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Abstract
In this paper we study the relationship between privacy and accuracy in the context of correlated
datasets. We use a model of quantitative information flow to describe the the trade-off between
privacy of individuals’ data and and the utility of queries to that data by modelling the effectiveness
of adversaries attempting to make inferences after a data release.

We show that, where correlations exist in datasets, it is not possible to implement optimal
noise-adding mechanisms that give the best possible accuracy or the best possible privacy in all
situations. Finally we illustrate the trade-off between accuracy and privacy for local and oblivious
differentially private mechanisms in terms of inference attacks on medium-scale datasets.
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1 Introduction

Consider the following stories about actual and potential privacy breaches.

(i) In 2009 a lawsuit (Doe v. Netflix) was filed against Netflix alleging that it had violated
fair-trade laws and a federal privacy law. The complainants argued that Netflix’s
“anonymisation” still allowed individuals to be identified (and indeed plenty were) by
combining movie preferences with other generally available data. And that Netflix
should have known about these risks.
[Source: https://www.wired.com/2009/12/netflix-privacy-lawsuit/]

(ii) Also in 2009, researchers in Natural Language Processing showed that using powerful
machine learning algorithms, authors of anonymously-penned documents could be
identified with a high degree of accuracy.
[Source: On the Feasibility of Internet-Scale Author Identification [15]]

(iii) Finally Privacy researchers at the University of Melbourne noted that in any “an-
onymised datasets” records that can be characterised uniquely put the individuals who
contributed thoese records at risk. “While uniqueness does not imply re-identification,
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1:2 Privacy Versus Accuracy

particular data that is known to be held by certain parties, does imply the op-
portunity for re-identification”. [Source: https://pursuit.unimelb.edu.au/articles/
the-simple-process-of-re-identifying-patients-in-public-health-records]

These three real examples share a common theme: the breaches, or the potential for
breaches, are all related to “unintended inferences,” meaning that the data published was
deemed to be innocuous but turned out to have the potential for inferring information that
individuals could claim as infringements to their privacy.

Modern approaches to privacy recognise that inferences are a problem and, whilst
they likely cannot be eliminated, can be mitigated by providing “plausible deniability” for
individuals. Differential privacy in particular does not rule out inferences, but rather provides
guarantees couched in terms of indistinguishability – an individual can plausibly deny that
their personal information contributed to some precise value v because the query to the data
that is finally announced (so the argument goes) could have been produced just as plausibly
with some other non-related value v′. This feature is formalised by equations of the form:

M(v)(Z) ≤M(v′)(Z)×eεd(v,v′) , (1)

where M is a mechanism that delivers a noisy output, and v, v′ are possible instances of
input, one that could be related to an individual, and one that does not. The term M(v)(Z)
means “the probability that the output of M evaluated at input v is contained in the subset
Z”. Here d(v, v′) is a distance measure defined on inputs and ε ≥ 0 is a security parameter
often described as a “privacy budget”.

This powerful protection rests crucially on the particulars of the adversarial setting.
However the practical application of differential privacy in machine learning settings (for
example) has been shown to be problematic, with the ε parameter typically tuned to optimise
accuracy (of some utility measure) without a good understanding of the ramifications for
privacy [8]. Moreover the scope and variations of differential privacy mechanisms have
been tabulated in other work [5] and what emerges is that there is often little clarification
around the basic questions: how does some particular version of differential privacy (and its
choice of ε) affect both the potential for unintended inferences to be made of the individuals
contributing their data and the accuracy of the “useful” data that is released?

In this paper we aim to study these basic questions from the point of view of inferences.
We use a model of quantitative information flow to analyse the extent to which inferences
succeed once data has been released, and to estimate the accuracy of “useful” queries. From
this viewpoint we are able to gauge direct risks to individuals when compared to the benefits
of those wishing to use the data, as well as some understanding about the setting of the
parameter ε in terms of the trade-off between privacy risks and accuracy of data releases.

Significant in this analysis is a contribution to the “no free lunch” style theorems of Kifer
et al. [11]. We demonstrate that it is impossible to design differentially-private mechanisms
that offer minimal risk benefits to all individuals in all situations at the same time as
preserving a fixed accuracy threshold. And dually it is impossible to design differentially-
private mechanisms that offer optimal accuracy in all scenarios whilst guaranteeing a fixed
threshold for plausible deniability for all individuals.

The implication of these impossibility results is that the manner in which noisy outputs
are created is crucial, and by making reasonable assumptions about adversaries, as argued
by Kifer at al. [11], a better understanding of the relationship between inferences about
privacy and accuracy can be obtained. Our final contribution is to compare experimentally
the different risks to privacy versus accuracy in a large to medium-sized datasets when
differential privacy is used as the noise-adding mechanism.

https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
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2 Informal example: does it matter how to randomise?

In this section we illustrate, using a simple scenario, the challenges faced by designers of
privacy mechanisms in deciding what and how to randomise.

Suppose there are N participants invited to contribute to a survey. The survey question is
of a personal nature and some respondents might be embarrassed if their true response came
to be known. However the organisers of the survey only want to know the total number of
(say) “yes” replies. Fig. (1) and Fig. (2) are two possible designs for collecting the responses
and announcing a count of the total “yes” responses. Fig. (1) is the well-known “randomised
response” protocol which was designed to give respondents plausible deniability so that even
the data collectors do not know exactly whether the response they receive from any individual
is the “true” response [20].

Fig. (2) follows the blueprint of traditional “oblivious” privacy mechanisms. An accurate
tally of the true answers of the respondents is computed, and then some randomness is added.
In this particular example we use the geometric distribution.

