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—— Abstract

Genome wide optical maps are high resolution restriction maps that give a unique numeric repres-
entation to a genome. They are produced by assembling hundreds of thousands of single molecule
optical maps, which are called Rmaps. Unfortunately, there exists very few choices for assembling
Rmap data. There exists only one publicly-available non-proprietary method for assembly and one
proprietary method that is available via an executable. Furthermore, the publicly-available method,
by Valouev et al. (2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is
unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano
Genomics’ Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the
paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph
based method for Rmap assembly. We implement our approach, which we refer to as RMAPPER,
and compare its performance against the assembler of Valouev et al. (2006) and Solve by Bionano
Genomics on data from three genomes - E. coli, human, and climbing perch fish (Anabas Testudineus).
Our method was the only one able to successfully run on all three genomes. The method of Valouev
et al.(2006) only successfully ran on E. coli and Bionano Solve successfully ran on E. coli and human
but not on the fish genome. Moreover, on the human genome RMAPPER was at least 130 times faster
than Bionano Solve, used five times less memory and produced the highest genome fraction with
zero mis-assemblies.
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1 Introduction

In 1993 Schwartz et al. developed optical mapping [24], a system for creating an ordered,
genome wide high resolution restriction map of a given organism’s genome. Since this
initial development, genome wide optical maps have found numerous applications including
discovering structural variations [12, 8], scaffolding and validating contigs for several large
sequencing projects [9, 4], and detecting misassembled regions in draft genomes [27, 16, 20].
Thus, optical mapping has assisted in the assembly of a variety of species — including various
prokaryote species [23, 31, 32], rice [33], maize [34], mouse [6], goat [7], parrot [9], and
amborella trichopoda [4]. Bionano Genomics has enabled the automated generation of the
data, enabling the data to become more wide-spread. For example, Bionano data was
generated for 133 species sequenced for the Vertebrate Genomes Project.

Similar to sequencing, the protocol for producing optical mapping data, begins with many
fragmented copies of the genome of interest. This redundancy allows overlap between the
raw data and assembly into longer contiguous regions corresponding to the genome. With a
selected enzyme, the fragments are nicked at each restriction site recognized by the enzyme.
These nicked fragments are then photographed and analyzed in order to determine the length
(in kbp) of the regions between nick sites. The result of this process are optical maps for
all the fragments, which are referred to as Rmaps. For example, given a genome fragment
TTTTAACTGGGGGGGAACTTTTTTTTAACTTTTT and an enzyme that recognizes the site AACT and
cleaves in the middle, the resulting Rmap would be [6, 11, 11, 6]. Rmaps by themselves are
not traditionally used for analysis — although, they can be [17, 8, 12] — and instead have
to be assembled into longer contiguous optical maps corresponding to the genome. Hence,
assembly of Rmaps refers to the problem of generating a consensus genome wide optical map
from overlapping Rmaps.

Although optical mapping has been around for decades now, the problem of efficiently
assembling the data largely remains open as there has been little work in this area - which is
largely due to the challenges posed by the data itself. Rmap data has a number of errors
that make it difficult to assemble — namely, there exists added and deleted cut sites and
sizing error, resulting in extra fragments, merges in neighboring fragments and under or
over-estimates of the length of a fragment. In the running example, the error free Rmap
of [6, 11, 11, 6] could occur as [6, 22, 6] with error. Nonetheless, there exists two Rmap
assembly methods: Gentig by Anantharaman et al. [1] and the assembler of Valouev et
al. [29]. Developed in 1998, Gentig is the first Rmap assembly algorithm. It is based on a
Bayesian model that seeks to maximize the a posteriori estimate of the consensus optical map
produced by the assembly of Rmaps. It first computes the overlap between all pairs of Rmaps
using dynamic programming, and then builds contigs by greedily merging the Rmaps based
on alignment score. This process of merging contigs continues until all alignments above a
certain score are merged. Valouev et al. [29] implemented an overlap-layout-consensus (OLC)
assembly algorithm using their alignment algorithm [28], which also starts by calculating
alignment between all pairs of Rmaps, and identifying all alignments that have score above
a specified threshold. A graph is built, where Rmaps are represented as nodes, and the
non-filtered alignments are represented as edges. The graph is refined by eliminating paths
in the graph that are weakly supported. In other words, if two connected regions in the
graph are joined by only a single path — or with multiple paths, but having one or more
common intermediate nodes — then the graph is disconnected at these nodes. Further, an
edge is removed if it is inconsistent with a higher scoring edge. Contigs are then generated by
traversing this graph in a depth first manner. Bionano Genomics Inc. provides a proprietary
assembly method, called Bionano Solve, however the source code is not publicly available
and the algorithmic details are unknown due to the proprietary nature of the software.
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The alternative to an OLC approach for assembly is Eulerian assembly that relies on
building and traversing the de Bruijn graph. For simplicity, we give a constructive definition
of the de Bruijn graph in the context of genome assembly. Given a set of sequences
R={ry,...,mn} and an integer k, the de Bruijn graph is constructed by creating a directed
edge for each unique k length substring (k-mer) with the nodes labeled as the k — 1 length
prefix and k — 1 length suffix of the k-mer, and then all nodes that have the same label are
merged. The important aspect of Eulerian assembly is that it avoids having to find alignments
between any pair of sequences, leading to an O(n) run-time. Since its introduction by Idury
et al. [11] and Pevzner et al. [22], Eulerian assembly has become the most common paradigm
for assembling short read sequencing data because it led to huge gains in performance over
OLC approaches. Hence, applying a FEulerian approach to Rmap assembly would likely lead
to similar improvements by removing the burden of finding all pairwise alignments between
Rmaps. The challenge we face is constructing a de Bruijn graph with added and deleted
cut-sites and sizing error. Eulerian assembly works on the premise that a k-mer will occur
exactly without error frequently in the data. Even without the occurrence of added and
deleted cut-sites, k-mers created from Rmap data are unlikely to be exact replicas due to
sizing error. For example, [6, 11, 11, 6] and [5, 10, 11, 7] should likely be recognized as
instances of the same k-mers in Rmap data. Thus, to overcome this challenge the de Bruijn
graph has to be redefined to account for the inexactness of the data.

