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Abstract
Ongoing developments in genome sequencing have caused a fundamental paradigm shift in the
field in recent years. With ever lower sequencing costs, projects are no longer limited by available
raw data, but rather by computational demands. The high complexity of eukaryotic genomes in
concordance with increasing data sizes creates unique demands on methods to assemble full genomes.
We describe a new approach to assemble genomes from a combination of low-coverage short and
long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively filtered
short-read unitigs, which are then reduced to a long-read overlap graph G. Instead of the more
conventional approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts
subgraphs whose global properties approach a disjoint union of paths. First, a consistently oriented
subgraph is extracted, which in a second step is reduced to a directed acyclic graph. In the next step,
properties of proper interval graphs are used to extract contigs as maximum weight paths. These
are translated into genomic sequences only in the final step. A prototype implementation of LazyB,
entirely written in python, not only yields significantly more accurate assemblies of the yeast and
fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational
effort. Our findings demonstrate a new low-cost method that enables the assembly of even large
genomes with low computational effort.
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1 Introduction

The assembly of genomic sequences from high throughput sequencing data has turned out
to be a difficult computational problem in practice. Recent approaches combine cheap
short-read data (typically using Illumina technology) with long reads produced by PacBio or
Nanopore technologies. Although the short-read data are highly accurate and comparably
cheap to produce, they are insufficient even at (very) high coverage due to repetitive elements.
Long-read data, on the other hand, are comparably expensive and have much higher error
rates. HiFi PacBio reads derived from repeat sequencing of circularized elements rival short
read accuracy but at vastly increased costs.

Several assembly techniques have been developed recently for de novo assembly of large
genomes from high-coverage (50× or greater) PacBio or Nanopore reads. Recent state-of-
the-art methods employ a hybrid assembly strategy using Illumina reads to correct errors
in the longer PacBio reads prior to assembly. For instance, the 32 Gb axolotl genome was
produced in this manner [26].

Traditional assembly strategies can be classified into two general categories [21]. The
Overlap-layout-consensus (OLC) assembly model attempts to find all pairwise matches
between reads, using sequence similarity as a metric for overlaps. A general layout is
constructed and post-processed in various ways. Most notably, overlaps can be transformed
into assembly graphs such as string graphs. This method is flexible to read length and can
be adapted to the diverse error models of different sequencing technologies. However, finding
all overlaps is very expensive, especially for increasing read sizes.

In de Bruijn graph based strategies, reads are deconstructed to fixed length k-mers,
representing nodes with edges between them for each k−1 overlap. Ideally, a de Bruijn graph
represents exactly one Eulerian path per chromosome, although this property is generally
violated in practice even by light sequencing errors. With the help of specialized hashing
strategies k-mers can be efficiently stored and constructed. Thus, de Bruijn graphs require
much less memory than OLC strategies. An overall speed up can be attributed to the absence
of an all-vs-all comparison step. However, as k has to be chosen smaller than read size,
contiguity information is lost. With increasing error rates in reads, de Bruijn graphs tend to
become less useful, as k-mers become also less accurate.

Long read only and hybrid assembly strategies also largely align to these two categories,
although some more unique methods have emerged over the years. Canu [18] and Falcon [5]
implement classic OLC, albeit both error-correct long reads before creating a string graph.
MinHash filters can significantly reduce the costs of comparisons, but overall complexity
remains high. Wtdbg2 [28] also follows OLC, but utilizes de Bruijn like graphs based on
sparse k-mer mapping for comparison. It avoids all-vs-all mapping by matching reads that
share k-mers under the assumption that even under high error rates correct pairs share more
k-mer than those with spurious matches. Shasta [29] implements a full de Bruijn graph
strategy by transforming k-mers into a run-length encoding that is more robust to sequencing
errors in long reads. Newer versions of Canu also implement a similar encoding [27].
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Classic de Bruijn methods have been adapted to combine both long and short reads into
a hybrid assembly. Long reads can serve as “bridging elements” in the same way as mate
pairs to resolve paths in (short read) assembly graphs [2, 33].

Under the assumption that short-read assemblies are cheap and reliable, various workflows
have been proposed to integrate both kinds of data also for OLC like approaches. As a
general goal, these programs aim to avoid the costly all-vs-all comparison to create the
assembly graph by various heuristics. MaSuRCA [36] attempts to join both long and short
reads into longer super-reads by chaining unique k-mers, as such creating fewer reads to
compare for overlap. WENGAN [7] first creates full short-read contigs that are then scaffolded
by synthetic mate pairs generated out of the long reads. Flye [17], even more uniquely,
assembles intentionally erroneous contigs that are concatenated to a common sequence.
Self-mapping then reveals repeats that can be resolved much like in a traditional assembly
graph. In HASLR [11] an assembly graph like structure is defined combing both short and long
reads. Short reads are assembled into contigs that, after k-mer filtering to remove repeats,
are aligned to long reads. In the resulting backbone graph, short-read contigs serve as nodes
that are connected by an edge if they map onto the same long read. While different to
e.g. string graphs, standard tip and bubble removal algorithms are applied to remove noise.
Contigs are extracted as paths. TULIP [13] implements a very similar strategy, however, does
not assemble short reads into full contigs. Instead, the gaps between mate-pairs are closed
if possible with sufficiently rare k-mers, resulting in relative short but unique seeds that
serve in the same capacity. In both cases, consensus construction of the resulting sequence
is trivial. Edges define fixed regions on groups of long reads that can be locally aligned for
each edge along a path.

DBG2OLC [35] is methodologically most closely related to LazyB, however, both approaches
differ in various key features (which becomes obvious over the course of this paper). DBG2OLC
assembles short reads to full contigs with the advise to avoid repeat resolving techniques such
as gap closing or scaffolding as they introduce too many errors. Contigs are then aligned
against long reads. Each long read implies a neighborhood of contigs. Mappings are corrected
prior to graph construction via consistency checks over all neighborhoods for each contig,
i.e., contigs are required to map in the same order on all long reads. This technique can help
to remove both spuriously matched contigs and chimeric long reads, but requires adequate
coverage to allow for effective voting. Notably, here, long reads serve as nodes, with edges
representing contigs mapping to both. Nodes that map a subset of contigs of another node
are removed as they are redundant. The resulting graph can be error corrected by classic tip
and bubble removal, after which paths are extracted as contigs, following the edge with the
best overlap at each step.

LazyB implements an alternative approach to assembling genomes from a combination
of long-read and short-read data. We avoid the expensive direct all-vs-all comparison of
the error-prone long-read data, the difficult mapping of individual short reads against the
long reads, and the conventional techniques to error-correct de Bruijn or string graphs. As
we shall see, this is not only possible but also adds the benefit of producing rather good
assemblies with surprisingly low requirements on the coverage of both short and long reads.
Our methods lends itself in particular to the exploratory assembly of large numbers of species.

2 Strategy

Instead of a “total data” approach, we identify “anchors” that are nearly guaranteed to be
correct and use an, overall, greedy-like workflow to obtain very large long-read contigs. To
this end, the initial overlap graph is oriented and then edited in several steps to graph classes
approaching the desired union of paths. The strategy of LazyB is outlined in Fig. 1.