In both cases there is a corresponding differential privacy guarantee. In Fig. (1) the
guarantee grants plausible deniability wrt. a elog 3 threshold for each respondent individually.
For Fig. (2) the differential-privacy guarantee is not handed down (directly at least) to an
individual, but rather gives a guarantee on the plausible deniability for the final output.
In this case more work is required to determine the privacy risk to an individual, but it
is relatively easy to provide a guarantee of accuracy: that’s because the randomisation is
added to the useful output, namely the true answer to the query and there are strong results
which show that good accuracy can be guaranteed using the geometric distribution for this
type of data release. In contrast for Fig. (1), as mentioned above, the randomness is added
directly to the data that is considered to be private (by the owner of that data), and so in
this scenario the survey organisers would want to know the affect on the accuracy of the
final count, which also requires more work to compute.

Much of the theoretical analysis of privacy mechanisms is carried out within the context of
an adversarial model. In the case of differential privacy that model is deliberately worst-case:
namely it is assumed that the adversary knows all the data except that of a given individual.
Within that setting though, it seems not straightforward to examine vulnerabilities in regard
to “unintended inferences” or the potential for such inferences as described by (iii) above.
Moreover Chatzikokolakis et al. [10] have shown that such adversarial models offer surprisingly
weak guarantees of privacy operating against other reasonable adversarial settings.

In the case of trying to decide whether to use Fig. 1 or Fig. 2 if we use the weak differential
privacy adversarial setting, a designer would be unable to determine how randomness might
defend against an actual privacy breach i.e. an unintended inference. When focussing
on randomness as a defence, relevant issues are not only that respondents have plausible
deniability, but also what level of ε to use that balances the risk of an unintended inference
with a reasonably accurate tally of “yes” respondents, and what might be the adversary’s
prior knowledge.

In the remaining sections we analyse the potential for inferences using a model of
Quantitative Information Flow (QIF), and adversarial settings which include assumptions
about an adversary’s prior knowledge. We begin with a brief summary if QIF in the next
section.

CONCUR 2020
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// Assume resp is an array of length N set to
// participants ’ responses , to a survey question .
i := 0;
count := 0;
while (i<N) {

coin := 0 [1/2] 1; // Random response
count := (count + coin

[1/2] // Randomly include or not
count + resp[i]);

i++;
}
Print count; // Announce the approximate count

Assume that all variables cannot be observed by an adversary except for the final “Print” of
the count. On each iteration, the participant i is randomly selected for inclusion in the count
or not. In the case that the participant’s true response resp[i] is not included, a random
response coin for that participant is delivered instead.
This mechanism R is able to guarantee the following differential-privacy constraint for each
participant i providing plausible deniability for their true response:

R(resp[i]=0)(Z) ≤ R(resp[i]=1)(Z)elog 3 .

Figure 1 Randomised response with N participants.

// Assume resp is an array of length N set to
// participants ’ responses , to a survey question
// epsilon is a parameter for randomising the final tally.
i := 0;
tally := 0;
while (i<N) {

tally := tally + resp[i];
i++;

}
count := Geom(tally , epsilon );
Print count; // Announce the approximate count

Assume that all variables cannot be observed by an adversary except for the final “Print”
of the count. On each iteration, the participant i’s response resp[i] is included in the
count. After the full count has been tallied, the result is randomised according to the
(truncated) Geometric distribution. This mechanism G is able to guarantee the following
differential-privacy constraint for the value of the tally, for ε = log 3:

G(tally = k)(Z) ≤ G(tally = k+1)(Z)elog 3 .

Figure 2 Oblivious response mechanism to announce the total for N participants.
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3 Review of Quantitative Information Flow

The fundamental notion in the analysis of information flow is a secret which is a value that is
unknown to an adversary, or at least about which there is uncertainty as to its precise value.
The relation between secrets and privacy is that any information designated as “sensitive”
means that it should be kept secret, meaning that its precise value should remain unknown,
or uncertain from the point of view of the adversary. When a privacy mechanism releases
information from a data set containing sensitive and insensitive information, of course some
sensitive (or “secret”) information is likely to be released as well. If the uncertainty about the
secret’s value is reduced sufficiently, then we might say that the privacy has been breached.
This is the essence of an inference attack: if the uncertainty about a secret’s value is reduced
sufficiently then the adversary is able to predict the true values of secrets with high likelihood.

Quantitative Information Flow makes these intuitions mathematically precise. Given
a range of possible secret values of (finite) type X , we model a secret as a probability
distribution of type DX , because it ascribes “probabilistic uncertainty” to the secret’s exact
value. Given π:DX , we write πx for the probability that π assigns to x:X , with the idea
that the more likely it is that the real value is some specific x, then the closer πx will be to 1.
Normally the uniform distribution over X models a secret which could equally take any one
of the possible values drawn from its type and we might say that, beyond the existence of
the secret, nothing else is known. In any case, once we have a secret, we are interested in
analysing whether a mechanism that uses it might leak some information about it. To do
this we define a measure for uncertainty, and use it to compare the uncertainty of the secret
before and after executing the algorithm. If we find that the two measurements differ then
we can say that there has been an information leak.

The original QIF analyses of information leaks in computer systems [3, 4] used Shannon
entropy [18] to measure uncertainty because it captures the idea that more uncertainty implies
“more secrecy”, and indeed the uniform distribution corresponds to maximum Shannon entropy
(corresponding to maximum “Shannon uncertainty”). More recent treatments have shown
that Shannon entropy is not the best way to measure uncertainty in security contexts because
it does not model scenarios relevant to the goals of the adversary. In particular there are
some circumstances where a Shannon analysis actually gives a more favourable assessment of
security than is actually warranted if the adversary’s motivation is taken into account [19].