In this paper, we formulate and describe an Eulerian approach for de novo Rmap assembly,

which heavily relies on redefining the de Bruijn graph to make it suitable for Rmap data.

We accomplish this by extending the definition of a bi-label in the context of the paired
de Bruijn graph that was introduced by Medvedev et al. [14]. We refer to our modified de
Bruijn graph as bi-labelled de Bruijn graph. Next, we demonstrate how to efficiently build
and store the de Bruijn graph using a two tier orthogonal-range search data structure. We
implement this approach, leading to a novel Rmap assembler that we call RMAPPER. We
compare the performance of our method with the assembler of Valouev et al., and Bionano
Solve on three genomes of varying size: E. coli, human, climbing perch (a fish species from
the Vertebrate Genomes Project). Our comparison demonstrates that RMAPPER was more
than 130 times faster and used less than five times less memory than Solve, and was more
than 2,000 times faster than Valouev et al. Consequently, RMAPPER was the only method
able to scale to the largest Rmap dataset: climbing perch. It successfully assembled the 3.1
million Rmaps of the climbing perch genome into contigs that covered over 87% of the draft
genome with zero mis-assemblies.

2 Background and definitions

2.1 Rmap Data and Genome Wide Optical Maps

From a computer science perspective, we can view an Rmap R = [ry,72,...,7|g|] as an
ordered list of integers. Each number represents the length of the respective fragment. The
size of an Rmap R denotes the number of fragments in R, which we denote as |R|. For example,
say we have an enzyme that cleaves the DNA at the middle position of AACT and a genomic
sequence TTTTAACTGGGGGGGAACTTTTTTTTAACTTTTT, then the Rmap will be R = [6,11, 11, 6]
corresponding to the cleaved sequences [TTTTAA, CTGGGGGGGAA, CTTTTTTTTAA, CTTTTT].

9:3
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2.2 Error Profile of Rmap Data

There are three types of errors that can occur in optical mapping: (1) missing cut sites which
are caused by an enzyme not cleaving at a specific site, (2) additional cut sites which can
occur due to random DNA breakage and (3) inaccuracy in the fragment size due to the
inability of the system to accurately estimate the fragment size. Continuing again with the
example above, an example of an additional cut site would be when the second fragment
of R is split into two, e.g., R’ = [6,5,6,11,6], and an example of a missing cut site would
be when the last two fragments of R are joined into a single fragment, e.g., R’ = [6,11,17].
Lastly, an example of a sizing error would be if the size of the first fragment is estimated to
be 7 rather than 6.

Several different probabilistic models have been proposed for describing the sizing error,
and the frequency of added and missed cut-sites, including the models of Valouev et al. [28],
Li et al. [13], and Chen et al. [5]. We briefly describe these models here but refer to the
original papers for a full description. Both Valouev et al. and Chen et al. describe the
observed fragment lengths as normal distribution with the mean being equal to the true
length of the fragment and the standard deviation being a function of the true length, i.e.
longer fragments exhibit larger standard deviation. In the model by Li et al. the sizing error
uses a Laplace distribution as follows: if the observed and actual size of a fragment are o; and
r;, respectively, then the sizing error, o; ~ r; x Laplace(u, ) where u and f are parameters
of the Laplace distribution and are functions of r;. All studies model the probability of
having a missed cut-site as a Bernoulli trial. Valouev et al. and Chen et al. predict a fixed
probability for digestion of a cut-site while Li et al. model the probability of digestion as a
function of lengths of the fragments flanking the cut-site. The likelihood of a missed cut-site
decreases with the length of the fragment. All three models postulate additional or false
cut-sites result from random breaks of the DNA molecule and hence model the number of
false cuts per unit length of DNA as a Poisson distribution. Li et al. observed that false cuts
occurred less frequently at the two ends of an Rmap.