WABI 2020
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Figure 1 Overview of the LazyB assembly pipeline. a) Short Illumina reads are filtered to
represent only near unique k-mers and subsequently assembled into unambiguous unitigs. Long
Nanopore reads (ONT) can be optionally scrubbed to include only regions consistent to at least
one other read. For larger data sets scrubbing can be handled on subsets efficiently. Mapping
unitigs against Nanopore reads yields unique “anchors” between them b). An undirected graph c) is
created by adding Nanopore reads as nodes and edges between all pairs of reads sharing an “anchor”.
Each edge is assigned a relative orientation, depending on whether the “anchor” maps in the same
direction on both Nanopore reads. Cycles with a contradiction in orientation have to be removed
before choosing a node at random and directing the graph based on its orientation. As Nanopore
reads that are fully contained within another do not yield additional data, they can be collapsed.
Contigs are extracted as maximally supported paths for each connected component d). Support in
this context is defined by the number of consistent overlaps transitive to each edge. Final contigs e)
can be optionally polished using established tools.

The key idea to obtain the overlap graph is to start from a collection S ∶= {si} of pre-
assembled, high-quality sequences that are unique in the genome. These serve as “anchors”
to determine overlaps among the long reads R ∶= {rj}. In practice, S can be obtained by
assembling Illumina data with fairly low coverage to the level of unitigs only. The total
genomic coverage of S only needs to be large enough to provide anchors between overlapping
long reads, and it is rigorously filtered to be devoid of repetitive and highly similar sequences.
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Mapping a short read s ∈ S against the set R of long reads implies (candidate) overlaps
r1 − r2 between two long reads (as well as their relative orientation) whenever an s maps to
both r1 and r2. Thus we obtain a directed overlap graph G of the long reads without an
all-vs-all comparison of the long reads.

A series of linear-time filtering and reduction algorithms then prunes first the underlying
undirected overlap graph and then the directed version of the reduced graph. Its connected
components are reduced to near-optimal directed acyclic graphs (DAGs) from which contigs
are extracted as best-supported paths. In the following sections we describe the individual
steps in detail. In comparison to DBG2OLC we avoid global corrections of short-read mappings,
but instead rely on the accuracy of assembled unitigs and a series of local corrections. For
this, we utilize previously unreported properties of the class of alignment graphs used by
both tools. This allows LazyB to operate reliably even on very low coverage. Variations of
the dataset dependent assembly options have little impact on the outcome. In contrast of
complicated setup of options required for tools such as DBG2OLC, LazyB comes with robust
defaults.

3 Theory and Methods

3.1 Preprocessing
A known complication of both PacBio and Nanopore technologies are chimeric reads formed
by the artificial joining of disconnected parts of the genome [23] that may cause mis-
assemblies [34]. Current methods dealing with this issue heavily rely on raw coverage [22]
and hence are of little use for our goal of a low-coverage assembler. In addition, start- and
end-regions of reads are known to be particularly error-prone. We pre-filter low quality
regions, but only consider otherwise problematic reads later at the level of the overlap graph.

Short-read (Illumina) data are preprocessed by adapter clipping and trimming. A set S
of high quality fragments is obtained from a restricted assembly of the short-read data. The
conventional use case of assembly pipelines aims to find a minimal set of contigs in trade-off
to both correctness and completeness. For our purposes, however, completeness is of little
importance and fragmented contigs are not detrimental to our workflow, as long as their
lengths stay above a statistical threshold. Instead, correctness and uniqueness are crucial.
We therefore employ three filtering steps: (1) Using a k-mer profile, we remove all k-mers
that are much more abundant than the expected coverage since these are likely part of
repetitive sequences. This process can be fully automated (see Appendix B).(2) In order to
avoid ambiguities only branch-free paths are extracted from the assembly graph. Moreover,
a minimal path length is required for secure anchors. The de Bruijn based assembler ABySS
[30] allows to assemble up to unitig stage, implementing this goal. Since repeats in general
lead to branch-points in the de Bruijn graph, repetitive sequences are strongly depleted in
unitigs. While in theory, every such assembly requires a fine tuned k-mer size, a well known
factor to be influential on assembly quality, we found overall results to be mostly invariant of
this parameter. To test this, we systematically varied the k-mer-size for ABySS. Nevertheless,
we found little to no effect on the results of LazyB (Fig. 2). As assembly stops at unitigs,
error rates and genome coverage stay within a narrow range as long as the unitigs are long
enough. (3) Finally, the set R of long reads is mapped against the unitig set. At present
we use minimap2 [20] for this purpose. Regions or whole unitigs significantly exceeding the
expected coverage are removed from S because they most likely are repetitive or at least
belong to families of very similar sequences such as multi-gene families. Please note that
all repetitive elements connected to a unique region within a single long read may still be
correctly assembled (see Appendix C).

WABI 2020
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Figure 2 Assembly statistics as a function of the k-mer size used to construct unitigs from
the short-read data for yeast. Top: Illumina unitigs (left: number of unitigs; middle: fraction
of the reference genome covered; right: N50 values); bottom: final LazyB assembly at ∼11× long
reads (left: number of unitigs; middle: fraction of the reference genome covered; right: number of
mis-assemblies).

3.2 Overlap Graph for Long Reads
As a result we obtain a set of significant matches V ∶= {(s, r) ∈ S × R ∣ δ(s, r) ≥ δ∗} whose
matching score δ(s, r) exceeds a user-defined threshold δ∗. The long-read overlap graph G has
the vertex set R. Conceptually, two long reads overlap, i.e., there should be an undirected
edge r1r2 ∈ E(G) if and only if there is an s ∈ S such that (s, r1) ∈ V and (s, r2) ∈ V. In
practice, however, we employ a more restrictive procedure:

For distinct long reads r1, r2 ∈ R with (s, r1), (s, r2) ∈ V the sequence intervals on s that
match intervals on r1 and r2 are denoted with [i, j] and [k, l], respectively. The intersection
[i, j] ∩ [k, l] is the interval [max{i, k},min{j, l}] if k ≤ j and the empty interval otherwise.
Note that if [i, j] ∩ [k, l] is not empty, then it corresponds to a direct match of r1 and r2.
The expected bit score for the overlap is estimated as

ω(s, r1, r2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if [i, j] ∩ [k, l] = ∅;
1
2(min{j, l} −max{i, k} + 1) ( δ(s,r1)

(j−i+1) +
δ(s,r2)
(l−k+1)) otherwise.

(1)

For a given edge r1r2 ∈ E(G) there may be multiple significant matches, mediated by a set of
unitigs Sr1r2 ∶= {s ∈ S ∣ (s, r1), (s, r2) ∈ V}. In ideal data they are all consistent with respect
to orientation and co-linear location. In real data, however, this may not be the case.

For each significant match (s, r) ∈ V we define the relative orientation θ(s, r) ∈ {+1,−1}
of the reading directions of the short-read scaffold s relative to the long read r. The relative
reading direction of the long reads (as suggested by s) is thus θs(r1, r2) = θ(s, r1) ⋅ θ(s, r2).