Alvim et al. [2] proposed a more general notion of uncertainty based on “gain functions”.
This is the notion we will use. A gain function measures a secret’s uncertainty according to
how it affects an adversary’s actions within a given scenario. We writeW for a (usually finite)
set of actions available to an adversary corresponding to an “attack scenario” where the
adversary tries to infer something (e.g. some property) about the secret. For a given secret
x:X , an adversary’s choice of w:W results in the adversary gaining something beneficial to
his objective. This gain can vary depending on the adversary’s choice (w) and the exact
value of the secret (x). The more effective is the adversary’s choice in how to act, the more
he is able to overcome any uncertainty concerning the secret’s value, and increase his gain.

I Definition 1. Given a type X of secrets, a gain function g:W×X → R is a real-valued
function such that g(w, x) determines the gain to an adversary if he chooses w and the secret
is x.

A simple example of a gain function is bv, where W:=X , and

bv(x, x′) := 1 if x = x′ else 0 . (2)

CONCUR 2020
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For this scenario, the adversary’s goal is to determine the exact value of the secret, so he
receives a gain of 1 if he correctly guesses the value of a secret, and zero otherwise. Assuming
that he knows the range of possible secrets X , he therefore has W:=X for his set of possible
guesses.

Given a gain function we define the vulnerability of a secret in DX relative to the scenario
it describes: it is the maximum average gain to an adversary.

I Definition 2. Let g:W×X→R be a gain function, and π:DX be a secret. The vulnerability
Vg[π] of the secret wrt. g is:

Vg[π] := max
w∈W

∑
x∈X

g(w, x)×πx .

For a secret π:DX , the vulnerability wrt. bv is Vbv[π]:= maxx: X πx, i.e. the maximum
probability assigned by π to possible values of x. The adversary’s best strategy for optimising
his gain would therefore be to choose the value x that corresponds to the maximum probability
under π. This vulnerability Vbv is called Bayes Vulnerability.

A mechanism is an algorithm that inputs a secret and outputs some observable, which
could be determined by the value of the secret. An example of a privacy mechanism could
be an query to a database which outputs numbers of residents living in various regions or
counties. We define Y to be the type for observables. The model of a mechanism now assigns
a probability that y:Y can be observed given that the secret is x. Such observables could be
sample timings in a timing analysis in cryptography, for example.

I Definition 3. A mechanism is a stochastic channel1 C:X×Y → [0, 1]. The value Cxy is
the probability that y is observed given that the secret is x.

Given a (prior) secret π:DX and mechanism C we write π.C for the joint distribution
in X×Y defined

(π.C)xy := πx×Cxy .

For each y:Y, the marginal probability that y is observed is py:=
∑
x: X (π.C)xy. For each

observable y, the corresponding posterior probability of the secret is the conditional π|y:DX
defined (π|y)x:= (π.C)xy/py . 2

Intuitively, given a prior secret π ∈ DX and mechanism C, the entry πx×Cxy of the joint
distribution π.C is the probability that the actual secret value is x and the observation is y.
This joint distribution contains two pieces of information: the probability py of observing y
and the corresponding posterior π|y which represents the adversary’s updated view about
the uncertainty of the secret’s value. If the vulnerability of the posterior increases, then
information about the secret has leaked and the adversary can use it to increase his gain by
changing how he chooses to act. The adversary’s average overall gain, taking the observations
into account, is defined to be the average posterior vulnerability (i.e. the average gain of each
posterior distribution, weighted according to their respective marginals):

Vg[π.C] :=
∑
y∈Y

py×Vg[π|y] , where py, π|y are defined at Def. 3. (3)

1 Stochastic means that the rows sum to 1, i.e.
∑

y∈Y Cxy = 1.
2 We assume for convenience that when we write py the terms C, π and y are understood from the context.

Notation suited for formal calculation would need to incorporate C and π explicitly.
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Now that we have Def. 2 and Def. 3 we can start to investigate whether the information
leaked through observations Y actually have an impact in terms of whether it is useful to
an adversary. It is easy to see that for any gain function g, prior π and mechanism C we
have that Vg[π] ≤ Vg[π〉C]. In fact the greater the difference between the prior and posterior
vulnerability, the more the adversary is able to use the leaked information within the scenario
defined by g.

We can also compare the information leak properties of mechanisms – if one mechanism
C is more vulnerable than another D under all priors and gain functions, then we say that
D is more secure than C.

I Definition 4. Given C,D mechanisms we say that C is refined by D, or C v D if for all
priors π ∈ DX and gain functions g:W×X → R that Vg[π.C] ≥ Vg[π.D].

Def. 4 is a very robust ordering as it applies to all scenarios. It also characterises post-
processing of mechanisms. A post-processing step describes how outputs can be reassigned,
or merged. If C:X×Y → [0, 1] that outputs values of type Y, then we can “remap” them to
outputs of type Z using a mechanism D:Y×Z → [0, 1]. The result is therefore the matrix
multiplication C·D. Not surprisingly it can be shown that C v C·D, but perhaps surprisingly
if C v D then there is some postprocessing mechanism E such that C·E = D. We use the
following facts about refinement [14].
F1 The maximal element in the refinement ordering is the unit channel I that releases no

information at all. It satisfies Vg[π.I] = Vg[π] , for all gain functions g.
F2 If C 6v D then there is some gain function such that Vg[π.C] < Vg[π.D].
F3 QIF enables reasoning about correlated data as follows. Let C:X×Y → [0, 1], and let

Π ∈ D(Z×X ) be a joint distribution representing a correlation between Z. We can define
a channel C?:Z×X×Y → [0, 1] as C?zxy = Cxy. Notice that C? simply repeats rows
of C; moreover C? now allows us to investigate how much we can infer about Z from
information flows about X through C.

F4 If D 6v C then there is some correlation Π ∈ D(Z×X ) such that Vbv’[π.C] > Vbv’[π.D],
where bv’ defines Bayes’ Vulnerability for Z.