2.3 Rmap Segments and k-mers

We define a segment s, , of an Rmap starting at position p and ending at position g, as the
g —p+ 1 consecutive fragments starting from rp, i.e., [rp, 7pt1, .., 7q]. We define the length of
a segment as the summation of all of its constituent fragments, i.e., 7, +--- +r,. We denote
the length of a segment s, 4 as £(sp,q). We note that the length of the Rmap R should not
be confused with the number of fragments, which we denote as its size |R].

In this paper, we extend the definition of a k-mer to the context of Rmap data as follows.
Given an integer k, we define a k-mer as a segment of exactly k fragments, i.e., a sequence of
k successive fragments of an Rmap. Following the example from above, the following two
3-mers exist in R = [6,11,11,6]: [6,11,11] and [11,11,6].

2.4 Prefixes and Suffixes of Rmaps

Given an Rmap R=[ry,72,...,7|g|], we define the z-size prefiz of R as R=[ry,72,... 4],
where z is at most | 2| —1. Conversely, we define the 2-size suffiz of R as R=[r|g|—a41,- - - ,7|R|]>
where x is at most |R| — 1.
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3 The Bi-labelled de Bruijn Graph

In this section, we modify the traditional definition of the de Bruijn graph for Rmap data by
first redefining the concept of a bi-label for Rmap data. The term bi-label was first introduced
by Medvedev et al. [14] in the context of short read assembly to incorporate mate-pair data
into assembly of paired-end reads. There the term bi-label refers to two k-mers separated
by a specified genomic distance. The redefinition of the de Bruijn graph with this extra
information was shown to de-tangle the resulting graph, making traversal more efficient and
accurate. Here, we demonstrate that an equivalent paradigm can be effective for Rmap
assembly.

3.1 Bi-labels

Given integers k and D, and Rmap R, we define a bi-label from an Rmap R, as a segment of
R containing a pair of k-mers separated by the shortest segment that has a length of at least
D. The following is a formal definition.

» Definition 1. Given an Rmap R = [r1,72,...,7i,Ti41,..,7|R|], integers k and D, and a
position i, we define the bi-label at position i to be [si,Tp,...,Tq,52], where p=1i+k and
q is an index such that {(sp,—1) < D < {(sp,) and s}, and si are the k-mers starting at
positions i and q + 1, respectively.

Next, we refer to segment s, , between s}, and si as the skip segment, and note that,
unlike s} and si which both have k fragments, this segment is only bounded by its length
and can have any number of fragments. Thus, this accounts for added and deleted cut-sites
since these errors do not impact the length of a segment. Figure 1 demonstrates how the
skip-segment tolerates a deleted cut-site.

For example, given k = 3, D = 25, and R = [7, 18,13, 3,15,12,4, 3,6, 5,13, 2], the bi-labels
of R are ([7, 18,13]‘[3,15712]’[473,6]), ([18,13,3]‘[15712]‘[4,376]) and ([13,37 15]‘[12,4,376]

‘[5, 13,2]).
We are now going to define the prefix and suffix bi-labels.

» Definition 2. Given integers D and k and bi-label b with k-mers b = [b},..bt] and
b2 = [b3,..,b3] and skip segment b*, we define the prefix bi-label of b as the bi-label with
(k—1)-mers and skip-segment length at least D, where the first (k—1)-mer is the (k —1)-size
prefiz of b* d.e. [b},..bi_4].

Note that the second (k — 1)-mer of the prefix bi-label is not necessarily the (k — 1)-size
prefix of b2. We also require an equivalent definition for the suffix of a bi-label.

» Definition 3. Given integers D and k and bi-label b with k-mers b' = [b},..b}] and
b?* = [b2,..,b7] and skip segment b*, we define the suffix bi-label of b as the bi-label with
(k—1)-mers and skip-segment length at least D, where the first (k—1)-mer is the (k —1)-size
suffiz of b i.e. [b},..b}].

Figure 2 illustrate this concept of prefix and suffix bi-labels. Note that for two successive
bi-labels from an Rmap, the prefix bi-label of the latter is the same as the suffix bi-label of
the former as shown in Figure 2. This is a vital property that allows the de Bruijn graph
constructed over bi-labels to be connected.

9:5
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R: 7,18,13,3,15,12,4,3,6,5,13,2 R': 7,18,13,3,27,4,3,6,5,13,2
3 |15 |12 3 27
by:| 7 | 18] 13 4 | 3|6 ||bi:| 7 |18]13 41316
30 30
b, - 15 12 27
2-l18 |13 3 4| 3|6 ||by:|18]|13] 3 41316
27 27
1243|686
by:[ 13| 3 | 15 5 | 13| 2
25

Figure 1 All bi-labels for ¥k = 3 and D = 25 of two Rmaps R and R’, {b1, b2, b3} and {b},b5}
respectively. Both Rmaps cover the same genomic location but R’ has a missed cut-site in position 5
(shown in red). On each bi-label the fragments from the k-mers and the length of the skip segment
are shown in white while the fragments of the skip segment are shown in blue. Despite the missed
cut-site on R’ bi-labels b; and bs are merged to b and b5 respectively according to our merge
function.

