the problem to the case where edit operations can occur on both strings and assume that
the input sequences have the same length, namely |x| = |y| = n.

Regarding the approximate string matching problem, a first solution was presented by
Cantone et al. [2], where the authors presented an algorithm running in O(nm) worst-
case time and O(m2)-space for the approximate string matching problem allowing for
non-overlapping inversions. Additionally, they also provided a variant [3] of the algorithm
which has the same complexity in the worst case, but achieves O(n)-time complexity on
average. Cantone et al. also proposed in [4] an efficient solution running in O(nm2)-time
and O(m2)-space for a slightly more general problem, allowing for balanced translocations of
adjacent factors besides non-overlapping inversions. The authors improved their previous
result in [5] obtaining an algorithm having O(n)-time complexity on average. We mention
also the result by Grabowski et al. [14], which solves the same string matching problem in
O(nm2)-time and O(m)-space, reaching in practical cases O(n)-time complexity.
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Table 1 Results related to alignment and matching of strings allowing for inversions and
translocations of factors. All the edit operations allowed by all the listed solutions are intended to
involve only non-overlapping factors of the pattern.

Authors Year W.C. Time AVG Time Space
Alignment with inversions

Schoniger and Waterman [20] (1992) O(n2m2) - O(m2)
Gao et al. [13] (2003) O(n2m2) - O(nm)
Chen et al. [7] (2004) O(n2m2) - O(nm)
Alves et al. [1] (2005) O(n3 logn) - O(n2)
Vellozo et al. [21] (2006) O(nm2) - O(nm)

Alignment with inversions and balanced translocations on both strings

Cho et al. [8] (2015) O(m3) - O(m2)

Pattern matching with inversions

Cantone et al. [2] (2011) O(nm) - O(m2)
Cantone et al. [3] (2013) O(nm) O(n) O(m2)

Pattern matching with inversions and balanced translocations

Cantone et al. [4] (2010) O(nm2) O(n logm) O(m2)
Grabowski et al. [14] (2011) O(nm2) O(n) O(m)
Cantone et al. [5] (2014) O(nm2) O(n) O(m)

Pattern matching with unbalanced translocations

This paper (2020) O(nm3) O(n log2 m) O(m2)

1.2 Our Results

While in the previous results mentioned above it is intended that a translocation may
take place only between balanced factors of the pattern, in this paper we investigate the
approximate string matching problem under a string distance whose edit operations are
non-overlapping unbalanced translocations of adjacent factors. To the best of our knowledge,
this slightly more general problem has never been addressed in the context of approximate
pattern matching on biological sequences. First, we propose a solution to the problem, based
on the general dynamic programming approach, which needs O(nm3)-time and O(m2)-space.
Subsequently, we propose a second solution to the problem that makes use of the Directed
Acyclic Word Graph of the pattern and achieves a O(n log2

σm)-time complexity on average,
for an alphabet of size σ ≥ 4, still maintaining the same complexity, in the worst case, as for
in the first solution.

The rest of the paper is organized as follows. In Section 2 we introduce some preliminary
notions and definitions. Subsequently, in Section 3 we present our first solution running in
O(nm3)-time based on the dynamic programming approach. In Section 4 we present our
second algorithm and analyze it both in the worst and in the average case. Finally draw our
conclusions in Section 5.

2 Basic notions and definitions

A string x of length m ≥ 0, over an alphabet Σ, is represented as a finite array x[1 ..m] of
elements of Σ. We write |x| = m to indicate its length. In particular, when m = 0 we have
the empty string ε. We denote by x[i] the i-th character of x, for 1 ≤ i ≤ m. Likewise, the
factor of x, contained between the i-th and the j-th characters of x is indicated with x[i .. j],
for 1 ≤ i ≤ j ≤ m. The set of factors of x is denoted by Fact(x) and its size is O(m2).
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A string w ∈ Σ∗ is a suffix of x (in symbols, w w x) if w = x[i ..m], for some 1 ≤ i ≤ m.
We denote by Suff (x) the set of the suffixes of x. Similarly, we say that w is a prefix of x if
w = x[1 .. i], for some 1 ≤ i ≤ m. Additionally, we use the symbol xi to denote the prefix of
x of length i (i.e.,xi = x[1 .. i]), for 1 ≤ i ≤ m, and make the convention that x0 denotes the
empty string ε. In addition, we write xw for the concatenation of the strings x and w.