3.1 Modelling inferences
An inference is commonly regarded as the ability to determine a property about an individual
or a group of individuals using any available information. Thus the inferred property
might not be obvious, which is why almost all data releases are vulnerable, to some extent,
from inference attacks. In this section we show how to use a QIF model to study such
vulnerabilities.

As we have noted above we can use a gain function to model an adversary trying to guess
some value within a scenario defined prior knowledge π ∈ DX . We generalise the idea of
Bayes vulnerability Def. 1, modelling an adversary trying to guess a specific value, to an
adversary trying to guess a property (or set of values).

I Definition 5. Given a state space X let P:= {p1, p2 . . . pn} be a partition of X . Define
gain function P : P×X → {0, 1}:

P(p, x) := 1 iff x ∈ p else 0 .

Suppose now that M is a mechanism operating within a scenario where the adversary’s
prior knowledge is π. We can determine the adversary’s ability to use the information in the
data release to infer a property defined by a partition P: it is VP [π.M ].

CONCUR 2020
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It turns out that we can use this idea to analyse the effectiveness of a mechanism in terms
of both privacy and accuracy. To see how this works recall the mechanisms in Fig. 1 and
Fig. 2. The privacy aspect is to prevent observers from inferring true responses, whereas the
accuracy is to deliver a result from which observers can infer with a high level of confidence
the true count. 3

To analyse how well a participant’s true response can be inferred from the data release
we first set the state space X to be the set of total possible responses, and choose a prior
distribution π ∈ DX . Later in our experiments §5 we describe how to choose a prior to
capture reasonable prior knowledge of the adversary. Writing 〈r1, r2〉 for a scenario where
participant 1’s true response is r1 ∈ {0, 1} and participant 2’s true response is r2 ∈ {0, 1}
then X := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. Let S be the partition {{〈0, 0〉, 〈0, 1〉}, {〈1, 0〉, 〈1, 1〉}}
– notice that it contains two sets, with the first grouping the scenarios where participant
1’s true response is 0, and the second where participant 1’s true response is 1. Computing
VS [π.M ] gives the probability that the adversary can infer participant 1’s true response,
whatever it turns out to be. For M to defend strongly against unintended inferences about
an individual participant we would like this to be as close to VS [π] as possible, because then
the information delivered by the data release cannot be used by any adversary in his attack.
In fact in our later experiments §5, we define privacy loss to be the ratio VS [π.M ]/VS [π].

On the other hand in both mechanisms the output count is randomised, even though deliv-
ering an accurate count is the purpose of the data release. We can therefore gauge the accuracy
of the mechanism by calculating the probability with which the observer can infer the true
count for the same prior π. In detail, let U be the partition {{〈0, 0〉}, {〈0, 1〉, 〈1, 0〉}, {〈1, 1〉}}.
Here there are three subsets – the first is the (only) case in which the true count is 0, the
second contains two instances where the true count is 1 and the third is the unique case
where the count is 2. Computing VU [π.M ] therefore gives the probability that the observer
(or adversary) can infer the true count. Clearly we would like this to be close to 1 for good
accuracy.

We can see these ideas working out for our two examples above by constructing the
information flow channels for each of them.

Consider first the channel associated with randomised response Fig. 1.

randomresp:=


0 1 2

〈0, 0〉 0.56 0.38 0.06
〈1, 0〉 0.19 0.62 0.19
〈0, 1〉 0.19 0.62 0.19
〈1, 1〉 0.06 0.38 0.56

 (4)

Each row of the matrix corresponds to the probabilities of observing the output count
given by 0, 1 or 2 when executed within a scenario defined by the participants’ true responses.
For example if both participants’ responses are 0 (first row corresponding to 〈0, 0〉) the
observer would see the output at 0 with probability 0.56 because 0 is output when both
respondents’ true values are counted and, when they are not, the random value that is counted
is still zero. For each participant, his true value is counted with probability 1/2, but also
with probability 1/2 he randomly picks to respond with zero anyway. Thus each participant
contributes 0 to the final survey count with probability 0.75, and since participant responses
are independent of each other the count reported will be 0 with probability 0.75×0.75 ∼ 0.56.

3 Thus in this scenario the adversary and observer are the same.
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The other probabilities are computed similarly. Assuming then a uniform prior distribution
over possible scenarios, we see that the probability of inferring participant 1’s true response
using the information in the data release is

VS [π.randomresp] = 0.63 ,

which is only a little more than the prior VS [π] = 0.5. On the other hand the accuracy of
inferring the sum of the responses is worse:

VU [π.randomresp] = 0.59 ,

signifying that the observer cannot have a great deal of confidence in inferring the true tally.
We can perform the same analysis on Fig. 2 for comparison. Here the channel matrix is:

obliviousresp:=


0 1 2

〈0, 0〉 0.75 0.1667 0.0833
〈1, 0〉 0.25 0.5 0.25
〈0, 1〉 0.25 0.5 0.25
〈1, 1〉 0.0833 0.1667 0.75

 (5)

Notice that the (truncated) geometric mechanism is used to compute the probabilities. In the
first row, corresponding to scenario 〈0, 0〉, the true tally is 0 which is then reported accurately
with probability 0.75. As above we an compute the probabilities of inferring participant 1’s
true response and the true tally as follows:

VS [π. obliviousresp] = 0.67 and VU [π. obliviousresp] = 0.625 .

Notice that whilst the accuracy has improved from 0.59 to 0.625, this has come at a cost
of increasing the probability of inferring participant 1’s response from 0.63 to 0.67. The
reason that the increase in accuracy incurs a decrease in privacy is because the two properties
are related: if the ability to infer the participants’ responses increases then the ability to
infer an accurate tally which depends on those responses must also increase. The extent to
which we can have accuracy of utility and privacy depends crucially on how the S and U are
correlated in the prior.

In fact we can define a distribution Π ∈ D(S×U) which expresses the correlation between
the privacy property defined by partition S and the useful property defined by partition U :

Πsu:=π(s ∩ u) .