3.2 Bi-label Proximity

One of the challenges with Rmap data is the fact that the fragments correspond to genomic
distances and due to experimental error, the measured estimates for the same genomic
fragment are different across different Rmaps representing the same genomic location. For
example, R = [5,6,7,11,5] and R’ = [6, 5, 6, 11, 6] likely correspond to the same k-mer but
the numerical nature makes it such that they are not exactly equal. Thus, we need to define
a criteria such that two bi-labels drawn from different Rmaps but corresponding to the same
genomic locations can be identified and merged for the construction of the de Bruijn graph.
Thus, to make the definition of a bi-label robust to sizing errors, we define conditions on
both the difference of the individuals fragments of two bi-labels and the difference in the
total lengths. Hence, we have the following definitions.

» Definition 4. Given integers ty, k and D, and two bi-labels a and b, we let the k-mers
of a and b be a' = [a,..,a}] and a®> = [d3,..,a3] and b' = [b],..,b}] and b* = [b2,..,b7],
respectively. We define a and b to be fragment proximal if and only if |a; — b}| < t; and
la? — V2| < ts foralli=1,.,k.

Here t¢ is an error-tolerance parameter that handles sizing errors on the fragments of the
bi-label.

» Definition 5. Given integers ty, k and D, and two bi-labels a and b, we let the k-mers of
a and b be a' and a® and b' and b2, respectively, and the skip segment of a and b be a® and
b®, respectively. We define a and b to be length proximal if and only if [((a') — £(bY)| < ty,
[0(a?) — £(b?)| <ty and |€(a®) — £(b%)| < to.

Here t; is another error-tolerance parameter that handles sizing errors on the segment
lengths of the bi-label. These two definitions lead to our final definition that defines whether
two bi-labels should be defined as equivalent in the de Bruijn graph.



K. Mukherjee, M. Rossi, L. Salmela, and C. Boucher

» Definition 6. Given integers k and D and two bi-labels a and b, we define them to be
proximal if and only if they are fragment prozimal and length proximal.

This leads to our final definition, which is the set of bi-labels in which the bi-labelled de
Bruijn graph is defined on.

» Definition 7. Given a set of Rmaps {Ry, .., R,} and integers k and D, let B be the set
of bi-labels from R. We define the proximal reduced set of bi-labels as the set B’, where for
each b in B there is a bi-label in B’ that it is proximal to.

R: 7,18,13,3,15,12,4,3,6,5,13,2

4 n first (k=3,D=25) bi-label
3 ‘ 15 ‘ 12

[
30

suffix (k=2,D=25) bi-label

3 ‘15‘12
by : 713
30

13‘3‘15

-
31

prefix (k=2,D=25) bi-label

E

4 18 | 13

[
)

b, : 15 ‘ 12
2 3 p. 4 n second (k=3,D=25) bi-label
3|15 | 12 15 ‘ 12
30 27
prefix (k=2,D=25) bi-label suffix (k=2,D=25) bi-label
12‘ 4 ‘ 3 | 6
bs : 5 third (k=3,D=25) bi-label
25
15 ‘ 12 12‘ 4 ‘ 3 ‘ 6
27 25
prefix (k=2,D=25) bi-label suffix (k=2,D=25) bi-label

Figure 2 All bi-labels for £k = 3 and D = 25 of an Rmap R. On each bi-label the fragments from
the k-mers and the length of the skip segment are shown in white while the fragments of the skip
segment are shown in blue. For each bi-label we show the prefix and suffix bi-labels built with k& = 2
and D = 25.

3.3 Definition of the Bi-labelled de Bruijn Graph

Given the above definitions, we are now ready to define the bi-labelled de Bruijn graph built
on a set of proximal bi-labels extracted from Rmaps.

» Definition 8. Given integers k and D and set of Rmaps {R1,..,R,}, let B be the set of
prozximal bi-labels extracted from R. We create a directed edge e for each bi-label b in B and
label the incoming and outgoing nodes of e as the prefix bi-label of b and suffix bi-label of b,
respectively. After all edges are formed, the graph undergoes a gluing operation. A pair of
node bi-labels are glued into a single node if and only if they are proximal. We define the
final graph obtained after gluing of nodes as the bi-labelled de Bruijn graph.

9:7
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4 Methods

In this section, we describe our method for building and traversing the bi-labelled de
Bruijn graph from an Rmap dataset. Our method, which we refer to as RMAPPER, can be
summarized into the following steps: extract and store bi-labels, find proximal bi-labels,
build the bi-labelled de Bruijn graph, resolve tips and bubbles, and traverse the graph to
build the contigs. We now describe each of these steps in detail.

4.1 Extract and Store all Bi-lablels

We first error correct the Rmap data using COMET [18] and then extract and store all
bi-labels from the error corrected Rmaps. We recall from Definition 6 that two bi-labels are
proximal if they are both fragment proximal as well as length proximal for error-tolerance
parameters ty and t;. Therefore, we must store all the bi-labels in a manner that allows
finding all proximal bi-lablels of a given bi-label efficiently. To accomplish this, we store all
the bi-labels in a disjoint set of k-d trees [3] such that each pair of bi-labels in the same k-d
tree are length proximal. For each bi-label, the 2k fragments of the k-mers of it are stored
in the corresponding k-d tree, which will allow for efficiently finding all fragment proximal
bi-labels of a given bi-label. Hence, the dimension of each k-d tree is 2k.