For w ∈ Fact(p), we denote with end-pos(w) the set of all positions in x at which an
occurrence of w ends; formally, we put end-pos(w) := {i | w w xi}. For any given pattern x,
we define an equivalence relation Rx by putting, for all w, z ∈ Σ∗,

w R
x
z ⇐⇒ end-pos(w) = end-pos(z).

We also denote with R
x
(w) the equivalence class of the string w. For each equivalence class

q of Rx , we put len(q) = |val(q)|, where val(q) is the longest string w in the equivalence class
q.

I Example 1. Let x = agcagccag be a string over Σ = {a, g, c, t} of length m = 9. Then
we have end-pos(ag) = {2, 5, 9}, since the substring ag occurs three times in x, ending at
positions 2, 5 and 9, respectively, in that order. Similarly we have end-pos(gcc) = {7}.
Observe that R

x
(ag) = {ag, g}. Similarly we have R

x
(gc) = {agc, gc}. Thus, we have

val(R
x
(ag)) = ag, len(R

x
(ag)) = 2, val(R

x
(gc)) = agc and len(R

x
(gc)) = 3.

The Directed Acyclic Word Graph [9] of a pattern x (Dawg, for short) is the deterministic
automaton A(x) = (Q,Σ, δ, root, F ) whose language is Fact(x), where Q = {R

x
(w) : w ∈

Fact(x)} is the set of states, Σ is the alphabet of the characters in x, root = R
x
(ε) is the

initial state, F = Q is the set of final states, and δ : Q× Σ→ Q is the transition function
defined by δ(Rx(y), c) = Rx(yc), for all c ∈ Σ and yc ∈ Fact(x).

We define a failure function, s` : Fact(x) \ {ε} → Fact(x), called suffix link, by putting,
for any w ∈ Fact(x) \ {ε},

s`(w) = “ longest y ∈ Suff (w) such that y 6R
x
w".

The function s` enjoys the following property

w Rx y =⇒ s`(w) = s`(y).

We extend the functions s` and end-pos to Q by putting s`(q) := R
x
(s`(val(q))) and

end-pos(q) = end-pos(val(q)), for each q ∈ Q. Figure 2 shows the Dawg of the pattern
x = aggga, where the edges of the automaton are depicted in black while the suffix links are
depicted in red.

A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of strings x and y
the minimal cost of any finite sequence of edit operations which transforms x into y, if such
a sequence exists, ∞ otherwise.

In this paper we consider the unbalanced translocation distance, utd(x, y), whose unique
edit operation is the translocation of two adjacent factors of the string, with possibly different
lengths. Specifically, in an unbalanced translocation a factor of the form zw is transformed
into wz, provided that both |z|, |w| > 0 (it is not necessary that |z| = |w|). We assign a unit
cost to each translocation.

I Example 2. Let x = gtgaccgtccag and y = ggatcccagcgt be given two strings of length
12. Then utd(x, y) = 2 since x can be transformed into y by translocating the substrings
x[3..4] = ga and x[2..2] = t, and translocating the substrings x[6..8] = cgt and x[9..12] = ccag.

When utd(x, y) < ∞, we say that x and y have utd-match. If x has utd-match with a
suffix of y, we write x

trd
w y.
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3 A Dynamic Programming Solution

In this section we present a general dynamic programming algorithm for the pattern matching
problem with adjacent unbalanced translocations.

Let x be a pattern of length m and y a text of length n, with n ≥ m, both over the same
alphabet Σ of size σ. Our algorithm is designed to iteratively compute, for j = m,m+1, . . . , n,
all the prefixes of x which have a utd-match with the suffix of yj , by exploiting information
gathered at previous iterations. For this purpose, it is convenient to introduce the set Pj , for
1 ≤ j ≤ n, defined by

Pj := {1 ≤ i ≤ m | xi
trd
w yj}.

Thus, the pattern x has an utd-match ending at position j of the text y if and only if m ∈ Pj .
Since the allowed edit operations involve substrings of the pattern x, it is useful to

consider also the set Fkj of all the positions in x at which an occurrence of the suffix of yj of
length k ends. More precisely, for 1 ≤ k ≤ m and k − 1 ≤ j ≤ n, we put

Fkj := {k − 1 ≤ i ≤ m | y[j − k + 1 .. j] w xi} .