From here we can observe that S and U can be highly correlated for some of their
partition subsets suggesting that a more accurate inference of one must lead to a more
accurate inference of the other. For example if a tally of 0 can be accurately inferred
then the probability of subsequently inferring that participant 1’s true response is also 0 is
Πs0,u0/π(u0) = 1, meaning that a 0 tally implies absolutely that participant 1’s true value
must be 0. On the other hand, the probability of inferring that his value is 0 if the tally is
accurately reported as 1 is Πs0,u1/π(u1) = 1/2. Thus studying the impact of the mechanism
in terms of the abstraction of the correlation will enable us to understand the trade off
between privacy and accuracy, and the limitations on delivering highly accurate data releases
in some scenarios.
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3.2 Accuracy versus privacy
In this section we study the trade off between accuracy and privacy in terms of inferences.
Rather than working with the raw data precisely we use an abstraction based on a correlation
between S and U where, as described above, S is defined by a partition on raw data that
specifies some privacy criterion, and U similarly is defined by a partition that specifies
the useful data to be released as accurately as possible. We describe the correlation by a
distribution D(S×U). For a stochastic channel in X×Y → [0, 1] representing a mechanism
we use notation X_Y to differentiate between the input type X (denoting the secret) and
the output type Y denoting the observable.

Using these conventions, the next definition gives the effect of a mechanism in the ability
for an adversary to infer the component S.

I Definition 6. Let Π:D(S×U) represent a correlation in S×U , and let M : (S×U)_Y be a
stochastic channel representing a data release. We say that M is susceptible to an inference
leak for S if VS [Π] < VS [Π .M ].

M is completely privacy preserving wrt. S if and only if VS [Π] = VS [Π .M ]. We measure
the privacy loss by the ratio VS [Π .M ]/VS [Π].

Next, as described above, we can also define the accuracy of inferring the utility.

I Definition 7. Let Π:D(S×U) represent a correlation in S×U , and let M : (S×U)_Y be a
stochastic channel representing a data release. M ’s accuracy for U is the probability that U
can be inferred, i.e. VU [Π .M ].

M is completely accurate for U if and only if VU [Π .M ] = 1.

Now we have these definitions, we can provide a simple proof of the well-known “no free
lunch” theorem of Kifer [11], which states that it is not possible to have a single mechanism
that is arbitrarily accurate and arbitrarily private for all possible correlated secrets.

I Theorem 8. There exists no mechanism M which guarantees both arbitrary levels of
accuracy and privacy for all datasets Π:D(S×U).

Proof. Let M be a mechanism acting on a (correlated) data set. Pick S = U , and partition
P on both S,U so that the private and the useful property are entirely correlated. For
any ε>0 we might hope that VP [Π .M ] ≥ 1−ε for good accuracy, whilst at the same time
VP [Π .M ] ≤ VP [Π]+ε for good privacy. However if both constraints hold simultaneously
then we deduce that 2ε ≥ 1−VP [Π] for all Π, something that cannot be guaranteed. J

Thm. 8 applies to all privacy mechanisms, including differential privacy of course. In
the next section we investigate two common implementations for differential privacy – one
which uses the randomisation in a way to obtain good accuracy, and the other to obtain
good privacy. We investigate the trade-off between accuracy and privacy in both cases.

4 Differential privacy

Alvim et al. [1] show that when a mechanism is modelled as a channel the above definition
(1) is equivalent to comparing rows of channels relating to x, x′. In particular (1) applied to
a channel M says that M is ε-differentially private for x, x′ if

Mxy ≤ eεMx′y and Mx′y ≤ eεMxy (6)

for all y ∈ Y . Notice that (6) compares two channel rows corresponding to secret values x, x′.
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When we think of modelling mechanisms in this way, in the context of correlated data,
we see that there are two ways in which we can add the noise. The first is to apply it directly
to the S component, in the style of random response sometimes called “local differential
privacy”. The second is to the U component, i.e. the accurate result of the query; this is
sometimes referred to as an “oblivious (differentially private) mechanism”. As we saw in
Fig. (1) which is an example of the first kind, and Fig. (2), an example of the second kind,
both have an impact on accuracy and privacy. We define these two approaches to differential
privacy more generally and examine their respective trade-offs.

I Definition 9. A mechanism C ∈ (S×U) _ Y is U-insensitive if there is some L ∈ S_ Y
such that Csuy = Lsy (i.e. C = L?). (Compare [F3] above.) Dually, C is S-insensitive if
there is some R ∈ U _ Y such that Csuy = Ruy (i.e. C = R?).

Such insensitive mechanisms as described in Def. 9 add noise either to the S/U -component
respectively, so that the information flow on the other i.e. U/S-component is derived from
the original correlation between U and S. In general the use of randomisation can often be
tailored to achieve particular probabilistic effects. The use of the Laplace distribution for
example in oblivious mechanisms means that good utility can be maintained on U , and the
impact on privacy therefore can be investigated through the original correlation. We explore
the trade-off between accuracy and privacy in differentially-private mechanisms next.

4.1 Utility-focussed privacy
An utility-focussed mechanism for differential privacy adds noise to the result of a query,
thereby creating opportunities to tune the randomness for accuracy of that query. The
differentially-private guarantee for utility-focussed mechanisms entails a property of indistin-
guishability only on similar query results. Any indistinguishability relating to privacy of any
sensitive data is dependent on how it correlates with those query results.

With our model for correlated data we can decompose an oblivious mechanism into one
which acts directly on U independently of S, effectively treating it as the secret, and then
reinstalling the correlation with S.

I Definition 10. M ∈ (S×U)_Y is a utility-focussed ε-private mechanism if it is ε-private
on U , and S-insensitive.