More formally, we identify each k-d tree KCq, 4,,q4, Dy three positive integers a1, a2, and as,
and insert a given bi-label b into K, 4,45 if the length of its two k-mers £(b') and ¢(b?) are
within the range [a1 X t¢,..., (a1 +1) X ty; — 1] and [ag X ty, ..., (ag + 1) X ty — 1] respectively
and the length of the skip segment ¢(b°) is also within the range [ag X t, ..., (a3 +1) Xty — 1].
If such a tree does not exist then we create a new one with K, 45,45, where a; = [£(b)/t,],
as = [£(b*)/te| and az = |£(b*)/te].

Next, for each bi-label in our set of k-d trees, we find and store pointers to all proximal
bi-labels by performing an orthogonal range query. Given a bi-label b in Ky, 4,.q,, We let
the k-mers of the bi-label b be b' = [bi,..,bl] and b? = [b?, .., b7]. We perform a range query

with ([bf £tf],..., [br 5], [b3 £ts],...,[b7 £ tf]) in the disjoint set of k-d trees to find all
bi-labels whose first k-mer is equal to [bf &¢], ..., [b} £ ¢f] and whose second k-mers is equal
to [b3 £tg],...,[b2 £tr]. We add a pointer from b to each of these bi-labels. We repeat

this for each bi-label. In particular, we perform the range query in all k-d trees where the
proximal bi-labels can be found, i.e., all k-d trees Ko/ a; o5 Where for m = min(kty,t;) we
have, [(£(b') —m)/te] < ay < [(€(bY)+m)/te] and [(£(6%) —m)/te] < aj < [(€(b%) +m)/te].

We note that k-d trees support multi-dimensional orthogonal range-search queries in
O(n?F=1/2k 4t oce) time and O(n) space where n is the number of bi-labels in the tree,
k is the k-mer value, and occ is the number of bi-labels that satisfy the constrains of the
range-search query.

4.2 Graph Construction

We first filter all low frequency bi-labels, i.e., bi-labels that have a low number of proximal
bi-labels. As illustrated in Figure 3, bi-labels that have low frequency typically arise from
Rmap data that is highly erroneous. After filtering low frequency bi-labels, we build the
bi-labelled de Bruijn graph by first building a proximal reduced set from the unfiltered
bi-labels, then building all directed edges with labelled nodes from the reduced set, and
finally merging nodes that have the same label. Using an efficient heuristic, we first greedily
find the proximal reduced set of bi-labels by sorting the unfiltered bi-labels in descending
order based on the number of proximal bi-labels found for them. From this sorted list
of bi-labels B, we iteratively insert bi-labels into the reduced set B’ unless the bi-label is
proximal to a bi-label already in B’.
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Figure 3 Histogram showing the precision of finding proximal bi-labels. For simulated human
Rmap data, we found proximal bi-labels for all extracted bi-labels. We designate a proximal bi-label
found to be a true positive if its true location in the genome is the same as the location of the
bi-label to which it is proximal - and false positive otherwise. Next, we plotted a histogram showing
the distribution of true positives and false positive proximal bi-labels for each bi-label. We show
that high frequency bi-labels i.e. bi-labels for which we find more proximal bi-labels produce more
precise proximal bi-labels. This justifies filtering low frequency bi-labels.

Next, we build a bi-labelled de Bruijn graph by creating a directed edge for each bi-label
b in B’ and labeling the incoming and outgoing nodes as the prefix bi-label and suffix bi-label
of b/. We store all the nodes and edges in a modified adjacency list format that contains
three arrays: one array stores all node bi-labels, one array containing a list of pointers of
the incoming nodes for each node, and lastly, one array containing a list of pointers of the
outgoing nodes for each node. Thus, to insert &’ into the graph, we first determine if the
prefix and suffix bi-labels are contained in the node array and insert them if they are not
contained in the list, and then insert an entry into the incoming and outgoing arrays with
lists containing pointers to the prefix and suffix bi-labels. This graph representation will allow
for the adjacency lists of two nodes to be efficiently merged if the bi-labels they represent
are found to be proximal.

Lastly, we merge all nodes in the graph whose bi-labels are proximal to obtain the final
bi-labelled de Bruijn graph. For merging the nodes, we again use a set of disjoint k-d trees as
we did before for finding proximal bi-labels for the edge bi-labels. Hence, we extract all the
node bi-labels and construct a set of k-d trees as before. Then for each node v in the node
array, we query the corresponding k-d trees to find all nodes that are proximal to it using
the same error tolerance parameters ¢y and ty. Any node u that is found to be proximal to v
is merged to v by removing u from the graph by updating the two adjacency lists such that
the incoming and outgoing array entries storing pointers to u are updated to store pointers
to v. This can be achieved in linear time. We repeat this until all proximal nodes have been
merged. Figure 4 illustrates the construction of the bi-labelled de Bruijn graph for a pair of
Rmaps.