The position of a significant match (s, r) defined on the unitig s on interval [i, j]

corresponds to an interval [i′, j′] on the long read r that is determined by the alignment
of s to r. Due to the large number of randomly distributed InDels in the Nanopore data,
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Figure 3 Construction of the overlap of two long reads r1 and r2 (long black arrows) from all
unitigs Sr1r2 ∶= {s1, ..., s5} (short black bars) that match to both r1 and r2. A significant match (s, r)
of s ∈ Sr1r2 on r ∈ {r1, r2} is illustrated by blue and green thick arrows on r. The relative orientation
of (s, r) is indicated by the direction of its arrow, that is, θ(s, r) = +1 (resp. θ(s, r) = −1) if its arrow
points to the right (resp. left). The subsets S1

r1r2 ∶= {s1, s3, s5} (unitigs with blue significant matches)
and S2

r1r2 ∶= {s2, s4} (unitigs with green significant matches) of Sr1r2 are both inclusion-maximal and
consists of pairwise consistent unitigs. The set S1

r1r2 maximizes Ω(r1, r2) and thus determines the
overlap. It implies θ(r1, r2) = +1. Moreover, ir1 (resp. jr1) is the minimal (resp. maximal) coordinate
of significant matches of unitigs from S1

r1r2 on r1. The corresponding coordinates on r2 are kr2 and
lr2 , respectively. The spanning intervals [ir1 , jr1] and [kr2 , lr2] define the overlap of r1 and r2. In
this example we have ir1 > kr2 and ∣r1∣ − jr1 > ∣r2∣ − lr2 , implying that r2 extends r1 neither to the
left or right and thus, edge r1r2 is contracted in G.

the usual dynamic programming alignment strategies fail to produce accurate alignments.
This is also the case for minimap2 [20], our preliminary choice, as it only chains short, high
quality matches into larger intervals. Although more accurate alignments would of course
improve the local error rate of the final assembled sequence, we expect very little impact
on the overall assembly that is not effected in large by small local errors. We therefore
record only the matching intervals and use a coordinate transformation τr that estimates the
position τr(h) ∈ [i′, j′] for some h ∈ [i, j] by linear interpolation:

τr(h) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

j′ − (j − h) j
′
−i′+1
j−i+1 if j − h ≤ h − i;

i′ + (h − i) j
′
−i′+1
j−i+1 if j − h > h − i.

(2)

The values of τr(h) are rounded to integers and used to determine intersections of matches.
We write [i, j]r ∶= [τr(i), τr(j)] for the interval on r corresponding to an interval [i, j] of s.

I Definition 1. Two unitigs s, s′ in Sr1r2 are consistent if (i) θs(r1, r2) = θs′(r1, r2), (ii) the
relative order of [is, js]r1 , [ks

′

, ls
′

]r1 on r1 and [is, js]r2 , [ks
′

, ls
′

]r2 on r2 is the same.

For distinct long reads r1, r2 ∈ R, Definition 1 enables us to determine m ≥ 1 subsets
S1
r1r2

, ...,Smr1r2
of Sr1r2 such that each is maximal with respect to inclusion and contains only

unitigs that are pairwise consistent with respect to r1 and r2. In addition, we may require
that the difference between the distances of consecutive corresponding intervals on r1 and r2,
respectively, is sufficiently similar. Computing the set S ∈ {S1

r1r2
, ...,Smr1r2

} that maximizes
the total bit score ∑s∈S ω(s, r1, r2) amounts to a chaining problem that can be solved in
quadratic time by dynamic programming [25]. An edge r1r2 is inserted into G if the optimal
total bit score Ω(r1, r2) ∶= ∑s∈S ω(s, r1, r2) exceeds a user-defined threshold. The signature
θ(r1, r2) of the edge r1r2 ∈ E(G) is the common value θs(r1, r2) for all s ∈ S.

For each edge r1r2 ∈ E(G) we determine s, s′ ∈ S such that τr1(i
s) is the minimal

and τr1(j
s′) is the maximal coordinate of the matching intervals on r1. Hence, the inter-

val [is, js
′

]r1 spans all matching intervals on r1. The corresponding pair of coordinates,

WABI 2020
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τr2(k
s) and τr2(l

s′), spans the matching intervals on r2. In particular, the interval [ks, ls
′

]r2

(resp. [ls
′

, ks]r2) spans both matching intervals on r2 if θ(r1, r2) = 1 (resp. θ(r1, r2) = −1).
For the sake of a clear notation, let [ir1 , jr1] ∶= [is, js

′

]r1 and [kr2 , lr2] be the “spanning”
interval on r2, i.e., either [kr2 , lr2] ∶= [ks, ls

′

]r2 or [kr2 , lr2] ∶= [ls
′

, ks]r2 . Intervals [ir1 , jr1]

and [kr2 , lr2] specify the known overlapping regions between r1 and r2, see also Fig. 3 for
an illustration. If θ(r1, r2) = +1 then r1 extends r2 to the left if ir1 > kr2 and to the right if
∣r1∣ − jr1 > ∣r2∣ − lr2 . For θ(r1, r2) = −1 the corresponding conditions are ir1 > ∣r2∣ − kr2 and
∣r1∣ − jr1 > lr2 , respectively. If r1 does not extend r2 to either side then r1 is completely
contained in r2 and does not contribute to the assembly. If r1 extends r2 on both sides, r2
is fully contained, respectively. In both cases we contract the edge between r1 and r2 in G.
Otherwise, if r1 extends r2 to the left and r2 extends r1 to the right we record r1 → r2 and
accordingly, if r2 extends r1 to the left and r1 extends r2 to the right we note r1 ← r2.

The result of this construction is a long-read-overlap graph G whose vertices are the
non-redundant long reads and whose edges r1r2 record (1) the relative orientation θ(r1, r2),
(2) the bit score Ω(r1, r2), (3) the local direction of extension, and (4) the overlapping
interval.

3.3 Consistent Orientation of Long Reads
For perfect data it is possible to consistently determine the reading direction of each read
relative to the genome from which it derives. This is not necessarily the case in real-
life data. The relative orientation of two reads is implicitly determined by the relative
orientation of overlapping reads, i.e., by the signature θ(r1, r2) of the edge r1r2 ∈ E(G).
To formalize this idea we consider a subset D ⊆ E(G) and define the orientation of D as
θ(D) ∶= ∏r1r2∈D θ(r1, r2). For a disjoint union of two edge sets D and D′ we therefore
have θ(D ⊍D′) = θ(D′)θ(D) and, more generally, their symmetric different D ⊕D′ satisfies
θ(D ⊕ D′) = θ(D)θ(D′) since the edges in D ∩ D′ appear twice in θ(D)θ(D′) and thus
contribute a factor (±1)2 = 1.

I Definition 2. Two vertices r1, r2 ∈ V (G) are orientable if θ(P ) = θ(P ′) holds for any two
paths P and P ′ connecting r1 and r2 in G. We say that G is orientable if all pairs of vertices
in G are orientable.

I Lemma 3. G is orientable if and only if every cycle C in G satisfies θ(C) = 1.