The well-known oblivious mechanisms for differential privacy are examples of utility-
focused mechanisms. Whilst the randomisation can be tuned to optimise the accuracy of the
query this mode of adding randomness does not tell us about ability of an adversary that
has knowledge of the correlation to infer the secret component. Thm. 8 tells us we need to
consider that correlation to determine the risk. 4

A weaker property though is to consider whether there is a distinguished mechanism that
protects better than all other (oblivious) mechanisms wrt. inference attacks. We write S (U)
for the gain function derived from the partitioning S (U) into its singleton sets.

I Definition 11. An ε-differentially private mechanism M for datasets D(S×U) is optimal
wrt. inference attacks on S, if VS [Π . M ] ≤ VS [Π . M ′] for all Π ∈ D(S×U) and all
ε-differentially private mechanisms M ′.

4 This problem of some individuals being “outliers” and thus potentially identified even in the release
of aggregate data is well known and a worst-case mitigation of this situation is the use of sensitivity
analysis in for example Laplacian mechanisms [6]. The result is to make any individual’s contribution
to a noisy announcements of an aggregate statistic minuscule.
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Unfortunately there is no mechanism that is optimal wrt. inference attacks except for the
trivial mechanisms that release no information at all.

I Theorem 12. There is no non-trivial utility-focused mechanism amongst all ε-private
mechanisms on S×U that is universally optimal wrt. inference attacks on S.

Proof. (Sketch) Let M be such a non-trivial ε-private mechanism. We show that it cannot
be universally optimal wrt. inference attacks on S. By Def. 10 this means that M can be
decomposed with ε-private component U ∈ U _ Y such that U? = M . Moreover if M is
not the trivial mechanism, then there exists some mechanism G such that U @ G (strict
refinement, F1), implying that G 6v U . In this case, by (F4) we have immediately that there
is some Π ∈ D(S×U) such that VS [Π . U?] > VS [Π .G?], as required. J

Thm. 12 tells us that if privacy is of utmost concern, the use of a utility-focussed
mechanism is really about preserving accuracy of the result of the query, and gives no optimal
guarantees regarding whether the actual sensitive data is vulnerable to an inference attack
under some other mechanism. We see for example with Fig 2 that whilst this does deliver the
most accurate result it is not the “most private” as measured by vulnerability to inferences,
amongst non-trivial mechanisms.

4.2 Secrecy-focussed privacy
There are many alternative ways to add randomness in privacy mechanisms rather than to
the result of a query. We can model this idea as follows.

I Definition 13. M ∈ (S×U)_Y is a secrecy-focussed ε-private mechanism if it is ε-private
on S, and is U-insensitive.

Locally differential private mechanisms are somewhat in this style and therefore are, in
some sense, dual to utility-focussed mechanisms because they first produce a noisy version of
the data through a noise-adding mechanism applied to S, rather than to the result of a query.
Subsequent queries are then applied to the noisy version of the data, in the style of randomised
response Fig.1. Next, we define optimality wrt. utility, and show that secrecy-focussed
mechanisms cannot be universally optimal wrt. accuracy of utility.

IDefinition 14. An ε-differentially private mechanismM ∈ D(S×U) is optimal wrt. accuracy
on U , if VU [Π . M ] ≥ VU [Π . M ′] for all Π ∈ D(S×U) and all ε-differentially private
mechanisms M ′ ∈ D(S×U).

I Theorem 15. Let |S| ≥ 3. There is no secrecy-focussed ε-differentially private mechanisms
on D(S×U) amongst all ε-differentially private mechanisms which is optimal wrt. accuracy
on U .

Proof. (Sketch.) Let M be such a secrecy-focussed mechanism, and let L be such that
L? = M as per Def. 10. The proof is dual to that of Thm. 12 once we show that there is
some ε-differentially private L′ over S such that L 6v L′. But this follows from an analysis of
optimal ε-private mechanisms [10]. J

Thm. 15 is interesting because it says that mechanisms that add randomness to enable a
direct guarantee to the privacy component, cannot be optimised universally for all utility
measures. For example, mechanisms that are designed to be locally-differentially private
use post-processing to compute the utility on the noisy data. Post-processing, however



M.S. Alvim, N. Fernandes, A. McIver, and G.H. Nunes 1:13

is just refinement. Indeed it can be shown, for example, that Fig.1 is a refinement of a
secrecy-focussed ε-private mechanism but more work is needed to explain the observation
that locally private mechanisms often exhibit poor accuracy on medium-sized datasets. We
end this section by showing that any refinements of secrecy-focussed mechanisms cannot
provide universal accuracy.

I Corollary 16. If M vM ′ and M is secrecy-focussed as in Thm. 15, then M ′ is not optimal
wrt. accuracy on U .

Proof. Follows since VU [Π .M ] ≥ VU [Π .M ′]. J

5 Experiments

In this section we present some experiments illustrating the main points presented in previous
sections. We consider scenarios in which both a data analyst and an adversary can observe
the output of a mechanism that reports a (possibly randomised) count of the number of rows
in a dataset that satisfy some property. However, whereas the data analyst wants to infer
the real value of the counting query performed on the dataset, the adversary wants only to
infer the value of a sensitive attribute in a row just added to the dataset. More precisely, we
consider experimental scenarios under the following conditions.

1. There is a dataset D of interest, consisting in a multiset of rows, each of which is a tuple
defined on a set A of attributes. Each attribute a∈A has domain domain(a), and we
denote by rows(A) the set of all possible rows that can be formed from attribute set A,
and by x[a] the value assumed by attribute a∈A on a row x∈rows(A).

2. A new row x?∈rows(A) will be added to D (due to, e.g., data from a new individual),
yielding an extended dataset denoted (with a slight abuse of notation) by D∪x?.