Observe that

Fkj ⊆ Fhj , for 1 ≤ h ≤ k ≤ m. (1)

I Example 3. Let x = cattcatgatcat y = atcatgacttactgactta be a pattern and respectively
a text. Then F3

5 is the set of all positions in x at which an occurrence of the suffix of y5 of
length 3 ends, namely, cat. Thus F3

5 = {3, 7, 13}. Similarly, we have that F2
5 = {3, 7, 10, 13}.

Observe that F3
5 ⊆ F2

5.

The sets Pj and Fkj can then be computed by way of the recursive relations contained in
the following elementary lemmas.

I Lemma 4. Let y and x be a text of length n and a pattern of length m, respectively. Then
i ∈ Pj, for 1 ≤ i ≤ m and i ≤ j ≤ n, if and only if one of the following two facts holds:
(a) x[i] = y[j] and (i− 1) ∈ Pj−1 ∪ {0};
(b) (i− k) ∈ Fhj , i ∈ Fkj−h, and (i− k − h) ∈ Pj−k−h ∪ {0}, for some 1 ≤ k, h < i such that

h+ k ≤ i; J
Notice that condition (b) in Lemma 4 refers to a translocation of adjacent factors of length
k and h, respectively.

Likewise, the sets Fkj can be computed according to the following lemma.

I Lemma 5. Let y and x be a text of length n and a pattern of length m, respectively. Then
i ∈ Fkj if and only if one of the following condition holds:
(a) x[i] = y[j] and k = 1;
(b) x[i] = y[j], 1 < k < i and (i− 1) ∈ Fk−1

j−1 ,
for 1 ≤ k < i < m and k − 1 ≤ j ≤ n. J

Based on the recurrence relations in Lemmas 4 and 5, a general dynamic programming
algorithm can be readily constructed, characterized by an overall O(nm3)-time and O(m3)-
space complexity. However, the overhead due to the computation and the maintenance of
the sets Fkj turns out to be quite relevant.
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y ... s

k︷ ︸︸ ︷
w

h︷ ︸︸ ︷
z︸ ︷︷ ︸

j

...

x u

h︷ ︸︸ ︷
z

k︷ ︸︸ ︷
w︸ ︷︷ ︸

i

Figure 1 Case (b) of Lemma 4. The prefix u of the pattern, of length i− h− k, has a utd-match
ending at position j − h− k of the text, i.e. (i− h− k) ∈ Pj−k−h ∪ {0}. In addition the substring of
the pattern z = x[i− h− k+ 1..i− k], of length h has an exact match with the substring of the text
y[j − h+ 1..j], i.e. (i− k) ∈ Fhj . Finally the substring of the pattern w = x[i− k + 1..i], of length k
has an exact match with the substring of the text y[j − h− k + 1..j − h], i.e. i ∈ Fkj−h.

Algorithm 1 A dynamic programming algorithm for the approximate string match-
ing problem allowing for unbalanced translocations of adjacent factors. The algorithm is
characterised by a O(nm3)-time and a O(m2)-space complexity.

Algorithm1
1. P[0, 0]← true
2. for j ← 1 to n do
3. P[0, j]← true
4. for i← 1 to m do
5. if (x[i] = y[j]) then
6. if (P[i− 1, j − 1]) then
7. P[i, j]← true
8. F[i, j]← F[i− 1, j − 1] + 1
9. for k ← 1 to i− 1 do

10. for h← 1 to i− k do
11. if (F[i− h, j] ≥ k and F[i, j − k] ≥ h) then
12. if (P[i− h− k, j − h− k]) then
13. P[i, j]← true

Based on equation (1), we can represent the sets Fkj by means of a single matrix F of size
m× n. Specifically, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we set F[i, j] as the length of the longest
suffix of xi which is also a suffix of yj . More formally we have:

i ∈ Fkj ⇐⇒ F[i, j] ≥ k.

However, since we need only the last m columns of the matrix F for computing the next
column, we can maintain it by means of a matrix F of size m2. The pseudocode of the
resulting dynamic programming algorithm, called Algorithm1, is shown in Figure 1. Due
to the four for-loops at lines 2, 4, 9, and 10, respectively, it can straightforwardly be proved
that Algorithm1 has a O(nm3)-time and O(m2)-space complexity. Indeed, the matrices F
and P are filled by columns and therefore we need to store only the last m columns at each
iteration of the for-loop at line 2.
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4 An Automaton-Based Algorithm

In this section we improve the algorithm described in Section 3 by means of an efficient
method for computing the sets Fkj , for 1 ≤ j ≤ n and 1 ≤ k < j. Such method makes use of
the Dawg of the pattern x and the function end-pos.