Proof. Let r, r′ be two vertices of G and write C(r, r′) for the set of all cycles that contain r
and r′. If r = r′ or C(r, r′) = ∅, then r and r′ are orientable by definition. Now assume r ≠ r′,
C(r, r′) ≠ ∅, and consider a cycle C ∈ C(r, r′). Clearly, C can be split into two edge-disjoint
path C1 and C2 both of which connect r and r′. If r and r′ are orientable, then θ(C1) = θ(C2)

and thus θ(C) = 1. If r and r′ are not orientable, then there is a pair of path P1 and P2
connecting r and r′ such that θ(P1) = −θ(P2). Since P1 ⊕ P2 = ⊍

k
i=1Ci is an edge-disjoint

union of cycles Ci we have −1 = θ(P1)θ(P2) = ∏
k
i=1 θ(Ci) and thus there is least one cycle Ci

with θ(Ci) = −1 in G. J

The practical importance of Lemma 3 is the implication that only a small set of cycles
needs to be considered since every graph G with c connected components has a cycle basis
comprising ∣E∣ − ∣V ∣ − c cycles. Particular cycles bases, known as Kirchhoff bases, are obtained
from a spanning tree T of G as the set B of cycles Ce consisting of the edge e ∈ E ∖ T and
the unique path in T connecting the endpoints of e. Every cycle C of G can then be written
as C = ⊕e∈C∖T Ce, see e.g. [15].
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I Theorem 4. Let B be a cycle basis of G. The graph G is orientable if and only if θ(C) = 1
for all C ∈ B.

Proof. The theorem follows from Lemma 3 and the fact that every cycle C in G can be
written as an ⊕-sum of basis cycles, i.e., θ(C) = 1 for every cycle in C if and only if θ(C ′) = 1
for every basis cycle C ′ ∈ B. J

Theorem 4 suggests the following, conservative heuristic to extract an orientable subgraph
from G:
(1) Construct a maximum weight spanning tree TG of G by using the Ω-scores as edge

weights. Tree TG can easily be obtained using, e.g., Kruskal’s algorithm [19].
(2) Construct a Kirchhoff cycle basis B from TG.
(3) For every cycle C ∈ B, check whether θ(C) = −1. If so, find the Ω-minimum weighted

edge ê ∈ C and remove it from E(G) and (possibly) from TG if ê ∈ E(TG). Observe that
if ê /∈ E(TG), then TG stays unchanged. If ê ∈ E(TG), then the removal of ê splits TG into
two connected components. We restrict G to the connected components of TG.

This procedure yields a not necessarily connected subgraph G′ and a spanning forest TG ∩
E(G′) for G′.

I Lemma 5. Let G be an undirected graph and let G′′ be a connected component of the
residual graph G′ produced by the heuristic steps (1)-(3). Then (i) G′′ is orientable and (ii)
TG ∩E(G′′) is an Ω-maximal spanning tree of G′′.

Proof. Removal of an edge e from a spanning tree T of G partitions T into two components
with vertex sets V1 and V2. Let G1 = G[V1] and G2 = G[V2] be the corresponding induced
subgraphs ofG. The cut inG induced by e is E(G)∖(E(G1)∪E(G2)). Clearly T1 = T∩E(G1)

and T2 = T ∩E(G2) are spanning trees of G1 and G2, respectively. The restrictions B1 and
B2 of the Kirchhoff basis B to cycles with non-tree edges e ∈ E(G1) or e ∈ E(G2) form
a Kirchhoff basis of G1 and G2, respectively. Now consider G′

1 is obtained from G1 by
removing a set of non-tree edges, then B′

1 obtained from B1 by removing the cycles with
these non-tree edges is a cycle basis of G′

1 and T1 is still a spanning tree of G1. The Ω-weights
of T1 = T ∩E(G1) and T2 = T ∩E(G2) must be maximal, since otherwise a heavier spanning
tree T of G could be constructed by replacing T1 or T2 by a heavier spanning tree of G1
or G2. The arguments obviously extend to splitting Gi by cutting at an edge of Ti. Since
the heuristic removes all non-tree edges e with θ(Ce) = −1, Theorem 4 implies that each
component G′′ is orientable. When removing e ∈ T , the corresponding cut edges are removed,
the discussion above applies and thus T ∩E(G′′) is Ω-maximal. J

From here on, we denote a connected component of G′ again by G and write TG for
its maximum Ω-weight spanning tree, which by Lemma 5 is just the restriction of the
initial spanning tree to G. We continue by defining an orientation ϕ for the long reads.
To this end, we pick an arbitrary r∗ ∈ V (G) and set ϕ(r∗) ∶= +1. For each r ∈ V (G) we
set ϕ(r) ∶= ∏e∈path(r∗,r) θ(e), where path(r∗, r) is the unique path connecting r∗ and r in
TG. We can now define an equivalent graph G̃ with the same vertices and edges as G and
orientations θ̃(e) = +1 for e ∈ TG and θ̃(e) ∶= ϕ(xe)ϕ(ye) for all non-tree edges e = xeye ∉ TG.
We note that the vertex orientations can be computed in O(∣R∣) time along TG. Since
θ(Ce) = θ̃(e) for every Ce ∈ B, we can identify the non-orientable cycles in linear time.
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3.4 Reduction to a DAG
We next make use of the direction of extension of long read r1 and r2 defined by the mutual
overhangs in the case that r1r2 is an edge in G. We write G⃗ for the directed version
of a connected component G of the residual graph G′ constructed above. For each edge
r1r2 ∈ E(G) we create the corresponding edge e ∈ E(G⃗) as

e ∶=

⎧⎪⎪
⎨
⎪⎪⎩

r1r2 if ϕ(r1) = +1 and r1 → r2 or ϕ(r1) = −1 and r1 ← r2;
r2r1 if ϕ(r1) = +1 and r1 ← r2 or ϕ(r1) = −1 and r1 → r2.

(3)

In perfect data, G⃗ is a directed interval graph. Recall that we have contracted edges
corresponding to nested reads (i.e., intervals). Therefore, G⃗ is a proper interval graph or
indifference graph. Thus there is an ordering ≺ of the vertices (long reads) that satisfies the
umbrella property [12]: r1 ≺ r2 ≺ r3 and r1r3 ∈ E(G⃗) implies r1r2, r2r3 ∈ E(G⃗). A “normal
interval representation” and a linear order ≺ of the reads, can be computed in O(∣R∣) time [24].
Again, we cannot use these results directly due to the noise in the original overlap graph.

First we observe that G⃗ should be acyclic. Our processing so far, however, does not
guarantee acyclicity since G⃗ still may contain some spurious edges due to unrecognized
repetitive elements. The obvious remedy is to remove a (weight-)minimal set of directed
edges. This Feedback Arc Set problem, however, is NP-complete, see [3] for a recent
overview. We therefore resort to a heuristic that makes use of our expectations on the
structure of G⃗: In general we expect multiple overlaps of correctly placed reads, i.e., r is
expected to have several incoming edges from its predecessors and several outgoing edges
exclusively to a small set of succeeding reads. In contrast, we expect incorrect edges to
appear largely in isolation. This suggest to adapt Khan’s topological sorting algorithm [14].
In its original version, it identifies a source u, i.e., a vertex with in-degree 0, appends it to
the list W of ordered vertex and then deletes all its out-edges. It stops with “fail” when
no source can be found before the sorting is complete, i.e., W does not contain all vertices
of the given graph, indicating that a cycle has been encountered. In our setting we need
to identify the best approximation to create a new source in this case. Denote by N+(W )

denotes the out-neighborhood of the already sorted set W . The set K ∶= (V ∖W ) ∩N+(W )

of not yet sorted out-neighbors of W are the candidates for the next source. For each u ∈K
we distinguish incoming edges xu from x ∈W , x ∈K, and x ∈ V ∖ (W ∪K) and consider two
cases:
(1) There is a u ∈K without an in-edge xu from some other x ∈K. Then we choose among

these the vertex û with the largest total Ω-weight incoming from W because û then
overlaps with most of the previously sorted reads.