3. A data analyst wants to learn the result of a counting query countq that returns the
number of rows in the extended dataset D∪x? satisfying a given condition q on a useful
attribute au∈A (e.g., how many rows have attribute gender set to female). The value
countq(D∪x?) is the real count for the counting query performed on the extended dataset.

4. An adversary has full knowledge of all rows in the dataset D, but is unsure about the
contents of the newly added row x?. His goal is to learn the value x?[as] of a sensitive
attribute as∈A for this new row.

5. Both the data analyst and the adversary learn the count on the extended dataset D∪x?
via a query mechanism Mcountq

that returns a (possibly randomised) version of the real
count countq(D∪x?). We call the output Mcountq

(D∪x?) the reported count, by the
mechanism, for the counting query performed on the extended dataset.

6. Both the data analyst and the adversary know the value of the real count countq(D) on
the original dataset D, and both have as prior knowledge a distribution π?:D(rows(A)) on
all values that the new added row x? can assume (e.g., the adversary and the data analyst
may be the same entity). From that, they can derive, in the usual way, distributions on
the value x?[as] of the sensitive value of the newly added individual and on the real count
countq(D∪x?) for the query.

To properly formalize the privacy loss and utility of such scenarios, we introduce the
following notation. Given a scenario Γ as described above, let PrΓ denote the corresponding
joint probability distribution –depending on the coin tosses of the distribution π? on the
values for the new row x? and on the query mechanism Mcountq employed–, s.t. PrΓ(x?=x,
x?[as]=s, countq(D∪x?)=u,Mcountq

(D∪x?)=u′) is the probability that in scenario Γ: (i) the
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new added row x? assumes value x∈rows(A); (ii) the sensitive value x?[as] of the new added
row x? assumes value s∈domain(as); (iii) the real count of query countq performed on the
extended dataset D∪x? assumes value u∈N; and (iv) the reported count of query countq
produced by the mechanism Mcountq , w.r.t. the extended dataset D∪x?, assumes value u′∈N.

We then define the privacy loss of a scenario as the multiplicative Bayes leakage of the
new row’s sensitive value x?[as] given the reported count Mcountq (D∪x?) on the extended
dataset D∪x?. (Compare Def. 6.) Intuitively, privacy loss reflects by how much knowledge
of the reported count increases the adversary’s chance of correctly guessing the secret value
in one try. Formally:

privacy-loss(Γ) def=
∑
u′∈N maxs∈domain(as) Pr

Γ(x?[as]=s,Mcountq (D∪x?)=u′)
maxs∈domain(as) PrΓ(x?[as]=s)

. (7)

On the other hand, we define the utility of a scenario as the posterior Bayes vulnerability
of the real count countq(D∪x?) of query countq performed on the extended dataset D∪x?
given the reported count Mcountq (D∪x?) on the extended dataset D∪x?. (Compare Def. 7.)
Formally:

utility(Γ) def=
∑
u′∈N

max
u∈N

PrΓ(countq(D∪x?)=u,Mcountq
(D∪x?)=u′) . (8)

Equations (7) and (8) depend on the joint probability distribution PrΓ induced by the
scenario, which itself depends on the coin tosses of the query mechanism Mcountq

employed.
Hence, to fully flesh out these definitions we need to determine how the mechanism Mcountq

works. We consider two deferentially-private mechanisms adding noise in different ways.

An oblivious mechanism Mobv
countq

that first applies counting query countq to the input
dataset to produce a real count u, and then applies a (differentially-private) oblivious
randomisation function Robv:N→D(N) to u in order to produce a reported count u′ as
the output of the mechanism. This is similar to a utility-focussed mechanism.
A local mechanism M loc

countq
that first applies a (differentially-private) local randomisation

function Rloc:domain(au)→D(domain(au)) independently to each row’s useful value to
produce a randomised dataset D′, and only then applies the counting query countq to
D′ in order to produce a reported count u′=countq(D′) as the output of the mechanism.
This is in the spirit of a privacy-focussed mechanism.

In our experiments we used the dataset released by ProPublica 5 corresponding to two
years worth of data from the COMPAS tool (Correctional Offender Management Profiling
for Alternative Sanctions), which is one of the most popular algorithmic tools used in the
United States criminal justice system for pretrial and sentencing evaluation of the risk of bad
behaviour for criminal defendants. We focused on the tool’s assessment scores for “Risk of
Failure to Appear”, and eliminated from the dataset all but the most recent record for any
given person, as well as all records with invalid entries for attributes marital_status and
score_text. This treatment has left us with a database containing 11,710 unique records.

We then considered two scenarios. In both, the adversary’s goal is to learn the newly
added row’s value for sensitive attribute custody_status, which can be 0-“pretrial de-
fendant”, 1-“residential program”, 2-“probation”, 3-“parole”, 4-“jail inmate”, or 5-“prison
inmate”. However, in scenario A the data analyst’s query of interest is “select count *

5 https://github.com/propublica/compas-analysis

https://github.com/propublica/compas-analysis
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from D where custody_status=0”, whose result is highly correlated with the secret in-
formation, whereas in scenario B the query of interest is “select count * from D where
marital_status=0” (the range for marital_status is 0-“single”, 1-“significant other”, 2-
“married”, 3-“separeted”, 4-“divorced”, or 5-“widowed”), whose result is highly independent
from the secret information. In both scenarios data analyst and adversary assume the new
row x? added to dataset D follows a distribution π?:D(rows(A)) s.t. the probability of each
x∈rows(A) is the value’s frequency in the dataset D. Moreover, for fairness in comparison,
we instantiate both the oblivious randomisation function Robv and the local randomisation
function Rloc as the truncated geometric mechanism with the same value of ε. 6

Table 1 presents the results of our experiments for various values of ε. In terms of
inferences, we want the privacy loss to be low to offer good protection for individuals. This
means, in the scale of Bayes vulnerability leakage, that the value should be close to 1 because
then we can argue that in the studied scenario the information flow does not increase the
adversary’s prior knowledge. 7 For accuracy however, to offer good utility, we want it to
be as high as possible. In the scale of Bayes vulnerability a value close to 1 represents high
certainty that the true value of the query can be accurately inferred.