Let A(x) = (Q,Σ, δ, root, F ) be the Dawg of x. For each position j in y, let w be the
longest factor of x which is a suffix of yj too; also, let qj be the state of A(x) such that
R

x
(w) = qj , and let lj be the length of w. We call the pair (qj , lj) a y-configuration of A(x).
The idea is to compute the y-configuration (qj , lj) of A(x), for each position j of the text,

while scanning the text y. The set Fkj computed at previous iterations do not need to be
maintained explicitly; rather, it is enough to maintain only y-configurations. These are then
used to compute efficiently the set Fkj only when needed.

I Example 6. Let x = aggga be a pattern and y = aggagcatgggactaga a text respectively.
Let A(x) = (Q,Σ, δ, root, F ) be the DAWG of x as depicted in Figure 2, where root = q0 is
the initial state and F = {q1, q2, q3, q4, q5, q6, q7} is the set of final states. Edges of the Dawg
are depicted in black while suffix links are depicted in red. Observe that, after scanning
the suffix y5 starting from state q0 of A(x), we reach state q2 of the automaton. Thus, the
corresponding y-configuration is (q2, 2). Similarly, after scanning the suffix y11, we get the
y-configuration (q4, 3).

The longest factor of x ending at position j of y is computed in the same way as in the
Forward-Dawg-Matching algorithm for the exact pattern matching problem (the interested
readers are referred to [9] for further details).

Specifically, let (qj−1, lj−1) be the y-configuration of A(x) at step (j − 1). The new
y-configuration (qj , lj) is set to (δ(q, y[j]), length(q) + 1), where q is the first node in the
suffix path 〈qj−1, s`(qj−1), s`(2)(qj−1), . . .〉 of qj−1, including qj−1, having a transition on
y[j], if such a node exists; otherwise (qj , lj) is set to (root, 0).1

Before explaining how to compute the sets Fkj , it is convenient to introduce the partial
function φ : Q× N→ Q, which, given a node q ∈ Q and a length k ≤ length(q), computes
the state φ(q, k) whose corresponding set of factors contains the suffix of val(q) of length k.
Roughly speaking, φ(q, k) is the first node p in the suffix path of q such that length(s`(p)) < k.

In the preprocessing phase, the Dawg A(x) = (Q,Σ, δ, root, F ), together with the
associated end-pos function, is computed. Since for a pattern x of length m we have
|Q| ≤ 2m+ 1 and |end-pos(q)| ≤ m, for each q ∈ Q, we need only O(m2) extra space (see
[9]).

To compute the set Fkj , for 1 ≤ k ≤ lj , we take advantage of the relation

Fkj = end-pos(φ(qj , k)). (2)

Notice that, in particular, we have Fljj = end-pos(qj).
The time complexity of the computation of φ(q, k) can be bounded by the length of the

suffix path of node q. Specifically, since the sequence

〈len(s`(0)(q)), len(s`(1)(q)), . . . , 0〉

of the lengths of the nodes in the suffix path from q is strictly decreasing, we can do at most
len(q) iterations over the suffix link, obtaining a O(m)-time complexity.

1 We recall that s`(0)(q) = q and, recursively, s`(h+1)(q) = s`(s`(h)(q)), for h ≥ 0.
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q0 q1 q2 q3 q4 q5

q6 q7

a g g g a

g
g a

a

g

1

Figure 2 The Directed Acyclic Word Graph (Dawg) of the pattern x = aggga, where the edges
of the automaton are depicted in black while the suffix links are depicted in red.

According to Lemma 4, a translocation of two adjacent factors of length k and h,
respectively, at position j of the text y is possible only if two factors of x of lengths at least
k and h, respectively, have been recognized at both positions j and j − h, namely if lj ≥ h
and lj−h ≥ k hold (see Figure 1).