4.3 Graph Cleaning and Traversal

Before traversing the graph, we first pre-process the bi-labelled de Bruijn graph to remove
tips and bubbles, which are common in de Bruijn graphs. Since they limit the size of unary
paths (i.e. paths in the graph that contain nodes with only a single outgoing edge) and
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Figure 4 The construction of the bi-labelled de Bruijn Graph. (a) Two Rmaps R; and R2 and
the bi-labels extracted from them — {b1,b2,b3} from Ry and {b3,bs} from Ry for k = 3 and D = 25.
(b) Edges {e1, e2,e3} depict the proximal reduced set of bi-labels. Bi-labels {b1, b4} are represented
by e1, bi-labels {b2,bs} are represented by e and bi-label {b3} forms e3. We note that in this
example no bi-labels are filtered for finding the proximal reduced set. (¢) Nodes introduced into the
graph. Fach edge breaks into two nodes - one denoted by the prefix bi-label and the other by suffix
bi-label of the edge. A directed edge is drawn from the former to the latter. (d) The final graph is
formed by merging nodes vi2 with v21 and merging v2s with vsa.

do not affect the accuracy of the assembly, it is common practice in short read assembly
to resolve or remove these structures [2, 30, 26, 21]. Tips are produced when errors cause
an otherwise unary path to branch at a node and create a short unary path that ends in a
terminal node. Bubbles are created when bi-labels from the same genomic location are not
merged and included in the graph as separate edges. This generates short unary paths that
have the same starting node and the same ending node and are close in length.

Similar to existing short read assemblers, we identify all tips and bubbles that have length
of at most a specified threshold by performing depth first search starting at each node with
out-degree greater than one. Hence, if there exists a tip starting at a given node as well as a
path of length longer than the specified threshold, then the tip is removed by deleting all of
its edges starting at the branching node. Furthermore, if there exists a bubble starting at
a given node, we remove one of the edges adjacent to the branching node. We note we do
not remove an entire path from the graph to resolve a bubble — rather, we only disconnect
them at the branching node. Following the work of Simpson et al. [26], we fix the maximum
length of the paths in a bubble to twice the size of the bi-label.

After cleaning, our traversal algorithm extracts unitigs (i.e. contigs corresponding to
unary paths) from the graph by performing a simple depth first traversal starting from each
node with zero incoming edges. We terminate the traversal of a given path if a cycle is
reached or a node with out-degree greater than one is reached.
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5 Experiments

In this section, we compare the performance of RMAPPER, the assembler of Valouev et al. and
Bionano Solve. We used the most recent version of Bionano Solve that is publicly available
(version 3.5.1.). We performed all experiments on Intel E5-2698v3 processors with 192 GB

of RAM running 64-bit Linux. Valouev and RMAPPER were ran on error corrected data.

Bionano Solve was not because the input is required to be specified in their proprietary
format. In addition, for larger genomes, we also ran RMAPPER by extracting bi-labels from
both directions in an Rmap. We refer to this as RMAPPER2.0.

For all experiments we report the run time (CPU time), peak memory, maximum and
mean contig size, genome fraction and number of mis-assembled contigs. We note that
genome assembly evaluation tools such as QUAST [10] cannot be used on optical maps
- hence, we design our own evaluation setup. To compute the genome fraction, we align
all assembled contigs to the optical map reference genome using the alignment method of
Valouev et al. [28]. The optical map reference genome is produced by in silico digesting the
reference genome using the same restriction enzyme as used for producing the Rmaps. For all
contigs that were successfully aligned, we designate their alignment locations on the reference
genome as covered and report the percentage of the genome covered by at least one contig as
the genome fraction. Any contig which is unable to be aligned by Valouev et al. is verified to
be mis-assembled by aligning it to the reference genome using a second alignment software
- Bionano’s RefAligner. The Valouev method aligns an assembled contig to a contiguous
stretch of the reference optical map that optimizes its alignment score and does not tolerate
mis-assembled regions. Whereas, RefAligner allows split alignments. Hence, if the alignment
outputted from RefAligner is uncontiguous then it is counted as a mis-assembly.

RMAPPER takes as input four parameters, namely the size k of the k-mers, the minimum
distance D between the two k-mers in the bi-label, and the error tolerance parameter setting
t¢ and ty. The k-mer size depends on the error-rate of the Rmap data. When the frequency
of added and missed cut-sites is high, the k-mer size needs to be set low so that a good
percentage of k-mers are error-free. We node that the average error-rate of optical-map data
typically lies between 14% to 16%. Considering that error-correcting the Rmaps brings the
average error-rate below 10%, the k-mer size of 6 is the largest value such that the probability
that an extracted k-mer will be error-free is at least 50%. Hence we use 6 as the default
k-mer size in our experiments. The best combination of coverage, average length of contigs
and run-time is achieved by fixing t, = 2000. We experimented with the following values
of D = {15000, 20000, 25000, 30000} and the following values of t; = {500, 1000, 1500} and
for each experiment, we choose the parameter setting that gives the best performance. A
higher value of ¢; is needed when the Rmap data still has significant sizing errors after error
correction. A lower value of D is needed when the average Rmap size is small so that we can
extract an adequate number of bi-labels from each Rmap.