As we can notice, in both scenarios described above and for each value of ε the local
mechanism is consistently more private, but less useful, than its oblivious counterpart. The
experiments also illustrate the well known fact from the literature that local mechanisms tend
not to provide good utility in small datasets like the one we consider here: utility remains at
its theoretical minimum for relatively high values of ε (≈ ln 200 in Scenario A and ≈ ln 103

in Scenario B). Finally, note that in Scenario A, where real count and secret are highly
correlated, it is hard to achieve a satisfactory trade-off between utility and privacy, as these
values are always in opposition to each other. On the other hand, since in Scenario B the
real count is practically independent of the secret, it is possible to maintain privacy at a
minimum level even for very high values of utility.

6 Related work

Our work builds upon the “no free lunch” theorem of Kifer and Machanavajjhala [11],
who provided the first analysis of the limitations of differential privacy in the presence of
correlations between secrets. Their work also uses inference attack models to demonstrate
the effect of correlations on possible inferences resulting in unexpected privacy breaches. Our
work complements theirs by utilising the QIF framework to model the effect of inference
attacks through the lens of information flow. The same authors proposed Pufferfish, a
framework providing a more nuanced approach to privacy that depends on the idiosyncracies
of particular datasets [12]. Inspired by Pufferfish, He et al. [7] introduced the Blowfish
framework to allow a more tailored approach to privacy policies which depends on known
(public) correlations in the dataset.

Other authors have observed that differential privacy does not protect known correlations
in datasets. Zhu et al. [21] proposed strengthening privacy mechanisms for correlated datasets
based on a modified measure of the sensitivity of the dataset. Liu et al. [13] demonstrate an
inference attack against a differentially private dataset by exploiting known correlations in

6 The truncated geometric mechanism with parameter ε>0, domain {0, 1, 2, . . . ,m}, and co-domain
{0, 1, 2, . . . , n} is defined as G(j|i)=1/(1+α) · αi, if j=0, or G(j|i)=(1−α)/(1+α) · α|i−j|, if 0<j<n, or
G(j|i)=1/(1+α) · α|i−n|, if j=n, for every 0≤i≤m and 0≤j≤n, where α=e−ε, and each value G(j|i)
represents the probability that integer i is remapped to integer j.

7 In a leakage measure we do not tabulate the actual probability of inference, but rather than increase in
inference compared to the prior.
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Table 1 Results of privacy loss and utility on Scenarios A (with highly correlated counting query
and secret) and B (with practically independent counting query and secret) for the COMPAS dataset
A value close to 1 for privacy means the data release does not pose a risk to an individual; a value
close to 1 for utility means that the data release is accurate.

Scenario A Scenario B

Oblivious Local Oblivious Local
mechanism mechanism mechanism mechanism

ε
Priv.
loss Util. Priv.

loss Util. Priv.
loss Util. Priv.

loss Util.

0 (theoretical
minimum) 1.0000 0.7984 1.0000 0.7984 1.0000 0.7704 1.0000 0.7704

ln 3 1.0000 0.7984 1.0000 0.7984 1.0000 0.7704 1.0000 0.7704
ln 5 1.0452 0.8333 1.0000 0.7984 1.0000 0.8333 1.0000 0.7704

ln 10 1.1402 0.9091 1.0000 0.7984 1.0000 0.9091 1.0000 0.7704
ln 100 1.2418 0.9901 1.0000 0.7984 1.0000 0.9901 1.0000 0.7704
ln 200 1.2480 0.9950 1.0001 0.7984 1.0000 0.9950 1.0000 0.7704
ln 500 1.2517 0.9980 1.0035 0.8011 1.0000 0.9980 1.0000 0.7704
ln 103 1.2529 0.9990 1.0234 0.8169 1.0000 0.9990 1.0000 0.7704
ln 105 1.2542 1.0000 1.2481 0.9952 1.0000 1.0000 1.0000 0.9330

∞ (theoretical
maximum) 1.2607 1.0000 1.2607 1.0000 1.2607 1.0000 1.2607 1.0000

the data. Works in this area focus on known correlations – particularly correlations within
the dataset – and do not address the more general problem of unknown correlations which
may be known only to an adversary.

Other works on inference attacks on private data consider alternate privacy metrics to
measure privacy loss. Salamatian et al. [17] use traditional information theoretic measures
such as entropy and mutual information to produce an alternate privacy framework to
differential privacy which is focussed on protecting against inference attacks. Most recently,
Jayaraman et al. [9] propose new privacy metrics to evaluate the risk of inference attacks.

Finally, there is considerable interest in understanding inference attacks on machine
learning models which employ differential privacy to protect their training data. Rahman et
al. [16] empirically evaluate the success of membership inference attacks against machine
learning models trained with different privacy parameters. Most recently, Jayaraman et
al. [9] empirically evaluate the risk of inference attacks on differentially private machine
learned models using their own privacy metrics. Works in this area typically use ad hoc
methods to evaluate privacy leakage, whereas our QIF framework permits rigorous analysis
based on an operational inference attack model.

7 Conclusion

In this paper we have studied the relationship between accuracy and privacy in data releases
from the perspective of inferences. We have shown, using a channel model for quantitative
information flow, how to capture reasonable assumptions about prior knowledge to compare
accuracy of a query result versus the ability for the adversary to infer additional information
about individuals in the database. We have demonstrated how correlations in databases of
moderate size pose challenges for protecting privacy of individuals.

In future work we hope to use this kind of analysis to expose potential vulnerabilities in
databases by considering the threats posed by inferences in proposed data releases.
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