Let 〈h1, h2, . . . , hr〉 be the increasing sequence of all the values h such that 1 ≤ h ≤
min(lj , lj−h). For each 1 ≤ i ≤ r, condition (b) of Lemma 4 requires member queries on the
sets Fhi

j .
Observe that if we proceed for decreasing values of h, the sets Fhj , for 1 ≤ h ≤ lj , can be

computed in constant time. Specifically, for h = 1, . . . , lj − 1 Fhj can be computed in constant
time from Fh+1

j with at most one iteration over the suffix link of the state φ(qj , h+ 1).
Subsequently, for each member query on the set Fhi

j , condition (b) of Lemma 4 requires
also member queries on the sets Fkj−hi

, for 1 ≤ k < hi. Let 〈k1, k2, . . . , ks〉 be the increasing
sequence of all the values k such that 1 ≤ k ≤ min(lj−hi , lj−hi−k). Also in this case we can
proceed for decreasing values of k, in order to compute the sets Fkj−hi

in constant time, for
1 ≤ k ≤ lj−hi

.
The resulting algorithm for the approximate string matching problem allowing for unbal-

anced translocations of adjacent factors is shown in Figure 2 and is named Algorithm2. In
the next sections, we analyze its worst-case and average-case complexity.

4.1 Worst-case time and space analysis
In this section we determine the worst-case time and space analysis of Algorithm2 presented
in the previous section. In particular, we will refer to the implementation of the Algorithm2
reported in Figure 2.

First of all, observe that the main for-loop at line 4 is always executed n times. For
each of its iterations, the cost of the execution Dawg-Delta (line 5) for computing the new
y-configuration requires at most O(m)-time. Since we have |Pj | ≤ m+ 1, for all 1 ≤ j ≤ n,
the for-loop at line 7 is also executed O(m)-times. In addition, since we have lj ≤ m, for
all 1 ≤ j ≤ n, the two nested for-loops at lines 11 and 14 are executed m times. Observe
also that the transitions of suffix links performed at lines 12 and 15 need only constant time.
Thus, at each iteration of the main for-loop, the internal for-loop at line 14 takes at most
O(m)-time, while the for-loop at line 11 takes at most O(m2)-time. In addition the for-loop
at line 16 takes at most O(m)-time, since |Pj−h−k| ≤ m + 1 and the tests at line 17 can
be performed in constant time. Summing up, Algorithm2 has a O(nm3) worst-case time
complexity.
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Algorithm 2 The code of Algorithm2 and the Dawg state update algorithm Dawg-
Delta. Notice that the function s`∗ in procedure Dawg-Delta denotes the improved suffix
link [9].

Algorithm2
1. m← |x|, n← |y|
2. (q0, l0)← Dawg-Delta(rootA, 0, y[0],A)
3. P0 ← {0}
4. for j ← 1 to n do
5. (qj , lj)← Dawg-Delta(qj−1, lj−1, y[j],A)
6. Pj ← {0}
7. for i ∈ Pj−1 do
8. if i < m and x[i+ 1] = y[j] then
9. Pj ← Pj ∪ {i+ 1}

10. u← qj

11. for h← lj downto 1 do
12. if h = len(s`A(u)) then u← s`A(u)
13. p← qj−h

14. for k ← lj−h downto 1 do
15. if k = len(s`A(p)) then p← s`A(p)
16. for i ∈ Pj−h−k do
17. if ((i+ h) ∈ end-pos(u) and (i+ h+ k) ∈ end-pos(p)) then
18. Pj ← Pj ∪ {i+ h+ k}
19. if (m ∈ Pj) then Output(j)

Dawg-Delta(q, l, c,A)
Dawg-Delta(q, l, c,A)
1. if δB(q, c) = nil then
2. do
3. q ← s`∗A(q)
4. while q 6= nil and δA(q, c) = nil
5. if q = nil then
6. l← 0, q ← rootA
7. else l← len(q) + 1
8. q ← δA(q, c)
9. else l← l + 1

10. q ← δA(q, c)
11. return (q, l)

In order to evaluate the space complexity of Algorithm2, we observe that in the worst
case, during the j-th iteration of its main for-loop, the sets Fkj−k and Pj−k, for 1 ≤ k ≤ m, must
be kept in memory to handle translocations. However, as explained before, we do not keep
the values of Fkj−k explicitly but rather we maintain only their corresponding y-configurations
of the automaton A(x). Thus, we need O(m)-space for the last m configurations of the
automaton and O(m2)-space to keep the lastm+1 values of the sets Pj−k, since the maximum
cardinality of each such set is m+ 1. Observe also that, although the size of the Dawg is
linear in m, the end–pos(·) function can require O(m2)-space. Therefore, the total space
complexity of the Algorithm2 is O(m2).
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4.2 Average-case time analysis
In this section we evaluate the average time complexity of our new automaton-based algorithm,
assuming the uniform distribution and independence of characters in an alphabet Σ with
σ ≥ 4 characters.