(2) If for each u ∈ K there is an in-edge xu from some other x ∈ K, then the candi-
date set K forms a strongly connected digraph. In this case we choose the candi-
date û ∈ K with the largest difference of Ω-weights incoming from W and K, i.e.,
û ∶= arg maxu∈K ∑w∈W Ω(w,u) −∑k∈K∖{u}Ω(k, u).

In either case we remove from G⃗ the edges incoming from V ∖W into û and proceed. If
multiple sources are available we always pick the one with largest Ω-weight incoming from W .
As a consequence, incomparable paths in G⃗ are sorted contiguously. The result of the
modified Kahn algorithm is a directed acyclic graph Ð⇀G .

3.5 Golden Paths
For perfect data, Ð⇀G (and already G⃗) has a single source and a single sink vertex, corresponding
to the left-most and right-most long reads r′ and r′′, respectively. Furthermore, every directed
path connecting r′ and r′′ is a golden path, that is, a sequence of overlapping intervals that
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covers the entire chromosome. Even more stringently, every read r ≠ r′, r′′ has at least one
predecessor and at least one successor in Ð⇀G . The acyclic graph Ð⇀G therefore has a unique
topological sorting, i.e., its vertices are totally ordered. As before, we cannot expect that Ð⇀G
has these properties for real-life data.

Ploidy in eukaryotes may constitute a valid exception to this assumption, as differences
in chromosomes ideally also cause diverging structures. However, given the high error rate of
long reads, low sequence variation can only be differentiated in very high coverage scenarios;
these explicitly are not targeted by LazyB. High accuracy short read assemblies originating
from different alleles thus can be expected to match equally well to the same long reads
given their low quality. Therefore, also ploidy variation will normally be merged to a single
consensus. Accordingly, we did not detect any mayor duplication issues in the human, fly, or
yeast.

A transitive reduction H○ of some directed graph H is a subgraph of H with as few edges
as possible such that two vertices x and y are connected by a directed path in H○ if and only
if they are connected by a directed path in H. It is well-known that each acyclic digraph has
a unique transitive reduction [1, Thm. 1]. This property enables us to call an edge e of an
acyclic digraph H redundant if e ∉ E(H○).

Consider a proper interval graph H, an induced subgraph F of H, and recall that H is an
acyclic digraph. Since H satisfies the umbrella property, every redundant edge uw ∈ E(H)

is part of some triangle. We also observe that F has a unique topological sorting and its
triangle reduction F△, obtained by removing all edges uw ∈ E(F ) for which there is a vertex
v with uv, vw ∈ E(F ), is a path. In fact, F△ is an induced path in the triangle reduction H△

of H.
This deduction suggests to identify maximal paths in the triangle reduction Ð⇀G△ of the

directed acycling graph Ð⇀G as contigs. Since the topological sorting along any such path is
unique, it automatically identifies any redundant non-triangle edges along a path.

On imperfect data Ð⇀G△ differs from a unique golden path by bubbles, tips, and crosslinks
(see Appendix A). Tips and bubbles predominantly are caused by edges that are missing e.g.
due to mapping noise between reads that belong to a shared contig region. Hence, any path
through a bubble or superbubble yields essentially the same assembly of the affected region
and thus can be chosen arbitrarily, whereas tips may prematurely end a contig. Node-disjoint
alternative paths within a (super-)bubble start and end in the neighborhood of the original
path. Tips either originate or end in neighborhood of the chosen path.

Crosslinks represent connections between two proper contigs by spurious overlaps, caused,
e.g., by repetitive elements that have escaped filtering. As crosslinks can occur at any
positions, a maximal path may not necessarily follow the correct connection and thus may
introduce chimeras into the assembly. As a remedy we measure how well an edge e fits into a
local region that forms an induced proper interval graph. Recall that the out-neighborhood
of each vertex in a proper interval graph induces a transitive tournament. For real data,
however, the subgraphÐ⇀G[N+(r)] induced by the out-neighbors of r may in general violate this
expectation. The problem of finding the maximum transitive tournament in an acyclic graph
is NP-hard [8]. An approximation can be obtained, however, using the fact that a transitive
tournament has a unique directed Hamiltonian path. Finding a longest path in a DAG
only requires linear time. Thus candidates for transitive tournaments in Ð⇀G[N+(r)] can be
retrieved efficiently as the maximal path Prq in

Ð⇀
G[N+(r)] that connects r with an endpoint q,

i.e., a vertex without an outgoing edge within Ð⇀G[N+(r)]. Clearly, it suffices to consider
the maximum path problem in the much sparser DAG Ð⇀G△[N+(r)]. The induced subgraph
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Ð⇀
G△[Prq] with the largest edge set Hr ∶= E(

Ð⇀
G△[Prq]), i.e., q ∶= arg maxp ∣E(

Ð⇀
G△[Prp])∣,

serves as approximation for the maximal transitive tournament and is used to define the
interval support of an edge e ∈ E(

Ð⇀
G) as

ν(e) ∶= ∑

r∈V (
Ð⇀
G)∶e∈Hr

(∣Hr ∣ − d(r, e) − 1) . (4)

Here, d(r, e) is the minimal number of edges in the unique path from r to e in the path
formed by the edges in Hr. The interval support can be interpreted as the number of triangles
that support e as lying within an induced proper interval graph. It suffices to compute ν(e)
for e ∈ E(

Ð⇀
G△). We observed empirically that determining the best path with respect to ν(e)

(rather than weight Ω of the spanning tree edges) results in contigs with a better solution
quality. Taken together, we arrive at the following heuristic to iteratively extract meaningful
paths (see also Appendix D):
i) Find the longest path p = r1, . . . , rn in Ð⇀G△ such that at every junction, we choose the

incoming and outgoing edges e with maximal interval support ν(e).
ii) Add the path p to the contig set if it is at least two nodes long and neither the in-

neighborhood N−(r1) nor the out-neighborhood N+(rn) are marked as previously visited
in Ð⇀G . Otherwise, we have found a tip if one of N−(r1) or N+(rn) was visited before and
a bubble if both were visited. Such paths are assumed to have arisen from more complex
crosslinks and can be added to the contig set if they exceed a user-defined minimum
length.

iii) The path p is marked visited in Ð⇀G and all corresponding nodes and edges are deleted
from Ð⇀

G△.
iv) The procedure terminates when Ð⇀G△ is empty.
As the result, we obtain a set of paths, each defining a contig.

3.6 Consensus Sequence
The final step is the retrieval of a consensus sequence for each path p. This step is more
complicated than usual due to the nature of our initial mappings. While we enforce compatible
sets of unitigs for each pair of long reads, a shared unitig between edges does not necessarily
imply the same genomic coordinate. (i) Unitigs can be long enough that we gain triples
ri, ri+1, ri+2 ∈ V (p) such that an s ∈ Sriri+1 ∩ Sri+1ri+2 exists but ri and ri+2 share no interval
on s. Such triples can occur chained. (ii) Unitigs of genomic repeats may remain in the
data. Such unitigs may introduce pairwise distinct edges ei, ej , ek that appear in this order,
denoted by ei ≺ ej ≺ ek, along the path p such that s ∈ Sei and s ∈ Sek

but s ∉ Sej , therefore
creating disconnected occurrences of s. (iii) Similarly, proximal repeats may cause inversions
in the order of two unitigs s, s′ ∈ Sei ∩ Sek

, w.l.o.g ei ≺ ek. This scenario cannot appear on
neighboring edges, as the shared node has a unique order of s and s′. Hence, either s or s′
must be missing in an intermediary edge el due to the consistency constraints in the original
graph, resulting in a situation as described in (ii). (iv) Finally, true matches of unitigs may
be missing for some long reads due to alignment noise, which may also yield a situation as
in (ii).