5.1 Datasets

We performed experiments on both simulated and real Bionano datasets. We simulated data
from both E. coli K-12 substr. MG1655 genome and the human reference genome GRCh38
(NCBI accession number GCF__000001405.26) with OMSim [15]. We used enzyme BspQI — a
standard, commonly used restriction enzyme for optical mapping — and used the default error

rate of OMSim, which is a 15% rate of deleted cut sites, and 1 added cut site per 100kbp.
The resulting E. coli dataset contains 23450 Rmaps with a mean of 42 fragments per Rmap.

The Human dataset contains 377894 Rmaps with a mean of 61 fragments per Rmap.

9:11

WABI 2020



9:12

Fast and Efficient Rmap Assembly Using the Bi-Labelled de Bruijn Graph

Lastly, we performed experiments using the Rmap dataset of the climbing perch (Anabas
testudineus) genome generated for the Vertebrate Genomes Project, which consists of 3 121 480
Rmaps with mean of 28 fragments. A draft assembly of the genome is provided from the
same source which was used to obtain the reference genome optical map.

5.2 Performance on E. coli

The results on F. coli Rmap dataset is summarized in Table 1. For this experiment we
extracted bi-labels with £ = 6 and D = 15000 and used error tolerance parameter setting
ty = 500 and t; = 2000. RMAPPER took 342 seconds and peak memory of 274 Mb to assemble
the data. The assembler produced two unitigs that are 529 and 522 fragments in length,
which covered the reference from start to finish.

Table 1 Assembly results for E. coli Rmap data simulated by OMSim using enzyme BspQI. The
dataset has 23,450 Rmaps of mean size of 42 fragments and coverage of 900x. The peak memory is
given in gigabytes (GB). The run time is reported in second (s) minutes (m), hours (h) and days
(d). RMAPPER was run with £ = 6, D = 15000 and error tolerance parameter setting ¢ty = 500 and
t¢ = 2000. The contig with maximum length (Max) is reported in the number of fragments and the
total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also
reported in the number of fragments and the total genomic length in mega base pairs. The genome
fraction (GF) is the percentage of the genome that is covered by at least one contig. Lastly, the
number of mis-assembled contigs (MA) is given.

Assembler Run time Peak No. ,Of Max Mean GF(%) MA
Memory contigs

102 56
1 . 4 4
Valouev 85d 0.48 5 (1.0 Mbp) (0.5 Mbp) 8 0
631 631
Solve 48.1 h 1.18 1 (4.9 Mbp) (4.9 Mbp) 100 0
RMAPPER 6 m 0.46 2 529 526 100 0

(4.6 Mbp) (4.5 Mbp)

The Valouev assembler [29] took 204.8 hours to compute pairwise alignments between all
pairs of Rmaps and an additional 30 minutes to assemble them into contigs. It produced 5
contigs with the longest contig of length 102 fragments (corresponding to a 1Mbp genomic
span). We aligned the assembled contigs back to the reference and found the total genome
coverage to be 48%. Bionano solve produced a high quality assembly, i.e., one contig that
spanned 100% of the genome. The assembly took 48.14 hours of CPU time (59.75 minutes
of wall time using 60 CPUs in parallel) and peak memory of 1.18 GB. The Valouev aligner
reported alignments for all contigs, hence we report zero mis-assembled contigs for all three
methods.

In summary, the quality of Bionano Solve and RMAPPER were comparable, yet RMAPPER
was 480 times faster (6 minutes versus 2889 minutes) and used less than 500 Mb of memory.

5.3 Performance on Human

The results on the Human Rmap dataset are shown in Table 2. For this experiment we
extracted bi-labels with £ = 6 and D = 25000 and used error tolerance parameter setting
ty = 1500 and ¢, = 2000. RMAPPER took 12.1 hours and peak memory of 7.9 GB to assemble
the data whereas RMAPPER 2.0 took 22.2 hours and 18.8 GB of peak memory. RMAPPER
produced 3134 contigs whereas RMAPPER 2.0 produced 2867 contigs. The maximum size
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unitig produced by RMAPPER and RMAPPER2.0 was 1380 and 1752 fragments in length,
respectively. Lastly,, RMAPPER achieved a net coverage of 95.8% while RMAPPER2.0 was
able to cover 96.7% of the genome - both with zero mis-assembled contigs.

Table 2 Assembly results for human Rmap data simulated by OMSim using enzyme BspQI.

The dataset has 377894 Rmaps of mean size of 61 fragments and coverage 80x. See Table 1 for a
description of the assembly statistics and notation. As described in the text, RMAPPER2.0 extracts
bi-labels from Rmaps in both forward and reverse directions.