In our analysis we do not include the time required for the computation of the DAWG and
the end–pos(·) function, since they require O(m) and O(m2) worst-case time, respectively,
which turn out to be negligible if we assume that m is much smaller than n. Hence we
evaluate only the searching phase of the algorithm.

Given an alphabet Σ of size σ ≥ 4, for j = 1, . . . , n, we consider the following nonnegative
random variables over the sample space of the pairs of strings x, y ∈ Σ∗ of length m and n,
respectively:

X(j) = the length lj ≤ m of the longest factor of x which is a suffix of yj ;
Z(j) = |Pj |, where we recall that Pj = {1 ≤ i ≤ m | xi

trd
w yj}.

Then the run-time of a call to Algorithm2 with parameters (x, y) is proportional to

n∑
j=1

Z(j − 1) +X(j) +
X(j)∑
h=1

X(j − h) +
X(j−h)∑
k=1

Z(j − h− k)

 , (3)

where the external summation refers to the main for-loop (at line 4), the second summation
within it takes care of the internal for-loop at line 11, and the third summation refers to the
inner for-loop at line 14.

Hence the average-case complexity of Algorithm2 is the expectation of (3), which, by
linearity, is equal to

n∑
j=1

(
E(Z(j − 1)) + E(X(j)) + E

(
X(j)∑
h=1

X(j − h)

)
+ E

(
X(j)∑
h=1

X(j−h)∑
k=1

Z(j − h− k)

))
. (4)

where E(·) be the expectation function. Since E(X(j)) ≤ E(X(n− 1)) and E(Z(j)) ≤
E(Z(n− 1)), for 1 ≤ j ≤ n,2 by putting X = X(n− 1) and Z = Z(n− 1), the expression (4)
gets bounded from above by

n∑
j=1

(
E(Z) + E(X) + E

(
X∑
h=1

X

)
+ E

(
X∑
h=1

X∑
k=1

Z

))
. (5)

Let Zi and Xh be the indicator variables defined for i = 1, . . . ,m and h = 1, . . . ,m,
respectively as

Zi =
{

1 if i ∈ Pn
0 otherwise

and Xh =
{

1 if X ≥ h
0 otherwise ,

Hence

Z =
m∑
i=1

Zi, E(Z2
i ) = E(Zi) = Pr{xi

trd
w y},

X =
m∑
h=1

Xh, and E(X2
h) = E(Xh) = Pr{X ≥ h}.

2 In fact, for j = m+ 1, . . . , n all the inequalities hold as equalities.
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So that we have
X∑
h=1

X = XX =
(

m∑
h=1

Xh

)
·

(
m∑
k=1

Xk

)
=

m∑
h=1

m∑
k=1

XhXk .

Therefore
X∑
h=1

X∑
k=1

Z = XXZ =
(

m∑
h=1

m∑
k=1

XhXk

)
· Z,

which yields the following upper bound for (5):
n∑
j=1

(
E(Z) + E(X) + (E(Z) + 1) ·

m∑
h=1

m∑
k=1

E(XhXk)
)
. (6)

To estimate each of the terms E(XhXk) in (6), we use the well-known Cauchy-Schwarz
inequality which in the context of expectations assumes the form |E(UV )| ≤

√
E(U2)E(V 2) ,

for any two random variables U and V such that E(U2), E(V 2) and E(UV ) are all finite.
Then, for 1 ≤ h ≤ m and 1 ≤ k ≤ m, we have

E(XhXk) ≤
√
E(X2

h)E(X2
k) =

√
E(Xh)E(Xk) . (7)

From (7), it then follows that (6) is bounded from above by
n∑
j=1

(
E(Z) + E(X) + (E(Z) + 1) ·

m∑
h=1

m∑
k=1

√
E(Xh)E(Xk)

)

=
n∑
j=1

(
E(Z) + E(X) + (E(Z) + 1) ·

(
m∑
h=1

√
E(Xh)

)
·

(
m∑
k=1

√
E(Xk)

))
(8)

=
n∑
j=1

(
E(Z) + E(X) + (E(Z) + 1) ·

(
m∑
h=1

√
E(Xh)

)2)
.