To address (i), we collect all instances of a unitig in the path independent of its context.
We create an undirected auxiliary graph Us with a vertex setV (Us) ∶= {e ∈ E(p) ∣ s ∈ Se}.
We add edges for all edge-pairs that share an overlap in s. Any clique in this graph then
represents a set of edges that share a common interval in s. We assign each edge a unique
cluster index ces, according to a minimal size clique decomposition. As finding a set of
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maximal cliques is NP-hard, we instead resort to a O(∣V ∣/(log ∣V ∣)2) heuristic [4]. We address
(ii-iv) with the help of a second index ges , where gei

s ≠ gek
s for two edges ei, ek if and only if

an edge ej exists such that ei ≺ ej ≺ ej and s ∉ Sej .
Finally, we can now create a multigraph M consisting of vertex triples {(s, ces, g

e
s) ∣ s ∈

Se with e ∈ E(p)}. We add edges (s, ces, g
e
s) → (s′, c′es , g

′e
s ) if and only if s ≺ s′ on an edge e

and no element s′′ exists such that s ≺ s′′ ≺ s′ . The resulting graph is cycle free and thus
uniquely defines the positions of all unitigs. Nodes represent the sequence of the common
interval on the unitig s as attributed to the clique ces. Edges represent the respective sequence
of long reads between s and s′, or a negative offset value if unitigs overlap. We take an
arbitrary node in M and set its interval as the reference point. Positions of all other nodes
are progressively built up following a topological order in this graph. If multiple edges exist
between two nodes in this process a random but fixed edge is chosen to estimate the distance
between nodes. As now all sequence features are embedded in the same coordinate system,
an arbitrary projection of the sequence is set as the reference contig, retaining unitigs were
possible due to their higher sequence quality. At the same time, we can map the features
of each long read to their respective position in this newly constructed reference. This
information can be directly fed into consensus based error correction systems such as racon
[32].

4 Experimental Results

To demonstrate the feasibility of our assembly strategy we applied LazyB to publicly available
datasets (see Appendix E) [9, 16, 31] for three well studied model organisms, baker’s yeast (S.
cerevisiae, genome size 12 Mb), fruit fly (D. melanogaster, genome size 140 Mb) and human
(H. sapiens, genome size 3 Gb). The data were downsampled to approximately 5× and 10×
nanopore coverage for long reads, respectively, and Illumina coverage sufficient for short-read
anchors. We compare results to the most widespread competing assembler Canu [18], also
highlighting the disadvantage of long read only strategies, DBG2OLC’s [35] implementing the
most closely related concept, as well as the recent competitor HASLR [11] based on also a
similar strategy. For comparison, we also provide the statistics for short-read only assemblies
created with ABySS [30] on the same sets of reads used to create the “anchors” to show the
advantage of hybrid assembly even at a low coverage of long reads. Quality was assessed
via alignment to a reference genome by the QUAST tool [10]; see Table 1. LazyB produced
consistently better results than Canu, increasing genomic coverage at a lower contig count.
Due to our inclusion of accurate short-read unitigs, overall error counts are also significantly
lower. Most notably, Canu was unable to properly operate at the 5× mark for both data sets.
Only insignificant portions of yeast could be assembled, accounting for less than 15% of the
genome. Canu completely failed for fruit fly, even after adapting settings to low coverage.
Even at 5×, LazyB already significantly reduces the number of contigs compared to the
respective short-read assemblies, while retaining a reasonably close percentage of genome
coverage. At only 10× coverage for fruit fly, we were able to reduce the contig count 10-fold
at better error rates. For human, LazyB manages at 39-fold decrease of the number contigs,
albeit at a loss of greater 10% coverage. This difference appears to be a consequence of
the high fragmentation of unitigs in the abundant repeat regions of the genome, rendering
them too unreliable as anchors. Results are indeed in line with unitig coverage. While HASLR
produced the fewest mis-assemblies, it creates significantly more and shorter contigs that
cover a much smaller fraction of the genome. As a consequence it has the least favorable
N50 values of all tools. For fruit fly at 10×, it results in four times as many contigs and
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Table 1 Assessment of assembly qualities for LazyB, Canu, and short-read only assemblies for two
model organisms. LazyB outperforms Canu in all categories, while significantly reducing contig counts
compared to short-read only assemblies. While HASLR is more accurate, it covers significantly lower
fractions of genomes at a higher contig count and drastically lower N50. While DBG2OL produces few
contigs at a high N50 for higher coverage cases, it calls significantly more mis-assemblies. Mismatches
and InDels are given per 100kb. Accordingly, errors in LazyB’s unpolished output constitute < 1%
except for human. Column descriptions: X coverage of sequencing data, completeness of the
assembly. #ctg number of contigs, #MA number of mis-assemblies (breakpoints relative to the
reference assembly) MisMatches and InDels relative to the reference genomes. N50 of correctly
assembled contigs (minimal length of a correctly assembled contig needed to cover 50% of the
genome, also named NGA50; omitted when < 50% is correctly recalled).

Org. X Tool compl.[%] #ctg #MA MM InDels N50
yeast ∼5× LazyB 90.466 127 9 192.56 274.62 118843

Canu 14.245 115 5 361.47 2039.15 -
HASLR 64.158 111 1 14.87 34.86 60316

DBG2OLC 45.645 53 20 2066.64 1655.92 -
∼11× LazyB 97.632 33 15 193.73 300.20 505126

Canu 92.615 66 15 107.00 1343.37 247477
HASLR 92.480 57 1 7.89 33.91 251119

DBG2OLC 97.689 38 25 55.06 1020.48 506907
∼80× Abyss 95.247 283 0 9.13 1.90 90927

fruit fly ∼5× LazyB 71.624 1879 68 446.19 492.43 64415
Canu - - - - - -
HASLR 24.484 1407 10 31.07 58.96 -

DBG2OLC 25.262 974 141 1862.85 969.26 -
∼10× LazyB 80.111 596 99 433.37 486.28 454664

Canu 49.262 1411 275 494.66 1691.11 -
HASLR 67.059 2463 45 43.83 84.89 36979

DBG2OLC 82.52 487 468 739.47 1536.32 498732
∼45× Abyss 83.628 5811 123 6.20 8.31 67970

human ∼10× LazyB 67.108 13210 2915 1177.59 1112.84 168170
∼43× Unitig 69.422 4146090 252 93.07 13.65 338
∼43× Abyss 84.180 510315 2669 98.53 25.03 7963

covers 10% less of the genome, with a 12 times lower N50. While an improvement to Canu, it
also struggles on datasets with low Nanopore coverage. DBG2OLC shows the greatest promise
compared to our own method, but similarly fails to operate well on very low coverage
datasets. For yeast at 5×, less then 50% the genome can be reconstructed. In fruit fly even
less then 25% can be assembled at about 2 times the error rate of LazyB. At 10×, DBG2OLC
reconstruct a similar proportion of the genome, albeit at high error rates. While it produces
about 100 fewer contigs for fruit fly, this achievement is offset by over 350 (4.7 times more)
mis-assemblies.