Assembler I.{un Peak No. ,Of Max Mean GF(%) MA
time Memory contigs
Valouev > 360 d n/a n/a n/a n/a n/a n/a
14,133 2,036
Solve 1224 d 94.8 169 (124.6 Mbp)  (16.4 Mbp) 93.8 4
1,380 144
RMAPPER 12.1h 7.9 3865 (14.4 Mbp) (1.4 Mbp) 95.8 0
1,752 203
RMAPPER 2.0 222 h 18.8 3524 (18.5 Mbp) (2.0 Mbp) 96.7 0

The Valouev assembler did not produce any output after 360 CPU days so n/a is reported
in Table 2. Bionano Solve produced comparably fewer but longer contigs to RMAPPER but
had 4 mis-assembled contigs. In addition, it took approximately 2937 CPU hours (55 hours
of wall time using 60 CPUs in parallel) and peak memory of 94.8 GB. It is also worth noting
that Bionano Solve performs an elaborate scaffolding and stitching of contigs, which explains
the relatively few number of contigs but higher mis-assembly rate. The scaffolding and
stitching cannot be decoupled from the assembly since Bionano only distributed a single
executable that runs both. The source code is not publicly available.

In summary, the Valouev assembler did not scale to the human genome, RMAPPER2.0
produced slightly longer contigs than RMAPPER, Bionano Solve produced the longest contigs
but covered 93.8% of the genome and had 4 mis-assembled contigs. In addition, RMAPPER2.0
has the highest genome fraction, which is 96.7%. Lastly, RMAPPER and RMAPPER2.0 was
242 and 132 times faster than Solve, respectively, and used 5 times less memory.

5.4 Performance on Climbing Perch

The results on the climbing perch (Anabas Testudineus) Rmap dataset are shown in Table
3. For this experiment we extracted bi-labels with £k = 6 and D = 15000 and used error
tolerance parameter setting ¢ty = 1500 and ¢, = 2000. RMAPPER took 7.5 hours and peak
memory of 9.7 GB to assemble the data whereas RMAPPER 2.0 took 14.9 hours and 18.77
GB of peak memory. RMAPPER produced 1848 contigs whereas RMAPPER 2.0 produced 2489
contigs. The maximum size unitig produced by RMAPPER and RMAPPER 2.0 was 217 and
294 fragments in length, respectively. Lastly, RMAPPER achieved a genome fraction of 78.2%,
while RMAPPER 2.0 was able to cover 87.6% of the genome. Both RMAPPER and RMAPPER2.0
produced zero mis-assemblies.

The Valouev assembler did not halt on this dataset after 360 CPU days so we do not
report any results. Solve was also unable to assemble this genome as it halted with a fatal
error message after 156 CPU days and using a peak memory of 16 GB. In summary, RMAPPER
was only method able to assemble this genome. Although RMAPPER and RMAPPER2.0 both
successfully assembled the genome with zero mis-assemblies, RMAPPER2.0 produced slightly
longer contigs than RMAPPER and achieved a higher genome coverage.
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Table 3 Assembly results for the Rmap dataset of the climbing perch genome generated for the
Vertebrate Genomes Project, which consists of 3121480 Rmaps with mean of 28 fragments. The
restriction enzyme used in the experiment is BspQI. See Table 1 for a description of the assembly
statistics and notation. As described in the text, RMAPPER2.0 extracts bi-labels from Rmaps in both
forward and reverse directions.

Assembler Bun Peak No. ,Of Max Mean GF(%) MA
time Memory contigs

217 52
5h . 184 2
RMAPPER 7.5 9.7 848 (1.6 Mbp) (0.4 Mbp) 78 0
RMAPPER2.0 14.9h 18.8 2489 204 65 87.6 0

(2.4 Mbp) (0.6 Mbp)

6 Conclusion and Future Work

Assembly of Rmap data is a fundamental problem in optical mapping that still remains in a
nascent stage — as prior to this work, there was only a single other non-proprietary assembler.
In this paper, we formulate and describe the first Eulerian approach for Rmap assembly by
redefining the de Brujn graph to adapt it to Rmap data. We accomplish this by extending
the definition of a bi-label introduced in the context of the paired-end de Bruijn graph by
Medvedev et al. [14]. We refer to our modified de Bruijn graph as the bi-labelled de Bruijn
graph and demonstrate how to efficiently build and store it using a two-tiered orthogonal
range search data-structure.

We implement our approach and show its performance on multiple simulated and real
datasets. Our experimental results show the only non-proprietary method (i.e. by Valouev
et al. [29]) is unable to scale to the human genome, and that our method is at least 130
times faster than Bionano Solve and its memory usage is less than 20% of the memory
usage of Bionano Solve. An important note about the comparison of the assemblers is that
RMAPPER has a very simple traversal algorithm and does not use any sort of scaffolding.
This is due to the fact that the main contribution of this work is formulating and solving the
assembly of Rmaps. Bionano Solve has a scaffolding algorithm that cannot be decoupled
from the assembly step since only an executable is available. Thus, the results really compare
RMAPPER’s unitigs with Solve’s scaffolds, and RMAPPER are still comparable. This work does
open the door for improving Rmap assembly by employing more involved graph traversal
and/or adapting methods designed for scaffolding and stiching sequence contigs using optical
mapping data [19, 25].
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