To better understand (8), we evaluate the expectations E(X) and E(Z) and the sum∑m
h=1

√
E(Xh). To this purpose, it will be useful to estimate also the expectations E(Xh) =

Pr{X ≥ h}, for 1 ≤ h ≤ m, and E(Xk) = Pr{xi
trd
w y}, for 1 ≤ k ≤ m.

Concerning E(Xh) = Pr{X ≥ h}, we reason as follows. Since y[n − h + 1 .. n] ranges
uniformly over a collection of σh strings and there can be at most min(σh,m−h+ 1) distinct
factors of length h in x, the probability Pr{X ≥ h} that one of them matches y[n−h+ 1 .. n]
is at most min

(
1, m−h+1

σh

)
. Hence, for h = 1, . . . ,m, we have

E(Xh) ≤ min
(

1, m− h+ 1
σh

)
. (9)

In view of (9), we have:

E(X) =
m∑
i=0

i · Pr{X = i} =
m∑
i=1

Pr{X ≥ i} ≤
m∑
i=1

min
(

1, m− i+ 1
σi

)
. (10)

Let h be the smallest integer 1 ≤ h < m such that m−h+1
σh < 1. Then, from (10), we have

E(X) ≤
h−1∑
i=1

1 +
m∑
i=h

m− i+ 1
σi

≤ h− 1 + (m− h+ 1)
m∑
i=h

1
σi

< h− 1 + σ

σ − 1 ·
m− h+ 1

σh
< h− 1 + σ

σ − 1 < h+ 1 . (11)
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Since m−(h+1)+1
σh+1

≥ 1, then σh+1 ≤ m− (h+ 1) + 1 ≤ m− 1, so that h+ 1 < logσm. Hence
from (11) and h+ 1 < logσm, we obtain

E(X) < logσm. (12)

Likewise, from (9) and h+ 1 < logσm, we have

m∑
h=1

√
E(Xh) ≤

m∑
h=1

√
min

(
1, m− h+ 1

σk

)
=
h−1∑
h=1

1 +
m∑
h=h

√
m− h+ 1

σh

≤ h− 1 +
√
m− h+ 1 ·

m∑
h=h

1√
σh

< h− 1 +
√
σ√

σ − 1
·

√
m− h+ 1

σh

< h− 1 +
√
σ√

σ − 1
≤ h+ 1 < logσm, (13)

where h is defined as above.
Next we estimate E(Zi) = Pr{xi

trd
w y}, for 1 ≤ i ≤ m. Let us denote by µ(i) the number

of distinct strings which have a utd-match with a given string of length i and whose characters
are pairwise distinct. Then Pr{xi

trd
w y} ≤ µ(i+ 1)/σi+1. From the recursion

µ(0) = 1

µ(k + 1) =
k∑
h=0

µ(h) +
b k−1

2 c∑
h=1

µ(k − 2h− 1) (for k ≥ 0) ,

it is not hard to see that µ(i+ 1) ≤ 3i, for i = 1, 2, . . . ,m, so that we have

E(Zi) = Pr{xi
trd
w y} ≤ 3i

σi+1 . (14)

Then, concerning E(Z), from (14) we have

E(Z) = E

(
m∑
i=1

Zi

)
=

m∑
i=1

E(Zi) ≤
m∑
i=1

3i

σi+1 <
1
σ
· 1

1− 3
σ

= 1
σ − 3 ≤ 1 (15)

(we recall that we have assumed σ ≥ 4).
From (15), (12), and (13), it then follows that (4) is bounded from above by n · (1 +

logσm+ 3 log2
σm), yielding a O(n log2

σm) average-time complexity for our automaton based
algorithm.

5 Conclusions

In this paper we proposed a first solution for the approximate string matching problem
allowing for non-overlapping translocations when factors are restricted to be adjacent. Our
algorithm has a O(nm3)-time and O(m2)-space complexity in the worst case, and O(n log2

σ)-
time complexity in the average-case. In our future research, we plan to improve the present
result, by reducing the overall worst-case time complexity of the algorithm, and to generalize
our algorithm also to the case of unrestricted non-overlapping translocations. We also plan
to investigate whether this kind of approximate matching problem can be solved by using
a skip-search filtering approach, recently used [6, 12] in the context of other kind of non
standard matching problems.
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