The resource footprint of LazyB is small enough to run on an off-the-shelf desktop machine
or even a laptop. The total effort is, in fact, dominated by the computation of the initial
unitig set from the short reads. We expect that an optimized re-implementation of LazyB
will render its resource consumption negligible. Compared to the competing Canu assembler,
the combination of ABySS and the python-prototype of LazyB is already more than a factor
of 60 faster. In terms of memory, given precomputed unitigs LazyB also requires 3 − 18



T. Gatter, S. von Löhneysen, P. Drozdova, T. Hartmann, and P. F. Stadler 10:15

times less RAM than Canu, see Table 4. Most notably, we were able to assemble the human
genome within only 3 days, while Canu could not be run within our resource constraints.
HASLR shows a similar distribution of running times between tasks, overall operating slightly
faster. We could not process our human test set with HASLR. A human DBG2OLC assembly
can be estimated to take several weeks without manual parallelization for a single set of
parameters, with authors recommending several possible alternatives for optimization. We
therefore include only the results for LazyB here, and leave a more detailed comparison of
the performance for very complex genomes for a proper follow-up experiment.

5 Discussion and Outlook

We demonstrated here the feasibility of a new strategy for sequence assembly with low
coverage long-read data. Already the non-optimized prototype LazyB, written entirely in
python, not only provides a significant improvement of the assembly but also requires much
less time and memory than state-of-the-art tools. This is achieved by avoiding both a
correction of long reads and an all-vs-all comparison of the long reads. Instead, we use
rigorously filtered short-read unitigs as anchors to sparsifying the complexity of full string-
graphs construction. LazyB then uses a series of fast algorithms to consistently orient this
sparse overlap graph, reduce it to a DAG, and sort it topologically, before extracting contigs
as maximum weight paths. This workflow relies on enforcing properties of overlap graphs
that have not been exploited in this manner in competing sequence assembly methods.

The prototype implementation leaves several avenues for improvements. We have not
attempted here to polish the sequence but only to provide a common coordinate system
defined on the long reads into which the short-reads unitigs are unambiguously embedded to
yield high-quality parts of the LazyB-assembly. The remaining intervals are determined solely
by long-read data with their high error rate. Multiple edges in the multigraph constructed
in the assembly step correspond to the same genome sequence, hence the corresponding
fragments of reads can be aligned. This is also true for alternative paths between two nodes.
This defines a collection of alignments distributed over the contig, similar to the situation
in common polishing strategies based on the mapping of (more) short-read data or long
reads to a preliminary assembly. Preliminary tests with off-the-shelf tools such as racon
[32], however, indeed improve sequence identity but also tend to introduce new translocation
breakpoints. We suspect this is the consequence of InDels being much more abundant than
mismatches in Nanopore data, which is at odds with the Needleman–Wunsch alignments
used by polishing tools.

A prominent category of mis-assemblies within the LazyB contigs are inherited from
chimeric reads. This therefore suggests an iterative approach: Subsampling the long-read
set will produce more fragmented contigs, but statistically remove chimeric reads from the
majority of replicate assemblies. Final contigs are constructed in a secondary assembly
step by joining intermediary results. It might appear logical to simply run LazyB again to
obtain a “consensus” assembly, where intermediary contigs play the role of longer reads with
mapped anchors. In preliminary tests, however, we observed that this results in defects that
depend on the sampling rate. The question of how to properly design the majority calling to
construct a consensus assembly remains yet to be answered.
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A Definitions of Alignment Graph Defects
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Figure 4 Examples of assembly graph defects in Ð⇀G△.

On ideal data, Ð⇀G△ would consist of a unique golden path. For real data, however, it also
also harbors bubbles, tips, and crosslinks. We briefly define these types of imperfections
here. Given two nodes s, t ∈ Ð⇀G△, an s − t path is a path starting in s and ending in t. A
simple bubble consists of two vertex disjoint s − t paths. This construct can be extended to
super-bubbles, defined as a set of s − t paths, exactly including all nodes reachable from s

without passing t and vice versa. Bubbles and superbubbles are primarily the result of
unrecognized overlaps. Tips are “side branches” that do not reconnect with the dominating
paths and thus have distinct end-points. Crosslinks, finally, are connecting edges between
two golden paths. As tips themselves may also be subject to mild noise, and crosslinks may
occur near the start- or end-sites of the true paths, both are not always easily distinguished.
Hence, we apply the heuristic filtering steps described in the main text.
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Figure 5 Assembly statistics of yeast as a function of the k-mer size and maximal occurrence
cut-off used to remove very frequent k-mers from short reads prior to unitig assembly. a) k-mer
profiles for k=50 bp and k=75 bp. Cut-offs restrict short reads to different degrees. Note logarithmic
axes. b) Illumina unitigs (left: percentage of remaining short-read data; middle: fraction of the
reference genome covered; right: number of unitigs mapping multiple times to reference). c) final
LazyB assembly left: number of unitigs; middle: fraction of the reference genome covered; right:
number of mis-assemblies). x: not enough data to assemble.

B Influence of Short Read Filtering

The strategies for filtering short-read data have a larger impact than the choice of the k-mer
size for unitig assembly (Fig. 5). This is not surprising given that both chimeric unitigs
and unitigs that harbor repetitive DNA elements introduce spurious edges into G and thus
negatively influence the assembly. In order to exclude short reads that contain highly frequent
k-mers, the maximal tolerated occurrence has to be set manually and is dependent on the
k-mer size. Setting the cut-off right next to the main peak in the profiles has turned out
to be a good estimate. After assembling short reads, unitigs are mapped to long reads
and a coverage profile over the length of every unitig is calculated. Unitigs with maximal
coverage above interquartile range IQR × 1.5 +Q3 are considered outliers. However, regions
below coverage threshold (Q3) spanning more than 500 bp can be “rescued”. This filter step
effectively reduces ambiguous regions, especially when no previous filtering is applied (Fig. 6).
Combining both short-read filter improves the assembly quality; see Table 2.
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Table 2 Impact of short-read filtering strategies on LazyB assembly quality in fruit fly. Column
descriptions: completeness of the assembly, #ctg number of contigs, #MA number of mis-
assemblies (breakpoints relative to the reference assembly).

Filter strategy compl.[%] #ctg #MA
no filter 82.81 457 302
k-mer filter 80.66 567 104
unitig filter 80.71 563 108
k-mer and unitig filter 80.11 596 99

C Validation of Minimap2 Anchor Alignments

Classic alignment tools, even those specifically advertised for this purpose, rely on scoring
schemes that cannot accurately represent the high InDel profiles of long-read data. Instead,
they rely on seeds of high quality matches that are then chained with high error tolerance.
Currently, minimap2 is one of the most commonly used tools for this purpose. Since we do
not have a gold set of perfect data, we can only roughly estimate the influence of this heuristic
on the LazyB alignment quality in a related experiment. Specifically, we test consistency
of anchor alignments on pairs of long reads to direct alignments of both reads for fruit fly.
Consistency is validated at the level of relative orientation, the offset indicated by both
alignment methods, the portion of overlap that can be directly aligned and whether direct
alignment of the long reads is possible at all. Different relative orientations were observed
only in very small numbers. Changes in the offset by more then 5% of the longer read length
are equally rare (Fig. 7). However, requiring a direct alignment of at least 75% of the overlap
region marks 4.6% of the anchor links as incorrect. Removing those has a negative effect on
the final LazyB assembly and in particular tends to break correct contigs apart; see Table 3.
In our test set 7.7% of direct alignments of two anchor-linked long reads gave no result. In
these cases, expected overlaps are rather short (Fig. 7). We therefore tested whether the
assembly could be improved by excluding those connections between long reads for which no
alignment could be calculated despite the presence of an overlap of at least 1 kbp (3.7%).
We found, however, that this procedure also causes the loss of correct edges in G.

Summarizing, we observe three facts: (1) The overwhelming number of pairs is consistent
and therefore true. (2) Removing inconsistent edges from the assembly not only does not
improve the results but results are worse on average. (3) While we can manually identify
some incorrect unitig matches, the mappings produced by minimap2 are too inconsistent
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Figure 7 Consistency test of anchor-linked long-read overlaps to direct alignments of both reads
on fruit fly. a) Frequencies of shifted offsets (% of the longer read); changes up to 5% are tolerated;
note logarithmic axis. b) Frequencies of the percentage at which the direct alignment covers the
overlap. A minimum of 75% is set for consistency. c) Long read pairs where no direct alignment is
possible tend to have shorter anchor-indicated overlaps. Connections that cannot be confirmed via
direct alignments despite an expected overlap of at least 1 kbp are excluded.

for proper testing. Since we have no proper methods to identify such false positives we also
cannot properly estimate the number of false negatives, i.e., missing matches in the graph
Ð⇀
G , e.g. by computing a transitive completion.

Overall, our main results together with (1) indicate that a high level trust in the anchors
mapping in warranted. We also conclude that minimap2 is sufficient for our purposes.
However, the data also suggest that the assembly would profit from a more accurate handling
of the alignments.

Table 3 Assessment of different parameters to verify long-read overlaps and their impact on
LazyB assembly quality on fruit fly. Overlaps are indicated by anchors and evaluated by pairwise
long-read alignments. They are considered valid if: the relative direction suggested by the anchor
matches that of the pairwise alignment (direction); the offset is sufficiently similar for both methods
(offset); at least 75% of the overlap is found as direct alignment (incomplete mapping); the overlap
indicated by the anchor is less than or equal to 1 kbp or a pairwise alignment is possible (no
mapping). Column descriptions: completeness of the assembly, #ctg number of contigs, #MA
number of mis-assemblies (breakpoints relative to the reference assembly).

Varification parameters compl.[%] #ctg #MA
direction 80.13 608 111
direction + offset 80.08 622 103
direction + offset + incomplete mapping 80.04 1263 121
no mapping 80.15 801 113

D Alternative Heuristic for Maximum Induced Transitive Tournament

We found that ν(e) provides a better heuristic than the initial bit scores Ω(e) for the
extraction of the paths. Most plausibly, one is interested transitive tournaments as an
indication for the correct assembly path. Since this is a computationally difficult problem,
we described in the main text a heuristic based on longest paths in Ð⇀G△, that is equivalent
for perfect data. Here we briefly sketch an alternative heuristic operating directly on the
edges of Ð⇀G .

Here, we denote by N+(r) and N−(r) the set of out- and in-edges of r in Ð⇀G . We note that
the out-neighbors of r form an induced proper interval graph if and only if they are an acyclic
tournament (AT). With noisy data, we therefore ask for the maximal AT Ð⇀Kr with source r.
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Unfortunately, this task is NP-hard even in acyclic graphs [8]. We therefore resort to a
heuristic making use of the topological order in N+(r) inherited from the topological order of
Ð⇀
G and process nodes in increasing order starting with r: (i) Initialize a list L of candidates
with the pair (H,A) where H = {r} and A = N+(r). (ii) For each candidate (H,A) ∈ L

consider the ri ∈ A in topological order and append (H ′
i ,A

′
i) to L, where H ′ =H ∪ {ri} and

A′ = A ∩N+(ri). (iii) Select the candidate with maximum cardinality ∣Hr ∣.

E Evaluation of Real Data Sets

We re-used data sets from previously published benchmarks of Nanopore assemblies. For
yeast (S. cerevisiae) we used Nanopore sets ERR1883389 for lower coverage, ERR1883399
for higher coverage, and short-reads set ERR1938683, all from bioproject PRJEB19900 [9].
For comparison we use the reference genome R64.2.1 of strain S288C from the SGD. For the
fruit fly (D. melanogaster) we used the Oxford Nanopore and Illumina raw data of bioproject
PRJNA433573 [31], and the FlyBase reference genome 6.30 (http://www.flybase.org). On
Human we use SRX6356866-8 on bioproject PRJNA549351 [16] for long reads and SRA292482
[6] for short reads. We compare against reference GRCh38.p13. QUAST [10] is a specialized
tool to evaluate the quality of assemblies. We report statistics without further processing.
Table 4 summarizes the resource requirements for the assembly of the yeast, fruit fly, and
human data set.

Table 4 Assessment of running times for LazyB and Canu. Resources for LazyB are given in
three steps: 1) ABySS unitig assembly; 2) Mapping of unitigs to long reads and 3) LazyB itself.
Step 1) is often not needed as short-read assemblies are available for many organisms. Resources
are only compared for yeast and fruit fly, as Canu cannot be run for human in sensible time and
resource-constraint on our machine. As all tools except LazyB and DBG2OL are parallelized, running
times are given as the sum of time spent by all CPUs. ABySS greatly dominates the LazyB pipeline.
Nevertheless, LazyB is faster on a factor of > 60 to Canu and ≈ 3 to DBG2OL.

Organism X Tool Runtime (dd:hh:mm:ss) RAM (MB)
yeast ABySS 00:00:11:03 2283

∼5× Mapping 00:00:00:05 540
LazyB 00:00:00:30 136
ABySS + Mapping + LazyB 00:00:11:38 2283
Canu 00:10:23:55 2617
HASLR 00:00:06:44 4922
DBG2OL 00:00:31:46 1141

∼11× Mapping 00:00:00:15 1544
LazyB 00:00:01:46 362
ABySS + Mapping + LazyB 00:00:13:04 2283
Canu 00:13:44:16 6779
HASLR 00:00:08:09 4922
DBG2OL 00:00:51:13 1264

fruit fly ABySS 00:02:32:39 25344
∼5× Mapping 00:00:02:43 6433

LazyB 00:00:08:33 613
ABySS + Mapping + LazyB 00:02:43:55 25344
Canu 02:13:51:39 7531
HASLR 00:01:30:33 5531
DBG2OL 00:07:58:22 6151

∼10× Mapping 00:00:06:11 9491
LazyB 00:00:11:57 2241
ABySS + Mapping + LazyB 00:02:50:47 25344
Canu 07:04:08:28 7541
HASLR 00:01:43:21 5553
DBG2OL 02:07:32:01 17171

http://www.flybase.org
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